WO2024089939A1 - Tire half, tire, method for producing tire half, and method for producing tire - Google Patents

Tire half, tire, method for producing tire half, and method for producing tire Download PDF

Info

Publication number
WO2024089939A1
WO2024089939A1 PCT/JP2023/024084 JP2023024084W WO2024089939A1 WO 2024089939 A1 WO2024089939 A1 WO 2024089939A1 JP 2023024084 W JP2023024084 W JP 2023024084W WO 2024089939 A1 WO2024089939 A1 WO 2024089939A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
knitted
radial direction
layer
circumferential direction
Prior art date
Application number
PCT/JP2023/024084
Other languages
French (fr)
Japanese (ja)
Inventor
寛治 田中
崇之 藏田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024089939A1 publication Critical patent/WO2024089939A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a tire half, a tire, a tire half manufacturing method, and a tire manufacturing method.
  • Publication No. 2016/017508 of the same publication discloses a tire that includes a bead portion in which a bead core having a resin-coated cord is embedded, and a reinforcing layer in which a reinforcing material is coated with a resin material and heat-welded to the bead core, and that extends from the bead portion to the side portion.
  • the purpose of this disclosure is to provide technology relating to a tire half body, a tire, a tire half body manufacturing method, and a tire manufacturing method in which reinforcing bodies are evenly distributed in the circumferential direction.
  • the tire half body of the first embodiment includes a bead portion in which a bead core is embedded, a knitted body formed of a first fiber material and having a folded mesh that is continuous in the tire circumferential direction and the tire radial direction and is endless in the circumferential direction, a knitted layer having a reinforcing body formed of a reinforcing fiber material and woven into the knitted body at equal intervals in the tire circumferential direction and that regulates the elongation of the knitted body in the tire radial direction, and a resin skeleton formed of a thermoplastic resin and in which the knitted layer is integrated and arranged from the bead portion to the crown portion.
  • the second embodiment of the tire half is the tire half described in the first embodiment, in which the first fiber material is compatible with the thermoplastic resin.
  • the third embodiment of the tire half is the tire half described in the first or second embodiment, in which the knitted layer is located on the outer side of the tire in the resin skeleton.
  • the tire of the fourth aspect has a tire frame member formed by a pair of tire halves described in the first or second aspect, an annular belt layer arranged on the tire radial outside of the tire frame member, and a tread layer arranged on the tire radial outside of the resin annular belt.
  • the fifth aspect of the tire half body manufacturing method includes a primary molding step of forming a primary formed body by integrating an annular bead core with the inner end in the tire radial direction of a knit layer having a knitted body formed of a first fiber material, a folded mesh formed continuously in the tire circumferential direction and the tire radial direction, ends on both sides in the tire radial direction and endless in the tire circumferential direction, and a reinforcing body formed of a reinforcing fiber material and woven into the knitted body at equal intervals in the tire circumferential direction while restricting the elongation of the knitted body in the tire radial direction, and a primary molding step of forming a primary formed body by integrating an annular bead core with the inner end in the tire radial direction of the knitted body.
  • the method includes a fixing step of fixing the bead core of the primary formed body to the inner end of the inner mold in the radial direction on one side surface of the inner mold in the axial direction while hanging the outer end of the primary formed body on the outer peripheral surface of the inner mold in the radial direction of the inner mold, a clamping step of forming a cavity using an outer mold that faces the peripheral surface of the inner mold and the side surface of the inner mold with a gap, and an injection step of injecting a resin material into the cavity from the other side of the inner mold in the axial direction of the inner mold relative to the bead core, and forming a resin skeleton while pressing the primary formed body against the outer mold.
  • the tire manufacturing method of the sixth aspect includes a joining step of joining a pair of tire halves manufactured by the tire half manufacturing method described in the fifth aspect, a belt layer arrangement step of arranging an annular belt layer on the tire radially outer side of the tire frame member manufactured by the joining step, and a tread layer arrangement step of arranging a tread layer on the tire radially outer side of the belt layer of the tire frame member.
  • This disclosure provides technology relating to a tire half body, a tire, a tire half body manufacturing method, and a tire manufacturing method in which reinforcing bodies are evenly distributed in the circumferential direction.
  • FIG. 1 is a cross-sectional view of a tire of the present disclosure.
  • FIG. 2 is a cross-sectional view illustrating a skeletal member according to the present disclosure.
  • FIG. 2 is a diagram illustrating a primary molded body according to the present disclosure.
  • FIG. 4 is an enlarged view of a portion 3A in FIG. 3, illustrating the structure of a knitted layer of a primary molded body of the present disclosure.
  • FIG. 2 is a diagram for explaining the manufacturing process of a tire according to the present disclosure, showing a state in which a primary molded body is placed in an inner mold.
  • FIG. 2 is a diagram illustrating the manufacturing process of a tire according to the present disclosure, illustrating how a primary molded body is placed over an inner mold.
  • FIG. 1 is a cross-sectional view of a tire of the present disclosure.
  • FIG. 2 is a cross-sectional view illustrating a skeletal member according to the present disclosure.
  • FIG. 2 is a diagram illustrating
  • FIG. 2 is a diagram for explaining a manufacturing process of a tire according to the present disclosure, showing a gate portion.
  • FIG. 2 is a diagram illustrating a manufacturing process of a tire according to the present disclosure, and illustrates how resin is injected into a cavity to form a frame member.
  • the arrow R in each figure indicates the radial direction of the tire 10
  • the arrow W indicates the width direction (axial direction) of the tire 10
  • the arrow ⁇ indicates the circumferential direction of the tire 10.
  • the "outside of the tire” refers to the outside in both the tire radial direction and the tire width direction, and coincides with the direction in which the arrows R and W point in each figure.
  • thermoplastic resins refer to polymeric compounds that soften and flow with increasing temperature and become relatively hard and strong when cooled.
  • polymeric compounds that soften and flow with increasing temperature and become relatively hard and strong when cooled and have rubber-like elasticity are defined as thermoplastic elastomers
  • polymeric compounds that soften and flow with increasing temperature and become relatively hard and strong when cooled and do not have rubber-like elasticity are defined as non-elastomer thermoplastic resins.
  • Thermoplastic resins include polyolefin thermoplastic elastomers (TPO), polystyrene thermoplastic elastomers (TPS), polyamide thermoplastic elastomers (TPA), polyurethane thermoplastic elastomers (TPU), polyester thermoplastic elastomers (TPC), and dynamically crosslinked thermoplastic elastomers (TPV), as well as polyolefin thermoplastic resins, polystyrene thermoplastic resins, polyamide thermoplastic resins, and polyester thermoplastic resins.
  • TPO polyolefin thermoplastic elastomers
  • TPS polystyrene thermoplastic elastomers
  • TPA polyamide thermoplastic elastomers
  • TPU polyurethane thermoplastic elastomers
  • TPC polyester thermoplastic elastomers
  • TPV dynamically crosslinked thermoplastic elastomers
  • the tire 10 according to the present disclosure includes a tire frame member 17 having a pair of bead portions 12, a side portion 14 extending from the bead portions 12 to the radially outer side of the tire 10, and a crown portion 16 (outer peripheral portion) connecting a radially outer end of the tire 10 of one side portion 14 to a radially outer end of the tire 10 of the other side portion 14.
  • the tire frame member 17 includes a belt layer 32 formed of a resin cord member 26 on the radially outer side of the tire 10, and a tread layer 30 on the radially outer side of the belt layer 32, thereby forming the tire 10.
  • the radial direction, width direction, and circumferential direction of the tire half body 17A coincide with the radial direction, width direction, and circumferential direction of the tire 10, as shown in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the width direction of the tire 10, showing an example of the configuration of the tire 10 according to this embodiment.
  • the belt layer 32 is formed by wrapping the resin cord member 26 around the outer periphery of the tire frame member 17 in the circumferential direction of the tire 10 and joining it to the tire frame member 17.
  • the resin cord member 26 is also formed by joining adjacent portions of the resin cord member 26 in the width direction of the tire 10.
  • the resin cord member 26 is formed by coating the cord member with a coating resin layer.
  • the cord member to be resin-coated in the resin cord member 26 is composed of a monofilament (single wire) of metal fiber or organic fiber, or a multifilament (twisted wire) made of twisted fibers.
  • Examples of the resin cord member 26 include a monofilament (single wire) made of a single metal cord, and a multifilament (twisted wire) made of twisted multiple metal cords.
  • the cross-sectional shape of the resin cord member 26 (the shape of the cross section perpendicular to the longitudinal direction of the resin cord member 26) is approximately rectangular, but the resin cord member 26 according to this embodiment is not limited to this and can have various shapes, such as an approximately parallelogram.
  • the tread layer 30 is a portion provided on the peripheral surface 52C, which is the outer peripheral surface of the tire 10, and is formed by wrapping a material such as rubber around the belt on the radial outside of the tire 10.
  • the tire frame member 17 includes a pair of tire halves 17A having a bead portion 12 and a resin frame 20 formed by injection molding a thermoplastic resin integrally with a side portion 42 and a half-width crown portion 44.
  • the pair of tire halves 17A are formed by facing each other and joining them at the tire equatorial plane as shown in FIG. 1.
  • the tire half body 17A has the bead portion 12, the knitted layer 41, and the resin skeleton 20 in which the knitted layer 41 is disposed radially outside the tire 10 from the bead core 18 to the crown portion 44 and integrated with the bead portion 12.
  • the resin skeleton 20 is formed of a thermoplastic resin.
  • the knitted layer 41 and the bead core 18 are integrated as a primary molded body 34, which will be described later, and then integrated with the resin skeleton 20.
  • annular bead core 18 made of a resin-coated steel cord is embedded in the bead portion 12.
  • the bead core 18 has a substantially rectangular cross section.
  • the tire half 17A has a rubber layer 24 formed on the outer side in the width direction of the tire 10 from the bead portion 12 to the crown portion 44. This rubber layer 24 protects the tire half 17A from sunlight and the like when the tire 10 is mounted on a wheel, improving weather resistance.
  • (Primary molded body 34) 3 is a diagram showing a primary molded body 34 included in a tire half body 17A according to the present disclosure. As shown in FIG. 3, the primary molded body 34 includes a knitted body 36, a knitted layer 41 including a reinforcing body 40, and a bead core 18.
  • the knitted body 36 is formed from a thread-like first fiber material 38, has a folded mesh that is continuously formed in the circumferential direction and radial direction of the tire 10, has ends on both radial sides of the tire 10, and is endless in the circumferential direction of the tire 10.
  • the knitted body 36 is a member formed by knitting the first fiber material 38 into a ring shape, and has elasticity in the radial and circumferential directions (the up-down and left-right directions in Figure 4).
  • the first fiber material 38 is formed from a material that is compatible with the resin skeleton 20 and the resin coating of the bead core 18. Specifically, it is a material such as a polyester-based thermoplastic elastomer, and the same type of resin as the resin skeleton 20 is preferably used.
  • compatibility refers to the property of materials of different components easily mixing with each other in a molten state.
  • the reinforcing body 40 is a thread-like member formed of a reinforcing fiber material, extending in the tire radial direction, and evenly distributed in the tire circumferential direction by being woven in the circumferential direction of the tire 10 in the knitted body 36, and restricts the elongation of the knitted body 36 in the radial direction of the tire 10.
  • the reinforcing fiber material is formed of a material that is not compatible with the resin skeleton 20, as described later. Specifically, a material having a higher softening temperature and higher tensile strength than the first fiber material 38, such as aramid fiber or steel cord, is used.
