WO2024089738A1 - Magnetic component and power conversion device - Google Patents

Magnetic component and power conversion device Download PDF

Info

Publication number
WO2024089738A1
WO2024089738A1 PCT/JP2022/039509 JP2022039509W WO2024089738A1 WO 2024089738 A1 WO2024089738 A1 WO 2024089738A1 JP 2022039509 W JP2022039509 W JP 2022039509W WO 2024089738 A1 WO2024089738 A1 WO 2024089738A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling portion
coupling
winding
connection terminal
coupling part
Prior art date
Application number
PCT/JP2022/039509
Other languages
French (fr)
Japanese (ja)
Inventor
暁峰 伍
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2022/039509 priority Critical patent/WO2024089738A1/en
Publication of WO2024089738A1 publication Critical patent/WO2024089738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers

Definitions

  • the present invention relates to magnetic components and power conversion devices equipped with magnetic components.
  • Power conversion devices include resonant converters that are configured using a resonant coil and a transformer. There is a demand for power conversion devices that can reduce component and mounting costs and miniaturize the device.
  • Patent Document 1 discloses a magnetic component that combines a resonant coil and a transformer.
  • a magnetic component includes a magnetic core, a first winding, and one or more second windings.
  • the magnetic core has two base portions facing each other, and a first coupling portion, a second coupling portion, a third coupling portion, a fourth coupling portion, and a fifth coupling portion that are disposed within the facing surfaces of the two base portions and magnetically couple the two base portions.
  • the first coupling portion and the second coupling portion are arranged in this order in a first direction, the third coupling portion and the fourth coupling portion are arranged in this order in the first direction, the first coupling portion and the third coupling portion are arranged in this order in the second direction, the second coupling portion and the fourth coupling portion are arranged in this order in the second direction, and the fifth coupling portion is arranged to surround the entire first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion.
  • the first winding is wound around one or more of the first coupling, the second coupling, the third coupling, and the fourth coupling.
  • the one or more second windings are wound around one or more of the first coupling, the second coupling, the third coupling, and the fourth coupling.
  • the power conversion device includes the magnetic component, a switching circuit, a rectifier circuit, and a smoothing circuit.
  • the switching circuit is connected to the first winding of the magnetic component and has one or more switching elements.
  • the rectifier circuit is connected to the one or more second windings of the magnetic component.
  • the smoothing circuit is connected to the rectifier circuit.
  • the magnetic components and power conversion device according to one embodiment of the present invention can reduce losses due to leakage flux.
  • FIG. 1 is a circuit diagram illustrating a configuration example of a power conversion device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram illustrating a configuration example of the transformer illustrated in FIG. 1 .
  • 3 is an explanatory diagram illustrating one configuration example of a winding in the transformer illustrated in FIG. 2.
  • FIG. 4 is an explanatory diagram illustrating a connection example of the transformer illustrated in FIG. 3 .
  • 2 is a timing waveform diagram showing an example of the waveform of a gate signal shown in FIG. 1 .
  • FIG. 2 is an explanatory diagram illustrating one operation state of the power conversion device shown in FIG. 1 . 1.
  • FIG. 4 is an explanatory diagram illustrating another operating state of the power conversion device shown in FIG.
  • FIG. 4 is an explanatory diagram illustrating an example of magnetic flux at the joint portion illustrated in FIG. 3 .
  • 5 is an explanatory diagram illustrating another example of the magnetic flux at the joint shown in FIG. 3 .
  • FIG. 11 is an explanatory diagram illustrating a configuration example of a winding in a transformer according to a modified example. 9 is an explanatory diagram showing the relationship between the windings shown in FIG. 3 and the windings shown in FIG. 8 .
  • FIG. 13 is an explanatory diagram illustrating a configuration example of a transformer according to another modified example.
  • FIG. 11 is an explanatory diagram illustrating a configuration example of a winding in the transformer illustrated in FIG. 10 .
  • FIG. 13 is an explanatory diagram illustrating a configuration example of a transformer according to another modified example.
  • FIG. 13 is a circuit diagram illustrating a configuration example of a power conversion device according to another modified example.
  • FIG. 13 is a circuit diagram illustrating a configuration example of a power conversion device according to another modified example.
  • FIG. 15 is an explanatory diagram illustrating a configuration example of a winding in the transformer illustrated in FIG. 14 .
  • FIG. 16 is an explanatory diagram illustrating a connection example of the transformer illustrated in FIG. 15 .
  • FIG. 1 shows an example of a configuration of a power conversion device 1 including a magnetic component according to an embodiment of the present invention.
  • the power conversion device 1 is an LLC resonant converter that transforms DC power.
  • the power conversion device 1 includes terminals T11, T12 and terminals T21, T22.
  • the terminals T11, T12 are connected to a DC power source PDC, and the terminals T21, T22 are connected to a load LD.
  • the power conversion device 1 is configured to convert DC power supplied from the DC power source PDC and supply the converted DC power to the load LD.
  • the power conversion device 1 includes a capacitor 11, a switching circuit 12, a capacitor 15, a transformer 20, a rectifier circuit 17, and a smoothing circuit 18.
  • the capacitor 11, the switching circuit 12, and the capacitor 15 form the primary side circuit of the power conversion device 1, and the rectifier circuit 17 and the smoothing circuit 18 form the secondary side circuit of the power conversion device 1.
  • One end of the capacitor 11 is connected to a voltage line L11 that is connected to a terminal T11, and the other end is connected to a reference voltage line L12 that is connected to a terminal T12.
  • the switching circuit 12 is configured to convert the DC voltage supplied from the DC power supply PDC into an AC voltage.
  • the switching circuit 12 has transistors 13 and 14.
  • each of the transistors 13 and 14 is an N-type FET (Field Effect Transistor).
  • the drain of the transistor 13 is connected to the voltage line L11, the gate is supplied with a gate signal G1 from a control unit (not shown), and the source is connected to the drain of the transistor 14 and one end of the capacitor 15.
  • the drain of the transistor 14 is connected to the source of the transistor 13 and one end of the capacitor 15, the gate is supplied with a gate signal G2 from a control unit (not shown), and the source is connected to the reference voltage line L12.
  • the switching circuit 12 is not limited to this configuration, and various circuits having one or more switching elements can be used.
  • Capacitor 15 is a resonant capacitor in the LLC resonant converter, with one end connected to the source of transistor 13 and the drain of transistor 14, and the other end connected to transformer 20.
  • the transformer 20 is configured to insulate the primary circuit and the secondary circuit from a DC perspective and to connect them from an AC perspective, convert the AC voltage supplied from the primary circuit at the transformation ratio R of the transformer 20, and supply the converted AC voltage to the secondary circuit.
  • the transformer 20 has connection terminals Tp1, Tp2, Ts11, Ts12, Ts21, Ts22, Ts31, Ts32, Ts41, and Ts42, windings Wp1 and Wp2, and windings Ws1, Ws2, Ws3, and Ws4.
  • connection terminal Tp1 is connected to the other end of the capacitor 15, and the connection terminal Tp2 is connected to the reference voltage line L12.
  • connection terminals Ts11, Ts21, Ts31, and Ts41 are connected to the reference voltage line L22 via the rectifier circuit 17, and the connection terminals Ts12, Ts22, Ts32, and Ts42 are connected to the voltage line L21.
  • Winding Wp1 is a resonant coil in the LLC resonant converter, with one end connected to connection terminal Tp1 and the other end connected to one end of winding Wp2.
  • Winding Wp2 is the primary winding of transformer 20, with one end connected to the other end of winding Wp1 and the other end connected to connection terminal Tp2.
  • windings Wp1 and Wp2 as a whole are also referred to as winding Wp.
  • Windings Ws1 to Ws4 are the secondary windings of transformer 20.
  • One end of winding Ws1 is connected to connection terminal Ts11, and the other end is connected to connection terminal Ts12.
  • One end of winding Ws2 is connected to connection terminal Ts21, and the other end is connected to connection terminal Ts22.
  • One end of winding Ws3 is connected to connection terminal Ts31, and the other end is connected to connection terminal Ts32.
  • One end of winding Ws4 is connected to connection terminal Ts41, and the other end is connected to connection terminal Ts42.
  • FIG. 2 shows an example of the configuration of the transformer 20.
  • FIG. 2 also shows a cross-sectional view of the transformer 20 as viewed in the direction of the arrows I-I and II-II.
  • the transformer 20 is a planar transformer.
  • the transformer 20 has a magnetic core 100 and a substrate 200.
  • the magnetic core 100 has base portions 101, 102 and four connecting portions 111, 112, 113, 114, 115.
  • the base portions 101, 102 are arranged so as to face each other in the Z direction.
  • the base portions 101, 102 have a substantially square shape in the XY plane.
  • the connecting portions 111-115 are arranged on the opposing surfaces of the two base portions 101, 102 and are provided so as to magnetically connect these two base portions 101, 102.
  • the connecting portions 111 and 112 are arranged side by side in this order, and the connecting portions 113 and 114 are arranged side by side in this order.
