WO2024089788A1 - Short circuit detection device and short circuit detection method for rotating electric machine - Google Patents

Short circuit detection device and short circuit detection method for rotating electric machine Download PDF

Info

Publication number
WO2024089788A1
WO2024089788A1 PCT/JP2022/039884 JP2022039884W WO2024089788A1 WO 2024089788 A1 WO2024089788 A1 WO 2024089788A1 JP 2022039884 W JP2022039884 W JP 2022039884W WO 2024089788 A1 WO2024089788 A1 WO 2024089788A1
Authority
WO
WIPO (PCT)
Prior art keywords
short circuit
signal
circuit detection
order
amplitude
Prior art date
Application number
PCT/JP2022/039884
Other languages
French (fr)
Japanese (ja)
Inventor
勇二 滝澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/039884 priority Critical patent/WO2024089788A1/en
Publication of WO2024089788A1 publication Critical patent/WO2024089788A1/en

Links

Images

Definitions

  • This application relates to a device and method for detecting short circuits in rotating electrical machines.
  • a short circuit may occur between laminations via an axial fastener. If a large short-circuit current flows between laminations of the stator core, problems such as an increase in heat loss, increased vibration of the rotating electric machine, or an imbalance in the three-phase current output by the rotating electric machine may occur. In particular, when a rotating electric machine is operated under high load, the magnetic flux density inside the rotating electric machine is high, and if a short circuit occurs between the laminations of the stator core, the balance of the frequency components of the magnetic flux density changes significantly.
  • a rotating electric machine in which a rotor holding a field winding and a stator are separated by a gap is provided with a device for monitoring the field magnetic flux in the gap and a device for detecting the presence of even harmonics of this magnetic flux wave. Then, by detecting the even harmonics of the voltage induced in a search coil placed in the gap, a fault in the rotating electric machine is detected. Furthermore, the conventional technology described in Patent Document 2 describes that when the magnetic flux generated in a rotating electric machine is affected by magnetic saturation, odd-order harmonic currents flow through the stator windings, and the magnetic field created by these currents creates harmonic magnetic fluxes in the rotating electric machine. It also describes that an improvement in the stator core structure can be used to suppress the generation of harmonic currents caused by magnetic saturation, thereby reducing the vibration and electromagnetic noise of the rotating electric machine.
  • Patent Document 1 can detect short circuits in the rotor field winding by detecting even harmonics of the voltage induced in the search coil, but cannot detect short circuits between laminations in the stator core.
  • Patent Document 2 is intended to mitigate the adverse effects of magnetic saturation, but does not take into consideration the detection of short circuits between laminations of the stator core. Therefore, even if a short circuit occurs between laminations of the stator core during operation of the rotating electric machine in a state where the magnetic flux density of the stator core is relatively high, there has been a problem in that the occurrence of a short circuit cannot be detected with high accuracy.
  • This application discloses technology to solve the problems described above, and aims to provide a short circuit detection device and method for a rotating electric machine that can accurately detect short circuits that occur between laminations in the stator core while the rotating electric machine is operating with a relatively high magnetic flux density in the stator core.
  • the short circuit detection device for a rotating electric machine disclosed in the present application includes a signal acquisition unit that acquires a voltage signal from a magnetic detector arranged on the stator side facing the rotor of the rotating electric machine, a signal decomposition unit that decomposes the voltage signal into a plurality of frequency components of different orders, and a short circuit detection unit that determines a short circuit in a laminated stator core based on odd-order low-order harmonic components and a primary frequency component among the frequency components decomposed by the signal decomposition unit.
  • the signal acquisition unit acquires the voltage signal with one electrical angle period as one unit.
  • the short circuit detection unit detects the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component based on two units of the voltage signal acquired at different times, and determines a short circuit in the stator core based on a comparison between the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component.
  • the method for detecting a short circuit in a rotating electric machine disclosed in the present application includes a signal acquisition step of acquiring a voltage signal from a magnetic detector arranged on the stator side facing the rotor of the rotating electric machine, a signal decomposition step of decomposing the voltage signal into a plurality of frequency components of different orders, and a short circuit detection step of determining a short circuit in a laminated stator core based on odd-order low-order harmonic components and a primary frequency component among the frequency components decomposed in the signal decomposition step.
  • the signal acquisition step acquires the voltage signal with one electrical angle period as one unit.
  • the short circuit detection step detects the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component based on two units of the voltage signal acquired at different times, and determines a short circuit in the stator core based on a comparison between the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component.
  • the rotating electric machine short circuit detection device and short circuit detection method disclosed in this application can accurately detect short circuits that occur between laminations in the stator core while the rotating electric machine is operating with a relatively high magnetic flux density in the stator core.
  • FIG. 1 is a configuration diagram showing a rotating electric machine and a short circuit detection device according to a first embodiment
  • 4 is a waveform diagram showing a voltage signal acquired by a signal acquiring unit according to the first embodiment in a healthy state.
  • FIG. 4 is a waveform diagram showing a voltage signal acquired by a signal acquiring unit according to the first embodiment during a short circuit.
  • FIG. 5 is a diagram showing a magnetic flux density distribution when the stator core is short-circuited according to the first embodiment.
  • FIG. 4 is a spectral diagram showing the amplitudes of odd-order components, among the frequency components decomposed by the signal decomposition unit according to the first embodiment, in a healthy state and in a short-circuit state.
  • FIG. 5 is a diagram showing the amplitude ratio of each frequency component calculated by the short circuit detection unit according to the first embodiment.
  • FIG. 13 is a diagram showing the amount of change in amplitude of each frequency component calculated by the short circuit detection unit according to the second embodiment.
  • FIG. 13 is a diagram showing a differential signal between two different voltage signals acquired by a signal acquiring unit according to embodiment 3.
  • FIG. 13 is a spectral diagram showing the amplitude ratio of each frequency component calculated by the short circuit detection unit according to embodiment 3.
  • Fig. 1 is a configuration diagram showing a rotating electric machine and a short circuit detection device according to embodiment 1.
  • a turbine generator 10 is used as the rotating electric machine.
  • Fig. 1 shows a cross section perpendicular to the axial direction of the turbine generator 10.
  • the turbine generator 10 includes a stator 20 serving as an armature and a rotor 30 serving as a field magnet.
  • the stator 20 is provided outside the rotor 30.
  • the stator 20 has a cylindrical stator core 21 and a multi-phase winding 22 (not shown), and a plurality of stator slots 23 are formed in the inner periphery of the stator core 21 .
  • the axial direction of the stator core 21 is a direction along the axis of the stator core 21 and is a direction perpendicular to the plane of the paper in Fig. 1.
  • the radial direction of the stator core 21 is a radial direction of a circle centered on the axis of the stator core 21.
  • the circumferential direction of the stator core 21 is a direction along an arc centered on the axis of the stator core 21.
  • Each stator slot 23 formed in the inner periphery of the stator core 21 is provided along the radial direction of the stator core 21.
  • the multiple stator slots 23 are arranged at equal pitches in the circumferential direction of the stator core 21.
  • Multi-phase windings 22 are wound in the multiple stator slots 23.
  • the stator core 21 has a laminated structure formed by stacking steel plates, and fasteners 81 and 82 are provided inside and on the outer periphery of the stator core 21, and the fasteners 81 and 82 each penetrate the stator core 21 to hold the laminated stator core 21 in place.
  • the rotor 30 has a rotor core 31, a field winding 32 (not shown), and a rotating shaft (not shown).
  • the rotor core 31 and the rotating shaft are arranged coaxially with the stator core 21.
  • the rotor 30 is rotatable about the rotating shaft.
  • a plurality of rotor slots 33 are formed on the outer periphery of the rotor core 31.
  • Each rotor slot 33 is formed along the radial direction of the rotor core 31.
  • the plurality of rotor slots 33 are divided into two slot groups, and a first magnetic pole 34 and a second magnetic pole 35 are formed between the two slot groups.
  • the plurality of rotor slots 33 are arranged at equal pitches in the circumferential direction of the rotor core 31.
  • the field winding 32 is DC excited by an external power source (not shown). As a result, one of the first magnetic pole 34 and the second magnetic pole 35 becomes a north pole, and the other becomes a south pole.
  • the turbine generator 10 is a two-pole generator.
  • a gap 40 is formed between the stator core 21 and the rotor core 31.
  • the multi-phase windings 22 are excited with AC by an external power source (not shown). This generates a rotating magnetic field within the gap 40.
  • the short circuit detection device 100 detects a short circuit between laminations of the stator core 21 of the turbine generator 10, and includes a search coil 50 as a magnetic detector, a signal processing device 60 that processes a detection signal from the search coil 50, and a display device 70.
  • the search coil 50 is disposed in the air gap 40 facing the rotor 30.
  • the search coil 50 may be disposed facing the rotor 30 inside the stator core 21 including the stator slot 23 adjacent to the gap 40. That is, the search coil 50 is disposed facing the rotor 30 on the side of the stator 20 including the gap 40.
  • the search coil 50 is linked with main magnetic flux and leakage magnetic flux.
  • the main magnetic flux is the magnetic flux generated in the air gap 40
  • the leakage magnetic flux is the magnetic flux leaking out from each rotor slot 33.
  • the magnetic flux that links with the search coil 50 is called the linkage magnetic flux.
  • the search coil 50 has a first terminal 51 and a second terminal 52.
  • a voltage signal which is a detection signal.
  • the distribution of the interlinked magnetic flux in the search coil 50 varies with the rotation of the rotor 30.
  • the short circuit detection device 100 includes the search coil 50 as a magnetic detector.
  • the search coil 50 may be configured separately from the short circuit detection device 100 .
  • the signal processing device 60 includes, as functional blocks, a signal acquiring unit 61, a signal dividing unit 62, and a short circuit detecting unit 63.
  • the signal acquisition unit 61 acquires a voltage signal induced in the search coil 50.
  • the signal decomposition unit 62 decomposes the acquired voltage signal into a plurality of frequency components having different orders.
  • the voltage signal acquired by the signal acquisition unit 61 is treated as one unit for one electrical angle cycle.
  • the signal decomposition unit 62 decomposes the voltage signal for one electrical angle cycle into each frequency component. Furthermore, the signal decomposition unit 62 separates each of the decomposed frequency components into amplitude and phase.
  • the short circuit detection unit 63 analyzes the amplitude of the odd-order frequency components from among the resolved frequency components.
  • the odd-order frequency components are composed of a fundamental wave component, which is a first-order component that oscillates once per period of electrical angle corresponding to the two poles of the first magnetic pole 34 and the second magnetic pole 35, and third-order and higher harmonic components other than this first-order component.
  • the short circuit detection unit 63 determines whether there is a short circuit in the laminated stator core 21 based on the odd-order lower harmonic components and the first-order component.
  • the amplitudes of the odd-order frequency components decomposed by the signal decomposition unit 62 will not be the same for a voltage signal of one electrical angle cycle acquired before the occurrence of a short circuit in the stator core 21 and a voltage signal of one electrical angle cycle acquired after the occurrence of a short circuit.
  • a short circuit in the stator core 21 can be detected.
  • the two-unit voltage signal is acquired by the signal acquisition unit 61 either continuously or intermittently with a time interval between each unit of voltage waveform.
  • the short circuit detection unit 63 calculates the amplitude ratio as the change in amplitude of each odd-order frequency component of two units of voltage signals when the turbine generator 10 is in the same operating state. In this embodiment, when the amplitude ratio of the third order component is greater than the amplitude ratio of the first order component, the short circuit detection unit 63 detects that a short circuit has occurred in the stator core 21.
  • the short circuit detection unit 63 outputs information regarding the presence or absence of a short circuit in the stator core 21 to the display device 70.
  • the display device 70 is provided outside the signal processing device 60.
  • the display device 70 displays whether or not the stator core 21 is short-circuited, based on information from the short-circuit detection unit 63.
  • the display device 70 may be provided outside the short circuit detection device 100 .
  • Fig. 2 is a waveform diagram showing a voltage signal in a healthy state acquired by the signal acquiring unit 61.
  • Fig. 3 is a waveform diagram showing a voltage signal in a short-circuit state acquired by the signal acquiring unit 61. 2 and 3 show examples of voltage signals when the device is healthy and when a short circuit occurs, with the horizontal axis representing one period of electrical angle corresponding to two poles, the first magnetic pole 34 and the second magnetic pole 35.
  • FIG. FIG. 4 is a diagram showing the magnetic flux density distribution when the stator core 21 is short-circuited, and shows the magnetic flux density distribution at the time when the voltage signal of FIG. 3 is acquired.
  • the signal processing device 60 uses the voltage signal acquired by the signal acquisition unit 61 to estimate that a short circuit has occurred in the stator core 21. This is explained below.
  • Each voltage waveform shown in FIG. 2 and FIG. 3 is a voltage waveform of one electrical angle cycle, with circumferential angles from 0° to 180° corresponding to the first magnetic pole 34 and circumferential angles from 180° to 360° corresponding to the second magnetic pole 35. Therefore, at a circumferential angle of 90°, the center of the first magnetic pole 34 is closest to the search coil 50, and at a circumferential angle of 270°, the center of the second magnetic pole 35 is closest to the search coil 50.
  • the voltage waveform shown in FIG. 2 is a voltage waveform when no short circuit occurs and the rotor is in a healthy state, with 32 small voltage fluctuations occurring at each rotor slot pitch.
  • the voltage waveform shown in FIG. 3 is a voltage waveform when a short circuit occurs, and although the amplitude of the harmonic components increases as described below, the waveform as a whole is substantially the same as that shown in FIG.
  • the signal decomposition unit 62 decomposes the voltage signal acquired by the signal acquisition unit 61 into multiple frequency components of different orders, and further separates each of the decomposed frequency components into amplitude and phase.
  • Fig. 5 is a spectrum diagram showing the amplitudes of odd-order components in a healthy state and in a short circuit state among the frequency components decomposed by the signal decomposition unit 62. That is, Fig. 5 shows the amplitude spectrum of the odd-order components based on the voltage waveform shown in Fig. 2 and the amplitude spectrum of the odd-order components based on the voltage waveform shown in Fig. 3 side by side so that absolute values can be easily compared. In addition, although there are orders of 21 or more, Fig. 5 shows orders of 19 or less for the sake of explanation.
  • the primary component is the fundamental wave component equivalent to the main magnetic flux among the magnetic flux generated in the air gap 40, and has the largest amplitude.
  • the third and higher odd-order components are harmonic components other than the main magnetic flux, and are caused by pulsation factors such as the number of slots in the rotor 30 or stator 20 among the magnetic flux generated in the air gap 40.