  • the reinforcing fiber material is not limited to a single material, and may be an artificial resin such as aramid fiber, or a fiber body in which a resin of the same type as the first fiber material 38 is coated on steel cord, etc.
  • the shape and number of the reinforcing body 40 are appropriately determined according to the specifications of the tire 10 to be manufactured. In addition, the above-mentioned even distribution is sufficient if the multiple reinforcing bodies 40 are approximately equally spaced from each other when viewed macroscopically.
  • the reinforcing members 40 are preferably arranged at approximately 10 pieces/mm to 60 pieces/mm in the circumferential direction of the tire.
  • the knitted body 36 may be formed by any knitting method as long as it is stretchable in the radial and circumferential directions of the tire 10, but as an example, it is formed by stockinette knitting.
  • the primary molded body 34 in this disclosure has a so-called inlay structure in which a reinforcing fiber material is woven into the knitted body 36.
  • the shape of the knitted fabric body 36 is determined appropriately according to the specifications of the tire 10 to be manufactured, but is shaped to be disposed in the resin skeleton 20 from the bead core 18 to the crown portion 44 (see also Figures 5 and 8).
  • the resin coating of the bead core 18 and the knitted body 36 are made of materials that are compatible with each other, and the knitted body 36 and the resin coating of the bead core 18 can be welded together. For this reason, the bead core 18 in this embodiment is welded to the inner end of the knitted body 36 in the radial direction of the tire 10.
  • the tire half body manufacturing method according to the present disclosure includes a primary molding process, a fixing process, a mold clamping process, and an injection process.
  • annular bead core 18 is integrated with an inner end of the knitted layer 41 in the radial direction of the tire 10 to form a primary molded body.
  • (Fixation process) 5 is a diagram for explaining the state in which the primary formed body is arranged on the inner die 52 expanding in the radial direction.
  • the radially outer end of the primary formed body of the primary formed body is hung on the radially outer peripheral surface 52C of the inner die 52, and more specifically, as shown in FIG. 5, the primary molded body 34 is placed so as to cover the inner die 52 formed into a cylindrical shape by arranging a plurality of parts in the circumferential direction from one side in the axial direction (the right side in FIG. 5, the lower side in FIG. 6) to the other side in the axial direction (the left side in FIG. 5, the upper side in FIG. 6).
  • the bead core 18 is located on one side in the axial direction of the inner die 52.
  • the primary formed body is not fixed on the other axial side, and the primary molded body 34 is placed over the inner die 52 as the knitted body 36 shrinks in the axial and radial directions of the inner die 52, and remains aligned with the wall surface of the inner die 52 (the radial outer side of the circumferential surface 52C and the side surface 52S).
  • multiple slide molds 54 that can move further axially from the side surface 52S of the inner mold 52 toward one axial side are provided with gaps in the tire circumferential direction.
  • the slide mold 54 is recessed toward one axial side, and the bead core 18 is disposed in the recess of the slide mold 54.
  • the bead core 18 is disposed with a gap between it and the inner mold 52.
  • an outer die 56 is disposed opposite the inner die 52 on one axial side of the inner die 52, covering the radial and axial sides of the inner die 52 and forming a gap.
  • a cavity C is formed using a peripheral surface 52C of the inner mold 52 and an outer mold 56 that faces the side surface 52S of the inner mold 52 with a gap therebetween. More specifically, from the state shown in FIG. 5, an outer mold 56 that covers the radial direction and one axial side of the inner mold 52 is brought closer to the inner mold 52 from one axial side, and a cavity C that is a gap is formed between the side surface 52S and peripheral surface 52C of the inner mold 52 and an inner surface 56I of the outer mold 56.
  • This cavity C has a shape equivalent to that of the tire half body 17A according to the present disclosure, and the tire half body 17A is formed by pouring a molten thermoplastic resin into the cavity C as described later.
  • the radial direction, width direction, and circumferential direction of the inner mold 52 coincide with the radial direction, width direction, and circumferential direction of the tire 10, as shown in FIG. 1.
  • a gate portion 58 for injecting thermoplastic resin (described later) is formed on one axial side of the inner mold 52, radially inward from the bead core 18.
  • the knitted fabric body 36 of the primary molded body 34 is stretched in the axial and radial directions of the inner mold 52 while hung on the inner mold 52, so a contracting force acts on it, and it comes into contact with the inner mold 52 from the side surface 52S to the peripheral surface 52C inside the cavity C.
  • thermoplastic resin is injected into the cavity C through the gate portion 58.
  • the knitted body 36 is pressed against the inner surface 56I of the outer die 56 in the cavity C by the molten thermoplastic resin injected through the gate portion 58, as shown in Fig. 8. Then, with the knitted body 36 pressed against the inner surface 56I of the outer die 56, the thermoplastic resin cools, forming the tire half body 17A in the cavity C.
  • the knitted fabric body 36 is cooled in the cavity C while being pressed against the inner surface 56I of the outer mold 56. Therefore, the knitted fabric body 36 is integrated with the formed resin skeleton 20 in a state where it is located on the outer side of the tire. More specifically, in the side portion 42 of the resin skeleton 20 (one axial side of the resin skeleton 20), it is preferable that the knitted fabric body 36 is integrated with the resin skeleton 20 in a state where it is located on one axial side of a position 0.5 times the thickness of the side portion 42 of the resin skeleton 20.
  • the knitted fabric body 36 is integrated with the resin skeleton 20 in a state where it is located radially outward of a position 0.5 times the thickness of the crown portion 16 of the resin skeleton 20.
  • the knitted body 36 is pressed against the inner surface 56I of the outer mold 56 in the cavity C, so that the knitted body 36 is integrated in a state in which it spreads outward in the radial direction of the tire 10 and outward in the circumferential direction of the tire 10.
  • the reinforcing body 40 woven into the knitted body 36 is integrated with the resin skeleton 20 in a state in which it spreads out in the circumferential direction of the tire 10 of the tire half body 17A.
  • the tire manufacturing method according to the present disclosure includes a rubber layer arrangement process, a joining process, a belt layer arrangement process, and a tread layer arrangement process.
  • a rubber layer 24 is disposed on one widthwise side of the pair of tire halves 17A manufactured by the above-described steps.
  • a circular belt layer 32 is disposed on the radially outer side of the tire 10 of the tire frame member 17 manufactured in the joining step.
  • the belt layer 32 can be formed by winding the resin cord member 26 around the crown portion 44 of the tire frame member 17.
  • tread layer arrangement process In the tread layer disposing step, an annular tread layer is disposed on the radially outer side of the tire 10 of the tire frame member 17 manufactured in the belt layer disposing step.
  • the radially outer end of the knitted layer 41 extends to the crown portion 16 of the tire frame member 17 and overlaps with the belt layer 32.
  • the amount of overlap with the belt layer 32 is preferably 5 mm or more from the end of the belt layer 32 in the width direction of the tire 10 toward the center in the width direction of the tire 10.
  • the knitted layer 41 may also extend to the center in the width direction of the tire 10.
  • the resin skeleton 20 of the tire half body 17A of this embodiment is formed by integrating a knitted layer 41 having a knitted body 36 with reinforcing members 40 evenly spaced around the tire 10, and the knitted layer 41 is integrated with the knitted body 36 using a thermoplastic resin.
  • the reinforcing members 40 can be arranged on the resin skeleton 20 in an evenly spaced manner in the circumferential direction of the tire 10, improving the durability of the tire half body 17A.
  • the resin skeleton 20 of this tire half body 17A has a knitted layer 41 that is arranged on the radial outside of the tire 10 in the resin skeleton 20 and integrated with the tire 10, and whose radial expansion is restricted by reinforcing members 40 that are evenly distributed around the tire 10. Therefore, the shape of the knitted layer 41 of the resin skeleton 20 of this tire half body 17A is unlikely to change even if the internal pressure of the tire 10 increases.
  • this tire half body 17A can improve the durability of the resin skeleton 20 compared to a tire half body 17A in which the knitted fabric layer 41 is positioned radially outside the tire 10 in the resin skeleton 20 and is not integrated.
  • the first fiber material 38 is compatible with the thermoplastic resin.
  • the knitted fabric main body 36 is compatible and integrated with the resin skeleton 20 while melting, which reduces the possibility that the knitted fabric layer 41 will peel off from the resin skeleton 20, reducing the durability of the resin skeleton 20.
  • the tire 10 of this embodiment also has a pair of tire halves 17A, an annular belt layer 32 arranged on the radial outside of the pair of tire halves 17A, and a tread layer 30 arranged on the radial outside of the belt layer 32.
  • This tire 10 has the tire half body 17A of this embodiment. As a result, with this tire 10, it is possible to obtain a tire 10 in which the durability of the resin skeleton 20 is less likely to decrease, compared to a tire that does not have the tire half body 17A described in the embodiment.
  • the knitted layer 41 having the reinforcing members 40 evenly distributed in the circumferential direction is woven into the knitted body 36 having a folded mesh that is continuous in the circumferential and radial directions, so the knitted layer 41 is easy to stretch in the circumferential direction. Therefore, the primary formed body with the integrated knitted layer 41 can be easily manufactured by placing it on the inner mold 52 in the fixing process.
  • this tire half-body manufacturing method can reduce the effort required to manufacture a tire half-body 17A having a resin skeleton 20 with reinforcing members 40 evenly distributed in the circumferential direction.
  • the resin material is injected into the cavity C from one side in the axial direction relative to the bead core 18, so the knitted layer 41 is integrated with the resin skeleton 20 while being pressed against the inner surface 56I of the outer mold 56.
  • the resin skeleton 20 formed by this tire half manufacturing method is integrated with the knitted layer 41 in a state in which the knitted layer is stretched outward in the radial and width directions of the tire half 17A. Therefore, even if the internal pressure of the tire 10 having the tire half 17A formed by this tire half manufacturing method increases, the shape of the knitted layer 41 is less likely to change.
  • this manufacturing method for the tire half 17A can provide a tire half 17A that improves the durability of the resin skeleton 20 compared to a manufacturing method for the tire half 17A in which the resin material is not injected into the cavity C from one axial side of the bead core 18.
  • the tire manufacturing method of this embodiment can reduce the effort required to manufacture a tire 10 having a tire half 17A that has a resin skeleton 20 with reinforcing members 40 evenly distributed in the circumferential direction.
  • the first fiber material 38 is compatible with the thermoplastic resin constituting the tire half body 17A, but the technology according to the present disclosure is not limited to this.
  • the first fiber material 38 is not compatible with the thermoplastic resin, it is possible to obtain the tire half body 17A in which the reinforcing members 40 are evenly distributed in the circumferential direction of the tire 10, as in the above embodiment.
  • the bead core 18 is resin-coated and welded to the knitted body 36 to form the primary molded body 34, but the technology of the present disclosure is not limited to this.
  • the knitted body 36 is sandwiched between the bead core 18 and the outer mold 56 in the fixing process and the mold clamping process. This allows the tire half 17A and the knitted body 36 to be integrated, and even in this case, as in the above embodiment, a tire half 17A in which the reinforcing members 40 are evenly distributed in the circumferential direction of the tire 10 can be obtained.
  • the knitted body 36 is integrated with the tire half body 17A while positioned on the outer side of the tire, but the technology according to the present disclosure is not limited to this.
  • the gate portion 58 may be provided radially outward of the bead core 18, and the thermoplastic resin may be injected from the outer side of the tire than the knitted layer 41, so that the knitted layer 41 is integrated with the tire inside. Even in this case, it is possible to obtain a tire half body 17A in which the reinforcing members 40 are evenly distributed in the circumferential direction of the tire 10, as in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

