WO2024089928A1 - Method for assisting advance prediction of target dewatering amount in dialysis, assisting device, and assisting program - Google Patents

Method for assisting advance prediction of target dewatering amount in dialysis, assisting device, and assisting program Download PDF

Info

Publication number
WO2024089928A1
WO2024089928A1 PCT/JP2023/020349 JP2023020349W WO2024089928A1 WO 2024089928 A1 WO2024089928 A1 WO 2024089928A1 JP 2023020349 W JP2023020349 W JP 2023020349W WO 2024089928 A1 WO2024089928 A1 WO 2024089928A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialysis
profile
subject
prediction
neural network
Prior art date
Application number
PCT/JP2023/020349
Other languages
French (fr)
Japanese (ja)
Inventor
敏男 宮田
翔 加藤
Original Assignee
株式会社レナサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レナサイエンス filed Critical 株式会社レナサイエンス
Publication of WO2024089928A1 publication Critical patent/WO2024089928A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Definitions

  • This specification discloses a method, device, and program that uses artificial intelligence to assist in the advance prediction of the target amount of water removal through dialysis.
  • Intradialytic hypotension is an adverse event that occurs with the removal of fluid during dialysis, and is accompanied by symptoms such as leg cramps, feeling unwell, and loss of consciousness, and also has a negative impact on life prognosis.
  • a drop in blood pressure occurs with a frequency of 5-10%.
  • Non-Patent Document 1 describes an evaluation of the performance of a Dual-Channel Combiner Network (DCCN) using a dialysis event dataset.
  • Patent Document 1 describes a personalized DCCN.
  • An object of the present invention is to predict in advance the amount of water removed by dialysis.
  • An embodiment of the present invention relates to a method for supporting advance prediction of a target water removal amount by dialysis on a dialysis execution date for a prediction subject, the method being supported by artificial intelligence.
  • the artificial intelligence includes an algorithm composed of a first neural network structure and a second neural network structure different from the first neural network structure.
  • the algorithm is initially trained using the following training data sets (A) and (B) obtained from a plurality of dialysis patients, and the initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the algorithm for each prediction subject.
  • the artificial intelligence is configured to output the target water removal volume on the dialysis execution day based on the following analysis datasets (i) and (ii): (A) a dialysis data set obtained from each of the plurality of dialysis patients; (B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the plurality of dialysis patients; (1) a data set of multiple past dialysis sessions acquired from the subject; (2) a profile dataset including a profile of the prediction subject and a profile of a dialysis device used by the prediction subject; (i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject; (ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
  • the dialysis data set in (A), (1) and (i) includes the blood flow rate per unit time, the pressure of the dialysis fluid per unit time, the temperature of the dialysis fluid on the day of dialysis, the amount of water removed per set unit time, the target total amount of water removed determined by the doctor, the actual amount of water removed per unit time, the dry weight on the day of dialysis, the previous value of the post-dialysis weight, the weight before the start of dialysis on the day of dialysis, the increase in weight from the previous value of the post-dialysis weight to the start of dialysis on the day of dialysis, the increase from the dry weight on the day of dialysis, the post-dialysis weight on the day of dialysis, the systolic blood pressure and the diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not a decrease in blood pressure has occurred during dialysis in the past.
  • the profile of each of the multiple dialysis patients in (B) includes the start date of dialysis, the time period during which dialysis is performed, the gender and age group of each dialysis patient, and the profile of the dialysis device includes the type of dialysis method.
  • the profile of the predicted subject in (2) includes the dialysis start date, dialysis time period, gender, and age group of the predicted subject, and the profile of the dialysis device includes the type of dialysis method.
  • the profile of the predicted subject in (ii) includes the predicted subject's dialysis start date, dialysis time period, gender, and age group, and the profile of the dialysis device includes the type of dialysis method.
  • the first neural network has a feedforward neural network structure.
  • the second neural network has a recurrent neural network structure.
  • the feedforward neural network is a multi-layer perceptron, and the recurrent neural network is a Long Short Term Memory (LSTM).
  • LSTM Long Short Term Memory
  • An embodiment of the present invention relates to a support device that supports a prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject.
  • the support device includes a control unit.
  • the control unit outputs the target water removal amount on the dialysis implementation date based on the following analysis datasets (i) and (ii): (i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject; (ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
  • the artificial intelligence comprises an algorithm that is comprised of a first neural network structure and a second neural network structure that is different from the first neural network structure.
  • the algorithm is initially trained using the following training datasets (A) and (B) obtained from a plurality of dialysis patients, and the initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the algorithm for each prediction subject: (A) a dialysis data set obtained from each of the plurality of dialysis patients; (B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the patients; (1) a data set of multiple past dialysis sessions acquired from the subject; (2) A profile dataset including a profile of the predicted subject and a profile of a dialysis device to be used by the predicted subject.
  • An embodiment of the present invention when executed on a computer, causes the computer to:
  • the present invention relates to a support program for supporting a prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject, the support program executing a step of outputting the target water removal amount on the dialysis implementation date based on the following analysis datasets (i) and (ii): (i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject; (ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
  • the artificial intelligence comprises an algorithm comprised of a first neural network structure and a second neural network structure different from the first neural network structure.
  • the algorithm is initially trained using the following training datasets (A) and (B) obtained from a plurality of dialysis patients, and the initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the algorithm for each prediction subject: (A) a dialysis dataset obtained from each of the plurality of dialysis patients; (B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the patients; (1) a data set of multiple past dialysis sessions acquired from the subject; (2) A profile dataset including a profile of the predicted subject and a profile of a dialysis device to be used by the predicted subject.
  • the target amount of water removed by dialysis on the day of dialysis can be predicted in advance.
  • 1 shows the hardware configuration of the training device 10.
  • 13 shows the process flow of the training program 1042.
  • 2 shows the hardware configuration of the support device 20.
  • 13 shows the process flow of the support program 2042.
  • the breakdown of patients from whom the dataset used in the study was obtained is shown below. This section describes the exclusion rules for the dataset. The breakdown of the dataset is shown below.
  • the consideration steps and prediction accuracy are shown.
  • the prediction accuracy of a conventional method for predicting the amount of water removed and a method for predicting the amount of water removed using a support model are shown.
  • the MAE and MAPE of each group in Verification Example 1 are shown.
  • the results of k-fold cross-validation performed by dividing each of groups 1 to 4 in validation example 1 into five groups are shown below.
  • A shows the prediction accuracy of the assistance algorithm constructed using a specimen test data set of 16 items, a dialysis data set, and a profile data set.
  • B shows the prediction accuracy of the assistance algorithm constructed using a specimen test data set of 6 items, a dialysis data set, and a profile data set.
  • C shows the prediction accuracy of the assistance algorithm constructed using the dialysis data set and a profile data set.
  • Support model for supporting advance prediction of target water removal amount by dialysis One embodiment of the present invention relates to a support model (hereinafter also simply referred to as "support model") that supports advance prediction of a target water removal amount by dialysis on a dialysis implementation day for a prediction subject.
  • support model a support model that supports advance prediction of a target water removal amount by dialysis on a dialysis implementation day for a prediction subject.
  • This section describes a training method for training an artificial intelligence to function as an assistance model.
  • the artificial intelligence includes an algorithm that is composed of a first neural network structure and a second neural network structure.
  • the first neural network structure and the second neural network structure are different.
  • the first neural network is a neural network used to analyze static parameters.
  • a forward propagation type neural network can be mentioned.
  • it is a forward propagation type neural network.
  • a DNN Deep Neural Network
  • the first neural network is a fully connected neural network.
  • the second neural network is a neural network used to analyze dynamic parameters, since a temporal parameter data set is input to the second neural network.
  • a recurrent neural network can be mentioned.
  • a recurrent neural network is preferable. Among them, a Long Short Term Memory (LSTM) is more preferable.
  • LSTM Long Short Term Memory
  • Non-Patent Document 1 and Patent Document 1 are incorporated herein by reference.
  • the activation function in DCCN can be ReLU (Rectified Linear Unit) or the identity function.
  • the static parameter dataset may include a profile dataset and a specimen test dataset, preferably a profile dataset.
  • the ad-hoc parameter dataset may include a dialysis dataset.
  • the static parameter dataset does not include a specimen test dataset.
  • the specimen test dataset includes, for example, data from biochemical tests and blood tests. These data can be obtained by specimen tests at ordinary hospitals or testing centers.
  • the specimen test dataset may preferably include serum albumin concentration, red blood cell count, hematocrit value, mean corpuscular hemoglobin (MCH), and platelet count.
  • the specimen test dataset preferably includes serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, corrected calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), platelet count, and serum CRP concentration. Specimen tests are generally performed about twice a month.
  • the dialysis dataset includes blood flow rate per unit time, dialysis fluid pressure per unit time, dialysis fluid temperature on the day of dialysis, set amount of water removed per unit time, target total amount of water removed determined by the doctor, actual amount of water removed per unit time, dry weight on the day of dialysis, previous post-dialysis weight, weight before the start of dialysis on the day of dialysis, weight increase from the previous post-dialysis weight to the start of dialysis on the day of dialysis, weight increase from the dry weight on the day of dialysis, post-dialysis weight on the day of dialysis, systolic blood pressure and diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not a drop in blood pressure has occurred during dialysis in the past.
  • the dialysis dataset is data acquired during each dialysis. Dialysis is generally performed about three times a week.
  • Every unit time in the above means every unit time from the start of dialysis.
  • "every unit time” is approximately every hour.
  • One dialysis session for one patient generally takes about four hours, and for some patients, five hours. For this reason, each piece of data is obtained approximately one hour, two hours, three hours, four hours, and for some patients, approximately five hours from the start of dialysis.
  • dry weight can be calculated from the cardiothoracic ratio of each dialysis patient.
  • the cardiothoracic ratio is calculated from the images taken of chest X-rays taken once or twice a month for each dialysis patient.
  • the standard value for the cardiothoracic ratio is approximately 50%, so doctors determine the dry weight based on this standard value.
  • determining the amount of water removal during dialysis based on the calculated dry weight can cause a drop in blood pressure during dialysis. In such cases, doctors will make adjustments such as increasing the dry weight for each patient.
  • a drop in blood pressure can be defined as a drop in systolic blood pressure of 20 mmHg or more from the previous measurement and a drop of 110 mmHg or less.
  • the profile dataset includes profiles of dialysis patients from which training data is obtained or prediction subjects, and profiles of the types of dialysis methods used by dialysis patients from which training data is obtained or prediction subjects.
  • the profile data includes data that is basically unchanged or that changes on an annual basis, such as age groups.
  • the profile of the dialysis patient from whom training data is obtained, or the prediction subject includes the time of day when dialysis is performed (morning or afternoon), the start date of dialysis, gender, and age group.
  • Age groups can be quantified, for example, into teens, twenties, thirties, forties, fifties, sixties, seventies, eighties, and nineties.
  • the time of day when dialysis is performed (morning or afternoon) is the same for each patient.
  • Types of dialysis procedures are hemodialysis (HD) therapy or hemodiafiltration (HDF) therapy.
  • the data is continuous quantitative data (numeric data)
  • the numerical value is used; if the data is qualitative data (non-continuous data) or an age group, a label value according to the type of quality is used.
  • the training of the artificial intelligence to build the assistance model is divided into two stages.
  • the algorithm is initially trained using a training dataset obtained from multiple dialysis patients.
  • (A) a dialysis dataset obtained from each of a number of dialysis patients, and (B) a profile dataset including a profile for each of the multiple dialysis patients and a profile for the dialysis device used by each of the patients are used.
  • the above datasets (A) and (B) are linked to each patient.
  • the above training datasets (A) and (B) are referred to as the initial training dataset.
  • the initial training uses all possible input data sets (A) and (B) obtained for each of the multiple patients.
  • the initial training data set is input to the input layer of the algorithm, and the target water removal volume set by the doctor for each patient's previous dialysis session is input to the output layer of the algorithm.
  • the algorithm trained in this way is called the initial algorithm (or trained DCCN).
  • the dialysis patients from which each data set used in the initial training is obtained are dialysis patients who have not experienced any events such as a drop in blood pressure, and whose doctor-determined target volume of water removal and actual volume of water removal are less than 100 mL.
  • the second stage of AI training is training to individualize the initial algorithm to suit the predicted subject.
  • This training in order to individualize the initial algorithm to suit a specific predicted subject, (1) a dataset of multiple past dialysis sessions obtained from the specific predicted subject, and (2) a profile dataset including a profile of the specific predicted subject and a profile of the dialysis device used by the predicted subject are used.
  • the above training datasets (1) and (2) are referred to as individual training datasets.
  • the individualized algorithm constructed in this manner is used as a support model to assist in the advance prediction of the target water removal volume by dialysis on the day of dialysis for the specific prediction subject.
  • higher prediction accuracy can be obtained.
  • the individualized algorithm can accurately predict the target water removal volume for the prediction subject even if the facility that obtained the initial training data is different from the facility that obtained the individualized training data.
  • the individual training dataset is accumulated each time. The individualized algorithm is retrained with the added individual training dataset each time an individual training dataset for the prediction subject is added, thereby becoming a support model that is more suited to each prediction subject.
  • Training device for assistance model Fig. 1 shows the hardware configuration of a training device for an assistance model (hereinafter, simply referred to as a "training device") 10 that supports advance prediction of a target amount of water removal by dialysis on a dialysis day for a prediction subject.
  • the training device 10 may be connected to an input device 111 and an output device 112 .
  • the processing unit (CPU) 101, memory 102, ROM (read only memory) 103, storage device 104, and interface 106 are connected to each other via a bus 109 so that they can communicate data with each other.
  • the processing unit 101, memory 102, and ROM 103 function as the control unit 100 of the training device 10.
  • the processing unit 101 is the CPU of the training device 10 and is also called a calculation device.
  • the processing unit 101 may work in cooperation with a GPU or MPU.