  • region A surrounded by fasteners 81A and 82A, which are short-circuited with stator core 21, the magnetic flux density decreases due to magnetic shielding.
  • region B which includes region B1 on the radially inner side of region A and region B2 on the opposite side of region A with respect to the axis, the magnetic flux density increases due to the magnetic flux that is shielded and diverted.
  • the magnetic flux density in the center of the magnetically saturated region becomes high, and the magnetic flux density in the peripheral region also becomes high, widening the magnetically saturated region and increasing the harmonic components.
  • the detouring magnetic flux makes a half-circle detour as in region B, resulting in spatial fluctuations in two or four places on the core back or teeth side, and therefore appears mainly as a change in low-order magnetic flux density, tertiary or quintic, rather than a change in primary or higher order magnetic flux density.
  • the effects of magnetic saturation also appear as harmonic components at frequencies that are multiples of 2 or 4, but the higher the frequency, the smaller the voltage value becomes.
  • the permeance change is second order and the magnetomotive force change is first order, so the difference between them, the change in magnetic flux density, is third order. If the permeance change has a fourth order component as a harmonic, the change in magnetic flux density will be third order or fifth order. Similarly, it will contain harmonics of even higher frequencies.
  • the short circuit detection unit 63 calculates the amplitude ratio between the same lower orders among the odd-order harmonic components decomposed by the signal decomposition unit 62 .
  • FIG. 6 is a diagram showing the amplitude ratios of the respective frequency components calculated by the short circuit detection unit 63, and is calculated from the spectrum diagram of FIG. In FIG. 5, the 5th, 11th, and 17th order components, which have relatively small absolute amplitude values, are excluded from the calculation because they have a poor signal-to-noise ratio (SN ratio) of the amplitude ratio.
  • SN ratio signal-to-noise ratio
  • the area of magnetic saturation increases with a short circuit. When there is no short circuit, the amplitude ratio is nearly 0, but when a short circuit occurs, the amplitude ratio changes.
  • the first and higher order frequency components of 7th and above are relatively little affected by magnetic saturation and have small amplitude ratios.
  • the third and fifth order frequency components which are low-order harmonic components, are characterized by a large effect of magnetic saturation due to a short circuit and a large amplitude ratio.
  • the fifth-order component is excluded, and it can be seen that the amplitude ratio of the third-order component is large.
  • the magnitude of the amplitude of the third-order component and the fifth-order component will depend on the phase of the two components, with one being large and the other being small, or both being moderate and balanced.
  • the amplitude ratio of the higher frequency components is 0.0 to 1.2%, while the amplitude ratio of the third-order component is about 5%, which is much more than 1.2%.
  • the amplitude ratio of the first-order component is a relatively small 0.2%, and the amplitude ratio of the third-order component is significantly larger than the amplitude ratio of the first-order component.
  • the short circuit detection unit 63 when the amplitude ratio of the third-order component is clearly larger than the amplitude ratio of the first-order component based on a comparison between the amplitude ratio of the first-order component and the amplitude ratio of the third-order component, for example, the occurrence of a short circuit in the stator core 21 is detected.
  • the determination that the amplitude ratio of the third-order component is clearly larger may be made, for example, when the difference or ratio is larger than a set value.
  • the signal-to-noise ratio of the amplitude ratio is improved, and a short circuit can be judged with higher accuracy.
  • the amplitude of the harmonic components is larger than when it is not magnetically saturated, so it is possible to analyze with a good signal-to-noise ratio the amplitude ratio of the harmonic components before and after a short circuit occurs in the stator core 21. For this reason, a state in which the turbine generator 10 is operating at a high magnetic flux density is suitable for detecting a short circuit in the stator core 21.
  • FIG. 7 is a diagram showing a flowchart illustrating the short circuit detection method according to embodiment 1.
  • the signal processing device 60 executes a short circuit detection routine shown in the flowchart of FIG.
  • the signal acquiring unit 61 acquires a voltage signal of one unit (one electrical angle period) from the search coil 50 (step S110).
  • the signal decomposition unit 62 decomposes the acquired voltage signal into a plurality of frequency components of different orders, and separates the signal into amplitude and phase (step S120).
  • the short circuit detection unit 63 calculates the amplitude ratio of each odd-order frequency component from the results obtained in step S120 based on two units of voltage signals, the voltage signal obtained in the previous routine and the voltage signal obtained in the current routine (step S130).
  • the short circuit detector 63 determines whether the amplitude ratio of the third-order component is greater than the amplitude ratio of the first-order component (step S140). In step S140, when the amplitude ratio of the third-order component is greater than the amplitude ratio of the first-order component, the short circuit detection unit 63 determines that a short circuit has occurred in the stator core 21, outputs information indicating that a short circuit has occurred to the display device 70, and terminates the current routine (step S150). If the result is No in step S140, the short circuit detection unit 63 outputs information indicating that "no short circuit has occurred" to the display device 70, and ends the current routine (step S160).
  • the short circuit detection method includes a signal acquisition step shown in step S110, a signal decomposition step shown in step S120, and a short circuit detection step shown in steps S130 to S160.
  • a voltage signal of one unit is acquired from the search coil 50 disposed opposite the rotor 30.
  • the voltage signal acquired in the signal acquiring step is decomposed into a plurality of frequency components having different orders.
  • the amplitude ratio of the odd-order low-order harmonic component (in this case, the third-order component) and the amplitude ratio of the first-order component are calculated from the amplitudes of each order component obtained in the signal decomposition step based on the voltage signal in the previous routine and the voltage signal in the current routine, which are two units of voltage signals acquired at different times.
  • the short circuit detection step if the amplitude ratio of the third-order component is greater than the amplitude ratio of the first-order component, it is determined that a short circuit has occurred in the stator core 21. Also, if the amplitude ratio of the first-order component is the same as or smaller than the amplitude ratio of the third-order component, it is determined that no short circuit has occurred in the stator core 21.
  • the short circuit detection device 100 compares the amplitude ratio of the odd-order low-order harmonic components and the amplitude ratio of the primary frequency component based on two units of voltage signals acquired at different times, to determine a short circuit in the stator core 21. Therefore, the occurrence of a short circuit in the stator core 21 can be accurately detected while the turbine generator 10 is operating in a state in which the magnetic flux density of the stator core 21 is relatively high.
  • the accuracy of short circuit detection deteriorates because it is difficult to detect the change in amplitude of the harmonic components before and after a short circuit occurs in the stator core 21. In that case, the turbine generator 10 is operating at a low load, and even if a short circuit occurs between the laminations of the stator core 21, no large short circuit current flows, and no problematic malfunction occurs.
  • the short circuit detection step in the above embodiment is to newly detect the occurrence of a short circuit in the stator core 21 based on the voltage signal acquired in the current routine.
  • the other voltage signal of the two units is not limited to the voltage signal acquired in the previous routine.
  • the stator core 21 and the fastener 83 are electrically connected with a slight contact resistance and short-circuited, the contact portion may be burned out by a slight short-circuit current, and the short circuit may be resolved.
  • the short circuit detection device 100 detects the occurrence of a short circuit in the stator core 21 by capturing the change in two units of voltage signals acquired at different times, it is not necessarily the case that the voltage signal acquired later is the one at the time of the short circuit. A short circuit can be detected even if the voltage signal acquired earlier is the one at the time of the short circuit, and the voltage signal acquired after the short circuit is resolved is the voltage signal of two units.
  • the short circuit detection unit 63 uses the third-order component as the odd-order low-order harmonic component, but if the amplitude ratio of at least one of the third-order and fifth-order components is greater than the amplitude ratio of the first-order component, it determines that a short circuit has occurred in the stator core 21. In this case, it is also possible to compare the amplitude ratio of the third-order or fifth-order component, whichever has the greater amplitude ratio, with the amplitude ratio of the first-order component.
  • the signal-to-noise ratio of the amplitude ratio is good, and a short circuit can be determined with higher accuracy.
  • the rotor 30 is disposed on the inner circumference side of the stator 20, but the rotor 30 may be disposed on the outer circumference side of the stator 20.
  • the turbine generator 10 is used as the rotating electric machine, but the rotating electric machine may be a generator other than the turbine generator 10 or may be an electric motor.
  • the search coil 50 is used as the magnetic detector, the present invention is not limited to this.
  • the functions of the signal processing device 60 according to the first embodiment are realized by a processing circuit. 8 is a configuration diagram showing an example of hardware for realizing each function of the signal processing device 60.
  • the signal processing device 60 is configured by a processing circuit 60A which is dedicated hardware.
  • the processing circuit 60A may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FIG. 9 is a configuration diagram showing another example of hardware that realizes each function of the signal processing device 60 according to the first embodiment.
  • the processing circuit 60B includes a processor 201 and a memory 202.
  • the functions of the signal processing device 60 are realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are written as programs and stored in the memory 202.
  • the processor 201 realizes each function by reading and executing the programs stored in the memory 202.
  • the program stored in memory 202 can also be said to cause the computer to execute the procedures or methods of each part described above.
  • this program is a short circuit detection program, and is a program that causes the computer to execute signal acquisition processing, signal decomposition processing, and short circuit detection processing.
  • memory 202 refers to non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable and Programmable Read Only Memory), etc. Also included in memory 202 are magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, etc.
  • the processing circuit can realize the functions of the signal processing device 60 described above through hardware, software, firmware, or a combination of these.
  • the short circuit detection unit 63 uses the amplitude ratio as the amplitude change of each frequency component of two units of voltage signals acquired at different times, but the amplitude change amount itself may be used.
  • the amplitude change amounts of the odd-order low-order harmonic components, the third and fifth order components are large and significantly larger than the amplitude change amount of the first order component.
  • the amplitude change amount of the third order component is large.
  • the amplitude change amount of the seventh or higher order high-order harmonic components is small, showing the same tendency as in Fig. 6 of the above-mentioned embodiment 1 using the amplitude ratio.
  • the short circuit detection unit 63 detects the occurrence of a short circuit in the stator core 21 based on a comparison between the amplitude change in the primary component and the amplitude change in the third-order component, for example, when the amplitude change in the third-order component is clearly greater than the amplitude change in the primary component.
  • the amount of change in amplitude of the odd-order low-order harmonic components and the amount of change in amplitude of the primary frequency component are compared based on two units of voltage signals acquired at different times to determine a short circuit in the stator core 21. Therefore, similar to the first embodiment, the occurrence of a short circuit in the stator core 21 can be accurately detected while the turbine generator 10 is operating in a state in which the magnetic flux density of the stator core 21 is relatively high. In addition, since the amount of change in amplitude is used to determine whether a short circuit exists, the magnitude of the absolute amplitude value does not affect the S/N ratio, and therefore, a short circuit can be detected with high accuracy without removing order components with small absolute amplitude values.
  • Embodiment 3 the signal decomposition unit 62 decomposed the voltage signal acquired by the signal acquisition unit 61 into each frequency component, and the short circuit detection unit 63 performed short circuit detection based on the results of the decomposition of two units of the voltage signal by the signal decomposition unit 62.
  • the signal decomposition unit 62 decomposes the differential signal of two units of voltage signals acquired by the signal acquisition unit 61 at different times into each frequency component, and the short circuit detection unit 63 performs short circuit detection based on the result of the decomposition of the differential signal by the signal decomposition unit 62.
  • Fig. 11 is a diagram showing a differential signal between two different voltage signals acquired by the signal acquisition unit 61.
  • This differential signal shows a voltage waveform that is the difference between the voltage signal shown in Fig. 2 (voltage waveform in a healthy state) and the voltage signal shown in Fig. 3 (voltage waveform in a short circuit state).
  • the signal decomposition unit 62 decomposes the difference signal between the two units of voltage signals into a plurality of frequency components of different orders, and further separates each of the decomposed frequency components into amplitude and phase.
  • the amplitude of each frequency component in the difference signal represents the amplitude change when the two units of voltage signals are frequency-decomposed.
  • the short circuit detection unit 63 compares the amplitude of the odd-order harmonic components decomposed by the signal decomposition unit 62 with the amplitude of the first-order frequency component.
  • 12 is a spectrum diagram showing the amplitude ratio of each frequency component calculated by the short circuit detection unit 63, and the ratio (%) of the amplitude of each odd-numbered frequency component to the amplitude of the first frequency component is expressed as the amplitude ratio.
  • the amplitude of the third-order component is significantly larger than the amplitude of the first-order component.
  • the amplitude of each frequency component of the difference signal indicates the amplitude change of each frequency component of the two-unit voltage signal, and shows the same tendency as in Figures 6 and 10 of the above-mentioned embodiments 1 and 2. That is, the amplitude of the third-order component is particularly large, and the amplitudes of the seventh-order and higher harmonic components are small.
  • the signal decomposition section 62 decomposes the difference signal between two units of voltage signals acquired at different times into a plurality of frequency components of different orders.
  • the short circuit detection unit 63 detects a short circuit based on the result of decomposition of the differential signal by the signal decomposition unit 62. At this time, the short circuit detection unit 63 compares the amplitude of the primary frequency component in the differential signal, which is the amplitude change of the primary frequency component of the two-unit voltage signal, with the amplitude of the low-order harmonic components in the differential signal, which is the amplitude change of the low-order harmonic components, to determine whether the stator core 21 is short-circuited.
  • the signal decomposition unit 62 receives the difference signal between two units of voltage signals and performs frequency decomposition, so the number of signals to be handled can be reduced by half, and the processing load can be reduced.
  • Turbine generator rotating electric machine
  • 20 Stator 21 Stator core
  • 30 Rotor 30
  • Search coil magnetic detector
  • 61 Signal acquisition unit 62
  • Signal decomposition unit 63
  • Short circuit detection unit 100 Short circuit detection device.