This tire half comprises: a bead part including an embedded bead core; a knit layer comprising a knit main body which is formed from a first fibrous material, has a network having a turn-back shape continuing in the tire circumferential direction and the tire radial direction, and is endless in the circumferential direction and reinforcing bodies which are formed from a reinforcing fibrous material and knitted into the knit main body so as to be equally spaced along the tire circumferential direction to restrain the knit main body from elongating in the tire radial direction; and a resinous framework formed from a thermoplastic resin and integrated with the portion of the knit layer disposed on the tire-radial-direction outer side thereof and extending from the bead core to a crown part.

Description

タイヤ半体、タイヤ、タイヤ半体製造方法、及びタイヤ製造方法Tire half, tire, tire half manufacturing method, and tire manufacturing method
 本発明は、タイヤ半体、タイヤ、タイヤ半体製造方法、及びタイヤ製造方法に関する。 The present invention relates to a tire half, a tire, a tire half manufacturing method, and a tire manufacturing method.
 再表2016/017508号公報には、コードが樹脂被覆されたビードコアが埋設されたビード部と、補強材が樹脂材料により被覆され、ビードコアに熱溶着され、ビード部からサイド部へ延びる補強層と、を備えるタイヤが開示されている。  Publication No. 2016/017508 of the same publication discloses a tire that includes a bead portion in which a bead core having a resin-coated cord is embedded, and a reinforcing layer in which a reinforcing material is coated with a resin material and heat-welded to the bead core, and that extends from the bead portion to the side portion.
 再表2016/017508号公報に記載の構成では、補強材が周方向に均等に配置されにくい可能性がある。 In the configuration described in REP 2016/017508, it may be difficult to arrange the reinforcing material evenly in the circumferential direction.
 本開示は、補強体を周方向に等配したタイヤ半体、タイヤ、タイヤ半体製造方法、及びタイヤ製造方法に関する技術の提供を目的とする。 The purpose of this disclosure is to provide technology relating to a tire half body, a tire, a tire half body manufacturing method, and a tire manufacturing method in which reinforcing bodies are evenly distributed in the circumferential direction.
 第一態様のタイヤ半体は、ビードコアが埋設されたビード部と、第一繊維材料により形成され、タイヤ周方向及びタイヤ径方向に連続する折返し形状の網目を有し、周方向に無端とされた編物本体と、補強繊維材料により形成され、前記編物本体の前記タイヤ周方向に等配に編み込まれ前記編物本体の前記タイヤ径方向への伸長を規制する補強体と、を有する編物層と、熱可塑性樹脂で形成され、前記編物層が前記ビード部からクラウン部にかけて一体化されて配置されている樹脂骨格体と、を備える。 The tire half body of the first embodiment includes a bead portion in which a bead core is embedded, a knitted body formed of a first fiber material and having a folded mesh that is continuous in the tire circumferential direction and the tire radial direction and is endless in the circumferential direction, a knitted layer having a reinforcing body formed of a reinforcing fiber material and woven into the knitted body at equal intervals in the tire circumferential direction and that regulates the elongation of the knitted body in the tire radial direction, and a resin skeleton formed of a thermoplastic resin and in which the knitted layer is integrated and arranged from the bead portion to the crown portion.
 第二態様のタイヤ半体は、第一態様に記載のタイヤ半体において、前記第一繊維材料は、前記熱可塑性樹脂と相溶性を有する。 The second embodiment of the tire half is the tire half described in the first embodiment, in which the first fiber material is compatible with the thermoplastic resin.
 第三態様のタイヤ半体は、第一態様又は第二態様に記載のタイヤ半体において、前記編物層は、前記樹脂骨格体においてタイヤ外側に位置している。 The third embodiment of the tire half is the tire half described in the first or second embodiment, in which the knitted layer is located on the outer side of the tire in the resin skeleton.
 第四態様のタイヤは、一対の第一又は第二態様に記載のタイヤ半体により形成されたタイヤ骨格部材と、前記タイヤ骨格部材の前記タイヤ径方向の外側に配置された環状のベルト層と、前記樹脂環状ベルトの前記タイヤ径方向の外側に配置されたトレッド層と、を有する。 The tire of the fourth aspect has a tire frame member formed by a pair of tire halves described in the first or second aspect, an annular belt layer arranged on the tire radial outside of the tire frame member, and a tread layer arranged on the tire radial outside of the resin annular belt.
 第五態様のタイヤ半体製造方法は、第一繊維材料により形成され、タイヤ周方向及びタイヤ径方向に連続して形成された折返し形状の網目を有し、前記タイヤ径方向の両側に端を有し前記タイヤ周方向に無端とされた編物本体と、補強繊維材料により形成され、前記編物本体における前記タイヤ周方向に等間隔で編み込まれながら前記編物本体の前記タイヤ径方向への伸長を規制する補強体と、を有する編物層における前記タイヤ径方向の内側の端に環状のビードコアを一体化して一次形成体を形成する一次成型工程と、前記一次形成体における一次形成体径方向の外側の端を内金型における内金型径方向の外側の周面に掛けながら前記一次形成体の前記ビードコアを、内金型における内金型軸方向の一方の側面における前記内金型径方向の内側の端部に固定する固定工程と、前記内金型の前記周面、及び前記内金型の前記側面と隙間を有して対向する外金型を用いて、キャビティを形成する型締工程と前記キャビティに前記ビードコアよりも前記内金型軸方向の他方側から樹脂材料を注入し、前記外金型に前記一次形成体を押圧しながら樹脂骨格体を形成する射出工程と、を有する。 The fifth aspect of the tire half body manufacturing method includes a primary molding step of forming a primary formed body by integrating an annular bead core with the inner end in the tire radial direction of a knit layer having a knitted body formed of a first fiber material, a folded mesh formed continuously in the tire circumferential direction and the tire radial direction, ends on both sides in the tire radial direction and endless in the tire circumferential direction, and a reinforcing body formed of a reinforcing fiber material and woven into the knitted body at equal intervals in the tire circumferential direction while restricting the elongation of the knitted body in the tire radial direction, and a primary molding step of forming a primary formed body by integrating an annular bead core with the inner end in the tire radial direction of the knitted body. The method includes a fixing step of fixing the bead core of the primary formed body to the inner end of the inner mold in the radial direction on one side surface of the inner mold in the axial direction while hanging the outer end of the primary formed body on the outer peripheral surface of the inner mold in the radial direction of the inner mold, a clamping step of forming a cavity using an outer mold that faces the peripheral surface of the inner mold and the side surface of the inner mold with a gap, and an injection step of injecting a resin material into the cavity from the other side of the inner mold in the axial direction of the inner mold relative to the bead core, and forming a resin skeleton while pressing the primary formed body against the outer mold.
 第六態様のタイヤ製造方法は、第五態様に記載のタイヤ半体製造方法により製造された、一対のタイヤ半体を接合する接合工程と、前記接合工程により製造されたタイヤ骨格部材の前記タイヤ径方向外側に環状のベルト層を配置するベルト層配置工程と、前記タイヤ骨格部材の前記ベルト層より前記タイヤ径方向外側にトレッド層を配置するトレッド層配置工程とを含む。 The tire manufacturing method of the sixth aspect includes a joining step of joining a pair of tire halves manufactured by the tire half manufacturing method described in the fifth aspect, a belt layer arrangement step of arranging an annular belt layer on the tire radially outer side of the tire frame member manufactured by the joining step, and a tread layer arrangement step of arranging a tread layer on the tire radially outer side of the belt layer of the tire frame member.
 本開示によれば、補強体を周方向に等配したタイヤ半体、タイヤ、タイヤ半体製造方法、及びタイヤ製造方法に関する技術を提供できる。 This disclosure provides technology relating to a tire half body, a tire, a tire half body manufacturing method, and a tire manufacturing method in which reinforcing bodies are evenly distributed in the circumferential direction.
本開示のタイヤを示す断面図である。FIG. 1 is a cross-sectional view of a tire of the present disclosure. 本開示の骨格部材を説明する断面図である。FIG. 2 is a cross-sectional view illustrating a skeletal member according to the present disclosure. 本開示の一次成型体を説明する図である。FIG. 2 is a diagram illustrating a primary molded body according to the present disclosure. 図3の3A部分の拡大図であり、本開示の一次成型体が有する編物層の構造を説明する図である。FIG. 4 is an enlarged view of a portion 3A in FIG. 3, illustrating the structure of a knitted layer of a primary molded body of the present disclosure. 本開示に係るタイヤの製造工程を説明する図であり、内金型に一次成型体を配置する様子を示す図である。FIG. 2 is a diagram for explaining the manufacturing process of a tire according to the present disclosure, showing a state in which a primary molded body is placed in an inner mold. 本開示に係るタイヤの製造工程を説明する図であり、内金型に一次成型体が被せられる様子を説明する図である。FIG. 2 is a diagram illustrating the manufacturing process of a tire according to the present disclosure, illustrating how a primary molded body is placed over an inner mold. 本開示に係るタイヤの製造工程を説明する図であり、ゲート部を示す図である。FIG. 2 is a diagram for explaining a manufacturing process of a tire according to the present disclosure, showing a gate portion. 本開示に係るタイヤの製造工程を説明する図であり、キャビティに樹脂が注入されて骨格部材が形成される様子を説明する図である。FIG. 2 is a diagram illustrating a manufacturing process of a tire according to the present disclosure, and illustrates how resin is injected into a cavity to form a frame member.
 以下、本開示の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において、同一又は等価な構成要素及び部品には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Below, an example of an embodiment of the present disclosure will be described with reference to the drawings. Note that in each drawing, the same or equivalent components and parts are given the same reference symbols. Also, the dimensional ratios in the drawings have been exaggerated for the convenience of explanation and may differ from the actual ratios.
 また、各図に示す矢印Rは、タイヤ10の径方向を示し、矢印Wは、タイヤ10の幅方向(軸方向)を示し、矢印θは、タイヤ10の周方向を示す。本開示における「タイヤ外側」とは、タイヤ径方向及びタイヤ幅方向の両方における外側を指し、各図において矢印R及び矢印Wが向く方向と一致する。 In addition, the arrow R in each figure indicates the radial direction of the tire 10, the arrow W indicates the width direction (axial direction) of the tire 10, and the arrow θ indicates the circumferential direction of the tire 10. In this disclosure, the "outside of the tire" refers to the outside in both the tire radial direction and the tire width direction, and coincides with the direction in which the arrows R and W point in each figure.
 なお、本開示において、熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として区別する。 In this disclosure, thermoplastic resins (including thermoplastic elastomers) refer to polymeric compounds that soften and flow with increasing temperature and become relatively hard and strong when cooled. In this specification, polymeric compounds that soften and flow with increasing temperature and become relatively hard and strong when cooled and have rubber-like elasticity are defined as thermoplastic elastomers, and polymeric compounds that soften and flow with increasing temperature and become relatively hard and strong when cooled and do not have rubber-like elasticity are defined as non-elastomer thermoplastic resins.
 熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、及び、動的架橋型熱可塑性エラストマー(TPV)、ならびに、ポリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、及び、ポリエステル系熱可塑性樹脂等が挙げられる。 Thermoplastic resins (including thermoplastic elastomers) include polyolefin thermoplastic elastomers (TPO), polystyrene thermoplastic elastomers (TPS), polyamide thermoplastic elastomers (TPA), polyurethane thermoplastic elastomers (TPU), polyester thermoplastic elastomers (TPC), and dynamically crosslinked thermoplastic elastomers (TPV), as well as polyolefin thermoplastic resins, polystyrene thermoplastic resins, polyamide thermoplastic resins, and polyester thermoplastic resins.