  • the processing unit 101 works in cooperation with an operation system (OS) 1041 stored in the storage device 104 or ROM 103 to execute a training program 1042 (hereinafter also simply referred to as the "training program 1042") of an assistance model that supports advance prediction of the target water removal amount by dialysis on the day of dialysis for a prediction subject described below, and the computer functions as the training device 10.
  • OS operation system
  • the ROM 103 stores the training program 1042 executed by the processing unit 101 and data used therein.
  • the ROM 103 stores the boot program executed by the processing unit 101 when the training device 10 is started up, as well as programs and settings related to the operation of the hardware of the training device 10.
  • the storage device 104 non-volatilely stores an operation system (OS) 1041, a training program 1042 for training the assistance model described below (hereinafter simply referred to as the "training program 1042"), and a model database 1043.
  • the model database 1043 stores pre-training algorithms, or initial algorithms, and individualized algorithms.
  • the model database 1043 can also store initial training data and individual training data.
  • the input device 111 is composed of a touch panel, a keyboard, a mouse, a pen tablet, a microphone, etc., and is used to input characters or voice to the training device 10.
  • the input device 111 may be connected from outside the training device 10 or may be integrated with the training device 10.
  • the output device 112 is composed of, for example, a display, a printer, and the like.
  • the processing unit 101 may obtain application software and various settings necessary for controlling the training device 10 via a network instead of reading them from the ROM 103 or the storage device 104.
  • the application program may be stored in a storage device of a server computer on the network, and the training device 10 may access this server computer to download a training program 1042 and store it in the ROM 103 or the storage device 104.
  • an operation system that provides a graphical user interface environment, such as Windows (registered trademark) manufactured and sold by Microsoft Corporation in the United States or the open source Linux (registered trademark), is installed in the ROM 103 or the storage device 104.
  • the training program runs on the operating system.
  • the training device 10 can be a personal computer, etc.
  • the control unit 100 executes the training program 1042, whereby the computer functions as the training device 10.
  • the control unit 100 receives a processing start request inputted, for example, by an operator from the input device 111, executes the training program 1042, and starts the training processing.
  • step S11 the control unit 100 reads the algorithm to be trained and the initial training data set from the model database 1043, inputs the initial training data set to the input layer of the algorithm, and inputs the target water removal volume to the output layer of the algorithm.
  • the explanation of these inputs is given in 1-1 above.
  • step S12 the control unit 100 trains the algorithm based on the data set input to the algorithm in step S11, and constructs an initial algorithm.
  • the control unit 100 stores the initial algorithm in the storage device 104.
  • step S13 the control unit 100 reads the initial algorithm and the individualized training data set from the storage device 104 in step S12, and inputs the individualized training data set for the specific prediction target into the input layer of the initial algorithm.
  • the explanation of these inputs is as described in 1-1 above.
  • step S14 the control unit 100 trains the initial algorithm based on the data set input to the initial algorithm, and constructs an individualization algorithm for each prediction target person.
  • step S14 the control unit 100 accepts a command from the operator to start the verification process and verifies the individualization algorithm.
  • the verification can be performed using the error between the target water removal volume set by the doctor for each prediction subject and the predicted water removal volume for each prediction subject predicted by the individualization algorithm as an index.
  • the index is the accuracy rate, the mean absolute percentage error (MAPE), and the mean absolute error (MAE).
  • MAPE and MAE are calculated by the following formula.
  • the accuracy rate is the accuracy rate of the predicted water removal volume of each prediction target predicted by the individualization algorithm when the difference between the predicted water removal volume of each prediction target predicted by the individualization algorithm and the target water removal volume prescribed by the dialysis specialist is 250 ml or less (patients with a total water removal volume of less than 2350 ml in one dialysis session), or the difference between the predicted water removal volume of each prediction target predicted by the individualization algorithm and the target water removal volume prescribed by the dialysis specialist is within 10.7% (total water removal volume of 2350 ml or more in one dialysis session).
  • the higher the accuracy rate the smaller the error.
  • the accuracy rate is higher than the standard value, or when MAPE or MAE is smaller than a specified standard value, it can be evaluated that the individualization algorithm is suitable for the prediction target.
  • the accuracy rate is higher than the reference value, or if the MAPE, MAE, or RMSE is greater than a predetermined reference value, the operator reviews the initial training data set, adjusts the weights of each function in each neural network, and returns to step S11 to perform training again.
  • Acceptable accuracy rates are, for example, 80% or more, 85% or more, 88% or more, and 90% or more.
  • Acceptable MAPE is, for example, 15% or less, preferably 10% or less, and more preferably 8% or less.
  • a method for supporting the advance prediction of the target water removal volume by dialysis on the day of dialysis for a prediction subject can obtain the target water removal volume (e.g., mL) as an output value by inputting the analysis dataset of each prediction subject into the individualization algorithm constructed for each prediction subject in 1-3 above.
  • the analysis dataset is (i) at least one past dialysis dataset immediately prior to the day of dialysis obtained from the prediction subject, and (ii) a profile dataset including a profile of the prediction subject and a profile of the dialysis device used by the prediction subject.
  • the explanation of each dataset is incorporated herein by reference in 1-1 above.
  • the number of sets of dialysis datasets is at least the most recent one going back from the date of dialysis, and preferably the most recent five going back from the date of dialysis.
  • the dialysis dataset is acquired every time dialysis is performed, but since specimen test data is acquired about twice a month, one set of specimen test data is acquired for every five dialysis datasets acquired.
  • the profile dataset does not change in principle, except for the age group.
  • Figure 3 shows the hardware configuration of a support device (hereinafter also simply referred to as "support device") 20 that supports advance prediction of a target water removal amount by dialysis on the day of dialysis for a prediction subject.
  • the assistance device 20 may be connected to an input device 211 and an output device 212 .
  • a processing unit (CPU) 201, a memory 202, a ROM (read only memory) 203, a storage device 204, and an interface 206 are connected to each other via a bus 209 so as to be able to communicate data with each other.
  • the processing unit 101, the memory 202, and the ROM 203 function as a control unit 200 of the support device 20.
  • Each component of the support device 20 is similar to the corresponding component of the training device 10 except for the configuration of the storage device 204 .
  • the storage device 204 non-volatilely stores an operation system (OS) 2041, a prediction support program 2042 (hereinafter simply referred to as the "support program 2042") that supports advance prediction of the target amount of water removal by dialysis on the day of dialysis for a prediction subject described below, and a model database 2043.
  • the model database 2043 stores the individualization algorithm after training.
  • the model database 2043 can also store analysis data.
  • the control unit 200 executes the assistance program 2042, causing the computer to function as the assistance device 20.
  • the control unit 200 receives a processing start request inputted, for example, by an operator from the input device 211, executes the assistance program 2042, and starts the assistance processing.
  • step S21 the control unit 200 reads out the personalization algorithm corresponding to the person to be predicted and the analysis dataset of the prediction target from the model database 2043, and inputs the analysis dataset of the person to be predicted into the input layer of the personalization algorithm.
  • step S22 the control unit 200 outputs the predicted value output from the individualization algorithm to the output device 212 as the target water removal amount for the predicted individual.
  • step S23 the control unit 200 determines whether the predicted value for the prediction subject output from the individualization algorithm is greater than the dry weight of the prediction subject. For example, if the predicted value is 3% or more of the dry weight two days after the last dialysis, or if the predicted value is 5% or more of the dry weight three days after the last dialysis, it can be determined that the predicted value is greater than the dry weight.
  • control unit 200 determines in step S23 that the predicted value is greater than the dry weight (if "YES"), the control unit 200 proceeds to step S24 and outputs a warning to the output device 212 to prompt the user to review the dry weight.
  • the warning may be, for example, a symbol such as an exclamation point, or a text message such as "Please check the dry weight.”
  • control unit 200 determines in step S23 that the predicted value is not greater than the dry weight (if "NO"), it ends the process.
  • Steps S23 and S24 are optional processes.
  • An embodiment of the present invention relates to a program product, such as a media drive, that stores the training program 1042, the assistance program 2042, and/or the retraining program. That is, the training program 1042, the assistance program 2042, and/or the retraining program may be stored in a media drive, such as a hard disk, a semiconductor memory device such as a flash memory, or an optical disk.
  • the media drive may also be a computer, such as a server device.
  • the format of recording the program to the media drive is not limited as long as each device can read the program. It is preferable that the recording to the media drive is non-volatile.
  • the individualization algorithm may be retrained by adding a data set of the increased number of dialysis sessions to a new individual training data set, or by updating the individual training data set.
  • the individualization algorithm constructed by the method described in 1-1 above can also be used as a support model to assist in predicting the occurrence of a drop in blood pressure during dialysis by changing the data input to the output layer from the target amount of water removal set by the doctor to the presence or absence of a drop in blood pressure during dialysis in the past.
  • the activation function uses a sigmoid function instead of ReLU or an identity function.
  • the value output from the support model to assist in predicting the occurrence of a drop in blood pressure during dialysis is the probability that each prediction subject will experience a drop in blood pressure during dialysis.
  • Verification of the effect 5-1 Dialysis datasets, specimen test datasets, and profile datasets were obtained from patients undergoing dialysis at Facility A, Facility H, Facility K, and Facility S. The breakdown is shown in Figure 5.
  • the dialysis data set consisted of the day of the week on which dialysis was performed, temperature, weather, blood flow rate per unit time, dialysis fluid pressure per unit time, dialysis fluid temperature, set amount of water removed per unit time, target amount of water removed, actual amount of water removed per unit time, dry weight, previous post-dialysis weight, weight before the start of dialysis, weight gain from the date of the previous dialysis until before the start of the next dialysis, gain from dry weight, post-dialysis weight, systolic and diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not blood pressure drops occurred during dialysis in the past.
  • a drop in blood pressure during dialysis was defined as a drop in systolic blood pressure of 20 mmHg or more from the previous measurement and a drop of 110 mmHg or less.
  • Specimen test data included serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, corrected calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), platelet count, and serum CRP concentration.
  • serum albumin concentration included serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, corrected calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), platelet count, and serum CRP concentration.
  • the profile of the predicted subject was the dialysis start date, gender, age group, and time of day when dialysis was performed (morning or afternoon), and the profile of the dialysis method was the type of dialysis method (HD or HDF).
  • step 1 learning and validation were performed at the same facility.
  • DCCN was used as the support model, and the training and validation datasets were randomly sampled data obtained at the same facility.
  • These support models had an AUC (area under curve) of over 0.8, and the prediction accuracy was generally good.
  • AUC area under curve
  • the AUC of the DCCN support model was 0.73.
  • the AUC increased to 0.79.
  • the amount of the training dataset was increased in step 4
  • the accuracy of predicting the occurrence of hypotension during dialysis, including the absence of events was 0.91 AUC.
  • AUPRC area under the precision-recall curve
  • Figure 9 shows the prediction accuracy (RMSE) of the amount of water removed.
  • the accuracy of the amount of water removed predicted by DCCN was compared with the accuracy of the amount of water removed predicted by other methods.
  • the RMSE of the DCCN prediction was 183.36 mL, which was significantly better than other conventional prediction methods.
  • the above dialysis dataset (including multiple dialysis data for one dialysis patient) was divided into the following four groups, excluding datasets with missing data, and the dataset of Group 1 and the corresponding specimen test dataset and profile dataset were used to train an initial algorithm, and an individualized algorithm was constructed for the dialysis datasets of Groups 1 to 4, and its accuracy was evaluated.
  • the amount of water removed was predicted for Groups 1 to 4.
  • the dialysis dataset of Group 1 contained approximately 400,000 pieces of data.
  • the dialysis datasets of Groups 2 to 4 contained approximately 120,000 pieces of data.
  • Group 1 No events and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] ⁇ 100 ml (dialysis achieved fluid removal)
  • Group 2 No events and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] ⁇ 100 ml (dialysis in which fluid removal was not achieved)
  • Group 3 Events occurred and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] ⁇ 100 ml (dialysis achieved fluid removal)
  • Group 4 No events and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] ⁇ 100 ml (dialysis in which fluid removal was not achieved) *
  • An "event” indicates a drop in blood pressure during dialysis.
  • Figure 11 shows the results of k-fold cross-validation in which each of groups 1 to 4 was divided into five groups.
  • the MAPE was less than 10.7% in all cases.
  • Setting the amount of water removed from dialysis patients is influenced by factors such as the patient's condition, weather (the amount of insensible perspiration can easily change depending on whether or not there is a bowel movement, and temperature and humidity), the experience and knowledge of each staff member, and flow rate errors in the dialysis device itself, so even when prescribed by a specialist, there can be errors in the amount of water removed of more than a cup (250 ml, MAPE 10.7%), and so the results of this analysis were considered to be good.
  • a training assistance algorithm was constructed using a specimen test dataset (data consisted of 16 items: serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), and platelet count) or a specimen test dataset (data consisted of 6 items: serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum sodium concentration, hematocrit value, and total protein).
  • the items entered as the analysis dataset were also the same as those in the training dataset for the assistance algorithm.
  • Figure 12 (A) shows the prediction accuracy of the assistance algorithm constructed using a specimen test dataset of 16 items, a dialysis dataset, and a profile dataset.
  • Figure 12 (B) shows the prediction accuracy of the assistance algorithm constructed using a specimen test dataset of 6 items, a dialysis dataset, and a profile dataset.
  • Figure 12 (C) shows the prediction accuracy of the assistance algorithm constructed using the dialysis dataset and profile dataset.
  • the assistance algorithm constructed using the dialysis dataset and profile dataset shown in Figure 12 (C) showed high prediction accuracy in terms of accuracy rate, MAE, and MAPE. This result shows that the prediction accuracy of the assistance algorithm is improved when the specimen test dataset is not used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

The present invention addresses the problem of predicting, in advance, a dewatering amount in dialysis. The above problem is solved by this method which is for assisting advance prediction, with respect to a prediction subject, of a target dewatering amount in dialysis, on the day dialysis is performed. The method enables assistance by using artificial intelligence provided with an algorithm constituted from a first neural network structure and a second neural network structure different from the first neural network structure.