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

This short circuit detection device (100) for a rotating electric machine (10) comprises a signal acquisition unit (61), a signal decomposition unit (62), and a short circuit detection unit (63), and detects a short circuit of a stator core (21). The signal decomposition unit (62) decomposes a voltage signal from the signal acquisition unit (61) into a plurality of frequency components different from one another in order. The short circuit detection unit (63) makes a comparison between an amplitude change in an odd low harmonic component and an amplitude change in a first-order frequency component from an output result of the signal decomposition unit (62) based on two units of the voltage signals acquired at different time points to determine a short circuit of the stator core (21).

Description

回転電機の短絡検知装置および短絡検知方法Apparatus and method for detecting short circuit in rotating electrical machine
 本願は、回転電機の短絡検知装置および短絡検知方法に関するものである。 This application relates to a device and method for detecting short circuits in rotating electrical machines.
 積層コアを用いた回転電機の固定子コアでは、軸方向の締結具を介して積層間に短絡が発生することがある。仮に、固定子コアの積層間に大きな短絡電流が流れると、発熱損失の増大に加え、回転電機の振動が大きくなる、あるいは回転電機が出力する三相電流がアンバランスになる等の不具合が生じる。
 特に、回転電機が高負荷の状態で運転されている場合には、回転電機内の磁束密度が高い状態であり、固定子コアの積層間に短絡が発生すると、磁束密度の各周波数成分のバランスが大きく変化する。
In the stator core of a rotating electric machine using a laminated core, a short circuit may occur between laminations via an axial fastener. If a large short-circuit current flows between laminations of the stator core, problems such as an increase in heat loss, increased vibration of the rotating electric machine, or an imbalance in the three-phase current output by the rotating electric machine may occur.
In particular, when a rotating electric machine is operated under high load, the magnetic flux density inside the rotating electric machine is high, and if a short circuit occurs between the laminations of the stator core, the balance of the frequency components of the magnetic flux density changes significantly.
 特許文献1記載の従来技術では、界磁巻線を保持した回転子と固定子とがギャップによって隔てられた回転電機に、ギャップの界磁磁束を監視する装置と、この磁束波の偶数調波があることを検出する装置とを設ける。そして、ギャップ内に配置されるサーチコイルに誘起された電圧の偶数調波を検出することで、回転電機の故障を検出する。
 また、特許文献2記載の従来技術では、回転電機に発生する磁束が、磁気飽和の影響を受けると、奇数次の高調波電流が固定子巻線に流れ、この電流が作る磁場の影響で回転電機内に高調波磁束を作ることが記載されている。そして、固定子コア構造の改良により、磁気飽和による高調波電流の発生を抑制して、回転電機の振動および電磁騒音を低減することが記載される。
In the conventional technology described in Patent Document 1, a rotating electric machine in which a rotor holding a field winding and a stator are separated by a gap is provided with a device for monitoring the field magnetic flux in the gap and a device for detecting the presence of even harmonics of this magnetic flux wave. Then, by detecting the even harmonics of the voltage induced in a search coil placed in the gap, a fault in the rotating electric machine is detected.
Furthermore, the conventional technology described in Patent Document 2 describes that when the magnetic flux generated in a rotating electric machine is affected by magnetic saturation, odd-order harmonic currents flow through the stator windings, and the magnetic field created by these currents creates harmonic magnetic fluxes in the rotating electric machine. It also describes that an improvement in the stator core structure can be used to suppress the generation of harmonic currents caused by magnetic saturation, thereby reducing the vibration and electromagnetic noise of the rotating electric machine.
特開昭53-84101号公報Japanese Patent Application Laid-Open No. 53-84101 特開2010-130839号公報JP 2010-130839 A
 上記特許文献1記載の従来技術では、サーチコイルに誘起された電圧の偶数調波を検出することで回転子の界磁巻線の短絡を検知できるが、固定子コアの積層間の短絡については検知しない。
 また、上記特許文献2記載の従来技術は、磁気飽和による悪影響を緩和するものであるが、固定子コアの積層間の短絡を検出することについては、何ら考慮されていない。
 このため、固定子コアの磁束密度が比較的高い状態での回転電機の運転中に、固定子コアの積層間に短絡が発生しても、短絡発生を精度良く検知することができない、と言う問題点があった。
The conventional technology described in Patent Document 1 can detect short circuits in the rotor field winding by detecting even harmonics of the voltage induced in the search coil, but cannot detect short circuits between laminations in the stator core.
Furthermore, the conventional technology described in the above-mentioned Patent Document 2 is intended to mitigate the adverse effects of magnetic saturation, but does not take into consideration the detection of short circuits between laminations of the stator core.
Therefore, even if a short circuit occurs between laminations of the stator core during operation of the rotating electric machine in a state where the magnetic flux density of the stator core is relatively high, there has been a problem in that the occurrence of a short circuit cannot be detected with high accuracy.
 本願は、上記のような課題を解決するための技術を開示するものであり、固定子コアの磁束密度が比較的高い状態での回転電機の運転中に、固定子コアの積層間に発生する短絡を精度良く検知できる、回転電機の短絡検知装置および短絡検知方法を提供することを目的とする。 This application discloses technology to solve the problems described above, and aims to provide a short circuit detection device and method for a rotating electric machine that can accurately detect short circuits that occur between laminations in the stator core while the rotating electric machine is operating with a relatively high magnetic flux density in the stator core.
 本願に開示される回転電機の短絡検知装置は、回転電機の回転子に対向して固定子側に配置された磁気検出器から、電圧信号を取得する信号取得部と、前記電圧信号に基づいて、互いに次数の異なる複数の周波数成分に分解する信号分解部と、前記信号分解部で分解された周波数成分のうち奇数次の低次高調波成分および1次周波数成分に基づいて、積層構成された固定子コアの短絡を判定する短絡検知部とを備える。前記信号取得部は、電気角1周期分を1単位として前記電圧信号を取得する。前記短絡検知部は、異なる時点で取得された2単位の前記電圧信号に基づいて、前記低次高調波成分の振幅変化および前記1次周波数成分の振幅変化をそれぞれ検出し、前記低次高調波成分の振幅変化と前記1次周波数成分の振幅変化との比較に基づいて、前記固定子コアの短絡を判定する。 The short circuit detection device for a rotating electric machine disclosed in the present application includes a signal acquisition unit that acquires a voltage signal from a magnetic detector arranged on the stator side facing the rotor of the rotating electric machine, a signal decomposition unit that decomposes the voltage signal into a plurality of frequency components of different orders, and a short circuit detection unit that determines a short circuit in a laminated stator core based on odd-order low-order harmonic components and a primary frequency component among the frequency components decomposed by the signal decomposition unit. The signal acquisition unit acquires the voltage signal with one electrical angle period as one unit. The short circuit detection unit detects the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component based on two units of the voltage signal acquired at different times, and determines a short circuit in the stator core based on a comparison between the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component.
 また、本願に開示される回転電機の短絡検知方法は、回転電機の回転子に対向して固定子側に配置された磁気検出器から、電圧信号を取得する信号取得ステップと、前記電圧信号に基づいて、互いに次数の異なる複数の周波数成分に分解する信号分解ステップと、前記信号分解ステップで分解された周波数成分のうち奇数次の低次高調波成分および1次周波数成分に基づいて、積層構成された固定子コアの短絡を判定する短絡検知ステップとを備える。前記信号取得ステップは、電気角1周期分を1単位として前記電圧信号を取得する。前記短絡検知ステップは、異なる時点で取得された2単位の前記電圧信号に基づいて、前記低次高調波成分の振幅変化および前記1次周波数成分の振幅変化をそれぞれ検出し、前記低次高調波成分の振幅変化と前記1次周波数成分の振幅変化との比較に基づいて、前記固定子コアの短絡を判定する。 The method for detecting a short circuit in a rotating electric machine disclosed in the present application includes a signal acquisition step of acquiring a voltage signal from a magnetic detector arranged on the stator side facing the rotor of the rotating electric machine, a signal decomposition step of decomposing the voltage signal into a plurality of frequency components of different orders, and a short circuit detection step of determining a short circuit in a laminated stator core based on odd-order low-order harmonic components and a primary frequency component among the frequency components decomposed in the signal decomposition step. The signal acquisition step acquires the voltage signal with one electrical angle period as one unit. The short circuit detection step detects the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component based on two units of the voltage signal acquired at different times, and determines a short circuit in the stator core based on a comparison between the amplitude change of the low-order harmonic components and the amplitude change of the primary frequency component.
 本願に開示される回転電機の短絡検知装置および短絡検知方法によれば、固定子コアの磁束密度が比較的高い状態での回転電機の運転中に、固定子コアの積層間に発生する短絡を精度良く検知できる。 The rotating electric machine short circuit detection device and short circuit detection method disclosed in this application can accurately detect short circuits that occur between laminations in the stator core while the rotating electric machine is operating with a relatively high magnetic flux density in the stator core.
実施の形態1による回転電機および短絡検知装置を示す構成図である。1 is a configuration diagram showing a rotating electric machine and a short circuit detection device according to a first embodiment; 実施の形態1による信号取得部によって取得される健全時の電圧信号を示す波形図である。4 is a waveform diagram showing a voltage signal acquired by a signal acquiring unit according to the first embodiment in a healthy state. FIG. 実施の形態1による信号取得部によって取得される短絡時の電圧信号を示す波形図である。4 is a waveform diagram showing a voltage signal acquired by a signal acquiring unit according to the first embodiment during a short circuit. FIG. 実施の形態1による、固定子コアの短絡時における磁束密度分布を示す図である。5 is a diagram showing a magnetic flux density distribution when the stator core is short-circuited according to the first embodiment. FIG. 実施の形態1による信号分解部で分解された周波数成分のうち、奇数次成分における健全時および短絡時の振幅を示すスペクトル図である。4 is a spectral diagram showing the amplitudes of odd-order components, among the frequency components decomposed by the signal decomposition unit according to the first embodiment, in a healthy state and in a short-circuit state. FIG. 実施の形態1による短絡検知部で演算される各周波数成分の振幅比率を示す図である。5 is a diagram showing the amplitude ratio of each frequency component calculated by the short circuit detection unit according to the first embodiment. FIG. 実施の形態1による短絡検知方法を説明するフローチャートを示す図である。FIG. 2 is a flowchart illustrating a short circuit detection method according to the first embodiment. 実施の形態1による信号処理装置の各機能を実現するハードウェアの例を示す構成図である。2 is a configuration diagram showing an example of hardware for implementing each function of the signal processing device according to the first embodiment; FIG. 実施の形態1による信号処理装置の各機能を実現するハードウェアの別例を示す構成図である。10 is a configuration diagram showing another example of hardware for realizing each function of the signal processing device according to the first embodiment. FIG. 実施の形態2による短絡検知部で演算される各周波数成分の振幅変化量を示す図である。13 is a diagram showing the amount of change in amplitude of each frequency component calculated by the short circuit detection unit according to the second embodiment. FIG. 実施の形態3による信号取得部によって取得される2つの異なる電圧信号の差分信号を示す図である。13 is a diagram showing a differential signal between two different voltage signals acquired by a signal acquiring unit according to embodiment 3. FIG. 実施の形態3による短絡検知部で演算される各周波数成分の振幅比率を示すスペクトル図である。13 is a spectral diagram showing the amplitude ratio of each frequency component calculated by the short circuit detection unit according to embodiment 3. FIG.
実施の形態1.
 以下、実施の形態について、図面を参照して説明する。
 図1は、実施の形態1による回転電機および短絡検知装置を示す構成図である。実施の形態1では、回転電機としてタービン発電機10が採用されている。図1において、タービン発電機10の軸方向に垂直な断面が示されている。
Embodiment 1.
Hereinafter, embodiments will be described with reference to the drawings.
Fig. 1 is a configuration diagram showing a rotating electric machine and a short circuit detection device according to embodiment 1. In embodiment 1, a turbine generator 10 is used as the rotating electric machine. Fig. 1 shows a cross section perpendicular to the axial direction of the turbine generator 10.
 図1に示したように、タービン発電機10は、電機子としての固定子20および界磁としての回転子30を備えている。固定子20は、回転子30の外側に設けられている。
 固定子20は、円筒状の固定子コア21と、多相巻線22(図示省略)とを有し、固定子コア21の内周部には、複数の固定子スロット23が形成されている。
1, the turbine generator 10 includes a stator 20 serving as an armature and a rotor 30 serving as a field magnet. The stator 20 is provided outside the rotor 30.
The stator 20 has a cylindrical stator core 21 and a multi-phase winding 22 (not shown), and a plurality of stator slots 23 are formed in the inner periphery of the stator core 21 .
 固定子コア21の軸方向は、固定子コア21の軸心に沿う方向であり、図1の紙面に垂直な方向である。固定子コア21の径方向は、固定子コア21の軸心を中心とする円の径方向である。固定子コア21の周方向は、固定子コア21の軸心を中心とする円弧に沿う方向である。
 固定子コア21の内周部に形成される各固定子スロット23は、固定子コア21の径方向に沿って設けられている。また、複数の固定子スロット23は、固定子コア21の周方向に等ピッチで配置されている。複数の固定子スロット23には、多相巻線22が巻かれている。
The axial direction of the stator core 21 is a direction along the axis of the stator core 21 and is a direction perpendicular to the plane of the paper in Fig. 1. The radial direction of the stator core 21 is a radial direction of a circle centered on the axis of the stator core 21. The circumferential direction of the stator core 21 is a direction along an arc centered on the axis of the stator core 21.
Each stator slot 23 formed in the inner periphery of the stator core 21 is provided along the radial direction of the stator core 21. The multiple stator slots 23 are arranged at equal pitches in the circumferential direction of the stator core 21. Multi-phase windings 22 are wound in the multiple stator slots 23.
 固定子コア21は鋼板を積層して形成された積層構成であり、固定子コア21の内部および外周部に締結具81および締結具82を設け、締結具81、82が、それぞれ固定子コア21を貫通して積層構成の固定子コア21を保持している。 The stator core 21 has a laminated structure formed by stacking steel plates, and fasteners 81 and 82 are provided inside and on the outer periphery of the stator core 21, and the fasteners 81 and 82 each penetrate the stator core 21 to hold the laminated stator core 21 in place.
 回転子30は、回転子コア31、界磁巻線32(図示省略)、および図示しない回転軸を有している。回転子コア31および回転軸は、固定子コア21と同軸に配置されている。回転子30は、回転軸を中心に回転可能である。
 回転子コア31の外周部には、複数の回転子スロット33が形成されている。各回転子スロット33は、回転子コア31の径方向に沿って形成されている。この場合、複数の回転子スロット33は2つのスロット群に分かれ、2つのスロット群の間には、第1磁極34および第2磁極35が形成されている。各スロット群において、複数の回転子スロット33は、回転子コア31の周方向に等ピッチで配置されている。
The rotor 30 has a rotor core 31, a field winding 32 (not shown), and a rotating shaft (not shown). The rotor core 31 and the rotating shaft are arranged coaxially with the stator core 21. The rotor 30 is rotatable about the rotating shaft.
A plurality of rotor slots 33 are formed on the outer periphery of the rotor core 31. Each rotor slot 33 is formed along the radial direction of the rotor core 31. In this case, the plurality of rotor slots 33 are divided into two slot groups, and a first magnetic pole 34 and a second magnetic pole 35 are formed between the two slot groups. In each slot group, the plurality of rotor slots 33 are arranged at equal pitches in the circumferential direction of the rotor core 31.
