WO2024089851A1 - Determination device and determination method - Google Patents

Determination device and determination method Download PDF

Info

Publication number
WO2024089851A1
WO2024089851A1 PCT/JP2022/040234 JP2022040234W WO2024089851A1 WO 2024089851 A1 WO2024089851 A1 WO 2024089851A1 JP 2022040234 W JP2022040234 W JP 2022040234W WO 2024089851 A1 WO2024089851 A1 WO 2024089851A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
value
difference
feature
reference value
Prior art date
Application number
PCT/JP2022/040234
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 堀内
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/040234 priority Critical patent/WO2024089851A1/en
Publication of WO2024089851A1 publication Critical patent/WO2024089851A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • This disclosure relates to a determination device and a determination method.
  • Time-series data e.g., pressure, torque, etc.
  • time-series data e.g., pressure, torque, etc.
  • the molding cycle that produces one molded product is made up of multiple molding processes (e.g., injection process, weighing process, etc.). Therefore, it is also known to calculate "feature values (e.g., maximum pressure value in the injection process)" based on the time-series data included in each molding process, and compare the calculated feature values with a predetermined allowable range to determine whether the molding state of the molded product or the injection molding machine is good or bad (e.g., Patent Documents 1 to 4, etc.).
  • feature values e.g., maximum pressure value in the injection process
  • the feature value Even if the feature value falls within the monitoring range (lower limit to upper limit) that determines whether the molding state is good or bad, the feature value may suddenly change and cause the molding state to become abnormal. More specifically, abnormalities may be triggered by sudden factors such as damage to the sensor or moving parts, the intrusion of foreign matter into moving parts or production materials, or an operator error (missetting of operation command values). Previously, even if the feature value suddenly changed, it was judged to be normal until the "feature value or the difference value of the feature value" exceeded the monitoring range, which caused the problem of defective products being produced during this period.
  • the determination device acquires the number of molding cycles, which is the number of times an injection molding machine repeats a molding cycle to manufacture a molded product, process identification data identifying the multiple molding processes that make up the molding cycle, and time series data related to predetermined physical quantities that indicate the state of the injection molding machine, and calculates a feature quantity that indicates the characteristics of the time series data included in the predetermined molding process. Next, based on the feature quantity and the number of molding cycles, it calculates a difference value (amount of change) between the current feature quantity and the feature quantity a predetermined number of molding cycles ago.
  • the most recent difference value or the average of the most recent difference values as a determination reference value, it compares the difference value of the current molding cycle with the determination reference value to determine whether the molding state is normal or abnormal, and if an abnormality is determined, it issues a signal indicating an abnormality, thereby resolving the above-mentioned problem.
  • An aspect of the present disclosure is a judgment device that includes a data acquisition unit that acquires a molding cycle number, which is the number of times a molding cycle for manufacturing a molded product in an injection molding machine is repeated, process identification data that identifies a plurality of molding processes that constitute the molding cycle, and time series data related to a predetermined physical quantity as data indicating a state of the injection molding machine; a feature calculation unit that calculates a feature amount that indicates a feature of the time series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data; a difference calculation unit that calculates a difference value between a current feature amount and a feature amount a predetermined number of molding cycles ago based on the feature amount and the molding cycle number; a judgment reference value calculation unit that calculates a judgment reference value based on at least one or more of the most recent difference values; a judgment unit that judges the molding state of the injection molding machine based on the difference value in the current molding cycle calculated by the difference calculation unit and the judgment reference value; and
  • FIG. 1 is a schematic hardware configuration diagram of a determination device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic configuration diagram of an injection molding machine. 1 is a block diagram showing schematic functions of a determination device according to a first embodiment;
  • FIG. 2 is a diagram illustrating molding steps constituting a molding cycle of an injection molding machine. 1 is a graph illustrating a transition of a feature amount of time-series data relating to a predetermined physical amount; 11 is a graph illustrating changes in a difference value, an upper limit judgment value, and a lower limit judgment value; 11 is a graph illustrating a transition of a difference value. 1 is a graph illustrating a transition of a feature amount;
  • FIG. 11 is a block diagram showing schematic functions of a determination device according to a third embodiment.
  • FIG. 1 is a schematic hardware configuration diagram showing a main part of a determination device according to a first embodiment of the present disclosure.
  • the determination device 1 according to this embodiment can be implemented as a control device that controls an industrial machine based on a control program, for example.
  • the determination device 1 according to this embodiment can be implemented on a computer such as a personal computer attached to a control device that controls an industrial machine, or a personal computer, cell computer, fog computer 6, or cloud server 7 that is connected to the control device via a wired/wireless network 5.
  • a personal computer that is connected to a control device 3 that controls an injection molding machine 4 as an industrial machine via a network 5.
  • the CPU 11 provided in the determination device 1 is a processor that controls the entire determination device 1.
  • the CPU 11 reads out a system program stored in the ROM 12 via the bus 22, and controls the entire determination device 1 according to the system program.
  • the RAM 13 temporarily stores temporary calculation data, display data, and various data input from outside.
  • the non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown) or an SSD (Solid State Drive), and the memory state is maintained even when the power supply of the determination device 1 is turned off.
  • the non-volatile memory 14 stores programs and data read from the external device 72 via the interface 15, programs and data input from the input device 71 via the interface 18, and programs and data acquired from the control device 3 or other devices via the network 5.
  • the stored data may include, for example, data related to physical quantities such as the motor current, voltage, torque, position, speed, acceleration, injection cylinder temperature, resin pressure, flow rate, flow rate, mold temperature and pressure, mold temperature and pressure, mold temperature regulator temperature and pressure, molded product removal machine position and speed, and vibration and sound generated in each part of the injection molding machine 4 detected by the sensor 8 attached to the injection molding machine 4 controlled by the control device 3.
  • the programs and data stored in the non-volatile memory 14 may be expanded to the RAM 13 when executed/used.
  • various system programs such as well-known analysis programs, are pre-programmed into ROM 12.
  • the interface 15 is an interface for connecting the CPU 11 of the determination device 1 to an external device 72 such as a USB device.
  • an external device 72 such as a USB device.
  • system programs, programs related to the operation of the injection molding machine 4, setting data, etc. are read from the external device 72.
  • programs and setting data created and edited within the determination device 1 can be stored in an external storage means via the external device 72.
  • the interface 20 is an interface for connecting the CPU 11 of the determination device 1 to a wired or wireless network 5.
  • the network 5 may communicate using technologies such as serial communication such as RS-485, Ethernet (registered trademark), optical communication, wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), etc.
  • the network 5 is connected to a control device 3 that controls at least one injection molding machine 4, a fog computer 6, a cloud server 7, etc., and exchanges data with the determination device 1.
  • the display device 70 displays the various data loaded into the memory, data obtained as a result of executing programs, etc., output via the interface 17.
  • the input device 71 which is comprised of a keyboard, pointing device, etc., passes instructions and data based on operations by the operator to the CPU 11 via the interface 18.
  • FIG. 2 is a schematic diagram of the injection molding machine 4.
  • the injection molding machine 4 is mainly composed of a mold clamping unit 401 and an injection unit 402.
  • the mold clamping unit 401 is equipped with a movable platen 416 and a fixed platen 414.
  • a movable mold 412 is attached to the movable platen 416, and a fixed mold 411 is attached to the fixed platen 414.
  • a servo motor 50 is attached to the mold clamping unit 401. By driving the servo motor 50, a ball screw (not shown) is driven via power transmission means such as a belt 420 and a pulley 422, and the movable platen 416 can be advanced or retreated toward the fixed platen 414.
  • the injection unit 402 is composed of an injection cylinder 426, a hopper 436 that stores the resin material to be supplied to the injection cylinder 426, and a nozzle 440 provided at the tip of the injection cylinder 426.
  • the injection unit 402 can move the injection cylinder 426 forward or backward in the direction of the fixed platen 414 by driving a servo motor (not shown).
  • the mold clamping unit 401 closes and clamps the mold by moving the movable platen 416, and the injection unit 402 presses the nozzle 440 against the fixed mold 411 and then injects a measured amount of resin into the injection cylinder 426 into the mold. These operations are controlled by commands from the control device 3 (not shown).
  • sensors 8 are attached to each part of the injection molding machine 4, and various physical quantities necessary for controlling the molding operation are detected.
  • the detected physical quantities include the motor current, voltage, torque, position, speed, and acceleration of the drive unit, the temperature of the injection cylinder 426, the pressure of the resin in the injection cylinder 426, the flow rate of the resin, the temperature and pressure of the mold, the temperature and pressure of the mold temperature regulator, the position and speed of the molded product removal machine, and vibrations and sounds generated in each part of the injection molding machine 4.
  • the detected physical quantities are sent and output to the determination device 1.
  • each detected physical quantity is stored in the RAM 13, non-volatile memory 14, etc.
  • FIG. 3 is a schematic block diagram showing the functions of the determination device 1 according to the first embodiment of the present disclosure.
  • Each function of the determination device 1 according to this embodiment is realized by the CPU 11 of the determination device 1 shown in FIG. 1 executing a system program and controlling the operation of each part of the determination device 1.
  • the judgment device 1 of this embodiment includes a data acquisition unit 110, a leveling unit 120, a feature calculation unit 130, a difference calculation unit 140, a judgment reference value calculation unit 150, a judgment unit 160, and a notification unit 170.
  • the RAM 13 to the non-volatile memory 14 of the judgment device 1 are provided with an acquired data storage unit 210, which is an area for storing data acquired by the data acquisition unit 110 from the sensor 8 attached to the injection molding machine 4, a feature storage unit 220, which is an area for storing data indicating the feature calculated by the feature calculation unit 130, and a difference value storage unit 230, which is an area for storing the difference value calculated by the difference calculation unit 140.
  • the data acquisition unit 110 acquires from the control device 3 the number of molding cycles, which is the number of times the molding cycle for manufacturing a molded product is repeated in the injection molding machine, a plurality of process identification data for identifying the plurality of molding processes constituting the molding cycle, and time series data related to a predetermined physical quantity as data indicating the state of the operation of the molding cycle.
  • the process identification data for identifying the molding process is data for identifying which molding process is currently being performed. As illustrated in FIG.
  • the molding processes constituting the molding cycle include a mold closing process, an injection process, a pressure holding process, a weighing process, a decompression process, a cooling process, a mold opening process, an ejection process, and a removal process.
  • the data indicating the state of the operation of the molding cycle may include, for example, motor current, voltage, torque, position, speed, and acceleration acquired from the servo motor that operates the injection molding machine 4, and detection value data such as the temperature of the injection cylinder 426 detected by the sensor 8, the pressure of the resin in the injection cylinder 426, the vibration of the drive unit, the amount of opening and closing of the mold, the pressure in the mold cavity, and the temperature in the mold cavity, as time series data.
  • the data acquisition unit 110 may acquire data input by the operator from the input device 71 or data input via the external device 72.
  • the data acquisition unit 110 associates the acquired molding cycle number, process identification data, and data indicating the state related to the operation of the molding cycle, and stores them in the acquired data storage unit 210.
  • the smoothing unit 120 calculates smoothed data by smoothing the time series data stored in the acquired data storage unit 210.
  • the smoothing process may be carried out using a known smoothing method such as the moving average method, weighted moving average, moving median, or Savitzky-Golay filter.
  • the feature amount calculation unit 130 calculates the feature amount of the time series data related to the predetermined physical quantity acquired in a predetermined molding process among the multiple molding processes based on the number of molding cycles and process identification data stored in the acquired data storage unit 210, and the time series data related to the predetermined physical quantity.
  • the feature amount calculation unit 130 may calculate the feature amount of the smoothed data related to the predetermined physical quantity based on the number of molding cycles and process identification data stored in the acquired data storage unit 210, and the smoothed data obtained by smoothing the time series data related to the predetermined physical quantity by the smoothing unit 120.
  • the feature amount of the time series data related to the predetermined physical quantity may be a statistical amount such as a minimum value, a maximum value, a minimum value, or a maximum value of the time series data related to the predetermined physical quantity acquired in the predetermined molding process.
  • the feature amount of the time series data related to the predetermined physical quantity may also be the value of the time series data at a predetermined timing (for example, a time when a predetermined time has elapsed, a time when the axis of the injection molding machine 4 reaches a predetermined position, etc.) after the start of the predetermined molding process.
  • the feature amount of the time series data related to the predetermined physical quantity may be the time required from the start of the predetermined molding process until the time series data related to the predetermined physical quantity reaches any one of the minimum value, maximum value, minimum value, and maximum value, the movement amount of the screw, the rotation amount of the screw, the movement amount of the movable platen, the movement amount of the ejector, the opening and closing amount of the mold, the rotation amount of the mold, etc.
  • the feature amount calculation unit 130 stores the calculated feature amount of the time series data related to the predetermined physical quantity in each molding process in the feature amount storage unit 220 in association with the number of molding cycles and the process identification data.
  • FIG. 5 is a graph illustrating the transition of the feature quantity of time-series data related to a specified physical quantity.
  • the black circles represent plots of the feature quantity V(n) (n is the number of molding cycles) related to the specified time-series data calculated by the feature quantity calculation unit 130 for each molding cycle.
  • the difference calculation unit 140 calculates, for each feature value, a difference value between the feature value of the time series data acquired before the molding cycle in which the time series data used to calculate the feature value was acquired. In other words, the difference calculation unit 140 calculates the amount of change in the feature value over the molding cycle. For example, the difference calculation unit 140 may calculate a difference value between a specific feature value and a feature value calculated a specific number of molding cycles before (one cycle before, five cycles before, etc.) the molding cycle in which the feature value was calculated. The difference value may also be calculated using feature values for a specific number of molding cycles immediately preceding the molding cycle in which the feature value was calculated. The difference calculation unit 140 stores the calculated difference value in the difference value storage unit 230 in association with the number of molding cycles and process identification data.
  • the judgment reference value calculation unit 150 calculates the judgment reference value based on the most recent difference value stored in the difference value storage unit 230, or the difference values for the most recent multiple predetermined cycles.
  • the judgment reference value calculation unit 150 may use the most recent difference value as the judgment reference value.
  • the judgment reference value may be the average value obtained by statistically processing the difference values for the most recent multiple predetermined cycles.
  • the judgment unit 160 judges the validity of the difference value of the current molding cycle calculated by the difference calculation unit 140 based on the judgment reference value calculated by the judgment reference value calculation unit 150. If it is judged to be inappropriate, it judges that the molding state of the injection molding machine 4 is abnormal.
  • the judgment unit 160 may calculate, for example, an upper limit judgment value by adding a predetermined upper limit tolerance width (offset) ⁇ to the judgment reference value and a lower limit judgment value by subtracting a predetermined lower limit tolerance width (offset) ⁇ from the judgment reference value, and judge that the difference value is inappropriate when the difference value of the current molding cycle deviates from the range between the lower limit judgment value and the upper limit judgment value.