  • the connecting portions 111 and 113 are arranged side by side in this order, and the connecting portions 112 and 114 are arranged side by side in this order.
  • the connecting portion 115 is provided so as to surround the connecting portions 111 to 114 in the XY plane.
  • the connecting portion 115 includes two connecting portions 115A and 115B.
  • the connecting portion 115A is provided on the side in the Y direction where the connecting portions 111 and 112 are provided, and the connecting portion 115B is provided on the side in the Y direction where the connecting portions 113 and 114 are provided.
  • the cross-sectional area of the joints 111 and 114 is smaller than the cross-sectional area of the joints 112 and 113.
  • this is not limited to this, and the cross-sectional areas of the joints 111 to 114 may be equal to each other.
  • a gap GAP is provided near the center in the Z direction in each of the joints 111 to 115.
  • a gap GAP may be provided between the joint 111 and the base part 101 at the end of the joint 111 in the Z direction, or a gap GAP may be provided between the joint 111 and the base part 102 at the end of the joint 111 in the opposite direction to the Z direction.
  • the width of the gap GAP of the connecting parts 111 and 114 can be made smaller than the width of the gap GAP of the connecting parts 112 and 113. That is, in this example, since the cross-sectional area of the connecting parts 111 and 114 is smaller than the cross-sectional area of the connecting parts 112 and 113, the width of the gap GAP of the connecting parts 111 to 114 can be adjusted so that the magnetic resistances of the connecting parts 111 to 114 are approximately equal to each other. Furthermore, the width of the gap GAP of the connecting part 115 can be set to a value between the width of the gap GAP of the connecting parts 111 and 114 and the width of the gap GAP of the connecting parts 112 and 113. However, this is not limited to this, and the width of the gap GAP of the connecting parts 111 to 115 can be set appropriately.
  • the substrate 200 is a multi-layer substrate (a three-layer substrate in this example) on which a coil pattern is formed. Through holes are provided in the substrate 200 at positions corresponding to the coupling parts 111-115 of the magnetic core 100, and the substrate 200 is sandwiched between the base parts 101 and 102.
  • the substrate 200 is provided with windings Wp1, Wp2, and windings Ws1, Ws2, Ws3, and Ws4.
  • FIG. 3 shows an example of the configuration of the windings in the substrate 200, with FIG. 3(A) showing the first layer, wiring layer LA1, FIG. 3(B) showing the second layer, wiring layer LA2, and FIG. 3(C) showing the third layer, wiring layer LA3.
  • the wiring layers LA1 to LA3 are provided in this order in the layer direction of the substrate 200.
  • FIG. 4 shows an example of the connection of the winding Wp (windings Wp1, Ws1) and windings Ws1 to Ws4 in the power conversion device 1.
  • the winding Wp is provided in the wiring layer LA1 (Fig. 3(A)), the windings Ws1 and Ws2 are provided in the wiring layer LA2 (Fig. 3(B)), and the windings Ws3 and Ws4 are provided in the wiring layer LA3 (Fig. 3(C)). Note that this is not limited to this, and the winding Wp and the windings Ws1 to Ws4 may be formed in any of the wiring layers LA1 to LA3.
  • the winding Wp is wound around the four coupling parts 111-114. Specifically, in the direction from connection terminal Tp1 to connection terminal Tp2, the winding Wp is wound around the entire coupling parts 111-114, coupling part 113, coupling part 114, coupling part 112, and coupling part 111 in that order.
  • the portion of the winding Wp that is wound around the entire coupling parts 111-114 corresponds to the winding Wp1
  • the portion that is wound around each of the coupling parts 111-114 corresponds to the winding Wp2.
  • the portion that is wound around the entire coupling parts 111-114 has weak coupling with each of the windings Ws1-Ws4, and therefore functions as a resonant coil rather than as a primary winding of the transformer 20.
  • the winding Wp is wound once clockwise around all of coupling parts 111 to 114, once clockwise around each of coupling parts 112 and 113, and once counterclockwise around each of coupling parts 111 and 114.
  • the winding Wp is configured to make partial detours via, for example, vias and wiring provided in other wiring layers.
  • the winding Ws1 is wound around the two coupling parts 113 and 114, and the winding Ws2 is wound around the two coupling parts 111 and 112.
  • the winding Ws1 is wound once clockwise around the coupling part 113 in the direction from the connection terminal Ts11 to the connection terminal Ts12, and once counterclockwise around the coupling part 114.
  • the winding Ws2 is wound once counterclockwise around the coupling part 111 in the direction from the connection terminal Ts21 to the connection terminal Ts22, and once clockwise around the coupling part 112.
  • the winding Ws3 is wound around the two coupling parts 113 and 114, and the winding Ws4 is wound around the two coupling parts 111 and 112.
  • the winding Ws3 is wound once counterclockwise around the coupling part 113 in the direction from the connection terminal Ts31 to the connection terminal Ts32, and once clockwise around the coupling part 114.
  • the winding Ws4 is wound once clockwise around the coupling part 111 in the direction from the connection terminal Ts41 to the connection terminal Ts42, and once counterclockwise around the coupling part 112.
  • the rectifier circuit 17 ( Figure 1) is configured to rectify the AC voltages output from each of the windings Ws1 to Ws4 of the transformer 20.
  • the windings Ws1 to Ws4 of the transformer 20 and the rectifier circuit 17 form a so-called center-tap type circuit.
  • the rectifier circuit 17 has diodes D1, D2, D3, and D4.
  • the anode of the diode D1 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts11 of the transformer 20.
  • the anode of the diode D2 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts21 of the transformer 20.
  • the anode of the diode D3 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts31 of the transformer 20.
  • the anode of the diode D4 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts41 of the transformer 20.
  • the diodes D1 to D4 are connected to the reference voltage line L22, but instead, they may be connected to, for example, the voltage line L21.
  • the smoothing circuit 18 is configured to smooth the voltage output from the rectifier circuit 17.
  • the smoothing circuit 18 has a capacitor 19. One end of the capacitor 19 is connected to the voltage line L21, and the other end is connected to the reference voltage line L22.
  • the smoothing circuit 18 is configured to smooth using only the capacitor 19, but this is not limited to this.
  • an inductor may be further provided and smoothing may be performed using the inductor and the capacitor 19. This inductor is provided, for example, between one end of the capacitor 19 and the connection terminals Ts12, Ts22, Ts32, and Ts42 of the transformer 20.
  • the transformer 20 corresponds to a specific example of a "magnetic component” in this disclosure.
  • the magnetic core 100 corresponds to a specific example of a “magnetic core” in this disclosure.
  • the coupling portion 111 corresponds to a specific example of a "first coupling portion” in this disclosure.
  • the coupling portion 112 corresponds to a specific example of a “second coupling portion” in this disclosure.
  • the coupling portion 113 corresponds to a specific example of a "third coupling portion” in this disclosure.
  • the coupling portion 114 corresponds to a specific example of a "fourth coupling portion” in this disclosure.
  • the coupling portion 115 corresponds to a specific example of a "fifth coupling portion” in this disclosure.
  • the coupling portions 115A and 115B correspond to a specific example of a "multiple partial coupling portions” in this disclosure.
  • the winding Wp corresponds to a specific example of a "first winding” in this disclosure.
  • the connection terminal Tp1 corresponds to a specific example of a "first connection terminal” in this disclosure.
  • the connection terminal Tp2 corresponds to a specific example of a “second connection terminal” in this disclosure.
  • the windings Ws1 to Ws4 correspond to a specific example of a "second winding” in this disclosure.
  • the connection terminal Ts21 corresponds to a specific example of a "third connection terminal” in this disclosure.
  • the connection terminal Ts22 corresponds to a specific example of a "fourth connection terminal” in this disclosure.
  • the switching circuit 12 corresponds to a specific example of a "switching circuit” in this disclosure.
  • the transistors 13 and 14 correspond to a specific example of a “switching element” in this disclosure.
  • the rectifier circuit 17 corresponds to a specific example of a “rectifier circuit” in this disclosure.
  • the smoothing circuit 18 corresponds to a specific example of a “smoothing circuit” in this disclosure.
  • the switching circuit 12 generates an AC voltage based on a DC voltage supplied from a DC power supply PDC by transistors 13 and 14 performing switching operations.
  • the transformer 20 converts this AC voltage with a transformation ratio R.
  • the rectifier circuit 17 rectifies the AC voltages output from the windings Ws1 to Ws4 of the transformer 20.
  • the smoothing circuit 18 smoothes the voltage output from the rectifier circuit 17.
  • FIG. 5 shows an example of the waveforms of gate signals G1 and G2 in the power conversion device 1.
  • Fig. 6A shows one operating state of the power conversion device 1
  • Fig. 6B shows another operating state of the power conversion device 1.
  • the transistors 13 and 14 are shown with symbols representing their operating states (on or off).
  • Figs. 7A and 7B show the directions of magnetic flux at the coupling parts 111 to 115 of the magnetic core 100.