Description

透析による目標除水量の事前予測を支援する方法、支援装置、及び支援プログラムMethod, device, and program for supporting prediction of target water removal volume by dialysis
 本明細書には人工知能を利用した、透析による目標除水量の事前予測を支援する方法、支援装置、及び支援プログラムが開示される。 This specification discloses a method, device, and program that uses artificial intelligence to assist in the advance prediction of the target amount of water removal through dialysis.
 透析中低血圧は透析中の除水に伴い発生する有害事象で、足つり、気分不良、意識消失といった症状を伴い、生命予後にも悪影響を及ぼす。血圧低下は5~10%という頻度で発生する。 Intradialytic hypotension is an adverse event that occurs with the removal of fluid during dialysis, and is accompanied by symptoms such as leg cramps, feeling unwell, and loss of consciousness, and also has a negative impact on life prognosis. A drop in blood pressure occurs with a frequency of 5-10%.
 非特許文献1には、Dual-Channel Combiner Network (DCCN)の性能を透析イベントデータセットを使って評価したことが記載されている。
 特許文献1には、personalizeされたDCCNが記載されている。
Non-Patent Document 1 describes an evaluation of the performance of a Dual-Channel Combiner Network (DCCN) using a dialysis event dataset.
Patent Document 1 describes a personalized DCCN.
国際公開第2022-216618A1号International Publication No. 2022-216618A1
 透析中に血圧低下を起こした場合、患者の状態の悪化につながるため、その処置を医師や看護師が行う必要がある。しかし、一般的に透析室では複数名の患者が透析を受けているのに対して、透析室に常駐しているスタッフの人数は限られている。このため、突然透析中の患者に血圧低下が起こった場合、透析室に常駐するスタッフの多くがその対応に追われることとなる。さらに、別の患者が透析中に血圧低下を起こした場合には、対応が遅れる可能性がある。 If blood pressure drops during dialysis, it can lead to a deterioration in the patient's condition, and so treatment is required from a doctor or nurse. However, while a dialysis room typically houses multiple patients undergoing dialysis, the number of staff members stationed there is limited. For this reason, if a patient's blood pressure suddenly drops during dialysis, many of the staff members stationed in the room will be busy dealing with the situation. Furthermore, if another patient experiences a drop in blood pressure during dialysis, treatment may be delayed.
 このため透析開始前に予測できれば、スタッフの人数を事前に増員させることができ、安全安心な透析治療の実施が可能となる。また、血圧低下を起こさない除水量があらかじめわかれば、より安全な透析治療を行うことができる。
 本発明は、事前に、透析による除水量を予測することを課題とする。
Therefore, if predictions could be made before dialysis began, the number of staff could be increased in advance, enabling safe and secure dialysis treatment. In addition, if the amount of water to be removed without causing a drop in blood pressure could be known in advance, safer dialysis treatment could be performed.
An object of the present invention is to predict in advance the amount of water removed by dialysis.
 本発明のある実施形態は、予測対象者について、透析実施日における透析による目標除水量の事前予測を支援する方法に関する。前記方法は、人工知能によって支援される。
 前記人工知能は、第1のニューラルネットワーク構造と第1のニューラルネットワーク構造とは異なる第2のニューラルネットワーク構造から構成されるアルゴリズムを備る。前記アルゴリズムは、複数の透析患者から取得した、下記(A)及び(B)の訓練データセットを使用して初期訓練され、初期訓練された初期アルゴリズムを、さらに前記予測対象者から取得した下記(1)及び(2)を使用して訓練することにより予測対象者ごとに構築される。
 前記人工知能は、下記(i)及び(ii)の解析データセットに基づいて、前記透析実施日における前記目標除水量を出力するように構成される:
  (A)前記複数名の透析患者の各人から取得した透析データセット、
  (B)前記複数名の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセット;
  (1)前記予測対象者から取得した過去の複数回の透析データセット、
  (2)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット;
  (i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、
  (ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
An embodiment of the present invention relates to a method for supporting advance prediction of a target water removal amount by dialysis on a dialysis execution date for a prediction subject, the method being supported by artificial intelligence.
The artificial intelligence includes an algorithm composed of a first neural network structure and a second neural network structure different from the first neural network structure. The algorithm is initially trained using the following training data sets (A) and (B) obtained from a plurality of dialysis patients, and the initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the algorithm for each prediction subject.
The artificial intelligence is configured to output the target water removal volume on the dialysis execution day based on the following analysis datasets (i) and (ii):
(A) a dialysis data set obtained from each of the plurality of dialysis patients;
(B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the plurality of dialysis patients;
(1) a data set of multiple past dialysis sessions acquired from the subject;
(2) a profile dataset including a profile of the prediction subject and a profile of a dialysis device used by the prediction subject;
(i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject;
(ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
 好ましくは、前記(A)、(1)及び(i)における前記透析データセットは、単位時間ごとの血流量、単位時間ごとの透析液の液圧、透析実施日における透析液の液温、設定された単位時間ごとの時間除水量、医師が決定した目標総除水量、実際の単位時間ごとの除水量、透析実施日におけるドライウェイト、透析後体重の前回値、透析実施日における透析開始前体重、透析後体重の前回値を基準とした透析実施日における透析開始前までの体重の増加量、透析実施日におけるドライウェイトからの増加量、透析実施日における透析後体重、透析実施日における透析開始前の収縮期血圧および拡張期血圧、及び過去における透析中の血圧低下発生の有無を含む。 Preferably, the dialysis data set in (A), (1) and (i) includes the blood flow rate per unit time, the pressure of the dialysis fluid per unit time, the temperature of the dialysis fluid on the day of dialysis, the amount of water removed per set unit time, the target total amount of water removed determined by the doctor, the actual amount of water removed per unit time, the dry weight on the day of dialysis, the previous value of the post-dialysis weight, the weight before the start of dialysis on the day of dialysis, the increase in weight from the previous value of the post-dialysis weight to the start of dialysis on the day of dialysis, the increase from the dry weight on the day of dialysis, the post-dialysis weight on the day of dialysis, the systolic blood pressure and the diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not a decrease in blood pressure has occurred during dialysis in the past.
 好ましくは、前記(B)における前記複数名の透析患者の各人のプロファイルが、各透析患者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を含む。 Preferably, the profile of each of the multiple dialysis patients in (B) includes the start date of dialysis, the time period during which dialysis is performed, the gender and age group of each dialysis patient, and the profile of the dialysis device includes the type of dialysis method.
 好ましくは、前記(2)における前記予測対象者のプロファイルが前記予測対象者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を含む。 Preferably, the profile of the predicted subject in (2) includes the dialysis start date, dialysis time period, gender, and age group of the predicted subject, and the profile of the dialysis device includes the type of dialysis method.
 好ましくは、前記(ii)における前記予測対象者のプロファイルが前記予測対象者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を含む。 Preferably, the profile of the predicted subject in (ii) includes the predicted subject's dialysis start date, dialysis time period, gender, and age group, and the profile of the dialysis device includes the type of dialysis method.
 好ましくは、第1のニューラルネットワークは順伝播型ニューラルネットワーク構造を有する。第2のニューラルネットワークは再帰型ニューラルネットワーク構造を有する。 Preferably, the first neural network has a feedforward neural network structure. The second neural network has a recurrent neural network structure.
 さらに好ましくは、順伝播型ニューラルネットワークが多層パーセプトロンであり、回帰型ニューラルネットワークがLSTM(Long Short Term Memory)である。 More preferably, the feedforward neural network is a multi-layer perceptron, and the recurrent neural network is a Long Short Term Memory (LSTM).
 本発明のある実施形態は、予測対象者について、透析実施日における透析による目標除水量の事前予測を支援する支援装置に関する。前記支援装置は、制御部を備る。前記制御部は、下記(i)及び(ii)の解析データセットに基づいて、前記透析実施日における前記目標除水量を出力する:
  (i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、
  (ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
 前記人工知能は、第1のニューラルネットワーク構造と第1のニューラルネットワーク構造とは異なる第2のニューラルネットワーク構造から構成されるアルゴリズムを備える。
 前記アルゴリズムは、複数の透析患者から取得した、下記(A)及び(B)の訓練データセットを使用して初期訓練され、初期訓練された初期アルゴリズムを、さらに前記予測対象者から取得した下記(1)及び(2)を使用して訓練することにより予測対象者ごとに構築される:
  (A)前記複数の透析患者の各人から取得した透析データセット、
  (B)前記複数の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセット;
  (1)前記予測対象者から取得した過去の複数回の透析データセット、
  (2)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
An embodiment of the present invention relates to a support device that supports a prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject. The support device includes a control unit. The control unit outputs the target water removal amount on the dialysis implementation date based on the following analysis datasets (i) and (ii):
(i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject;
(ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
The artificial intelligence comprises an algorithm that is comprised of a first neural network structure and a second neural network structure that is different from the first neural network structure.
The algorithm is initially trained using the following training datasets (A) and (B) obtained from a plurality of dialysis patients, and the initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the algorithm for each prediction subject:
(A) a dialysis data set obtained from each of the plurality of dialysis patients;
(B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the patients;
(1) a data set of multiple past dialysis sessions acquired from the subject;
(2) A profile dataset including a profile of the predicted subject and a profile of a dialysis device to be used by the predicted subject.
  本発明のある実施形態は、コンピュータに実行させた時に、コンピュータに、
 下記(i)及び(ii)の解析データセットに基づいて、前記透析実施日における前記目標除水量を出力するステップを実行させる、予測対象者について、透析実施日における透析による目標除水量の事前予測を支援する支援プログラムに関する:
  (i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、
  (ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
 前記人工知能は、第1のニューラルネットワーク構造と第1のニューラルネットワーク構造とは異なる第2のニューラルネットワーク構造から構成されるアルゴリズムを備える。
 前記アルゴリズムは、複数の透析患者から取得した、下記(A)及び(B)の訓練データセットを使用して初期訓練され、初期訓練された初期アルゴリズムを、さらに前記予測対象者から取得した下記(1)及び(2)を使用して訓練することにより予測対象者ごとに構築される:
  (A)前記複数の透析患者の各人から取得した透析データセット、
  (B)前記複数の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセット;
  (1)前記予測対象者から取得した過去の複数回の透析データセット、
  (2)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
An embodiment of the present invention, when executed on a computer, causes the computer to:
The present invention relates to a support program for supporting a prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject, the support program executing a step of outputting the target water removal amount on the dialysis implementation date based on the following analysis datasets (i) and (ii):
(i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject;
(ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
The artificial intelligence comprises an algorithm comprised of a first neural network structure and a second neural network structure different from the first neural network structure.
The algorithm is initially trained using the following training datasets (A) and (B) obtained from a plurality of dialysis patients, and the initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the algorithm for each prediction subject:
(A) a dialysis dataset obtained from each of the plurality of dialysis patients;
(B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the patients;
(1) a data set of multiple past dialysis sessions acquired from the subject;
(2) A profile dataset including a profile of the predicted subject and a profile of a dialysis device to be used by the predicted subject.
 予測対象者について、透析実施日における透析による目標除水量の事前予測できる。 For each subject, the target amount of water removed by dialysis on the day of dialysis can be predicted in advance.
訓練装置10のハードウエア構成を示す。1 shows the hardware configuration of the training device 10. 訓練プログラム1042の処理の流れを示す。13 shows the process flow of the training program 1042. 支援装置20のハードウエア構成を示す。2 shows the hardware configuration of the support device 20. 支援プログラム2042の処理の流れを示す。13 shows the process flow of the support program 2042. 検討に使用したデータセットを取得した患者の内訳をしめす。The breakdown of patients from whom the dataset used in the study was obtained is shown below. データセットの除外規定を示す。This section describes the exclusion rules for the dataset. データセットの分割の内訳を示す。The breakdown of the dataset is shown below. 検討ステップと予測精度を示す。The consideration steps and prediction accuracy are shown. 従来の除水量の予測方法と支援モデルを使用した除水量の予測方法の予測精度を示す。The prediction accuracy of a conventional method for predicting the amount of water removed and a method for predicting the amount of water removed using a support model are shown. 検証例1の各群のMAE、MAPEを示す。The MAE and MAPE of each group in Verification Example 1 are shown. 検証例1の第1群~第4群のそれぞれを5群に分けて行ったk-分割交差検証の結果を示す。The results of k-fold cross-validation performed by dividing each of groups 1 to 4 in validation example 1 into five groups are shown below. (A)は、16項目の検体検査データセットと透析データセットとプロファイルデータセットにより構築した支援アルゴリズムの予測精度を示す。(B)は、6項目の検体検査データセットと透析データセットとプロファイルデータセットにより構築した支援アルゴリズムの予測精度を示す。(C)は、透析データセットとプロファイルデータセットにより構築した支援アルゴリズムの予測精度を示す。(A) shows the prediction accuracy of the assistance algorithm constructed using a specimen test data set of 16 items, a dialysis data set, and a profile data set. (B) shows the prediction accuracy of the assistance algorithm constructed using a specimen test data set of 6 items, a dialysis data set, and a profile data set. (C) shows the prediction accuracy of the assistance algorithm constructed using the dialysis data set and a profile data set.
1.透析による目標除水量の事前予測を支援する支援モデル
 本発明のある実施形態は、予測対象者について、透析実施日の透析による目標除水量の事前予測を支援する支援モデル(以下、単に「支援モデル」ともいう)に関する。
 本項では、人工知能を支援モデルとして機能するように訓練するための訓練方法について説明する。
1. Support model for supporting advance prediction of target water removal amount by dialysis One embodiment of the present invention relates to a support model (hereinafter also simply referred to as "support model") that supports advance prediction of a target water removal amount by dialysis on a dialysis implementation day for a prediction subject.
This section describes a training method for training an artificial intelligence to function as an assistance model.
1-1.概要
 人工知能は、第1のニューラルネットワーク構造と第2のニューラルネットワーク構造から構成されるアルゴリズムを備える。第1のニューラルネットワーク構造と第2のニューラルネットワーク構造は異なる。
1-1. Overview The artificial intelligence includes an algorithm that is composed of a first neural network structure and a second neural network structure. The first neural network structure and the second neural network structure are different.
 例えば、第1のニューラルネットワークには静的(static)パラメータデータセットが入力されるため、第1のニューラルネットワークは、静的パラメータの解析に用いられるニューラルネットワークである。例えば、順伝播型ニューラルネットワークを挙げることができる。好ましくは、順伝播型ニューラルネットワークである。中でも、DNN(Deep Neural Network)がより好ましい。より好ましくは、第1のニューラルネットワークは、フルコネクトのニューラルネットワークである。 For example, since a static parameter data set is input to the first neural network, the first neural network is a neural network used to analyze static parameters. For example, a forward propagation type neural network can be mentioned. Preferably, it is a forward propagation type neural network. Among them, a DNN (Deep Neural Network) is more preferable. More preferably, the first neural network is a fully connected neural network.