  • the judgment unit 160 may calculate a deviation degree indicating the degree to which the difference value of the current molding cycle calculated by the difference calculation unit 140 deviates from the judgment reference value calculated by the judgment reference value calculation unit 150, and judge the molding state of the injection molding machine 4 based on whether the deviation degree is greater than at least one predetermined threshold value. If the judgment unit 160 judges that the molding state in the injection molding machine 4 is abnormal, it outputs a message to that effect to the notification unit 170.
  • FIG. 6 is a graph showing an example of the transition of the difference value, upper limit judgment value, and lower limit judgment value calculated by the difference calculation unit 140.
  • the black circles are plots of the difference value D(n) (n is the number of molding cycles) of the feature amount related to the predetermined time series data calculated by the difference calculation unit 140 for each molding cycle.
  • the black triangles are plots of the upper limit judgment value ALM U (n) determined based on the judgment reference value calculated by the judgment reference value calculation unit 150 for each molding cycle, and the black squares are plots of the lower limit judgment value ALM L (n) determined based on the judgment reference value.
  • FIG. 6 the black circles are plots of the difference value D(n) (n is the number of molding cycles) of the feature amount related to the predetermined time series data calculated by the difference calculation unit 140 for each molding cycle.
  • the black triangles are plots of the upper limit judgment value ALM U (n) determined based on the judgment reference value calculated by the judgment reference value calculation unit 150 for each molding cycle, and the
  • the upper limit judgment value ALM U (n) at the molding cycle number n is the value obtained by adding a predetermined upper limit tolerance width ⁇ to the most recent difference value D(n-1), and the lower limit judgment value ALM L (n) is the value obtained by subtracting a predetermined lower limit tolerance width ⁇ from the most recent difference value D(n-1).
  • the judgment unit 160 judges whether the molding state of the injection molding machine 4 is normal/abnormal depending on whether the difference value D(n) deviates from the range between a monitor line connecting the upper limit judgment value ALM U (n) calculated in each molding cycle and a monitor line connecting the lower limit judgment value ALM L (n). By using the difference value D(n) to judge the molding state, it becomes possible to judge the molding state based on the changing tendency (degree of increase or decrease) of the feature amount.
  • the notification unit 170 notifies the judgment result indicating an abnormality when the judgment unit 160 judges that the molding state of the injection molding machine 4 is abnormal.
  • the notification unit 170 may display, for example, the judgment result of the molding state of the injection molding machine 4 input from the judgment unit 160 on the display device 70. At that time, the molding process to which the feature value judged to be abnormal belongs may be displayed. A similar notification may be transmitted to the control device 3 that controls the injection molding machine 4, the fog computer 6, the cloud server 7, etc. In addition, it may display predetermined information indicating the judgment result by the judgment unit 160, a graph plotting a set of the number of molding cycles and the difference value, etc.
  • the notification unit 170 may output a command to the control device 3 to limit the operation of the injection molding machine 4 when the judgment unit 160 judges that the molding state of the injection molding machine 4 is abnormal.
  • commands output to the control device 3 include a command to stop the operation of the injection molding machine 4 and a command to limit the drive torque of the servo motor 50 equipped in the injection molding machine 4 to a low torque.
  • the judgment device 1 judges the molding state of the injection molding machine 4 based on the difference value of the feature amount of the time series data acquired from the injection molding machine 4, and can pick up signs of changes in the feature amount at an early stage and detect abnormalities in the molding state at an early stage. This makes it possible to notify the operator of an abnormality at an early stage and to safely stop the operation of the machine.
  • an unexpected factor may trigger the time series data observed by the position speed sensor and pressure sensor of the moving part to fluctuate significantly from the normal value.
  • unexpected factors include improper assembly or damage of the sensor 8 or driving parts, contamination of the moving parts or production materials with foreign matter, and operator operation errors. More specifically, as an example of poor contact of the sensor 8, the temperature detected by the temperature sensor equipped in the nozzle 440 or the injection cylinder 426 rises toward the set temperature when the control of the heater equipped in the injection cylinder 426 is turned on, overshoots the set temperature, and then gradually approaches the set temperature while repeating a drop and rise.
  • the current temperature of the injection cylinder 426 drops suddenly.
  • the maximum temperature value of the injection cylinder 426 in the injection process falls within the allowable range (lower limit to upper limit) as the molding cycle is repeated, but this feature quantity may suddenly drop as the molding cycle is repeated.
  • the current temperature does not stabilize at the set temperature and fluctuates, physical quantities related to the injection molding machine other than temperature, such as pressure and torque, also fluctuate. Therefore, for example, values such as the maximum pressure value in the injection process and the maximum rotational torque value in the metering process also change suddenly.
  • the judgment device 1 makes it possible to detect abnormalities such as poor contact of the sensor 8 and damage to the injection molding machine, its components, and the mold at an early stage.
  • abnormalities that can lead to molding defects e.g. burrs, shorts, etc.
  • the outflow of defective products is reduced.
  • the determination device 1 may be configured to thin out the determination process.
  • the change in the characteristic amount is small, for example, the amount of backflow during injection, which varies according to the temperature of the mold or the progress of wear of the backflow prevention ring provided on the screw, varies slowly over a long period of time.
  • the molding cycle may be thinned out and a determination may be made every predetermined molding cycle period, for example, by calculating and determining the difference value D(n) every three shots (cycles). This reduces the calculation load on the CPU and the number of determinations.
  • the determination device 1 may acquire data related to multiple injection molding machines 4 via the network 5 and determine the molding state of each injection molding machine 4. By configuring in this manner, it becomes possible to manage the molding state of multiple injection molding machines 4 with one determination device 1.
  • the determination device 1 is implemented on a higher-level computer such as a fog computer 6 installed in a factory, the configuration for managing the molding state of multiple injection molding machines 4 makes it possible to optimally utilize the functions of the determination device 1 according to the present disclosure.
  • the determination device 1 according to the present embodiment has a hardware configuration similar to that of the determination device 1 according to the first embodiment. Similarly to the determination device 1 according to the first embodiment, the determination device 1 according to the present embodiment also has a data acquisition unit 110, a leveling unit 120, a feature amount calculation unit 130, a difference calculation unit 140, a determination reference value calculation unit 150, a determination unit 160, and a notification unit 170.
  • the data acquisition unit 110, the leveling unit 120, the feature calculation unit 130, the difference calculation unit 140, the judgment unit 160, and the notification unit 170 provided in the judgment device 1 according to this embodiment have the same functions as those in the first embodiment.
  • the judgment reference value calculation unit 150 of this embodiment differs from the first embodiment in that it obtains a regression equation by a predetermined regression analysis based on the multiple difference values stored in the difference value storage unit 230 and the number of molding cycles, and calculates the estimated difference value using the obtained regression equation as the judgment reference value.
  • FIG. 7 is a graph illustrating the transition of the difference value.
  • the judgment reference value calculation unit 150 calculates the difference value Dest(i+1) estimated based on a plurality of difference values calculated in molding cycles performed prior to the specified molding cycle (i+1) as the judgment reference value in the specified molding cycle (i+1).
  • the judgment reference value calculation unit 150 performs a regression analysis based on a specified number of molding cycles prior to the molding cycle (i+1).
  • the regression analysis performed by the judgment reference value calculation unit 150 may be a known regression analysis method such as linear regression, ridge regression, lasso regression, exponential regression, polynomial regression, or autoregressive model. In the example of FIG.
  • the regression analysis is performed using the difference values D(i-3) to D(i) calculated in the molding cycles (i-3) to (i) prior to the molding cycle (i+1).
  • the solid line graph in FIG. 7 is a graph of a linear regression formula calculated by linear regression analysis based on the difference values D(i-3) to D(i).
  • the judgment reference value calculation unit 150 calculates the difference value Dest(i+1) estimated in the molding cycle (i+1) using the linear regression equation calculated by the regression analysis, and the calculated difference value Dest(i+1) is set as the judgment reference value. Based on the calculated judgment reference value, the judgment unit 160 judges the molding state of the injection molding machine 4 using the difference value D(i+1) in the molding cycle (i+1), which is similar to the judgment device 1 according to the first embodiment.
  • the graph shown by the dashed line in FIG. 7 is a graph showing, for example, an upper limit judgment value obtained by adding a predetermined upper limit tolerance width (offset) ⁇ to the judgment reference value, and a lower limit judgment value obtained by subtracting a predetermined lower limit tolerance width (offset) ⁇ from the judgment reference value. Then, when the difference value D(i+1) in the molding cycle (i+1) deviates from the range between the lower limit judgment value and the upper limit judgment value, it is judged that the molding state is abnormal.
  • FIG. 8 is a graph illustrating the transition of a predetermined feature quantity Y(n).
  • the difference calculation unit 140 calculates the feature quantity difference value D(n) based on the feature quantity.
  • the difference between the feature quantity Y(i) in the molding cycle (i) and the feature quantity Y(i-1) in the immediately previous molding cycle (i-1) is set as the molding cycle (i) difference value D(i).
  • the difference value Dest(i+1) estimated by regression analysis using an autoregressive model for example, the following formula 1 is used.
  • N is a value obtained by subtracting 1 from the total number of difference values used in the regression analysis.
  • the difference value Dest(i+1) estimated in this manner is used as the judgment reference value, and the judgment unit 160 judges the molding state of the injection molding machine 4 using the difference value D(i+1) in the molding cycle (i+1), which is the same as in the judgment device 1 according to the first embodiment.
  • the determination device 1 which has the above configuration, is expected to be able to use regression analysis to accurately calculate a determination reference value based on the trends in past difference values.
  • the determination device 1 according to the present embodiment has the same hardware configuration as the determination device 1 according to the first embodiment.
  • 9 is a schematic block diagram showing functions of the determination device 1 according to the present embodiment.
  • the determination device 1 according to the present embodiment includes a data acquisition unit 110, a leveling unit 120, a feature amount calculation unit 130, a difference calculation unit 140, a determination reference value calculation unit 150, a determination unit 160, and a notification unit 170, similar to the determination device 1 according to the first embodiment.
  • the data acquisition unit 110, the leveling unit 120, the feature calculation unit 130, the difference calculation unit 140, the judgment unit 160, and the notification unit 170 provided in the judgment device 1 according to this embodiment have the same functions as those in the first embodiment.
  • the judgment criterion value calculation unit 150 in this embodiment learns the change trend of the difference value using machine learning technology, and estimates the difference value based on the learning result. It differs from the first embodiment in that the estimated difference value is used as the judgment criterion value.
  • the judgment criterion value calculation unit 150 includes a learning unit 152 and an estimation unit 154.
  • the learning unit 152 generates a learning model for estimating the difference value of the next molding cycle using multiple consecutive difference values among the difference values stored in the difference value storage unit 230 as learning data. For example, learning is performed with the difference values of the feature amounts calculated in the molding cycles (i-k) to (i-1) as explanatory variables and the difference value of the feature amount calculated in the molding cycle (i) as the objective variable. Note that k is a natural number greater than 1. This makes it possible to generate a learning model for estimating the next difference value based on the past (k) difference values.
  • the learning model generated by the learning unit 152 may be a known supervised learning model such as a multilayer perceptron, an RNN (Recurrent Neural Network) model, or an LSTM (Long Short Term Memory) model.
  • the learning model generated by the learning unit 152 is stored in the learning model storage unit 158 provided on, for example, the RAM 13 or the non-volatile memory 14. After a learning model that has sufficiently learned the transitions in the feature quantities is generated and stored in the learning model storage unit 158, the learning unit 152 is no longer necessarily required as part of the configuration of the determination device 1.
  • the estimation unit 154 uses the learning model generated by the learning unit 152 and stored in the learning model storage unit 158 to estimate the difference value of the next molding cycle based on the most recent consecutive multiple difference values stored in the difference value storage unit 230.
  • the difference value estimated by the estimation unit 154 is used as a judgment reference value.
  • the determination device 1 having the above configuration is expected to be able to accurately calculate a determination reference value based on the trends in past difference values by using machine learning technology.
  • the learning model can be stored in a compressed state in memory and decompressed for use when making an estimation. This allows the determination device 1 to be realized with a small memory capacity, which has the advantage of reducing costs.
  • the determination device 1 determines the molding state of the injection molding machine 4 based on the difference values of the feature quantities of the time-series data acquired from the injection molding machine 4, thereby capturing early signs of changes in the feature quantities and detecting abnormalities in the molding state at an early stage. This makes it possible to notify the operator of an abnormality at an early stage and to safely stop the operation of the machine.
  • a determination device (1) includes a data acquisition unit (110) that acquires a molding cycle number, which is the number of times a molding cycle for manufacturing a molded product has been repeated in an injection molding machine (4), process identification data that identifies a plurality of molding processes that constitute the molding cycle, and time series data related to a predetermined physical quantity as data indicating a state of the injection molding machine, a feature calculation unit (130) that calculates a feature amount that indicates a feature of the time series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data, and
  • the system includes a difference calculation unit (140) that calculates a difference value between a current feature value and a feature value a predetermined number of molding cycles ago based on the feature value and the number of molding cycles, a judgment reference value calculation unit (150) that calculates a judgment reference value based on at least one of the most recent difference values, a
  • the judgment reference value calculation unit (150) provided in the judgment device (1) according to another aspect of the present disclosure sets the difference value calculated in the most recent molding cycle or the average value of the difference values calculated in the most recent multiple molding cycles as the judgment reference value.
  • the judgment reference value calculation unit (150) provided in the judgment device (1) according to another aspect of the present disclosure performs regression analysis based on the difference values calculated in the most recent multiple molding cycles, and sets the difference value of the current molding cycle estimated using the regression equation calculated by the regression analysis as the judgment reference value.
  • the judgment reference value calculation unit (150) provided in the judgment device (1) according to another aspect of the present disclosure estimates a difference value for the current molding cycle based on difference values calculated in the most recent multiple molding cycles using a learning model for estimating the next difference value of the difference value based on multiple difference values, and sets the estimated difference value as the judgment reference value.
  • the determination device (1) according to another aspect of the present disclosure further includes a smoothing unit (120) that calculates smoothed data by smoothing the time-series data.
  • the notification unit (170) provided in the judgment device (1) according to another aspect of the present disclosure outputs a command to limit the operation of the injection molding machine (4) when it judges that the molding state of the injection molding machine (4) is abnormal.
  • a judgment method includes the steps of: acquiring a molding cycle number, which is the number of times a molding cycle for manufacturing a molded product in an injection molding machine (4) has been repeated, process identification data identifying a plurality of molding processes that constitute the molding cycle, and time series data related to a predetermined physical quantity as data indicating a state of the injection molding machine; calculating a feature amount indicating a feature of the time series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data; calculating a difference value between a current feature amount and a feature amount a predetermined number of molding cycles ago based on the feature amount and the molding cycle number; calculating a judgment reference value based on at least one of the most recent difference values;