  • the gate signal G2 transitions from high to low. This causes both transistors 13 and 14 to be in the off state. During the period from timing t0 to t1 (the so-called dead time), both transistors 13 and 14 are in the off state.
  • gate signal G1 transitions from low to high. This causes transistor 13 to turn on. During the period from timing t1 to t2, transistor 13 maintains the on state and transistor 14 maintains the off state.
  • the direction of magnetic flux at couplings 111 and 114 is the Z direction, and the direction of magnetic flux at couplings 112 and 113 is opposite to the Z direction.
  • the direction of magnetic flux at coupling 115 is the Z direction.
  • gate signal G1 transitions from high to low. This causes transistor 13 to turn off. During the period from timing t2 to t3 (the so-called dead time), both transistors 13 and 14 are in the off state.
  • gate signal G2 transitions from low to high. This causes transistor 14 to turn on. During the period from timing t3 to t4, transistor 13 remains in the off state, and transistor 14 remains in the on state.
  • the direction of magnetic flux at couplings 111 and 114 is opposite the Z direction, and the direction of magnetic flux at couplings 112 and 113 is the Z direction.
  • the direction of magnetic flux at coupling 115 is opposite the Z direction.
  • gate signal G2 transitions from high to low. This turns transistor 14 off. During the period from timing t4 to t5 (the so-called dead time), both transistors 13 and 14 are in the off state.
  • the gate signal G1 transitions from low to high. This causes the transistor 13 to turn on.
  • the power conversion device 1 transforms and outputs the DC power supplied from the DC power source PDC.
  • the power conversion device 1 controls the output voltage to be constant by controlling the operation of transistors 13, 14 using, for example, PFM (Pulse Frequency Modulation).
  • PFM Pulse Frequency Modulation
  • the power conversion device 1 may also control the output voltage to be constant by controlling the operation of transistors 13, 14 using PWM (Pulse Width Modulation).
  • the transformer 20 is provided with two base parts 101, 102 facing each other, and a magnetic core 100 that is arranged on the facing surfaces of the two base parts 101, 102 and has a first coupling part (coupling part 111), a second coupling part (coupling part 112), a third coupling part (coupling part 113), a fourth coupling part (coupling part 114), and a fifth coupling part (coupling part 115) that magnetically couple the two base parts 101, 102.
  • a first coupling part (coupling part 111), a second coupling part (coupling part 112), a third coupling part (coupling part 113), a fourth coupling part (coupling part 114), and a fifth coupling part (coupling part 115) that magnetically couple the two base parts 101, 102.
  • the first and second coupling parts are arranged in this order in the first direction (X direction), the third and fourth coupling parts are arranged in this order in the first direction, the first and third coupling parts are arranged in this order in the second direction (Y direction), the second and fourth coupling parts are arranged in the second direction, and the fifth coupling part surrounds the first, second, third, and fourth coupling parts in their entirety.
  • the transformer 20 is provided with a first winding (winding Wp) wound around one or more of the first, second, third, and fourth coupling parts, and one or more second windings (windings Ws1 to Ws4) wound around one or more of the first, second, third, and fourth coupling parts. This allows the transformer 20 to reduce losses due to leakage flux.
  • a leg corresponding to the resonant coil is provided in the center of the transformer. Since this leg is provided in the center of the transformer, magnetic flux is concentrated. Leakage magnetic flux from this leg spreads to the vicinity of the winding corresponding to the resonant coil that is wound around this leg. Therefore, this leakage magnetic flux generates eddy currents in the wiring pattern of this winding, resulting in energy loss (fringing loss). In addition, heat is generated in a concentrated manner in the wiring pattern of this winding.
  • a coupling part 115 instead of the leg provided in the center of the transformer, a coupling part 115 that surrounds the coupling parts 111 to 114 is provided.
  • the coupling part 115 is provided so as to surround the entire coupling parts 111 to 114, so that the magnetic flux is dispersed.
  • the coupling part 115 is provided at the end of the transformer 20, not in the center of the transformer 20, so that the cross-sectional area in the XY plane can be increased and the magnetic flux density can be reduced. Therefore, the loss due to the leakage magnetic flux from the coupling part 115 can be reduced. This helps prevent concentrated heat generation within the transformer 20.
  • a magnetic core that has two base parts facing each other, and a first coupling part, a second coupling part, a third coupling part, a fourth coupling part, and a fifth coupling part that are arranged on the facing surfaces of the two base parts and magnetically couple the two base parts.
  • the first coupling part and the second coupling part are arranged in this order in the first direction
  • the third coupling part and the fourth coupling part are arranged in this order in the first direction
  • the first coupling part and the third coupling part are arranged in the second direction
  • the second coupling part and the fourth coupling part are arranged in the second direction
  • the fifth coupling part surrounds the entire first coupling part, the second coupling part, the third coupling part, and the fourth coupling part.
  • a first winding is wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion
  • one or more second windings are wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion, thereby making it possible to reduce loss due to leakage magnetic flux.
  • the winding Wp is wound around the coupling parts 111 to 114 as shown in Fig. 3, but the present invention is not limited to this, and instead, for example, the winding may be wound as in the transformer 20A shown in Fig. 8.
  • the winding Wp is wound around the coupling parts 112 and 113 in the direction from the connection terminal Tp1 to the connection terminal Tp2.
  • the winding Wp is wound clockwise twice around the entire coupling parts 112 and 113 in the direction from the connection terminal Tp1 to the connection terminal Tp2.
  • This winding method of the winding Wp is equivalent to the winding method of the winding Wp in the transformer 20 according to the above embodiment (Fig. 3), as will be described below.
  • FIG. 9(A) shows the winding Wp of the transformer 20 according to the above embodiment
  • FIG. 9(B) shows the winding Wp of the transformer 20A according to this modified example.
  • the arrow shown on the winding Wp indicates the direction of the current Ip when the current Ip flows from the connection terminal Tp1 to the connection terminal Tp2.
  • the winding Wp can be changed from the winding shown in FIG. 9(A) to the winding shown in FIG. 9(B).
  • FIG. 9(B) for example, around the joint 111, an upward current flows between the joint 111 and the joint 112, as in FIG. 9(A), and a leftward current flows between the joint 111 and the joint 113.
  • FIG. 9(B) for example, around the joint 114, a downward current flows between the joint 113 and the joint 114, as in FIG. 9(A), and a rightward current flows between the joint 112 and the joint 114. Therefore, the winding method of the winding Wp of the transformer 20A shown in FIG. 9(B) is equivalent to the winding method of the winding Wp of the transformer 20 shown in FIG. 9(A).
  • the coupling portion 115 includes two coupling portions 115A and 115B, but this is not limited thereto. Instead, for example, as in the transformer 20B shown in Figs. 10 and 11, the coupling portion 115 may include three or more coupling portions (four coupling portions 115A to 115D in this example).
  • the coupling portions 115A to 115D correspond to a specific example of "plural partial coupling portions" in this disclosure.
  • the cross-sectional area of the coupling parts 111 and 114 in the XY plane is smaller than the cross-sectional area of the coupling parts 112 and 113, but this is not limited to this. Instead, the cross-sectional areas of the coupling parts 111 to 114 may be equal to each other, as in the transformer 20C shown in Figure 12, for example.
  • the rectifier circuit 17 is configured using diodes D1 to D4, but this is not limited to this. Instead, for example, the rectifier circuit may be configured using transistors to perform so-called synchronous rectification.
  • the switching circuit 12 having two transistors 13 and 14 is provided, but the present invention is not limited to this.
  • a switching circuit 12D having four transistors 23 to 26 may be provided as in a power conversion device 1D shown in FIG. 13.
  • the switching circuit 12D is a so-called full-bridge type circuit and has transistors 23 to 26.
  • each of the transistors 23 to 26 is an N-type FET.
  • the drain of the transistor 23 is connected to the voltage line L11, the gate is supplied with a gate signal G1 from a control unit (not shown), and the source is connected to the drain of the transistor 24 and one end of the capacitor 15.
  • the drain of the transistor 24 is connected to the source of the transistor 23 and one end of the capacitor 15, the gate is supplied with a gate signal G2 from a control unit (not shown), and the source is connected to the reference voltage line L12.
  • the drain of the transistor 25 is connected to the voltage line L11, the gate is supplied with a gate signal G3 from a control unit (not shown), and the source is connected to the drain of the transistor 26 and the connection terminal Tp2 of the transformer 20.
  • the drain of the transistor 26 is connected to the source of the transistor 25 and the connection terminal Tp2 of the transformer 20, the gate receives a gate signal G4 from a control unit (not shown), and the source is connected to the reference voltage line L12.
  • the rectifier circuit 17 and the transformer 20 constitute a center tap type circuit as shown in Fig. 1, but the present invention is not limited to this. The present modification will be described in detail below.
  • FIG. 14 shows an example of the configuration of a power conversion device 1E according to this modified example.
  • the power conversion device 1E includes a switching circuit 12D, a transformer 20E, and a rectifier circuit 17E.
  • the switching circuit 12D is a so-called full-bridge type circuit, and is the same as the circuit shown in Figure 13.
