WO2024089901A1 - Electric device - Google Patents

Electric device Download PDF

Info

Publication number
WO2024089901A1
WO2024089901A1 PCT/JP2022/040560 JP2022040560W WO2024089901A1 WO 2024089901 A1 WO2024089901 A1 WO 2024089901A1 JP 2022040560 W JP2022040560 W JP 2022040560W WO 2024089901 A1 WO2024089901 A1 WO 2024089901A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
elastic body
electromagnetic induction
induction coil
magnetic powder
Prior art date
Application number
PCT/JP2022/040560
Other languages
French (fr)
Japanese (ja)
Inventor
伸征 牧原
康司 井門
悠宏 岩本
Original Assignee
株式会社イノアックコーポレーション
国立大学法人 名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イノアックコーポレーション, 国立大学法人 名古屋工業大学 filed Critical 株式会社イノアックコーポレーション
Priority to PCT/JP2022/040560 priority Critical patent/WO2024089901A1/en
Publication of WO2024089901A1 publication Critical patent/WO2024089901A1/en

Links

Images

Definitions

  • This disclosure relates to self-powered electrical devices.
  • this disclosure provides an electrical device that has a simpler structure than conventional devices and is capable of driving a load by generating its own electricity by converting vibrations, displacements, etc. from external forces into electricity.
  • One aspect of the present invention which has been made to solve the above problems, is an electrical device that includes an electromagnetic induction coil, an elastic body that contains magnetized magnetic powder and generates a magnetic field that penetrates the electromagnetic induction coil and changes the magnetic flux density of the magnetic field when it undergoes elastic deformation due to an external force, a rectifier that rectifies the induced current induced in the electromagnetic induction coil due to the change in magnetic flux density, and a load that receives power from the rectifier and operates.
  • Circuit diagram of an electrical device according to a first embodiment of the present disclosure.
  • Perspective view of an electrical device Side cross-sectional view of an electrical device
  • Conceptual diagram of the power generation section (A) A conceptual diagram showing magnetic powder in a magnetic elastomer; (B) A conceptual diagram of a compressed magnetic elastomer.
  • Flowchart showing a method for manufacturing a magnetic elastic body (A) A conceptual diagram showing the magnetization of a magnetic elastomer before compressive deformation, (B) A conceptual diagram showing the magnetization and induced current of a magnetic elastomer when it is compressed and deformed.
  • A A conceptual diagram showing the magnetic field caused by a magnetic elastic body before compressive deformation and the magnetization of the magnetic elastic body.
  • FIG. 13A is a conceptual diagram of an electric device according to a third embodiment
  • FIG. 13B is a partially cutaway side view of the electric device attached to a suspension
  • 13 is a conceptual diagram of an electric device according to a fourth embodiment.
  • FIG. 13 is a side cross-sectional view of a floor structure including electrical equipment according to a fifth embodiment.
  • FIG. 13 is a perspective view of an electric device according to a sixth embodiment;
  • FIG. 13 is a perspective view of an electric device according to a seventh embodiment;
  • FIG. 13A is a side cross-sectional view of an electric device according to an eighth embodiment;
  • FIG. 13B is a side cross-sectional view of the electric device after bending;
  • FIG. 13 is a perspective view of an electric device according to a ninth embodiment;
  • Conceptual diagram of the test equipment A table showing the details and characteristics of the magnetic elastic bodies of each experimental example.
  • FIG. 1 An electric device 100A according to an embodiment of the present disclosure will be described with reference to Figures 1 to 9. As shown in Figure 1, the electric device 100A according to the present embodiment has a power generation unit 10, a rectification unit 91, and a load unit 92.
  • the load unit 92 includes, for example, a wireless module 92A.
  • the wireless module 92A is, for example, a modified RFID. Whereas an RFID tag receives power wirelessly and modulates an identification number onto a carrier wave for short-range wireless communication and transmits it wirelessly each time it receives power, the wireless module 92A receives power via a wire from the power generation unit 10 through the rectifier unit 91 and modulates an identification number onto a carrier wave for a specified wireless communication and transmits it each time it receives power. Examples of the specified wireless communication include long-distance wireless communication, Wi-Fi, infrared communication, and short-distance wireless communication.
  • the wireless module 92A may modulate information other than the identification number onto a carrier wave and transmit it wirelessly, or it may transmit only a radio wave of a specific frequency that does not contain any information without modulating information onto a carrier wave, so that the fact that the radio wave has been transmitted is itself information from the electrical device 100A.
  • the rectifier 91 is, for example, a known voltage doubler rectifier circuit, with the electromagnetic induction coil 12 of the power generation unit 10 (described below) connected to its input side, and the wireless module 92A described above connected to its output side.
  • the induced current induced in the electromagnetic induction coil 12 is rectified by the rectifier 91 and applied to the wireless module 92A.
  • a triple voltage rectifier circuit is illustrated as an example of the rectifier unit 91 shown in FIG. 1, an n-fold voltage rectifier circuit according to the desired voltage may be used, and in the second embodiment, a double voltage rectifier circuit is illustrated as an example.
  • the power generating unit 10 includes an electromagnetic induction coil 12, an elastic body 20 disposed inside the coil 12, and a telescopic case 30 that houses them.
  • the telescopic case 30 is structured such that a cylindrical body 31 with one end closed and the other end open is fitted with a cylindrical body 32 with one end closed and the other end open, the open ends of which are opposed to each other.
  • the axial lengths of both the cylindrical bodies 31 and 32 are approximately the same, and the open ends of both the cylindrical bodies 31 and 32 are provided with return parts 31A and 32A that engage with each other to prevent separation.
  • the telescopic case 30 can be changed between a maximum length state in which the return parts 31A and 32A engage with each other, and a minimum length state in which the open end of one cylindrical body 31 abuts against the bottom of the other cylindrical body 32.
  • the telescopic case 30 in the minimum length state has an axial length that is, for example, approximately half that of the telescopic case 30 in the maximum length state.
  • a circuit case 33 housing the rectifier section 91 and load section 92 is fixed to the outer surface of the cylinder 31.
  • the bottom wall end of one cylinder 31 is provided with a plurality of protrusions 31B that protrude laterally from a plurality of positions in the circumferential direction, and each of the protrusions 31B has an attachment hole 31C.
  • the tip of the other cylinder 32 is provided with, for example, an adjustment mechanism 35.
  • the adjustment mechanism 35 is provided with a support cylinder 35A that protrudes from the center of the outer surface of the bottom wall of the cylinder 32 and has a female screw section 35B on its inner surface, a shaft section 35D that has a male screw section 35C on its outer surface that screws into the female screw section 35B, and an abutment plate 35E rotatably attached to the tip of the shaft section 35D.
  • the telescopic case 30 is made of a non-magnetic material such as resin or stainless steel, but the telescopic case 30 and the spacer 34 described later may be made of a magnetic material such as iron so that the telescopic case 30 forms a magnetic path together with the elastic body 20 described later.
  • the cylindrical bodies 31 and 32 are connected to each other via the elastic body 20 described later, and are non-rotatable, but a vertically long engagement groove may be provided on one of the cylindrical bodies 31 and 32, and a protrusion that engages with the engagement groove may be provided on the other to restrict the relative rotation of the cylindrical bodies 31 and 32.
  • the electromagnetic induction coil 12 is fixed inside one of the cylinders 31 with an outer diameter and axial length that fit just inside the cylinder 31.
  • a pair of lead wires 12A of the electromagnetic induction coil 12 are pulled out to the side of the cylinder 31 through a through hole 31D that penetrates the side wall of the cylinder 31 closest to the bottom wall.
  • the pair of lead wires 12A are then taken into the circuit case 33 and connected to the rectifier 91.
  • the pair of lead wires 12A bend as the expandable case 30 expands and contracts.
  • the open end of the cylinder 32 has a notch 32B (see FIG. 2) formed to avoid interference with the pair of lead wires 12A.
  • the elastic body 20 is cylindrical and fits into the electromagnetic induction coil 12 through a gap, and is arranged on the concentric axis of the telescopic case 30. Both end faces are fixed to the bottom faces of the cylindrical bodies 31 and 32, for example, with an adhesive.
  • a cylindrical spacer 34 having the same outer diameter as the elastic body 20 is arranged between one end face of the elastic body 20 and the bottom face of the cylindrical body 32 as necessary to adjust the compression ratio of the elastic body 20.
  • the spacer 34 when the spacer 34 is not provided, the elastic body 20 in the telescopic case 30 is compressed to 1/2 in the same manner as the telescopic case 30 when the telescopic case 30 changes from the longest state to the shortest state.
  • the spacer 34 is provided, the compression ratio of the elastic body 20 can be increased to any compression ratio of 1/2 or more.
  • FIG. 3 illustrates a structure in which the elastic body 20 equipped with the spacer 34 is compressed to 1/3.
  • the elastic body 20 is slightly compressed between the bottom surfaces of the cylindrical bodies 31 and 32 when the telescopic case 30 is in its longest position. This prevents rattling between the cylindrical bodies 31 and 32 when the telescopic case 30 is not receiving any external force.
  • the elastic body 20 is fixed to the cylindrical bodies 31 and 32 with an adhesive, but it does not have to be fixed.
  • the bottom surfaces of the cylindrical bodies 31 and 32 and both end surfaces of the elastic body 20 may have projections and recesses that fit into each other to center the elastic body 20 relative to the expandable case 30.
  • the elastic body 20 is, for example, a foamed elastomer, and has magnetized magnetic powder 22 dispersed within it.
  • the elastic body 20 is what is called a "magnetic elastic body.”
  • the entire "elastic body 20" that contains the elastic body and the magnetic powder 22 is referred to as the "magnetic elastic body 20”
  • the single elastic body is referred to as the foamed elastomer 21 because it is a foamed elastomer, to clearly distinguish between the two.
  • the foamed elastomer 21 is a polyurethane elastomer foam and has an open cell structure or a semi-open cell structure.
  • the foamed elastomer 21 has an expansion ratio of 1.4 to 6 times.
  • the foamed elastomer 21 may be a rubber foam or a thermoplastic resin foam such as a polyolefin resin. It is preferable that the foamed elastomer 21 has an open cell structure or a semi-open cell structure as a whole from the viewpoint of moldability and ease of elastic deformation, but the open cell structure or semi-open cell structure may be a part of the foamed elastomer 21.
  • the foamed elastomer 21 can be prevented from shrinking (so-called shrinking) after molding. Furthermore, the foamed elastomer 21 in this embodiment has an expansion ratio of 1.4 to 6 times as described above, but it is more preferable that it is 1.7 to 5 times, and even more preferable that it is 2 to 4 times.
  • the expansion ratio of the foamed elastomer 21 is 1.4 times or more, the cushioning properties are particularly good, and when the expansion ratio is 6 times or less, the moldability and durability are particularly good.
  • the above expansion ratio does not refer to the expansion ratio of the foamed elastomer 21 containing the magnetic powder 22, but to the expansion ratio of the foamed elastomer 21 alone.
  • the magnetic powder 22 is a neodymium-based magnetic powder, and the particle diameter of the magnetic powder 22 is 3 to 200 ⁇ m.
  • the magnetic powder 22 is preferably made of a neodymium-based magnetic powder that has a strong magnetic force when made into a permanent magnet, but is not limited to neodymium-based magnetic powder and may be a known hard magnetic material such as a samarium-based magnetic powder, an alnico-based magnetic powder, or a ferrite-based magnetic powder.
  • the shape of the particles 23 of the magnetic powder 22 is not limited, but specific examples include, for example, a scale-like, spherical, or needle-like shape.
  • the particle diameter of the magnetic powder 22 in this embodiment is 3 to 200 ⁇ m as described above, but is more preferably 5 to 100 ⁇ m.
  • the particle diameter of the magnetic powder 22 can be increased to increase the proportion of magnetic components in the magnetic powder 22, and the surface magnetic flux density of the magnetic elastic body 20 can be further increased.
  • the particle diameter of the magnetic powder 22 is 200 ⁇ m or less from the viewpoint of moldability and ease of deformation of the magnetic elastic body 20.
  • the particle diameter of the magnetic powder 22 is 200 ⁇ m or less, moldability is particularly good, and it is possible to further prevent the magnetic powder 22 from falling off the foamed elastomer 21. Furthermore, if the particle diameter of the magnetic powder 22 is less than 3 ⁇ m, workability is deteriorated, so it is preferable that the particle diameter of the magnetic powder 22 is 3 ⁇ m or more. The above particle diameter is measured by a sieving test in accordance with JIS Z 8815:1994.
  • the mass concentration (mass ratio) of the magnetic powder 22 to the foamed elastomer 21 is 40 to 80%, and the volume concentration (volume ratio) of the magnetic powder 22 to the foamed elastomer 21 is 1.0 to 3.5%.
  • the magnetic elastic body 20 preferably has a compression permanent set of 30% or less in accordance with JIS K 6262:2013 A method.
  • the magnetic elastic body 20 preferably has a repeated compression set of 20% or less when compressed 50% 100,000 times at 1 Hz.
  • the particles 23 of the magnetic powder 22 in the foamed elastomer 21 are magnetized so that their magnetic moments (more specifically, the composite magnetic moment within the particles 23) are aligned along the axial direction of the cylindrical magnetic elastic body 20, so that one end of the magnetic elastic body 20 in the axial direction becomes the north pole and the other end becomes the south pole as shown in FIG. 4.
  • some of the particles 23 of the magnetic powder 22 may have magnetic moments whose direction crosses the axial direction of the magnetic elastic body 20, but the composite magnetic moment obtained by combining the magnetic moments of the particles 23 of the magnetic powder 22 is aligned along the axial direction of the magnetic elastic body 20. Note that in FIG. 5(A) and FIG. 5(B) described later, the magnetization directions of the particles 23 of the magnetic powder 22 are indicated diagrammatically by arrows.
  • the structure of the electrical device 100A has been described above.
  • the electrical device 100A is manufactured by the following method. That is, to manufacture the magnetic elastic body 20 as shown in FIG. 6, first, a first liquid is prepared by mixing polyol and isocyanate to form a prepolymer.
  • the first liquid is a prepolymer having an isocyanate group (NCO) at the end.
  • the magnetic powder 22 is mixed into the first liquid and uniformly dispersed (S11).
  • a second liquid containing a catalyst, a foaming agent, etc. is prepared (S11).
  • the first liquid and the second liquid are mixed to obtain a mixed liquid (S12).
  • the NCO% of the prepolymer having an isocyanate group at the end is preferably 3 to 7%, and in this embodiment, it is 6%. This makes it possible to obtain a magnetic elastic body 20 with excellent moldability and durability.
  • the mixture is poured into a mold whose temperature has been adjusted in advance, and foamed and cured to form, for example, a cylindrical foamed molded body (S13).
  • the magnetic powder 22 is dispersed in the foamed elastomer 21.
  • the magnetic moment of each particle 23 of the magnetic powder 22 is randomly oriented.
  • the mold is closed and cured for a predetermined time (primary curing), and then the obtained foamed molded body is removed from the mold.
  • the primary curing is performed, for example, at 60 to 120°C for 10 to 120 minutes.
  • the elastic member in which the magnetic powder 22 is dispersed and arranged is a polyurethane elastomer, so that the time until the raw material hardens is short, and it is possible to harden the raw material before the magnetic powder 22 settles in the raw material. This makes it easy to uniformly disperse the magnetic powder 22. Therefore, even magnetic powder 22 with a particle diameter of 100 ⁇ m or more can be easily dispersed within the magnetic elastic body 20, making it possible to increase the magnetic flux density of the magnetic elastic body 20.
  • the magnetic powder 22 is mixed into the first liquid and then mixed into the second liquid, so the magnetic powder 22 can be dispersed more uniformly within the foamed elastomer 21 than when the magnetic powder 22 is mixed into the second liquid and then mixed into the first liquid.
  • the foamed molded body is magnetized (S14).
  • the magnetic moments of the particles 23 of the magnetic powder 22 in the foamed molded body are aligned by applying an external magnetic field.
  • the external magnetic field is applied in the axial direction of the cylindrical foamed elastomer 21.
  • magnetization may be performed when the foamed molded body is in its natural length state without deformation, or when it is compressed in the axial direction relative to its natural length state (for example, compressed by 50%). In this manner, the magnetic elastomer body 20 is obtained from the foamed molded body.
  • the magnetic elastomer 20 has a magnetic flux density (surface magnetic flux density) that is 5% or more greater than that at its natural length when compressed 10% in the axial direction.
  • a magnetic elastomer 20 can be manufactured, for example, by compressing a foamed elastomer 21 having magnetic powder 22 dispersed therein (for example, compressed to 50%) and magnetizing the magnetic powder 22 in the direction of compression.
  • the magnetic elastic body 20 manufactured as described above is assembled to the telescopic case 30 as follows. That is, the cylindrical bodies 31 and 32 of the telescopic case 30 are prepared in a separated state. Then, the electromagnetic induction coil 12 is fixed to one cylindrical body 31 with the pair of lead wires 12A of the electromagnetic induction coil 12 pulled out from the through hole 31D, and the magnetic elastic body 20 with adhesive applied to both end faces is placed inside the electromagnetic induction coil 12 and fixed to both bottom faces of the cylindrical bodies 31 and 32. At this time, if necessary, a spacer 34 is fixed between one end face of the magnetic elastic body 20 and the bottom face of the cylindrical body 32 with an adhesive. Then, one cylindrical body 31 is deformed so as to narrow the open end and is pushed inside the other cylindrical body 32, and one cylindrical body 31 elastically returns to its original state so that the return parts 31A and 32A of both cylindrical bodies 31 and 32 engage with each other.
  • the pair of lead wires 12A of the electromagnetic induction coil 12 is connected to the rectifier 91, and the rectifier 91 is connected to the load 92, and the rectifier 91 and the load 92 are stored in the circuit case 33. This completes the manufacture of the electrical device 100A.
  • the electric device 100A is set in the gap between a pair of opposing members 201, 202 whose mutual distance may vary, and is used to detect the deformation, operation, etc. of the pair of opposing members 201, 202.
  • the electric device 100A is arranged so that the axial direction of the telescopic case 30 (which is also the axial direction of the electromagnetic induction coil 12 and the magnetic elastic body 20) faces the opposing direction of the pair of opposing members 201, 202.
  • the adjustment mechanism 35 is adjusted so that the telescopic case 30 is in a desired state. Specifically, when detecting both the case where the pair of opposing members 201, 202 move away from the normal state and the case where they approach each other, the adjustment mechanism 35 is adjusted so that the telescopic case 30 is in a compressed state that is approximately half of the maximum state.
  • the adjust mechanism 35 is adjusted so that the telescopic case 30 is slightly compressed between the pair of opposing members 201, 202 in the normal state, or the abutment plate 35E of the adjust mechanism 35 is slightly separated from one of the opposing members 202.
  • the magnetic elastic body 20 expands and contracts in the axial direction together with the expandable case 30. This changes the density of the magnetic flux that penetrates the electromagnetic induction coil 12 out of the magnetic flux of the magnetic field produced by the magnetic elastic body 20, generating an induced current I. In other words, power is generated in the power generation unit 10.
  • the magnetic elastic body 20 is made by mixing the foamed elastomer 21 with the magnetic powder 22, so when it is compressed in the axial direction, the bubbles of the foamed elastomer 21 are crushed, and when it is stretched, the bubbles expand, and it expands and contracts while suppressing changes in radial size.
  • the magnetic elastic body 20 is compressed in the axial direction of the electromagnetic induction coil 12 ( Figure 5 (B))
  • the distribution density of the particles 23 of the magnetic powder 22 in the magnetic elastic body 20 increases (i.e., n in the relational expression (B) becomes larger), and it is thought that the magnetization Mz increases, and when it is stretched, the magnetization Mz decreases.
  • the magnetic elastic body 20 when the magnetic elastic body 20 is magnetized in a compressed state in which it is shrunk relative to its natural length, when the magnetic elastic body 20 is compressed in the axial direction of the electromagnetic induction coil 12, the magnetic moment of the particles 23 of the magnetic powder 22 will be aligned in the axial direction of the electromagnetic induction coil 12 compared to when it is in its natural length, and it is believed that the average value mz of the magnetic moment will be larger.
  • the increase or decrease in the average value mz of the magnetic moment is considered to further increase the change in magnetization Mz.
  • the magnetization Mz is considered to be particularly large when it reaches the compression amount at the time of magnetization (i.e., the compression amount at which the magnetic moment mz of the magnetic powder 22 is most aligned in the axial direction of the magnetic elastic body 20).
  • the magnetic flux density Bz in the magnetic elastic body 20 increases according to the above relational expression (A), and the magnetic flux penetrating the electromagnetic induction coil 12 increases.
  • the magnetic elastic body 20 expands, the opposite phenomenon occurs to when it is compressed.
  • the induced current I flows through the electromagnetic induction coil 12 so as to generate a magnetic field H' in a direction that cancels out these changes in magnetic flux (downward in FIG. 7).
  • the induced current I and the magnetic field H' generated by the induced current I are indicated by gray arrows.
  • FIGs 8(A) and 8(B) show an example in which the size of the portion of the magnetic elastic body 20 that is placed inside the electromagnetic induction coil 12 changes due to deformation of the magnetic elastic body 20.
  • the magnetic flux penetrating the electromagnetic induction coil 12 changes due to factors other than the change in magnetization of the magnetic elastic body 20.
  • the magnetic elastic body 20 is compressed in the axial direction of the electromagnetic induction coil 12.
  • a region R is provided in the electromagnetic induction coil 12 where the magnetic elastic body 20 exists before deformation of the magnetic elastic body 20 ( Figure 8(A)), but where the magnetic elastic body 20 does not exist after deformation ( Figure 8(B)).
  • the magnetic flux changes before and after deformation of the magnetic elastic body 20, so it is considered that a magnetic field H" is generated in region R to cancel out this change in magnetic flux.
  • This magnetic field H" can be in the opposite direction to the magnetic field H' due to the change in distribution density of the particles 23 of the magnetic powder 22 in the magnetic elastic body 20 described above, but these magnetic fields do not always have the same magnitude during the process of deforming the magnetic elastic body 20, so it is considered that a change in the magnetic flux penetrating the electromagnetic induction coil 12 occurs, and an induced current I can be generated in the electromagnetic induction coil 12.
  • an electromagnetic induction coil 12V may be disposed surrounding region R as shown in FIG. 9. In this way, by generating the induced current generated by magnetic field H' and the induced current generated by magnetic field H" in separate circuits, it is possible to prevent these induced currents from cancelling each other out.
  • the case in which the magnetic elastic body 20 expands is similar to the case in which the magnetic elastic body 20 is compressed.
  • the induced current I generated by the power generation unit 10 is rectified by the rectifier unit 91 and received by the load unit 92. Then, a wireless signal including the identification number information is output from the wireless module 92A of the load unit 92. This makes it possible to receive the wireless signal from the electrical device 100A with a wireless terminal located away from the electrical device 100A and monitor the load and behavior of the pair of opposing members 201, 202.
  • the electrical device 100A of this embodiment generates its own power through electromagnetic induction by changing the magnetic flux density of the magnetic field penetrating the electromagnetic induction coil 12 through the deformation of the magnetic elastic body 20, so the power generation structure can be simplified compared to electrical devices that generate power using conventional rotating machines.
  • the magnetic elastic body 20 is a foamed elastomer, it can be expanded and contracted with a larger stroke than when the magnetic elastic body is formed from an elastic body such as a general resin or metal containing a non-foamed elastomer. And since the magnetic elastic body 20 can generate electricity by changing the magnetic flux density through deformation with a large stroke, it is possible to generate more electricity per stroke than one that can only change the magnetic flux density with a short stroke. Also, if the same amount of electricity is to be obtained as one that can only change the magnetic flux density with a short stroke, it is possible to generate electricity by reversing the direction of the magnetic flux in a long period.
  • the power generation unit 10 of the electric device 100A of this embodiment makes it possible to generate low-frequency alternating current, which makes it easy to achieve impedance matching between the power generation unit 10 and the rectification unit 91, load unit 92, etc. connected to it.
  • the magnetic elastic body 20 is able to suppress changes in radial size due to expansion and contraction, which reduces interference with the electromagnetic induction coil 12 and narrows the clearance between the magnetic elastic body 20 and the electromagnetic induction coil 12 outside it, improving power generation efficiency.
  • the magnetic elastic body 20 is a foamed elastomer, it is less likely to break and is easier to handle.
  • the electric device 100B of this embodiment is shown in FIG. 10, and the configuration of the rectifier 91V and the load 92V is different from that of the first embodiment. That is, the rectifier 91V is a double voltage rectifier circuit, and a secondary battery 91A is connected between a pair of output terminals of the rectifier 91V.
  • the load 92V is provided with a detection circuit 92B and a wireless circuit 92C, and a current detection unit 92D for detecting an induced current flowing through the electromagnetic induction coil 12 is connected to the load 92V.
  • the detection circuit 92B includes an A/D converter and a microcomputer.
  • detection data for identifying an external force received by the electric device 100B is generated, and the detection data is wirelessly transmitted by the wireless circuit 92C.
  • detection data can be used, such as FFT data, spectrum data, and peak value data included in the waveform of the induced current.
  • detection data for identifying an external force is generated based on the induced current generated in the power generation unit 10, and then wirelessly transmitted, making it possible to collect data at a remote location far from the electric device 100B that is less susceptible to noise caused by wireless transmission.
  • the provision of the secondary battery 91A stabilizes the power supply to the load unit 92V.
  • an electric device 100C according to a third embodiment of the present disclosure is mounted on a vehicle 60 and is intended to charge a battery 51 of the vehicle 60. Only configurations that differ from the first and second embodiments will be described below.
  • the power generating unit 10 of the electric device 100C of this embodiment is attached to the suspension 61 of the vehicle 60.
  • the suspension 61 of the vehicle 60 has a shock absorber 62 and a suspension spring 63, as shown in FIG. 11(B).
  • the suspension spring 63 is sandwiched between a flange 65T that protrudes outward from the cylinder 65 of the shock absorber 62 and the vehicle body 60B.
  • the magnetic elastic body 20V included in the power generating unit 10 of the electric device 100C is cylindrical and fitted into the piston rod 64 of the shock absorber 62, functioning as a bound stopper. That is, when the shock absorber 62 contracts, the magnetic elastic body 20V is compressed between the cylinder 65 and the vehicle body 60B, thereby serving to suppress the bounding of the vehicle 60.
  • the electromagnetic induction coil 12 of the power generation unit 10 of the electrical device 100C is disposed inside the suspension spring 63 so as to surround the magnetic elastic body 20V, and its upper end is fixed to the vehicle body 60B.
  • an induced current flows in the electromagnetic induction coil 12, generating electricity.
  • the rectifier 91W of the electrical device 100C boosts the power generated by the power generator 10 to a voltage required to charge the battery 51.
  • the output of the power generator 10 is then applied to the battery 51, which corresponds to the load of the electrical device 100C, through the rectifier 91W, thereby charging the battery 51.
  • an automobile is used as an example of the vehicle 60, but the present invention may also be applied to the suspension of a motorcycle, train, or other vehicle.
  • automobiles include electric vehicles, hybrid vehicles, plug-in hybrid vehicles, and other electrically powered vehicles.
  • the electric device 100D of the fourth embodiment has a power generating unit 10 similar to that of the electric device 100C of the third embodiment, a rectifying unit 91V similar to that of the electric device 100B of the second embodiment, and a detection circuit 92B as a load unit.
  • Detection data generated by the detection circuit 92B is provided to the control device 86 of the vehicle 60.
  • the control device 86 determines the presence or absence of an abnormality, such as overloading of the vehicle 60 or a failure of the suspension 61, based on the provided detection data, and when an abnormality is detected, turns on a warning light 85 to notify the driver of the abnormality.
  • the vehicle 60 is provided with the electrical device 100D, and an abnormality related to the vehicle 60 is detected.
  • the electrical device 100D may be provided in a tank or pipe in a factory plant, and an abnormality in the tank or pipe may be detected.
  • the electric device 100E of this embodiment is shown in Fig. 13(A) and Fig. 13(B) and is incorporated in a floor structure 71 of a building or vehicle.
  • the floor structure 71 has a structure in which a floor panel 73 is laid on a base 72, and a plurality of cushioning materials 78 are laid between the base 72 and the floor panel 73.
  • the cushioning materials 78 are elastically deformed.
  • One or a part of the plurality of cushioning materials 78 is a magnetic elastic body 20W, and an electromagnetic induction coil 12 is provided so as to surround the magnetic elastic body 20W.
  • the electric device 100E also has a rectifier unit and a wireless module similar to those of the first embodiment housed in a circuit case 33.
  • the electric device 100F of this embodiment is shown in FIG. 14, and the magnetic elastic body 20 is twisted when subjected to an external force.
  • the electric device 100F has a structure in which the adjustment mechanism 35 is removed from one of the cylindrical bodies 32 of the expandable case 30 of the electric device 100A of the first embodiment, and a twist case 30V having a plurality of protrusions 31B similar to those of the other cylindrical body 32 is provided with the magnetic elastic body 20 and the electromagnetic induction coil 12 of the electric device 100A of the first embodiment.
  • the twist case 30V is attached to a pair of relatively rotating members or a shaft that receives a load torque.
  • the magnetic elastic body 20 is, for example, arranged in a magnetic field oriented in the axial direction of the magnetic elastic body 20 in a twisted state, and the magnetic powder 22 is magnetized.
  • the other structure is similar to that of the electric device 100A of the first embodiment.
  • this electric device 100F when the magnetic elastic body 20 is twisted in one direction, the direction of the magnetic moment of the magnetic powder 22 is aligned in the direction penetrating the electromagnetic induction coil 12, and when the magnetic elastic body 20 is twisted in the other direction, the direction of the magnetic moment of the magnetic powder 22 is aligned or varies in a direction different from the direction penetrating the electromagnetic induction coil 12.
  • the density of the magnetic flux penetrating the electromagnetic induction coil 12 changes with the twisting deformation of the magnetic elastic body 20, generating power in the power generation unit 10, and a wireless signal is transmitted from the wireless module 92A of the load unit 92 in response to that power.
  • the electric device 100G of this embodiment is shown in Fig. 15 and includes a twist case 30W in which a screwing mechanism is added to the twist case 30V of the electric device 100F of the sixth embodiment.
  • the outer surface of one cylindrical body 31 of the twist case 30W is provided with an engagement portion 31M having a groove structure or a ridge structure extending in a spiral shape
  • the inner surface of the other cylindrical body 32 is provided with an engagement portion (not shown) that screws into the engagement portion 31M.
  • the electric device 100H of this embodiment is shown in Fig. 16.
  • the power generating unit 10 of the electric device 100H includes a cylindrical magnetic elastic body 20 that is fitted exactly to the shaft 203, which is the object of bending deformation detection, and an electromagnetic induction coil 12 that is fitted to the outside of the magnetic elastic body 20.
  • the magnetic elastic body 20 and the electromagnetic induction coil 12 are bent and deformed together with the shaft 203.
  • the electric device 100H includes, for example, a rectifier unit 91 and a wireless module 92A similar to those of the electric device 100A of the first embodiment, housed in a circuit case 33.
  • the magnetic elastic body 20 As the magnetic elastic body 20 is bent and deformed in accordance with the bending deformation of the shaft 203, the magnetic flux density penetrating the electromagnetic induction coil 12 changes, and power is generated in the power generating unit 10, and a wireless signal is transmitted from the wireless module 92A of the load unit 92 in response to the power.
  • the electric device 100I of this embodiment is shown in Fig. 17 (A) and has a structure in which a pair of non-magnetic disks 39 are opposed to each other, and a plurality of magnetic elastic bodies 20 are connected in parallel between the pair of disks 39.
  • the plurality of magnetic elastic bodies 20 are, for example, cylindrical, and the central axis of each magnetic elastic body 20 is disposed at a position that divides an imaginary circle concentric with the central axis of the pair of disks 39 into a plurality of equal parts in a portion inside the outer edge of the pair of disks 39, and each magnetic elastic body 20 is fixed to the pair of disks 39 by an adhesive applied to both end faces of each magnetic elastic body 20.
  • a plurality of mounting holes 39A are formed in the outer edge of the pair of disks 39.
  • an electromagnetic induction coil 12 is fitted to the outside of each magnetic elastic body 20.
  • a plurality of rectifiers 91 and wireless modules 92A described in the first embodiment are provided corresponding to the plurality of electromagnetic induction coils 12 and are housed in the circuit case 33.
  • a wireless signal including information of the unique identification number is transmitted from the wireless module 92A corresponding to each electromagnetic induction coil 12.
  • a pair of disks 39 is fixed to the object to be detected. Then, power is generated in the multiple electromagnetic induction coils 12 in response to the behavior of the pair of disks 39 moving closer to and farther away from each other, the behavior of one disk 39 tilting in any direction relative to the other disk 39, and the behavior of the other disk 39 rotating around its central axis relative to the first disk 39, and a wireless signal corresponding to the power generation state is output.
  • the electromagnetic induction coil 12 was made of copper wire, with a coil winding diameter (inner diameter) of 36 mm (36 ⁇ ), an axial length of 70 mm, a wire diameter of 0.5 mm, a number of turns of 1395, and a resistance of 13 ⁇ .
  • the magnetic elastic body 20 was made by dispersing neodymium-based magnetic powder in a polyurethane foam elastomer 21. The neodymium-based magnetic powder used had different particle sizes (5 ⁇ m and 100 ⁇ m).
  • the magnetic elastic body 20 was cylindrical, with a diameter of 23 mm and an axial length of 23 mm.
  • the magnetization conditions for the magnetic elastic body 20 were 8 Tesla for 3 seconds.
  • the magnetic elastic body 20 was magnetized in a natural length state and in a 50% compressed state in the axial direction.
  • the magnetic elastic body 20 was arranged coaxially with the electromagnetic induction coil 12, and the magnetic elastic body 20 was arranged so that its center position coincided with that of the electromagnetic induction coil 12 in its natural length state.
  • the magnetic elastic body 20 was entirely contained within the electromagnetic induction coil 12, and was arranged so that its axial direction was the up-down direction, and the magnetic elastic body 20 was elastically deformed by compressing it from one end side in the axial direction (from below).
  • First Liquid Polyol polyester polyol (molecular weight: 2000, number of functional groups: 2, hydroxyl value: 56 mgKOH/g, product name: "Polylite OD-X-102", manufactured by DIC Corporation
  • Isocyanate 1,5-naphthalene diisocyanate (NCO%: 40%, product name: "Cosmonate ND”, manufactured by Mitsui Chemicals, Inc.)
  • Neodymium-based magnetic powder (1) MQFP (5 ⁇ m), manufactured by Magnequench Co., Ltd. (2) MQFP (100 ⁇ m), manufactured by Magnequench Co., Ltd.
  • Second liquid Catalyst Amine catalyst, product name: "Addocat PP", manufactured by Rhein Chemie Japan Co., Ltd.
  • Foaming agent Mixture containing castor oil and water, product number: “Advade SV” (weight ratio of castor oil to water: 50:50), manufactured by Rhein Chemie Japan Co., Ltd.
  • magnetic elastic bodies 20 with different expansion ratios of the foamed elastomer 21, compounding ratios and particle sizes of the neodymium magnetic powder, and magnetization methods were used (Experimental Examples 1 to 5).
  • the magnetization conditions and characteristic values of the magnetic elastic bodies 20 in each experimental example are as shown in Figure 19.
  • Figure 19 shows the details and characteristics of the foamed elastomers of Experimental Examples 1 to 5.
  • the foamed elastomer 21 is magnetized in its natural length state with a foaming ratio of 2 times, the particle diameter of the neodymium magnetic powder is 5 ⁇ m, the mass ratio is 50 mass%, and the volume ratio is 3.3 volume%.
  • the foaming ratio of the foamed elastomer 21 is 4 times, the volume ratio of the neodymium magnetic powder is 1.6 volume%, and the rest is the same as Experimental Example 1.
  • the mass ratio of the neodymium magnetic powder is 60 mass%, the volume ratio is 3.9 volume%, and the rest is the same as Experimental Example 1.
  • Experimental Example 4 the elastomer is magnetized in a 50% compressed state in the axial direction, and the rest is the same as Experimental Example 3.
  • Experimental Example 5 the particle diameter of the neodymium magnetic powder is 100 ⁇ m, and the rest is the same as Experimental Example 3.
  • the compression set was measured by preparing a test sample of the magnetic elastomer 20 having a diameter of 13 mm and a thickness of 6.3 mm, in accordance with JIS K 6262:2013 Method A (small test piece, 70°C x 22 hours, 25% compression).
  • the surface magnetic flux density was obtained by preparing a test sample of the magnetic elastic body 20 having a diameter of 23 mm and an axial length (thickness) of 23 mm, measuring the magnetic flux density at the center of the upper and lower surfaces, which are both end surfaces in the axial direction, 10 times each (total of 20 times) using a gaussmeter ("MG-601", manufactured by Magna), and calculating the average value.
  • the surface magnetic flux density was also measured for the magnetic elastic body 20 in a natural length state and in a compressed state compressed in the axial direction by 10%, 25%, and 50% from the natural length state, and the rate of change in the surface magnetic flux density in each compressed state relative to the natural length state was calculated.
  • the amount of power generation was evaluated by vibrating and deforming the magnetic elastic body 20 so as to repeatedly compress and restore in the axial direction of the electromagnetic induction coil 12 using a test device 40 shown in Fig. 18, and measuring the voltage between both ends of the electromagnetic induction coil 12.
  • the conditions for the vibration deformation of the magnetic elastic body 20 were nine conditions consisting of combinations of three levels of compression ratio (stroke amount) and three levels of frequency, and the voltage was measured for each condition. Specifically, the amplitude levels were 6 mm, 8 mm, and 10 mm (displacement amount), and the frequency levels were 1 Hz, 5 Hz, and 10 Hz.
  • the test device 40 has a piston 41 and a fixed member 42 inside the electromagnetic induction coil 12, which sandwich the magnetic elastic body 20 in the axial direction of the electromagnetic induction coil 12.
  • the piston 41 receives power from a driving source 43 and vibrates in the axial direction of the electromagnetic induction coil 12, vibrating and deforming the magnetic elastic body 20.
  • the distance between the fixed member 42 and the piston 41 is set so that it is the same as the natural length of the magnetic elastic body 20 when the piston 41 is farthest from the fixed member 42 during the vibration stroke. That is, in this experiment, the fixed member 42 and the piston 41 are always in contact with the magnetic elastic body 20.
  • both ends of the electromagnetic induction coil 12 are connected to an oscilloscope 44, which displays the induced electromotive force generated in the electromagnetic induction coil 12.
  • the test device 40 is provided with a laser displacement meter 45 for detecting the vibration of the piston 41.
  • a signal related to the amplitude, frequency, etc. of the piston 41 is output from the laser displacement meter 45 to the oscilloscope 44 via an amplifier unit 46, making it possible to confirm the amplitude and frequency of the vibration of the piston 41 on the oscilloscope 44.
  • the surface magnetic flux densities in the natural length state of Experimental Examples 1 to 3 were 9.2 mT, 4.6 mT, and 10.3 mT, respectively, with the surface magnetic flux density being higher as the volume ratio of neodymium-based magnetic powder increased.
  • the surface magnetic flux densities in the natural length state of Experimental Examples 3 and 5 were 10.3 mT and 14.6 mT, respectively, and it can be seen that the surface magnetic flux density is higher as the particle diameter of the neodymium-based magnetic powder increases.
  • the surface magnetic flux density in the natural length state of Experimental Example 3 and Experimental Example 4 was 10.3 mT and 9.2 mT, respectively, and Experimental Example 3 was larger, but the surface magnetic flux density in the 10%, 25%, and 50% compressed states was 10.5 mT and 9.9 mT, 10.7 mT and 10.6 mT, and 10.9 mT and 12.6 mT, respectively, and the rate of change was 1.9% and 7.6%, 3.9% and 15.2%, and 5.8% and 37.0, respectively. In the 50% compressed state, the surface magnetic flux density was larger in Experimental Example 4.
  • [Other embodiments] As a device for detecting the behavior of a component by utilizing the change in magnetic flux density accompanying the elastic deformation of the magnetic elastic body 20, a configuration in which a magnetic sensor such as a Hall element, a TMR element (tunnel magnetoresistance element), a GMR element (giant magnetoresistance element), an AMR element (anisotropic magnetoresistance element), or the like is arranged opposite the magnetic elastic body 20 can be considered.
  • a magnetic sensor such as a Hall element, a TMR element (tunnel magnetoresistance element), a GMR element (giant magnetoresistance element), an AMR element (anisotropic magnetoresistance element), or the like is arranged opposite the magnetic elastic body 20 can be considered.
  • All of the electrical devices 100A to 100I described above are designed to operate on power generated by the power generation unit 10, but the power generation unit 10 may not be used as a power generation unit, and power may be provided by a battery or an external power source (e.g., a commercial power source).
  • the power generation unit 10 may be used only as a detection unit that detects external forces, deformation of components, etc., and may not be provided with a load unit.
  • the magnetic elastic body 20 is disposed inside the electromagnetic induction coil 12, but as long as the magnetic field generated by the magnetic powder 22 of the magnetic elastic body 20 penetrates the inside of the electromagnetic induction coil 12, the magnetic elastic body 20 may be disposed outside the electromagnetic induction coil 12.
  • the magnetization direction of the magnetic elastic body 20 was the same as the axial direction of the electromagnetic induction coil 12, but it may be inclined with respect to the axial direction of the electromagnetic induction coil 12.
  • the magnetic elastic body 20 is cylindrical, but this is not limited thereto, and it may be rectangular or spherical. It may also be in the shape of a product such as the bound stopper described above (see FIG. 11(B)).
  • the electromagnetic induction coil 12 and the magnetic elastic body 20 are arranged coaxially, but the central axes of the electromagnetic induction coil 12 and the magnetic elastic body 20 may be arranged parallel to each other with a deviation from each other, or may be inclined from each other.
  • the magnetic elastic body 20 has a structure in which magnetic powder 22 is dispersed in foamed elastomer 21, so it can be easily cut into any shape, and the cut body also becomes a magnet with a north pole and a south pole, so the magnetic elastic body 20 can be used as a toy.
  • the magnetic elastic body 20 is lighter than ferrite magnets, etc., it can also be used to levitate using the magnetic force of other magnets, etc.
  • 1,5-naphthalene diisocyanate (NDI) was used as the raw isocyanate for the magnetic elastic body 20, but diphenylmethane diisocyanate (MDI) may also be used.
  • an elastic body that contains magnetized magnetic powder, generates a magnetic field that penetrates the electromagnetic induction coil, and changes the magnetic flux density of the magnetic field when it elastically deforms due to an external force; a rectifier that rectifies an induced current induced in the electromagnetic induction coil due to the change in magnetic flux density; and a load unit that receives power from the rectifier and operates.
  • the electrical device of feature A1 has an elastic body that contains magnetized magnetic powder and generates a magnetic field that penetrates an electromagnetic induction coil.
  • an elastic body that contains magnetized magnetic powder and generates a magnetic field that penetrates an electromagnetic induction coil.
  • the magnetic flux density of the magnetic field that penetrates the electromagnetic induction coil changes, and self-generation occurs through electromagnetic induction.
  • the induced current flowing through the electromagnetic induction coil is then rectified and applied to the load section, driving the load section.
  • the electrical device of feature A1 can generate self-power with an elastic body that has a simpler structure than the rotating machines of conventional electrical devices.
  • Electrical devices with feature A2 are self-powered and equipped with wireless circuits, allowing greater freedom in where they can be installed.
  • Electrical equipment with feature A3 can be installed in a location subject to external force, allowing the external force conditions to be monitored from a remote location.
  • the load section includes a detection circuit that generates detection data for identifying the external force based on the induced current, and a wireless circuit that wirelessly transmits the detection data.
  • the electrical device of feature 4 generates detection data for identifying external forces based on induced currents and then transmits it wirelessly, making it possible to collect data at remote locations far from the electrical device that is less susceptible to noise caused by wireless transmission.
  • Feature 5 The inclusion of a secondary battery stabilizes the power supply to the load.
  • the distribution density of the magnetic powder that generates the magnetic field penetrating the electromagnetic induction coil may be changed by deforming the elastic body, or, as in feature 6, the orientation of the magnetic moment of the magnetic powder may be changed between being aligned with the axial direction of the electromagnetic induction coil and being not aligned.
  • Feature 7 allows for efficient power generation with a compact structure.
  • Feature 8 is that it is possible to generate electricity by utilizing a rotating external force.
  • the elastic body of feature A9 is a foamed elastomer, so when it is compressed the air bubbles collapse and when it is stretched the air bubbles expand. This limits the change in size in the direction perpendicular to the direction of expansion and contraction that accompanies the expansion and contraction deformation, and reduces interference between the elastic body and the surrounding parts.
  • the elastomer is a polyurethane elastomer, so the raw material of the elastomer can be hardened quickly.
  • the elastomer is non-foamed silicone rubber, it takes a long time to harden the elastomer, and the magnetic powder settles while the elastomer is hardening, which tends to result in uneven dispersion of the magnetic powder within the elastomer.
  • the raw material of the elastomer can be hardened before the magnetic powder settles, and the magnetic powder can be uniformly dispersed within the elastomer.
  • the particle diameter of the magnetic powder is 200 ⁇ m or less.
  • the foamed elastomer has an expansion ratio of 1.4 to 6 times and has at least an open cell structure, making it easy to mold the elastic body and to elastically deform it, and making it easy to change the magnetic flux density of the elastic body. As a result, it becomes possible to make it easier to generate induced current in the circuit.
  • the foamed elastomer has at least a portion with an open cell structure, it is possible to prevent the foamed elastomer from shrinking after molding. Note that the above expansion ratio indicates the expansion ratio of the foamed elastomer alone, not the expansion ratio of the elastic body.
  • Feature A12 makes it easier to elastically deform the elastic body while also making it possible to increase the change in magnetic flux density of the elastic body.
  • the manufacturing method of feature A15 makes it easy to manufacture an elastic body that exhibits a large change in magnetic flux density when compressed.