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A determination device according to the present disclosure is provided with: a data acquisition unit for acquiring the number of molding cycles in an injection molding machine, step identification data for identifying a plurality of molding steps, and time-series data pertaining to a predetermined physical quantity as data indicating a state pertaining to the injection molding machine; a feature amount calculation unit that calculates a feature amount indicating a feature of the time-series data; a difference calculation unit that calculates the difference between the current feature amount and the feature amount before a predetermined number of molding cycles on the basis of the feature amount and the number of molding cycles; a determination reference value calculation unit that calculates a determination reference value on the basis of at least one of the most recent difference values; a determination unit that determines the molding state in the injection molding machine on the basis of the difference value in the current molding cycle and the determination reference value, and a notification unit for notifying the determination result from the determination unit.

Description

判定装置及び判定方法Determination device and determination method
 本開示は、判定装置及び判定方法に関する。 This disclosure relates to a determination device and a determination method.
 成形時に観測されるデータ(例えば、時系列データ、特徴量)を監視して、成形品または射出成形機の成形状態の良否を判定することが行われている。例えば、射出成形機の成形状態を示す「時系列データ(例えば、圧力、トルクなど)」を成形サイクル毎に観測して、良品時の成形サイクルで観測した時系列のデータと比較することによって、成形品または射出成形機の成形状態の良否を判定すること、は公知である。 Data observed during molding (e.g., time-series data, feature quantities) are monitored to determine whether the molding state of a molded product or an injection molding machine is good or bad. For example, it is known to observe "time-series data (e.g., pressure, torque, etc.)" that indicates the molding state of an injection molding machine for each molding cycle, and compare it with the time-series data observed during a molding cycle when the product is good, to determine whether the molding state of a molded product or an injection molding machine is good or bad.
 また、1つの成形品を生産する成形サイクルは、複数の成形工程(例えば、射出工程、計量工程など)から構成されている。そこで、各成形工程に含まれる時系列データに基づいて「特徴量(例えば、射出工程における圧力の最大値など)」を算出し、算出された特徴量と予め定めた許容範囲とを比較して、成形品または射出成形機の成形状態の良否を判定すること、も公知である(例えば、特許文献1~4など)。 Furthermore, the molding cycle that produces one molded product is made up of multiple molding processes (e.g., injection process, weighing process, etc.). Therefore, it is also known to calculate "feature values (e.g., maximum pressure value in the injection process)" based on the time-series data included in each molding process, and compare the calculated feature values with a predetermined allowable range to determine whether the molding state of the molded product or the injection molding machine is good or bad (e.g., Patent Documents 1 to 4, etc.).
特開2010-076177号公報JP 2010-076177 A 国際公開第2022/075181号International Publication No. 2022/075181 国際公開第2022/075242号International Publication No. 2022/075242 特開2017-087588号公報JP 2017-087588 A
 特徴量が成形状態の良否を判定する監視範囲(下限値~上限値)に収まっている場合であっても、特徴量が急峻に変化して成形状態が異常となる場合がある。より具体的には、センサの破損や可動部の損傷、可動部への異物の混入、生産材への異物の混入、オペレータの操作ミス(運転指令値の誤設定)、などの突発的な要因が引き金となり、異常に至ることがある。従来は、特徴量が急峻に変化した場合であっても「特徴量、または特徴量の差分値」が監視範囲を超えるまでは正常と判定されていたので、この期間において不良品が生産される問題があった。 Even if the feature value falls within the monitoring range (lower limit to upper limit) that determines whether the molding state is good or bad, the feature value may suddenly change and cause the molding state to become abnormal. More specifically, abnormalities may be triggered by sudden factors such as damage to the sensor or moving parts, the intrusion of foreign matter into moving parts or production materials, or an operator error (missetting of operation command values). Previously, even if the feature value suddenly changed, it was judged to be normal until the "feature value or the difference value of the feature value" exceeded the monitoring range, which caused the problem of defective products being produced during this period.
 本開示による判定装置は、射出成形機が成形品を製造する成形サイクルを繰り返した回数である成形サイクル数と、成形サイクルを構成する複数の成形工程を識別する工程識別データと、射出成形機に係る状態を示す所定の物理量に係る時系列データを取得し、所定の成形工程に含まれる時系列データの特徴を示す特徴量を算出する。続いて、特徴量と成形サイクル数に基づいて、現在の特徴量と所定の成形サイクル数だけ前の特徴量との差分値(変化量)を算出する。そして、直近の差分値、または、直近の差分値の平均値を判定基準値として、現在の成形サイクルの差分値と判定基準値とを比較して成形状態の正常または異常を判定し、異常と判定した場合に異常を示す信号を報知することで、上記課題を解決する。 The determination device according to the present disclosure acquires the number of molding cycles, which is the number of times an injection molding machine repeats a molding cycle to manufacture a molded product, process identification data identifying the multiple molding processes that make up the molding cycle, and time series data related to predetermined physical quantities that indicate the state of the injection molding machine, and calculates a feature quantity that indicates the characteristics of the time series data included in the predetermined molding process. Next, based on the feature quantity and the number of molding cycles, it calculates a difference value (amount of change) between the current feature quantity and the feature quantity a predetermined number of molding cycles ago. Then, using the most recent difference value or the average of the most recent difference values as a determination reference value, it compares the difference value of the current molding cycle with the determination reference value to determine whether the molding state is normal or abnormal, and if an abnormality is determined, it issues a signal indicating an abnormality, thereby resolving the above-mentioned problem.
 そして、本開示の一態様は、射出成形機において成型品を製造する成形サイクルを繰り返した回数である成形サイクル数と、前記成形サイクルを構成する複数の成形工程を識別する工程識別データと、前記射出成形機に係る状態を示すデータとして所定の物理量に係る時系列データと、を取得するデータ取得部と、前記工程識別データによって識別される前記複数の成形工程の内の所定の成形工程に含まれる前記時系列データの特徴を示す特徴量を算出する特徴量算出部と、前記特徴量と前記成形サイクル数とに基づいて、現在の特徴量と所定の成形サイクル数だけ前の特徴量との差分値を算出する差分算出部と、直近の少なくとも1つ以上の前記差分値に基づいて判定基準値を算出する判定基準値算出部と、前記差分算出部が算出した現在の成形サイクルにおける差分値と、前記判定基準値とに基づいて、前記射出成形機における成形状態を判定する判定部と、前記判定部による判定結果を報知する報知部と、を備えた判定装置である。 An aspect of the present disclosure is a judgment device that includes a data acquisition unit that acquires a molding cycle number, which is the number of times a molding cycle for manufacturing a molded product in an injection molding machine is repeated, process identification data that identifies a plurality of molding processes that constitute the molding cycle, and time series data related to a predetermined physical quantity as data indicating a state of the injection molding machine; a feature calculation unit that calculates a feature amount that indicates a feature of the time series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data; a difference calculation unit that calculates a difference value between a current feature amount and a feature amount a predetermined number of molding cycles ago based on the feature amount and the molding cycle number; a judgment reference value calculation unit that calculates a judgment reference value based on at least one or more of the most recent difference values; a judgment unit that judges the molding state of the injection molding machine based on the difference value in the current molding cycle calculated by the difference calculation unit and the judgment reference value; and a notification unit that notifies the judgment result by the judgment unit.
本開示の第1実施形態による判定装置の概略的なハードウェア構成図である。1 is a schematic hardware configuration diagram of a determination device according to a first embodiment of the present disclosure. 射出成形機の概略的な構成図である。FIG. 1 is a schematic configuration diagram of an injection molding machine. 第1実施形態による判定装置の概略的な機能を示すブロック図である。1 is a block diagram showing schematic functions of a determination device according to a first embodiment; 射出成形機の成形サイクルを構成する成形工程を例示する図である。FIG. 2 is a diagram illustrating molding steps constituting a molding cycle of an injection molding machine. 所定の物理量に係る時系列データの特徴量の推移を例示するグラフである。1 is a graph illustrating a transition of a feature amount of time-series data relating to a predetermined physical amount; 差分値、上限判定値、下限判定値の推移を例示するグラフである。11 is a graph illustrating changes in a difference value, an upper limit judgment value, and a lower limit judgment value; 差分値の推移を例示するグラフである。11 is a graph illustrating a transition of a difference value. 特徴量の推移を例示するグラフである。1 is a graph illustrating a transition of a feature amount; 第3実施形態による判定装置の概略的な機能を示すブロック図である。FIG. 11 is a block diagram showing schematic functions of a determination device according to a third embodiment.
 以下、本開示の実施形態を図面と共に説明する。
[第1実施形態]
 図1は本開示の第1実施形態による判定装置の要部を示す概略的なハードウェア構成図である。本実施形態による判定装置1は、例えば制御用プログラムに基づいて産業機械を制御する制御装置として実装することができる。また、本実施形態による判定装置1は、産業機械を制御する制御装置に併設されたパソコンや、該制御装置と有線/無線のネットワーク5を介して接続されたパソコン、セルコンピュータ、フォグコンピュータ6、クラウドサーバ7などのコンピュータ上に実装することができる。本実施形態では、判定装置1を、産業機械としての射出成形機4を制御する制御装置3とネットワーク5を介して接続されたパソコンの上に実装した例を示す。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
[First embodiment]
1 is a schematic hardware configuration diagram showing a main part of a determination device according to a first embodiment of the present disclosure. The determination device 1 according to this embodiment can be implemented as a control device that controls an industrial machine based on a control program, for example. The determination device 1 according to this embodiment can be implemented on a computer such as a personal computer attached to a control device that controls an industrial machine, or a personal computer, cell computer, fog computer 6, or cloud server 7 that is connected to the control device via a wired/wireless network 5. In this embodiment, an example is shown in which the determination device 1 is implemented on a personal computer that is connected to a control device 3 that controls an injection molding machine 4 as an industrial machine via a network 5.
 本実施形態による判定装置1が備えるCPU11は、判定装置1を全体的に制御するプロセッサである。CPU11は、バス22を介してROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って判定装置1全体を制御する。RAM13には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。 The CPU 11 provided in the determination device 1 according to this embodiment is a processor that controls the entire determination device 1. The CPU 11 reads out a system program stored in the ROM 12 via the bus 22, and controls the entire determination device 1 according to the system program. The RAM 13 temporarily stores temporary calculation data, display data, and various data input from outside.
 不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、判定装置1の電源がオフされても記憶状態が保持される。不揮発性メモリ14には、インタフェース15を介して外部機器72から読み込まれたプログラムやデータ、インタフェース18を介して入力装置71から入力されたプログラムやデータ、ネットワーク5を介して制御装置3や他の装置から取得されたプログラムやデータ等が記憶される。記憶されるデータには、例えば制御装置3が制御する射出成形機4に取り付けられたセンサ8により検出された駆動部のモータ電流、電圧、トルク、位置、速度、加速度、射出シリンダの温度、樹脂の圧力、流量、流速、金型の温度や圧力、金型温調機の温度や圧力、成形品取り出し機の位置や速度、射出成形機4の各部に発生する振動や音等の物理量に係るデータが含まれていてよい。不揮発性メモリ14に記憶されたプログラムやデータは、実行時/利用時にはRAM13に展開されてもよい。また、ROM12には、公知の解析プログラムなどの各種システム・プログラムがあらかじめ書き込まれている。 The non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown) or an SSD (Solid State Drive), and the memory state is maintained even when the power supply of the determination device 1 is turned off. The non-volatile memory 14 stores programs and data read from the external device 72 via the interface 15, programs and data input from the input device 71 via the interface 18, and programs and data acquired from the control device 3 or other devices via the network 5. The stored data may include, for example, data related to physical quantities such as the motor current, voltage, torque, position, speed, acceleration, injection cylinder temperature, resin pressure, flow rate, flow rate, mold temperature and pressure, mold temperature and pressure, mold temperature regulator temperature and pressure, molded product removal machine position and speed, and vibration and sound generated in each part of the injection molding machine 4 detected by the sensor 8 attached to the injection molding machine 4 controlled by the control device 3. The programs and data stored in the non-volatile memory 14 may be expanded to the RAM 13 when executed/used. In addition, various system programs, such as well-known analysis programs, are pre-programmed into ROM 12.
 インタフェース15は、判定装置1のCPU11とUSB装置等の外部機器72と接続するためのインタフェースである。外部機器72側からは、例えばシステム・プログラムや射出成形機4の運転に係るプログラム、設定データ等が読み込まれる。また、判定装置1内で作成・編集したプログラムや設定データ等は、外部機器72を介して外部記憶手段に記憶させることができる。 The interface 15 is an interface for connecting the CPU 11 of the determination device 1 to an external device 72 such as a USB device. For example, system programs, programs related to the operation of the injection molding machine 4, setting data, etc. are read from the external device 72. In addition, programs and setting data created and edited within the determination device 1 can be stored in an external storage means via the external device 72.
 インタフェース20は、判定装置1のCPU11と有線乃至無線のネットワーク5とを接続するためのインタフェースである。ネットワーク5は、例えばRS-485等のシリアル通信、Ethernet(登録商標)通信、光通信、無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)等の技術を用いて通信をするものであってよい。ネットワーク5には、少なくとも1つの射出成形機4を制御する制御装置3、フォグコンピュータ6、クラウドサーバ7等が接続され、判定装置1との間で相互にデータのやり取りを行っている。 The interface 20 is an interface for connecting the CPU 11 of the determination device 1 to a wired or wireless network 5. The network 5 may communicate using technologies such as serial communication such as RS-485, Ethernet (registered trademark), optical communication, wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), etc. The network 5 is connected to a control device 3 that controls at least one injection molding machine 4, a fog computer 6, a cloud server 7, etc., and exchanges data with the determination device 1.
 表示装置70には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等がインタフェース17を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力装置71は、オペレータによる操作に基づく指令、データ等をインタフェース18を介してCPU11に渡す。 The display device 70 displays the various data loaded into the memory, data obtained as a result of executing programs, etc., output via the interface 17. The input device 71, which is comprised of a keyboard, pointing device, etc., passes instructions and data based on operations by the operator to the CPU 11 via the interface 18.
 図2は、射出成形機4の概略構成図である。射出成形機4は、主として型締ユニット401と射出ユニット402とから構成されている。型締ユニット401には、可動プラテン416と固定プラテン414が備えられている。また、それぞれ可動プラテン416には可動側金型412が、固定プラテン414には固定側金型411が取り付けられている。型締ユニット401にはサーボモータ50が取り付けられている。そして、サーボモータ50を駆動させることで、ベルト420、プーリ422などの動力伝達手段を介して図示しないボールねじが駆動され、可動プラテン416を固定プラテン414方向に前進又は後退させることができる。 FIG. 2 is a schematic diagram of the injection molding machine 4. The injection molding machine 4 is mainly composed of a mold clamping unit 401 and an injection unit 402. The mold clamping unit 401 is equipped with a movable platen 416 and a fixed platen 414. A movable mold 412 is attached to the movable platen 416, and a fixed mold 411 is attached to the fixed platen 414. A servo motor 50 is attached to the mold clamping unit 401. By driving the servo motor 50, a ball screw (not shown) is driven via power transmission means such as a belt 420 and a pulley 422, and the movable platen 416 can be advanced or retreated toward the fixed platen 414.