  • the transformer 20E has connection terminals Tp1, Tp2, Ts1A, Ts1B, Ts2A, and Ts2B, windings Wp1, Wp2, and windings Ws11 and Ws12.
  • the connection terminal Tp1 is connected to the other end of the capacitor 15, and the connection terminal Tp2 is connected to the source of the transistor 25 and the drain of the transistor 26.
  • the connection terminals Ts1A, Ts1B, Ts2A, and Ts2B are connected to the rectifier circuit 17E.
  • the windings Ws11 and Ws12 are secondary windings of the transformer 20E. One end of the winding Ws11 is connected to the connection terminal Ts1A, and the other end is connected to the connection terminal Ts1B.
  • winding Ws12 One end of the winding Ws12 is connected to the connection terminal Ts2A, and the other end is connected to the connection terminal Ts2B.
  • the windings Ws11 and Ws12 correspond to a specific example of a "second winding" in this disclosure.
  • Figure 15 shows an example of the configuration of the windings of transformer 20E, where Figure 15(A) shows the first layer, wiring layer LA1, and Figure 15(B) shows the second layer, wiring layer LA2.
  • Figure 16 shows an example of the connection of winding Wp (windings Wp1, Ws1) and windings Ws11, Ws12 in power conversion device 1E.
  • winding Wp is provided in wiring layer LA1 ( Figure 15(A))
  • windings Ws11, Ws12 are provided in wiring layer LA2 ( Figure 15(B)).
  • winding Ws11 is wound around two coupling parts 113, 114
  • winding Ws12 is wound around two coupling parts 111, 112.
  • the winding Ws11 is wound once clockwise around the coupling portion 113 in the direction from the connection terminal Ts1A to the connection terminal Ts1B, and once counterclockwise around the coupling portion 114.
  • the winding Ws12 is wound once counterclockwise around the coupling portion 111 in the direction from the connection terminal Ts2A to the connection terminal Ts2B, and once clockwise around the coupling portion 112.
  • the rectifier circuit 17E (FIG. 14) is a so-called full-bridge type rectifier circuit, and has diodes D11, D12, D13, and D14.
  • the anode of the diode D11 is connected to the cathode of the diode D12 and the connection terminals Ts1A and Ts2A of the transformer 20E, and the cathode is connected to the voltage line L21.
  • the anode of the diode D12 is connected to the reference voltage line L22, and the cathode is connected to the anode of the diode D11 and the connection terminals Ts1A and Ts2A of the transformer 20E.
  • the anode of the diode D13 is connected to the cathode of the diode D14 and the connection terminals Ts1B and Ts2B of the transformer 20E, and the cathode is connected to the voltage line L21.
  • the anode of the diode D14 is connected to the reference voltage line L22, and the cathode is connected to the anode of the diode D13 and the connection terminals Ts1B and Ts2B of the transformer 20E.
  • multiple secondary windings, Ws1 to Ws4, are provided on the transformer 20, but this is not limited thereto, and for example, a single secondary winding may be provided.
  • the windings are formed using the wiring layers of a multi-layer board, but this is not limited to this, and the windings may also be formed using wire.
  • a magnetic core having two base parts facing each other, and a first coupling part, a second coupling part, a third coupling part, a fourth coupling part, and a fifth coupling part that are arranged on opposing surfaces of the two base parts and magnetically couple the two base parts, the first coupling part and the second coupling part being arranged side by side in this order in a first direction, the third coupling part and the fourth coupling part being arranged side by side in this order in the first direction, the first coupling part and the third coupling part being arranged side by side in a second direction, the second coupling part and the fourth coupling part being arranged side by side in the second direction, and the fifth coupling part being provided to surround the entirety of the first coupling part, the second coupling part, the third coupling part, and the fourth coupling part; a first winding wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion; and one or more second windings wound around one or more of
  • first winding has, in a direction from the first connection terminal toward the second connection terminal, a first portion wound in a first winding direction around the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion, and a second portion wound in a second winding direction around each of the first coupling portion and the fourth coupling portion, and wound in the first winding direction around each of the second coupling portion and the third coupling portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A magnetic component according to one embodiment of the present invention comprises two opposing base portions, and a first coupling portion, a second coupling portion, a third coupling portion, a fourth coupling portion, and a fifth coupling portion that are disposed within an opposing surface of the two base portions and magnetically couple the two base portions. The first coupling portion and the second coupling portion are arranged along a first direction in the stated order, the third coupling portion and the fourth coupling portion are arranged along the first direction in the stated order, the first coupling portion and the third coupling portion are arranged along a second direction, the second coupling portion and the fourth coupling portion are arranged along the second direction, and the fifth coupling portion comprises: a magnetic core provided so as to surround all of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion; a first winding wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion; and one or a plurality of second windings wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion.

Description

磁性部品および電力変換装置Magnetic components and power conversion devices
 本発明は、磁性部品、および磁性部品を備えた電力変換装置に関する。 The present invention relates to magnetic components and power conversion devices equipped with magnetic components.
 電力変換装置には、共振コイルおよびトランスを用いて構成された共振コンバータがある。電力変換装置では、部品コストや実装コストの低減、装置の小型化が望まれている。例えば、特許文献1には、例えば、共振コイルおよびトランスを複合化した磁性部品が開示されている。 Power conversion devices include resonant converters that are configured using a resonant coil and a transformer. There is a demand for power conversion devices that can reduce component and mounting costs and miniaturize the device. For example, Patent Document 1 discloses a magnetic component that combines a resonant coil and a transformer.
特開2021-153091Patent Publication No. 2021-153091
 磁性部品では、漏れ磁束による損失を低減することが望まれており、さらなる損失の低減が期待されている。 In magnetic components, it is desirable to reduce losses due to leakage flux, and further reductions in losses are expected.
 漏れ磁束による損失を低減することができる磁性部品および電力変換装置を提供することが望ましい。 It is desirable to provide magnetic components and power conversion devices that can reduce losses due to leakage flux.
 本発明の一実施の形態に係る磁性部品は、磁気コアと、第1の巻線と、1または複数の第2の巻線とを備えている。磁気コアは、互いに対向する2つの基体部と、2つの基体部の対向面内に配置され、2つの基体部を磁気結合させる第1の結合部、第2の結合部、第3の結合部、第4の結合部、および第5の結合部を有するものである。第1の結合部および第2の結合部は第1の方向にこの順に並設され、第3の結合部および第4の結合部は第1の方向にこの順で並設され、第1の結合部および第3の結合部は第2の方向に並設され、第2の結合部および第4の結合部は第2の方向に並設され、第5の結合部は、第1の結合部、第2の結合部、第3の結合部、および第4の結合部の全体を囲むように設けられる。第1の巻線は、第1の結合部、第2の結合部、第3の結合部、および第4の結合部のうちの1以上に巻き付けられたものである。1または複数の第2の巻線は、第1の結合部、第2の結合部、第3の結合部、および第4の結合部のうちの1以上に巻き付けられたものである。 A magnetic component according to one embodiment of the present invention includes a magnetic core, a first winding, and one or more second windings. The magnetic core has two base portions facing each other, and a first coupling portion, a second coupling portion, a third coupling portion, a fourth coupling portion, and a fifth coupling portion that are disposed within the facing surfaces of the two base portions and magnetically couple the two base portions. The first coupling portion and the second coupling portion are arranged in this order in a first direction, the third coupling portion and the fourth coupling portion are arranged in this order in the first direction, the first coupling portion and the third coupling portion are arranged in this order in the second direction, the second coupling portion and the fourth coupling portion are arranged in this order in the second direction, and the fifth coupling portion is arranged to surround the entire first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion. The first winding is wound around one or more of the first coupling, the second coupling, the third coupling, and the fourth coupling. The one or more second windings are wound around one or more of the first coupling, the second coupling, the third coupling, and the fourth coupling.
 本発明の一実施の形態に係る電力変換装置は、上記磁性部品と、スイッチング回路と、整流回路と、平滑回路とを備えている。スイッチング回路は、磁性部品の前記第1の巻線に接続され、1または複数のスイッチング素子を有するものである。整流回路は、磁性部品の前記1または複数の第2の巻線に接続されたものである。平滑回路は、整流回路に接続されたものである。 The power conversion device according to one embodiment of the present invention includes the magnetic component, a switching circuit, a rectifier circuit, and a smoothing circuit. The switching circuit is connected to the first winding of the magnetic component and has one or more switching elements. The rectifier circuit is connected to the one or more second windings of the magnetic component. The smoothing circuit is connected to the rectifier circuit.
 本発明の一実施の形態に係る磁性部品および電力変換装置によれば、漏れ磁束による損失を低減することができる。 The magnetic components and power conversion device according to one embodiment of the present invention can reduce losses due to leakage flux.