 界磁巻線32は、図示しない外部電源によって直流励磁される。これにより、第1磁極34および第2磁極35の一方がN極となり、他方がS極となる。つまり、タービン発電機10は2極の発電機である。 The field winding 32 is DC excited by an external power source (not shown). As a result, one of the first magnetic pole 34 and the second magnetic pole 35 becomes a north pole, and the other becomes a south pole. In other words, the turbine generator 10 is a two-pole generator.
 固定子コア21と回転子コア31との間には空隙40が形成されている。多相巻線22は、図示しない外部電源によって交流励磁される。これにより、空隙40内に回転磁界が発生する。 A gap 40 is formed between the stator core 21 and the rotor core 31. The multi-phase windings 22 are excited with AC by an external power source (not shown). This generates a rotating magnetic field within the gap 40.
 短絡検知装置100は、タービン発電機10の固定子コア21の積層間の短絡を検知するもので、磁気検出器としてのサーチコイル50と、サーチコイル50からの検出信号を処理する信号処理装置60と、表示装置70とを備える。サーチコイル50は、回転子30に対向して空隙40に配置されている。
 なお、サーチコイル50は、空隙40に近接する固定子スロット23を含む固定子コア21の内部に、回転子30に対向して配置されても良い。即ち、サーチコイル50は、空隙40を含む固定子20側に、回転子30に対向して配置される。
The short circuit detection device 100 detects a short circuit between laminations of the stator core 21 of the turbine generator 10, and includes a search coil 50 as a magnetic detector, a signal processing device 60 that processes a detection signal from the search coil 50, and a display device 70. The search coil 50 is disposed in the air gap 40 facing the rotor 30.
The search coil 50 may be disposed facing the rotor 30 inside the stator core 21 including the stator slot 23 adjacent to the gap 40. That is, the search coil 50 is disposed facing the rotor 30 on the side of the stator 20 including the gap 40.
 サーチコイル50には、主磁束および漏れ磁束が鎖交する。主磁束は、空隙40に発生する磁束であり、漏れ磁束は、各回転子スロット33から漏出する磁束である。サーチコイル50に鎖交する磁束は、鎖交磁束と呼ばれる。 The search coil 50 is linked with main magnetic flux and leakage magnetic flux. The main magnetic flux is the magnetic flux generated in the air gap 40, and the leakage magnetic flux is the magnetic flux leaking out from each rotor slot 33. The magnetic flux that links with the search coil 50 is called the linkage magnetic flux.
 サーチコイル50は、第1端子51および第2端子52を有している。サーチコイル50に磁束が鎖交すると、第1端子51と第2端子52との間に検出信号である電圧信号が誘起される。サーチコイル50内の鎖交磁束の分布は、回転子30の回転に伴って変動する。
 なお、この場合、短絡検知装置100が磁気検出器としてのサーチコイル50を備えるものとしたが、サーチコイル50を、短絡検知装置100と別構成としても良い。
The search coil 50 has a first terminal 51 and a second terminal 52. When magnetic flux is linked to the search coil 50, a voltage signal, which is a detection signal, is induced between the first terminal 51 and the second terminal 52. The distribution of the interlinked magnetic flux in the search coil 50 varies with the rotation of the rotor 30.
In this case, the short circuit detection device 100 includes the search coil 50 as a magnetic detector. However, the search coil 50 may be configured separately from the short circuit detection device 100 .
 信号処理装置60は、機能ブロックとして、信号取得部61、信号分解部62、および短絡検知部63を備えている。
 信号取得部61は、サーチコイル50に誘起される電圧信号を取得する。信号分解部62は、取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解する。信号取得部61に取得される電圧信号は、電気角1周期分を1単位として扱われる。信号分解部62は、電気角1周期分の電圧信号を、各周波数成分に分解する。さらに、信号分解部62は、分解された各周波数成分を振幅と位相とに分離する。
The signal processing device 60 includes, as functional blocks, a signal acquiring unit 61, a signal dividing unit 62, and a short circuit detecting unit 63.
The signal acquisition unit 61 acquires a voltage signal induced in the search coil 50. The signal decomposition unit 62 decomposes the acquired voltage signal into a plurality of frequency components having different orders. The voltage signal acquired by the signal acquisition unit 61 is treated as one unit for one electrical angle cycle. The signal decomposition unit 62 decomposes the voltage signal for one electrical angle cycle into each frequency component. Furthermore, the signal decomposition unit 62 separates each of the decomposed frequency components into amplitude and phase.
 短絡検知部63は、分解された各周波数成分のうち、奇数次の周波数成分の振幅を分析する。奇数次の周波数成分は、第1磁極34および第2磁極35の2極に相当する電気角1周期で1回振動する1次成分である基本波成分と、この1次成分以外である3次成分以上の高調波成分とから構成される。短絡検知部63は、奇数次の低次高調波成分および1次成分に基づいて、積層構成された固定子コア21の短絡を判定する。 The short circuit detection unit 63 analyzes the amplitude of the odd-order frequency components from among the resolved frequency components. The odd-order frequency components are composed of a fundamental wave component, which is a first-order component that oscillates once per period of electrical angle corresponding to the two poles of the first magnetic pole 34 and the second magnetic pole 35, and third-order and higher harmonic components other than this first-order component. The short circuit detection unit 63 determines whether there is a short circuit in the laminated stator core 21 based on the odd-order lower harmonic components and the first-order component.
 タービン発電機10の運転状態に変化がなく、固定子コア21に短絡発生が無い場合、信号分解部62で分解された奇数次の各周波数成分の振幅は不変である。
 また、タービン発電機10の運転状態に変化がなく、固定子コア21に短絡が発生し、その短絡状態が一定である場合も、信号分解部62で分解された奇数次の各周波数成分の振幅は不変である。
When there is no change in the operating state of the turbine generator 10 and no short circuit has occurred in the stator core 21, the amplitude of each of the odd-order frequency components decomposed by the signal decomposition unit 62 remains unchanged.
Furthermore, even if there is no change in the operating state of the turbine generator 10, a short circuit occurs in the stator core 21, and the short circuit state remains constant, the amplitude of each odd-order frequency component decomposed by the signal decomposition unit 62 remains unchanged.
 一方、タービン発電機10の運転状態に変化がなくても、固定子コア21の短絡発生前に取得された電気角1周期分の電圧信号と、短絡発生後に取得された電気角1周期分の電圧信号とでは、信号分解部62で分解された奇数次の各周波数成分の振幅は同じにならない。即ち、異なる時点で1単位(電気角1周期)ずつ取得された2単位の電圧信号がそれぞれ周波数分解された奇数次の各周波数成分において、2単位の電圧信号間で振幅変化がみられるとき、固定子コア21の短絡が検知できる。 On the other hand, even if there is no change in the operating state of the turbine generator 10, the amplitudes of the odd-order frequency components decomposed by the signal decomposition unit 62 will not be the same for a voltage signal of one electrical angle cycle acquired before the occurrence of a short circuit in the stator core 21 and a voltage signal of one electrical angle cycle acquired after the occurrence of a short circuit. In other words, when an amplitude change is observed between the two units of voltage signals in the odd-order frequency components obtained by frequency decomposing two units of voltage signals acquired at different points in time, each unit being one electrical angle cycle, a short circuit in the stator core 21 can be detected.
 2単位の電圧信号は、信号取得部61により連続的、または時間間隔を空けた間欠的に1単位ずつ電圧波形が取得される。短絡発生前に取得された過去の電圧信号と、新たに取得された電圧信号との2単位の電圧信号間で、奇数次の各周波数成分に振幅変化がみられるとき、固定子コア21の新たな短絡発生が検知できる。 The two-unit voltage signal is acquired by the signal acquisition unit 61 either continuously or intermittently with a time interval between each unit of voltage waveform. When an amplitude change is observed in each odd-order frequency component between the two-unit voltage signal, the previous voltage signal acquired before the short circuit occurred and the newly acquired voltage signal, the occurrence of a new short circuit in the stator core 21 can be detected.
 短絡検知部63では、タービン発電機10の運転状態が同じである2単位の電圧信号の各奇数次の周波数成分の振幅変化として振幅比率を算出する。この実施の形態では、3次成分の振幅比率が1次成分の振幅比率よりも大きい場合に、短絡検知部63は、固定子コア21に短絡が発生したことを検知する。 The short circuit detection unit 63 calculates the amplitude ratio as the change in amplitude of each odd-order frequency component of two units of voltage signals when the turbine generator 10 is in the same operating state. In this embodiment, when the amplitude ratio of the third order component is greater than the amplitude ratio of the first order component, the short circuit detection unit 63 detects that a short circuit has occurred in the stator core 21.
 さらに、短絡検知部63は、固定子コア21の短絡の有無に関する情報を表示装置70へ出力する。 Furthermore, the short circuit detection unit 63 outputs information regarding the presence or absence of a short circuit in the stator core 21 to the display device 70.
 表示装置70は、信号処理装置60の外部に設けられている。表示装置70は、短絡検知部63からの情報に基づいて、固定子コア21の短絡の有無を表示する。
 なお、表示装置70は、短絡検知装置100の外部に設けられても良い。
The display device 70 is provided outside the signal processing device 60. The display device 70 displays whether or not the stator core 21 is short-circuited, based on information from the short-circuit detection unit 63.
The display device 70 may be provided outside the short circuit detection device 100 .
 図2は、信号取得部61によって取得される健全時の電圧信号を示す波形図である。また図3は、信号取得部61によって取得される短絡時の電圧信号を示す波形図である。
 図2および図3は、健全時および短絡時の電圧信号の例を示すもので、横軸は、第1磁極34および第2磁極35の2極に相当する電気角1周期分にあたる。
 また図4は、固定子コア21の短絡時における磁束密度分布を示す図であり、図3の電圧信号を取得した時点の磁束密度分布を示す。
Fig. 2 is a waveform diagram showing a voltage signal in a healthy state acquired by the signal acquiring unit 61. Fig. 3 is a waveform diagram showing a voltage signal in a short-circuit state acquired by the signal acquiring unit 61.
2 and 3 show examples of voltage signals when the device is healthy and when a short circuit occurs, with the horizontal axis representing one period of electrical angle corresponding to two poles, the first magnetic pole 34 and the second magnetic pole 35. FIG.
FIG. 4 is a diagram showing the magnetic flux density distribution when the stator core 21 is short-circuited, and shows the magnetic flux density distribution at the time when the voltage signal of FIG. 3 is acquired.
 図2~図4は、電磁界解析プログラムを用いて、タービン発電機10が定格電圧を発生する無負荷運転状態をシミュレーションすることにより得られたものである。
 短絡時のシミュレーションは、例えば、固定子コア21の内部または外周部で固定子コア21を貫通して保持している締結具83を介して固定子コア21が短絡しているという条件で実行されている。この場合、図1に示すサーチコイル50と同じ周方向位置で固定子コア21の内部に配置される締結具81Aと、固定子コア21の外周部で締結具81Aの両側の周方向位置に配置される締結具82Aとが、短絡回路を構成する締結具83となる。
2 to 4 were obtained by simulating a no-load operating state in which the turbine generator 10 generates the rated voltage using an electromagnetic field analysis program.
The simulation of a short circuit is performed under the condition that the stator core 21 is short-circuited via a fastener 83 that penetrates and holds the stator core 21 inside or at the outer periphery of the stator core 21. In this case, the fastener 81A arranged inside the stator core 21 at the same circumferential position as the search coil 50 shown in Fig. 1, and the fasteners 82A arranged at circumferential positions on both sides of the fastener 81A on the outer periphery of the stator core 21, are the fasteners 83 that form a short circuit.
 固定子コア21の短絡検知は、短絡により固定子コア21の積層間に大きな短絡電流が流れる場合を速やかに検知することが重要である。このため、短絡時のシミュレーションは、短絡回路を構成する締結具83間の距離が近く、大きな短絡電流が流れやすい条件を設定した。 When detecting a short circuit in the stator core 21, it is important to quickly detect when a short circuit causes a large short-circuit current to flow between the laminations of the stator core 21. For this reason, the simulation of a short circuit was set under conditions where the distance between the fasteners 83 that make up the short circuit is short, making it easy for a large short-circuit current to flow.
 この例では、信号処理装置60は、信号取得部61で取得した電圧信号を用いて、固定子コア21に短絡が発生していることを推定する。これについて、以下に説明する。 In this example, the signal processing device 60 uses the voltage signal acquired by the signal acquisition unit 61 to estimate that a short circuit has occurred in the stator core 21. This is explained below.
 図2および図3に示す各電圧波形は、それぞれ電気角1周期の電圧波形であり、周方向角度0°から180°までが第1磁極34に対応し、周方向角度180°から360°までが第2磁極35に対応している。従って、周方向角度90°では、第1磁極34の中心がサーチコイル50に最も近付いており、周方向角度270°では、第2磁極35の中心がサーチコイル50に最も近付いている。 Each voltage waveform shown in FIG. 2 and FIG. 3 is a voltage waveform of one electrical angle cycle, with circumferential angles from 0° to 180° corresponding to the first magnetic pole 34 and circumferential angles from 180° to 360° corresponding to the second magnetic pole 35. Therefore, at a circumferential angle of 90°, the center of the first magnetic pole 34 is closest to the search coil 50, and at a circumferential angle of 270°, the center of the second magnetic pole 35 is closest to the search coil 50.
 図2に示す電圧波形は、短絡が発生していない健全時の電圧波形であり、32個の細かな電圧変動が、回転子スロットピッチごとに発生している。
 図3に示す電圧波形は、短絡が発生している短絡時の電圧波形であり、後述するように高調波成分の振幅が増えているが、波形全体の視点では図2とほぼ同じ波形となる。
The voltage waveform shown in FIG. 2 is a voltage waveform when no short circuit occurs and the rotor is in a healthy state, with 32 small voltage fluctuations occurring at each rotor slot pitch.
The voltage waveform shown in FIG. 3 is a voltage waveform when a short circuit occurs, and although the amplitude of the harmonic components increases as described below, the waveform as a whole is substantially the same as that shown in FIG.
 上述したように、信号分解部62は、信号取得部61によって取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解し、さらに、分解された各周波数成分を振幅と位相とに分離する。
 図5は、信号分解部62で分解された周波数成分のうち、奇数次成分における健全時および短絡時の振幅を示すスペクトル図である。即ち、図5は、図2に示す電圧波形に基づく奇数次成分の振幅スペクトルと、図3に示す電圧波形に基づく奇数次成分の振幅スペクトルとが、絶対値比較しやすいように併記して表記されたものである。また、次数は21次以上も存在するが、図5では説明のため19次以下の次数を示している。
As described above, the signal decomposition unit 62 decomposes the voltage signal acquired by the signal acquisition unit 61 into multiple frequency components of different orders, and further separates each of the decomposed frequency components into amplitude and phase.
Fig. 5 is a spectrum diagram showing the amplitudes of odd-order components in a healthy state and in a short circuit state among the frequency components decomposed by the signal decomposition unit 62. That is, Fig. 5 shows the amplitude spectrum of the odd-order components based on the voltage waveform shown in Fig. 2 and the amplitude spectrum of the odd-order components based on the voltage waveform shown in Fig. 3 side by side so that absolute values can be easily compared. In addition, although there are orders of 21 or more, Fig. 5 shows orders of 19 or less for the sake of explanation.
 1次成分は空隙40に発生する磁束のうち、主磁束に相当する基本波成分であり振幅が一番大きい。3次以上の奇数次の成分は、主磁束以外の高調波成分であり、空隙40に発生する磁束のうち、回転子30あるいは固定子20のスロット数など脈動原因に起因する。短絡が発生すると、1次成分の振幅は殆ど変化しないが、3次成分および5次成分の振幅が増加していることがわかる。 The primary component is the fundamental wave component equivalent to the main magnetic flux among the magnetic flux generated in the air gap 40, and has the largest amplitude. The third and higher odd-order components are harmonic components other than the main magnetic flux, and are caused by pulsation factors such as the number of slots in the rotor 30 or stator 20 among the magnetic flux generated in the air gap 40. When a short circuit occurs, it can be seen that the amplitude of the primary component hardly changes, but the amplitudes of the third and fifth order components increase.