Abstract

[Problem] To provide an electric device that has a simpler structure than the prior art and is capable of driving a load unit by performing self-power generation for converting vibrations, displacement, etc., from external force into power. [Solution] The electric device 100A of the present disclosure comprises: an electromagnetic induction coil 12; an elastic body 20 that contains a magnetized magnetic powder body 22, generates a magnetic field penetrating the electromagnetic induction coil 12, and exhibits a change in the magnetic flux density of the magnetic field when being elastically deformed upon receiving external force; a rectification unit 91 that rectifies an induced current induced in the electromagnetic induction coil 12 due to the change in the magnetic flux density; and a load unit 92 that is operated by receiving power from the rectification unit 91.

Description

電気機器Electrical Equipment
 本開示は、自己発電型の電気機器に関する。 This disclosure relates to self-powered electrical devices.
 従来のこの種の電気機器として、外力により回転駆動される回転機にて自己発電を行うものが知られている(例えば、特許文献1参照)。 Conventional electrical devices of this type are known to generate electricity by using a rotating machine that is driven by an external force (see, for example, Patent Document 1).
特表2012-515860号(図4、請求項11)JP2012-515860 (Fig. 4, claim 11)
 しかしながら、上記した従来の電気機器では、回転機を有するために煩雑な構造となり、それが故障の原因になり得た。そこで、本開示では、従来より簡素な構造で、外力からの振動、変位等を電力に変換する自己発電を行って負荷部を駆動することが可能な電気機器を提供する。 However, the above-mentioned conventional electrical devices have a complicated structure due to the presence of a rotating machine, which can cause breakdowns. Therefore, this disclosure provides an electrical device that has a simpler structure than conventional devices and is capable of driving a load by generating its own electricity by converting vibrations, displacements, etc. from external forces into electricity.
 上記課題を解決するためになされた本発明の一態様は、電磁誘導コイルと、着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、前記整流部から受電して作動する負荷部と、を備える電気機器である。 One aspect of the present invention, which has been made to solve the above problems, is an electrical device that includes an electromagnetic induction coil, an elastic body that contains magnetized magnetic powder and generates a magnetic field that penetrates the electromagnetic induction coil and changes the magnetic flux density of the magnetic field when it undergoes elastic deformation due to an external force, a rectifier that rectifies the induced current induced in the electromagnetic induction coil due to the change in magnetic flux density, and a load that receives power from the rectifier and operates.
本開示の第1実施形態に係る電気機器の回路図Circuit diagram of an electrical device according to a first embodiment of the present disclosure. 電気機器の斜視図Perspective view of an electrical device 電気機器の側断面図Side cross-sectional view of an electrical device 発電部の概念図Conceptual diagram of the power generation section (A)磁性弾性体内の磁性粉体を示す概念図、(B)圧縮された磁性弾性体の概念図(A) A conceptual diagram showing magnetic powder in a magnetic elastomer; (B) A conceptual diagram of a compressed magnetic elastomer. 磁性弾性体の製造方法を示すフローチャートFlowchart showing a method for manufacturing a magnetic elastic body (A)圧縮変形前の磁性弾性体の磁化を示す概念図、(B)圧縮変形されているときの磁性弾性体の磁化と誘導電流を示す概念図(A) A conceptual diagram showing the magnetization of a magnetic elastomer before compressive deformation, (B) A conceptual diagram showing the magnetization and induced current of a magnetic elastomer when it is compressed and deformed. (A)圧縮変形前の磁性弾性体による磁場と磁性弾性体の磁化を示す概念図、(B)磁性弾性体が圧縮されたときにコイル及び回路内に生じる誘導磁場と誘導電流を示す概念図(A) A conceptual diagram showing the magnetic field caused by a magnetic elastic body before compressive deformation and the magnetization of the magnetic elastic body. (B) A conceptual diagram showing the induced magnetic field and induced current generated in a coil and a circuit when a magnetic elastic body is compressed. (A)圧縮変形前の磁性弾性体による磁場と磁性弾性体の磁化を示す概念図、(B)磁性弾性体が圧縮されたときに2つのコイル及び回路内に生じる誘導磁場と誘導電流を示す概念図(A) A conceptual diagram showing the magnetic field caused by a magnetic elastic body before compression deformation and the magnetization of the magnetic elastic body. (B) A conceptual diagram showing the induced magnetic field and induced current generated in two coils and a circuit when the magnetic elastic body is compressed. 第2実施形態に係る電気機器の回路図Circuit diagram of an electric device according to a second embodiment (A)第3実施形態の電気機器の概念図、(B)電気機器がサスペンションに取り付けられた状態の一部破断側面図FIG. 13A is a conceptual diagram of an electric device according to a third embodiment; FIG. 13B is a partially cutaway side view of the electric device attached to a suspension; 第4実施形態の電気機器の概念図13 is a conceptual diagram of an electric device according to a fourth embodiment. 第5実施形態の電気機器を含んだ床構造の側断面図FIG. 13 is a side cross-sectional view of a floor structure including electrical equipment according to a fifth embodiment. 第6実施形態の電気機器の斜視図FIG. 13 is a perspective view of an electric device according to a sixth embodiment; 第7実施形態の電気機器の斜視図FIG. 13 is a perspective view of an electric device according to a seventh embodiment; (A)第8実施形態の電気機器の側断面図、(B)曲げ変形した電気機器の側断面図FIG. 13A is a side cross-sectional view of an electric device according to an eighth embodiment; FIG. 13B is a side cross-sectional view of the electric device after bending; 第9実施形態の電気機器の斜視図FIG. 13 is a perspective view of an electric device according to a ninth embodiment; 試験装置の概念図Conceptual diagram of the test equipment 各実験例の磁性弾性体の詳細及び特性を示すテーブルA table showing the details and characteristics of the magnetic elastic bodies of each experimental example.
 [第1実施形態]
 図1~図9を参照して本開示の一実施形態に係る電気機器100Aについて説明する。図1に示すように、本実施形態の電気機器100Aは、発電部10と整流部91と負荷部92とを有する。
[First embodiment]
An electric device 100A according to an embodiment of the present disclosure will be described with reference to Figures 1 to 9. As shown in Figure 1, the electric device 100A according to the present embodiment has a power generation unit 10, a rectification unit 91, and a load unit 92.
 負荷部92は、例えば、無線モジュール92Aを含んでいる。その無線モジュール92Aは、例えば、RFIDを変形させたものであり、RFIDタグが無線で電力を受電し、その受電の度に識別番号を近距離無線通信のキャリアに変調して無線送信するものであるところを、無線モジュール92Aは、発電部10から整流部91を通して有線で電力を受電し、その受電の度に識別番号を所定の無線通信のキャリア波に変調して送信するようになっている。その所定の無線通信として、例えば、遠距離無線通信、Wi-Fi、赤外線通信、近距離無線通信等が挙げられる。 The load unit 92 includes, for example, a wireless module 92A. The wireless module 92A is, for example, a modified RFID. Whereas an RFID tag receives power wirelessly and modulates an identification number onto a carrier wave for short-range wireless communication and transmits it wirelessly each time it receives power, the wireless module 92A receives power via a wire from the power generation unit 10 through the rectifier unit 91 and modulates an identification number onto a carrier wave for a specified wireless communication and transmits it each time it receives power. Examples of the specified wireless communication include long-distance wireless communication, Wi-Fi, infrared communication, and short-distance wireless communication.
 なお、無線モジュール92Aは、識別番号以外の情報をキャリア波に変調して無線送信するものでもよく、また、情報をキャリア波に変調せず、情報を含まない特定の周波数の無線波のみを送信し、その無線波が送信されたこと自体が電気機器100Aからの情報であるようにしてもよい。 In addition, the wireless module 92A may modulate information other than the identification number onto a carrier wave and transmit it wirelessly, or it may transmit only a radio wave of a specific frequency that does not contain any information without modulating information onto a carrier wave, so that the fact that the radio wave has been transmitted is itself information from the electrical device 100A.
 整流部91は、例えば公知な倍圧整流回路になっていて、その入力側に発電部10の次述する電磁誘導コイル12が接続され、出力側に前述の無線モジュール92Aが接続されている。そして、電磁誘導コイル12に誘起される誘導電流が整流部91で整流されて無線モジュール92Aに付与される。 The rectifier 91 is, for example, a known voltage doubler rectifier circuit, with the electromagnetic induction coil 12 of the power generation unit 10 (described below) connected to its input side, and the wireless module 92A described above connected to its output side. The induced current induced in the electromagnetic induction coil 12 is rectified by the rectifier 91 and applied to the wireless module 92A.
 なお、図1に示す整流部91には、3倍圧整流回路が例示されているが、所望の電圧に応じたn倍圧整流回路を用いればよく、第2実施形態では、2倍圧整流回路が例示されている。 Note that, although a triple voltage rectifier circuit is illustrated as an example of the rectifier unit 91 shown in FIG. 1, an n-fold voltage rectifier circuit according to the desired voltage may be used, and in the second embodiment, a double voltage rectifier circuit is illustrated as an example.
 発電部10は、電磁誘導コイル12と、その内側に配置される弾性体20と、それらを収容する伸縮ケース30とを備える。図2及び図3に示すように、伸縮ケース30は、一端有底、他端開放の円筒状の筒体31と、その筒体31より外径が大きい一端有底、他端開放の円筒状の筒体32とを開口端同士を向かい合わせて嵌合させた構造をなしている。また、両筒体31,32の軸長は略同一になっていて、両筒体31,32の開口端には、互いに係合して離脱を防ぐ返し部31A,32Aが設けられている。そして、伸縮ケース30は、返し部31A,32A同士が係合する最長状態と、一方の筒体31の開口端が他方の筒体32の底部に当接する最短状態とに変化する。なお、最短状態の伸縮ケース30は、最長状態の伸縮ケース30の例えば略1/2の軸長になる。 The power generating unit 10 includes an electromagnetic induction coil 12, an elastic body 20 disposed inside the coil 12, and a telescopic case 30 that houses them. As shown in FIG. 2 and FIG. 3, the telescopic case 30 is structured such that a cylindrical body 31 with one end closed and the other end open is fitted with a cylindrical body 32 with one end closed and the other end open, the open ends of which are opposed to each other. The axial lengths of both the cylindrical bodies 31 and 32 are approximately the same, and the open ends of both the cylindrical bodies 31 and 32 are provided with return parts 31A and 32A that engage with each other to prevent separation. The telescopic case 30 can be changed between a maximum length state in which the return parts 31A and 32A engage with each other, and a minimum length state in which the open end of one cylindrical body 31 abuts against the bottom of the other cylindrical body 32. The telescopic case 30 in the minimum length state has an axial length that is, for example, approximately half that of the telescopic case 30 in the maximum length state.
 筒体31の外面には、上記した整流部91と負荷部92とを収容した回路ケース33が固定されている。また、一方の筒体31の底壁側端部には、周方向における複数位置から側方に張り出す複数の突片31Bが備えられ、それら各突片31Bに取付孔31Cが形成されている。また、他方の筒体32の先端部には、例えば、アジャスト機構35が備えられている。アジャスト機構35は、筒体32の底壁の外面中央から突出して内面に雌螺子部35Bを有する支持筒35Aと、その雌螺子部35Bに螺合する雄螺子部35Cを外面に有するシャフト部35Dと、シャフト部35Dの先端部に回転可能に取り付けられた当接板35Eとを備えてなる。 A circuit case 33 housing the rectifier section 91 and load section 92 is fixed to the outer surface of the cylinder 31. The bottom wall end of one cylinder 31 is provided with a plurality of protrusions 31B that protrude laterally from a plurality of positions in the circumferential direction, and each of the protrusions 31B has an attachment hole 31C. The tip of the other cylinder 32 is provided with, for example, an adjustment mechanism 35. The adjustment mechanism 35 is provided with a support cylinder 35A that protrudes from the center of the outer surface of the bottom wall of the cylinder 32 and has a female screw section 35B on its inner surface, a shaft section 35D that has a male screw section 35C on its outer surface that screws into the female screw section 35B, and an abutment plate 35E rotatably attached to the tip of the shaft section 35D.
 なお、本実施形態の伸縮ケース30は、例えば、樹脂又はステンレス等の非磁性体であるが、伸縮ケース30及び後述するスペーサ34を鉄等の磁性体で形成して後述する弾性体20と共に伸縮ケース30が磁路を形成するようにしてもよい。また、本実施形態の筒体31,32は、後述する弾性体20を介して接続されることで互いに回転不能に連結されているが、筒体31,32の一方に縦長の係合溝を設けると共に、他方に係合溝に係合する突部を設けて、筒体31,32同士の相対的な回転を規制してもよい。 In this embodiment, the telescopic case 30 is made of a non-magnetic material such as resin or stainless steel, but the telescopic case 30 and the spacer 34 described later may be made of a magnetic material such as iron so that the telescopic case 30 forms a magnetic path together with the elastic body 20 described later. In this embodiment, the cylindrical bodies 31 and 32 are connected to each other via the elastic body 20 described later, and are non-rotatable, but a vertically long engagement groove may be provided on one of the cylindrical bodies 31 and 32, and a protrusion that engages with the engagement groove may be provided on the other to restrict the relative rotation of the cylindrical bodies 31 and 32.
 図3に示すように、電磁誘導コイル12は、例えば一方の筒体31の内側に丁度収まる外径、軸長の円筒状をなして、筒体31内に固定されている。また、電磁誘導コイル12の1対のリード線12Aは、筒体31のうち底壁に近い側壁を貫通する貫通孔31Dを通して筒体31の側方に引き出されている。そして、それら1対のリード線12Aが回路ケース33に取り込まれて整流部91に接続されている。そして、1対のリード線12Aは、伸縮ケース30の伸縮に伴って屈曲する。なお、筒体32の開口側の端部には、1対のリード線12Aとの干渉を回避するための切り欠き32B(図2参照)が形成されている。 As shown in FIG. 3, the electromagnetic induction coil 12 is fixed inside one of the cylinders 31 with an outer diameter and axial length that fit just inside the cylinder 31. A pair of lead wires 12A of the electromagnetic induction coil 12 are pulled out to the side of the cylinder 31 through a through hole 31D that penetrates the side wall of the cylinder 31 closest to the bottom wall. The pair of lead wires 12A are then taken into the circuit case 33 and connected to the rectifier 91. The pair of lead wires 12A bend as the expandable case 30 expands and contracts. The open end of the cylinder 32 has a notch 32B (see FIG. 2) formed to avoid interference with the pair of lead wires 12A.
 弾性体20は、電磁誘導コイル12の内側に隙間を介して嵌合される円柱状をなし、伸縮ケース30の同心軸上に配置されて、両端面を筒体31,32の各底面に例えば接着材にて固定される。また、弾性体20の一端面と筒体32の底面との間には、必要に応じて弾性体20と同一外径の円柱状のスペーサ34が配置されて弾性体20の圧縮率が調整される。具体的には、スペーサ34を設けない場合には、伸縮ケース30が最長状態から最短状態に変化することで伸縮ケース30内の弾性体20は、伸縮ケース30と同様に1/2に圧縮される。これに対し、上記スペーサ34を設ければ、弾性体20を、1/2以上の任意の圧縮率になるまで圧縮率を高くすることができる。なお、図3には、スペーサ34を備えた弾性体20が1/3まで圧縮される構造が例示されている。 The elastic body 20 is cylindrical and fits into the electromagnetic induction coil 12 through a gap, and is arranged on the concentric axis of the telescopic case 30. Both end faces are fixed to the bottom faces of the cylindrical bodies 31 and 32, for example, with an adhesive. In addition, a cylindrical spacer 34 having the same outer diameter as the elastic body 20 is arranged between one end face of the elastic body 20 and the bottom face of the cylindrical body 32 as necessary to adjust the compression ratio of the elastic body 20. Specifically, when the spacer 34 is not provided, the elastic body 20 in the telescopic case 30 is compressed to 1/2 in the same manner as the telescopic case 30 when the telescopic case 30 changes from the longest state to the shortest state. In contrast, if the spacer 34 is provided, the compression ratio of the elastic body 20 can be increased to any compression ratio of 1/2 or more. Note that FIG. 3 illustrates a structure in which the elastic body 20 equipped with the spacer 34 is compressed to 1/3.
 弾性体20は、伸縮ケース30の最長状態で筒体31,32の両底面の間で僅かに圧縮されるようになっている。これにより、伸縮ケース30が外力を受けていない状態での筒体31,32同士の間のガタ止めが図られている。 The elastic body 20 is slightly compressed between the bottom surfaces of the cylindrical bodies 31 and 32 when the telescopic case 30 is in its longest position. This prevents rattling between the cylindrical bodies 31 and 32 when the telescopic case 30 is not receiving any external force.
 なお、弾性体20は、筒体31,32に接着材によって固定されていたが、固定されていなくてもよい。また、筒体31,32の各底面と、弾性体20の両端面とには、互いに凹凸嵌合して弾性体20を伸縮ケース30に対して芯出しするための凹凸を備えてもよい。 In addition, the elastic body 20 is fixed to the cylindrical bodies 31 and 32 with an adhesive, but it does not have to be fixed. In addition, the bottom surfaces of the cylindrical bodies 31 and 32 and both end surfaces of the elastic body 20 may have projections and recesses that fit into each other to center the elastic body 20 relative to the expandable case 30.
 弾性体20は、例えば、発泡エラストマーであり、内部に着磁された磁性粉体22が分散配置されている。即ち、弾性体20は、所謂、「磁性弾性体」である。以下の説明において、弾性体20のうち磁性粉体22が混合される主体となる弾性体の単体と、その弾性体と磁性粉体22とを含んだ弾性体20とを明確に区別するために、弾性体と磁性粉体22とを含む「弾性体20」全体を「磁性弾性体20」といい、弾性体の単体を、それが発泡エラストマーであることから発泡エラストマー21と呼ぶこととして両者を明確に区別する。 The elastic body 20 is, for example, a foamed elastomer, and has magnetized magnetic powder 22 dispersed within it. In other words, the elastic body 20 is what is called a "magnetic elastic body." In the following explanation, in order to clearly distinguish between the single elastic body that is the main component of the elastic body 20 into which the magnetic powder 22 is mixed, and the elastic body 20 that contains the elastic body and the magnetic powder 22, the entire "elastic body 20" that contains the elastic body and the magnetic powder 22 is referred to as the "magnetic elastic body 20," and the single elastic body is referred to as the foamed elastomer 21 because it is a foamed elastomer, to clearly distinguish between the two.
 発泡エラストマー21は、ポリウレタンエラストマーの発泡体であり、連続気泡構造又は半連続気泡構造になっている。また、発泡エラストマー21の発泡倍率は、1.4~6倍になっている。なお、発泡エラストマー21は、ゴムの発泡体や、ポリオレフィン系樹脂等の熱可塑性樹脂の発泡体等であってもよい。また、発泡エラストマー21は、全体が連続気泡構造又は半連続気泡構造であることが成形性や弾性変形容易性の観点から好ましいが、連続気泡構造又は半連続気泡構造となる部分は一部であってもよい。また、発泡エラストマー21は、少なくとも部分的に連続気泡構造を備えることで、成形後に発泡エラストマー21が縮む(いわゆる、シュリンクする)ことを抑制することができる。さらには、本実施形態の発泡エラストマー21の発泡倍率は、上述の通り1.4~6倍であるが、1.7~5倍であることがより好ましく、2~4倍であることが更に好ましい。ここで、発泡エラストマー21の発泡倍率が1.4倍以上であることで、クッション性が特に良好となり、発泡倍率が6倍以下であることで、成形性と耐久性が特に良好となる。また、上記発泡倍率は、磁性粉体22を含んだ発泡エラストマー21の発泡倍率ではなく、発泡エラストマー21単体の発泡倍率を示している。 The foamed elastomer 21 is a polyurethane elastomer foam and has an open cell structure or a semi-open cell structure. The foamed elastomer 21 has an expansion ratio of 1.4 to 6 times. The foamed elastomer 21 may be a rubber foam or a thermoplastic resin foam such as a polyolefin resin. It is preferable that the foamed elastomer 21 has an open cell structure or a semi-open cell structure as a whole from the viewpoint of moldability and ease of elastic deformation, but the open cell structure or semi-open cell structure may be a part of the foamed elastomer 21. By having at least a partial open cell structure, the foamed elastomer 21 can be prevented from shrinking (so-called shrinking) after molding. Furthermore, the foamed elastomer 21 in this embodiment has an expansion ratio of 1.4 to 6 times as described above, but it is more preferable that it is 1.7 to 5 times, and even more preferable that it is 2 to 4 times. Here, when the expansion ratio of the foamed elastomer 21 is 1.4 times or more, the cushioning properties are particularly good, and when the expansion ratio is 6 times or less, the moldability and durability are particularly good. Also, the above expansion ratio does not refer to the expansion ratio of the foamed elastomer 21 containing the magnetic powder 22, but to the expansion ratio of the foamed elastomer 21 alone.