本発明の実施の形態に係る電力変換装置の一構成例を表す回路図である。1 is a circuit diagram illustrating a configuration example of a power conversion device according to an embodiment of the present invention. 図1に示したトランスの一構成例を表す説明図である。FIG. 2 is an explanatory diagram illustrating a configuration example of the transformer illustrated in FIG. 1 . 図2に示したトランスにおける巻線の一構成例を表す説明図である。3 is an explanatory diagram illustrating one configuration example of a winding in the transformer illustrated in FIG. 2. 図3に示したトランスの一接続例を表す説明図である。FIG. 4 is an explanatory diagram illustrating a connection example of the transformer illustrated in FIG. 3 . 図1に示したゲート信号の一波形例を表すタイミング波形図である。2 is a timing waveform diagram showing an example of the waveform of a gate signal shown in FIG. 1 . 図1に示した電力変換装置における一動作状態を表す説明図である。FIG. 2 is an explanatory diagram illustrating one operation state of the power conversion device shown in FIG. 1 . 図1に示した電力変換装置における他の動作状態を表す説明図である。1. FIG. 4 is an explanatory diagram illustrating another operating state of the power conversion device shown in FIG. 図3に示した結合部における磁束の一例を表す説明図である。4 is an explanatory diagram illustrating an example of magnetic flux at the joint portion illustrated in FIG. 3 . 図3に示した結合部における磁束の他の例を表す説明図である。5 is an explanatory diagram illustrating another example of the magnetic flux at the joint shown in FIG. 3 . 変形例に係るトランスにおける巻線の一構成例を表す説明図である。FIG. 11 is an explanatory diagram illustrating a configuration example of a winding in a transformer according to a modified example. 図3に示した巻線および図8に示した巻線と関係を表す説明図である。9 is an explanatory diagram showing the relationship between the windings shown in FIG. 3 and the windings shown in FIG. 8 . 他の変形例に係るトランスの一構成例を表す説明図である。FIG. 13 is an explanatory diagram illustrating a configuration example of a transformer according to another modified example. 図10に示したトランスにおける巻線の一構成例を表す説明図である。FIG. 11 is an explanatory diagram illustrating a configuration example of a winding in the transformer illustrated in FIG. 10 . 他の変形例に係るトランスの一構成例を表す説明図である。FIG. 13 is an explanatory diagram illustrating a configuration example of a transformer according to another modified example. 他の変形例に係る電力変換装置の一構成例を表す回路図である。FIG. 13 is a circuit diagram illustrating a configuration example of a power conversion device according to another modified example. 他の変形例に係る電力変換装置の一構成例を表す回路図である。FIG. 13 is a circuit diagram illustrating a configuration example of a power conversion device according to another modified example. 図14に示したトランスにおける巻線の一構成例を表す説明図である。FIG. 15 is an explanatory diagram illustrating a configuration example of a winding in the transformer illustrated in FIG. 14 . 図15に示したトランスの一接続例を表す説明図である。FIG. 16 is an explanatory diagram illustrating a connection example of the transformer illustrated in FIG. 15 .
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 The following describes in detail the embodiments of the present invention with reference to the drawings.
<実施の形態>
[構成例]
 図1は、本発明の一実施の形態に係る磁性部品を備えた電力変換装置1の一構成例を表すものである。この電力変換装置1は、直流電力を変圧するLLC共振コンバータである。電力変換装置1は、端子T11,T12と、端子T21,T22とを備えている。端子T11,T12は直流電源PDCに接続され、端子T21,T22は負荷LDに接続される。電力変換装置1は、直流電源PDCから供給された直流電力を変換し、変換された直流電力を負荷LDに供給するように構成される。
<Embodiment>
[Configuration example]
1 shows an example of a configuration of a power conversion device 1 including a magnetic component according to an embodiment of the present invention. The power conversion device 1 is an LLC resonant converter that transforms DC power. The power conversion device 1 includes terminals T11, T12 and terminals T21, T22. The terminals T11, T12 are connected to a DC power source PDC, and the terminals T21, T22 are connected to a load LD. The power conversion device 1 is configured to convert DC power supplied from the DC power source PDC and supply the converted DC power to the load LD.
 電力変換装置1は、キャパシタ11と、スイッチング回路12と、キャパシタ15と、トランス20と、整流回路17と、平滑回路18とを備えている。キャパシタ11、スイッチング回路12、およびキャパシタ15は、電力変換装置1の一次側回路を構成し、整流回路17および平滑回路18は、電力変換装置1の二次側回路を構成する。 The power conversion device 1 includes a capacitor 11, a switching circuit 12, a capacitor 15, a transformer 20, a rectifier circuit 17, and a smoothing circuit 18. The capacitor 11, the switching circuit 12, and the capacitor 15 form the primary side circuit of the power conversion device 1, and the rectifier circuit 17 and the smoothing circuit 18 form the secondary side circuit of the power conversion device 1.
 キャパシタ11の一端は、端子T11に導かれた電圧線L11に接続され、他端は、端子T12に導かれた基準電圧線L12に接続される。 One end of the capacitor 11 is connected to a voltage line L11 that is connected to a terminal T11, and the other end is connected to a reference voltage line L12 that is connected to a terminal T12.
 スイッチング回路12は、直流電源PDCから供給された直流電圧を交流電圧に変換するように構成される。スイッチング回路12は、トランジスタ13,14を有している。トランジスタ13,14のそれぞれは、この例では、N型のFET(Field Effect Transistor)である。トランジスタ13のドレインは電圧線L11に接続され、ゲートには図示しない制御部からゲート信号G1が供給され、ソースはトランジスタ14のドレインおよびキャパシタ15の一端に接続される。トランジスタ14のドレインはトランジスタ13のソースおよびキャパシタ15の一端に接続され、ゲートには図示しない制御部からゲート信号G2が供給され、ソースは基準電圧線L12に接続される。なお、スイッチング回路12は、この構成に限定されるものではなく、1または複数のスイッチング素子を有する様々な回路を用いることができる。 The switching circuit 12 is configured to convert the DC voltage supplied from the DC power supply PDC into an AC voltage. The switching circuit 12 has transistors 13 and 14. In this example, each of the transistors 13 and 14 is an N-type FET (Field Effect Transistor). The drain of the transistor 13 is connected to the voltage line L11, the gate is supplied with a gate signal G1 from a control unit (not shown), and the source is connected to the drain of the transistor 14 and one end of the capacitor 15. The drain of the transistor 14 is connected to the source of the transistor 13 and one end of the capacitor 15, the gate is supplied with a gate signal G2 from a control unit (not shown), and the source is connected to the reference voltage line L12. Note that the switching circuit 12 is not limited to this configuration, and various circuits having one or more switching elements can be used.
 キャパシタ15は、LLC共振コンバータにおける共振キャパシタであり、一端はトランジスタ13のソースおよびトランジスタ14のドレインに接続され、他端はトランス20に接続される。 Capacitor 15 is a resonant capacitor in the LLC resonant converter, with one end connected to the source of transistor 13 and the drain of transistor 14, and the other end connected to transformer 20.
 トランス20は、1次側回路と2次側回路とを直流的に絶縁するとともに交流的に接続し、1次側回路から供給された交流電圧を、トランス20の変成比Rで変換し、変換された交流電圧を2次側回路に供給するように構成される。トランス20は、接続端子Tp1,Tp2,Ts11,Ts12,Ts21,Ts22,Ts31,Ts32,Ts41,Ts42と、巻線Wp1,Wp2と、巻線Ws1,Ws2,Ws3,Ws4とを有している。 The transformer 20 is configured to insulate the primary circuit and the secondary circuit from a DC perspective and to connect them from an AC perspective, convert the AC voltage supplied from the primary circuit at the transformation ratio R of the transformer 20, and supply the converted AC voltage to the secondary circuit. The transformer 20 has connection terminals Tp1, Tp2, Ts11, Ts12, Ts21, Ts22, Ts31, Ts32, Ts41, and Ts42, windings Wp1 and Wp2, and windings Ws1, Ws2, Ws3, and Ws4.
 接続端子Tp1はキャパシタ15の他端に接続され、接続端子Tp2は基準電圧線L12に接続される。接続端子Ts11,Ts21,Ts31,Ts41は、整流回路17を介して基準電圧線L22に接続され、接続端子Ts12,Ts22,Ts32,Ts42は、電圧線L21に接続される。 The connection terminal Tp1 is connected to the other end of the capacitor 15, and the connection terminal Tp2 is connected to the reference voltage line L12. The connection terminals Ts11, Ts21, Ts31, and Ts41 are connected to the reference voltage line L22 via the rectifier circuit 17, and the connection terminals Ts12, Ts22, Ts32, and Ts42 are connected to the voltage line L21.
 巻線Wp1は、LLC共振コンバータにおける共振コイルであり、一端は接続端子Tp1に接続され、他端は巻線Wp2の一端に接続される。巻線Wp2はトランス20の1次側巻線であり、一端は巻線Wp1の他端に接続され、他端は接続端子Tp2に接続される。以下では、巻線Wp1,Wp2の全体を巻線Wpとも呼ぶ。 Winding Wp1 is a resonant coil in the LLC resonant converter, with one end connected to connection terminal Tp1 and the other end connected to one end of winding Wp2. Winding Wp2 is the primary winding of transformer 20, with one end connected to the other end of winding Wp1 and the other end connected to connection terminal Tp2. Below, windings Wp1 and Wp2 as a whole are also referred to as winding Wp.