 (構成)
 図1及び図2に、本開示に係るタイヤ10を示す。本開示に係るタイヤ10は、1対のビード部12と、ビード部12からタイヤ10の径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ10の径方向外側端と他方のサイド部14のタイヤ10の径方向外側端とを連結するクラウン部16(外周部)と、を有するタイヤ骨格部材17を備えている。タイヤ骨格部材17には、タイヤ10の径方向の外側に樹脂コード部材26で形成されたベルト層32と、ベルト層32のタイヤ10の径方向外側にトレッド層30が設けられることで、タイヤ10が形成されている。
(composition)
1 and 2 show a tire 10 according to the present disclosure. The tire 10 according to the present disclosure includes a tire frame member 17 having a pair of bead portions 12, a side portion 14 extending from the bead portions 12 to the radially outer side of the tire 10, and a crown portion 16 (outer peripheral portion) connecting a radially outer end of the tire 10 of one side portion 14 to a radially outer end of the tire 10 of the other side portion 14. The tire frame member 17 includes a belt layer 32 formed of a resin cord member 26 on the radially outer side of the tire 10, and a tread layer 30 on the radially outer side of the belt layer 32, thereby forming the tire 10.
 なお、本開示において、タイヤ半体17Aの径方向、幅方向、及び周方向は、図1に示されるように、タイヤ10の径方向、幅方向及び周方向に一致する。 In this disclosure, the radial direction, width direction, and circumferential direction of the tire half body 17A coincide with the radial direction, width direction, and circumferential direction of the tire 10, as shown in FIG. 1.
 図2は、本実施形態に係るタイヤ10の構成の一例を示す、タイヤ10の幅方向に沿った断面図である。 FIG. 2 is a cross-sectional view taken along the width direction of the tire 10, showing an example of the configuration of the tire 10 according to this embodiment.
 図2に示すように、ベルト層32は、樹脂コード部材26がタイヤ骨格部材17の外周にタイヤ10の周方向に巻かれ、タイヤ骨格部材17に接合される。また、樹脂コード部材26におけるタイヤ10の幅方向に互いに隣接する部分同士が接合されることで構成されている。なお、樹脂コード部材26は、コード部材を被覆樹脂層で被覆して構成されている。 As shown in FIG. 2, the belt layer 32 is formed by wrapping the resin cord member 26 around the outer periphery of the tire frame member 17 in the circumferential direction of the tire 10 and joining it to the tire frame member 17. The resin cord member 26 is also formed by joining adjacent portions of the resin cord member 26 in the width direction of the tire 10. The resin cord member 26 is formed by coating the cord member with a coating resin layer.
 ベルト層32のタイヤ10の径方向外周側には、タイヤ骨格部材17を構成する樹脂材料よりも耐摩耗性に優れた材料であるゴムからなるトレッド層30が配置されている。 A tread layer 30 made of rubber, a material with better abrasion resistance than the resin material that constitutes the tire frame member 17, is arranged on the radially outer side of the belt layer 32 of the tire 10.
 樹脂コード部材26において樹脂被覆するコード部材は、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成される。樹脂コード部材26としては、例えば、一本の金属コードからなるモノフィラメント(単線)、複数本の金属コードを撚ったマルチフィラメント(撚り線)等が挙げられる。 The cord member to be resin-coated in the resin cord member 26 is composed of a monofilament (single wire) of metal fiber or organic fiber, or a multifilament (twisted wire) made of twisted fibers. Examples of the resin cord member 26 include a monofilament (single wire) made of a single metal cord, and a multifilament (twisted wire) made of twisted multiple metal cords.
 なお、図2では、樹脂コード部材26の断面形状(樹脂コード部材26の長手方向に直交する断面の形状)は、略長方形であるが、本実施形態に係る樹脂コード部材26は、これに制限されず、略平行四辺形等の様々な形状とすることができる。 In FIG. 2, the cross-sectional shape of the resin cord member 26 (the shape of the cross section perpendicular to the longitudinal direction of the resin cord member 26) is approximately rectangular, but the resin cord member 26 according to this embodiment is not limited to this and can have various shapes, such as an approximately parallelogram.
 トレッド層30は、タイヤ10の外周面である周面52Cに設けられた部分であり、ゴム等の部材がベルトに対してタイヤ10の径方向の外側に巻き付けられて形成されている。 The tread layer 30 is a portion provided on the peripheral surface 52C, which is the outer peripheral surface of the tire 10, and is formed by wrapping a material such as rubber around the belt on the radial outside of the tire 10.
 図2に示すように、タイヤ骨格部材17は、ビード部12と、サイド部42と半幅のクラウン部44とを一体として熱可塑性樹脂により射出成形された樹脂骨格体20とを有するタイヤ半体17Aを一対備える。一対のタイヤ半体17Aは、図1に示すように、互いに向かい合わせ、タイヤ赤道面部分で接合することにより形成されている。 As shown in FIG. 2, the tire frame member 17 includes a pair of tire halves 17A having a bead portion 12 and a resin frame 20 formed by injection molding a thermoplastic resin integrally with a side portion 42 and a half-width crown portion 44. The pair of tire halves 17A are formed by facing each other and joining them at the tire equatorial plane as shown in FIG. 1.
 また、図2に示すように、タイヤ半体17Aは、ビード部12と、編物層41と、編物層41がビードコア18からクラウン部44にかけてタイヤ10の径方向の外側に配置されて一体化されている樹脂骨格体20を有する。また、樹脂骨格体20は、熱可塑性樹脂で形成されている。なお、本実施形態における樹脂骨格体20では、編物層41及びビードコア18は、後述する一次成型体34として一体化されてから、樹脂骨格体20に一体化される。 As shown in FIG. 2, the tire half body 17A has the bead portion 12, the knitted layer 41, and the resin skeleton 20 in which the knitted layer 41 is disposed radially outside the tire 10 from the bead core 18 to the crown portion 44 and integrated with the bead portion 12. The resin skeleton 20 is formed of a thermoplastic resin. In the resin skeleton 20 of this embodiment, the knitted layer 41 and the bead core 18 are integrated as a primary molded body 34, which will be described later, and then integrated with the resin skeleton 20.
 図2に示すように、ビード部12には、樹脂被覆されたスチールコードからなる環状のビードコア18が埋設されている。ビードコア18は、一例として断面が略矩形状とされている。 As shown in FIG. 2, an annular bead core 18 made of a resin-coated steel cord is embedded in the bead portion 12. As an example, the bead core 18 has a substantially rectangular cross section.
 また、図2に示すように、タイヤ半体17Aは、ビード部12からクラウン部44にかけて、タイヤ10の幅方向外側にゴム層24が形成されている。このゴム層24は、タイヤ10がホイールに組み込まれた場合において、日光等からタイヤ半体17Aを保護し、対候性を向上させる。 Also, as shown in FIG. 2, the tire half 17A has a rubber layer 24 formed on the outer side in the width direction of the tire 10 from the bead portion 12 to the crown portion 44. This rubber layer 24 protects the tire half 17A from sunlight and the like when the tire 10 is mounted on a wheel, improving weather resistance.
 (一次成型体34)
 図3は、本開示に係るタイヤ半体17Aが有する一次成型体34を示す図である。図3に示すように、一次成型体34は、編物本体36と、補強体40と、を有する編物層41と、ビードコア18と、を有している。
(Primary molded body 34)
3 is a diagram showing a primary molded body 34 included in a tire half body 17A according to the present disclosure. As shown in FIG. 3, the primary molded body 34 includes a knitted body 36, a knitted layer 41 including a reinforcing body 40, and a bead core 18.
 編物本体36は、図3及び図4に示されるように、糸状の第一繊維材料38により形成され、タイヤ10の周方向及びタイヤ10の径方向に連続して形成された折返し形状の網目を有し、タイヤ10の径方向の両側に端を有しタイヤ10の周方向に無端とされている。すなわち、編物本体36は、第一繊維材料38によって環状に編まれることによって形成された部材であり、径方向及び周方向(図4における図面上下方向及び左右方向)に向かって伸縮性を有している。 As shown in Figures 3 and 4, the knitted body 36 is formed from a thread-like first fiber material 38, has a folded mesh that is continuously formed in the circumferential direction and radial direction of the tire 10, has ends on both radial sides of the tire 10, and is endless in the circumferential direction of the tire 10. In other words, the knitted body 36 is a member formed by knitting the first fiber material 38 into a ring shape, and has elasticity in the radial and circumferential directions (the up-down and left-right directions in Figure 4).
 また、第一繊維材料38は、後述するように、樹脂骨格体20及びビードコア18の樹脂被覆と相溶性を有する材料によって形成される。具体的には、ポリエステル系熱可塑性エラストマー等の材料であり、樹脂骨格体20と同種の樹脂が好適に使用される。なお、本開示において、相溶性とは、異なる部材の材料同士が溶融した状態で互いに混ざり合いやすい性質を指す。 Furthermore, as described below, the first fiber material 38 is formed from a material that is compatible with the resin skeleton 20 and the resin coating of the bead core 18. Specifically, it is a material such as a polyester-based thermoplastic elastomer, and the same type of resin as the resin skeleton 20 is preferably used. In this disclosure, compatibility refers to the property of materials of different components easily mixing with each other in a molten state.
 補強体40は、図3及び図4に示されるように、補強繊維材料により形成され、タイヤ径方向に延び、編物本体36におけるタイヤ10の周方向に編み込まれることでタイヤ周方向に等配され、編物本体36のタイヤ10の径方向への伸長を規制する糸状の部材である。また、補強繊維材料は、後述するように、樹脂骨格体20と相溶性を有しない材料によって形成される。具体的には、アラミド繊維、スチールコード等、第一繊維材料38よりも軟化温度が高く、高張力を有する材料が採用される。また、補強繊維材料は、単一の材料に限らず、アラミド繊維等の人工樹脂や、スチールコード等に第一繊維材料38と同系統の樹脂が被覆された繊維体を用いてもよい。なお、補強体40の形状、及び本数は、製造されるタイヤ10の仕様に応じて適宜決定される。また、上述の等配とは、複数の補強体40が巨視的に視て凡そ等しい間隔であれば足りる。補強体40は、タイヤ周方向において、10本/mm~60本/mm程度で配置されることが好ましい。 As shown in Figures 3 and 4, the reinforcing body 40 is a thread-like member formed of a reinforcing fiber material, extending in the tire radial direction, and evenly distributed in the tire circumferential direction by being woven in the circumferential direction of the tire 10 in the knitted body 36, and restricts the elongation of the knitted body 36 in the radial direction of the tire 10. In addition, the reinforcing fiber material is formed of a material that is not compatible with the resin skeleton 20, as described later. Specifically, a material having a higher softening temperature and higher tensile strength than the first fiber material 38, such as aramid fiber or steel cord, is used. In addition, the reinforcing fiber material is not limited to a single material, and may be an artificial resin such as aramid fiber, or a fiber body in which a resin of the same type as the first fiber material 38 is coated on steel cord, etc. The shape and number of the reinforcing body 40 are appropriately determined according to the specifications of the tire 10 to be manufactured. In addition, the above-mentioned even distribution is sufficient if the multiple reinforcing bodies 40 are approximately equally spaced from each other when viewed macroscopically. The reinforcing members 40 are preferably arranged at approximately 10 pieces/mm to 60 pieces/mm in the circumferential direction of the tire.
 なお、編物本体36は、上述の様に、タイヤ10の径方向及び周方向に向かって伸縮性を有する編み方であれば、どのような編み方でも限定されないが、一例としてメリヤス編みによって形成される。言い換えれば、本開示における一次成型体34は、編物本体36に補強繊維材料が編み込まれた、いわゆるインレイ構造を成している。 As described above, the knitted body 36 may be formed by any knitting method as long as it is stretchable in the radial and circumferential directions of the tire 10, but as an example, it is formed by stockinette knitting. In other words, the primary molded body 34 in this disclosure has a so-called inlay structure in which a reinforcing fiber material is woven into the knitted body 36.
 また、編物本体36の形状は、製造されるタイヤ10の仕様に応じて適宜決定されるが、樹脂骨格体20における、ビードコア18からクラウン部44に亘って配置される形状とされている(図5及び図8も参照)。 The shape of the knitted fabric body 36 is determined appropriately according to the specifications of the tire 10 to be manufactured, but is shaped to be disposed in the resin skeleton 20 from the bead core 18 to the crown portion 44 (see also Figures 5 and 8).
 なお、ビードコア18の樹脂被覆と、編物本体36とが互いに相溶する材料であり、編物本体36とビードコア18の樹脂被覆とが溶着することが可能である。このため、本実施形態におけるビードコア18は、編物本体36におけるタイヤ10の径方向の内側の端に溶着されている。 The resin coating of the bead core 18 and the knitted body 36 are made of materials that are compatible with each other, and the knitted body 36 and the resin coating of the bead core 18 can be welded together. For this reason, the bead core 18 in this embodiment is welded to the inner end of the knitted body 36 in the radial direction of the tire 10.