 磁性粉体22は、ネオジム系磁性粉体であり、磁性粉体22の粒子径は、3~200μmになっている。なお、磁性粉体22は、特に、永久磁石化した際に強い磁力を有するネオジム系磁性粉体からなることが好ましいが、ネオジム系磁性粉体に限定されるものではなく、サマリウム系磁性粉体、アルニコ系磁性粉体、フェライト系磁性粉体等、公知の硬質磁性材料であってもよい。磁性粉体22の粒子23の形状は、限定されるものではないが、具体例としては、例えば、鱗片状、球状、針状等が挙げられる。さらには、本実施形態の磁性粉体22の粒子径は、上述の通り、3~200μmであるが、5~100μmがより好ましい。磁性粉体22の粒子径を大きくすることで、磁性弾性体20の表面磁束密度を高くすることが可能となる。磁性粉体22が、磁石粒子に表面処理がされてなる場合には、磁性粉体22の粒子径を大きくすることで、磁性粉体22における磁性成分の割合を大きくすることができ、磁性弾性体20の表面磁束密度をより高めることが可能となる。また、磁性粉体22の粒子径は、200μm以下であることが、磁性弾性体20の成形性や変形容易性の観点から好ましい。また、磁性粉体22の粒子径が200μm以下であることで成形性が特に良好となると共に、磁性粉体22が発泡エラストマー21から脱落することを一層防止可能となる。さらには、磁性粉体22の粒子径が3μm未満になると、作業性が悪くなるため、磁性粉体22の粒子径は3μm以上であることが好ましい。なお、上記粒子径は、JIS Z 8815:1994に準拠したふるい分け試験により測定される。 The magnetic powder 22 is a neodymium-based magnetic powder, and the particle diameter of the magnetic powder 22 is 3 to 200 μm. The magnetic powder 22 is preferably made of a neodymium-based magnetic powder that has a strong magnetic force when made into a permanent magnet, but is not limited to neodymium-based magnetic powder and may be a known hard magnetic material such as a samarium-based magnetic powder, an alnico-based magnetic powder, or a ferrite-based magnetic powder. The shape of the particles 23 of the magnetic powder 22 is not limited, but specific examples include, for example, a scale-like, spherical, or needle-like shape. Furthermore, the particle diameter of the magnetic powder 22 in this embodiment is 3 to 200 μm as described above, but is more preferably 5 to 100 μm. By increasing the particle diameter of the magnetic powder 22, it is possible to increase the surface magnetic flux density of the magnetic elastic body 20. When the magnetic powder 22 is formed by surface-treating magnet particles, the particle diameter of the magnetic powder 22 can be increased to increase the proportion of magnetic components in the magnetic powder 22, and the surface magnetic flux density of the magnetic elastic body 20 can be further increased. In addition, it is preferable that the particle diameter of the magnetic powder 22 is 200 μm or less from the viewpoint of moldability and ease of deformation of the magnetic elastic body 20. In addition, when the particle diameter of the magnetic powder 22 is 200 μm or less, moldability is particularly good, and it is possible to further prevent the magnetic powder 22 from falling off the foamed elastomer 21. Furthermore, if the particle diameter of the magnetic powder 22 is less than 3 μm, workability is deteriorated, so it is preferable that the particle diameter of the magnetic powder 22 is 3 μm or more. The above particle diameter is measured by a sieving test in accordance with JIS Z 8815:1994.
 本実施形態の磁性弾性体20では、発泡エラストマー21に対する磁性粉体22の質量濃度(質量比率)は、40~80%であり、発泡エラストマー21に対する磁性粉体22の体積濃度(体積比率)は1.0~3.5%になっている。これにより、磁性弾性体20を弾性変形させ易くしつつ、磁性弾性体20の磁束密度の変化を大きくすることが可能となる。なお、磁性弾性体20は、JIS K 6262:2013 A法に準拠した圧縮永久ひずみが、30%以下であることが好ましい。また、磁性弾性体20は、1Hzで10万回50%圧縮を繰返した場合の繰返し圧縮ひずみが、20%以下であることが好ましい。これらの構成によれば、発泡エラストマー21を弾性変形させた後の復元が良好である。これにより、磁性弾性体20が繰返し圧縮されて使用される用途に用いられる場合であっても、発泡エラストマー21のヘタリが低減され、磁性弾性体20が繰返しの使用に一層好適となる。 In the magnetic elastic body 20 of this embodiment, the mass concentration (mass ratio) of the magnetic powder 22 to the foamed elastomer 21 is 40 to 80%, and the volume concentration (volume ratio) of the magnetic powder 22 to the foamed elastomer 21 is 1.0 to 3.5%. This makes it possible to easily elastically deform the magnetic elastic body 20 while increasing the change in magnetic flux density of the magnetic elastic body 20. The magnetic elastic body 20 preferably has a compression permanent set of 30% or less in accordance with JIS K 6262:2013 A method. The magnetic elastic body 20 preferably has a repeated compression set of 20% or less when compressed 50% 100,000 times at 1 Hz. These configurations provide good recovery after the foamed elastomer 21 is elastically deformed. As a result, even when the magnetic elastic body 20 is used in an application in which it is repeatedly compressed, the settling of the foamed elastomer 21 is reduced, making the magnetic elastic body 20 even more suitable for repeated use.
 図5に示すように、発泡エラストマー21中の磁性粉体22の粒子23は、それぞれの磁気モーメント(詳細には、粒子23内の合成磁気モーメント)が、円柱形状の磁性弾性体20の軸方向に沿うように着磁され、これにより図4に示すように磁性弾性体20の軸方向の一端部がN極、他端部がS極となっている。詳細には、磁性粉体22の粒子23の中には、磁気モーメントの方向が磁性弾性体20の軸方向と交差するものが含まれ得るが、磁性粉体22の粒子23の磁気モーメントを合成した合成磁気モーメントの方向が、磁性弾性体20の軸方向となっている。なお、図5(A)と後述する図5(B)では、磁性粉体22の粒子23の磁化方向が、矢印で模式的に示されている。 As shown in FIG. 5, the particles 23 of the magnetic powder 22 in the foamed elastomer 21 are magnetized so that their magnetic moments (more specifically, the composite magnetic moment within the particles 23) are aligned along the axial direction of the cylindrical magnetic elastic body 20, so that one end of the magnetic elastic body 20 in the axial direction becomes the north pole and the other end becomes the south pole as shown in FIG. 4. In more detail, some of the particles 23 of the magnetic powder 22 may have magnetic moments whose direction crosses the axial direction of the magnetic elastic body 20, but the composite magnetic moment obtained by combining the magnetic moments of the particles 23 of the magnetic powder 22 is aligned along the axial direction of the magnetic elastic body 20. Note that in FIG. 5(A) and FIG. 5(B) described later, the magnetization directions of the particles 23 of the magnetic powder 22 are indicated diagrammatically by arrows.
 電気機器100Aの構造に関する説明は、以上である。この電気機器100Aは、以下の方法にて製造される。即ち、図6に示すように磁性弾性体20を製造するには、まず、ポリオールとイソシアネートを混合してプレポリマー化した第1液を用意する。ここで、第1液は、イソシアネート基(NCO)を末端に有するプレポリマーである。その後、第1液に磁性粉体22を混合し、均一に分散させる(S11)。また、触媒、発泡剤等を含む第2液を用意する(S11)。その後、第1液と第2液とを混合し、その混合液を得る(S12)。ここで、イソシアネート基を末端に有するプレポリマーのNCO%は、3~7%とすることが好ましく、本実施形態では、6%とした。これにより、成形性や耐久性に優れた磁性弾性体20を得ることが可能となる。 The structure of the electrical device 100A has been described above. The electrical device 100A is manufactured by the following method. That is, to manufacture the magnetic elastic body 20 as shown in FIG. 6, first, a first liquid is prepared by mixing polyol and isocyanate to form a prepolymer. Here, the first liquid is a prepolymer having an isocyanate group (NCO) at the end. Then, the magnetic powder 22 is mixed into the first liquid and uniformly dispersed (S11). Also, a second liquid containing a catalyst, a foaming agent, etc. is prepared (S11). Then, the first liquid and the second liquid are mixed to obtain a mixed liquid (S12). Here, the NCO% of the prepolymer having an isocyanate group at the end is preferably 3 to 7%, and in this embodiment, it is 6%. This makes it possible to obtain a magnetic elastic body 20 with excellent moldability and durability.
 次に、上記混合液を、あらかじめ温調された成形型に注入して発泡硬化させ、例えば円柱状をなした発泡成形体を形成する(S13)。この発泡成形体では、磁性粉体22が、発泡エラストマー21内に分散している。また、上記発泡成形体では、磁性粉体22の各粒子23の磁気モーメントがランダムな方向を向いている。なお、上記混合液の成形型での発泡硬化工程では、閉型状態で所定時間キュア(一次キュア)を行った後、得られた発泡成形体を成形型から取り出す。一次キュアは、例えば60~120℃で10~120分間、行われる。一次キュアを行って成形型から取り出された発泡成形体については、さらに二次キュアを行うことが好ましく、二次キュアは、例えば90~180℃で8~24時間、行われる。本実施形態では、磁性粉体22が内部に分散配置される弾性部材が、ポリウレタンエラストマーであるので、原料が硬化するまでの時間が短く、磁性粉体22が原料内で沈降する前に原料を硬化させることが可能となる。これにより、磁性粉体22を均一に分散配置することが容易となる。従って、100μm以上の粒子径の磁性粉体22であっても磁性弾性体20内に容易に分散させることが可能となり、磁性弾性体20の磁束密度を高くすることが可能となる。 Next, the mixture is poured into a mold whose temperature has been adjusted in advance, and foamed and cured to form, for example, a cylindrical foamed molded body (S13). In this foamed molded body, the magnetic powder 22 is dispersed in the foamed elastomer 21. In addition, in the foamed molded body, the magnetic moment of each particle 23 of the magnetic powder 22 is randomly oriented. In the foaming and curing process of the mixture in the mold, the mold is closed and cured for a predetermined time (primary curing), and then the obtained foamed molded body is removed from the mold. The primary curing is performed, for example, at 60 to 120°C for 10 to 120 minutes. It is preferable to further perform secondary curing on the foamed molded body removed from the mold after the primary curing, and the secondary curing is performed, for example, at 90 to 180°C for 8 to 24 hours. In this embodiment, the elastic member in which the magnetic powder 22 is dispersed and arranged is a polyurethane elastomer, so that the time until the raw material hardens is short, and it is possible to harden the raw material before the magnetic powder 22 settles in the raw material. This makes it easy to uniformly disperse the magnetic powder 22. Therefore, even magnetic powder 22 with a particle diameter of 100 μm or more can be easily dispersed within the magnetic elastic body 20, making it possible to increase the magnetic flux density of the magnetic elastic body 20.
 なお、本実施形態では、磁性粉体22を第1液に混合した後に第2液に混合するので、磁性粉体22を第2液に混合した後に第1液に混合する場合に比べて、磁性粉体22を発泡エラストマー21内に均一に分散することができる。 In addition, in this embodiment, the magnetic powder 22 is mixed into the first liquid and then mixed into the second liquid, so the magnetic powder 22 can be dispersed more uniformly within the foamed elastomer 21 than when the magnetic powder 22 is mixed into the second liquid and then mixed into the first liquid.
 次に、上記発泡成形体を着磁する(S14)。この工程では、発泡成形体内の磁性粉体22の粒子23の磁気モーメントを、外部磁場を印加することにより揃える。本実施形態では、外部磁場を、円柱状の発泡エラストマー21の軸方向に印加する。ここで、着磁は、発泡成形体が変形していない自然長状態で行ってもよいし、自然長状態に対して軸方向に圧縮した状態(例えば50%圧縮した50%圧縮状態)で行ってもよい。以上により、発泡成形体から磁性弾性体20が得られる。 Next, the foamed molded body is magnetized (S14). In this process, the magnetic moments of the particles 23 of the magnetic powder 22 in the foamed molded body are aligned by applying an external magnetic field. In this embodiment, the external magnetic field is applied in the axial direction of the cylindrical foamed elastomer 21. Here, magnetization may be performed when the foamed molded body is in its natural length state without deformation, or when it is compressed in the axial direction relative to its natural length state (for example, compressed by 50%). In this manner, the magnetic elastomer body 20 is obtained from the foamed molded body.
 また、磁性弾性体20は、軸方向に10%圧縮されたときに、磁束密度(表面磁束密度)が自然長状態よりも5%以上大きくなるものであることが特に好ましい。このような磁性弾性体20は、例えば、磁性粉体22を分散させた発泡エラストマー21を圧縮した状態(例えば50%圧縮した状態)で、その圧縮方向に磁性粉体22を着磁することで製造することができる。 Furthermore, it is particularly preferable that the magnetic elastomer 20 has a magnetic flux density (surface magnetic flux density) that is 5% or more greater than that at its natural length when compressed 10% in the axial direction. Such a magnetic elastomer 20 can be manufactured, for example, by compressing a foamed elastomer 21 having magnetic powder 22 dispersed therein (for example, compressed to 50%) and magnetizing the magnetic powder 22 in the direction of compression.
 上述の如く製造された磁性弾性体20は、以下のようにして伸縮ケース30に組み付けられる。即ち、伸縮ケース30の筒体31,32が分離した状態に用意される。そして、一方の筒体31に電磁誘導コイル12の1対のリード線12Aを貫通孔31Dから引き出された状態で電磁誘導コイル12が固定され、その電磁誘導コイル12の内側に両端面に接着剤が塗布された磁性弾性体20が配置されて、筒体31,32の両底面に固着される。その際、必要に応じてスペーサ34が磁性弾性体20の一端面と筒体32の底面の間に接着材にて固着される。そして、一方の筒体31が、開口端を窄めるように変形されて、他方の筒体32の内側に押し込まれ、一方の筒体31が弾性復帰して両筒体31,32の返し部31A,32Aが係合する。 The magnetic elastic body 20 manufactured as described above is assembled to the telescopic case 30 as follows. That is, the cylindrical bodies 31 and 32 of the telescopic case 30 are prepared in a separated state. Then, the electromagnetic induction coil 12 is fixed to one cylindrical body 31 with the pair of lead wires 12A of the electromagnetic induction coil 12 pulled out from the through hole 31D, and the magnetic elastic body 20 with adhesive applied to both end faces is placed inside the electromagnetic induction coil 12 and fixed to both bottom faces of the cylindrical bodies 31 and 32. At this time, if necessary, a spacer 34 is fixed between one end face of the magnetic elastic body 20 and the bottom face of the cylindrical body 32 with an adhesive. Then, one cylindrical body 31 is deformed so as to narrow the open end and is pushed inside the other cylindrical body 32, and one cylindrical body 31 elastically returns to its original state so that the return parts 31A and 32A of both cylindrical bodies 31 and 32 engage with each other.
 次いで、電磁誘導コイル12の1対のリード線12Aが整流部91に接続されると共に、整流部91が負荷部92に接続され、それら整流部91及び負荷部92が回路ケース33に収納される。以上を以て電気機器100Aの製造が完了する。 Next, the pair of lead wires 12A of the electromagnetic induction coil 12 is connected to the rectifier 91, and the rectifier 91 is connected to the load 92, and the rectifier 91 and the load 92 are stored in the circuit case 33. This completes the manufacture of the electrical device 100A.
 本実施形態の電気機器100Aの製造方法に関する説明は以上である。次に、電気機器100Aの作用効果について説明する。図3に示すように、電気機器100Aは、相互間の間隔が変動し得る1対の対向部材201,202の間の隙間にセットされて、それら1対の対向部材201,202の変形・動作等の検出を行うために使用される。そのためには、電気機器100Aは、伸縮ケース30の軸方向(電磁誘導コイル12及び磁性弾性体20の軸方向でもある)が、1対の対向部材201,202の対向方向を向くように配置される。そして、例えば、1対の対向部材201,202の間隔が通常状態であるときに、伸縮ケース30が所望の状態になるようにアジャスト機構35が調整される。具体的には、1対の対向部材201,202が通常状態から離間する場合と接近する場合の両方の検出を行う場合には、伸縮ケース30が最長状態の略1/2程度の圧縮状態になるようにアジャスト機構35が調整される。また、1対の対向部材201,202が通常状態から接近したことのみを検出したい場合には、通常状態の1対の対向部材201,202の間で伸縮ケース30が僅かに圧縮した状態になるか、アジャスト機構35の当接板35Eが一方の対向部材202から僅かに離れた状態になるようにアジャスト機構35が調整される。また、電気機器100Aが1対の対向部材201,202から横ずれしないようにするために、必要に応じて、伸縮ケース30の取付孔31Cに通したボルトを一方の磁性弾性体201の螺子孔に締め付ける等して伸縮ケース30を一方の磁性弾性体201に固定することが好ましい。 The manufacturing method of the electric device 100A of this embodiment has been described above. Next, the effect of the electric device 100A will be described. As shown in FIG. 3, the electric device 100A is set in the gap between a pair of opposing members 201, 202 whose mutual distance may vary, and is used to detect the deformation, operation, etc. of the pair of opposing members 201, 202. For this purpose, the electric device 100A is arranged so that the axial direction of the telescopic case 30 (which is also the axial direction of the electromagnetic induction coil 12 and the magnetic elastic body 20) faces the opposing direction of the pair of opposing members 201, 202. Then, for example, when the distance between the pair of opposing members 201, 202 is in the normal state, the adjustment mechanism 35 is adjusted so that the telescopic case 30 is in a desired state. Specifically, when detecting both the case where the pair of opposing members 201, 202 move away from the normal state and the case where they approach each other, the adjustment mechanism 35 is adjusted so that the telescopic case 30 is in a compressed state that is approximately half of the maximum state. In addition, when it is desired to detect only that the pair of opposing members 201, 202 have come closer to each other from the normal state, the adjust mechanism 35 is adjusted so that the telescopic case 30 is slightly compressed between the pair of opposing members 201, 202 in the normal state, or the abutment plate 35E of the adjust mechanism 35 is slightly separated from one of the opposing members 202. In addition, in order to prevent the electrical device 100A from shifting laterally from the pair of opposing members 201, 202, it is preferable to fix the telescopic case 30 to one of the magnetic elastic bodies 201, for example, by tightening a bolt passed through the mounting hole 31C of the telescopic case 30 into a screw hole of one of the magnetic elastic bodies 201, as necessary.
 上述の如く、電気機器100Aが1対の対向部材201,202の間にセットされた状態で、1対の対向部材201,202の間隔が変化すると、伸縮ケース30と共に磁性弾性体20が軸方向で伸縮される。すると、磁性弾性体20による磁界の磁束のうち電磁誘導コイル12を貫通する磁束の密度が変化し、誘導電流Iが発生する。即ち、発電部10にて発電が行われる。 As described above, when the electrical device 100A is set between the pair of opposing members 201, 202 and the distance between the pair of opposing members 201, 202 changes, the magnetic elastic body 20 expands and contracts in the axial direction together with the expandable case 30. This changes the density of the magnetic flux that penetrates the electromagnetic induction coil 12 out of the magnetic flux of the magnetic field produced by the magnetic elastic body 20, generating an induced current I. In other words, power is generated in the power generation unit 10.
 その発電が行われるメカニズムは、以下の通りであると考えられる。即ち、電磁誘導コイル12の軸方向において、磁性弾性体20中の磁束密度をBz、外部磁場をHz、磁性弾性体20の磁化をMz、真空の透磁率をμ0とすると、
   Bz=μ0・Hz+Mz           ・・・(A)
の関係があることが知られている。また、磁化Mzについては、電磁誘導コイル12の軸方向での磁性粉体22の粒子23の磁気モーメントの平均値をmz、磁性弾性体20の単位体積当たりの磁性粉体22の粒子23の数をnとすると、
   Mz=n・mz               ・・・(B)
の関係が成り立つことが知られている。
The mechanism by which the power generation occurs is considered to be as follows: In other words, in the axial direction of the electromagnetic induction coil 12, if the magnetic flux density in the magnetic elastic body 20 is Bz, the external magnetic field is Hz, the magnetization of the magnetic elastic body 20 is Mz, and the magnetic permeability of a vacuum is μ0, then:
Bz = μ0 · Hz + Mz ... (A)
Regarding the magnetization Mz, if the average value of the magnetic moment of the particles 23 of the magnetic powder 22 in the axial direction of the electromagnetic induction coil 12 is mz, and the number of the particles 23 of the magnetic powder 22 per unit volume of the magnetic elastic body 20 is n, then
Mz = n mz ... (B)
It is known that the relationship
 ここで、磁性弾性体20は、発泡エラストマー21に磁性粉体22を混合してなるので、軸方向で圧縮されると、発泡エラストマー21の気泡が潰れ、伸びると気泡が膨らみ、径方向のサイズの変化を抑えられた状態で伸縮する。そして、磁性弾性体20が電磁誘導コイル12の軸方向で圧縮されると(図5(B))、磁性弾性体20における磁性粉体22の粒子23の分布密度が上がり(即ち、関係式(B)のnが大きくなり)、磁化Mzが大きくなると考えられ、伸びると、磁化Mzが小さくなると考えられる。 Here, the magnetic elastic body 20 is made by mixing the foamed elastomer 21 with the magnetic powder 22, so when it is compressed in the axial direction, the bubbles of the foamed elastomer 21 are crushed, and when it is stretched, the bubbles expand, and it expands and contracts while suppressing changes in radial size. When the magnetic elastic body 20 is compressed in the axial direction of the electromagnetic induction coil 12 (Figure 5 (B)), the distribution density of the particles 23 of the magnetic powder 22 in the magnetic elastic body 20 increases (i.e., n in the relational expression (B) becomes larger), and it is thought that the magnetization Mz increases, and when it is stretched, the magnetization Mz decreases.
 特に、磁性弾性体20を、自然長状態に対して縮んだ圧縮状態で着磁した場合、磁性弾性体20が電磁誘導コイル12の軸方向で圧縮されると、自然長状態に比べて磁性粉体22の粒子23の磁気モーメントの向きが電磁誘導コイル12の軸方向に揃うこととなるので、磁気モーメントの平均値mzが大きくなると考えられる。 In particular, when the magnetic elastic body 20 is magnetized in a compressed state in which it is shrunk relative to its natural length, when the magnetic elastic body 20 is compressed in the axial direction of the electromagnetic induction coil 12, the magnetic moment of the particles 23 of the magnetic powder 22 will be aligned in the axial direction of the electromagnetic induction coil 12 compared to when it is in its natural length, and it is believed that the average value mz of the magnetic moment will be larger.
 また、上述の磁性粉体22の分布密度の変化による効果に加えて、磁気モーメントの平均値mzが増減することで、磁化Mzの変化量が更に大きくなると考えられる。詳細には、磁性弾性体20が圧縮されると、着磁されたときの圧縮量(即ち、磁性粉体22の磁気モーメントmzの向きが磁性弾性体20の軸方向に最も揃う状態となる圧縮量)の付近に達したときに磁化Mzが特に大きくなると考えられる。磁化Mzが大きくなると、上記関係式(A)から、磁性弾性体20中の磁束密度Bzが大きくなるので、電磁誘導コイル12内を貫く磁束が大きくなる。磁性弾性体20が伸びる場合には、圧縮される場合と逆の現象になる。そして、これら磁束の変化を打ち消す向き(図7では下向き)に磁場H'を発生させるように、電磁誘導コイル12に誘導電流Iが流れると考えられる。なお、図7及び図8では、誘導電流Iと、誘導電流Iにより発生する磁場H'は、灰色矢印で示されている。 In addition to the effect of the change in distribution density of the magnetic powder 22 described above, the increase or decrease in the average value mz of the magnetic moment is considered to further increase the change in magnetization Mz. In detail, when the magnetic elastic body 20 is compressed, the magnetization Mz is considered to be particularly large when it reaches the compression amount at the time of magnetization (i.e., the compression amount at which the magnetic moment mz of the magnetic powder 22 is most aligned in the axial direction of the magnetic elastic body 20). When the magnetization Mz increases, the magnetic flux density Bz in the magnetic elastic body 20 increases according to the above relational expression (A), and the magnetic flux penetrating the electromagnetic induction coil 12 increases. When the magnetic elastic body 20 expands, the opposite phenomenon occurs to when it is compressed. It is considered that the induced current I flows through the electromagnetic induction coil 12 so as to generate a magnetic field H' in a direction that cancels out these changes in magnetic flux (downward in FIG. 7). In FIG. 7 and FIG. 8, the induced current I and the magnetic field H' generated by the induced current I are indicated by gray arrows.