 巻線Ws1~Ws4は、トランス20の2次側巻線である。巻線Ws1の一端は接続端子Ts11に接続され、他端は接続端子Ts12に接続される。巻線Ws2の一端は接続端子Ts21に接続され、他端は接続端子Ts22に接続される。巻線Ws3の一端は接続端子Ts31に接続され、他端は接続端子Ts32に接続される。巻線Ws4の一端は接続端子Ts41に接続され、他端は接続端子Ts42に接続される。 Windings Ws1 to Ws4 are the secondary windings of transformer 20. One end of winding Ws1 is connected to connection terminal Ts11, and the other end is connected to connection terminal Ts12. One end of winding Ws2 is connected to connection terminal Ts21, and the other end is connected to connection terminal Ts22. One end of winding Ws3 is connected to connection terminal Ts31, and the other end is connected to connection terminal Ts32. One end of winding Ws4 is connected to connection terminal Ts41, and the other end is connected to connection terminal Ts42.
 図2は、トランス20の一構成例を表すものである。図2には、I-I矢視方向のトランス20の断面図、およびII-II矢視方向のトランス20の断面図をも描いている。トランス20は、この例では、プレーナトランスである。トランス20は、磁気コア100と、基板200とを有している。 FIG. 2 shows an example of the configuration of the transformer 20. FIG. 2 also shows a cross-sectional view of the transformer 20 as viewed in the direction of the arrows I-I and II-II. In this example, the transformer 20 is a planar transformer. The transformer 20 has a magnetic core 100 and a substrate 200.
 磁気コア100は、基体部101,102と、4つの結合部111,112,113,114,115とを有している。基体部101,102は、Z方向において互いに対向するように配置される。基体部101,102は、XY平面において、略正方形形状を有する。結合部111~115は、2つの基体部101,102の対向面内に配置され、これらの2つの基体部101,102を磁気結合させるように設けられる。X方向において、結合部111および結合部112はこの順に並設されるとともに、結合部113および結合部114はこの順に並設される。Y方向において、結合部111および結合部113はこの順に並設されるとともに、結合部112および結合部114はこの順に並設される。結合部115は、XY平面において、結合部111~114の全体を囲むように設けられる。この例では、結合部115は、2つの結合部115A,115Bを含む。結合部115Aは、Y方向における結合部111,112が設けられた側に設けられ、結合部115Bは、Y方向における結合部113,114が設けられた側に設けられる。 The magnetic core 100 has base portions 101, 102 and four connecting portions 111, 112, 113, 114, 115. The base portions 101, 102 are arranged so as to face each other in the Z direction. The base portions 101, 102 have a substantially square shape in the XY plane. The connecting portions 111-115 are arranged on the opposing surfaces of the two base portions 101, 102 and are provided so as to magnetically connect these two base portions 101, 102. In the X direction, the connecting portions 111 and 112 are arranged side by side in this order, and the connecting portions 113 and 114 are arranged side by side in this order. In the Y direction, the connecting portions 111 and 113 are arranged side by side in this order, and the connecting portions 112 and 114 are arranged side by side in this order. The connecting portion 115 is provided so as to surround the connecting portions 111 to 114 in the XY plane. In this example, the connecting portion 115 includes two connecting portions 115A and 115B. The connecting portion 115A is provided on the side in the Y direction where the connecting portions 111 and 112 are provided, and the connecting portion 115B is provided on the side in the Y direction where the connecting portions 113 and 114 are provided.
 この例では、XY平面において、結合部111,114の断面積は、結合部112,113の断面積よりも小さい。なお、これに限定されるものではなく、結合部111~114の断面積は、互いに等しくてもよい。 In this example, in the XY plane, the cross-sectional area of the joints 111 and 114 is smaller than the cross-sectional area of the joints 112 and 113. However, this is not limited to this, and the cross-sectional areas of the joints 111 to 114 may be equal to each other.
 この例では、結合部111~115のそれぞれには、Z方向の中央部付近にギャップGAPが設けられている。なお、これに限定されるものではなく、結合部111のZ方向の端部において、結合部111と基体部101との間にギャップGAPを設けてもよいし、結合部111のZ方向とは反対方向の端部において、結合部111と基体部102との間にギャップGAPを設けてもよい。結合部112~114についても同様である。 In this example, a gap GAP is provided near the center in the Z direction in each of the joints 111 to 115. However, this is not limited to this, and a gap GAP may be provided between the joint 111 and the base part 101 at the end of the joint 111 in the Z direction, or a gap GAP may be provided between the joint 111 and the base part 102 at the end of the joint 111 in the opposite direction to the Z direction. The same applies to the joints 112 to 114.
 結合部111,114のギャップGAPの幅は、結合部112,113のギャップGAPの幅よりも小さくすることができる。すなわち、この例では、結合部111,114の断面積は、結合部112,113の断面積よりも小さいので、結合部111~114のギャップGAPの幅を、結合部111~114の磁気抵抗が互いにほぼ等しくなるように調整することができる。また、結合部115のギャップGAPの幅は、結合部111,114のギャップGAPの幅と、結合部112,113のギャップGAPの幅との間の値にすることができる。なお、これに限定されるものではなく、結合部111~115のギャップGAPの幅は適宜設定される。 The width of the gap GAP of the connecting parts 111 and 114 can be made smaller than the width of the gap GAP of the connecting parts 112 and 113. That is, in this example, since the cross-sectional area of the connecting parts 111 and 114 is smaller than the cross-sectional area of the connecting parts 112 and 113, the width of the gap GAP of the connecting parts 111 to 114 can be adjusted so that the magnetic resistances of the connecting parts 111 to 114 are approximately equal to each other. Furthermore, the width of the gap GAP of the connecting part 115 can be set to a value between the width of the gap GAP of the connecting parts 111 and 114 and the width of the gap GAP of the connecting parts 112 and 113. However, this is not limited to this, and the width of the gap GAP of the connecting parts 111 to 115 can be set appropriately.
 基板200は、コイルパターンが形成された多層基板(この例では3層基板)である。基板200には、磁気コア100における結合部111~115に対応する位置に貫通穴が設けられており、基板200は、基体部101,102の間に挟まれるようになっている。この基板200には、巻線Wp1,Wp2、および巻線Ws1,Ws2,Ws3,Ws4が設けられている。 The substrate 200 is a multi-layer substrate (a three-layer substrate in this example) on which a coil pattern is formed. Through holes are provided in the substrate 200 at positions corresponding to the coupling parts 111-115 of the magnetic core 100, and the substrate 200 is sandwiched between the base parts 101 and 102. The substrate 200 is provided with windings Wp1, Wp2, and windings Ws1, Ws2, Ws3, and Ws4.
 図3は、基板200における巻線の一構成例を表すものであり、図3(A)は第1層である配線層LA1を示し、図3(B)は第2層である配線層LA2を示し、図3(C)は第3層である配線層LA3を示す。配線層LA1~LA3は、基板200の層方向において、この順に設けられている。図4は、電力変換装置1における巻線Wp(巻線Wp1,Ws1)および巻線Ws1~Ws4の一接続例を表すものである。 FIG. 3 shows an example of the configuration of the windings in the substrate 200, with FIG. 3(A) showing the first layer, wiring layer LA1, FIG. 3(B) showing the second layer, wiring layer LA2, and FIG. 3(C) showing the third layer, wiring layer LA3. The wiring layers LA1 to LA3 are provided in this order in the layer direction of the substrate 200. FIG. 4 shows an example of the connection of the winding Wp (windings Wp1, Ws1) and windings Ws1 to Ws4 in the power conversion device 1.
 この例では、巻線Wpは配線層LA1(図3(A))に設けられ、巻線Ws1,Ws2は配線層LA2(図3(B))に設けられ、巻線Ws3,Ws4は配線層LA3(図3(C))に設けられる。なお、これに限定されるものではなく、巻線Wpおよび巻線Ws1~Ws4は、配線層LA1~LA3のうちのどの配線層に形成されていてもよい。 In this example, the winding Wp is provided in the wiring layer LA1 (Fig. 3(A)), the windings Ws1 and Ws2 are provided in the wiring layer LA2 (Fig. 3(B)), and the windings Ws3 and Ws4 are provided in the wiring layer LA3 (Fig. 3(C)). Note that this is not limited to this, and the winding Wp and the windings Ws1 to Ws4 may be formed in any of the wiring layers LA1 to LA3.