 例えば、第2のニューラルネットワークには随時(temporal)パラメータデータセットが入力されるため、第2のニューラルネットワークは、動的パラメータの解析に用いられるニューラルネットワークである。例えば、再帰型ニューラルネットワークを挙げることができる。好ましくは、再帰型ニューラルネットワークである。中でも、LSTM(Long Short Term Memory)がより好ましい。 For example, the second neural network is a neural network used to analyze dynamic parameters, since a temporal parameter data set is input to the second neural network. For example, a recurrent neural network can be mentioned. A recurrent neural network is preferable. Among them, a Long Short Term Memory (LSTM) is more preferable.
 このような異なる構造を備えるアルゴリズムは、非特許文献1、及び特許文献1に記載されているように、a Dual-Channel Combiner Network (DCCN)と呼ばれ、公知である。非特許文献1及び特許文献1は、参照によりここに援用される。 An algorithm with such a different structure is known as a Dual-Channel Combiner Network (DCCN), as described in Non-Patent Document 1 and Patent Document 1. Non-Patent Document 1 and Patent Document 1 are incorporated herein by reference.
 DCCNにおける活性化関数として、ReLU(Rectified Linear Unit)又は恒等関数(Identity function)を使用することができる。 The activation function in DCCN can be ReLU (Rectified Linear Unit) or the identity function.
 静的パラメータデータセットとして、プロファイルデータセット、及び検体検査データセット、好ましくはプロファイルデータセットを挙げることができる。随時パラメータデータセットとして、透析データセットを挙げることができる。好ましくは、静的パラメータデータセットには、検体検査データセットを含まない。 The static parameter dataset may include a profile dataset and a specimen test dataset, preferably a profile dataset. The ad-hoc parameter dataset may include a dialysis dataset. Preferably, the static parameter dataset does not include a specimen test dataset.
 検体検査データセットは、例えば生化学検査、及び血液検査等のデータを含む。これらのデータは、通常の病院や検査センターにおける検体検査により取得できる。検体検査データセットとして好ましくは、血清アルブミン濃度、赤血球数、ヘマトクリット値、平均赤血球ヘモグロビン量(MCH)、及び血小板数を含み得る。好ましくは、検体検査データセットは、血清アルブミン濃度、血清BUN濃度、血清クレアチニン濃度、血清カルシウム濃度、補正カルシウム濃度、血清無機リン濃度、血清鉄濃度、総鉄結合能(TIBC)、血清ナトリウム濃度、血清カリウム濃度、血清クロール濃度、白血球数、赤血球数、ヘモグロビン濃度、ヘマトクリット値、平均赤血球ヘモグロビン量(MCH)、血小板数、及び血清CRP濃度である。検体検査は、一般的に月に2回程度の頻度で行われる。 The specimen test dataset includes, for example, data from biochemical tests and blood tests. These data can be obtained by specimen tests at ordinary hospitals or testing centers. The specimen test dataset may preferably include serum albumin concentration, red blood cell count, hematocrit value, mean corpuscular hemoglobin (MCH), and platelet count. The specimen test dataset preferably includes serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, corrected calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), platelet count, and serum CRP concentration. Specimen tests are generally performed about twice a month.
 透析データセットは、単位時間ごとの血流量、単位時間ごとの透析液の液圧、透析実施日における透析液の液温、設定された単位時間ごとの時間除水量、医師が決定した目標総除水量、実際の単位時間ごとの除水量、透析実施日におけるドライウェイト、透析後体重の前回値、透析実施日における透析開始前体重、透析後体重の前回値を基準とした透析実施日における透析開始前までの体重の増加量、透析実施日におけるドライウェイトからの増加量、透析実施日における透析後体重、透析実施日における透析開始前の収縮期血圧および拡張期血圧、及び過去における透析中の血圧低下発生の有無を含む。透析データセットは、各透析において取得されるデータである。透析は、一般的に週に3回程度の頻度で行われる。 The dialysis dataset includes blood flow rate per unit time, dialysis fluid pressure per unit time, dialysis fluid temperature on the day of dialysis, set amount of water removed per unit time, target total amount of water removed determined by the doctor, actual amount of water removed per unit time, dry weight on the day of dialysis, previous post-dialysis weight, weight before the start of dialysis on the day of dialysis, weight increase from the previous post-dialysis weight to the start of dialysis on the day of dialysis, weight increase from the dry weight on the day of dialysis, post-dialysis weight on the day of dialysis, systolic blood pressure and diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not a drop in blood pressure has occurred during dialysis in the past. The dialysis dataset is data acquired during each dialysis. Dialysis is generally performed about three times a week.
 上記における「単位時間ごと」は、透析開始から単位時間ごとであることを意味する。好ましくは、「単位時間ごと」は約1時間ごとである。一患者につき、1回の透析は、一般的に4時間程度、患者によっては5時間要する。このため、透析開始から約1時間目、約2時間目、約3時間目、約4時間目、及び患者によっては約5時間目に各データを取得する。 "Every unit time" in the above means every unit time from the start of dialysis. Preferably, "every unit time" is approximately every hour. One dialysis session for one patient generally takes about four hours, and for some patients, five hours. For this reason, each piece of data is obtained approximately one hour, two hours, three hours, four hours, and for some patients, approximately five hours from the start of dialysis.
 ドライウェイトは、原則、各透析患者の心胸比から求めることができる。心胸比は、各透析患者に対して、月1回又は2回胸部X線撮影を行い、撮像された画像から算出する。心胸比の基準値は50%程度であるため、この基準値に応じてドライウェイトを医師が決定する。しかし、透析患者によっては、算出したドライウェイトを基準として透析における除水量を決定すると、透析中に血圧低下を引き起こす患者もいる。その際は、患者ごとにドライウェイトを増加させる等の調整を医師が行う。 In principle, dry weight can be calculated from the cardiothoracic ratio of each dialysis patient. The cardiothoracic ratio is calculated from the images taken of chest X-rays taken once or twice a month for each dialysis patient. The standard value for the cardiothoracic ratio is approximately 50%, so doctors determine the dry weight based on this standard value. However, for some dialysis patients, determining the amount of water removal during dialysis based on the calculated dry weight can cause a drop in blood pressure during dialysis. In such cases, doctors will make adjustments such as increasing the dry weight for each patient.
 過去における透析中の血圧低下発生の有無について、血圧低下は、最高血圧が前回計測から20mmHg以上の低下かつ低下時110mmHg以下と定義することができる。 Regarding whether or not there has been a drop in blood pressure during dialysis in the past, a drop in blood pressure can be defined as a drop in systolic blood pressure of 20 mmHg or more from the previous measurement and a drop of 110 mmHg or less.
 プロファイルデータセットは、訓練データを取得する透析患者、又は予測対象者のプロファイルと、訓練データを取得する透析患者、又は予測対象者が使用する透析手法の種類のプロファイルを含む。プロファイルデータは、基本的には変化がないか、年齢層のように年単位で変化するデータを含む。 The profile dataset includes profiles of dialysis patients from which training data is obtained or prediction subjects, and profiles of the types of dialysis methods used by dialysis patients from which training data is obtained or prediction subjects. The profile data includes data that is basically unchanged or that changes on an annual basis, such as age groups.
 訓練データを取得する透析患者、又は予測対象者のプロファイルは、透析実施時間帯(午前又は午後)、透析開始日、性別及び年齢層を含む。
 年齢層は、例えば、10代、20代、30代、40代、50代、60代、70代、80代、90代のように分位できる。
 透析実施時間帯(午前又は午後)は、原則各患者において一定である。
 透析手法の種類は、血液透析(HD)療法又は血液濾過透析(HDF)療法である。
The profile of the dialysis patient from whom training data is obtained, or the prediction subject, includes the time of day when dialysis is performed (morning or afternoon), the start date of dialysis, gender, and age group.
Age groups can be quantified, for example, into teens, twenties, thirties, forties, fifties, sixties, seventies, eighties, and nineties.
In principle, the time of day when dialysis is performed (morning or afternoon) is the same for each patient.
Types of dialysis procedures are hemodialysis (HD) therapy or hemodiafiltration (HDF) therapy.
 上記各種データとして、そのデータが連続性のある量的データ(数値データ)である場合にはその数値を使用し、質的データ(連続性のないデータ)又は年齢層である場合には質の種類に応じたラベル値を使用する。 For the various types of data mentioned above, if the data is continuous quantitative data (numeric data), the numerical value is used; if the data is qualitative data (non-continuous data) or an age group, a label value according to the type of quality is used.
 支援モデルを構築するための人工知能の訓練は、2段階に分かれている。第1段階目は、複数の透析患者から取得した、訓練データセットを使用してアルゴリズムを初期訓練する。 The training of the artificial intelligence to build the assistance model is divided into two stages. In the first stage, the algorithm is initially trained using a training dataset obtained from multiple dialysis patients.
 初期訓練には、(A)複数名の透析患者の各人から取得した透析データセット、(B)前記複数の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセットを使用する。上記(A)及び(B)のデータセットは、患者ごとに紐付けられている。上記(A)及び(B)の訓練データセットを、初期訓練データセットと称する。 For initial training, (A) a dialysis dataset obtained from each of a number of dialysis patients, and (B) a profile dataset including a profile for each of the multiple dialysis patients and a profile for the dialysis device used by each of the patients are used. The above datasets (A) and (B) are linked to each patient. The above training datasets (A) and (B) are referred to as the initial training dataset.
 透析患者は、各人が複数回の透析を受けているため、初期訓練では、複数名の各患者について取得された入力可能なすべての(A)及び(B)のデータセットが使用される。 Since each dialysis patient undergoes multiple dialysis sessions, the initial training uses all possible input data sets (A) and (B) obtained for each of the multiple patients.
 初期訓練では、アルゴリズムの入力層に初期訓練データセットを入力し、アルゴリズムの出力層に各患者の過去の透析回ごとに医師が設定した目標除水量が入力される。このようにして訓練されたアルゴリズムを、初期アルゴリズム(又は、訓練したDCCN)と呼ぶ。 In the initial training, the initial training data set is input to the input layer of the algorithm, and the target water removal volume set by the doctor for each patient's previous dialysis session is input to the output layer of the algorithm. The algorithm trained in this way is called the initial algorithm (or trained DCCN).
 ここで、初期訓練に使用する各データセットを取得する透析患者は、血圧低下等のイベントを起こしていない透析患者であって、医師が決定した目標除水量と実際の除水量が100mL未満である透析患者であることが好ましい。 Here, it is preferable that the dialysis patients from which each data set used in the initial training is obtained are dialysis patients who have not experienced any events such as a drop in blood pressure, and whose doctor-determined target volume of water removal and actual volume of water removal are less than 100 mL.
 次に人工知能の訓練の第2段階目は、初期アルゴリズムを予測対象者に合わせて個別化する訓練である。この訓練では、初期アルゴリズムを特定の予測対象者に適合するように個別化するため、(1)特定の予測対象者から取得した過去の複数回の透析データセット、(2)特定の予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセットを使用する。上記(1)及び(2)の訓練データセットを、個別訓練データセットと称する。 The second stage of AI training is training to individualize the initial algorithm to suit the predicted subject. In this training, in order to individualize the initial algorithm to suit a specific predicted subject, (1) a dataset of multiple past dialysis sessions obtained from the specific predicted subject, and (2) a profile dataset including a profile of the specific predicted subject and a profile of the dialysis device used by the predicted subject are used. The above training datasets (1) and (2) are referred to as individual training datasets.
 個別化のための訓練では、特定の予測対象者について取得された入力可能なすべての(1)及び(2)のデータセットが使用される。個別化のための訓練では、初期アルゴリズムの入力層に個別訓練データセットを入力し、初期アルゴリズムの出力層に、特定の予測対象者の過去の透析回ごとに医師が設定した目標除水量が入力される。このようにして訓練されたアルゴリズムを、個別化アルゴリズム(又は、P-DCCN)と呼ぶ。 In training for individualization, all of the inputtable data sets (1) and (2) obtained for a specific prediction subject are used. In training for individualization, the individual training data set is input to the input layer of the initial algorithm, and the target water removal volume set by the doctor for each past dialysis session for the specific prediction subject is input to the output layer of the initial algorithm. An algorithm trained in this way is called an individualized algorithm (or P-DCCN).
 このようにして構築された個別化アルゴリズムを、前記特定の予測対象者における透析実施日の透析による目標除水量の事前予測を支援するための支援モデルとして使用する。個別化アルゴリズムを使用することにより、より高い予測精度を得ることができる。また、個別化アルゴリズムは、初期訓練データを取得した施設と、個別化訓練データを取得した施設が異なっていても、精度良く予測対象者の目標除水量を予測できる。また、予測対象者は、透析療法を継続して受けるため、個別訓練データセットはそのたびに蓄積していく。個別化アルゴリズムは、予測対象者の個別訓練データセットが追加される度に追加された個別訓練データセットを含めて再訓練させることにより、より各予測対象者に適合した支援モデルとなる。 The individualized algorithm constructed in this manner is used as a support model to assist in the advance prediction of the target water removal volume by dialysis on the day of dialysis for the specific prediction subject. By using the individualized algorithm, higher prediction accuracy can be obtained. Furthermore, the individualized algorithm can accurately predict the target water removal volume for the prediction subject even if the facility that obtained the initial training data is different from the facility that obtained the individualized training data. Furthermore, since the prediction subject receives dialysis therapy continuously, the individual training dataset is accumulated each time. The individualized algorithm is retrained with the added individual training dataset each time an individual training dataset for the prediction subject is added, thereby becoming a support model that is more suited to each prediction subject.
1-2.支援モデルの訓練装置
 図1に、予測対象者について、透析実施日の透析による目標除水量の事前予測を支援する支援モデルの訓練装置(以下、単に「訓練装置」とも呼ぶ)10のハードウエア構成を示す。
 訓練装置10は、入力デバイス111と、出力デバイス112とに接続されていてもよい。
1-2. Training device for assistance model Fig. 1 shows the hardware configuration of a training device for an assistance model (hereinafter, simply referred to as a "training device") 10 that supports advance prediction of a target amount of water removal by dialysis on a dialysis day for a prediction subject.
The training device 10 may be connected to an input device 111 and an output device 112 .
 訓練装置10において、処理部(CPU)101と、メモリ102と、ROM(read only memory)103と、記憶デバイス104と、インタフェース106とは、バス109によって互いにデータ通信可能に接続されている。処理部101と、メモリ102と、ROM103は、訓練装置10の制御部100として機能する。 In the training device 10, the processing unit (CPU) 101, memory 102, ROM (read only memory) 103, storage device 104, and interface 106 are connected to each other via a bus 109 so that they can communicate data with each other. The processing unit 101, memory 102, and ROM 103 function as the control unit 100 of the training device 10.
 処理部101は、訓練装置10のCPUであり、演算装置ともいう。処理部101は、GPU、MPUと協働してもよい。処理部101が、記憶デバイス104又はROM103に記憶されているオペレーションシステム(OS)1041と協働して後述する予測対象者について、透析実施日の透析による目標除水量の事前予測を支援する支援モデルの訓練プログラム1042(以下、単に「訓練プログラム1042」とも称する)を実行することにより、コンピュータが訓練装置10として機能する。 The processing unit 101 is the CPU of the training device 10 and is also called a calculation device. The processing unit 101 may work in cooperation with a GPU or MPU. The processing unit 101 works in cooperation with an operation system (OS) 1041 stored in the storage device 104 or ROM 103 to execute a training program 1042 (hereinafter also simply referred to as the "training program 1042") of an assistance model that supports advance prediction of the target water removal amount by dialysis on the day of dialysis for a prediction subject described below, and the computer functions as the training device 10.
 ROM103は、処理部101により実行される訓練プログラム1042及びこれに用いるデータを記憶する。ROM103は、訓練装置10の起動時に、処理部101によって実行されるブートプログラムや訓練装置10のハードウエアの動作に関連するプログラムや設定を記憶する。 The ROM 103 stores the training program 1042 executed by the processing unit 101 and data used therein. The ROM 103 stores the boot program executed by the processing unit 101 when the training device 10 is started up, as well as programs and settings related to the operation of the hardware of the training device 10.