 図8(A)及び図8(B)には、磁性弾性体20の変形により、磁性弾性体20のうち電磁誘導コイル12内に配置される部分の大きさが変化する場合の例が示されている。この場合には、以下で説明するように、磁性弾性体20の磁化の変化とは別の要因によっても、電磁誘導コイル12内を貫く磁束が変化すると考えられる。 Figures 8(A) and 8(B) show an example in which the size of the portion of the magnetic elastic body 20 that is placed inside the electromagnetic induction coil 12 changes due to deformation of the magnetic elastic body 20. In this case, as will be explained below, it is considered that the magnetic flux penetrating the electromagnetic induction coil 12 changes due to factors other than the change in magnetization of the magnetic elastic body 20.
 図8(A)及び図8(B)の例では、磁性弾性体20が、電磁誘導コイル12の軸方向に圧縮される。この場合、電磁誘導コイル12内の領域には、磁性弾性体20の変形前(図8(A))には磁性弾性体20が存在する一方で、変形後(図8(B))には磁性弾性体20が存在しなくなる領域Rが設けられることとなる。この領域Rでは、磁性弾性体20の変形前後で、磁束が変化することになるため、領域Rには、この磁束の変化を打ち消すように磁場H"が発生すると考えられる。この磁場H"は、上述の磁性弾性体20における磁性粉体22の粒子23の分布密度変化による磁場H'と反対向きになり得るが、これらの磁場は、磁性弾性体20を変形させる過程で常に同じ大きさとなるわけではないため、電磁誘導コイル12内を貫く磁束の変化が起きて電磁誘導コイル12に誘導電流Iを発生させることができると考えられる。なお、このように、互いに反対向きになる磁場H'、 磁場H"が発生する場合には、図9に示されるように領域Rを囲む電磁誘導コイル12Vを配置してもよい。このように、磁場H'により発生する誘導電流と、磁場H"により発生する誘導電流とを、別の回路に発生させることで、それら誘導電流が相殺されることを防ぐことが可能となる。なお、磁性弾性体20が伸長する場合も、磁性弾性体20が圧縮される場合と同様である。 In the examples of Figures 8(A) and 8(B), the magnetic elastic body 20 is compressed in the axial direction of the electromagnetic induction coil 12. In this case, a region R is provided in the electromagnetic induction coil 12 where the magnetic elastic body 20 exists before deformation of the magnetic elastic body 20 (Figure 8(A)), but where the magnetic elastic body 20 does not exist after deformation (Figure 8(B)). In this region R, the magnetic flux changes before and after deformation of the magnetic elastic body 20, so it is considered that a magnetic field H" is generated in region R to cancel out this change in magnetic flux. This magnetic field H" can be in the opposite direction to the magnetic field H' due to the change in distribution density of the particles 23 of the magnetic powder 22 in the magnetic elastic body 20 described above, but these magnetic fields do not always have the same magnitude during the process of deforming the magnetic elastic body 20, so it is considered that a change in the magnetic flux penetrating the electromagnetic induction coil 12 occurs, and an induced current I can be generated in the electromagnetic induction coil 12. When magnetic fields H' and H" are generated in opposite directions, an electromagnetic induction coil 12V may be disposed surrounding region R as shown in FIG. 9. In this way, by generating the induced current generated by magnetic field H' and the induced current generated by magnetic field H" in separate circuits, it is possible to prevent these induced currents from cancelling each other out. The case in which the magnetic elastic body 20 expands is similar to the case in which the magnetic elastic body 20 is compressed.
 上述の如く、発電部10で発生した誘導電流Iは、整流部91で整流されて負荷部92に受電される。すると、負荷部92の無線モジュール92Aから識別番号の情報を含んだ無線信号が出力される。これにより、電気機器100Aから離れた場所の無線端末で電気機器100Aからの無線信号を受信して1対の対向部材201,202が受ける負荷や挙動を監視することができる。 As described above, the induced current I generated by the power generation unit 10 is rectified by the rectifier unit 91 and received by the load unit 92. Then, a wireless signal including the identification number information is output from the wireless module 92A of the load unit 92. This makes it possible to receive the wireless signal from the electrical device 100A with a wireless terminal located away from the electrical device 100A and monitor the load and behavior of the pair of opposing members 201, 202.
 なお、本実施形態の電気機器100Aを、高架橋の橋桁と橋本体との間の隙間や、免震構造を有する建物の床下等の隙間や、道路の路面下の隙間等に複数セットして、それら各電気機器100Aの設置場所と識別番号とを対応付けて記憶しておき、監視端末で複数の電気機器100Aから無線信号を監視することで、高架橋や建物の台風や地震等による挙動や異常の有無等を監視することができる。 In addition, by setting multiple electrical devices 100A of this embodiment in gaps between the bridge girders and the bridge body of an viaduct, gaps under the floors of buildings with seismic isolation structures, gaps under the road surface, etc., and storing the installation location and identification number of each electrical device 100A in association with each other, and monitoring wireless signals from multiple electrical devices 100A with a monitoring terminal, it is possible to monitor the behavior of viaducts and buildings due to typhoons, earthquakes, etc., and the presence or absence of abnormalities.
 以上説明したように本実施形態の電気機器100Aは、磁性弾性体20の変形にて電磁誘導コイル12を貫通する磁界の磁束密度を変化させて電磁誘導による自己発電を行うので、従来の回転機で発電を行う電気機器に比べ、発電に係る構造を簡素にすることができる。 As described above, the electrical device 100A of this embodiment generates its own power through electromagnetic induction by changing the magnetic flux density of the magnetic field penetrating the electromagnetic induction coil 12 through the deformation of the magnetic elastic body 20, so the power generation structure can be simplified compared to electrical devices that generate power using conventional rotating machines.
 また、磁性弾性体20は、発泡エラストマーであるので、非発泡のエラストマーを含む一般的な樹脂や金属等の弾性体で磁性弾性体を形成した場合に比べて、大きなストロークで伸縮させることができる。そして、磁性弾性体20は大きなストロークの変形によって磁束密度を変化させて発電を行うことができるので、短いストロークでしか磁束密度を変化させることができないものに比べて、1ストローク当りの発電量を多くすることができる。また、短いストロークでしか磁束密度を変化させることができないものと同じ発電量を得るとしたら、長周期で磁束の向きを反転させた発電が可能になる。つまり、本実施形態の電気機器100Aが有する発電部10では、低周波数の交流の発電が可能になり、これにより発電部10とそれに接続される整流部91、負荷部92等との間のインピーダンス整合を容易に図られる。さらに、磁性弾性体20は、上述の通り伸縮に伴う径方向のサイズの変化を抑えられるので電磁誘導コイル12との干渉が抑えられ、磁性弾性体20とその外側の電磁誘導コイル12との間のクリアランスを狭くして発電効率を高くすることができまた、磁性弾性体20は、発泡エラストマーであるので、破損し難く、取り扱いも容易になる。 Furthermore, since the magnetic elastic body 20 is a foamed elastomer, it can be expanded and contracted with a larger stroke than when the magnetic elastic body is formed from an elastic body such as a general resin or metal containing a non-foamed elastomer. And since the magnetic elastic body 20 can generate electricity by changing the magnetic flux density through deformation with a large stroke, it is possible to generate more electricity per stroke than one that can only change the magnetic flux density with a short stroke. Also, if the same amount of electricity is to be obtained as one that can only change the magnetic flux density with a short stroke, it is possible to generate electricity by reversing the direction of the magnetic flux in a long period. In other words, the power generation unit 10 of the electric device 100A of this embodiment makes it possible to generate low-frequency alternating current, which makes it easy to achieve impedance matching between the power generation unit 10 and the rectification unit 91, load unit 92, etc. connected to it. Furthermore, as described above, the magnetic elastic body 20 is able to suppress changes in radial size due to expansion and contraction, which reduces interference with the electromagnetic induction coil 12 and narrows the clearance between the magnetic elastic body 20 and the electromagnetic induction coil 12 outside it, improving power generation efficiency. Also, because the magnetic elastic body 20 is a foamed elastomer, it is less likely to break and is easier to handle.
 [第2実施形態]
 本実施形態の電気機器100Bは、図10に示されており、整流部91Vと負荷部92Vの構成が前記第1実施形態と異なる。即ち、整流部91Vは、2倍圧整流回路になっていて、整流部91Vの1対の出力端末の間には二次電池91Aが接続されている。また、負荷部92Vには、検出回路92Bと無線回路92Cとが備えられ、負荷部92Vには、電磁誘導コイル12に流れる誘導電流を検出するための電流検出部92Dが接続されている。さらに、検出回路92Bには、A/Dコンバータとマイコンとが含まれている。そして、電磁誘導コイル12で生成される誘導電流に基づいて電気機器100Bが受ける外力を特定するための検出データを生成し、その検出データを無線回路92Cにて無線送信する。なお、検出データとしては、例えば、誘導電流のFFTデータやスペクトルデータや誘導電流の波形に含まれるピーク値のデータ等、様々なものが挙げられる。
[Second embodiment]
The electric device 100B of this embodiment is shown in FIG. 10, and the configuration of the rectifier 91V and the load 92V is different from that of the first embodiment. That is, the rectifier 91V is a double voltage rectifier circuit, and a secondary battery 91A is connected between a pair of output terminals of the rectifier 91V. The load 92V is provided with a detection circuit 92B and a wireless circuit 92C, and a current detection unit 92D for detecting an induced current flowing through the electromagnetic induction coil 12 is connected to the load 92V. Furthermore, the detection circuit 92B includes an A/D converter and a microcomputer. Then, based on the induced current generated by the electromagnetic induction coil 12, detection data for identifying an external force received by the electric device 100B is generated, and the detection data is wirelessly transmitted by the wireless circuit 92C. In addition, various types of detection data can be used, such as FFT data, spectrum data, and peak value data included in the waveform of the induced current.
 本実施形態の電気機器100Bでは、発電部10にて生成される誘導電流に基づいて外力を特定するための検出データを生成してから無線送信するので、電気機器100Bから離れた遠隔値において無線送信によるノイズの影響を受け難いデータ収集が可能になる。また、二次電池91Aを備えたことで負荷部92Vへの給電が安定する。 In the electric device 100B of this embodiment, detection data for identifying an external force is generated based on the induced current generated in the power generation unit 10, and then wirelessly transmitted, making it possible to collect data at a remote location far from the electric device 100B that is less susceptible to noise caused by wireless transmission. In addition, the provision of the secondary battery 91A stabilizes the power supply to the load unit 92V.
 [第3実施形態]
 本開示の第3実施形態の電気機器100Cは、図11に示されており、車両60に搭載されて、車両60のバッテリ51を充電するためのものである。以下、第1及び第2の実施形態と異なる構成に関してのみ説明する。
[Third embodiment]
11, an electric device 100C according to a third embodiment of the present disclosure is mounted on a vehicle 60 and is intended to charge a battery 51 of the vehicle 60. Only configurations that differ from the first and second embodiments will be described below.
 本実施形態の電気機器100Cの発電部10は、車両60のサスペンション61に組み付けられる。その車両60のサスペンション61は、図11(B)に示すように、ショックアブソーバ62とサスペンションばね63を有する。サスペンションばね63は、ショックアブソーバ62のシリンダ65から外側に張り出した鍔状部65Tと車体60Bとの間に挟まれている。そして、電気機器100Cの発電部10に含まれる磁性弾性体20Vは、筒状をなしてショックアブソーバ62のピストンロッド64に嵌合され、バウンドストッパとして機能するようになっている。即ち、磁性弾性体20Vは、ショックアブソーバ62が縮むとシリンダ65と車体60Bとの間で圧縮されて車両60のバウンドを抑える役割を果たす。 The power generating unit 10 of the electric device 100C of this embodiment is attached to the suspension 61 of the vehicle 60. The suspension 61 of the vehicle 60 has a shock absorber 62 and a suspension spring 63, as shown in FIG. 11(B). The suspension spring 63 is sandwiched between a flange 65T that protrudes outward from the cylinder 65 of the shock absorber 62 and the vehicle body 60B. The magnetic elastic body 20V included in the power generating unit 10 of the electric device 100C is cylindrical and fitted into the piston rod 64 of the shock absorber 62, functioning as a bound stopper. That is, when the shock absorber 62 contracts, the magnetic elastic body 20V is compressed between the cylinder 65 and the vehicle body 60B, thereby serving to suppress the bounding of the vehicle 60.
 電気機器100Cの発電部10の電磁誘導コイル12は、サスペンションばね63の内側で、磁性弾性体20Vを取り巻くように配置されて上端部を車体60Bに固定されている。そして、磁性弾性体20Vが伸縮することで電磁誘導コイル12に誘導電流が流れるように発電される。 The electromagnetic induction coil 12 of the power generation unit 10 of the electrical device 100C is disposed inside the suspension spring 63 so as to surround the magnetic elastic body 20V, and its upper end is fixed to the vehicle body 60B. When the magnetic elastic body 20V expands and contracts, an induced current flows in the electromagnetic induction coil 12, generating electricity.
 電気機器100Cの整流部91Wは発電部10で発電された電力を、バッテリ51を充電するために必要な電圧まで昇圧する。そして、電気機器100Cの負荷部に相当するバッテリ51に、発電部10の出力が整流部91Wを通して付与されてバッテリ51が充電される。 The rectifier 91W of the electrical device 100C boosts the power generated by the power generator 10 to a voltage required to charge the battery 51. The output of the power generator 10 is then applied to the battery 51, which corresponds to the load of the electrical device 100C, through the rectifier 91W, thereby charging the battery 51.
 なお、上記実施形態では、車両60として自動車を例示したが、例えば、二輪車や電車等の車両サスペンションに適用してもよい。また、自動車としては、例えば、電気自動車、ハイブリッド自動車,プラグインハイブリッド自動車等の電動車両が挙げられる。 In the above embodiment, an automobile is used as an example of the vehicle 60, but the present invention may also be applied to the suspension of a motorcycle, train, or other vehicle. Examples of automobiles include electric vehicles, hybrid vehicles, plug-in hybrid vehicles, and other electrically powered vehicles.
 [第4実施形態]
 第4実施形態の電気機器100Dは、図12に示されており、前記第3実施形態の電気機器100Cと同様の発電部10を有すると共に、前記第2実施形態の電気機器100Bと同様の整流部91Vを備えると共に検出回路92Bを負荷部として備える。そして、検出回路92Bで生成した検出データを車両60の制御装置86に付与する。制御装置86は、付与された検出データに基づき、車両60の過搭載やサスペンション61の故障等の異常の有無を判別し、異常があったときには警告灯85を点灯して運転者に異常を報知する。
[Fourth embodiment]
12, the electric device 100D of the fourth embodiment has a power generating unit 10 similar to that of the electric device 100C of the third embodiment, a rectifying unit 91V similar to that of the electric device 100B of the second embodiment, and a detection circuit 92B as a load unit. Detection data generated by the detection circuit 92B is provided to the control device 86 of the vehicle 60. The control device 86 determines the presence or absence of an abnormality, such as overloading of the vehicle 60 or a failure of the suspension 61, based on the provided detection data, and when an abnormality is detected, turns on a warning light 85 to notify the driver of the abnormality.
 なお、上記実施形態では、車両60に電気機器100Dを備え、車両60に関する異常を検知する構成であったが、例えば、工場プラントにおけるタンクや配管に上記電気機器100Dを備え、タンクや配管の異常を検出する構成であってもよい。 In the above embodiment, the vehicle 60 is provided with the electrical device 100D, and an abnormality related to the vehicle 60 is detected. However, for example, the electrical device 100D may be provided in a tank or pipe in a factory plant, and an abnormality in the tank or pipe may be detected.
 [第5実施形態]
 本実施形態の電気機器100Eは、図13(A)及び図13(B)に示されており、建物や乗り物の床構造71に組み込まれている。具体的には、この床構造71は、土台72の上に床パネル73が敷かれた構造となっていて、土台72と床パネル73の間には、複数の緩衝材78が敷き詰められている。床パネル73に荷重がかかると、緩衝材78が弾性変形する。そして、複数の緩衝材78の1つ又は一部複数が、磁性弾性体20Wになっていて、その磁性弾性体20Wを囲むように電磁誘導コイル12が備えられている。また、電気機器100Eは、第1実施形態と同様の整流部と無線モジュールとを回路ケース33に収容して備える。
[Fifth embodiment]
The electric device 100E of this embodiment is shown in Fig. 13(A) and Fig. 13(B) and is incorporated in a floor structure 71 of a building or vehicle. Specifically, the floor structure 71 has a structure in which a floor panel 73 is laid on a base 72, and a plurality of cushioning materials 78 are laid between the base 72 and the floor panel 73. When a load is applied to the floor panel 73, the cushioning materials 78 are elastically deformed. One or a part of the plurality of cushioning materials 78 is a magnetic elastic body 20W, and an electromagnetic induction coil 12 is provided so as to surround the magnetic elastic body 20W. The electric device 100E also has a rectifier unit and a wireless module similar to those of the first embodiment housed in a circuit case 33.
 [第6実施形態]
 本実施形態の電気機器100Fは、図14に示されており、磁性弾性体20が外力を受けて捻れ変形するようになっている。具体的には、電気機器100Fは、第1実施形態の電気機器100Aの伸縮ケース30の一方の筒体32からアジャスト機構35を排除し、他方の筒体32と同様の複数の突片31Bを備えてなるツイストケース30Vに、第1実施形態の電気機器100Aの磁性弾性体20,電磁誘導コイル12と同一形状の磁性弾性体20及び電磁誘導コイル12を備えた構造をなしている。そして、そのツイストケース30Vが、相対的に回転する1対の部材や負荷トルクを受けるシャフトの途中に取り付けられる。これにより、負荷トルクとしての外力を受けることで1対の筒体31,32が相対的に回転し、磁性弾性体20が捻られる。また、磁性弾性体20は、例えば、捻り変形した状態で磁性弾性体20の軸方向を向いた磁場に配置されて、磁性粉体22を着磁されている。その他の構造は、第1実施形態の電気機器100Aと同様になっている。
 この電気機器100Fでは、磁性弾性体20が一方に捻り変形すると、磁性粉体22の磁性粉体22の磁気モーメントの方向が電磁誘導コイル12を貫通する方向に揃い、他方に捻り変形すると、磁性粉体22の磁気モーメントの向きが電磁誘導コイル12を貫通する方向と異なる方向を揃うか、ばらつく。これにより、磁性弾性体20の捻り変形に伴って電磁誘導コイル12を貫通する磁束の密度が変化して発電部10にて発電が行われ、その電力を受けて負荷部92の無線モジュール92Aから無線信号が送信される。
Sixth Embodiment
The electric device 100F of this embodiment is shown in FIG. 14, and the magnetic elastic body 20 is twisted when subjected to an external force. Specifically, the electric device 100F has a structure in which the adjustment mechanism 35 is removed from one of the cylindrical bodies 32 of the expandable case 30 of the electric device 100A of the first embodiment, and a twist case 30V having a plurality of protrusions 31B similar to those of the other cylindrical body 32 is provided with the magnetic elastic body 20 and the electromagnetic induction coil 12 of the electric device 100A of the first embodiment. The twist case 30V is attached to a pair of relatively rotating members or a shaft that receives a load torque. As a result, when an external force as a load torque is received, the pair of cylindrical bodies 31 and 32 rotate relatively, and the magnetic elastic body 20 is twisted. In addition, the magnetic elastic body 20 is, for example, arranged in a magnetic field oriented in the axial direction of the magnetic elastic body 20 in a twisted state, and the magnetic powder 22 is magnetized. The other structure is similar to that of the electric device 100A of the first embodiment.
In this electric device 100F, when the magnetic elastic body 20 is twisted in one direction, the direction of the magnetic moment of the magnetic powder 22 is aligned in the direction penetrating the electromagnetic induction coil 12, and when the magnetic elastic body 20 is twisted in the other direction, the direction of the magnetic moment of the magnetic powder 22 is aligned or varies in a direction different from the direction penetrating the electromagnetic induction coil 12. As a result, the density of the magnetic flux penetrating the electromagnetic induction coil 12 changes with the twisting deformation of the magnetic elastic body 20, generating power in the power generation unit 10, and a wireless signal is transmitted from the wireless module 92A of the load unit 92 in response to that power.
 [第7実施形態]
 本実施形態の電気機器100Gは、図15に示されており、第6実施形態の電気機器100Fのツイストケース30Vに螺合機構を追加したツイストケース30Wを備える。具体的には、ツイストケース30Wの一方の筒体31の外面には、螺旋状に延びる溝構造又は突条構造の係合部31Mが備えられ、他方の筒体32の内面には、係合部31Mと螺合する図示しない係合部が備えられている。これにより、ツイストケース30Wの筒体31,32が相対回転すると、磁性弾性体20が捻り変形されると共に伸縮変形される。これにより、電磁誘導コイル12に誘導電流が誘起される。
[Seventh embodiment]
The electric device 100G of this embodiment is shown in Fig. 15 and includes a twist case 30W in which a screwing mechanism is added to the twist case 30V of the electric device 100F of the sixth embodiment. Specifically, the outer surface of one cylindrical body 31 of the twist case 30W is provided with an engagement portion 31M having a groove structure or a ridge structure extending in a spiral shape, and the inner surface of the other cylindrical body 32 is provided with an engagement portion (not shown) that screws into the engagement portion 31M. As a result, when the cylindrical bodies 31 and 32 of the twist case 30W rotate relative to each other, the magnetic elastic body 20 is twisted and expanded/contracted. As a result, an induced current is induced in the electromagnetic induction coil 12.
 [第8実施形態]
 本実施形態の電気機器100Hは、図16に示されている。図16(A)に示すように、電気機器100Hの発電部10には、曲げ変形を検出する対象であるシャフト203に丁度嵌合される円筒状の磁性弾性体20と、その磁性弾性体20の外側に嵌合される電磁誘導コイル12とが備えられている。そして、図16(B)に示すように、磁性弾性体20及び電磁誘導コイル12は、シャフト203と一緒に曲げ変形する。また、この電気機器100Hは、例えば、第1実施形態の電気機器100Aと同様の整流部91及び無線モジュール92Aを回路ケース33に収容して備えている。そして、シャフト203の曲げ変形に伴って磁性弾性体20が曲げ変形することで、電磁誘導コイル12を貫通する磁束密度が変化して発電部10にて発電が行われ、その電力を受けて負荷部92の無線モジュール92Aから無線信号が送信される。