 図4に示すように、固定子コア21と短絡した締結具81Aと締結具82Aとで囲われる領域Aでは、磁気遮蔽されることで磁束密度が低下する。これに対し、領域Aの径方向内側の領域B1と、軸心に対し領域Aの反対側領域B2を含む領域Bでは、遮蔽されて迂回した磁束によって磁束密度が増加する。そして、磁気飽和した領域の中心部の磁束密度が高くなり、周辺部の磁束密度も高くなることで磁気飽和する領域が広くなり、高調波成分が増加する。 As shown in Figure 4, in region A surrounded by fasteners 81A and 82A, which are short-circuited with stator core 21, the magnetic flux density decreases due to magnetic shielding. In contrast, in region B, which includes region B1 on the radially inner side of region A and region B2 on the opposite side of region A with respect to the axis, the magnetic flux density increases due to the magnetic flux that is shielded and diverted. The magnetic flux density in the center of the magnetically saturated region becomes high, and the magnetic flux density in the peripheral region also becomes high, widening the magnetically saturated region and increasing the harmonic components.
 迂回する磁束は領域Bのように半周程度の迂回になり、コアバック側あるいはティース側であわせて2か所あるいは4か所の空間的な変動となるので、1次および高次の磁束密度の変化でなく、主に3次あるいは5次の低次の磁束密度の変化として現れる。なお、磁気飽和の影響は、2または4の倍数の周波数の高調波成分としても現れるが、高次の周波数になるほど電圧値としては小さくなっていく。 The detouring magnetic flux makes a half-circle detour as in region B, resulting in spatial fluctuations in two or four places on the core back or teeth side, and therefore appears mainly as a change in low-order magnetic flux density, tertiary or quintic, rather than a change in primary or higher order magnetic flux density. The effects of magnetic saturation also appear as harmonic components at frequencies that are multiples of 2 or 4, but the higher the frequency, the smaller the voltage value becomes.
 基本的に、パーミアンス変化が2次、起磁力の変化が1次であるため、それらの差分である磁束密度の変化は3次となる。パーミアンス変化に高調波として4次成分がある場合は、磁束密度の変化は3次あるいは5次となる。同様に、さらに高次の周波数の高調波が含まれる。 Basically, the permeance change is second order and the magnetomotive force change is first order, so the difference between them, the change in magnetic flux density, is third order. If the permeance change has a fourth order component as a harmonic, the change in magnetic flux density will be third order or fifth order. Similarly, it will contain harmonics of even higher frequencies.
 短絡検知部63は、信号分解部62で分解された奇数次の高調波成分のうち、低次の同じ次数同士の振幅比率を算出する。
 図6は、短絡検知部63で演算される各周波数成分の振幅比率を示す図であり、図5のスペクトル図から振幅比率を計算したものである。
 なお、図5において、振幅の絶対値が比較的小さい5次、11次、17次の成分は、振幅比率のSN比(signal-noise ratio)が悪いため算出から除外している。
The short circuit detection unit 63 calculates the amplitude ratio between the same lower orders among the odd-order harmonic components decomposed by the signal decomposition unit 62 .
FIG. 6 is a diagram showing the amplitude ratios of the respective frequency components calculated by the short circuit detection unit 63, and is calculated from the spectrum diagram of FIG.
In FIG. 5, the 5th, 11th, and 17th order components, which have relatively small absolute amplitude values, are excluded from the calculation because they have a poor signal-to-noise ratio (SN ratio) of the amplitude ratio.
 振幅比率Rは、例えば、一方のn次の振幅値をV1n、他方のn次の振幅値をV2nとすると、R=(|V1n-V2n|/V1n)×100、単位%として算出される。短絡に伴って磁気飽和の領域が増加する。短絡が無い状態では振幅比率は、ほぼ0となるが、短絡が起きると振幅比率が変化する。1次と7次以上の高次の周波数成分は、磁気飽和の影響が比較的小さく振幅比率も小さい。これに対し、低次高調波成分である3次および5次の周波数成分には、短絡に伴う磁気飽和の影響が大きく振幅比率も大きい、と言う特徴が現れる。 For example, if one nth order amplitude value is V1n and the other nth order amplitude value is V2n, the amplitude ratio R is calculated as R = (|V1n - V2n|/V1n) x 100, in units of %, where V1n is the amplitude value of the nth order and V2n is the amplitude value of the other. The area of magnetic saturation increases with a short circuit. When there is no short circuit, the amplitude ratio is nearly 0, but when a short circuit occurs, the amplitude ratio changes. The first and higher order frequency components of 7th and above are relatively little affected by magnetic saturation and have small amplitude ratios. In contrast, the third and fifth order frequency components, which are low-order harmonic components, are characterized by a large effect of magnetic saturation due to a short circuit and a large amplitude ratio.
 なお、この場合、5次成分については除外されており、3次成分の振幅比率が大きい事が分かる。一般的に3次成分と5次成分との振幅の大きさは、2つの成分の位相により、一方が大きく他方が小さくなる、あるいは双方が中程度で均衡するかになる。 In this case, the fifth-order component is excluded, and it can be seen that the amplitude ratio of the third-order component is large. In general, the magnitude of the amplitude of the third-order component and the fifth-order component will depend on the phase of the two components, with one being large and the other being small, or both being moderate and balanced.
 図6に示すように、高次の周波数成分の振幅比率は、0.0~1.2%であるのに対し、3次成分の振幅比率は1.2%を大きく超える5%程度である。1次成分の振幅比率は比較的小さな0.2%であり、3次成分の振幅比率は1次成分の振幅比率に対して有意に大きい。
 短絡検知部63では、1次成分の振幅比率と3次成分の振幅比率との比較に基づいて、例えば、3次成分の振幅比率が1次成分の振幅比率よりも明確に大きいとき、固定子コア21の短絡発生を検知する。明確に大きい事の判定は、例えば差分あるいは比率が設定値より大きいときに判定しても良い。
6, the amplitude ratio of the higher frequency components is 0.0 to 1.2%, while the amplitude ratio of the third-order component is about 5%, which is much more than 1.2%. The amplitude ratio of the first-order component is a relatively small 0.2%, and the amplitude ratio of the third-order component is significantly larger than the amplitude ratio of the first-order component.
In the short circuit detection unit 63, when the amplitude ratio of the third-order component is clearly larger than the amplitude ratio of the first-order component based on a comparison between the amplitude ratio of the first-order component and the amplitude ratio of the third-order component, for example, the occurrence of a short circuit in the stator core 21 is detected. The determination that the amplitude ratio of the third-order component is clearly larger may be made, for example, when the difference or ratio is larger than a set value.
 固定子コア21の磁気飽和の影響により振幅比率の絶対値が一番大きくなる3次成分を用いて判定することで、振幅比率のSN比が良く、より高精度に短絡判定できる。
 なお、固定子コア21が磁気飽和している状態では、磁気飽和していない状態に比べて、高調波成分の振幅が大きくなるため、固定子コア21の短絡が発生する前後の高調波成分の振幅比率はSN比良く分析できる。このため、タービン発電機10が高い磁束密度で運転されている状態が固定子コア21の短絡検知には好適である。
By making the judgment using the third-order component, which has the largest absolute value of the amplitude ratio due to the influence of magnetic saturation of the stator core 21, the signal-to-noise ratio of the amplitude ratio is improved, and a short circuit can be judged with higher accuracy.
In addition, when the stator core 21 is magnetically saturated, the amplitude of the harmonic components is larger than when it is not magnetically saturated, so it is possible to analyze with a good signal-to-noise ratio the amplitude ratio of the harmonic components before and after a short circuit occurs in the stator core 21. For this reason, a state in which the turbine generator 10 is operating at a high magnetic flux density is suitable for detecting a short circuit in the stator core 21.
 次に、この実施の形態による短絡検知方法を図に基づいて、以下に説明する。
 図7は、実施の形態1による短絡検知方法を説明するフローチャートを示す図である。短絡検知装置100が起動すると、信号処理装置60は、所定期間毎に、図7のフローチャートに示す短絡検知ルーチンを実行する。
Next, the short circuit detection method according to this embodiment will be described below with reference to the drawings.
7 is a diagram showing a flowchart illustrating the short circuit detection method according to embodiment 1. When the short circuit detection device 100 is activated, the signal processing device 60 executes a short circuit detection routine shown in the flowchart of FIG.
 短絡検知ルーチンが開始されると、まず、信号取得部61は、サーチコイル50から1単位(電気角1周期分)の電圧信号を取得する(ステップS110)。
 次いで、信号分解部62は、取得された電圧信号を互いに次数の異なる複数の周波数成分に分解し振幅と位相とに分離する(ステップS120)。
When the short circuit detection routine is started, first, the signal acquiring unit 61 acquires a voltage signal of one unit (one electrical angle period) from the search coil 50 (step S110).
Next, the signal decomposition unit 62 decomposes the acquired voltage signal into a plurality of frequency components of different orders, and separates the signal into amplitude and phase (step S120).
 次いで、短絡検知部63は、前回ルーチンで取得された電圧信号と、今回ルーチンで取得された電圧信号との2単位の電圧信号に基づいて、ステップS120にて得られた結果から、各奇数次の周波数成分の振幅比率を算出する(ステップS130)。
 続いて、短絡検知部63は、1次成分の振幅比率よりも3次成分の振幅比率が大きいか否かを判定する(ステップS140)。
 ステップS140において、1次成分の振幅比率よりも3次成分の振幅比率が大きいとき、短絡検知部63は、固定子コア21において短絡発生を判定して、「短絡発生あり」を示す情報を表示装置70に出力して今回ルーチンを終了する(ステップS150)。
 また、ステップS140において、否の場合、短絡検知部63は、「短絡発生なし」を示す情報を表示装置70に出力して今回ルーチンを終了する(ステップS160)。
Next, the short circuit detection unit 63 calculates the amplitude ratio of each odd-order frequency component from the results obtained in step S120 based on two units of voltage signals, the voltage signal obtained in the previous routine and the voltage signal obtained in the current routine (step S130).
Next, the short circuit detector 63 determines whether the amplitude ratio of the third-order component is greater than the amplitude ratio of the first-order component (step S140).
In step S140, when the amplitude ratio of the third-order component is greater than the amplitude ratio of the first-order component, the short circuit detection unit 63 determines that a short circuit has occurred in the stator core 21, outputs information indicating that a short circuit has occurred to the display device 70, and terminates the current routine (step S150).
If the result is No in step S140, the short circuit detection unit 63 outputs information indicating that "no short circuit has occurred" to the display device 70, and ends the current routine (step S160).
 以上のように、この実施の形態による短絡検知方法は、ステップS110にて示される信号取得ステップと、ステップS120にて示される信号分解ステップと、ステップS130~S160にて示される短絡検知ステップを含んでいる。 As described above, the short circuit detection method according to this embodiment includes a signal acquisition step shown in step S110, a signal decomposition step shown in step S120, and a short circuit detection step shown in steps S130 to S160.
 信号取得ステップでは、回転子30に対向して配置されたサーチコイル50からの1単位(電気角1周期分)の電圧信号を取得する。信号分解ステップでは、信号取得ステップによって取得された電圧信号を互いに次数の異なる複数の周波数成分に分解する。
 短絡検知ステップでは、異なる時点で取得された2単位の電圧信号である前回ルーチンでの電圧信号と今回ルーチンでの電圧信号に基づいて、信号分解ステップで得られた各次数成分の振幅から、奇数次の低次高調波成分(この場合、3次成分)の振幅比率および1次成分の振幅比率を算出する。そして、短絡検知ステップでは、1次成分の振幅比率よりも3次成分の振幅比率が大きい場合、固定子コア21で短絡が発生したと判定する。また、1次成分の振幅比率が3次成分の振幅比率と同じあるいは小さい場合、固定子コア21で短絡発生無しと判定する。
In the signal acquiring step, a voltage signal of one unit (corresponding to one electrical angle period) is acquired from the search coil 50 disposed opposite the rotor 30. In the signal decomposition step, the voltage signal acquired in the signal acquiring step is decomposed into a plurality of frequency components having different orders.
In the short circuit detection step, the amplitude ratio of the odd-order low-order harmonic component (in this case, the third-order component) and the amplitude ratio of the first-order component are calculated from the amplitudes of each order component obtained in the signal decomposition step based on the voltage signal in the previous routine and the voltage signal in the current routine, which are two units of voltage signals acquired at different times. Then, in the short circuit detection step, if the amplitude ratio of the third-order component is greater than the amplitude ratio of the first-order component, it is determined that a short circuit has occurred in the stator core 21. Also, if the amplitude ratio of the first-order component is the same as or smaller than the amplitude ratio of the third-order component, it is determined that no short circuit has occurred in the stator core 21.
 以上のように、この実施の形態による短絡検知装置100は、異なる時点で取得された2単位の電圧信号に基づいて、奇数次の低次高調波成分の振幅比率と1次周波数成分の振幅比率を比較して、固定子コア21の短絡を判定する。このため、固定子コア21の磁束密度が比較的高い状態でのタービン発電機10の運転中に、固定子コア21の短絡発生を精度良く検知できる。
 なお、固定子コア21の磁束密度が低い状態でタービン発電機10が運転されている場合は、固定子コア21の短絡が発生する前後の高調波成分の振幅変化を検出し難いため、短絡検知の精度は劣化する。その場合、タービン発電機10は低負荷運転であり、固定子コア21の積層間に短絡が発生しても大きな短絡電流が流れることはなく、問題となる不具合は生じない。
As described above, the short circuit detection device 100 according to this embodiment compares the amplitude ratio of the odd-order low-order harmonic components and the amplitude ratio of the primary frequency component based on two units of voltage signals acquired at different times, to determine a short circuit in the stator core 21. Therefore, the occurrence of a short circuit in the stator core 21 can be accurately detected while the turbine generator 10 is operating in a state in which the magnetic flux density of the stator core 21 is relatively high.
When the turbine generator 10 is operated with a low magnetic flux density in the stator core 21, the accuracy of short circuit detection deteriorates because it is difficult to detect the change in amplitude of the harmonic components before and after a short circuit occurs in the stator core 21. In that case, the turbine generator 10 is operating at a low load, and even if a short circuit occurs between the laminations of the stator core 21, no large short circuit current flows, and no problematic malfunction occurs.
 上記実施の形態の短絡検知ステップは、今回ルーチンで取得された電圧信号に基づいて、固定子コア21で短絡発生を新たに検知するものである。2単位の他方の電圧信号は、前回ルーチンで取得された電圧信号に限るものではない。
 また、固定子コア21と締結具83とは僅かな接触抵抗で導通して短絡するため、僅かな短絡電流で接触部が焼き切れて短絡が解消する場合がある。短絡検知装置100は、異なる時点で取得された2単位の電圧信号の変化を捉えて固定子コア21の短絡発生を検知するため、必ずしも後から取得された電圧信号が短絡時のものである必要は無い。先に取得された電圧信号が短絡時のもので、短絡が解消した後に取得された電圧信号との2単位の電圧信号であっても短絡検知できる。
The short circuit detection step in the above embodiment is to newly detect the occurrence of a short circuit in the stator core 21 based on the voltage signal acquired in the current routine. The other voltage signal of the two units is not limited to the voltage signal acquired in the previous routine.
Furthermore, since the stator core 21 and the fastener 83 are electrically connected with a slight contact resistance and short-circuited, the contact portion may be burned out by a slight short-circuit current, and the short circuit may be resolved. Since the short circuit detection device 100 detects the occurrence of a short circuit in the stator core 21 by capturing the change in two units of voltage signals acquired at different times, it is not necessarily the case that the voltage signal acquired later is the one at the time of the short circuit. A short circuit can be detected even if the voltage signal acquired earlier is the one at the time of the short circuit, and the voltage signal acquired after the short circuit is resolved is the voltage signal of two units.