 一方、射出ユニット402は、射出シリンダ426と、射出シリンダ426に供給する樹脂材料を溜めるホッパ436と、射出シリンダ426の先端に設けられたノズル440とから構成されている。射出ユニット402は、図示しないサーボモータを駆動させることで、射出シリンダ426を固定プラテン414方向に前進又は後退させることができる。 On the other hand, the injection unit 402 is composed of an injection cylinder 426, a hopper 436 that stores the resin material to be supplied to the injection cylinder 426, and a nozzle 440 provided at the tip of the injection cylinder 426. The injection unit 402 can move the injection cylinder 426 forward or backward in the direction of the fixed platen 414 by driving a servo motor (not shown).
 1つの成形品を製造する成形サイクルでは、型締ユニット401で、可動プラテン416の移動によって型閉じ・型締めを行い、射出ユニット402で、ノズル440を固定側金型411に押し付けてから射出シリンダ426の内に計量された樹脂を金型内に射出する。これらの動作は図示しない制御装置3からの指令により制御される。 In a molding cycle for producing one molded product, the mold clamping unit 401 closes and clamps the mold by moving the movable platen 416, and the injection unit 402 presses the nozzle 440 against the fixed mold 411 and then injects a measured amount of resin into the injection cylinder 426 into the mold. These operations are controlled by commands from the control device 3 (not shown).
 また、射出成形機4の各部には図示しないセンサ8が取り付けられており、成形動作の制御に必要な各種物理量が検出される。検出される物理量の例としては、駆動部のモータ電流、電圧、トルク、位置、速度、加速度、射出シリンダ426の温度、射出シリンダ426内の樹脂の圧力、樹脂の流量、金型の温度や圧力、金型温調機の温度や圧力、成形品取り出し機の位置や速度、射出成形機4の各部に発生する振動や音などが例示される。検出された物理量は判定装置1に送信出力される。判定装置1では、検出された各物理量がRAM13や不揮発性メモリ14などに記憶される。 In addition, sensors 8 (not shown) are attached to each part of the injection molding machine 4, and various physical quantities necessary for controlling the molding operation are detected. Examples of the detected physical quantities include the motor current, voltage, torque, position, speed, and acceleration of the drive unit, the temperature of the injection cylinder 426, the pressure of the resin in the injection cylinder 426, the flow rate of the resin, the temperature and pressure of the mold, the temperature and pressure of the mold temperature regulator, the position and speed of the molded product removal machine, and vibrations and sounds generated in each part of the injection molding machine 4. The detected physical quantities are sent and output to the determination device 1. In the determination device 1, each detected physical quantity is stored in the RAM 13, non-volatile memory 14, etc.
 図3は、本開示の第1実施形態による判定装置1が備える機能を概略的なブロック図として示したものである。本実施形態による判定装置1が備える各機能は、図1に示した判定装置1が備えるCPU11がシステム・プログラムを実行し、判定装置1の各部の動作を制御することにより実現される。 FIG. 3 is a schematic block diagram showing the functions of the determination device 1 according to the first embodiment of the present disclosure. Each function of the determination device 1 according to this embodiment is realized by the CPU 11 of the determination device 1 shown in FIG. 1 executing a system program and controlling the operation of each part of the determination device 1.
 本実施形態の判定装置1は、データ取得部110、平準化部120、特徴量算出部130、差分算出部140、判定基準値算出部150、判定部160、報知部170を備える。また、判定装置1のRAM13乃至不揮発性メモリ14には、データ取得部110が射出成形機4に取り付けられたセンサ8等から取得したデータを記憶するための領域である取得データ記憶部210、特徴量算出部130が算出した特徴量を示すデータを記憶するための領域である特徴量記憶部220、差分算出部140が算出した差分値を記憶するための領域である差分値記憶部230が予め用意されている。 The judgment device 1 of this embodiment includes a data acquisition unit 110, a leveling unit 120, a feature calculation unit 130, a difference calculation unit 140, a judgment reference value calculation unit 150, a judgment unit 160, and a notification unit 170. The RAM 13 to the non-volatile memory 14 of the judgment device 1 are provided with an acquired data storage unit 210, which is an area for storing data acquired by the data acquisition unit 110 from the sensor 8 attached to the injection molding machine 4, a feature storage unit 220, which is an area for storing data indicating the feature calculated by the feature calculation unit 130, and a difference value storage unit 230, which is an area for storing the difference value calculated by the difference calculation unit 140.
 データ取得部110は、射出成形機4が成形サイクルの動作を行う際に、射出成形機において成型品を製造する成形サイクルを繰り返した回数である成形サイクル数、該成形サイクルを構成する複数の成形工程を識別する複数の工程識別データ、及び該成形サイクルの動作に係る状態を示すデータとして所定の物理量に係る時系列データを制御装置3から取得する。成形工程を識別する工程識別データは、現在実行されている成形工程がいずれの成形工程であるのかを識別するデータである。成形サイクルを構成する各成形工程は、図4に例示するように、型閉じ工程、射出工程、保圧工程、計量工程、減圧工程、冷却工程、型開き工程、突き出し工程、取り出し工程などを含む。成形サイクルの動作に係る状態を示すデータには、例えば射出成形機4を動作させるサーボモータから取得されるモータ電流、電圧、トルク、位置、速度、加速度や、センサ8が検出した射出シリンダ426の温度、射出シリンダ426内の樹脂の圧力、駆動部の振動、金型の開閉量、金型のキャビティ内の圧力、金型のキャビティ内の温度などの検出値データを時系列データとして含んでいてよい。なお、データ取得部110は、オペレータが入力装置71から入力したデータや、外部機器72を介して入力されたデータを取得するようにしてもよい。データ取得部110は、取得した成形サイクル数、工程識別データ、及び成形サイクルの動作に係る状態を示すデータを関連付けて取得データ記憶部210に記憶する。 When the injection molding machine 4 performs a molding cycle operation, the data acquisition unit 110 acquires from the control device 3 the number of molding cycles, which is the number of times the molding cycle for manufacturing a molded product is repeated in the injection molding machine, a plurality of process identification data for identifying the plurality of molding processes constituting the molding cycle, and time series data related to a predetermined physical quantity as data indicating the state of the operation of the molding cycle. The process identification data for identifying the molding process is data for identifying which molding process is currently being performed. As illustrated in FIG. 4, the molding processes constituting the molding cycle include a mold closing process, an injection process, a pressure holding process, a weighing process, a decompression process, a cooling process, a mold opening process, an ejection process, and a removal process. The data indicating the state of the operation of the molding cycle may include, for example, motor current, voltage, torque, position, speed, and acceleration acquired from the servo motor that operates the injection molding machine 4, and detection value data such as the temperature of the injection cylinder 426 detected by the sensor 8, the pressure of the resin in the injection cylinder 426, the vibration of the drive unit, the amount of opening and closing of the mold, the pressure in the mold cavity, and the temperature in the mold cavity, as time series data. The data acquisition unit 110 may acquire data input by the operator from the input device 71 or data input via the external device 72. The data acquisition unit 110 associates the acquired molding cycle number, process identification data, and data indicating the state related to the operation of the molding cycle, and stores them in the acquired data storage unit 210.
 平準化部120は、取得データ記憶部210に記憶された時系列データを平準化した平準化データを算出する。平準化の処理は、例えば移動平均法や重み付き移動平均、移動中央値、サビツキー・ゴーレイフィルタなどの公知のスムージング手法を用いるようにすればよい。 The smoothing unit 120 calculates smoothed data by smoothing the time series data stored in the acquired data storage unit 210. The smoothing process may be carried out using a known smoothing method such as the moving average method, weighted moving average, moving median, or Savitzky-Golay filter.
 特徴量算出部130は、取得データ記憶部210に記憶された成形サイクル数及び工程識別データ、並びに所定の物理量に係る時系列データに基づいて、複数の成形工程の内の所定の成形工程において取得された所定の物理量に係る時系列データの特徴量を算出する。なお、特徴量算出部130は、取得データ記憶部210に記憶された成形サイクル数及び工程識別データ、並びに所定の物理量に係る時系列データを平準化部120により平準化した平準化データに基づいて、所定の物理量に係る平準化データの特徴量を算出する ようにしてもよい。所定の物理量に係る時系列データの特徴量は、所定の成形工程において取得された所定の物理量に係る時系列データの最小値、最大値、極小値、極大値などの統計量であってよい。また、所定の物理量に係る時系列データの特徴量は、所定の成形工程を開始してから予め決められたタイミング(例えば、所定時間経過時点、射出成形機4が備える軸が所定位置到達時点など)における時系列データの値であってもよい。更に、所定の物理量に係る時系列データの特徴量は、所定の成形工程を開始してから所定の物理量に係る時系列データの最小値、最大値、極小値、極大値のいずれかに達するまでの所要時間、スクリュの移動量、スクリュの回転量、可動プラテンの移動量、エジェクタの移動量、金型の開閉量、金型の回転量などであってもよい。特徴量算出部130は、算出したそれぞれの成形工程における所定の物理量に係る時系列データの特徴量を、成形サイクル数及び工程識別データと関連付けて特徴量記憶部220に記憶する。 The feature amount calculation unit 130 calculates the feature amount of the time series data related to the predetermined physical quantity acquired in a predetermined molding process among the multiple molding processes based on the number of molding cycles and process identification data stored in the acquired data storage unit 210, and the time series data related to the predetermined physical quantity. The feature amount calculation unit 130 may calculate the feature amount of the smoothed data related to the predetermined physical quantity based on the number of molding cycles and process identification data stored in the acquired data storage unit 210, and the smoothed data obtained by smoothing the time series data related to the predetermined physical quantity by the smoothing unit 120. The feature amount of the time series data related to the predetermined physical quantity may be a statistical amount such as a minimum value, a maximum value, a minimum value, or a maximum value of the time series data related to the predetermined physical quantity acquired in the predetermined molding process. The feature amount of the time series data related to the predetermined physical quantity may also be the value of the time series data at a predetermined timing (for example, a time when a predetermined time has elapsed, a time when the axis of the injection molding machine 4 reaches a predetermined position, etc.) after the start of the predetermined molding process. Furthermore, the feature amount of the time series data related to the predetermined physical quantity may be the time required from the start of the predetermined molding process until the time series data related to the predetermined physical quantity reaches any one of the minimum value, maximum value, minimum value, and maximum value, the movement amount of the screw, the rotation amount of the screw, the movement amount of the movable platen, the movement amount of the ejector, the opening and closing amount of the mold, the rotation amount of the mold, etc. The feature amount calculation unit 130 stores the calculated feature amount of the time series data related to the predetermined physical quantity in each molding process in the feature amount storage unit 220 in association with the number of molding cycles and the process identification data.
 図5は、所定の物理量に係る時系列データの特徴量の推移を例示するグラフである。図5において、黒丸は成形サイクル毎に特徴量算出部130が算出した所定の時系列データに係る特徴量V(n)(nは成形サイクル数)をプロットしたものである。 FIG. 5 is a graph illustrating the transition of the feature quantity of time-series data related to a specified physical quantity. In FIG. 5, the black circles represent plots of the feature quantity V(n) (n is the number of molding cycles) related to the specified time-series data calculated by the feature quantity calculation unit 130 for each molding cycle.
 差分算出部140は、特徴量記憶部220に記憶された特徴量と前記成形サイクル数とに基づいて、それぞれの特徴量毎に、該特徴量の算出に用いた時系列データが取得された成形サイクル以前に取得された時系列データの特徴量との差分値を算出する。言い換えると、差分算出部140は、成形サイクルに渡っての特徴量の変化量を算出する。差分算出部140は、例えば所定の特徴量について、その特徴量が算出された成形サイクルの所定サイクル数前(1サイクル前、5サイクル前など)に算出された特徴量との差分値を算出するようにしてもよい。また、その特徴量が算出された成形サイクルの直近の複数の所定サイクル数分の特徴量を用いて差分値を算出するようにしてもよい。差分算出部140は、算出した差分値を、成形サイクル数及び工程識別データと関連付けて差分値記憶部230に記憶する。 Based on the feature values stored in the feature value storage unit 220 and the number of molding cycles, the difference calculation unit 140 calculates, for each feature value, a difference value between the feature value of the time series data acquired before the molding cycle in which the time series data used to calculate the feature value was acquired. In other words, the difference calculation unit 140 calculates the amount of change in the feature value over the molding cycle. For example, the difference calculation unit 140 may calculate a difference value between a specific feature value and a feature value calculated a specific number of molding cycles before (one cycle before, five cycles before, etc.) the molding cycle in which the feature value was calculated. The difference value may also be calculated using feature values for a specific number of molding cycles immediately preceding the molding cycle in which the feature value was calculated. The difference calculation unit 140 stores the calculated difference value in the difference value storage unit 230 in association with the number of molding cycles and process identification data.
 判定基準値算出部150は、差分値記憶部230に記憶された直近の差分値、または、直近の複数の所定サイクル数分の差分値に基づいて、判定基準値を算出する。判定基準値算出部150は、直近の差分値を判定基準値としてもよい。また、直近の複数の所定サイクル数分の差分値を統計処理して得た平均値を判定基準値としてもよい。 The judgment reference value calculation unit 150 calculates the judgment reference value based on the most recent difference value stored in the difference value storage unit 230, or the difference values for the most recent multiple predetermined cycles. The judgment reference value calculation unit 150 may use the most recent difference value as the judgment reference value. Also, the judgment reference value may be the average value obtained by statistically processing the difference values for the most recent multiple predetermined cycles.
 判定部160は、判定基準値算出部150が算出した判定基準値に基づいて、差分算出部140により算出された現在の成形サイクルの差分値の妥当性を判定する。そして、妥当ではないと判定される場合、射出成形機4における成形の状態が異常であると判定する。判定部160は、例えば判定基準値に所定の上限許容幅(オフセット)αを加えた上限判定値、及び判定基準値から所定の下限許容幅(オフセット)βを減じた下限判定値を算出して、現在の成形サイクルの差分値が下限判定値と上限判定値との範囲を逸脱した場合に、差分値が妥当ではないと判定するようにしてもよい。また、判定部160は、差分算出部140により算出された現在の成形サイクルの差分値が、判定基準値算出部150が算出した判定基準値から乖離している度合いを示す乖離度を算出し、該乖離度が予め定めた少なくとも1つの所定の閾値より大きいか否かに基づいて、射出成形機4の成形状態を判定するようにしてもよい。判定部160は、射出成形機4における成形状態が異常であると判定した場合、その旨を報知部170へと出力する。 The judgment unit 160 judges the validity of the difference value of the current molding cycle calculated by the difference calculation unit 140 based on the judgment reference value calculated by the judgment reference value calculation unit 150. If it is judged to be inappropriate, it judges that the molding state of the injection molding machine 4 is abnormal. The judgment unit 160 may calculate, for example, an upper limit judgment value by adding a predetermined upper limit tolerance width (offset) α to the judgment reference value and a lower limit judgment value by subtracting a predetermined lower limit tolerance width (offset) β from the judgment reference value, and judge that the difference value is inappropriate when the difference value of the current molding cycle deviates from the range between the lower limit judgment value and the upper limit judgment value. In addition, the judgment unit 160 may calculate a deviation degree indicating the degree to which the difference value of the current molding cycle calculated by the difference calculation unit 140 deviates from the judgment reference value calculated by the judgment reference value calculation unit 150, and judge the molding state of the injection molding machine 4 based on whether the deviation degree is greater than at least one predetermined threshold value. If the judgment unit 160 judges that the molding state in the injection molding machine 4 is abnormal, it outputs a message to that effect to the notification unit 170.