[Eighth embodiment]
The electric device 100H of this embodiment is shown in Fig. 16. As shown in Fig. 16(A), the power generating unit 10 of the electric device 100H includes a cylindrical magnetic elastic body 20 that is fitted exactly to the shaft 203, which is the object of bending deformation detection, and an electromagnetic induction coil 12 that is fitted to the outside of the magnetic elastic body 20. As shown in Fig. 16(B), the magnetic elastic body 20 and the electromagnetic induction coil 12 are bent and deformed together with the shaft 203. In addition, the electric device 100H includes, for example, a rectifier unit 91 and a wireless module 92A similar to those of the electric device 100A of the first embodiment, housed in a circuit case 33. As the magnetic elastic body 20 is bent and deformed in accordance with the bending deformation of the shaft 203, the magnetic flux density penetrating the electromagnetic induction coil 12 changes, and power is generated in the power generating unit 10, and a wireless signal is transmitted from the wireless module 92A of the load unit 92 in response to the power.
 [第9実施形態]
 本実施形態の電気機器100Iは、図17(A)に示されており、非磁性体の1対の円板39を対向した状態に備え、それら1対の円板39の間に複数の磁性弾性体20が並列に接続された構造をなしている。具体的には、複数の磁性弾性体20は、例えば円柱状をなし、1対の円板39の外縁部より内側の部分において、1対の円板39の中心軸と同心の架空の円を複数等分する位置に各磁性弾性体20の中心軸が配置され、各磁性弾性体20の両端面に塗布された接着材にて各磁性弾性体20が1対の円板39に固定されている。なお、1対の円板39の外縁部には、複数の取付孔39Aが形成されている。
[Ninth embodiment]
The electric device 100I of this embodiment is shown in Fig. 17 (A) and has a structure in which a pair of non-magnetic disks 39 are opposed to each other, and a plurality of magnetic elastic bodies 20 are connected in parallel between the pair of disks 39. Specifically, the plurality of magnetic elastic bodies 20 are, for example, cylindrical, and the central axis of each magnetic elastic body 20 is disposed at a position that divides an imaginary circle concentric with the central axis of the pair of disks 39 into a plurality of equal parts in a portion inside the outer edge of the pair of disks 39, and each magnetic elastic body 20 is fixed to the pair of disks 39 by an adhesive applied to both end faces of each magnetic elastic body 20. A plurality of mounting holes 39A are formed in the outer edge of the pair of disks 39.
 また、各磁性弾性体20の外側には、それぞれ電磁誘導コイル12が嵌合されている。そして、第1実施形態で説明した整流部91及び無線モジュール92Aが、複数の電磁誘導コイル12に対応して複数備えられて回路ケース33に収容されている。そして、各電磁誘導コイル12に所定の大きさ異常の誘導電流が流れる度に、各電磁誘導コイル12に対応する無線モジュール92Aからそれぞれに固有の識別番号の情報を含んだ無線信号が送信される。 Furthermore, an electromagnetic induction coil 12 is fitted to the outside of each magnetic elastic body 20. A plurality of rectifiers 91 and wireless modules 92A described in the first embodiment are provided corresponding to the plurality of electromagnetic induction coils 12 and are housed in the circuit case 33. Each time an induced current of a predetermined magnitude flows through each electromagnetic induction coil 12, a wireless signal including information of the unique identification number is transmitted from the wireless module 92A corresponding to each electromagnetic induction coil 12.
 本実施形態の電気機器100Iは、1対の円板39を検出対象物に固定して使用される。そして、1対の円板39の間が接近及び離間するような挙動や、一方の円板39に対して他方の円板39が任意の方向に傾くような挙動や、一方の円板39に対して他方の円板39が中心軸回りに回動する挙動に応じた電力が複数の電磁誘導コイル12で発電され、その発電状態に応じた無線信号が出力される。 In the electric device 100I of this embodiment, a pair of disks 39 is fixed to the object to be detected. Then, power is generated in the multiple electromagnetic induction coils 12 in response to the behavior of the pair of disks 39 moving closer to and farther away from each other, the behavior of one disk 39 tilting in any direction relative to the other disk 39, and the behavior of the other disk 39 rotating around its central axis relative to the first disk 39, and a wireless signal corresponding to the power generation state is output.
 また、図17(B)に示すように、円板38Cの中心部から支柱38Aが起立し、その先端部にマス38Bを有する付加部品38を用意して、その付加部品38の円板38Cを電気機器100Iの一方の円板39に重ねて固定し、他方の円板39を建物、乗り物、地面等に固定することで、電気機器100Iが受ける振動等を検出することができる。 Also, as shown in FIG. 17(B), by preparing an additional part 38 having a support 38A rising from the center of a disk 38C and a mass 38B at its tip, and then stacking and fixing the disk 38C of the additional part 38 on one of the disks 39 of the electrical device 100I, and fixing the other disk 39 to a building, vehicle, the ground, etc., it is possible to detect vibrations, etc., received by the electrical device 100I.
 [確認実験]
 第1実施形態で説明した電磁誘導コイル12と磁性弾性体20とにより発電が行われることを実験にて確認した。具体的には、誘導電流Iの代用値として電磁誘導コイル12に発生する誘導起電力を確認した。
[Confirmation experiment]
It was confirmed by an experiment that power generation was performed by the electromagnetic induction coil 12 and the magnetic elastic body 20 described in the first embodiment. Specifically, the induced electromotive force generated in the electromagnetic induction coil 12 was confirmed as a substitute value for the induced current I.
 I.電磁誘導装置の構成
 電磁誘導コイル12としては、銅線からなり、コイルの巻き径(内径)が36mm(36Φ)、軸長が70mm、線径が0.5mm、巻き数が1395回、抵抗が13Ωであるものを用いた。また、磁性弾性体20としては、ポリウレタンの発泡エラストマー21にネオジム系磁性粉体を分散させたものを用いた。なお、ネオジム系磁性粉体は、粒子径の異なるもの(5μmと100μm)を用いた。磁性弾性体20は、円柱状であり、磁性弾性体20の直径は23mm、軸長は23mmである。磁性弾性体20の着磁条件は、8テスラで3秒間とした。なお、磁性弾性体20の着磁は、自然長状態と軸方向における50%圧縮状態とで行った。そして、本実験では、磁性弾性体20を電磁誘導コイル12と同軸に配置すると共に、磁性弾性体20を、自然長状態で電磁誘導コイル12と中心位置が一致するように配置した。磁性弾性体20は、電磁誘導コイル12内に全体が収まっており、軸方向が上下方向となるように配置され、軸方向の一端側から(下方から)圧縮することで磁性弾性体20を弾性変形させた。
I. Configuration of the Electromagnetic Induction Device The electromagnetic induction coil 12 was made of copper wire, with a coil winding diameter (inner diameter) of 36 mm (36Φ), an axial length of 70 mm, a wire diameter of 0.5 mm, a number of turns of 1395, and a resistance of 13 Ω. The magnetic elastic body 20 was made by dispersing neodymium-based magnetic powder in a polyurethane foam elastomer 21. The neodymium-based magnetic powder used had different particle sizes (5 μm and 100 μm). The magnetic elastic body 20 was cylindrical, with a diameter of 23 mm and an axial length of 23 mm. The magnetization conditions for the magnetic elastic body 20 were 8 Tesla for 3 seconds. The magnetic elastic body 20 was magnetized in a natural length state and in a 50% compressed state in the axial direction. In this experiment, the magnetic elastic body 20 was arranged coaxially with the electromagnetic induction coil 12, and the magnetic elastic body 20 was arranged so that its center position coincided with that of the electromagnetic induction coil 12 in its natural length state. The magnetic elastic body 20 was entirely contained within the electromagnetic induction coil 12, and was arranged so that its axial direction was the up-down direction, and the magnetic elastic body 20 was elastically deformed by compressing it from one end side in the axial direction (from below).
 II.各実験例の磁性弾性体の詳細
 磁性弾性体20の原料の詳細は、以下の通りである。
II. Details of the Magnetic Elastic Body of Each Experimental Example The details of the raw materials of the magnetic elastic body 20 are as follows.
 (1)第1液
 ポリオール;ポリエステルポリオール(分子量:2000、官能基数:2、水酸基価:56mgKOH/g、品名:「ポリライト OD-X-102」、DIC社製
 イソシアネート;1,5-ナフタレンジイソシアネート(NCO%:40%、品名:「コスモネートND」、三井化学株式会社製)
 ネオジム系磁性粉体;(1)MQFP(5μm)、マグネクエンチ社製、(2)MQFP(100μm)、マグネクエンチ社製
(1) First Liquid Polyol: polyester polyol (molecular weight: 2000, number of functional groups: 2, hydroxyl value: 56 mgKOH/g, product name: "Polylite OD-X-102", manufactured by DIC Corporation Isocyanate: 1,5-naphthalene diisocyanate (NCO%: 40%, product name: "Cosmonate ND", manufactured by Mitsui Chemicals, Inc.)
Neodymium-based magnetic powder: (1) MQFP (5 μm), manufactured by Magnequench Co., Ltd. (2) MQFP (100 μm), manufactured by Magnequench Co., Ltd.
 (2)第2液
 触媒;アミン触媒、品名:「Addocat PP」、ラインケミージャパン社製
 発泡剤; ヒマシ油と水を含む混合液、品番:「アドベードSV」(ヒマシ油と水の重量比50:50)、ラインケミージャパン社製
(2) Second liquid Catalyst: Amine catalyst, product name: "Addocat PP", manufactured by Rhein Chemie Japan Co., Ltd. Foaming agent: Mixture containing castor oil and water, product number: "Advade SV" (weight ratio of castor oil to water: 50:50), manufactured by Rhein Chemie Japan Co., Ltd.
 また、本実験では、発泡エラストマー21の発泡倍率、ネオジム系磁性粉体の配合比率や粒子径、着磁方法の異なる磁性弾性体20を用いた(実験例1~5)。各実験例の磁性弾性体20における着磁条件や各特性値等は、図19に示す通りである。 In addition, in this experiment, magnetic elastic bodies 20 with different expansion ratios of the foamed elastomer 21, compounding ratios and particle sizes of the neodymium magnetic powder, and magnetization methods were used (Experimental Examples 1 to 5). The magnetization conditions and characteristic values of the magnetic elastic bodies 20 in each experimental example are as shown in Figure 19.
 図19には、実験例1~5の発泡エラストマーの詳細及び特性が示されている。実験例1は、発泡エラストマー21の発泡倍率を2倍とし、自然長状態で着磁したもので、ネオジム系磁性粉体の粒子径は5μm、質量比率は50質量%、体積比率は3.3体積%である。実験例2は、発泡エラストマー21の発泡倍率を4倍としており、ネオジム系磁性粉体の体積比率は1.6体積%となっていて、それ以外は実験例1と同様である。実験例3は、ネオジム系磁性粉体の質量比率を60質量%としており、体積比率は3.9体積%となっていて、それ以外は実験例1と同様である。実験例4は、軸方向における50%圧縮状態で着磁していて、それ以外は実験例3と同様である。実験例5は、ネオジム系磁性粉体の粒子径を100μmとしていて、それ以外は実験例3と同様である。 Figure 19 shows the details and characteristics of the foamed elastomers of Experimental Examples 1 to 5. In Experimental Example 1, the foamed elastomer 21 is magnetized in its natural length state with a foaming ratio of 2 times, the particle diameter of the neodymium magnetic powder is 5 μm, the mass ratio is 50 mass%, and the volume ratio is 3.3 volume%. In Experimental Example 2, the foaming ratio of the foamed elastomer 21 is 4 times, the volume ratio of the neodymium magnetic powder is 1.6 volume%, and the rest is the same as Experimental Example 1. In Experimental Example 3, the mass ratio of the neodymium magnetic powder is 60 mass%, the volume ratio is 3.9 volume%, and the rest is the same as Experimental Example 1. In Experimental Example 4, the elastomer is magnetized in a 50% compressed state in the axial direction, and the rest is the same as Experimental Example 3. In Experimental Example 5, the particle diameter of the neodymium magnetic powder is 100 μm, and the rest is the same as Experimental Example 3.
 III.試験方法
 (1)発泡エラストマーの密度、発泡倍率
 発泡エラストマー21の発泡倍率は、ネオジム系磁性粉体を含まない第1液と第2液とから、直径23mm、軸長(厚さ)23mmの円柱状の磁性弾性体20の試験サンプルを作製し、JIS K6268:1998に基づき密度を測定し、この密度から発泡倍率を計算した。
III. Test Method (1) Density and Expansion Ratio of Foamed Elastomer The expansion ratio of the foamed elastomer 21 was calculated by preparing a test sample of a cylindrical magnetic elastomer 20 having a diameter of 23 mm and an axial length (thickness) of 23 mm from the first liquid and the second liquid not containing neodymium-based magnetic powder, measuring the density based on JIS K6268:1998, and calculating the expansion ratio from the density.
 (2)ネオジム系磁性粉体の質量比率、体積比率
 ネオジム系磁性粉体の質量比率は、第1液の質量に対するネオジム系磁性粉体の質量を、秤を用いて測定することで求めた。ネオジム系磁性粉体の体積比率は、ネオジム系磁性粉体の質量比率、ネオジム系磁性粉体の密度、発泡エラストマー21の密度から、以下の式を用いて算出した。ここで、ネオジム系磁性粉体の密度は、7.6g/cmとした。
 ネオジム系磁性粉体の体積比率(%)=(ネオジム系磁性粉体の質量比率×発泡エラストマーの密度)/(ネオジム系磁性粉体の密度)
(2) Mass ratio and volume ratio of neodymium-based magnetic powder The mass ratio of the neodymium-based magnetic powder was obtained by measuring the mass of the neodymium-based magnetic powder relative to the mass of the first liquid using a balance. The volume ratio of the neodymium-based magnetic powder was calculated using the following formula from the mass ratio of the neodymium-based magnetic powder, the density of the neodymium-based magnetic powder, and the density of the foamed elastomer 21. Here, the density of the neodymium-based magnetic powder was set to 7.6 g/ cm3 .
Volume ratio of neodymium-based magnetic powder (%) = (mass ratio of neodymium-based magnetic powder × density of foamed elastomer) / (density of neodymium-based magnetic powder)
 (3)圧縮永久ひずみ
 圧縮永久ひずみは、直径13mm、厚さ6.3mmの磁性弾性体20の試験サンプルを作製し、JIS K 6262:2013 A法(小形試験片 70℃×22時間、25%圧縮)に準拠して、測定を行った。
(3) Compression Set The compression set was measured by preparing a test sample of the magnetic elastomer 20 having a diameter of 13 mm and a thickness of 6.3 mm, in accordance with JIS K 6262:2013 Method A (small test piece, 70°C x 22 hours, 25% compression).
 (4)繰返し圧縮ひずみ
 繰返し圧縮ひずみは、直径23mm、軸長(厚さ)23mmの磁性弾性体20の試験サンプルについて、自然長状態(もとの厚さ)に対する軸方向における50%圧縮を1Hz(1回/秒)で10万回行い、この繰返し圧縮試験前後での厚さの変化量を測定して、以下の計算式から算出した。なお、この測定は、常温(23℃)で行った。
 繰返し圧縮ひずみ(%)=(圧縮試験前の厚み-圧縮試験後の厚み)/(圧縮試験前の厚み)×100
(4) Repeated compression strain The repeated compression strain was calculated by compressing a test sample of the magnetic elastic body 20 having a diameter of 23 mm and an axial length (thickness) of 23 mm in the axial direction by 50% of the natural length (original thickness) at 1 Hz (1 time/second) 100,000 times, measuring the change in thickness before and after the repeated compression test, and calculating it from the following formula. Note that this measurement was performed at room temperature (23°C).
Repeated compression strain (%)=(thickness before compression test−thickness after compression test)/(thickness before compression test)×100
 (5)表面磁束密度
 表面磁束密度は、直径23mm、軸長(厚さ)23mmの磁性弾性体20の試験サンプルを作製し、軸方向の両端面である上面及び下面の中心の磁束密度を各10回(合計20回)、ガウスメーター(「MG-601」、マグナ社製)を用いて測定し、その平均値を算出することで得た。また、表面磁束密度は、自然長状態と、軸方向において自然長状態から10%、25%、50%圧縮した圧縮状態との磁性弾性体20について測定し、自然長状態に対する各圧縮状態の表面磁束密度の変化率を算出した。
(5) Surface magnetic flux density The surface magnetic flux density was obtained by preparing a test sample of the magnetic elastic body 20 having a diameter of 23 mm and an axial length (thickness) of 23 mm, measuring the magnetic flux density at the center of the upper and lower surfaces, which are both end surfaces in the axial direction, 10 times each (total of 20 times) using a gaussmeter ("MG-601", manufactured by Magna), and calculating the average value. The surface magnetic flux density was also measured for the magnetic elastic body 20 in a natural length state and in a compressed state compressed in the axial direction by 10%, 25%, and 50% from the natural length state, and the rate of change in the surface magnetic flux density in each compressed state relative to the natural length state was calculated.
 (6)発電量
 発電量は、図18に示す試験装置40により、電磁誘導コイル12の軸方向で圧縮と復元を繰り返すように磁性弾性体20を振動変形させて、電磁誘導コイル12の両端間の電圧を測定して評価した。磁性弾性体20に対する振動変形の条件は、圧縮率(ストローク量)3水準、周波数3水準の組み合わせからなる9条件とし、上記電圧の測定を各条件について行った。具体的には、振幅の水準は、6mm、8mm、10mm(変位量)であり、周波数の水準は、1Hz、5Hz、10Hzである。
(6) Amount of power generation The amount of power generation was evaluated by vibrating and deforming the magnetic elastic body 20 so as to repeatedly compress and restore in the axial direction of the electromagnetic induction coil 12 using a test device 40 shown in Fig. 18, and measuring the voltage between both ends of the electromagnetic induction coil 12. The conditions for the vibration deformation of the magnetic elastic body 20 were nine conditions consisting of combinations of three levels of compression ratio (stroke amount) and three levels of frequency, and the voltage was measured for each condition. Specifically, the amplitude levels were 6 mm, 8 mm, and 10 mm (displacement amount), and the frequency levels were 1 Hz, 5 Hz, and 10 Hz.
 試験装置40の詳細は、以下のようになっている。試験装置40は、電磁誘導コイル12の内側で、磁性弾性体20を電磁誘導コイル12の軸方向で挟むピストン41と固定部材42とを有する。ピストン41は、駆動源43からの動力を受けて電磁誘導コイル12の軸方向に振動し、磁性弾性体20を振動変形させる。固定部材42とピストン41の間隔は、ピストン41が振動のストロークにおいて最も固定部材42から遠ざかったときに、磁性弾性体20の自然長と同じになるように設定されている。即ち、本実験では、固定部材42とピストン41が、磁性弾性体20に常に接する。 Details of the test device 40 are as follows. The test device 40 has a piston 41 and a fixed member 42 inside the electromagnetic induction coil 12, which sandwich the magnetic elastic body 20 in the axial direction of the electromagnetic induction coil 12. The piston 41 receives power from a driving source 43 and vibrates in the axial direction of the electromagnetic induction coil 12, vibrating and deforming the magnetic elastic body 20. The distance between the fixed member 42 and the piston 41 is set so that it is the same as the natural length of the magnetic elastic body 20 when the piston 41 is farthest from the fixed member 42 during the vibration stroke. That is, in this experiment, the fixed member 42 and the piston 41 are always in contact with the magnetic elastic body 20.
 また、電磁誘導コイル12の両端は、オシロスコープ44に接続され、オシロスコープ44には、電磁誘導コイル12に発生した誘導起電力が表示される。さらに、試験装置40には、ピストン41の振動を検出するためのレーザー変位計45が設けられている。レーザー変位計45からは、ピストン41の振幅や周波数等に関する信号がアンプユニット46を介してオシロスコープ44に出力され、オシロスコープ44でピストン41の振動の振幅や周波数を確認できるようになっている。 In addition, both ends of the electromagnetic induction coil 12 are connected to an oscilloscope 44, which displays the induced electromotive force generated in the electromagnetic induction coil 12. Furthermore, the test device 40 is provided with a laser displacement meter 45 for detecting the vibration of the piston 41. A signal related to the amplitude, frequency, etc. of the piston 41 is output from the laser displacement meter 45 to the oscilloscope 44 via an amplifier unit 46, making it possible to confirm the amplitude and frequency of the vibration of the piston 41 on the oscilloscope 44.
 IV.試験結果
 実験例1~5は、何れも発泡エラストマー21がポリウレタンエラストマーからなるため、圧縮永久ひずみが21~25%、繰返し圧縮ひずみが13~18%と、良好な結果となっている。
IV. Test Results In all of Experimental Examples 1 to 5, the foamed elastomer 21 was made of a polyurethane elastomer, and thus the compression set was good, being 21 to 25% and the repeated compression set being 13 to 18%.
 実験例1~実験例3の自然長状態の表面磁束密度は、それぞれ9.2mT、4.6mT、10.3mTであり、ネオジム系磁性粉体の体積比率が大きい方が、表面磁束密度は大きくなっている。実験例3と実験例5の自然長状態の表面磁束密度は、10.3mTと14.6mTであり、ネオジム系磁性粉体の粒子径が大きい方が、表面磁束密度は大きくなることが分かる。実験例3と実験例4の自然長状態の表面磁束密度は、10.3mTと9.2mTであり、実験例3の方が大きいが、10%、25%、50%圧縮した状態の表面磁束密度は、それぞれ、10.5mTと9.9mT、10.7mTと10.6mT、10.9mTと12.6mTであり、その変化の割合は、それぞれ、1.9%と7.6%、3.9%と15.2%、5.8%と37.0であった。50%圧縮した状態では、実験例4の方が表面磁束密度は大きくなっている。これは、圧縮されると、ネオジム系磁性粉体の分布密度が増大することに加え、ネオジム系磁性粉体の磁気モーメントの向きが自然長状態に比べて揃うことで、上記関係式(B)の単位体積当たりのネオジム系磁性粉体の数nと磁気モーメントの平均値mzの両方が大きくなり、磁化Mzが大きくなり、自然長状態に比べ、変化の割合も大きくなったと考えられる。そして、磁化Mzが大きくなった結果、磁束密度Bzが大きくなったと考えられる(関係式(A)参照)。また、実験例3では、50%圧縮しても自然長状態に対する表面磁束密度の変化の割合が5.8%であるが、実験例4では、10%圧縮で自然長状態に対する変化の割合が7.6%となっており、弾性変形の程度が小さくても表面磁束密度(磁束密度)の変化を大きくすることが可能となる。 The surface magnetic flux densities in the natural length state of Experimental Examples 1 to 3 were 9.2 mT, 4.6 mT, and 10.3 mT, respectively, with the surface magnetic flux density being higher as the volume ratio of neodymium-based magnetic powder increased.The surface magnetic flux densities in the natural length state of Experimental Examples 3 and 5 were 10.3 mT and 14.6 mT, respectively, and it can be seen that the surface magnetic flux density is higher as the particle diameter of the neodymium-based magnetic powder increases. The surface magnetic flux density in the natural length state of Experimental Example 3 and Experimental Example 4 was 10.3 mT and 9.2 mT, respectively, and Experimental Example 3 was larger, but the surface magnetic flux density in the 10%, 25%, and 50% compressed states was 10.5 mT and 9.9 mT, 10.7 mT and 10.6 mT, and 10.9 mT and 12.6 mT, respectively, and the rate of change was 1.9% and 7.6%, 3.9% and 15.2%, and 5.8% and 37.0, respectively. In the 50% compressed state, the surface magnetic flux density was larger in Experimental Example 4. This is because, when compressed, the distribution density of the neodymium magnetic powder increases, and the direction of the magnetic moment of the neodymium magnetic powder becomes more aligned compared to the natural length state, so that both the number n of the neodymium magnetic powder per unit volume and the average value mz of the magnetic moment in the above relational formula (B) become larger, the magnetization Mz becomes larger, and the rate of change is also larger compared to the natural length state. It is believed that the increase in magnetization Mz results in an increase in magnetic flux density Bz (see relational formula (A)). In addition, in experimental example 3, even when compressed by 50%, the rate of change in surface magnetic flux density relative to the natural length state is 5.8%, whereas in experimental example 4, the rate of change relative to the natural length state is 7.6% with 10% compression, making it possible to increase the change in surface magnetic flux density (magnetic flux density) even with a small degree of elastic deformation.