 続いて図3から図8を適宜参照しながら、本開示に係るタイヤ半体製造方法、及びタイヤ製造方法を説明する。本開示に係るタイヤ半体製造方法は、一次成型工程と、固定工程と、型締工程と、射出工程と、を有する。 Next, the tire half body manufacturing method and tire manufacturing method according to the present disclosure will be described with reference to Figures 3 to 8 as appropriate. The tire half body manufacturing method according to the present disclosure includes a primary molding process, a fixing process, a mold clamping process, and an injection process.
 (一次成型工程)
 一次成型工程では、編物層41におけるタイヤ10の径方向の内側の端に環状のビードコア18を一体化して一次形成体を形成する。
(Primary molding process)
In the primary molding step, an annular bead core 18 is integrated with an inner end of the knitted layer 41 in the radial direction of the tire 10 to form a primary molded body.
 (固定工程)
 図5は、一次形成体が、径方向に拡がる内金型52に配置された様子を説明する図である。固定工程では、一次形成体における一次形成体径方向の外側の端を内金型52における内金型52の径方向の外側の周面52Cに掛けると共に、より具体的には図5に示されるように、一次成型体34は、複数の部品が周方向に配置されることによって円筒形状に形成された内金型52に対して、軸方向の一方側(図5における図面右側、図6における図面下側)から軸方向の他方側(図5における図面左側、図6における図面上側)に向かって覆うように被せられている。また、内金型52における軸方向の一方側には、ビードコア18が位置している。なお、図5に示されるように、一次形成体は、軸方向の他方側では、固定されておらず、一次成型体34は、編物本体36が内金型52の軸方向及び径方向に収縮することにより、内金型52に被せられ、内金型52の壁面(周面52C及び側面52Sの径方向外側)に沿った状態を保っている。
(Fixation process)
5 is a diagram for explaining the state in which the primary formed body is arranged on the inner die 52 expanding in the radial direction. In the fixing process, the radially outer end of the primary formed body of the primary formed body is hung on the radially outer peripheral surface 52C of the inner die 52, and more specifically, as shown in FIG. 5, the primary molded body 34 is placed so as to cover the inner die 52 formed into a cylindrical shape by arranging a plurality of parts in the circumferential direction from one side in the axial direction (the right side in FIG. 5, the lower side in FIG. 6) to the other side in the axial direction (the left side in FIG. 5, the upper side in FIG. 6). In addition, the bead core 18 is located on one side in the axial direction of the inner die 52. As shown in Figure 5, the primary formed body is not fixed on the other axial side, and the primary molded body 34 is placed over the inner die 52 as the knitted body 36 shrinks in the axial and radial directions of the inner die 52, and remains aligned with the wall surface of the inner die 52 (the radial outer side of the circumferential surface 52C and the side surface 52S).
 なお、内金型52の軸方向一方側(内側)には、内金型52の軸方向一方側の側面52Sからさらに軸方向一方側に向かって移動を可能としたスライド金型54がタイヤ周方向に隙間を空けて複数設けられている。図6に示されるように、スライド金型54は、軸方向一方側に向かって凹んでおり、ビードコア18は、スライド金型54の凹みに配置されている。なお、図7に示されるように、内金型52のタイヤ周方向におけるスライド金型54が配置されていない箇所では、ビードコア18は、内金型52と隙間を有して配置されている。 Note that on one axial side (inner side) of the inner mold 52, multiple slide molds 54 that can move further axially from the side surface 52S of the inner mold 52 toward one axial side are provided with gaps in the tire circumferential direction. As shown in FIG. 6, the slide mold 54 is recessed toward one axial side, and the bead core 18 is disposed in the recess of the slide mold 54. Note that, as shown in FIG. 7, in the portion of the inner mold 52 in the tire circumferential direction where the slide mold 54 is not disposed, the bead core 18 is disposed with a gap between it and the inner mold 52.
 なお、図5には図示されていないが、内金型52の軸方向一方側には、内金型52の径方向及び軸方向一方側を覆い、空隙を形成する外金型56が、内金型52と対向して配置されている。 Although not shown in FIG. 5, an outer die 56 is disposed opposite the inner die 52 on one axial side of the inner die 52, covering the radial and axial sides of the inner die 52 and forming a gap.
 (型締工程)
 続いて、型締工程では、内金型52の周面52C、及び内金型52の側面52Sと隙間を有して対向する外金型56を用いて、キャビティCを形成する。より具体的には、図5に示される状態から、内金型52の軸方向一方側から内金型52の径方向及び軸方向一方側を覆う外金型56を近づけ、内金型52の側面52S、周面52Cと外金型56の内面56Iとの間に空隙であるキャビティCを形成する。また、キャビティCを形成した状態において、スライド金型54を軸方向一方側に移動させることにより、図6に示されるようにビードコア18を外金型56の内面56Iに押圧した状態とする。このキャビティCは、本開示に係るタイヤ半体17Aと同等の形状を成しており、後述するようにキャビティC内に溶融した熱可塑性樹脂が流し込まれることによって、タイヤ半体17Aが形成される。
(Mold clamping process)
Next, in the mold clamping process, a cavity C is formed using a peripheral surface 52C of the inner mold 52 and an outer mold 56 that faces the side surface 52S of the inner mold 52 with a gap therebetween. More specifically, from the state shown in FIG. 5, an outer mold 56 that covers the radial direction and one axial side of the inner mold 52 is brought closer to the inner mold 52 from one axial side, and a cavity C that is a gap is formed between the side surface 52S and peripheral surface 52C of the inner mold 52 and an inner surface 56I of the outer mold 56. In addition, by moving the slide mold 54 to one axial side in the state where the cavity C is formed, the bead core 18 is pressed against the inner surface 56I of the outer mold 56 as shown in FIG. 6. This cavity C has a shape equivalent to that of the tire half body 17A according to the present disclosure, and the tire half body 17A is formed by pouring a molten thermoplastic resin into the cavity C as described later.
 すなわち、本開示において、内金型52の径方向、幅方向、及び周方向は、図1に示されるように、タイヤ10の径方向、幅方向及び周方向に一致する。 In other words, in this disclosure, the radial direction, width direction, and circumferential direction of the inner mold 52 coincide with the radial direction, width direction, and circumferential direction of the tire 10, as shown in FIG. 1.
 なお、図6に示される状態において、内金型52の軸方向の一方側には、後述する熱可塑性樹脂を注入するゲート部58がビードコア18に対して径方向内側に形成されている。 In the state shown in FIG. 6, a gate portion 58 for injecting thermoplastic resin (described later) is formed on one axial side of the inner mold 52, radially inward from the bead core 18.
 また、図6に示すように、一次成型体34の編物本体36は、内金型52に掛けられた状態で、内金型52の軸方向及び径方向に伸長しているため収縮する力が作用し、キャビティCの内部において、側面52Sから周面52Cに掛けて内金型52に接触している。 As shown in FIG. 6, the knitted fabric body 36 of the primary molded body 34 is stretched in the axial and radial directions of the inner mold 52 while hung on the inner mold 52, so a contracting force acts on it, and it comes into contact with the inner mold 52 from the side surface 52S to the peripheral surface 52C inside the cavity C.
 (射出工程)
 続いて、図6に示された状態から、ゲート部58を通じて溶融した熱可塑性樹脂をキャビティCに注入する。この場合、ゲート部58は、ビードコア18よりも内金型52の径方向内側に設けられているため、ゲート部58を通じて溶融した熱可塑性樹脂により、編物本体36は、図8に示されるように、キャビティC内において外金型56の内面56Iに押し付けられる。そして、編物本体36が外金型56の内面56Iに押し付けられた状態において、熱可塑性樹脂が冷却することにより、タイヤ半体17AがキャビティC内で形成される。
(Injection process)
Next, from the state shown in Fig. 6, molten thermoplastic resin is injected into the cavity C through the gate portion 58. In this case, since the gate portion 58 is provided radially inward of the bead cores 18 in the inner die 52, the knitted body 36 is pressed against the inner surface 56I of the outer die 56 in the cavity C by the molten thermoplastic resin injected through the gate portion 58, as shown in Fig. 8. Then, with the knitted body 36 pressed against the inner surface 56I of the outer die 56, the thermoplastic resin cools, forming the tire half body 17A in the cavity C.
 なお、本開示におけるタイヤ半体17Aでは、図8に示されるように、編物本体36がキャビティC内において外金型56の内面56Iに押し付けられた状態において冷却される。このため、編物本体36は、形成された樹脂骨格体20におけるタイヤ外側に位置した状態で一体化する。より具体的には、樹脂骨格体20のサイド部42(樹脂骨格体20における軸方向一方側)においては、樹脂骨格体20のサイド部42における厚さの0.5倍の位置よりも軸方向一方側に位置した状態で一体化していることが好ましい。また、タイヤ10クラウン部16(樹脂骨格体20における径方向外側)においては、樹脂骨格体20のクラウン部16における厚さの0.5倍の位置よりも径方向外側に位置した状態で一体化していることが好ましい。 In the tire half 17A of the present disclosure, as shown in FIG. 8, the knitted fabric body 36 is cooled in the cavity C while being pressed against the inner surface 56I of the outer mold 56. Therefore, the knitted fabric body 36 is integrated with the formed resin skeleton 20 in a state where it is located on the outer side of the tire. More specifically, in the side portion 42 of the resin skeleton 20 (one axial side of the resin skeleton 20), it is preferable that the knitted fabric body 36 is integrated with the resin skeleton 20 in a state where it is located on one axial side of a position 0.5 times the thickness of the side portion 42 of the resin skeleton 20. In addition, in the crown portion 16 of the tire 10 (radially outward of the resin skeleton 20), it is preferable that the knitted fabric body 36 is integrated with the resin skeleton 20 in a state where it is located radially outward of a position 0.5 times the thickness of the crown portion 16 of the resin skeleton 20.
 また、図8に示されるように、編物本体36が、キャビティC内において外金型56の内面56Iに押し付けられることにより、編物本体36は、タイヤ10の径方向の外側、及びタイヤ10の周方向の外側に向かって拡がった状態で一体化される。すなわち、編物本体36に織り込まれた補強体40は、タイヤ半体17Aのタイヤ10の周方向に拡がった状態で樹脂骨格体20に一体化される。 Also, as shown in FIG. 8, the knitted body 36 is pressed against the inner surface 56I of the outer mold 56 in the cavity C, so that the knitted body 36 is integrated in a state in which it spreads outward in the radial direction of the tire 10 and outward in the circumferential direction of the tire 10. In other words, the reinforcing body 40 woven into the knitted body 36 is integrated with the resin skeleton 20 in a state in which it spreads out in the circumferential direction of the tire 10 of the tire half body 17A.
 以上の工程により、本開示に係るタイヤ半体17Aが製造される。 The above steps produce the tire half 17A disclosed herein.
 続いて、タイヤ製造方法について説明する。本開示に係るタイヤ製造方法は、ゴム層配置工程、接合工程、ベルト層配置工程、及びトレッド層配置工程を有する。 Next, the tire manufacturing method will be described. The tire manufacturing method according to the present disclosure includes a rubber layer arrangement process, a joining process, a belt layer arrangement process, and a tread layer arrangement process.
 (ゴム層配置工程)
 ゴム層配置工程では、上述の工程によって製造された、一対のタイヤ半体17Aにおいて、幅方向の一方側にゴム層24を配置する。
(Rubber layer arrangement process)
In the rubber layer disposing step, a rubber layer 24 is disposed on one widthwise side of the pair of tire halves 17A manufactured by the above-described steps.
 (接合工程)
 接合工程では、一対の、上述の工程によってゴム層24が配置されたタイヤ半体17Aにおいて、幅方向の内側のタイヤ赤道面に対応する端部同士(サイド部42が形成された方向の反対側)を接合する。接合する方法としては、一例として、タイヤ半体17Aの他方側の面同士を樹脂材料を介して溶接することにより、図2に示されるように、タイヤ骨格部材17が形成される。
(Joining process)
In the joining process, in a pair of tire halves 17A on which the rubber layer 24 has been arranged by the above-mentioned process, end portions corresponding to the tire equatorial plane on the inner side in the width direction (opposite the direction in which the side portion 42 is formed) are joined together. As an example of a joining method, the other sides of the tire halves 17A are welded together via a resin material to form the tire frame member 17 as shown in FIG.
 (ベルト層配置工程)
 ベルト層配置工程では、接合工程により製造されたタイヤ骨格部材17のタイヤ10の径方向外側に環状のベルト層32を配置する。ベルト層32は、樹脂コード部材26をタイヤ骨格部材17のクラウン部44に巻回することにより形成することができる。
(Belt layer arrangement process)
In the belt layer disposing step, a circular belt layer 32 is disposed on the radially outer side of the tire 10 of the tire frame member 17 manufactured in the joining step. The belt layer 32 can be formed by winding the resin cord member 26 around the crown portion 44 of the tire frame member 17.