 図6は、差分算出部140により算出された差分値、上限判定値、下限判定値の推移を例示するグラフである。図6において、黒丸は成形サイクル毎に差分算出部140が算出した所定の時系列データに係る特徴量の差分値D(n)(nは成形サイクル数)をプロットしたものである。また、黒三角は成形サイクル毎に判定基準値算出部150が算出した判定基準値に基づいて定められた上限判定値ALMU(n)を、黒四角は判定基準値に基づいて定められた下限判定値ALML(n)を、それぞれプロットしたものである。図6の例では、成形サイクル数nにおける上限判定値ALMU(n)は直近の差分値D(n-1)に対して所定の上限許容幅αを加えた値を、下限判定値ALML(n)は直近の差分値D(n-1)から所定の下限許容幅βを減じた値を用いている。図6の例において、判定部160は、各成形サイクルにおいて算出される上限判定値ALMU(n)を結んだ監視ラインと、下限判定値ALML(n)を結んだ監視ラインとの範囲を、差分値D(n)が逸脱するか否かに応じて、射出成形機4の成形状態の正常/異常を判定する。成形状態の判定に差分値D(n)を用いることで、特徴量の変化傾向(上昇、下降する具合)に基づいて、成形状態を判定することができるようになる。 6 is a graph showing an example of the transition of the difference value, upper limit judgment value, and lower limit judgment value calculated by the difference calculation unit 140. In FIG. 6, the black circles are plots of the difference value D(n) (n is the number of molding cycles) of the feature amount related to the predetermined time series data calculated by the difference calculation unit 140 for each molding cycle. The black triangles are plots of the upper limit judgment value ALM U (n) determined based on the judgment reference value calculated by the judgment reference value calculation unit 150 for each molding cycle, and the black squares are plots of the lower limit judgment value ALM L (n) determined based on the judgment reference value. In the example of FIG. 6, the upper limit judgment value ALM U (n) at the molding cycle number n is the value obtained by adding a predetermined upper limit tolerance width α to the most recent difference value D(n-1), and the lower limit judgment value ALM L (n) is the value obtained by subtracting a predetermined lower limit tolerance width β from the most recent difference value D(n-1). 6, the judgment unit 160 judges whether the molding state of the injection molding machine 4 is normal/abnormal depending on whether the difference value D(n) deviates from the range between a monitor line connecting the upper limit judgment value ALM U (n) calculated in each molding cycle and a monitor line connecting the lower limit judgment value ALM L (n). By using the difference value D(n) to judge the molding state, it becomes possible to judge the molding state based on the changing tendency (degree of increase or decrease) of the feature amount.
 報知部170は、判定部160が射出成形機4における成形状態が異常であると判定した場合、異常を示す判定結果を報知する。報知部170は、例えば判定部160から入力された射出成形機4における成形状態の判定結果を表示装置70に対して表示するようにしてもよい。その際に、異常と判定された特徴量が属する成形工程を表示するようにしてもよい。同様の報知を、射出成形機4を制御する制御装置3や、フォグコンピュータ6、クラウドサーバ7などに送信するようにしてもよい。また、判定部160による判定結果を示す所定の情報や、成形サイクル数と差分値の組をプロットしたグラフなどを表示するようにしてもよい。更に、報知部170は、判定部160が射出成形機4の成形状態を異常と判定した場合、射出成形機4の運転を制限するように、制御装置3に対して指令を出力するようにしてもよい。制御装置3に対して出力する指令としては、例えば射出成形機4の運転を停止する指令、射出成形機4が備えるサーボモータ50の駆動トルクを低トルクに制限する指令などが挙げられる。 The notification unit 170 notifies the judgment result indicating an abnormality when the judgment unit 160 judges that the molding state of the injection molding machine 4 is abnormal. The notification unit 170 may display, for example, the judgment result of the molding state of the injection molding machine 4 input from the judgment unit 160 on the display device 70. At that time, the molding process to which the feature value judged to be abnormal belongs may be displayed. A similar notification may be transmitted to the control device 3 that controls the injection molding machine 4, the fog computer 6, the cloud server 7, etc. In addition, it may display predetermined information indicating the judgment result by the judgment unit 160, a graph plotting a set of the number of molding cycles and the difference value, etc. Furthermore, the notification unit 170 may output a command to the control device 3 to limit the operation of the injection molding machine 4 when the judgment unit 160 judges that the molding state of the injection molding machine 4 is abnormal. Examples of commands output to the control device 3 include a command to stop the operation of the injection molding machine 4 and a command to limit the drive torque of the servo motor 50 equipped in the injection molding machine 4 to a low torque.
 上記構成を備えた本実施形態による判定装置1は、射出成形機4の成形状態について、該射出成形機4から取得される時系列データの特徴量の差分値に基づいて判定することによって、特徴量が変化する兆候を早期に捉え、成形状態の異常を早期に検出することができる。これにより、オペレータに異常である旨を早期に報知したり、機械の運転を安全に停止させたりすること、が実現される。 The judgment device 1 according to this embodiment, which has the above configuration, judges the molding state of the injection molding machine 4 based on the difference value of the feature amount of the time series data acquired from the injection molding machine 4, and can pick up signs of changes in the feature amount at an early stage and detect abnormalities in the molding state at an early stage. This makes it possible to notify the operator of an abnormality at an early stage and to safely stop the operation of the machine.
 射出成形機4では、突発的な要因が引き金となり、可動部の位置速度センサや圧力センサ等より観測される時系列データが正常時の値から大きく変動した値となる場合がある。突発的な要因としては、例えばセンサ8や駆動部品の組付け不良や損傷、可動部や生産材への異物の混入、オペレータの操作ミスなどが挙げられる。より具体的に、センサ8の接触不良の例として、ノズル440や射出シリンダ426が備える温度センサにより検出される温度は、射出シリンダ426が備えるヒータの制御をONすると、設定温度に向かって上昇し、設定温度をオーバシュートした後に下降と上昇を繰り返しながら設定温度に徐々に近づく。ここで、射出シリンダ426が備えるヒータと射出シリンダ426との組付けが緩んで両者に接触不良が生じると、射出シリンダ426の現在温度は急激に下降する。ここで、射出シリンダ426の温度に係る特徴量として、射出工程における射出シリンダ426の温度最大値は、成形サイクルを繰り返すことに伴って許容範囲(下限値~上限値)の内に収まっているが、該特徴量は成形サイクルの繰り返しの中で急峻に低下することがある。また、現在温度が設定温度で安定せずに変動すると、圧力やトルクなど温度以外の射出成形機に係る物理量も変動する。そのため、例えば射出工程における圧力最大値、計量工程における回転トルク最大値、などの値も急峻に変化する。 In the injection molding machine 4, an unexpected factor may trigger the time series data observed by the position speed sensor and pressure sensor of the moving part to fluctuate significantly from the normal value. Examples of unexpected factors include improper assembly or damage of the sensor 8 or driving parts, contamination of the moving parts or production materials with foreign matter, and operator operation errors. More specifically, as an example of poor contact of the sensor 8, the temperature detected by the temperature sensor equipped in the nozzle 440 or the injection cylinder 426 rises toward the set temperature when the control of the heater equipped in the injection cylinder 426 is turned on, overshoots the set temperature, and then gradually approaches the set temperature while repeating a drop and rise. Here, if the assembly between the heater equipped in the injection cylinder 426 and the injection cylinder 426 becomes loose and poor contact occurs between them, the current temperature of the injection cylinder 426 drops suddenly. Here, as a feature quantity related to the temperature of the injection cylinder 426, the maximum temperature value of the injection cylinder 426 in the injection process falls within the allowable range (lower limit to upper limit) as the molding cycle is repeated, but this feature quantity may suddenly drop as the molding cycle is repeated. In addition, if the current temperature does not stabilize at the set temperature and fluctuates, physical quantities related to the injection molding machine other than temperature, such as pressure and torque, also fluctuate. Therefore, for example, values such as the maximum pressure value in the injection process and the maximum rotational torque value in the metering process also change suddenly.
 従来技術では、特徴量が急峻に変化した場合であっても特徴量が監視範囲(下限値~上限値)に収まっている状態では、異常の兆候であることが見逃されて正常と誤判定されていた。しかしながら本実施形態による判定装置1では、例えばセンサ8の接触不良など、射出成形機や備える部品や金型の破損等の異常を早期に検知することが可能になる。また、成形品の成形不良(例えば、バリ、ショートなど)に繋がる異常が早期に検知されるので、不良品の流出が低減する。 In conventional technology, even if the feature value changes suddenly, as long as the feature value falls within the monitoring range (lower limit to upper limit), the sign of an abnormality is overlooked and the value is erroneously determined to be normal. However, the judgment device 1 according to this embodiment makes it possible to detect abnormalities such as poor contact of the sensor 8 and damage to the injection molding machine, its components, and the mold at an early stage. In addition, since abnormalities that can lead to molding defects (e.g. burrs, shorts, etc.) in molded products are detected at an early stage, the outflow of defective products is reduced.
 本実施形態による判定装置1の一変形例として、判定装置1は、判定処理の間引きを行うようにしてもよい。特徴量の変化が小さい場合、例えば、金型の温度や、スクリュが備える逆流防止リングの摩耗の進捗に従って変動する射出時のバックフロー量は、長時間をかけて緩やかに変動する。そのような場合には、例えば、3ショット(サイクル)毎に差分値D(n)を算出して判定する、といったように、成形サイクルを間引いて、所定の成形サイクル周期毎に判定しても良い。これにより、CPUの計算負荷を低減して、判定回数を削減できる。 As a modified example of the determination device 1 according to this embodiment, the determination device 1 may be configured to thin out the determination process. When the change in the characteristic amount is small, for example, the amount of backflow during injection, which varies according to the temperature of the mold or the progress of wear of the backflow prevention ring provided on the screw, varies slowly over a long period of time. In such a case, the molding cycle may be thinned out and a determination may be made every predetermined molding cycle period, for example, by calculating and determining the difference value D(n) every three shots (cycles). This reduces the calculation load on the CPU and the number of determinations.
 本実施形態による判定装置1の他の変形例として、判定装置1は、ネットワーク5を介して複数の射出成形機4に係るデータを取得して、それぞれの射出成形機4の成形状態について判定するようにしてもよい。このように構成することで、1台の判定装置1で複数の射出成形機4の成形状態を管理することが可能となる。例えば、工場に設置されたフォグコンピュータ6などの上位コンピュータ上に判定装置1を実装する場合に、複数の射出成形機4の成形状態を管理する構成とすることで、本開示による判定装置1の機能を好適に活用することが可能となる。 As another variation of the determination device 1 according to this embodiment, the determination device 1 may acquire data related to multiple injection molding machines 4 via the network 5 and determine the molding state of each injection molding machine 4. By configuring in this manner, it becomes possible to manage the molding state of multiple injection molding machines 4 with one determination device 1. For example, when the determination device 1 is implemented on a higher-level computer such as a fog computer 6 installed in a factory, the configuration for managing the molding state of multiple injection molding machines 4 makes it possible to optimally utilize the functions of the determination device 1 according to the present disclosure.
[第2実施形態]
 以下では、本開示の第2実施形態による判定装置について説明する。
 本実施形態による判定装置1は、第1実施形態による判定装置1と同様のハードウェア構成を備える。また、本実施形態による判定装置1は、第1実施形態による判定装置1と同様に、データ取得部110、平準化部120、特徴量算出部130、差分算出部140、判定基準値算出部150、判定部160、報知部170を備える。
[Second embodiment]
A determination device according to a second embodiment of the present disclosure will be described below.
The determination device 1 according to the present embodiment has a hardware configuration similar to that of the determination device 1 according to the first embodiment. Similarly to the determination device 1 according to the first embodiment, the determination device 1 according to the present embodiment also has a data acquisition unit 110, a leveling unit 120, a feature amount calculation unit 130, a difference calculation unit 140, a determination reference value calculation unit 150, a determination unit 160, and a notification unit 170.
 本実施形態による判定装置1が備えるデータ取得部110、平準化部120、特徴量算出部130、差分算出部140、判定部160、報知部170は、第1実施形態による各機能と同様のものである。 The data acquisition unit 110, the leveling unit 120, the feature calculation unit 130, the difference calculation unit 140, the judgment unit 160, and the notification unit 170 provided in the judgment device 1 according to this embodiment have the same functions as those in the first embodiment.
 本実施形態による判定基準値算出部150は、差分値記憶部230に記憶された複数の差分値と成形サイクル数とに基づいて、所定の回帰分析により回帰式を求め、求めた回帰式を用いて推定した差分値を判定基準値として算出する点で第1実施形態と異なる。 The judgment reference value calculation unit 150 of this embodiment differs from the first embodiment in that it obtains a regression equation by a predetermined regression analysis based on the multiple difference values stored in the difference value storage unit 230 and the number of molding cycles, and calculates the estimated difference value using the obtained regression equation as the judgment reference value.
 図7は、差分値の推移を例示するグラフである。本実施形態による判定基準値算出部150は、所定の成形サイクル(i+1)における判定基準値として、所定の成形サイクル(i+1)より前に行われた成形サイクルにおいて算出されてきた複数の差分値に基づいて推定される差分値Dest(i+1)を算出する。判定基準値算出部150は、成形サイクル(i+1)より前の所定数の成形サイクルに基づいた回帰分析を行う。判定基準値算出部150が行う回帰分析は、直線回帰、リッジ回帰、ラッソ回帰、指数回帰、多項式回帰、自己回帰モデルなど、公知の回帰分析の手法であってよい。図7の例では、成形サイクル(i+1)より前の成形サイクル(i-3)~(i)において算出された差分値D(i-3)~D(i)を用いて回帰分析を行っている。図7の実線のグラフは、差分値D(i-3)~D(i)に基づいて直線回帰による回帰分析によって算出された直線回帰式のグラフである。判定基準値算出部150は、回帰分析して算出された直線回帰式を用いて成形サイクル(i+1)において推定される差分値Dest(i+1)を算出し、算出された差分値Dest(i+1)を判定基準値とする。算出された判定基準値に基づいて、判定部160が、成形サイクル(i+1)における差分値D(i+1)を用いた射出成形機4の成形状態の判定を行うことは、第1実施形態による判定装置1と同様である。図7の破線で示したグラフは、例えば判定基準値に所定の上限許容幅(オフセット)αを加えた上限判定値、及び判定基準値から所定の下限許容幅(オフセット)βを減じた下限判定値を示すグラフである。そして、成形サイクル(i+1)における差分値D(i+1)が下限判定値と上限判定値との範囲を逸脱した場合に、成形状態が異常であると判定する。 FIG. 7 is a graph illustrating the transition of the difference value. The judgment reference value calculation unit 150 according to this embodiment calculates the difference value Dest(i+1) estimated based on a plurality of difference values calculated in molding cycles performed prior to the specified molding cycle (i+1) as the judgment reference value in the specified molding cycle (i+1). The judgment reference value calculation unit 150 performs a regression analysis based on a specified number of molding cycles prior to the molding cycle (i+1). The regression analysis performed by the judgment reference value calculation unit 150 may be a known regression analysis method such as linear regression, ridge regression, lasso regression, exponential regression, polynomial regression, or autoregressive model. In the example of FIG. 7, the regression analysis is performed using the difference values D(i-3) to D(i) calculated in the molding cycles (i-3) to (i) prior to the molding cycle (i+1). The solid line graph in FIG. 7 is a graph of a linear regression formula calculated by linear regression analysis based on the difference values D(i-3) to D(i). The judgment reference value calculation unit 150 calculates the difference value Dest(i+1) estimated in the molding cycle (i+1) using the linear regression equation calculated by the regression analysis, and the calculated difference value Dest(i+1) is set as the judgment reference value. Based on the calculated judgment reference value, the judgment unit 160 judges the molding state of the injection molding machine 4 using the difference value D(i+1) in the molding cycle (i+1), which is similar to the judgment device 1 according to the first embodiment. The graph shown by the dashed line in FIG. 7 is a graph showing, for example, an upper limit judgment value obtained by adding a predetermined upper limit tolerance width (offset) α to the judgment reference value, and a lower limit judgment value obtained by subtracting a predetermined lower limit tolerance width (offset) β from the judgment reference value. Then, when the difference value D(i+1) in the molding cycle (i+1) deviates from the range between the lower limit judgment value and the upper limit judgment value, it is judged that the molding state is abnormal.
 本実施形態による他の実施例として、自己回帰モデルを用いて差分値を推定する例を説明する。
 図8は、所定の特徴量Y(n)の推移を例示するグラフである。差分算出部140は、特徴量に基づいて、特徴量の差分値D(n)を算出する。図8の例では、成形サイクル(i)における特徴量Y(i)と、1つ前の成形サイクル(i-1)における特徴量Y(i-1)との差分を、成形サイクル(i)の差分値D(i)としている。自己回帰モデルを用いた回帰分析により推定される差分値Dest(i+1)を算出する場合、例えば以下の数1式を用いる。なお、数1式において、Nは回帰分析に用いる差分値の総数から1を減算した値である。
As another example of the present embodiment, an example in which a difference value is estimated using an autoregressive model will be described.