 記憶デバイス104は、オペレーションシステム(OS)1041と、後述する支援モデルを訓練するための訓練プログラム1042(以下、単に「訓練プログラム1042」と呼ぶ)と、モデルデータベース1043とを不揮発性に記憶する。モデルデータベース1043は、訓練前のアルゴリズム、又は初期アルゴリズム、個別化アルゴリズムを格納する。また、モデルデータベース1043は、初期訓練データ及び個別訓練データを格納しうる。 The storage device 104 non-volatilely stores an operation system (OS) 1041, a training program 1042 for training the assistance model described below (hereinafter simply referred to as the "training program 1042"), and a model database 1043. The model database 1043 stores pre-training algorithms, or initial algorithms, and individualized algorithms. The model database 1043 can also store initial training data and individual training data.
 入力デバイス111は、タッチパネル、キーボード、マウス、ペンタブレット、マイク等から構成され、訓練装置10に文字入力又は音声入力を行う。入力デバイス111は、訓練装置10の外部から接続されても、訓練装置10と一体となっていてもよい。
 出力デバイス112は、例えばディスプレイ、プリンター等で構成される。
The input device 111 is composed of a touch panel, a keyboard, a mouse, a pen tablet, a microphone, etc., and is used to input characters or voice to the training device 10. The input device 111 may be connected from outside the training device 10 or may be integrated with the training device 10.
The output device 112 is composed of, for example, a display, a printer, and the like.
 処理部101は、訓練装置10の制御に必要なアプリケーションソフトや各種設定をROM103又は記憶デバイス104からの読み出しにかえて、ネットワークを介して取得してもよい。前記アプリケーションプログラムがネットワーク上のサーバコンピュータの記憶デバイス内に格納されており、このサーバコンピュータに訓練装置10がアクセスして、訓練プログラム1042をダウンロードし、これをROM103又は記憶デバイス104に記憶することも可能である。 The processing unit 101 may obtain application software and various settings necessary for controlling the training device 10 via a network instead of reading them from the ROM 103 or the storage device 104. The application program may be stored in a storage device of a server computer on the network, and the training device 10 may access this server computer to download a training program 1042 and store it in the ROM 103 or the storage device 104.
 また、ROM103又は記憶デバイス104には、例えば米国マイクロソフト社が製造販売するWindows(登録商標)、オープンソースのLinux(登録商標)などのグラフィカルユーザインタフェース環境を提供するオペレーションシステムがインストールされている。訓練プログラムは、前記オペレーティングシステム上で動作するものとする。すなわち、訓練装置10は、パーソナルコンピュータ等であり得る。 Also, an operation system that provides a graphical user interface environment, such as Windows (registered trademark) manufactured and sold by Microsoft Corporation in the United States or the open source Linux (registered trademark), is installed in the ROM 103 or the storage device 104. The training program runs on the operating system. In other words, the training device 10 can be a personal computer, etc.
1-3.支援モデル訓練プログラムによる処理
 図2に訓練プログラム1042が行う処理の流れを示す。制御部100が訓練プログラム1042を実行することにより、コンピュータが訓練装置10として機能する。
 制御部100は、例えばオペレータが入力デバイス111から入力した処理開始要求を受け付け、訓練プログラム1042を実行し、訓練処理を開始する。
2 shows a flow of processing performed by the training program 1042. The control unit 100 executes the training program 1042, whereby the computer functions as the training device 10.
The control unit 100 receives a processing start request inputted, for example, by an operator from the input device 111, executes the training program 1042, and starts the training processing.
 ステップS11において、制御部100は、モデルデータベース1043より訓練対象のアルゴリズムと初期訓練データセットを読み出し、初期訓練データセットをアルゴリズムの入力層に入力し、目標除水量をアルゴリズムの出力層に入力する。これらの入力については、上記1-1.の説明をここに援用する。 In step S11, the control unit 100 reads the algorithm to be trained and the initial training data set from the model database 1043, inputs the initial training data set to the input layer of the algorithm, and inputs the target water removal volume to the output layer of the algorithm. The explanation of these inputs is given in 1-1 above.
 ステップS12において、制御部100は、ステップS11において、アルゴリズムに入力したデータセットに基づいて、アルゴリズムを訓練し、初期アルゴリズムを構築する。制御部100は、初期アルゴリズムを記憶デバイス104に記憶させる。 In step S12, the control unit 100 trains the algorithm based on the data set input to the algorithm in step S11, and constructs an initial algorithm. The control unit 100 stores the initial algorithm in the storage device 104.
 ステップS13において、制御部100は、ステップS12において、記憶デバイス104から初期アルゴリズムと個別化訓練データセットを読み出し、初期アルゴリズムの入力層に特定の予測対象者の個別訓練データセットを入力する。これらの入力については、上記1-1.の説明をここに援用する。 In step S13, the control unit 100 reads the initial algorithm and the individualized training data set from the storage device 104 in step S12, and inputs the individualized training data set for the specific prediction target into the input layer of the initial algorithm. The explanation of these inputs is as described in 1-1 above.
 ステップS14において、制御部100は、初期アルゴリズムに入力したデータセットに基づいて、初期アルゴリズムを訓練し、予測対象者ごとに個別化アルゴリズムを構築する。 In step S14, the control unit 100 trains the initial algorithm based on the data set input to the initial algorithm, and constructs an individualization algorithm for each prediction target person.
 ステップS14において、制御部100は、オペレータの検証処理開始指令を受け付け、個別化アルゴリズムを検証する。検証は、医師が各予測対象者について設定した目標除水量と、個別化アルゴリズムによって予測された各予測対象者の予測除水量との誤差を指標として行うことができる。例えば、指標は、正解率、平均絶対パーセント誤差(Mean Absolute Percentage Error:MAPE)、平均絶対誤差(Mean Absolu te Error:MAE)である。MAPE、及びMAEは、下式により算出される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
In step S14, the control unit 100 accepts a command from the operator to start the verification process and verifies the individualization algorithm. The verification can be performed using the error between the target water removal volume set by the doctor for each prediction subject and the predicted water removal volume for each prediction subject predicted by the individualization algorithm as an index. For example, the index is the accuracy rate, the mean absolute percentage error (MAPE), and the mean absolute error (MAE). MAPE and MAE are calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 正解率は、個別化アルゴリズムによって予測された各予測対象者の予測除水量と、専門医の処方した目標除水量差が250ml以下(1回の透析における総除水量が2350ml未満の患者)、もしくは個別化アルゴリズムによって予測された各予測対象者の予測除水量と、透析専門医が処方した目標除水量の差が10.7%以内(1回の透析における総除水量が2350ml以上)を正解としたときの、個別化アルゴリズムによって予測された各予測対象者の予測除水量の正解率である。正解率は、値が高ければ、誤差が小さいといえる。MAPE、及びMAEは、値が小さければ、誤差が小さいといえる。このため、正解率が基準値よりも高い場合、あるいはMAPE、又はMAEが所定の基準値よりも小さい場合、個別化アルゴリズムが予測対象者に適合していると評価することができる。この検証において、正解率が基準値よりも高い場合、あるいはMAPE、MAE又はRMSEが所定の基準値よりも大きい場合、オペレータが初期訓練データセットの見直し、各ニューラルネットワークにおける、各関数の重み等の調整を行い、再度ステップS11に戻って、訓練を行う。許容される正解率は、例えば80%以上、85%以上、88%以上、90%以上である。許容されるMAPEは、例えば15%以下、好ましくは10%以下、より好ましくは8%以下である。 The accuracy rate is the accuracy rate of the predicted water removal volume of each prediction target predicted by the individualization algorithm when the difference between the predicted water removal volume of each prediction target predicted by the individualization algorithm and the target water removal volume prescribed by the dialysis specialist is 250 ml or less (patients with a total water removal volume of less than 2350 ml in one dialysis session), or the difference between the predicted water removal volume of each prediction target predicted by the individualization algorithm and the target water removal volume prescribed by the dialysis specialist is within 10.7% (total water removal volume of 2350 ml or more in one dialysis session). The higher the accuracy rate, the smaller the error. The smaller the MAPE and MAE values, the smaller the error. Therefore, when the accuracy rate is higher than the standard value, or when MAPE or MAE is smaller than a specified standard value, it can be evaluated that the individualization algorithm is suitable for the prediction target. In this verification, if the accuracy rate is higher than the reference value, or if the MAPE, MAE, or RMSE is greater than a predetermined reference value, the operator reviews the initial training data set, adjusts the weights of each function in each neural network, and returns to step S11 to perform training again. Acceptable accuracy rates are, for example, 80% or more, 85% or more, 88% or more, and 90% or more. Acceptable MAPE is, for example, 15% or less, preferably 10% or less, and more preferably 8% or less.
2.支援モデルを用いた目標除水量の予測
2-1.概要
 予測対象者について、透析実施日の透析による目標除水量の事前予測を支援する方法(以下、単に「支援方法」と称することがある)は、上記1-3.において予測対象者ごとに構築された個別化アルゴリズムに、各予測対象者の解析データセットを入力することにより、目標除水量(例えば、mL)を出力値として得ることができる。解析データセットは、(i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、及び(ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセットである。各データセットの説明は、上記1-1.の説明をここに援用する。
2. Prediction of target water removal volume using support model 2-1. Overview A method for supporting the advance prediction of the target water removal volume by dialysis on the day of dialysis for a prediction subject (hereinafter, simply referred to as the "support method") can obtain the target water removal volume (e.g., mL) as an output value by inputting the analysis dataset of each prediction subject into the individualization algorithm constructed for each prediction subject in 1-3 above. The analysis dataset is (i) at least one past dialysis dataset immediately prior to the day of dialysis obtained from the prediction subject, and (ii) a profile dataset including a profile of the prediction subject and a profile of the dialysis device used by the prediction subject. The explanation of each dataset is incorporated herein by reference in 1-1 above.
 ここで、透析データセットのセット数は、透析実施日から遡った直近の少なくとも過去1回、好ましくは透析実施日から遡った直近の過去5回である。透析データセットは、透析の度に取得されるが、検体検査データは、月に2回程度であるため、透析データセットが5回取得される間に、検体検査データは1回分が取得されることとなる。プロファイルデータセットが、年齢層を除き原則変わらない。 Here, the number of sets of dialysis datasets is at least the most recent one going back from the date of dialysis, and preferably the most recent five going back from the date of dialysis. The dialysis dataset is acquired every time dialysis is performed, but since specimen test data is acquired about twice a month, one set of specimen test data is acquired for every five dialysis datasets acquired. The profile dataset does not change in principle, except for the age group.
2-2.透析による目標除水量の事前予測を支援する支援装置
 図3に予測対象者について、透析実施日の透析による目標除水量の事前予測を支援する支援装置(以下、単に「支援装置」とも呼ぶ)20のハードウエア構成を示す。
 支援装置20は、入力デバイス211と、出力デバイス212とに接続されていてもよい。
 支援装置20において、処理部(CPU)201と、メモリ202と、ROM(read only memory)203と、記憶デバイス204と、インタフェース206とは、バス209によって互いにデータ通信可能に接続されている。処理部101と、メモリ202と、ROM203は、支援装置20の制御部200として機能する。
 支援装置20の各構成は、記憶デバイス204の構成を除き、訓練装置10の対応する構成と同様である。
2-2. Support device for supporting advance prediction of target water removal amount by dialysis Figure 3 shows the hardware configuration of a support device (hereinafter also simply referred to as "support device") 20 that supports advance prediction of a target water removal amount by dialysis on the day of dialysis for a prediction subject.
The assistance device 20 may be connected to an input device 211 and an output device 212 .
In the support device 20, a processing unit (CPU) 201, a memory 202, a ROM (read only memory) 203, a storage device 204, and an interface 206 are connected to each other via a bus 209 so as to be able to communicate data with each other. The processing unit 101, the memory 202, and the ROM 203 function as a control unit 200 of the support device 20.
Each component of the support device 20 is similar to the corresponding component of the training device 10 except for the configuration of the storage device 204 .
 記憶デバイス204は、オペレーションシステム(OS)2041と、後述する予測対象者について、透析実施日の透析による目標除水量の事前予測を支援する予測支援プログラム2042(以下、単に「支援プログラム2042」と呼ぶ)と、モデルデータベース2043とを不揮発性に記憶する。モデルデータベース2043は、訓練後の個別化アルゴリズムを格納する。また、モデルデータベース2043は、解析データを格納しうる。 The storage device 204 non-volatilely stores an operation system (OS) 2041, a prediction support program 2042 (hereinafter simply referred to as the "support program 2042") that supports advance prediction of the target amount of water removal by dialysis on the day of dialysis for a prediction subject described below, and a model database 2043. The model database 2043 stores the individualization algorithm after training. The model database 2043 can also store analysis data.
2-3.支援プログラムによる処理
 図4に、支援プログラム2042が行う処理の流れを示す。制御部200が支援プログラム2042を実行することにより、コンピュータが支援装置20として機能する。
 制御部200は、例えばオペレータが入力デバイス211から入力した処理開始要求を受け付け、支援プログラム2042を実行し、支援処理を開始する。
4 shows a flow of processing performed by the assistance program 2042. The control unit 200 executes the assistance program 2042, causing the computer to function as the assistance device 20.
The control unit 200 receives a processing start request inputted, for example, by an operator from the input device 211, executes the assistance program 2042, and starts the assistance processing.
 ステップS21において、制御部200は、モデルデータベース2043より予測対象者に対応した個別化アルゴリズムと予測対象の解析データセットを読み出し、予測対象者の解析データセットを個別化アルゴリズムの入力層に入力する。 In step S21, the control unit 200 reads out the personalization algorithm corresponding to the person to be predicted and the analysis dataset of the prediction target from the model database 2043, and inputs the analysis dataset of the person to be predicted into the input layer of the personalization algorithm.
 ステップS22において、制御部200は、個別化アルゴリズムから出力される予測値を予測対象者の目標除水量として出力デバイス212に出力する。 In step S22, the control unit 200 outputs the predicted value output from the individualization algorithm to the output device 212 as the target water removal amount for the predicted individual.
 ステップS23において、制御部200は、個別化アルゴリズムから出力された予測対象者の予測値が当該予測対象者のドライウェイトよりも多いかを判定する。例えば、前回透析から2日後の場合、予測値がドライウェイトの3%以上である時、前回透析から3日後の場合、予測値がドライウェイトの5%以上である時、予測値がドライウェイトよりも多いと判定することができる。 In step S23, the control unit 200 determines whether the predicted value for the prediction subject output from the individualization algorithm is greater than the dry weight of the prediction subject. For example, if the predicted value is 3% or more of the dry weight two days after the last dialysis, or if the predicted value is 5% or more of the dry weight three days after the last dialysis, it can be determined that the predicted value is greater than the dry weight.
 制御部200は、ステップS23において予測値がドライウェイトよりも多いと判定した場合(「YES」の場合)、ステップS24に進み、ドライウェイトを見直すこと促す警告を出力デバイス212に出力する。警告は、例えば感嘆符等の記号であってもよく、「ドライウェイトを確認してください」等のテキストメッセージであってもよい。 If the control unit 200 determines in step S23 that the predicted value is greater than the dry weight (if "YES"), the control unit 200 proceeds to step S24 and outputs a warning to the output device 212 to prompt the user to review the dry weight. The warning may be, for example, a symbol such as an exclamation point, or a text message such as "Please check the dry weight."
 制御部200は、ステップS23において予測値がドライウェイトよりも多くないと判定した場合(「NO」の場合)、処理を終了する。
 ステップS23及びステップS24は任意の処理である。
If the control unit 200 determines in step S23 that the predicted value is not greater than the dry weight (if "NO"), it ends the process.
Steps S23 and S24 are optional processes.
3.プログラムを記憶した記憶媒体
 本発明のある実施形態は、訓練プログラム1042、支援プログラム2042、及び/又は再訓練プログラムを記憶した、メディアドライブ等のプログラム製品に関する。すなわち、訓練プログラム1042、支援プログラム2042、及び/又は再訓練プログラムは、ハードディスク、フラッシュメモリ等の半導体メモリ素子、光ディスク等のメディアドライブに格納され得る。また、メディアドライブはサーバ装置等のコンピュータであってもよい。メディアドライブへのプログラムの記録形式は、各装置がプログラムを読み取り可能である限り制限されない。前記メディアドライブへの記録は、不揮発性であることが好ましい。