 また、上記実施の形態では、短絡検知部63は、奇数次の低次高調波成分として3次成分を用いたが、3次成分および5次成分の少なくとも一方の振幅比率が、1次成分の振幅比率よりも大きい場合、固定子コア21で短絡が発生したと判定する。その際、3次成分および5次成分の内、いずれか振幅比率が大きい方と、1次成分の振幅比率とを比較しても良い。この実施の形態では、磁気飽和の影響で振幅の絶対値が一番大きくなる3次成分で判定することで、振幅比率のSN比がよく、より高精度に短絡判定できる。 In addition, in the above embodiment, the short circuit detection unit 63 uses the third-order component as the odd-order low-order harmonic component, but if the amplitude ratio of at least one of the third-order and fifth-order components is greater than the amplitude ratio of the first-order component, it determines that a short circuit has occurred in the stator core 21. In this case, it is also possible to compare the amplitude ratio of the third-order or fifth-order component, whichever has the greater amplitude ratio, with the amplitude ratio of the first-order component. In this embodiment, by making the determination using the third-order component, which has the largest absolute value of the amplitude due to the effects of magnetic saturation, the signal-to-noise ratio of the amplitude ratio is good, and a short circuit can be determined with higher accuracy.
 また、上記実施の形態において、回転子30は、固定子20の内周側に配置されていたが、回転子30は、固定子20の外周側に配置されてもよい。 In the above embodiment, the rotor 30 is disposed on the inner circumference side of the stator 20, but the rotor 30 may be disposed on the outer circumference side of the stator 20.
 また、上記実施の形態において、回転電機としてタービン発電機10が採用されていたが、回転電機は、タービン発電機10以外の発電機であってもよいし、電動機であってもよい。
 また、磁気検出器としてサーチコイル50を用いたが、これに限るものでは無い。
In the above embodiment, the turbine generator 10 is used as the rotating electric machine, but the rotating electric machine may be a generator other than the turbine generator 10 or may be an electric motor.
Furthermore, although the search coil 50 is used as the magnetic detector, the present invention is not limited to this.
 ところで、実施の形態1の信号処理装置60の機能は、処理回路によって実現される。
 図8は、信号処理装置60の各機能を実現するハードウェアの例を示す構成図である。この場合、専用のハードウェアである処理回路60Aにて信号処理装置60が構成される。
The functions of the signal processing device 60 according to the first embodiment are realized by a processing circuit.
8 is a configuration diagram showing an example of hardware for realizing each function of the signal processing device 60. In this case, the signal processing device 60 is configured by a processing circuit 60A which is dedicated hardware.
 また、処理回路60Aは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。 The processing circuit 60A may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
 また、図9は、実施の形態1による信号処理装置60の各機能を実現するハードウェアの別例を示す構成図である。この場合、処理回路60Bは、プロセッサ201およびメモリ202を備えている。 FIG. 9 is a configuration diagram showing another example of hardware that realizes each function of the signal processing device 60 according to the first embodiment. In this case, the processing circuit 60B includes a processor 201 and a memory 202.
 処理回路60Bでは、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより、信号処理装置60の機能が実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各機能を実現する。 In the processing circuit 60B, the functions of the signal processing device 60 are realized by software, firmware, or a combination of software and firmware. The software and firmware are written as programs and stored in the memory 202. The processor 201 realizes each function by reading and executing the programs stored in the memory 202.
 メモリ202に格納されたプログラムは、上述した各部の手順又は方法をコンピュータに実行させるものであるとも言える。即ち、このプログラムは短絡検知プログラムであり、信号取得処理、信号分解処理、短絡検知処理をコンピュータに実行させるプログラムである。 The program stored in memory 202 can also be said to cause the computer to execute the procedures or methods of each part described above. In other words, this program is a short circuit detection program, and is a program that causes the computer to execute signal acquisition processing, signal decomposition processing, and short circuit detection processing.
 ここで、メモリ202とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリである。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ202に該当する。 Here, memory 202 refers to non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable and Programmable Read Only Memory), etc. Also included in memory 202 are magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, etc.
 なお、上述した信号処理装置60の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 It should be noted that some of the functions of the signal processing device 60 described above may be realized by dedicated hardware and some by software or firmware.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述した信号処理装置60の機能を実現することができる。 In this way, the processing circuit can realize the functions of the signal processing device 60 described above through hardware, software, firmware, or a combination of these.
実施の形態2.
 上記実施の形態1では、短絡検知部63は、異なる時点で取得された2単位の電圧信号の各周波数成分の振幅変化として振幅比率を用いたが、振幅変化量そのものを用いても良い。
 図10は、短絡検知部63で演算される各周波数成分の振幅変化量を示す図である。
 一方のn次の振幅値をV1n、他方のn次の振幅値をV2nとすると、振幅変化量ΔVは、ΔV=|V1n-V2n|、として算出される。
Embodiment 2.
In the above-mentioned first embodiment, the short circuit detection unit 63 uses the amplitude ratio as the amplitude change of each frequency component of two units of voltage signals acquired at different times, but the amplitude change amount itself may be used.
FIG. 10 is a diagram showing the amount of change in amplitude of each frequency component calculated by the short circuit detection unit 63. In FIG.
If one n-th order amplitude value is V1n and the other n-th order amplitude value is V2n, the amplitude change amount ΔV is calculated as ΔV=|V1n−V2n|.
 図10に示すように、奇数次の低次高調波成分である3次成分および5次成分の振幅変化量が大きく、1次成分の振幅変化量に対して有意に大きい。特に、3次成分の振幅変化量が大きい。また、7次以上の高次の高調波成分の振幅変化量は小さく、振幅比率を用いた上記実施の形態1の図6と同様の傾向を示す。
 そして短絡検知部63では、1次成分の振幅変化量と3次成分の振幅変化量との比較に基づいて、例えば、3次成分の振幅変化量が1次成分の振幅変化量よりも明確に大きいとき、固定子コア21の短絡発生を検知する。
As shown in Fig. 10, the amplitude change amounts of the odd-order low-order harmonic components, the third and fifth order components, are large and significantly larger than the amplitude change amount of the first order component. In particular, the amplitude change amount of the third order component is large. Moreover, the amplitude change amount of the seventh or higher order high-order harmonic components is small, showing the same tendency as in Fig. 6 of the above-mentioned embodiment 1 using the amplitude ratio.
The short circuit detection unit 63 detects the occurrence of a short circuit in the stator core 21 based on a comparison between the amplitude change in the primary component and the amplitude change in the third-order component, for example, when the amplitude change in the third-order component is clearly greater than the amplitude change in the primary component.
 以上のように、この実施の形態では、異なる時点で取得された2単位の電圧信号に基づいて、奇数次の低次高調波成分の振幅変化量と1次周波数成分の振幅変化量とを比較して、固定子コア21の短絡を判定する。このため、上記実施の形態1と同様に、固定子コア21の磁束密度が比較的高い状態でのタービン発電機10の運転中に、固定子コア21の短絡発生を精度良く検知できる。
 また、短絡判定に振幅変化量を用いるため、振幅絶対値の大きさがSN比に影響しない。このため、振幅絶対値が小さい次数成分を削除することなく、精度良く短絡を検知できる。
As described above, in this embodiment, the amount of change in amplitude of the odd-order low-order harmonic components and the amount of change in amplitude of the primary frequency component are compared based on two units of voltage signals acquired at different times to determine a short circuit in the stator core 21. Therefore, similar to the first embodiment, the occurrence of a short circuit in the stator core 21 can be accurately detected while the turbine generator 10 is operating in a state in which the magnetic flux density of the stator core 21 is relatively high.
In addition, since the amount of change in amplitude is used to determine whether a short circuit exists, the magnitude of the absolute amplitude value does not affect the S/N ratio, and therefore, a short circuit can be detected with high accuracy without removing order components with small absolute amplitude values.
実施の形態3.
 上記実施の形態1および実施の形態2では、信号分解部62は、信号取得部61に取得された電圧信号を各周波数成分に分解し、短絡検知部63は、2単位分の電圧信号がそれぞれ信号分解部62にて分解された結果に基づいて短絡検知を行った。
 この実施の形態3では、信号分解部62は、信号取得部61が異なる時点で取得した2単位の電圧信号の差分信号を各周波数成分に分解し、短絡検知部63は、差分信号が信号分解部62にて分解された結果に基づいて短絡検知を行う。
Embodiment 3.
In the above-mentioned first and second embodiments, the signal decomposition unit 62 decomposed the voltage signal acquired by the signal acquisition unit 61 into each frequency component, and the short circuit detection unit 63 performed short circuit detection based on the results of the decomposition of two units of the voltage signal by the signal decomposition unit 62.
In this embodiment 3, the signal decomposition unit 62 decomposes the differential signal of two units of voltage signals acquired by the signal acquisition unit 61 at different times into each frequency component, and the short circuit detection unit 63 performs short circuit detection based on the result of the decomposition of the differential signal by the signal decomposition unit 62.
 図11は、信号取得部61によって取得される2つの異なる電圧信号の差分信号を示す図である。この差分信号は、図2で示した電圧信号(健全時の電圧波形)と図3で示した電圧信号(短絡時の電圧波形)との差分である電圧波形を示すものである。
 信号分解部62は、2単位の電圧信号の差分信号を、互いに次数の異なる複数の周波数成分に分解し、さらに、分解された各周波数成分を振幅と位相とに分離する。差分信号における各周波数成分の振幅は、2単位の電圧信号をそれぞれ周波数分解した場合の振幅変化を示すものとなる。
Fig. 11 is a diagram showing a differential signal between two different voltage signals acquired by the signal acquisition unit 61. This differential signal shows a voltage waveform that is the difference between the voltage signal shown in Fig. 2 (voltage waveform in a healthy state) and the voltage signal shown in Fig. 3 (voltage waveform in a short circuit state).
The signal decomposition unit 62 decomposes the difference signal between the two units of voltage signals into a plurality of frequency components of different orders, and further separates each of the decomposed frequency components into amplitude and phase. The amplitude of each frequency component in the difference signal represents the amplitude change when the two units of voltage signals are frequency-decomposed.
 短絡検知部63は、信号分解部62で分解された奇数次の高調波成分の振幅を、1次周波数成分の振幅と比較する。
 図12は、短絡検知部63で演算される各周波数成分の振幅比率を示すスペクトル図であり、1次周波数成分の振幅に対する奇数次の各周波数成分の振幅の比率(%)を振幅比率として表した。この場合も、実施の形態1と同様に、振幅の絶対値が比較的小さい5次、11次、17次の成分は、算出から除外している。
 1次周波数成分の振幅値をVa1、n次成分の振幅値をVanとすると、振幅比率Raは、Ra=|Van/Va1|×100、単位%として算出される。
The short circuit detection unit 63 compares the amplitude of the odd-order harmonic components decomposed by the signal decomposition unit 62 with the amplitude of the first-order frequency component.
12 is a spectrum diagram showing the amplitude ratio of each frequency component calculated by the short circuit detection unit 63, and the ratio (%) of the amplitude of each odd-numbered frequency component to the amplitude of the first frequency component is expressed as the amplitude ratio. In this case, as in the first embodiment, the 5th, 11th, and 17th order components, which have relatively small absolute amplitude values, are excluded from the calculation.
If the amplitude value of the first frequency component is Va1 and the amplitude value of the nth frequency component is Van, the amplitude ratio Ra is calculated as Ra=|Van/Va1|×100, in units of %,.
 図12に示すように、3次成分の振幅は1次成分の振幅に対して有意に大きい。
 差分信号の各周波数成分の振幅は、2単位の電圧信号の各周波数成分の振幅変化を示すもので、上記実施の形態1および2の図6および図10と同様の傾向を示す。即ち、3次成分の振幅が特に大きく、7次以上の高次の高調波成分の振幅は小さい。
 短絡検知部63では、1次成分の振幅と3次成分の振幅との比較に基づいて、例えば、3次成分の振幅が1次成分の振幅よりも明確に大きいとき、固定子コア21の短絡発生を検知する。
As shown in FIG. 12, the amplitude of the third-order component is significantly larger than the amplitude of the first-order component.
The amplitude of each frequency component of the difference signal indicates the amplitude change of each frequency component of the two-unit voltage signal, and shows the same tendency as in Figures 6 and 10 of the above-mentioned embodiments 1 and 2. That is, the amplitude of the third-order component is particularly large, and the amplitudes of the seventh-order and higher harmonic components are small.
The short circuit detection unit 63 detects the occurrence of a short circuit in the stator core 21 based on a comparison between the amplitude of the primary component and the amplitude of the third-order component, for example, when the amplitude of the third-order component is clearly greater than the amplitude of the primary component.
 以上のように、この実施の形態では、信号分解部62は、異なる時点で取得された2単位の電圧信号の差分信号を、互いに次数の異なる複数の周波数成分に分解する。
 そして、短絡検知部63は、差分信号が信号分解部62で分解された結果に基づいて、短絡検知を行う。その際、2単位の電圧信号の1次周波数成分の振幅変化となる、差分信号における1次周波数成分の振幅と、低次高調波成分の振幅変化となる、差分信号における低次高調波成分の振幅とを比較し、固定子コア21の短絡を判定する。
As described above, in this embodiment, the signal decomposition section 62 decomposes the difference signal between two units of voltage signals acquired at different times into a plurality of frequency components of different orders.
The short circuit detection unit 63 detects a short circuit based on the result of decomposition of the differential signal by the signal decomposition unit 62. At this time, the short circuit detection unit 63 compares the amplitude of the primary frequency component in the differential signal, which is the amplitude change of the primary frequency component of the two-unit voltage signal, with the amplitude of the low-order harmonic components in the differential signal, which is the amplitude change of the low-order harmonic components, to determine whether the stator core 21 is short-circuited.
 このため、上記実施の形態1と同様に、固定子コア21の磁束密度が比較的高い状態でのタービン発電機10の運転中に、固定子コア21の短絡発生を精度良く検知できる。
 また、信号分解部62は、2単位の電圧信号の差分信号を入力して周波数分解するため、扱う信号数が半減でき処理負荷が軽減される。
Therefore, similarly to the first embodiment, the occurrence of a short circuit in the stator core 21 can be detected with high accuracy while the turbine generator 10 is operating in a state in which the magnetic flux density in the stator core 21 is relatively high.
Furthermore, the signal decomposition unit 62 receives the difference signal between two units of voltage signals and performs frequency decomposition, so the number of signals to be handled can be reduced by half, and the processing load can be reduced.
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments are not limited to application to a particular embodiment, but may be applied to the embodiments alone or in various combinations.
Therefore, countless modifications not exemplified are assumed within the scope of the technology disclosed in this application, including, for example, modifying, adding, or omitting at least one component, and further, extracting at least one component and combining it with a component of another embodiment.
 10 タービン発電機(回転電機)、20 固定子、21 固定子コア、30 回転子、50 サーチコイル(磁気検出器)、61 信号取得部、62 信号分解部、63 短絡検知部、100 短絡検知装置。 10 Turbine generator (rotating electric machine), 20 Stator, 21 Stator core, 30 Rotor, 50 Search coil (magnetic detector), 61 Signal acquisition unit, 62 Signal decomposition unit, 63 Short circuit detection unit, 100 Short circuit detection device.