 (トレッド層配置工程)
 トレッド層配置工程では、ベルト層配置工程により製造されたタイヤ骨格部材17の、タイヤ10の径方向外側に環状のトレッド層を配置する。
(Tread layer arrangement process)
In the tread layer disposing step, an annular tread layer is disposed on the radially outer side of the tire 10 of the tire frame member 17 manufactured in the belt layer disposing step.
 なお、一例として、編物層41の径方向外側端は、タイヤ骨格部材17のクラウン部16まで延び、ベルト層32と重なっている。ベルト層32との重なり量は、ベルト層32のタイヤ10の幅方向の端部からタイヤ10の幅方向中央側に5mm以上であることが好ましい。また、編物層41は、タイヤ10の幅方向中央まで延びていてもよい。 As an example, the radially outer end of the knitted layer 41 extends to the crown portion 16 of the tire frame member 17 and overlaps with the belt layer 32. The amount of overlap with the belt layer 32 is preferably 5 mm or more from the end of the belt layer 32 in the width direction of the tire 10 toward the center in the width direction of the tire 10. The knitted layer 41 may also extend to the center in the width direction of the tire 10.
 以上の工程により、本実施形態のタイヤ10が得られる。 The above steps result in the tire 10 of this embodiment.
 続いて、本開示におけるタイヤ半体17A、タイヤ10、タイヤ半体製造方法、及びタイヤ製造方法により得られる作用及び効果を説明する。 Next, the actions and effects obtained by the tire half 17A, tire 10, tire half manufacturing method, and tire manufacturing method of this disclosure will be described.
 (作用及び効果)
 本実施形態のタイヤ半体17Aの樹脂骨格体20は、編物本体36を有する編物層41が、タイヤ10の周方向に等配された補強体40により径方向への伸長を規制されるとともに、熱可塑性樹脂により一体化されて形成されている。
(Action and Effects)
The resin skeleton 20 of the tire half body 17A of this embodiment is formed by integrating a knitted layer 41 having a knitted body 36 with reinforcing members 40 evenly spaced around the tire 10, and the knitted layer 41 is integrated with the knitted body 36 using a thermoplastic resin.
 これにより、このタイヤ半体17Aによれば、樹脂骨格体20に補強体40をタイヤ10の周方向に等配して配置することができるため、タイヤ半体17Aの耐久性を向上させることができる。 As a result, with this tire half body 17A, the reinforcing members 40 can be arranged on the resin skeleton 20 in an evenly spaced manner in the circumferential direction of the tire 10, improving the durability of the tire half body 17A.
 また、このタイヤ半体17Aの樹脂骨格体20は、タイヤ10の周方向に等配された補強体40によりタイヤ10の径方向への伸長を規制されている編物層41が、樹脂骨格体20におけるタイヤ10の径方向の外側に配置されて一体化されている。このため、このタイヤ半体17Aの樹脂骨格体20は、タイヤ10の内圧が上昇した場合においても編物層41の形状が変化しづらい。 In addition, the resin skeleton 20 of this tire half body 17A has a knitted layer 41 that is arranged on the radial outside of the tire 10 in the resin skeleton 20 and integrated with the tire 10, and whose radial expansion is restricted by reinforcing members 40 that are evenly distributed around the tire 10. Therefore, the shape of the knitted layer 41 of the resin skeleton 20 of this tire half body 17A is unlikely to change even if the internal pressure of the tire 10 increases.
 これにより、このタイヤ半体17Aによれば、編物層41が樹脂骨格体20におけるタイヤ10の径方向の外側に配置されて一体化されていないタイヤ半体17Aと比べて、樹脂骨格体20の耐久性を向上させることができる。 As a result, this tire half body 17A can improve the durability of the resin skeleton 20 compared to a tire half body 17A in which the knitted fabric layer 41 is positioned radially outside the tire 10 in the resin skeleton 20 and is not integrated.
 また、本実施形態のタイヤ半体17Aは、第一繊維材料38は、熱可塑性樹脂と相溶する。これにより、このタイヤ半体17Aの樹脂骨格体20によれば、編物本体36が溶融しながら樹脂骨格体20と相溶と一体化されるため、編物層41が樹脂骨格体20から剥がれて樹脂骨格体20の耐久性が低下する可能性を低減することができる。 In addition, in the tire half body 17A of this embodiment, the first fiber material 38 is compatible with the thermoplastic resin. As a result, according to the resin skeleton 20 of this tire half body 17A, the knitted fabric main body 36 is compatible and integrated with the resin skeleton 20 while melting, which reduces the possibility that the knitted fabric layer 41 will peel off from the resin skeleton 20, reducing the durability of the resin skeleton 20.
 また、本実施形態のタイヤ10は、一対のタイヤ半体17Aと、一対のタイヤ半体17Aのタイヤ10の径方向の外側に配置された環状のベルト層32と、ベルト層32のタイヤ10の径方向の外側に配置されたトレッド層30と、を有する。 The tire 10 of this embodiment also has a pair of tire halves 17A, an annular belt layer 32 arranged on the radial outside of the pair of tire halves 17A, and a tread layer 30 arranged on the radial outside of the belt layer 32.
 このタイヤ10は、本実施形態のタイヤ半体17Aを有している。これにより、このタイヤ10によれば、実施形態に記載のタイヤ半体17Aを有していない場合と比べて、樹脂骨格体20の耐久性が低下する可能性が低減したタイヤ10を得ることができる。 This tire 10 has the tire half body 17A of this embodiment. As a result, with this tire 10, it is possible to obtain a tire 10 in which the durability of the resin skeleton 20 is less likely to decrease, compared to a tire that does not have the tire half body 17A described in the embodiment.
 また、本実施形態のタイヤ半体製造方法によれば、周方向に等配された補強体40を有する編物層41が、周方向及び径方向に連続した折返し形状の網目を有する編物本体36に織り込まれているため、編物層41は、周方向に伸長しやすい。このため、この編物層41が一体化された一次形成体は、固定工程において内金型52に掛けて製造しやすい。 In addition, according to the tire half body manufacturing method of this embodiment, the knitted layer 41 having the reinforcing members 40 evenly distributed in the circumferential direction is woven into the knitted body 36 having a folded mesh that is continuous in the circumferential and radial directions, so the knitted layer 41 is easy to stretch in the circumferential direction. Therefore, the primary formed body with the integrated knitted layer 41 can be easily manufactured by placing it on the inner mold 52 in the fixing process.
 これにより、このタイヤ半体製造方法によれば、周方向に等配された補強体40を有する樹脂骨格体20を有するタイヤ半体17Aを製造する手間を削減することができる。 As a result, this tire half-body manufacturing method can reduce the effort required to manufacture a tire half-body 17A having a resin skeleton 20 with reinforcing members 40 evenly distributed in the circumferential direction.
 また、このタイヤ半体製造方法では、キャビティCにビードコア18よりも軸方向の一方側から樹脂材料を注入するため、編物層41が、外金型56の内面56Iに押し付けられながら樹脂骨格体20に一体化される。これにより、このタイヤ半体製造方法により形成される樹脂骨格体20は、編物層41がタイヤ半体17Aの径方向及び幅方向の外側に編物層が伸長した状態で一体化される。このため、このタイヤ半体製造方法により形成されるタイヤ半体17Aを有するタイヤ10の内圧が上昇した場合においても編物層41の形状が変化しづらい。 In addition, in this tire half manufacturing method, the resin material is injected into the cavity C from one side in the axial direction relative to the bead core 18, so the knitted layer 41 is integrated with the resin skeleton 20 while being pressed against the inner surface 56I of the outer mold 56. As a result, the resin skeleton 20 formed by this tire half manufacturing method is integrated with the knitted layer 41 in a state in which the knitted layer is stretched outward in the radial and width directions of the tire half 17A. Therefore, even if the internal pressure of the tire 10 having the tire half 17A formed by this tire half manufacturing method increases, the shape of the knitted layer 41 is less likely to change.
 これにより、このタイヤ半体17Aの製造方法によれば、キャビティCにビードコア18よりも軸方向の一方側から樹脂材料を注入しないタイヤ半体17Aの製造方法と比べて、樹脂骨格体20の耐久性を向上させるタイヤ半体17Aを得ることができる。 As a result, this manufacturing method for the tire half 17A can provide a tire half 17A that improves the durability of the resin skeleton 20 compared to a manufacturing method for the tire half 17A in which the resin material is not injected into the cavity C from one axial side of the bead core 18.
 また、本実施形態のタイヤ製造方法によれば、周方向に等配された補強体40を有する樹脂骨格体20を有するタイヤ半体17Aを備えたタイヤ10を製造する手間を削減することができる。 In addition, the tire manufacturing method of this embodiment can reduce the effort required to manufacture a tire 10 having a tire half 17A that has a resin skeleton 20 with reinforcing members 40 evenly distributed in the circumferential direction.
 (変形例)
 なお、上述の説明では、第一繊維材料38は、タイヤ半体17Aを構成する熱可塑性樹脂と相溶するとしていたが、本開示に係る技術は、これに限られない。例えば、第一繊維材料38が熱可塑性樹脂と相溶しない場合においても、上述の実施形態と同様に、補強体40がタイヤ10の周方向に等配されたタイヤ半体17Aを得ることができる。
(Modification)
In the above description, the first fiber material 38 is compatible with the thermoplastic resin constituting the tire half body 17A, but the technology according to the present disclosure is not limited to this. For example, even if the first fiber material 38 is not compatible with the thermoplastic resin, it is possible to obtain the tire half body 17A in which the reinforcing members 40 are evenly distributed in the circumferential direction of the tire 10, as in the above embodiment.
 また、上述の説明では、ビードコア18は、樹脂被覆されることにより、編物本体36と溶接されて一次成型体34が形成されていたが、本開示に係る技術は、これに限られない。例えば、ビードコア18が樹脂被覆を有しておらず、編物本体36とビードコア18とを溶接しない場合においても、固定工程及び型締工程において、編物本体36をビードコア18と外金型56とで挟み込む。これにより、タイヤ半体17Aと編物本体36とを一体化することができ、この場合においても、上述の実施形態と同様に、補強体40がタイヤ10の周方向に等配されたタイヤ半体17Aを得ることができる。 In the above description, the bead core 18 is resin-coated and welded to the knitted body 36 to form the primary molded body 34, but the technology of the present disclosure is not limited to this. For example, even if the bead core 18 does not have a resin coating and the knitted body 36 and the bead core 18 are not welded, the knitted body 36 is sandwiched between the bead core 18 and the outer mold 56 in the fixing process and the mold clamping process. This allows the tire half 17A and the knitted body 36 to be integrated, and even in this case, as in the above embodiment, a tire half 17A in which the reinforcing members 40 are evenly distributed in the circumferential direction of the tire 10 can be obtained.
 また、上述の説明では、編物本体36は、タイヤ半体17Aにおけるタイヤ外側に位置した状態で一体化されていたが、本開示に係る技術は、これに限られない。例えば、ゲート部58がビードコア18よりも径方向外側に設けられ、熱可塑性樹脂が編物層41よりもタイヤ外側から注入されることにより、編物層41がタイヤ内側に位置した状態で一体化されていてもよい。この場合においても、上述の実施形態と同様に、補強体40がタイヤ10の周方向に等配されたタイヤ半体17Aを得ることができる。 In the above description, the knitted body 36 is integrated with the tire half body 17A while positioned on the outer side of the tire, but the technology according to the present disclosure is not limited to this. For example, the gate portion 58 may be provided radially outward of the bead core 18, and the thermoplastic resin may be injected from the outer side of the tire than the knitted layer 41, so that the knitted layer 41 is integrated with the tire inside. Even in this case, it is possible to obtain a tire half body 17A in which the reinforcing members 40 are evenly distributed in the circumferential direction of the tire 10, as in the above embodiment.
 以上、添付図面を参照しながら本開示の実施形態を説明したが、本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は応用例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。  The above describes the embodiments of the present disclosure with reference to the attached drawings, but it is clear that a person with ordinary knowledge in the technical field to which this disclosure pertains can conceive of various modifications and applications within the scope of the technical ideas described in the claims, and it is understood that these also naturally fall within the technical scope of the present disclosure.
 2022年10月24日に出願された日本国特許出願2022-170195号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-170195, filed on October 24, 2022, is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent application, or standard was specifically and individually indicated to be incorporated by reference.