3. Storage medium storing a program An embodiment of the present invention relates to a program product, such as a media drive, that stores the training program 1042, the assistance program 2042, and/or the retraining program. That is, the training program 1042, the assistance program 2042, and/or the retraining program may be stored in a media drive, such as a hard disk, a semiconductor memory device such as a flash memory, or an optical disk. The media drive may also be a computer, such as a server device. The format of recording the program to the media drive is not limited as long as each device can read the program. It is preferable that the recording to the media drive is non-volatile.
4.変形例
 個別化アルゴリズムは、予測対象者の透析回数が増えた場合、増えた透析回のデータセットを新たに個別訓練データセット追加し、又は個別訓練データセットを更新して再訓練されても良い。
4. Modifications When the number of dialysis sessions of a prediction subject increases, the individualization algorithm may be retrained by adding a data set of the increased number of dialysis sessions to a new individual training data set, or by updating the individual training data set.
 上記1-1.に記載の方法により構築される個別化アルゴリズムは、出力層に入力するデータを、医師が設定した目標除水量から過去における透析中の血圧低下発生の有無に変えることにより、透析中の血圧低下発生の予測を支援するための支援モデルとして使用することもできる。この場合、活性化関数は、ReLUもしくは恒等関数に変えて、シグモイド関数を使用する。透析中の血圧低下発生の予測を支援するための支援モデルから出力される値は、各予測対象者が、透析中に血圧低下を発生する確率となる。 The individualization algorithm constructed by the method described in 1-1 above can also be used as a support model to assist in predicting the occurrence of a drop in blood pressure during dialysis by changing the data input to the output layer from the target amount of water removal set by the doctor to the presence or absence of a drop in blood pressure during dialysis in the past. In this case, the activation function uses a sigmoid function instead of ReLU or an identity function. The value output from the support model to assist in predicting the occurrence of a drop in blood pressure during dialysis is the probability that each prediction subject will experience a drop in blood pressure during dialysis.
5.効果の検証
5-1.検証例1
5-1-1.データセット
 施設A、施設H、施設K、及び施設Sにおいて透析を受けている患者から、各人の透析データセット、検体検査データセット、及びプロファイルデータセットを取得した。内訳を図5に示す。
5. Verification of the effect 5-1. Verification example 1
Dialysis datasets, specimen test datasets, and profile datasets were obtained from patients undergoing dialysis at Facility A, Facility H, Facility K, and Facility S. The breakdown is shown in Figure 5.
 次に図5に示す患者について、図6にしたがって、透析回数が少ない患者、欠損データがある患者のデータを除外し、最終的には、1,828名分725,619回の透析分のデータを解析に使用した。さらに、図7に示す割合で、データを、学習用(訓練用)データセット、検査用データセット、調整用データセット、評価用データセットに分割し、支援アルゴリズムの訓練、及び精度の評価を行った。 Next, for the patients shown in Figure 5, data from patients who underwent a small number of dialysis sessions and patients with missing data were excluded according to Figure 6, and ultimately data from 1,828 patients and 725,619 dialysis sessions was used for analysis. Furthermore, the data was divided into a learning (training) dataset, an inspection dataset, an adjustment dataset, and an evaluation dataset in the proportions shown in Figure 7, and the assistance algorithm was trained and its accuracy was evaluated.
 透析データセットは、透析実施日の曜日、気温、天気、単位時間ごとの血流量、単位時間ごとの透析液の液圧、透析液の液温、設定された単位時間ごとの時間除水量、目標除水量、実際の単位時間ごとの除水量、ドライウェイト、透析後体重前回値、透析開始前体重、前回の透析実施日から次の透析開始前までの体重の増加量、ドライウェイトからの増加量、透析後体重、透析実施日の透析開始前の最高血圧および最低血圧、並びに過去における透析中の血圧低下発生の有無とした。透析中の血圧低下は、最高血圧が前回計測から20mmHg以上の低下かつ低下時110mmHg以下とした。 The dialysis data set consisted of the day of the week on which dialysis was performed, temperature, weather, blood flow rate per unit time, dialysis fluid pressure per unit time, dialysis fluid temperature, set amount of water removed per unit time, target amount of water removed, actual amount of water removed per unit time, dry weight, previous post-dialysis weight, weight before the start of dialysis, weight gain from the date of the previous dialysis until before the start of the next dialysis, gain from dry weight, post-dialysis weight, systolic and diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not blood pressure drops occurred during dialysis in the past. A drop in blood pressure during dialysis was defined as a drop in systolic blood pressure of 20 mmHg or more from the previous measurement and a drop of 110 mmHg or less.
 検体検査データは、血清アルブミン濃度、血清BUN濃度、血清クレアチニン濃度、血清カルシウム濃度、補正カルシウム濃度、血清無機リン濃度、血清鉄濃度、総鉄結合能(TIBC)、血清ナトリウム濃度、血清カリウム濃度、血清クロール濃度、白血球数、赤血球数、ヘモグロビン濃度、ヘマトクリット値、平均赤血球ヘモグロビン量(MCH)、血小板数、及び血清CRP濃度とした。  Specimen test data included serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, corrected calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), platelet count, and serum CRP concentration.
 予測対象者のプロファイルは前記予測対象者の透析開始日、性別、年齢層、及び透析実施時間帯(午前又は午後)とした、透析手法のプロファイルが透析手法の種類(HD、又はHDF)とした。 The profile of the predicted subject was the dialysis start date, gender, age group, and time of day when dialysis was performed (morning or afternoon), and the profile of the dialysis method was the type of dialysis method (HD or HDF).
5-1-2.検討ステップと予測精度
 図8に今回の支援モデルの検討の履歴を示す。予測項目は、透析中の低血圧の発生の有無である。
5-1-2. Study steps and prediction accuracy The study history of this support model is shown in Figure 8. The prediction item is the occurrence or nonoccurrence of hypotension during dialysis.
 ステップ1と、ステップ2では、学習と検証を同一施設で行った。支援モデルとして、DCCNを使用し、訓練データセットと検証データセットは同一施設において取得したランダムサンプリングデータとした。これらの支援モデルは、AUC(Area under Curve)が0.8を越えており、予測精度としては、概ね良好であった。しかし、ステップ3において、訓練データセットとは異なる施設において取得した検証データセット使用した場合、DCCNの支援モデルでは、AUCが0.73となった。そこで予測対象者自身の個別訓練データセットを使用して、DCCNの個別化を行ったところ、AUCが0.79まで上昇した。さらに、ステップ4において、訓練データセットの量を増やしたところ、AUCは0.91なった。また、透析中の低血圧の発生予測精度は、イベントが発生しないことも含めた予測は、AUCが0.91であった。イベント発生のみの予測は、AUPRC(area under the precision-recall curve)が0.68であった。 In steps 1 and 2, learning and validation were performed at the same facility. DCCN was used as the support model, and the training and validation datasets were randomly sampled data obtained at the same facility. These support models had an AUC (area under curve) of over 0.8, and the prediction accuracy was generally good. However, when a validation dataset obtained at a facility different from the training dataset was used in step 3, the AUC of the DCCN support model was 0.73. When DCCN was individualized using the individual training dataset of the prediction subject, the AUC increased to 0.79. Furthermore, when the amount of the training dataset was increased in step 4, the AUC became 0.91. In addition, the accuracy of predicting the occurrence of hypotension during dialysis, including the absence of events, was 0.91 AUC. For predicting event occurrence alone, the area under the precision-recall curve (AUPRC) was 0.68.
 図9に、除水量の予測精度(RMSE)を示す。DCCNにより予測した除水量の精度を、他の方法により予測した除水量の精度と比較した。DCCNの予測値のRMSEは183.36 mLであり、他の従来の予測方法に比べて格段に良好であった。 Figure 9 shows the prediction accuracy (RMSE) of the amount of water removed. The accuracy of the amount of water removed predicted by DCCN was compared with the accuracy of the amount of water removed predicted by other methods. The RMSE of the DCCN prediction was 183.36 mL, which was significantly better than other conventional prediction methods.
 次に、上記透析データセット(一人の透析患者につき、複数回の透析データを含む)から欠損データのあるデータセットを除き、以下の4群にわけ、第1群のデータセットとこれに対応する検体検査データセット及びプロファイルデータセットを使用し、初期アルゴリズムの訓練を行い、第1群~第4群の透析データセットについて個別化アルゴリズムを構築し、その精度を評価した。第1群~第4群の除水量を予測した。1群の透析データセットは約40万データであった。第2群~第4群の透析データセットは、約12万データであった。
 第1群:イベントなし、且つ[(医師設定除水量)-(実際の除水量)] <100ml(除水達成透析)
 第2群:イベントなし、且つ[(医師設定除水量)-(実際の除水量)]≧100ml(除水未達成透析)
 第3群:イベントあり、且つ[(医師設定除水量)-(実際の除水量)] <100ml(除水達成透析)
 第4群:イベントなし、且つ[(医師設定除水量)-(実際の除水量)]≧100ml(除水未達成透析)
 *「イベント」は透析中に血圧低下を起こしたことを示す。
Next, the above dialysis dataset (including multiple dialysis data for one dialysis patient) was divided into the following four groups, excluding datasets with missing data, and the dataset of Group 1 and the corresponding specimen test dataset and profile dataset were used to train an initial algorithm, and an individualized algorithm was constructed for the dialysis datasets of Groups 1 to 4, and its accuracy was evaluated. The amount of water removed was predicted for Groups 1 to 4. The dialysis dataset of Group 1 contained approximately 400,000 pieces of data. The dialysis datasets of Groups 2 to 4 contained approximately 120,000 pieces of data.
Group 1: No events and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] < 100 ml (dialysis achieved fluid removal)
Group 2: No events and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] ≥ 100 ml (dialysis in which fluid removal was not achieved)
Group 3: Events occurred and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] < 100 ml (dialysis achieved fluid removal)
Group 4: No events and [(physician-prescribed amount of fluid removed) - (actual amount of fluid removed)] ≥ 100 ml (dialysis in which fluid removal was not achieved)
* An "event" indicates a drop in blood pressure during dialysis.
 上記4群について医師が設定した目標除水量と、支援アルゴリズムが予測した除水量の差と、MAPEを図10に示す。また図11に第1群~第4群のそれぞれを5群に分けて行ったk-分割交差検証の結果を示す。
 MAPEは、いずれも10.7%未満であった。透析患者に対する除水量の設定は患者の状態や天候(排便の有無、気温や湿度によって不感蒸泄の量は容易に変わる)、各スタッフの経験知、透析装置自体の流量誤差などの影響を受けることから、専門医が処方する場合であってもコップ一杯程度(250ml、MAPEで10.7%)を超えるような除水量の誤差が生じうるため、今回の解析結果は良好であると考えられた。
The difference between the target water removal volume set by the doctor and the water removal volume predicted by the assistance algorithm for the above four groups, and the MAPE are shown in Figure 10. Figure 11 shows the results of k-fold cross-validation in which each of groups 1 to 4 was divided into five groups.
The MAPE was less than 10.7% in all cases. Setting the amount of water removed from dialysis patients is influenced by factors such as the patient's condition, weather (the amount of insensible perspiration can easily change depending on whether or not there is a bowel movement, and temperature and humidity), the experience and knowledge of each staff member, and flow rate errors in the dialysis device itself, so even when prescribed by a specialist, there can be errors in the amount of water removed of more than a cup (250 ml, MAPE 10.7%), and so the results of this analysis were considered to be good.
5-2.検証例2
 次に、透析データセットとして、単位時間ごとの血流量、単位時間ごとの透析液の液圧、透析実施日における透析液の液温、設定された単位時間ごとの時間除水量、医師が決定した目標総除水量、実際の単位時間ごとの除水量、透析実施日におけるドライウェイト、透析後体重の前回値、透析実施日における透析開始前体重、透析後体重の前回値を基準とした透析実施日における透析開始前までの体重の増加量、透析実施日におけるドライウェイトからの増加量、透析実施日における透析後体重、透析実施日における透析開始前の収縮期血圧および拡張期血圧、及び過去における透析中の血圧低下発生の有無を使用し、プロファイルデータセットとして、各透析患者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を使用し訓練した支援アルゴリズムの予測精度について検討した。
5-2. Verification example 2
Next, the following dialysis datasets were used: blood flow rate per unit time, dialysis fluid pressure per unit time, dialysis fluid temperature on the day of dialysis, set hourly water removal volume per unit time, target total water removal volume determined by the doctor, actual water removal volume per unit time, dry weight on the day of dialysis, previous post-dialysis weight, weight before the start of dialysis on the day of dialysis, weight increase until the start of dialysis on the day of dialysis based on the previous post-dialysis weight, increase from dry weight on the day of dialysis, post-dialysis weight on the day of dialysis, systolic blood pressure and diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not a drop in blood pressure had occurred during dialysis in the past.The predictive accuracy of the trained support algorithm was examined using the following profile datasets: start date of dialysis, time period of dialysis, gender, and age group of each dialysis patient, and the type of dialysis method as the profile of the dialysis device.
 比較対照として、上記透析データセット、及びプロファイルデータセットに加え、検体検査データセット(データは、血清アルブミン濃度、血清BUN濃度、血清クレアチニン濃度、血清カルシウム濃度、血清無機リン濃度、血清鉄濃度、総鉄結合能(TIBC)、血清ナトリウム濃度、血清カリウム濃度、血清クロール濃度、白血球数、赤血球数、ヘモグロビン濃度、ヘマトクリット値、平均赤血球ヘモグロビン量(MCH)、血小板数の16項目)、又は、検体検査データセット(データは、血清アルブミン濃度、血清BUN濃度、血清クレアチニン濃度、血清ナトリウム濃度、ヘマトクリット値、総蛋白の6項目)を使用して訓練した支援アルゴリズムを構築した。解析データセットとして入力する項目も、支援アルゴリズムの訓練データセットと同様の項目とした。  For comparison, in addition to the above dialysis dataset and profile dataset, a training assistance algorithm was constructed using a specimen test dataset (data consisted of 16 items: serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum calcium concentration, serum inorganic phosphorus concentration, serum iron concentration, total iron binding capacity (TIBC), serum sodium concentration, serum potassium concentration, serum chloride concentration, white blood cell count, red blood cell count, hemoglobin concentration, hematocrit value, mean corpuscular hemoglobin (MCH), and platelet count) or a specimen test dataset (data consisted of 6 items: serum albumin concentration, serum BUN concentration, serum creatinine concentration, serum sodium concentration, hematocrit value, and total protein). The items entered as the analysis dataset were also the same as those in the training dataset for the assistance algorithm.
 また、サイトA、サイトH、及びサイトKにおいて透析を受けている患者から、各人の透析データセット、検体検査データセット、及びプロファイルデータセットを取得した。 In addition, we obtained dialysis datasets, specimen test datasets, and profile datasets for each patient undergoing dialysis at sites A, H, and K.
 この検討において、医師設定除水量が1,000ml以下もしくは5,000ml以上の透析は正解率、MAE、MAPE算出対象から除外した。また、透析導入1年以内の患者は訓練データセット、評価データセット双方から除外した。 In this study, dialysis in which the doctor-set volume of water removed was 1,000 ml or less or 5,000 ml or more was excluded from the calculation of accuracy rate, MAE, and MAPE. In addition, patients who had been on dialysis for less than one year were excluded from both the training dataset and the evaluation dataset.
 図12に、結果を示す。図12(A)は、16項目の検体検査データセットと透析データセットとプロファイルデータセットにより構築した支援アルゴリズムの予測精度を示す。図12(B)は、6項目の検体検査データセットと透析データセットとプロファイルデータセットにより構築した支援アルゴリズムの予測精度を示す。図12(C)は、透析データセットとプロファイルデータセットにより構築した支援アルゴリズムの予測精度を示す。図12から明らかなように、図12(C)に示す透析データセットとプロファイルデータセットにより構築した支援アルゴリズムが、正解率、MAE、MAPEにおいて、高い予測精度を示した。この結果から、検体検査データセットを使用しない方が支援アルゴリズムの予測精度が上がることが示された。 The results are shown in Figure 12. Figure 12 (A) shows the prediction accuracy of the assistance algorithm constructed using a specimen test dataset of 16 items, a dialysis dataset, and a profile dataset. Figure 12 (B) shows the prediction accuracy of the assistance algorithm constructed using a specimen test dataset of 6 items, a dialysis dataset, and a profile dataset. Figure 12 (C) shows the prediction accuracy of the assistance algorithm constructed using the dialysis dataset and profile dataset. As is clear from Figure 12, the assistance algorithm constructed using the dialysis dataset and profile dataset shown in Figure 12 (C) showed high prediction accuracy in terms of accuracy rate, MAE, and MAPE. This result shows that the prediction accuracy of the assistance algorithm is improved when the specimen test dataset is not used.
20 支援装置
200 制御部
20 Support device 200 Control unit