 図3(A)に示したように、この例では、巻線Wpは、4つの結合部111~114に巻き付けられる。具体的には、巻線Wpは、接続端子Tp1から接続端子Tp2に向かう方向において、結合部111~114の全体、結合部113、結合部114、結合部112、結合部111の順に巻き付けられる。巻線Wpのうち、結合部111~114の全体に巻き付けられた部分は巻線Wp1に対応し、結合部111~114のそれぞれに巻き付けられた部分は巻線Wp2に対応する。すなわち、結合部111~114の全体に巻き付けられた部分は、巻線Ws1~Ws4のそれぞれとの結合が弱いので、トランス20の1次巻線としてではなく、共振コイルとして機能する。巻線Wpは、接続端子Tp1から接続端子Tp2に向かう方向において、結合部111~114の全体に時計回りに1回巻き付けられ、結合部112および結合部113のそれぞれに時計回りに1回巻き付けられ、結合部111および結合部114のそれぞれに反時計回りに1回巻き付けられる。なお、図示を省略しているが、巻線Wpの交差部分では、巻線Wpは、例えばビアおよび他の配線層に設けられた配線を介して部分的に迂回するように構成される。 As shown in FIG. 3A, in this example, the winding Wp is wound around the four coupling parts 111-114. Specifically, in the direction from connection terminal Tp1 to connection terminal Tp2, the winding Wp is wound around the entire coupling parts 111-114, coupling part 113, coupling part 114, coupling part 112, and coupling part 111 in that order. The portion of the winding Wp that is wound around the entire coupling parts 111-114 corresponds to the winding Wp1, and the portion that is wound around each of the coupling parts 111-114 corresponds to the winding Wp2. In other words, the portion that is wound around the entire coupling parts 111-114 has weak coupling with each of the windings Ws1-Ws4, and therefore functions as a resonant coil rather than as a primary winding of the transformer 20. In the direction from connection terminal Tp1 toward connection terminal Tp2, the winding Wp is wound once clockwise around all of coupling parts 111 to 114, once clockwise around each of coupling parts 112 and 113, and once counterclockwise around each of coupling parts 111 and 114. Although not shown in the figure, at the intersections of the winding Wp, the winding Wp is configured to make partial detours via, for example, vias and wiring provided in other wiring layers.
 図3(B)に示したように、この例では、巻線Ws1は、2つの結合部113,114に巻き付けられ、巻線Ws2は、2つの結合部111,112に巻き付けられる。具体的には、巻線Ws1は、接続端子Ts11から接続端子Ts12に向かう方向において、結合部113に時計回りに1回巻き付けられ、結合部114に反時計回りに1回巻き付けられる。巻線Ws2は、接続端子Ts21から接続端子Ts22に向かう方向において、結合部111に反時計回りに1回巻き付けられ、結合部112に時計回りに1回巻き付けられる。 As shown in FIG. 3B, in this example, the winding Ws1 is wound around the two coupling parts 113 and 114, and the winding Ws2 is wound around the two coupling parts 111 and 112. Specifically, the winding Ws1 is wound once clockwise around the coupling part 113 in the direction from the connection terminal Ts11 to the connection terminal Ts12, and once counterclockwise around the coupling part 114. The winding Ws2 is wound once counterclockwise around the coupling part 111 in the direction from the connection terminal Ts21 to the connection terminal Ts22, and once clockwise around the coupling part 112.
 図3(C)に示したように、この例では、巻線Ws3は、2つの結合部113,114に巻き付けられ、巻線Ws4は、2つの結合部111,112に巻き付けられる。具体的には、巻線Ws3は、接続端子Ts31から接続端子Ts32に向かう方向において、結合部113に反時計回りに1回巻き付けられ、結合部114に時計回りに1回巻き付けられる。巻線Ws4は、接続端子Ts41から接続端子Ts42に向かう方向において、結合部111に時計回りに1回巻き付けられ、結合部112に反時計回りに1回巻き付けられる。 As shown in FIG. 3(C), in this example, the winding Ws3 is wound around the two coupling parts 113 and 114, and the winding Ws4 is wound around the two coupling parts 111 and 112. Specifically, the winding Ws3 is wound once counterclockwise around the coupling part 113 in the direction from the connection terminal Ts31 to the connection terminal Ts32, and once clockwise around the coupling part 114. The winding Ws4 is wound once clockwise around the coupling part 111 in the direction from the connection terminal Ts41 to the connection terminal Ts42, and once counterclockwise around the coupling part 112.
 整流回路17(図1)は、トランス20の巻線Ws1~Ws4のそれぞれから出力された交流電圧を整流するように構成される。トランス20の巻線Ws1~Ws4および整流回路17は、いわゆるセンタータップ型の回路を構成する。整流回路17は、ダイオードD1,D2,D3,D4を有している。ダイオードD1のアノードは基準電圧線L22に接続され、カソードはトランス20の接続端子Ts11に接続される。ダイオードD2のアノードは基準電圧線L22に接続され、カソードはトランス20の接続端子Ts21に接続される。ダイオードD3のアノードは基準電圧線L22に接続され、カソードはトランス20の接続端子Ts31に接続される。ダイオードD4のアノードは基準電圧線L22に接続され、カソードはトランス20の接続端子Ts41に接続される。なお、この例では、ダイオードD1~D4を基準電圧線L22に接続するようにしたが、これに代えて、例えば、電圧線L21に接続するようにしてもよい。 The rectifier circuit 17 (Figure 1) is configured to rectify the AC voltages output from each of the windings Ws1 to Ws4 of the transformer 20. The windings Ws1 to Ws4 of the transformer 20 and the rectifier circuit 17 form a so-called center-tap type circuit. The rectifier circuit 17 has diodes D1, D2, D3, and D4. The anode of the diode D1 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts11 of the transformer 20. The anode of the diode D2 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts21 of the transformer 20. The anode of the diode D3 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts31 of the transformer 20. The anode of the diode D4 is connected to the reference voltage line L22, and the cathode is connected to the connection terminal Ts41 of the transformer 20. In this example, the diodes D1 to D4 are connected to the reference voltage line L22, but instead, they may be connected to, for example, the voltage line L21.
 平滑回路18は、整流回路17から出力された電圧を平滑化するように構成される。平滑回路18は、キャパシタ19を有している。キャパシタ19の一端は、電圧線L21に接続され、他端は基準電圧線L22に接続される。なお、この例では、平滑回路18はキャパシタ19のみを用いて平滑化するようにしたが、これに限定されるものではなく、例えば、さらにインダクタを設け、インダクタおよびキャパシタ19を用いて平滑化してもよい。このインダクタは、例えば、キャパシタ19の一端とトランス20の接続端子Ts12,Ts22,Ts32,Ts42との間に設けられる。 The smoothing circuit 18 is configured to smooth the voltage output from the rectifier circuit 17. The smoothing circuit 18 has a capacitor 19. One end of the capacitor 19 is connected to the voltage line L21, and the other end is connected to the reference voltage line L22. Note that in this example, the smoothing circuit 18 is configured to smooth using only the capacitor 19, but this is not limited to this. For example, an inductor may be further provided and smoothing may be performed using the inductor and the capacitor 19. This inductor is provided, for example, between one end of the capacitor 19 and the connection terminals Ts12, Ts22, Ts32, and Ts42 of the transformer 20.
 ここで、トランス20は、本開示における「磁性部品」の一具体例に対応する。磁気コア100は、本開示における「磁気コア」の一具体例に対応する。結合部111は、本開示における「第1の結合部」の一具体例に対応する。結合部112は、本開示における「第2の結合部」の一具体例に対応する。結合部113は、本開示における「第3の結合部」の一具体例に対応する。結合部114は、本開示における「第4の結合部」の一具体例に対応する。結合部115は、本開示における「第5の結合部」の一具体例に対応する。結合部115A,115Bは、本開示における「複数の部分結合部」の一具体例に対応する。巻線Wpは、本開示における「第1の巻線」の一具体例に対応する。接続端子Tp1は、本開示における「第1の接続端子」の一具体例に対応する。接続端子Tp2は、本開示における「第2の接続端子」の一具体例に対応する。巻線Ws1~Ws4は、本開示における「第2の巻線」の一具体例に対応する。接続端子Ts21は、本開示における「第3の接続端子」の一具体例に対応する。接続端子Ts22は、本開示における「第4の接続端子」の一具体例に対応する。スイッチング回路12は、本開示における「スイッチング回路」の一具体例に対応する。トランジスタ13,14は、本開示における「スイッチング素子」の一具体例に対応する。整流回路17は、本開示における「整流回路」の一具体例に対応する。平滑回路18は、本開示における「平滑回路」の一具体例に対応する。 Here, the transformer 20 corresponds to a specific example of a "magnetic component" in this disclosure. The magnetic core 100 corresponds to a specific example of a "magnetic core" in this disclosure. The coupling portion 111 corresponds to a specific example of a "first coupling portion" in this disclosure. The coupling portion 112 corresponds to a specific example of a "second coupling portion" in this disclosure. The coupling portion 113 corresponds to a specific example of a "third coupling portion" in this disclosure. The coupling portion 114 corresponds to a specific example of a "fourth coupling portion" in this disclosure. The coupling portion 115 corresponds to a specific example of a "fifth coupling portion" in this disclosure. The coupling portions 115A and 115B correspond to a specific example of a "multiple partial coupling portions" in this disclosure. The winding Wp corresponds to a specific example of a "first winding" in this disclosure. The connection terminal Tp1 corresponds to a specific example of a "first connection terminal" in this disclosure. The connection terminal Tp2 corresponds to a specific example of a "second connection terminal" in this disclosure. The windings Ws1 to Ws4 correspond to a specific example of a "second winding" in this disclosure. The connection terminal Ts21 corresponds to a specific example of a "third connection terminal" in this disclosure. The connection terminal Ts22 corresponds to a specific example of a "fourth connection terminal" in this disclosure. The switching circuit 12 corresponds to a specific example of a "switching circuit" in this disclosure. The transistors 13 and 14 correspond to a specific example of a "switching element" in this disclosure. The rectifier circuit 17 corresponds to a specific example of a "rectifier circuit" in this disclosure. The smoothing circuit 18 corresponds to a specific example of a "smoothing circuit" in this disclosure.