 実験例1と実験例3の発電量を比較すると、ネオジム系磁性粉体の質量比率(体積比率)が大きい方が、発電量が大きくなっていることが分かる。また、圧縮率(変位量)が大きく、周波数を大きくした方が、発電量がより大きくなっていることが分かる。 Comparing the amount of electricity generated in Experimental Example 1 and Experimental Example 3, it can be seen that the amount of electricity generated is greater when the mass ratio (volume ratio) of the neodymium magnetic powder is greater. It can also be seen that the amount of electricity generated is greater when the compression rate (amount of displacement) is greater and the frequency is increased.
 [他の実施形態]
 (1)磁性弾性体20の弾性変形に伴う磁束密度の変化を利用して部材の挙動等を検出する装置として、例えば、ホール素子、TMR素子(トンネル磁気抵抗効果素子)、GMR素子(巨大磁気抵抗効果素子)、AMR素子(異方性磁気抵抗効果素子)等の磁気センサを磁性弾性体20に対向配置する構成も考えられる。
[Other embodiments]
(1) As a device for detecting the behavior of a component by utilizing the change in magnetic flux density accompanying the elastic deformation of the magnetic elastic body 20, a configuration in which a magnetic sensor such as a Hall element, a TMR element (tunnel magnetoresistance element), a GMR element (giant magnetoresistance element), an AMR element (anisotropic magnetoresistance element), or the like is arranged opposite the magnetic elastic body 20 can be considered.
 (2)前述した全ての電気機器100A~100Iは、発電部10で発電された電力で作動するようになっていたが、発電部10を発電部として利用せず、電力は電池又は外部電源(例えば、商用電源)で確保し、発電部10を、外力や部材の変形等を検出する検出部としてのみ使用する構成としてもよく、負荷部を備えなくてもよい。 (2) All of the electrical devices 100A to 100I described above are designed to operate on power generated by the power generation unit 10, but the power generation unit 10 may not be used as a power generation unit, and power may be provided by a battery or an external power source (e.g., a commercial power source). The power generation unit 10 may be used only as a detection unit that detects external forces, deformation of components, etc., and may not be provided with a load unit.
 (3)上記した第9実施形態の電気機器100Iが捻り変形にも曲げ変形にも伸縮変形にも使用可能であるのと同様に、上述した全ての電気機器100A~100Iは、他の使用方法で使用してもよい。また、電気機器100A~100Iの負荷部に含まれる電気的負荷を適宜変更してもよい。 (3) Just as the electrical device 100I of the ninth embodiment can be used for twisting, bending, and expanding/contracting deformation, all of the electrical devices 100A to 100I described above may be used in other ways. In addition, the electrical load included in the load section of the electrical devices 100A to 100I may be changed as appropriate.
 (4)前記第1実施形態の磁性弾性体20は、電磁誘導コイル12の内側に配置されてたが、磁性弾性体20の磁性粉体22による磁界が電磁誘導コイル12の内側を貫通するものであれば、磁性弾性体20は電磁誘導コイル12の外部に配置されていてもよい。 (4) In the first embodiment, the magnetic elastic body 20 is disposed inside the electromagnetic induction coil 12, but as long as the magnetic field generated by the magnetic powder 22 of the magnetic elastic body 20 penetrates the inside of the electromagnetic induction coil 12, the magnetic elastic body 20 may be disposed outside the electromagnetic induction coil 12.
 (5)上記実施形態では、磁性弾性体20の磁化方向が、電磁誘導コイル12の軸方向と同じであったが、電磁誘導コイル12の軸方向に対して傾斜していてもよい。 (5) In the above embodiment, the magnetization direction of the magnetic elastic body 20 was the same as the axial direction of the electromagnetic induction coil 12, but it may be inclined with respect to the axial direction of the electromagnetic induction coil 12.
 (6)上記実施形態では、磁性弾性体20が、円柱状であったが、これに限定されるものではなく、長方形状であっても、球状であってもよい。また、上述したバウンドストッパ(図11(B)参照)等の製品形状であってもよい。 (6) In the above embodiment, the magnetic elastic body 20 is cylindrical, but this is not limited thereto, and it may be rectangular or spherical. It may also be in the shape of a product such as the bound stopper described above (see FIG. 11(B)).
 (7)上記実施形態では、電磁誘導コイル12と磁性弾性体20が同軸に配置されていたが、電磁誘導コイル12と磁性弾性体20の中心軸が互いにずれて平行に配置されていてもよいし、互いに傾斜していてもよい。 (7) In the above embodiment, the electromagnetic induction coil 12 and the magnetic elastic body 20 are arranged coaxially, but the central axes of the electromagnetic induction coil 12 and the magnetic elastic body 20 may be arranged parallel to each other with a deviation from each other, or may be inclined from each other.
 (8)磁性弾性体20は、発泡エラストマー21に磁性粉体22を分散配置した構造になっているので、任意の形状に容易にカットすることができ、かつ、カット体もN極とS極を有する磁石となるので、磁性弾性体20をおもちゃに用いてもよい。また、磁性弾性体20は、フェライト磁石等に比べて、軽量であるので、他の磁石等の磁力で浮かせる用途に用いることもできる。 (8) The magnetic elastic body 20 has a structure in which magnetic powder 22 is dispersed in foamed elastomer 21, so it can be easily cut into any shape, and the cut body also becomes a magnet with a north pole and a south pole, so the magnetic elastic body 20 can be used as a toy. In addition, since the magnetic elastic body 20 is lighter than ferrite magnets, etc., it can also be used to levitate using the magnetic force of other magnets, etc.
 (9)上記実施形態では、磁性弾性体20の原料のイソシアネートとして1,5-ナフタレンジイソシアネート(NDI)を用いたが、ジフェニルメタンジイソシアネート(MDI)を用いてもよい。 (9) In the above embodiment, 1,5-naphthalene diisocyanate (NDI) was used as the raw isocyanate for the magnetic elastic body 20, but diphenylmethane diisocyanate (MDI) may also be used.
 <付記>
 以下、上記実施形態から抽出される発明群の特徴について、必要に応じて効果等を示しつつ説明する。なお、以下では、理解の容易のため、上記実施形態において対応する構成を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。
<Additional Notes>
The following describes the features of the inventions extracted from the above-mentioned embodiments, while indicating, as necessary, their effects, etc. In the following, for ease of understanding, the corresponding configurations in the above-mentioned embodiments are appropriately indicated in parentheses, but the present invention is not limited to the specific configurations indicated in parentheses.
 [特徴A1]
 電磁誘導コイルと、着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、前記整流部から受電して作動する負荷部と、を備える電気機器。
[Feature A1]
an elastic body that contains magnetized magnetic powder, generates a magnetic field that penetrates the electromagnetic induction coil, and changes the magnetic flux density of the magnetic field when it elastically deforms due to an external force; a rectifier that rectifies an induced current induced in the electromagnetic induction coil due to the change in magnetic flux density; and a load unit that receives power from the rectifier and operates.
 特徴A1の電気機器は、着磁した磁性粉体を含有し、電磁誘導コイルを貫通する磁界を発生させる弾性体を有する。このような弾性体が外力を受けて弾性変形すると、電磁誘導コイルを貫通する磁界の磁束密度が変化し、電磁誘導による自己発電が行われる。そして、電磁誘導コイルに流れる誘導電流が整流されて負荷部に付与され、負荷部が駆動される。このように、特徴A1の電気機器は、従来の電気機器が有する回転機に比べ、簡素な構造を有する弾性体で自己発電を行うことができる。 The electrical device of feature A1 has an elastic body that contains magnetized magnetic powder and generates a magnetic field that penetrates an electromagnetic induction coil. When such an elastic body is subjected to an external force and elastically deforms, the magnetic flux density of the magnetic field that penetrates the electromagnetic induction coil changes, and self-generation occurs through electromagnetic induction. The induced current flowing through the electromagnetic induction coil is then rectified and applied to the load section, driving the load section. In this way, the electrical device of feature A1 can generate self-power with an elastic body that has a simpler structure than the rotating machines of conventional electrical devices.
 [特徴A2]
 前記負荷部には、前記整流部からの受電に応じて無線信号を出力する無線回路が含まれる特徴A1に記載の電気機器。
[Feature A2]
The electric device according to feature A1, wherein the load unit includes a wireless circuit that outputs a wireless signal in response to power received from the rectification unit.
 特徴A2の電気機器は、自己発電を行う上に無線回路を備えるので、設置場所の自由度が高くなる。 Electrical devices with feature A2 are self-powered and equipped with wireless circuits, allowing greater freedom in where they can be installed.
 [特徴A3]
 前記無線回路は、前記整流部から受電する度に無線信号を出力して前記弾性体が外力を受けたことを報知する特徴A2に記載の電気機器。
[Feature A3]
The electrical device according to feature A2, wherein the wireless circuit outputs a wireless signal every time power is received from the rectification unit to notify that the elastic body has received an external force.
 特徴A3の電気機器は、外力を受ける部位に設置して、遠隔地から外力の状況を監視することができる。 Electrical equipment with feature A3 can be installed in a location subject to external force, allowing the external force conditions to be monitored from a remote location.
 [特徴A4]
 前記負荷部には、前記誘導電流に基づいて前記外力を特定するための検出データを生成する検出回路と、前記検出データを無線送信する無線回路と、が含まれる特徴A1から特徴A3の何れか1に記載の電気機器。
[Feature A4]
An electrical device described in any one of features A1 to A3, wherein the load section includes a detection circuit that generates detection data for identifying the external force based on the induced current, and a wireless circuit that wirelessly transmits the detection data.
 特徴4の電気機器は、誘導電流に基づいて外力を特定するための検出データを生成してから無線送信するので、電気機器から離れた遠隔値において無線送信によるノイズの影響を受け難いデータ収集が可能になる。 The electrical device of feature 4 generates detection data for identifying external forces based on induced currents and then transmits it wirelessly, making it possible to collect data at remote locations far from the electrical device that is less susceptible to noise caused by wireless transmission.
 [特徴A5]
 前記整流部には、前記誘導電流により充電されかつ前記負荷部に給電可能な二次電池が含まれる特徴A1から特徴A4の何れか1に記載の電気機器。
[Feature A5]
The electric device according to any one of Features A1 to A4, wherein the rectification unit includes a secondary battery that is charged by the induced current and can supply power to the load unit.
 特徴5では、二次電池を備えたことで負荷部への給電が安定する。 Feature 5: The inclusion of a secondary battery stabilizes the power supply to the load.
 [特徴A6]
 前記弾性体の弾性変形に伴って前記磁性粉体の磁気モーメントの向きが変化して前記電磁誘導コイルを貫通する前記磁界の磁束密度が変化する特徴A1から特徴A5の何れか1に記載の電気機器。
[Feature A6]
An electrical device according to any one of features A1 to A5, wherein the orientation of the magnetic moment of the magnetic powder changes with elastic deformation of the elastic body, thereby changing the magnetic flux density of the magnetic field penetrating the electromagnetic induction coil.
 磁界の磁束密度を変化させるために、弾性体の変形により電磁誘導コイルを貫通する磁界を発生させる磁性粉体の分布密度を変化させてもよいし、特徴6のように、磁性粉体の磁気モーメントの向きが電磁誘導コイルの軸方向に揃った状態と揃わない状態とに変化させてもよい。 In order to change the magnetic flux density of the magnetic field, the distribution density of the magnetic powder that generates the magnetic field penetrating the electromagnetic induction coil may be changed by deforming the elastic body, or, as in feature 6, the orientation of the magnetic moment of the magnetic powder may be changed between being aligned with the axial direction of the electromagnetic induction coil and being not aligned.
 [特徴A7]
 前記電磁誘導コイルは、前記弾性体を受容する空間を内側に有する環状又は筒状をなすように巻回され、前記弾性体を、前記電磁誘導コイルの巻回軸方向に伸縮させるように前記外力を伝達する伸縮支持機構を備える特徴A1から特徴A6の何れか1に記載の電気機器。
[Feature A7]
The electrical device according to any one of Features A1 to A6, wherein the electromagnetic induction coil is wound to form a ring or a cylinder having a space inside to receive the elastic body, and the electrical device is provided with an expansion and contraction support mechanism that transmits the external force so as to expand and contract the elastic body in the winding axis direction of the electromagnetic induction coil.
 特徴7によれば、コンパクトな構造で効率良く発電を行うことができる。 Feature 7 allows for efficient power generation with a compact structure.
 [特徴A8]
 前記弾性体を、前記電磁誘導コイルの巻回軸を中心に捻れられるように前記外力を伝達する捻り支持機構を備える特徴A1から特徴A6の何れか1に記載の電気機器。
[Feature A8]
The electrical device according to any one of Features A1 to A6, further comprising a torsion support mechanism that transmits the external force so that the elastic body can be twisted around a winding axis of the electromagnetic induction coil.
 特徴8では、回転する外力を利用して発電を行うことができる。 Feature 8 is that it is possible to generate electricity by utilizing a rotating external force.
 [特徴A9]
 前記弾性体は、発泡エラストマーである、特徴A1から特徴A8の何れか1に記載の電気機器。
[Feature A9]
The electrical device according to any one of Features A1 to A8, wherein the elastic body is a foamed elastomer.
 特徴A9の弾性体は、発泡エラストマーであるので圧縮されると気泡が潰れ、伸びると気泡が膨らむ。これにより、伸縮変形に伴った伸縮方向と直交する方向のサイズの変化が抑えられ、弾性体とその周囲の部品との干渉を抑えることができる。 The elastic body of feature A9 is a foamed elastomer, so when it is compressed the air bubbles collapse and when it is stretched the air bubbles expand. This limits the change in size in the direction perpendicular to the direction of expansion and contraction that accompanies the expansion and contraction deformation, and reduces interference between the elastic body and the surrounding parts.
 [特徴A10]
 前記発泡エラストマーは、ポリウレタンエラストマーであり、前記磁性粉体の粒子径は、3~200μmである、特徴A9に記載の電気機器。
[Feature A10]
The electrical device according to Feature A9, wherein the foamed elastomer is a polyurethane elastomer, and the particle diameter of the magnetic powder is 3 to 200 μm.
 特徴A10は、弾性体が、ポリウレタンエラストマーであるので、弾性体の原料の硬化を速くすることができる。例えば、弾性体が非発泡のシリコンゴムである場合、弾性体の硬化に時間がかかるため、弾性体の硬化中に磁性粉体が沈降し、弾性体内での磁性粉体の分散が不均一となり易い。これに対し、特徴A10では、磁性粉体が沈降する前に弾性体の原料を硬化することができ、磁性粉体を弾性体内に均一に分散させることができる。これにより、100μm以上の粒子径の磁性粉体であっても容易に分散させることが可能となり、弾性体の磁束密度を大きくすることが可能となる。また、弾性体の成形性や変形の容易性等の観点から、磁性粉体の粒子径は、200μm以下であることが好ましい。 In feature A10, the elastomer is a polyurethane elastomer, so the raw material of the elastomer can be hardened quickly. For example, if the elastomer is non-foamed silicone rubber, it takes a long time to harden the elastomer, and the magnetic powder settles while the elastomer is hardening, which tends to result in uneven dispersion of the magnetic powder within the elastomer. In contrast, in feature A10, the raw material of the elastomer can be hardened before the magnetic powder settles, and the magnetic powder can be uniformly dispersed within the elastomer. This makes it possible to easily disperse magnetic powder with a particle diameter of 100 μm or more, and to increase the magnetic flux density of the elastomer. In addition, from the standpoint of the moldability and ease of deformation of the elastomer, it is preferable that the particle diameter of the magnetic powder is 200 μm or less.
 [特徴A11]
 前記発泡エラストマーは、発泡倍率が1.4~6倍でありかつ少なくとも連続気泡構造の部分を有する、特徴A9又は特徴A10に記載の電気機器。
[Feature A11]
The electric device according to Feature A9 or Feature A10, wherein the foamed elastomer has an expansion ratio of 1.4 to 6 times and has at least a portion with an open cell structure.
 特徴A11では、発泡エラストマーが、1.4~6倍の発泡倍率となっていて、少なくとも連続気泡構造を有するので、弾性体を成形し易く、かつ弾性変形させ易くすることができ、弾性体の磁束密度を変化させ易くすることができる。その結果、回路に誘導電流を発生させ易くすることが可能となる。また、発泡エラストマーが少なくとも連続気泡構造となる部分を有するため、成形後に発泡エラストマーが縮む(いわゆる、シュリンクする)ことを、抑制可能となる。なお、上記発泡倍率は、弾性体の発泡倍率ではなく、発泡エラストマー単体の発泡倍率を示している。 In feature A11, the foamed elastomer has an expansion ratio of 1.4 to 6 times and has at least an open cell structure, making it easy to mold the elastic body and to elastically deform it, and making it easy to change the magnetic flux density of the elastic body. As a result, it becomes possible to make it easier to generate induced current in the circuit. In addition, because the foamed elastomer has at least a portion with an open cell structure, it is possible to prevent the foamed elastomer from shrinking after molding. Note that the above expansion ratio indicates the expansion ratio of the foamed elastomer alone, not the expansion ratio of the elastic body.
 [特徴A12]
 前記磁性粉体は、硬質の強磁性材料からなり、前記発泡エラストマーに対する前記磁性粉体の質量濃度は、40~80%であり、前記発泡エラストマーに対する前記磁性粉体の体積濃度は、1.0~3.5%である、特徴A9から特徴A11の何れか1に記載の電気機器。
[Feature A12]
The electrical device according to any one of Features A9 to A11, wherein the magnetic powder is made of a hard ferromagnetic material, the mass concentration of the magnetic powder relative to the foamed elastomer is 40 to 80%, and the volume concentration of the magnetic powder relative to the foamed elastomer is 1.0 to 3.5%.
 特徴A12では、弾性体を弾性変形させ易くしつつ、弾性体の磁束密度の変化を大きくすることが可能となる。 Feature A12 makes it easier to elastically deform the elastic body while also making it possible to increase the change in magnetic flux density of the elastic body.
 [特徴A13]
 JIS K 6262:2013 A法に準拠した前記弾性体の圧縮永久ひずみが、30%以下である、特徴A1から特徴A12の何れか1に記載の電気機器。
[Feature A13]
The electrical device according to any one of Features A1 to A12, wherein the elastic body has a compression set of 30% or less in accordance with JIS K 6262:2013 Method A.
 [特徴A14]
 1Hzで10万回50%圧縮を繰返した場合の前記弾性体の繰返し圧縮ひずみが、20%以下である、特徴A1から特徴A13の何れか1に記載の電気機器。
[Feature A14]
The electrical device according to any one of Features A1 to A13, wherein the elastic body has a repeated compressive strain of 20% or less when compressed by 50% 100,000 times at 1 Hz.
 特徴A13,14によれば、発泡エラストマーを弾性変形させた後の復元が良好である。これにより、弾性体が繰返し圧縮されて使用される用途に用いられる場合であっても、発泡エラストマーのヘタリが低減され、弾性体が繰返しの使用に一層好適となる。 Features A13 and A14 allow the foamed elastomer to recover well after being elastically deformed. This reduces the settling of the foamed elastomer, making the elastomer more suitable for repeated use, even when the elastomer is used in applications where it is repeatedly compressed.
 [特徴A15]
 特徴A1から特徴A14の何れか1に記載の電気機器を製造する製造方法であって、前記磁性粉体を前記弾性体内に分散させ、前記弾性体を弾性変形させた状態で、その圧縮方向に前記磁性粉体を着磁する電気機器の製造方法。
[Feature A15]
A manufacturing method for an electrical device described in any one of Features A1 to A14, comprising dispersing the magnetic powder within the elastic body, and magnetizing the magnetic powder in the compression direction of the elastic body while the elastic body is elastically deformed.
 特徴A15の製造方法によれば、圧縮されたときに磁束密度の変化量が大きな弾性体を容易に製造することができる。 The manufacturing method of feature A15 makes it easy to manufacture an elastic body that exhibits a large change in magnetic flux density when compressed.
 なお、本明細書及び図面には、特許請求の範囲に含まれる技術の具体例が開示されているが、特許請求の範囲に記載の技術は、これら具体例に限定されるものではなく、具体例を様々に変形、変更したものも含み、また、具体例から一部を単独で取り出したものも含む。 Note that although the present specification and drawings disclose specific examples of the technology included in the scope of the claims, the technology described in the claims is not limited to these specific examples, but includes various modifications and variations of the specific examples, as well as parts of the specific examples taken separately.
 10  発電部
 12,12V  電磁誘導コイル
 20,20V,20W  磁性弾性体(弾性体)
 21  発泡エラストマー
 22  磁性粉体
 35  アジャスト機構
 91,91V,91W  整流部
 91A  二次電池
 92.92V  負荷部
100A~100I 電気機器
10 Power generating unit 12, 12V Electromagnetic induction coil 20, 20V, 20W Magnetic elastic body (elastic body)
21 foam elastomer 22 magnetic powder 35 adjustment mechanism 91, 91V, 91W rectification section 91A secondary battery 92.92V load section 100A to 100I electrical equipment