FIG. 8 is a graph illustrating the transition of a predetermined feature quantity Y(n). The difference calculation unit 140 calculates the feature quantity difference value D(n) based on the feature quantity. In the example of FIG. 8, the difference between the feature quantity Y(i) in the molding cycle (i) and the feature quantity Y(i-1) in the immediately previous molding cycle (i-1) is set as the molding cycle (i) difference value D(i). When calculating the difference value Dest(i+1) estimated by regression analysis using an autoregressive model, for example, the following formula 1 is used. In formula 1, N is a value obtained by subtracting 1 from the total number of difference values used in the regression analysis.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このようにして推定された差分値Dest(i+1)を判定基準値として、判定部160が、成形サイクル(i+1)における差分値D(i+1)を用いた射出成形機4の成形状態の判定を行うことは、第1実施形態による判定装置1と同様である。 The difference value Dest(i+1) estimated in this manner is used as the judgment reference value, and the judgment unit 160 judges the molding state of the injection molding machine 4 using the difference value D(i+1) in the molding cycle (i+1), which is the same as in the judgment device 1 according to the first embodiment.
 上記構成を備えた本実施形態による判定装置1は、回帰分析を用いることで、過去の差分値の推移に基づいた判定基準値を精度良く算出できることが期待される。 The determination device 1 according to this embodiment, which has the above configuration, is expected to be able to use regression analysis to accurately calculate a determination reference value based on the trends in past difference values.
[第3実施形態]
 以下では、本開示の第3実施形態による判定装置について説明する。
 本実施形態による判定装置1は、第1実施形態による判定装置1と同様のハードウェア構成を備える。
 図9は、本実施形態による判定装置1が備える機能を概略的なブロック図として示したものである。本実施形態による判定装置1は、第1実施形態による判定装置1と同様に、データ取得部110、平準化部120、特徴量算出部130、差分算出部140、判定基準値算出部150、判定部160、報知部170を備える。
[Third embodiment]
A determination device according to a third embodiment of the present disclosure will be described below.
The determination device 1 according to the present embodiment has the same hardware configuration as the determination device 1 according to the first embodiment.
9 is a schematic block diagram showing functions of the determination device 1 according to the present embodiment. The determination device 1 according to the present embodiment includes a data acquisition unit 110, a leveling unit 120, a feature amount calculation unit 130, a difference calculation unit 140, a determination reference value calculation unit 150, a determination unit 160, and a notification unit 170, similar to the determination device 1 according to the first embodiment.
 本実施形態による判定装置1が備えるデータ取得部110、平準化部120、特徴量算出部130、差分算出部140、判定部160、報知部170は、第1実施形態による各機能と同様のものである。 The data acquisition unit 110, the leveling unit 120, the feature calculation unit 130, the difference calculation unit 140, the judgment unit 160, and the notification unit 170 provided in the judgment device 1 according to this embodiment have the same functions as those in the first embodiment.
 本実施形態による判定基準値算出部150は、機械学習の技術により差分値の変化傾向を学習し、その学習結果に基づいて差分値を推定する。そして、推定した差分値を判定基準値として用いる点で第1実施形態と異なる。判定基準値算出部150は、学習部152、推定部154を備える。 The judgment criterion value calculation unit 150 in this embodiment learns the change trend of the difference value using machine learning technology, and estimates the difference value based on the learning result. It differs from the first embodiment in that the estimated difference value is used as the judgment criterion value. The judgment criterion value calculation unit 150 includes a learning unit 152 and an estimation unit 154.
 学習部152は、差分値記憶部230に記憶された差分値の内で連続する複数の差分値を学習データとして、次の成形サイクルの差分値を推定するための学習モデルを生成する。例えば、成形サイクル(i-k)~(i-1)において算出された特徴量の差分値を説明変数とし、成形サイクル(i)において算出された特徴量の差分値を目的変数とする学習を行う。なお、kは1より大きい自然数である。これにより、過去の(k)個の差分値に基づいて、次の差分値を推定するための学習モデルを生成することができる。学習部152が生成する学習モデルは、例えば多層パーセプトロン、RNN(Recurrent Neural Network)モデル、LSTM(Long Short Term Memory)モデルなどの公知の教師あり学習の学習モデルであってよい。学習部152が生成した学習モデルは、例えばRAM13や不揮発性メモリ14の上に設けられた学習モデル記憶部158に記憶される。なお、特徴量の推移を十分に学習した学習モデルが生成され、学習モデル記憶部158に記憶された後は、判定装置1の構成として学習部152は必ずしも必要ではない。 The learning unit 152 generates a learning model for estimating the difference value of the next molding cycle using multiple consecutive difference values among the difference values stored in the difference value storage unit 230 as learning data. For example, learning is performed with the difference values of the feature amounts calculated in the molding cycles (i-k) to (i-1) as explanatory variables and the difference value of the feature amount calculated in the molding cycle (i) as the objective variable. Note that k is a natural number greater than 1. This makes it possible to generate a learning model for estimating the next difference value based on the past (k) difference values. The learning model generated by the learning unit 152 may be a known supervised learning model such as a multilayer perceptron, an RNN (Recurrent Neural Network) model, or an LSTM (Long Short Term Memory) model. The learning model generated by the learning unit 152 is stored in the learning model storage unit 158 provided on, for example, the RAM 13 or the non-volatile memory 14. After a learning model that has sufficiently learned the transitions in the feature quantities is generated and stored in the learning model storage unit 158, the learning unit 152 is no longer necessarily required as part of the configuration of the determination device 1.
 推定部154は、学習部152が生成し、学習モデル記憶部158に記憶された学習モデルを用いて、差分値記憶部230に記憶された直近の連続する複数の差分値に基づく次の成形サイクルの差分値を推定する。推定部154が推定した差分値は判定基準値として用いられる。 The estimation unit 154 uses the learning model generated by the learning unit 152 and stored in the learning model storage unit 158 to estimate the difference value of the next molding cycle based on the most recent consecutive multiple difference values stored in the difference value storage unit 230. The difference value estimated by the estimation unit 154 is used as a judgment reference value.
 上記構成を備えた本実施形態による判定装置1は、機械学習の技術を用いることで、過去の差分値の推移に基づいた判定基準値を精度良く算出できることが期待される。また、学習モデルは、圧縮した状態でメモリ上に記憶させておき、推定時に解凍して使用するなどといった利用が可能である。これにより、少ないメモリ容量で判定装置1を実現できるので、コスト削減のメリットがある。更に、学習モデルを暗号化して記憶しておき、推定モードで復号化して使用すると、セキュリティや情報秘匿の観点で好ましい。既存の学習モデルを射出成形機4の動作状況に合わせて追加学習して更新することも可能となる。 The determination device 1 according to this embodiment having the above configuration is expected to be able to accurately calculate a determination reference value based on the trends in past difference values by using machine learning technology. In addition, the learning model can be stored in a compressed state in memory and decompressed for use when making an estimation. This allows the determination device 1 to be realized with a small memory capacity, which has the advantage of reducing costs. Furthermore, it is preferable from the standpoint of security and information confidentiality to encrypt and store the learning model and then decrypt and use it in estimation mode. It is also possible to update an existing learning model by additional learning in accordance with the operating conditions of the injection molding machine 4.
 これまで説明してきた本開示の各実施形態による判定装置1は、射出成形機4の成形状態について、該射出成形機4から取得される時系列データの特徴量の差分値に基づいて判定することによって、特徴量が変化する兆候を早期に捉え、成形状態の異常を早期に検出することができる。これにより、オペレータに異常である旨を早期に報知したり、機械の運転を安全に停止させたりすること、が実現される。 The determination device 1 according to each embodiment of the present disclosure described so far determines the molding state of the injection molding machine 4 based on the difference values of the feature quantities of the time-series data acquired from the injection molding machine 4, thereby capturing early signs of changes in the feature quantities and detecting abnormalities in the molding state at an early stage. This makes it possible to notify the operator of an abnormality at an early stage and to safely stop the operation of the machine.
 以上、本開示の実施形態について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、発明の要旨を逸脱しない範囲で、または、請求の範囲に記載された内容とその均等物から導き出される本開示の思想および趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible in these embodiments, without departing from the gist of the invention, or without departing from the idea and intent of the present disclosure derived from the contents described in the claims and their equivalents. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these. The same applies when numerical values or formulas are used in the explanation of the above-mentioned embodiments.
 以下に、本開示の実施形態に係る付記を示す。
(付記1)
 本開示の一態様による判定装置(1)は、射出成形機(4)において成型品を製造する成形サイクルを繰り返した回数である成形サイクル数と、前記成形サイクルを構成する複数の成形工程を識別する工程識別データと、前記射出成形機に係る状態を示すデータとして所定の物理量に係る時系列データと、を取得するデータ取得部(110)と、前記工程識別データによって識別される前記複数の成形工程の内の所定の成形工程に含まれる前記時系列データの特徴を示す特徴量を算出する特徴量算出部(130)と、前記特徴量と前記成形サイクル数とに基づいて、現在の特徴量と所定の成形サイクル数だけ前の特徴量との差分値を算出する差分算出部(140)と、直近の少なくとも1つ以上の前記差分値に基づいて判定基準値を算出する判定基準値算出部(150)と、前記差分算出部(140)が算出した現在の成形サイクルにおける差分値と、前記判定基準値とに基づいて、前記射出成形機(4)における成形状態を判定する判定部(160)と、前記判定部(160)による判定結果を報知する報知部(170)と、を備える。
(付記2)
 本開示の他の態様による判定装置(1)が備える前記判定基準値算出部(150)は、直近の成形サイクルにおいて算出された差分値、または、直近の複数の成形サイクルにおいて算出された差分値の平均値を判定基準値とする。
(付記3)
 本開示の他の態様による判定装置(1)が備える前記判定基準値算出部(150)は、直近の複数の成形サイクルにおいて算出された差分値に基づく回帰分析を行い、該回帰分析により算出された回帰式を用いて推定した現在の成形サイクルの差分値を判定基準値とする。
(付記4)
 本開示の他の態様による判定装置(1)が備える前記判定基準値算出部(150)は、複数の差分値に基づいて該差分値の次の差分値を推定するための学習モデルを用いて、直近の複数の成形サイクルにおいて算出された差分値に基づく現在の成形サイクルの差分値を推定し、推定した差分値を判定基準値とする。
(付記5)
 本開示の他の態様による判定装置(1)は、前記時系列データを平準化した平準化データを算出する平準化部(120)を更に備える。
(付記6)
 本開示の他の態様による判定装置(1)が備える前記報知部(170)は、前記射出成形機(4)の成形状態を異常と判定した場合に、前記射出成形機(4)の運転を制限する指令を出力する。
(付記7)
 本開示の他の態様による判定装置(1)は、更に、前記射出成形機(4)と有線又は無線のネットワークを介して接続された、前記射出成形機を管理する管理装置(6,7)上に実装されている。
(付記8)
 本開示の一態様による判定方法は、射出成形機(4)において成型品を製造する成形サイクルを繰り返した回数である成形サイクル数と、前記成形サイクルを構成する複数の成形工程を識別する工程識別データと、前記射出成形機に係る状態を示すデータとして所定の物理量に係る時系列データと、を取得するステップと、前記工程識別データによって識別される前記複数の成形工程の内の所定の成形工程に含まれる前記時系列データの特徴を示す特徴量を算出するステップと、前記特徴量と前記成形サイクル数とに基づいて、現在の特徴量と所定の成形サイクル数だけ前の特徴量との差分値を算出するステップと、直近の少なくとも1つ以上の前記差分値に基づいて判定基準値を算出するステップと、前記差分値を算出するステップで算出した現在の成形サイクルにおける差分値と、前記判定基準値とに基づいて、前記射出成形機(4)における成形状態を判定するステップと、前記判定の結果を報知するステップと、をコンピュータで実行する。
Below, notes relating to the embodiments of the present disclosure are provided.
(Appendix 1)
A determination device (1) according to one aspect of the present disclosure includes a data acquisition unit (110) that acquires a molding cycle number, which is the number of times a molding cycle for manufacturing a molded product has been repeated in an injection molding machine (4), process identification data that identifies a plurality of molding processes that constitute the molding cycle, and time series data related to a predetermined physical quantity as data indicating a state of the injection molding machine, a feature calculation unit (130) that calculates a feature amount that indicates a feature of the time series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data, and The system includes a difference calculation unit (140) that calculates a difference value between a current feature value and a feature value a predetermined number of molding cycles ago based on the feature value and the number of molding cycles, a judgment reference value calculation unit (150) that calculates a judgment reference value based on at least one of the most recent difference values, a judgment unit (160) that judges a molding state in the injection molding machine (4) based on the difference value in the current molding cycle calculated by the difference calculation unit (140) and the judgment reference value, and an alarm unit (170) that alarms the result of the judgment by the judgment unit (160).
(Appendix 2)
The judgment reference value calculation unit (150) provided in the judgment device (1) according to another aspect of the present disclosure sets the difference value calculated in the most recent molding cycle or the average value of the difference values calculated in the most recent multiple molding cycles as the judgment reference value.
(Appendix 3)
The judgment reference value calculation unit (150) provided in the judgment device (1) according to another aspect of the present disclosure performs regression analysis based on the difference values calculated in the most recent multiple molding cycles, and sets the difference value of the current molding cycle estimated using the regression equation calculated by the regression analysis as the judgment reference value.
(Appendix 4)
The judgment reference value calculation unit (150) provided in the judgment device (1) according to another aspect of the present disclosure estimates a difference value for the current molding cycle based on difference values calculated in the most recent multiple molding cycles using a learning model for estimating the next difference value of the difference value based on multiple difference values, and sets the estimated difference value as the judgment reference value.
(Appendix 5)
The determination device (1) according to another aspect of the present disclosure further includes a smoothing unit (120) that calculates smoothed data by smoothing the time-series data.
(Appendix 6)
The notification unit (170) provided in the judgment device (1) according to another aspect of the present disclosure outputs a command to limit the operation of the injection molding machine (4) when it judges that the molding state of the injection molding machine (4) is abnormal.
(Appendix 7)
The determination device (1) according to another aspect of the present disclosure is further implemented on a management device (6, 7) that manages the injection molding machine (4) and is connected to the injection molding machine (4) via a wired or wireless network.
(Appendix 8)
A judgment method according to one aspect of the present disclosure includes the steps of: acquiring a molding cycle number, which is the number of times a molding cycle for manufacturing a molded product in an injection molding machine (4) has been repeated, process identification data identifying a plurality of molding processes that constitute the molding cycle, and time series data related to a predetermined physical quantity as data indicating a state of the injection molding machine; calculating a feature amount indicating a feature of the time series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data; calculating a difference value between a current feature amount and a feature amount a predetermined number of molding cycles ago based on the feature amount and the molding cycle number; calculating a judgment reference value based on at least one of the most recent difference values; judging a molding state of the injection molding machine (4) based on the difference value in the current molding cycle calculated in the difference value calculation step and the judgment reference value; and notifying a result of the judgment.
   1 判定装置
   3 制御装置
   4 射出成形機
   5 ネットワーク
   6 フォグコンピュータ
   7 クラウドサーバ
   8 センサ
  11 CPU
  12 ROM
  13 RAM
  14 不揮発性メモリ
  15,17,18,20 インタフェース
  22 バス
  70 表示装置
  71 入力装置
  72 外部機器
 110 データ取得部
 120 平準化部
 130 特徴量算出部
 140 差分算出部
 150 判定基準値算出部
 152 学習部
 154 推定部
 158 学習モデル記憶部
 160 判定部
 170 報知部
 210 取得データ記憶部
 220 特徴量記憶部
 230 差分値記憶部
REFERENCE SIGNS LIST 1 Determination device 3 Control device 4 Injection molding machine 5 Network 6 Fog computer 7 Cloud server 8 Sensor 11 CPU
12 ROM
13 RAM
14 Non-volatile memory 15, 17, 18, 20 Interface 22 Bus 70 Display device 71 Input device 72 External device 110 Data acquisition unit 120 Leveling unit 130 Feature amount calculation unit 140 Difference calculation unit 150 Judgment reference value calculation unit 152 Learning unit 154 Estimation unit 158 Learning model storage unit 160 Judgment unit 170 Notification unit 210 Acquired data storage unit 220 Feature amount storage unit 230 Difference value storage unit