Claims (8)

  1.  回転電機の回転子に対向して固定子側に配置された磁気検出器から、電圧信号を取得する信号取得部と、
     前記電圧信号に基づいて、互いに次数の異なる複数の周波数成分に分解する信号分解部と、
     前記信号分解部で分解された周波数成分のうち奇数次の低次高調波成分および1次周波数成分に基づいて、積層構成された固定子コアの短絡を判定する短絡検知部と、を備え
     前記信号取得部は、電気角1周期分を1単位として前記電圧信号を取得し、
     前記短絡検知部は、異なる時点で取得された2単位の前記電圧信号に基づいて、前記低次高調波成分の振幅変化および前記1次周波数成分の振幅変化をそれぞれ検出し、前記低次高調波成分の振幅変化と前記1次周波数成分の振幅変化との比較に基づいて、前記固定子コアの短絡を判定する、
    回転電機の短絡検知装置。
    a signal acquiring unit that acquires a voltage signal from a magnetic detector that is disposed on a stator side facing a rotor of a rotating electric machine;
    a signal decomposition unit that decomposes the voltage signal into a plurality of frequency components having different orders;
    a short circuit detection unit that determines a short circuit in a laminated stator core based on an odd-order low harmonic component and a first order frequency component among the frequency components decomposed by the signal decomposition unit, the signal acquisition unit acquires the voltage signal with one electrical angle cycle as one unit,
    the short circuit detection unit detects an amplitude change of the low-order harmonic component and an amplitude change of the primary frequency component based on two units of the voltage signals acquired at different times, and determines a short circuit of the stator core based on a comparison between the amplitude change of the low-order harmonic component and the amplitude change of the primary frequency component.
    A rotating electrical machine short circuit detection device.
  2.  前記短絡検知部は、前記低次高調波成分の振幅変化が、前記1次周波数成分の振幅変化よりも大きいとき、前記固定子コアの短絡を判定する、
    請求項1に記載の回転電機の短絡検知装置。
    the short circuit detection unit determines that the stator core is short-circuited when the amplitude change of the low-order harmonic component is larger than the amplitude change of the primary frequency component.
    The short circuit detection device for a rotating electrical machine according to claim 1.
  3.  前記信号分解部は、前記信号取得部で取得された前記電圧信号を、互いに次数の異なる複数の周波数成分に分解し、
     前記短絡検知部は、2単位の前記電圧信号が前記信号分解部でそれぞれ分解された結果に基づいて、前記1次周波数成分の振幅変化と前記低次高調波成分の振幅変化とを比較する、
    請求項1または請求項2に記載の回転電機の短絡検知装置。
    The signal decomposition unit decomposes the voltage signal acquired by the signal acquisition unit into a plurality of frequency components having different orders,
    The short circuit detection unit compares an amplitude change of the first frequency component with an amplitude change of the low-order harmonic component based on a result of decomposition of the two units of the voltage signal by the signal decomposition unit.
    The short circuit detection device for a rotating electric machine according to claim 1 or 2.
  4.  前記信号分解部は、2単位の前記電圧信号の差分信号を、互いに次数の異なる複数の周波数成分に分解し、
     前記短絡検知部は、前記差分信号が前記信号分解部で分解された結果に基づいて、前記1次周波数成分の振幅変化となる、前記差分信号における1次周波数成分の振幅と、前記低次高調波成分の振幅変化となる、前記差分信号における低次高調波成分の振幅とを比較する、
    請求項1または請求項2に記載の回転電機の短絡検知装置。
    The signal decomposition unit decomposes a differential signal of two units of the voltage signals into a plurality of frequency components having different orders of frequency,
    The short circuit detection unit compares an amplitude of a first frequency component in the difference signal, which corresponds to an amplitude change of the first frequency component, with an amplitude of a low-order harmonic component in the difference signal, which corresponds to an amplitude change of the low-order harmonic component, based on a result of the decomposition of the difference signal by the signal decomposition unit.
    The short circuit detection device for a rotating electric machine according to claim 1 or 2.
  5.  前記短絡検知部は、前記低次高調波成分として、少なくとも3次周波数成分および5次周波数成分の一方を用いる、
    請求項1から請求項4のいずれか1項に記載の回転電機の短絡検知装置。
    The short circuit detection unit uses at least one of a third-order frequency component and a fifth-order frequency component as the low-order harmonic component.
    The short circuit detection device for a rotating electric machine according to any one of claims 1 to 4.
  6.  前記短絡検知部は、前記振幅変化として振幅比率を演算して用いる、
    請求項1から請求項5のいずれか1項に記載の回転電機の短絡検知装置。
    The short circuit detection unit calculates and uses an amplitude ratio as the amplitude change.
    The short circuit detection device for a rotating electric machine according to any one of claims 1 to 5.
  7.  回転電機の回転子に対向して固定子側に配置された磁気検出器から、電圧信号を取得する信号取得ステップと、
     前記電圧信号に基づいて、互いに次数の異なる複数の周波数成分に分解する信号分解ステップと、
     前記信号分解ステップで分解された周波数成分のうち奇数次の低次高調波成分および1次周波数成分に基づいて、積層構成された固定子コアの短絡を判定する短絡検知ステップと、を備え
     前記信号取得ステップは、電気角1周期分を1単位として前記電圧信号を取得し、
     前記短絡検知ステップは、異なる時点で取得された2単位の前記電圧信号に基づいて、前記低次高調波成分の振幅変化および前記1次周波数成分の振幅変化をそれぞれ検出し、前記低次高調波成分の振幅変化と前記1次周波数成分の振幅変化との比較に基づいて、前記固定子コアの短絡を判定する、
    回転電機の短絡検知方法。
    a signal acquiring step of acquiring a voltage signal from a magnetic detector disposed on a stator side facing a rotor of the rotating electric machine;
    a signal decomposition step of decomposing the voltage signal into a plurality of frequency components having different orders;
    a short circuit detection step of determining a short circuit in a laminated stator core based on an odd-order low harmonic component and a first order frequency component among the frequency components resolved in the signal resolution step, the signal acquisition step acquiring the voltage signal with one electrical angle cycle as one unit,
    The short circuit detection step detects an amplitude change of the low-order harmonic component and an amplitude change of the primary frequency component based on two units of the voltage signals acquired at different times, and determines a short circuit of the stator core based on a comparison between the amplitude change of the low-order harmonic component and the amplitude change of the primary frequency component.
    A method for detecting a short circuit in a rotating electrical machine.
  8.  前記信号取得ステップは、電気角1周期分を1単位として前記電圧信号を、それぞれ異なる時点で繰り返し取得し、
     前記短絡検知ステップは、前回取得分と今回取得分との2単位の前記電圧信号に基づいて、前記固定子コアの短絡を判定する、
    請求項7に記載の回転電機の短絡検知方法。
    the signal acquiring step repeatedly acquires the voltage signal at different times, with one electrical angle period being one unit;
    The short circuit detection step determines whether or not the stator core is short-circuited based on two units of the voltage signal, a previously acquired voltage signal and a currently acquired voltage signal.
    The method for detecting a short circuit in a rotating electrical machine according to claim 7.
PCT/JP2022/039884 2022-10-26 2022-10-26 Short circuit detection device and short circuit detection method for rotating electric machine WO2024089788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039884 WO2024089788A1 (en) 2022-10-26 2022-10-26 Short circuit detection device and short circuit detection method for rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039884 WO2024089788A1 (en) 2022-10-26 2022-10-26 Short circuit detection device and short circuit detection method for rotating electric machine