Claims (6)

  1.  ビードコアが埋設されたビード部と、
     第一繊維材料により形成され、タイヤ周方向及びタイヤ径方向に連続する折返し形状の網目を有し、周方向に無端とされた編物本体と、補強繊維材料により形成され、前記編物本体の前記タイヤ周方向に等配に編み込まれ前記編物本体の前記タイヤ径方向への伸長を規制する補強体と、を有する編物層と、
     熱可塑性樹脂で形成され、前記編物層が前記ビード部からクラウン部にかけて一体化されて配置されている樹脂骨格体と、
     を備える、タイヤ半体。
    a bead portion in which a bead core is embedded;
    a knitted layer including: a knitted body formed of a first fiber material, having a folded mesh that is continuous in the tire circumferential direction and the tire radial direction, and being endless in the circumferential direction; and a reinforcing body formed of a reinforcing fiber material, knitted into the knitted body at equal intervals in the tire circumferential direction, and restricting elongation of the knitted body in the tire radial direction;
    a resin skeleton formed of a thermoplastic resin, the knitted fabric layer being integrally disposed from the bead portion to the crown portion;
    A tire half comprising:
  2.  前記第一繊維材料は、前記熱可塑性樹脂と相溶性を有する、
     請求項1に記載の、タイヤ半体。
    The first fiber material is compatible with the thermoplastic resin.
    The tire half of claim 1 .
  3.  前記編物層は、前記樹脂骨格体においてタイヤ外側に位置している、
     請求項1に記載の、タイヤ半体。
    The knitted layer is located on the outer side of the tire in the resin skeleton.
    The tire half of claim 1 .
  4.  一対の請求項1から請求項3のいずれか一項に記載のタイヤ半体により形成されたタイヤ骨格部材と、
     前記タイヤ骨格部材の前記タイヤ径方向の外側に配置された環状のベルト層と、
     前記ベルト層の前記タイヤ径方向の外側に配置されたトレッド層と、
     を有する、タイヤ。
    A tire frame member formed by a pair of tire half bodies according to any one of claims 1 to 3;
    a circular belt layer disposed on an outer side of the tire frame member in the tire radial direction;
    A tread layer disposed on the outer side of the belt layer in the tire radial direction;
    A tire having
  5.  第一繊維材料により形成され、タイヤ周方向及びタイヤ径方向に連続して形成された折返し形状の網目を有し、前記タイヤ径方向の両側に端を有し前記タイヤ周方向に無端とされた編物本体と、補強繊維材料により形成され、前記編物本体における前記タイヤ周方向に等間隔で編み込まれながら前記編物本体の前記タイヤ径方向への伸長を規制する補強体と、を有する編物層における前記タイヤ径方向の内側の端部に環状のビードコアを一体化して一次形成体を形成し、
     前記一次形成体の前記ビードコアを内金型における径方向の内側の端部に保持しつつ、前記編物層を前記内金型の壁面に沿って配置し、
     前記内金型の前記壁面と隙間を有して対向する外金型を用いて、キャビティを形成し、
     前記キャビティに前記ビードコアよりも前記内金型のタイヤ軸方向の内側から樹脂材料を注入し、前記一次形成体を前記外金型に押しつけながら樹脂骨格体を形成する、
     タイヤ半体製造方法。
    a knitted body formed of a first fiber material, having a folded-back mesh formed continuously in the tire circumferential direction and the tire radial direction, having ends on both sides in the tire radial direction and being endless in the tire circumferential direction; and a reinforcing body formed of a reinforcing fiber material, knitted into the knitted body at equal intervals in the tire circumferential direction and restricting extension of the knitted body in the tire radial direction, and a primary formed body is formed by integrating an annular bead core with an inner end portion in the tire radial direction of a knitted layer having the knitted body;
    While holding the bead core of the primary formed body at an end portion on the inside in the radial direction of the inner mold, the knitted layer is placed along a wall surface of the inner mold;
    forming a cavity using an outer mold opposed to the wall surface of the inner mold with a gap therebetween;
    A resin material is injected into the cavity from a position inside the inner mold in the tire axial direction relative to the bead core, and a resin skeleton is formed while pressing the primary molded body against the outer mold.
    A method for manufacturing half tyres.
  6.  請求項5に記載のタイヤ半体製造方法により製造された、一対のタイヤ半体を接合し、
     前記接合により製造されたタイヤ骨格部材の前記タイヤ径方向外側に環状のベルト層を配置し、
     前記タイヤ骨格部材の前記ベルト層より前記タイヤ径方向外側にトレッド層を配置する、タイヤ製造方法。
    A pair of tire halves manufactured by the tire half manufacturing method according to claim 5 are joined together,
    a circular belt layer is disposed on an outer side in the tire radial direction of the tire frame member manufactured by the joining;
    a tread layer disposed on the tire frame member radially outward of the belt layer.
PCT/JP2023/024084 2022-10-24 2023-06-28 Tire half, tire, method for producing tire half, and method for producing tire WO2024089939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-170195 2022-10-24
JP2022170195A JP2024062296A (en) 2022-10-24 2022-10-24 Tire half body, tire, tire half body manufacturing method, and tire manufacturing method