Claims (8)

  1.  射出成形機において成型品を製造する成形サイクルを繰り返した回数である成形サイクル数と、前記成形サイクルを構成する複数の成形工程を識別する工程識別データと、前記射出成形機に係る状態を示すデータとして所定の物理量に係る時系列データと、を取得するデータ取得部と、
     前記工程識別データによって識別される前記複数の成形工程の内の所定の成形工程に含まれる前記時系列データの特徴を示す特徴量を算出する特徴量算出部と、
     前記特徴量と前記成形サイクル数とに基づいて、現在の特徴量と所定の成形サイクル数だけ前の特徴量との差分値を算出する差分算出部と、
     直近の少なくとも1つ以上の前記差分値に基づいて判定基準値を算出する判定基準値算出部と、
     前記差分算出部が算出した現在の成形サイクルにおける差分値と、前記判定基準値とに基づいて、前記射出成形機における成形状態を判定する判定部と、
     前記判定部による判定結果を報知する報知部と、
    を備えた判定装置。
    a data acquisition unit that acquires a molding cycle count, which is the number of times a molding cycle for manufacturing a molded product in an injection molding machine has been repeated, process identification data that identifies a plurality of molding processes that constitute the molding cycle, and time-series data relating to a predetermined physical quantity as data indicating a state of the injection molding machine;
    a feature amount calculation unit that calculates a feature amount indicating a feature of the time-series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data;
    a difference calculation unit that calculates a difference between a current feature value and a feature value a predetermined number of molding cycles ago based on the feature value and the number of molding cycles;
    a judgment reference value calculation unit that calculates a judgment reference value based on at least one of the most recent difference values;
    a determination unit that determines a molding state of the injection molding machine based on the difference value in the current molding cycle calculated by the difference calculation unit and the determination reference value;
    a notification unit that notifies a result of the determination by the determination unit;
    A determination device comprising:
  2.  前記判定基準値算出部は、直近の成形サイクルにおいて算出された差分値、または、直近の複数の成形サイクルにおいて算出された差分値の平均値を判定基準値とする、
    請求項1に記載の判定装置。
    The judgment reference value calculation unit sets the difference value calculated in the most recent molding cycle or the average value of the difference values calculated in the most recent multiple molding cycles as the judgment reference value.
    The determination device according to claim 1 .
  3.  前記判定基準値算出部は、直近の複数の成形サイクルにおいて算出された差分値に基づく回帰分析を行い、該回帰分析により算出された回帰式を用いて推定した現在の成形サイクルの差分値を判定基準値とする、
    請求項1に記載の判定装置。
    the judgment reference value calculation unit performs a regression analysis based on the difference values calculated in the most recent multiple molding cycles, and sets the difference value of the current molding cycle estimated using the regression equation calculated by the regression analysis as the judgment reference value.
    The determination device according to claim 1 .
  4.  前記判定基準値算出部は、複数の差分値に基づいて該差分値の次の差分値を推定するための学習モデルを用いて、直近の複数の成形サイクルにおいて算出された差分値に基づく現在の成形サイクルの差分値を推定し、推定した差分値を判定基準値とする、
    請求項1に記載の判定装置。
    the judgment reference value calculation unit estimates a difference value of a current molding cycle based on difference values calculated in a plurality of most recent molding cycles using a learning model for estimating a next difference value of the difference value based on the plurality of difference values, and sets the estimated difference value as a judgment reference value.
    The determination device according to claim 1 .
  5.  前記時系列データを平準化した平準化データを算出する平準化部を更に備える、
    請求項1に記載の判定装置。
    A smoothing unit that smoothes the time series data and calculates smoothed data.
    The determination device according to claim 1 .
  6.  前記報知部は、前記射出成形機の成形状態を異常と判定した場合に、前記射出成形機の運転を制限する指令を出力する、
    請求項1に記載の判定装置。
    the notification unit outputs a command to limit operation of the injection molding machine when it determines that the molding state of the injection molding machine is abnormal.
    The determination device according to claim 1 .
  7.  前記射出成形機と有線又は無線のネットワークを介して接続された、前記射出成形機を管理する管理装置上に実装されている、
    請求項1に記載の判定装置。
    The system is implemented on a management device that manages the injection molding machine and is connected to the injection molding machine via a wired or wireless network.
    The determination device according to claim 1 .
  8.  射出成形機において成型品を製造する成形サイクルを繰り返した回数である成形サイクル数と、前記成形サイクルを構成する複数の成形工程を識別する工程識別データと、前記射出成形機に係る状態を示すデータとして所定の物理量に係る時系列データと、を取得するステップと、
     前記工程識別データによって識別される前記複数の成形工程の内の所定の成形工程に含まれる前記時系列データの特徴を示す特徴量を算出するステップと、
     前記特徴量と前記成形サイクル数とに基づいて、現在の特徴量と所定の成形サイクル数だけ前の特徴量との差分値を算出するステップと、
     直近の少なくとも1つ以上の前記差分値に基づいて判定基準値を算出するステップと、
     前記差分値を算出するステップで算出した現在の成形サイクルにおける差分値と、前記判定基準値とに基づいて、前記射出成形機における成形状態を判定するステップと、
     前記判定の結果を報知するステップと、
    をコンピュータで実行する判定方法。
    acquiring a molding cycle count, which is the number of times a molding cycle for manufacturing a molded product in an injection molding machine has been repeated, process identification data for identifying a plurality of molding processes constituting the molding cycle, and time-series data relating to a predetermined physical quantity as data indicating a state of the injection molding machine;
    calculating a feature quantity indicating a feature of the time-series data included in a predetermined molding process among the plurality of molding processes identified by the process identification data;
    calculating a difference value between a current feature value and a feature value a predetermined number of molding cycles ago based on the feature value and the number of molding cycles;
    calculating a judgment reference value based on at least one of the most recent difference values;
    a step of determining a molding state of the injection molding machine based on the difference value in the current molding cycle calculated in the step of calculating the difference value and the determination reference value;
    notifying the result of the determination;
    A determination method implemented by a computer.
PCT/JP2022/040234 2022-10-27 2022-10-27 Determination device and determination method WO2024089851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040234 WO2024089851A1 (en) 2022-10-27 2022-10-27 Determination device and determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040234 WO2024089851A1 (en) 2022-10-27 2022-10-27 Determination device and determination method