Claims (6)

  1.  予測対象者について、透析実施日における透析による目標除水量の事前予測を支援する方法であって、
     前記方法は、人工知能によって支援され、
     前記人工知能は、
      第1のニューラルネットワーク構造と第1のニューラルネットワーク構造とは異なる第2のニューラルネットワーク構造から構成されるアルゴリズムを備え、
      複数の透析患者から取得した、下記(A)及び(B)の訓練データセットを使用して初期訓練され、
      初期訓練された初期アルゴリズムを、さらに前記予測対象者から取得した下記(1)及び(2)を使用して訓練することにより予測対象者ごとに構築され、
     前記人工知能は、下記(i)及び(ii)の解析データセットに基づいて、前記透析実施日における前記目標除水量を出力するように構成される、方法:
      (A)前記複数名の透析患者の各人から取得した透析データセット、
      (B)前記複数名の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセット;
      (1)前記予測対象者から取得した過去の複数回の透析データセット、
      (2)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット;
      (i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、
      (ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
    A method for supporting a prior prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject, comprising:
    The method is assisted by artificial intelligence;
    The artificial intelligence is
    an algorithm comprising a first neural network structure and a second neural network structure different from the first neural network structure;
    The model is initially trained using the following training datasets (A) and (B) obtained from multiple dialysis patients:
    The initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction target, thereby constructing the algorithm for each prediction target;
    The artificial intelligence is configured to output the target water removal amount on the dialysis execution day based on the following analysis datasets (i) and (ii):
    (A) a dialysis data set obtained from each of the plurality of dialysis patients;
    (B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the plurality of dialysis patients;
    (1) a data set of multiple past dialysis sessions acquired from the subject;
    (2) a profile dataset including a profile of the prediction subject and a profile of a dialysis device used by the prediction subject;
    (i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject;
    (ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
  2.  前記(A)、(1)及び(i)における前記透析データセットは、単位時間ごとの血流量、単位時間ごとの透析液の液圧、透析実施日における透析液の液温、設定された単位時間ごとの時間除水量、医師が決定した目標総除水量、実際の単位時間ごとの除水量、透析実施日におけるドライウェイト、透析後体重の前回値、透析実施日における透析開始前体重、透析後体重の前回値を基準とした透析実施日における透析開始前までの体重の増加量、透析実施日におけるドライウェイトからの増加量、透析実施日における透析後体重、透析実施日における透析開始前の収縮期血圧および拡張期血圧、及び過去における透析中の血圧低下発生の有無を含み、
     前記(B)における前記複数名の透析患者の各人のプロファイルが、各透析患者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を含み、
     前記(2)における前記予測対象者のプロファイルが前記予測対象者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を含む前記(ii)における前記予測対象者のプロファイルが前記予測対象者の透析開始日、透析実施時間帯、性別及び年齢層を含み、透析装置のプロファイルが透析手法の種類を含む、
    請求項1に記載の方法。
    The dialysis data set in (A), (1) and (i) includes the blood flow rate per unit time, the pressure of the dialysis fluid per unit time, the temperature of the dialysis fluid on the day of dialysis, the amount of water removed per set unit time, the target total amount of water removed determined by the doctor, the actual amount of water removed per unit time, the dry weight on the day of dialysis, the previous value of the post-dialysis weight, the weight before the start of dialysis on the day of dialysis, the increase in weight from the previous value of the post-dialysis weight to the start of dialysis on the day of dialysis, the increase from the dry weight on the day of dialysis, the post-dialysis weight on the day of dialysis, the systolic blood pressure and the diastolic blood pressure before the start of dialysis on the day of dialysis, and whether or not a decrease in blood pressure has occurred during dialysis in the past.
    The profile of each of the plurality of dialysis patients in (B) includes a dialysis start date, a dialysis time period, a gender, and an age group of each dialysis patient, and the profile of the dialysis device includes a type of dialysis method;
    The profile of the predicted subject in (2) includes the dialysis start date, dialysis time zone, gender and age group of the predicted subject, and the profile of the dialysis device includes the type of dialysis method. The profile of the predicted subject in (ii) includes the dialysis start date, dialysis time zone, gender and age group of the predicted subject, and the profile of the dialysis device includes the type of dialysis method.
    The method of claim 1.
  3.  第1のニューラルネットワークは順伝播型ニューラルネットワーク構造を有し、第2のニューラルネットワークは再帰型ニューラルネットワーク構造を有する、請求項1に記載の方法。 The method of claim 1, wherein the first neural network has a feedforward neural network structure and the second neural network has a recurrent neural network structure.
  4.  順伝播型ニューラルネットワークが多層パーセプトロンであり、回帰型ニューラルネットワークがLSTM(Long Short Term Memory)である、請求項3に記載の方法。 The method of claim 3, wherein the feedforward neural network is a multi-layer perceptron and the recurrent neural network is a Long Short Term Memory (LSTM).
  5.  予測対象者について、透析実施日における透析による目標除水量の事前予測を支援する支援装置であって、
     前記支援装置は、制御部を備え、
     前記制御部は、下記(i)及び(ii)の解析データセットに基づいて、前記透析実施日における前記目標除水量を出力し、
      (i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、
      (ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット;
     前記人工知能は、
      第1のニューラルネットワーク構造と第1のニューラルネットワーク構造とは異なる第2のニューラルネットワーク構造から構成されるアルゴリズムを備え、
      複数の透析患者から取得した、下記(A)及び(B)の訓練データセットを使用して初期訓練され、
      初期訓練された初期アルゴリズムを、さらに前記予測対象者から取得した下記(1)及び(2)を使用して訓練することにより予測対象者ごとに構築される、
    支援装置:
      (A)前記複数の透析患者の各人から取得した透析データセット、
      (B)前記複数の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセット;
      (1)前記予測対象者から取得した過去の複数回の透析データセット、
      (2)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
    A support device for supporting a prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject,
    The support device includes a control unit,
    The control unit outputs the target water removal amount on the dialysis implementation day based on the following analysis data sets (i) and (ii),
    (i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject;
    (ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
    The artificial intelligence is
    an algorithm comprising a first neural network structure and a second neural network structure different from the first neural network structure;
    The model is initially trained using the following training datasets (A) and (B) obtained from multiple dialysis patients:
    The initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the prediction subject for each prediction subject.
    Support equipment:
    (A) a dialysis dataset obtained from each of the plurality of dialysis patients;
    (B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the patients;
    (1) a data set of multiple past dialysis sessions acquired from the subject;
    (2) A profile dataset including a profile of the predicted subject and a profile of a dialysis device to be used by the predicted subject.
  6.  コンピュータに実行させた時に、コンピュータに、
     下記(i)及び(ii)の解析データセットに基づいて、前記透析実施日における前記目標除水量を出力するステップを実行させる、予測対象者について、透析実施日における透析による目標除水量の事前予測を支援する支援プログラムであって、
     前記人工知能は、
      第1のニューラルネットワーク構造と第1のニューラルネットワーク構造とは異なる第2のニューラルネットワーク構造から構成されるアルゴリズムを備え、
      複数の透析患者から取得した、下記(A)及び(B)の訓練データセットを使用して初期訓練され、
      初期訓練された初期アルゴリズムを、さらに前記予測対象者から取得した下記(1)及び(2)を使用して訓練することにより予測対象者ごとに構築される、
    支援プログラム:
      (A)前記複数の透析患者の各人から取得した透析データセット、
      (B)前記複数の透析患者の各人のプロファイルと、前記各人が使用する透析装置のプロファイルを含むプロファイルデータセット;
      (1)前記予測対象者から取得した過去の複数回の透析データセット、
      (2)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット;
      (i)前記予測対象者から取得した透析実施日の直近の少なくとも過去1回の透析データセット、
      (ii)前記予測対象者のプロファイルと、前記予測対象者が使用する透析装置のプロファイルを含むプロファイルデータセット。
    When the program is executed by a computer, the computer
    A support program for supporting a prior prediction of a target water removal amount by dialysis on a dialysis implementation date for a prediction subject, the support program executing a step of outputting the target water removal amount on the dialysis implementation date based on the following analysis datasets (i) and (ii):
    The artificial intelligence is
    an algorithm comprising a first neural network structure and a second neural network structure different from the first neural network structure;
    The model is initially trained using the following training datasets (A) and (B) obtained from multiple dialysis patients:
    The initially trained initial algorithm is further trained using the following (1) and (2) obtained from the prediction subject, thereby constructing the prediction subject for each prediction subject.
    Support programs:
    (A) a dialysis data set obtained from each of the plurality of dialysis patients;
    (B) a profile data set including a profile of each of the plurality of dialysis patients and a profile of a dialysis machine used by each of the patients;
    (1) a data set of multiple past dialysis sessions acquired from the subject;
    (2) a profile dataset including a profile of the prediction subject and a profile of a dialysis device used by the prediction subject;
    (i) at least one past dialysis data set immediately preceding the date of dialysis administration obtained from the subject;
    (ii) a profile dataset including a profile of the predicted subject and a profile of a dialysis machine to be used by the predicted subject;
PCT/JP2023/020349 2022-10-28 2023-05-31 Method for assisting advance prediction of target dewatering amount in dialysis, assisting device, and assisting program WO2024089928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173619 2022-10-28
JP2022-173619 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024089928A1 true WO2024089928A1 (en) 2024-05-02