Publications (1)

Publication Number Publication Date
WO2024089939A1 true WO2024089939A1 (en) 2024-05-02

Family

ID=90830474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024084 WO2024089939A1 (en) 2022-10-24 2023-06-28 Tire half, tire, method for producing tire half, and method for producing tire

Country Status (2)

Country Link
JP (1) JP2024062296A (en)
WO (1) WO2024089939A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160201A (en) * 1980-04-11 1981-12-09 Goodyear Tire & Rubber Reinforced tire and its manufacture
JPS611505A (en) * 1984-04-06 1986-01-07 リム・クンストシユトツフ・テヒノロギ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Tire for vehicle consisting of elastomer which can be castedor injection-molded
JP2011207158A (en) * 2010-03-30 2011-10-20 Bridgestone Corp Method of manufacturing tire, and mold for molding tire
WO2012118091A1 (en) * 2011-02-28 2012-09-07 株式会社ブリヂストン Tire
JP2014524378A (en) * 2011-08-02 2014-09-22 ミリケン・アンド・カンパニー Tire with knitted fabric reinforcement in the sidewall region
JP2014210487A (en) * 2013-04-18 2014-11-13 株式会社ブリヂストン Tire and tire manufacturing method
WO2016017508A1 (en) * 2014-07-30 2016-02-04 株式会社ブリヂストン Tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160201A (en) * 1980-04-11 1981-12-09 Goodyear Tire & Rubber Reinforced tire and its manufacture
JPS611505A (en) * 1984-04-06 1986-01-07 リム・クンストシユトツフ・テヒノロギ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Tire for vehicle consisting of elastomer which can be castedor injection-molded
JP2011207158A (en) * 2010-03-30 2011-10-20 Bridgestone Corp Method of manufacturing tire, and mold for molding tire
WO2012118091A1 (en) * 2011-02-28 2012-09-07 株式会社ブリヂストン Tire
JP2014524378A (en) * 2011-08-02 2014-09-22 ミリケン・アンド・カンパニー Tire with knitted fabric reinforcement in the sidewall region
JP2014210487A (en) * 2013-04-18 2014-11-13 株式会社ブリヂストン Tire and tire manufacturing method
WO2016017508A1 (en) * 2014-07-30 2016-02-04 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP2024062296A (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JPH04232035A (en) Manufacture of tire for vehicle wheel and said tire
WO2018101175A1 (en) Tire
US20170210183A1 (en) Tire
IE48686B1 (en) Process for manufacturing pneumatic tyres and apparatus for carrying out the process
CN1370693A (en) Bicycle felly manufacturing method and plant and the manufactured felly
US4140165A (en) Reinforced tire and method of manufacturing same
NZ196235A (en) Pneumatic tyre:inextensible bands restrain breaker structure edges
US20180290494A1 (en) Tire
CN110799359A (en) Pneumatic tire and method for manufacturing pneumatic tire
JP2011042229A (en) Tire tread, tire, and manufacturing method for tire
US4295513A (en) Tire and method of reinforcement
US3975490A (en) Method of molding a reinforced tire from two preformed sections
KR20030085107A (en) Tyre with reinforcing structure
US20190241018A1 (en) Tire
JPH0930211A (en) Pneumatic tire
WO2024089939A1 (en) Tire half, tire, method for producing tire half, and method for producing tire
RU2221695C2 (en) Method of making tire carcass structure and tire carcass structure for two-wheel vehicles
JP6041577B2 (en) Method of manufacturing a cord style flexible golf grip
WO2016027893A1 (en) Method for manufacturing tire, and tire
WO2018235507A1 (en) Bead core, production method therefor, and pneumatic tire
CN110770010A (en) Pneumatic tire manufacturing method and pneumatic tire
US20030168142A1 (en) Support for a tire tread
JP3186803B2 (en) Method for manufacturing tire reinforcing belt, assembly drum used therefor, and method for manufacturing tire
JPH11309790A (en) Tread ring molding apparatus and molding method using the same
JP2005515099A (en) Method of forming a pneumatic tire for a wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882156

Country of ref document: EP

Kind code of ref document: A1