Publications (1)

Publication Number Publication Date
WO2024089851A1 true WO2024089851A1 (en) 2024-05-02

Family

ID=90830359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040234 WO2024089851A1 (en) 2022-10-27 2022-10-27 Determination device and determination method

Country Status (1)

Country Link
WO (1) WO2024089851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147222A (en) * 1988-08-26 1990-06-06 Fanuc Ltd Method for detecting mold clamping malfunction
JPH03274112A (en) * 1990-03-23 1991-12-05 Sodick Co Ltd Mold protector
JPH04103311A (en) * 1990-08-24 1992-04-06 Fanuc Ltd Mold clamping force adjusting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147222A (en) * 1988-08-26 1990-06-06 Fanuc Ltd Method for detecting mold clamping malfunction
JPH03274112A (en) * 1990-03-23 1991-12-05 Sodick Co Ltd Mold protector
JPH04103311A (en) * 1990-08-24 1992-04-06 Fanuc Ltd Mold clamping force adjusting method

Similar Documents

Publication Publication Date Title
US11628609B2 (en) State determination device and method
CN108688105B (en) State determination device
US10981315B2 (en) State determination device
CN110920009B (en) State determination device and state determination method
JP6975188B2 (en) Status determination device and status determination method
CN111531831A (en) State determination device and state determination method
WO2024089851A1 (en) Determination device and determination method
WO2022075181A1 (en) State determination device and state determination method
US20230367304A1 (en) State determination device and state determination method
US20240028020A1 (en) State determination device and state determination method
WO2022075242A1 (en) State determination device and state determination method
WO2024057461A1 (en) Determination device and determination method
JP7495513B2 (en) State determination device and state determination method
CN110962315B (en) State determination device and state determination method
JP7184997B2 (en) State determination device and state determination method
WO2024004106A1 (en) Determination system and method
JP7495514B2 (en) State determination device and state determination method
JP2021066057A (en) Injection molding machine management device and injection molding machine
WO2023026416A1 (en) State determination device and state determination method
WO2024057416A1 (en) Control device and control method
WO2022075244A1 (en) Status determination device and status determination method
WO2023026411A1 (en) State determination device and state determination method
CN117795308A (en) Control device and control method