Claims (8)

  1.  電磁誘導コイルと、
     着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
     前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
     前記整流部から受電して作動する負荷部と、
     を備える電気機器。
    An electromagnetic induction coil;
    an elastic body that contains magnetized magnetic powder, generates a magnetic field that penetrates the electromagnetic induction coil, and changes the magnetic flux density of the magnetic field when it is elastically deformed by an external force;
    a rectifier that rectifies an induction current induced in the electromagnetic induction coil due to a change in the magnetic flux density;
    A load unit that receives power from the rectification unit and operates accordingly;
    An electrical device comprising:
  2.  前記負荷部には、前記整流部からの受電に応じて無線信号を出力する無線回路が含まれる請求項1に記載の電気機器。 The electrical device according to claim 1, wherein the load section includes a wireless circuit that outputs a wireless signal in response to power received from the rectifier section.
  3.  前記無線回路は、前記整流部から受電する度に無線信号を出力して前記弾性体が外力を受けたことを報知する請求項2に記載の電気機器。 The electrical device according to claim 2, wherein the wireless circuit outputs a wireless signal each time it receives power from the rectifier to notify that the elastic body has received an external force.
  4.  前記負荷部には、
     前記誘導電流に基づいて前記外力を特定するための検出データを生成する検出回路と、
     前記検出データを無線送信する無線回路と、
     が含まれる請求項1から3の何れか1の請求項に記載の電気機器。
    The load section includes:
    a detection circuit that generates detection data for identifying the external force based on the induced current;
    a wireless circuit for wirelessly transmitting the detection data;
    4. The electrical device according to claim 1 , further comprising:
  5.  前記整流部には、前記誘導電流により充電されかつ前記負荷部に給電可能な二次電池が含まれる請求項1から4の何れか1の請求項に記載の電気機器。 The electrical device according to any one of claims 1 to 4, wherein the rectifier includes a secondary battery that is charged by the induced current and can supply power to the load.
  6.  前記弾性体の弾性変形に伴って前記磁性粉体の磁気モーメントの向きが変化して前記電磁誘導コイルを貫通する前記磁界の磁束密度が変化する請求項1から5の何れか1の請求項に記載の電気機器。 The electrical device according to any one of claims 1 to 5, wherein the orientation of the magnetic moment of the magnetic powder changes with the elastic deformation of the elastic body, thereby changing the magnetic flux density of the magnetic field penetrating the electromagnetic induction coil.
  7.  前記電磁誘導コイルは、前記弾性体を受容する空間を内側に有する環状又は筒状をなすように巻回され、
     前記弾性体を、前記電磁誘導コイルの巻回軸方向に伸縮させるように前記外力を伝達する伸縮支持機構を備える請求項1から6の何れか1の請求項に記載の電気機器。
    The electromagnetic induction coil is wound so as to form an annular or cylindrical shape having a space therein for receiving the elastic body,
    7. The electric device according to claim 1, further comprising an expansion/contraction support mechanism that transmits the external force so as to expand and contract the elastic body in a winding axis direction of the electromagnetic induction coil.
  8.  前記弾性体を、前記電磁誘導コイルの巻回軸を中心に捻れられるように前記外力を伝達する捻り支持機構を備える請求項1から6の何れか1の請求項に記載の電気機器。 The electrical device according to any one of claims 1 to 6, further comprising a torsion support mechanism that transmits the external force so that the elastic body can be twisted around the winding axis of the electromagnetic induction coil.
PCT/JP2022/040560 2022-10-28 2022-10-28 Electric device WO2024089901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040560 WO2024089901A1 (en) 2022-10-28 2022-10-28 Electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040560 WO2024089901A1 (en) 2022-10-28 2022-10-28 Electric device