Publications (1)

Publication Number Publication Date
WO2024089788A1 true WO2024089788A1 (en) 2024-05-02

Family

ID=90830356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039884 WO2024089788A1 (en) 2022-10-26 2022-10-26 Short circuit detection device and short circuit detection method for rotating electric machine

Country Status (1)

Country Link
WO (1) WO2024089788A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304745A (en) * 1992-04-27 1993-11-16 Toshiba Corp Stator iron core abnormality detector
JP2011078167A (en) * 2009-09-29 2011-04-14 Toshiba Corp Rotary electric machine and measuring method for short-circuiting in laminated steel plate of rotary electric machine
WO2020208812A1 (en) * 2019-04-12 2020-10-15 三菱電機株式会社 Short circuit detection device and short circuit detection method
JP2022018754A (en) * 2020-07-16 2022-01-27 株式会社東芝 Abnormality detection system for rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304745A (en) * 1992-04-27 1993-11-16 Toshiba Corp Stator iron core abnormality detector
JP2011078167A (en) * 2009-09-29 2011-04-14 Toshiba Corp Rotary electric machine and measuring method for short-circuiting in laminated steel plate of rotary electric machine
WO2020208812A1 (en) * 2019-04-12 2020-10-15 三菱電機株式会社 Short circuit detection device and short circuit detection method
JP2022018754A (en) * 2020-07-16 2022-01-27 株式会社東芝 Abnormality detection system for rotary electric machine

Similar Documents

Publication Publication Date Title
Urresty et al. A back-emf based method to detect magnet failures in PMSMs
Da et al. A new approach to fault diagnostics for permanent magnet synchronous machines using electromagnetic signature analysis
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
Ceban et al. Eccentricity and broken rotor bars faults-Effects on the external axial field
Zafarani et al. An investigation of motor topology impacts on magnet defect fault signatures
CN113557436B (en) Short circuit detection device and short circuit detection method
Saavedra Ordóñez et al. Detection of inter-turn faults in five-phase permanent magnet synchronous motors
Pusca et al. Detection of inter-turn short circuits in induction machines without knowledge of the healthy state
JP6837619B1 (en) Short circuit detection device for rotary electric machines and short circuit detection method
WO2024089788A1 (en) Short circuit detection device and short circuit detection method for rotating electric machine
JP6949287B1 (en) Short circuit detection device for rotary electric machines
Barmpatza et al. Investigation of the combined eccentricity and demagnetization fault in an AFPMSG
JP6725765B1 (en) Short circuit detection device and short circuit detection method
HUANG et al. Online rotor fault diagnosis of permanent magnet synchronous motors based on stator tooth flux
WO2023053241A1 (en) Short circuit detection device for dynamo-electric machine, and short circuit detection method
Haddad Fault detection and identification in permanent magnet synchronous machines
Biernat Coil-turn short-circuit of PMSM influence on the transformed phase voltage frequency pattern
Hassanzadeh et al. A new analytical technique for analysis and detection of air‐gap eccentricity fault in surface‐mounted permanent‐magnet machines
Benziane et al. Vold-Kalman Filter Order Tracking for the Detection of Stator Fault in Vector Controlled Induction Motor
Wolbank et al. Comparison of different methods to detect static air gap asymmetry in inverter fed induction machines
Ahsanullah et al. Inter-turns fault diagnosis for surface permanent magnet based marine propulsion motors
Ouiddir et al. Stator Current Square Analysis to Discriminate Between Eccentricity and Demagnetization Faults in PMSMs
Goktas et al. Reliable Detection of Broken Bar Fault through Negative Sequence of Stray Flux in Induction Motors
Ceban et al. Supervision of electric traction motors by external magnetic field analysis
Wolbank et al. Detection of rotor eccentricity caused air gap asymmetries in inverter fed AC machines based on current step response