Family

ID=90830465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020349 WO2024089928A1 (en) 2022-10-28 2023-05-31 Method for assisting advance prediction of target dewatering amount in dialysis, assisting device, and assisting program

Country Status (1)

Country Link
WO (1) WO2024089928A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216618A1 (en) * 2021-04-05 2022-10-13 Nec Laboratories America, Inc. Medical event prediction using a personalized dual-channel combiner network
JP2022153793A (en) * 2021-03-30 2022-10-13 株式会社ジェイ・エム・エス Setting proposal device, dialyzer, learning device and dialysis information system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022153793A (en) * 2021-03-30 2022-10-13 株式会社ジェイ・エム・エス Setting proposal device, dialyzer, learning device and dialysis information system
WO2022216618A1 (en) * 2021-04-05 2022-10-13 Nec Laboratories America, Inc. Medical event prediction using a personalized dual-channel combiner network

Similar Documents

Publication Publication Date Title
Fagerström et al. LiSep LSTM: a machine learning algorithm for early detection of septic shock
KR102225894B1 (en) Method and system for predicting disease prognosis from patient medical history using deep attention network
RU2536279C1 (en) Method for prediction of complications following coronary artery bypass graft surgery
US20170147773A1 (en) System and method for facilitating health monitoring based on a personalized prediction model
WO2021205828A1 (en) Prognosis prediction device and program
CN111640512A (en) Kidney replacement therapy starting strategy evaluation method and device and electronic equipment
JP2023548253A (en) Computer-implemented method and apparatus for performing medical test value analysis
Martín-Guerrero et al. Dosage individualization of erythropoietin using a profile-dependent support vector regression
Pan et al. A self-correcting deep learning approach to predict acute conditions in critical care
Chen et al. Early warning of citric acid overdose and timely adjustment of regional citrate anticoagulation based on machine learning methods
Holmberg et al. Derivation and internal validation of a mortality prediction tool for initial survivors of pediatric in-hospital cardiac arrest
US20240013920A1 (en) Medical event prediction using a personalized dual-channel combiner network
JP2023542928A (en) Chronic kidney disease (CKD) machine learning prediction system, method, and apparatus
Mohammadi et al. Learning to identify patients at risk of uncontrolled hypertension using electronic health records data
CN114049952A (en) Intelligent prediction method and device for postoperative acute kidney injury based on machine learning
WO2024089928A1 (en) Method for assisting advance prediction of target dewatering amount in dialysis, assisting device, and assisting program
WO2020148757A1 (en) System and method for selecting required parameters for predicting or detecting a medical condition of a patient
US11810652B1 (en) Computer decision support for determining surgery candidacy in stage four chronic kidney disease
RU2733077C1 (en) Diagnostic technique for acute coronary syndrome
Noori et al. A comparative analysis for diabetic prediction based on machine learning techniques
Chaising et al. Determining significant risk factors for preventing elderly people with hypertension from cardiovascular disease complication using maximum objective distance
Umut et al. Prediction of sepsis disease by Artificial Neural Networks
Metsker et al. Stroke ICU patient mortality day prediction
Tiwari et al. Machine Learning Classification of Alzheimer's Disease Stages Using Cerebrospinal Fluid Biomarkers Alone
TWI803893B (en) Artificial intelligence assisted medical diagnosis method for sepsis and system thereof