Publications (1)

Publication Number Publication Date
WO2024089901A1 true WO2024089901A1 (en) 2024-05-02

Family

ID=90830433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040560 WO2024089901A1 (en) 2022-10-28 2022-10-28 Electric device

Country Status (1)

Country Link
WO (1) WO2024089901A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125136A (en) * 2010-11-18 2012-06-28 Panasonic Corp Magnetic response type actuator
JP6343060B1 (en) * 2017-04-19 2018-06-13 Kyb株式会社 Damper with power generation function
EP3428474A1 (en) * 2017-07-12 2019-01-16 KYB Corporation Damper with power generating function
CN109256929A (en) * 2017-07-14 2019-01-22 Kyb株式会社 Band generating function damper
JP2019022435A (en) * 2017-07-12 2019-02-07 株式会社Kri Power generation device, method for manufacturing magnetic hard viscoelastic material, and method of using power generation device
JP2021072677A (en) * 2019-10-29 2021-05-06 株式会社イノアックコーポレーション Elastic body, bound stopper, electromagnetic induction device, power generation system, detection device, and method for manufacturing elastic body
JP2022170023A (en) * 2021-04-28 2022-11-10 株式会社イノアックコーポレーション electrical equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125136A (en) * 2010-11-18 2012-06-28 Panasonic Corp Magnetic response type actuator
JP6343060B1 (en) * 2017-04-19 2018-06-13 Kyb株式会社 Damper with power generation function
EP3428474A1 (en) * 2017-07-12 2019-01-16 KYB Corporation Damper with power generating function
JP2019022435A (en) * 2017-07-12 2019-02-07 株式会社Kri Power generation device, method for manufacturing magnetic hard viscoelastic material, and method of using power generation device
CN109256929A (en) * 2017-07-14 2019-01-22 Kyb株式会社 Band generating function damper
JP2021072677A (en) * 2019-10-29 2021-05-06 株式会社イノアックコーポレーション Elastic body, bound stopper, electromagnetic induction device, power generation system, detection device, and method for manufacturing elastic body
JP2022170023A (en) * 2021-04-28 2022-11-10 株式会社イノアックコーポレーション electrical equipment

Similar Documents

Publication Publication Date Title
US7086507B2 (en) Controllable magneto-rheological elastomer vibration isolator
CN103827647B (en) There is the device of the measuring mechanism for ergometry and/or load
US6952060B2 (en) Electromagnetic linear generator and shock absorber
CN110325760B (en) Active noise vibration control device and method for manufacturing same
CN101501330B (en) Vibration power generation
Ginder et al. Magnetorheological elastomers: properties and applications
US7285868B2 (en) Apparatus and method for energy generation within a tire
KR101478893B1 (en) Reactor
Wang et al. System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel
JP6174053B2 (en) Magnetostrictive vibration power generator
CN103683528A (en) Block made of a building material
CN103259357B (en) By means of the fixation to permanent magnet of framework
US9252648B2 (en) Power generator and power generating system
AU2004255610A1 (en) Method and device for measuring conveyor belt elongation, method and device for measuring conveyor belt wear extent, method and device for measuring conveyor belt temperature, rubber magnet sheet, and method of producing rubber magnet sheet
JPH08509296A (en) Position adjustment device
CN104011815A (en) Inductive wireless charging system
JP2022170023A (en) electrical equipment
WO2024089901A1 (en) Electric device
US20040126565A1 (en) Actively controlled impact elements
Dong Design and characterization of axial flux permanent magnet energy harvester for vehicle magnetorheological damper
US11488751B2 (en) Elastic body, bump stop, electromagnetic induction device, power generation system, detection device, and production method for elastic body
CN102705414A (en) Cylindrical electromagnetic damper
CN106716707A (en) Sensor for detecting deformation of sealed secondary battery
Li High efficiency wireless power transmission at low frequency using permanent magnet coupling
WO2018078912A1 (en) Deformation detection sensor for sealed secondary battery and sealed secondary battery