[動作および作用]
 続いて、本実施の形態の電力変換装置1の動作および作用について説明する。
[Actions and Functions]
Next, the operation and function of the power conversion device 1 of the present embodiment will be described.
(全体動作概要)
 まず、図1を参照して、電力変換装置1の全体動作概要を説明する。スイッチング回路12は、トランジスタ13,14がスイッチング動作を行うことにより、直流電源PDCから供給された直流電圧に基づいて交流電圧を生成する。トランス20は、この交流電圧を変成比Rにより変換する。整流回路17は、トランス20の巻線Ws1~Ws4のそれぞれから出力された交流電圧を整流する。平滑回路18は、整流回路17から出力された電圧を平滑化する。
(Overall operation overview)
First, an overview of the overall operation of the power conversion device 1 will be described with reference to Fig. 1. The switching circuit 12 generates an AC voltage based on a DC voltage supplied from a DC power supply PDC by transistors 13 and 14 performing switching operations. The transformer 20 converts this AC voltage with a transformation ratio R. The rectifier circuit 17 rectifies the AC voltages output from the windings Ws1 to Ws4 of the transformer 20. The smoothing circuit 18 smoothes the voltage output from the rectifier circuit 17.
(詳細動作)
 図5は、電力変換装置1におけるゲート信号G1,G2の波形例を表すものである。図6Aは、電力変換装置1における一動作状態を表すものであり、図6Bは、電力変換装置1における他の一動作状態を表すものである。図6A,6Bでは、トランジスタ13,14を、その動作状態(オン状態もしくはオフ状態)を表すシンボルで示している。図7A,7Bは、磁気コア100の結合部111~115における磁束の向きを表すものである。
(Detailed operation)
Fig. 5 shows an example of the waveforms of gate signals G1 and G2 in the power conversion device 1. Fig. 6A shows one operating state of the power conversion device 1, and Fig. 6B shows another operating state of the power conversion device 1. In Figs. 6A and 6B, the transistors 13 and 14 are shown with symbols representing their operating states (on or off). Figs. 7A and 7B show the directions of magnetic flux at the coupling parts 111 to 115 of the magnetic core 100.
 電力変換装置1では、図5に示したように、タイミングt0において、ゲート信号G2が高レベルから低レベルに遷移する。これにより、トランジスタ13,14はともにオフ状態になる。タイミングt0~t1の期間(いわゆるデッドタイム)は、トランジスタ13,14の両方がオフ状態である。 In the power conversion device 1, as shown in FIG. 5, at timing t0, the gate signal G2 transitions from high to low. This causes both transistors 13 and 14 to be in the off state. During the period from timing t0 to t1 (the so-called dead time), both transistors 13 and 14 are in the off state.
 タイミングt1において、ゲート信号G1が低レベルから高レベルに遷移する。これにより、トランジスタ13がオン状態になる。タイミングt1~t2の期間において、トランジスタ13はオン状態を維持し、トランジスタ14はオフ状態を維持する。 At timing t1, gate signal G1 transitions from low to high. This causes transistor 13 to turn on. During the period from timing t1 to t2, transistor 13 maintains the on state and transistor 14 maintains the off state.
 このタイミングt1~t2の期間におけるあるタイミングでは、図6Aに示したように、1次側回路に、トランジスタ13、キャパシタ15、接続端子Tp1、巻線Wp、接続端子Tp2の順に電流IpAが流れる。このように、巻線Wpにおいて、接続端子Tp1から接続端子Tp2に向かって電流IpAが流れることにより、トランス20では、図7A(A)に示したように、結合部111~115において磁束が生じる。結合部111,114のそれぞれにおける巻線Wpの巻方向と、結合部112,113のそれぞれにおける巻線Wpの巻方向とは、互いに異なるので、結合部111,114における磁束の方向は、Z方向であり、結合部112,113における磁束の方向は、Z方向と反対の方向である。結合部115における磁束の方向は、Z方向である。その結果、2次側回路では、図6A,7A(C)に示したように、巻線Ws3、接続端子Ts32、キャパシタ19および負荷LD、ダイオードD3、接続端子Ts31、巻線Ws3の順に電流Is3Aが流れるとともに、巻線Ws4、接続端子Ts42、キャパシタ19および負荷LD、ダイオードD4、接続端子Ts41、巻線Ws4の順に電流Is4Aが流れる。 At a certain timing in the period from timing t1 to timing t2, as shown in Figure 6A, current IpA flows in the primary circuit through transistor 13, capacitor 15, connection terminal Tp1, winding Wp, and connection terminal Tp2 in that order. In this way, current IpA flows from connection terminal Tp1 to connection terminal Tp2 in winding Wp, and as shown in Figure 7A (A), magnetic flux is generated at couplings 111 to 115 in transformer 20. Since the winding direction of winding Wp at couplings 111 and 114 is different from the winding direction of winding Wp at couplings 112 and 113, the direction of magnetic flux at couplings 111 and 114 is the Z direction, and the direction of magnetic flux at couplings 112 and 113 is opposite to the Z direction. The direction of magnetic flux at coupling 115 is the Z direction. As a result, in the secondary circuit, as shown in Figures 6A and 7A (C), current Is3A flows through winding Ws3, connection terminal Ts32, capacitor 19 and load LD, diode D3, connection terminal Ts31, and winding Ws3, while current Is4A flows through winding Ws4, connection terminal Ts42, capacitor 19 and load LD, diode D4, connection terminal Ts41, and winding Ws4.
 そして、図5に示したように、タイミングt2において、ゲート信号G1が高レベルから低レベルに遷移する。これにより、トランジスタ13がオフ状態になる。タイミングt2~t3の期間(いわゆるデッドタイム)は、トランジスタ13,14の両方がオフ状態である。 Then, as shown in FIG. 5, at timing t2, gate signal G1 transitions from high to low. This causes transistor 13 to turn off. During the period from timing t2 to t3 (the so-called dead time), both transistors 13 and 14 are in the off state.
 次に、タイミングt3において、ゲート信号G2が低レベルから高レベルに遷移する。これにより、トランジスタ14がオン状態になる。タイミングt3~t4の期間において、トランジスタ13はオフ状態を維持し、トランジスタ14はオン状態を維持する。 Next, at timing t3, gate signal G2 transitions from low to high. This causes transistor 14 to turn on. During the period from timing t3 to t4, transistor 13 remains in the off state, and transistor 14 remains in the on state.
 このタイミングt3~t4の期間におけるあるタイミングでは、図6Bに示したように、1次側回路に、キャパシタ15、トランジスタ14、接続端子Tp2、巻線Wp、接続端子Tp1の順に電流IpBが流れる。このように、巻線Wpにおいて、接続端子Tp2から接続端子Tp1に向かって電流IpBが流れることにより、トランス20では、図7B(A)に示したように、結合部111~115において磁束が生じる。結合部111,114のそれぞれにおける巻線Wpの巻方向と、結合部112,113のそれぞれにおける巻線Wpの巻方向とは、互いに異なるので、結合部111,114における磁束の方向は、Z方向と反対の方向であり、結合部112,113における磁束の方向は、Z方向である。結合部115における磁束の方向は、Z方向と反対の方向である。その結果、2次側回路では、図6B,7B(B)に示したように、巻線Ws1、接続端子Ts12、キャパシタ19および負荷LD、ダイオードD1、接続端子Ts11、巻線Ws1の順に電流Is1Bが流れるとともに、巻線Ws2、接続端子Ts22、キャパシタ19および負荷LD、ダイオードD2、接続端子Ts21、巻線Ws2の順に電流Is2Bが流れる。 At a certain timing in the period from timing t3 to timing t4, as shown in Figure 6B, current IpB flows in the primary circuit through capacitor 15, transistor 14, connection terminal Tp2, winding Wp, and connection terminal Tp1 in that order. In this way, current IpB flows from connection terminal Tp2 to connection terminal Tp1 in winding Wp, and as shown in Figure 7B (A), magnetic flux is generated at couplings 111 to 115 in transformer 20. Since the winding direction of winding Wp at couplings 111 and 114 is different from the winding direction of winding Wp at couplings 112 and 113, the direction of magnetic flux at couplings 111 and 114 is opposite the Z direction, and the direction of magnetic flux at couplings 112 and 113 is the Z direction. The direction of magnetic flux at coupling 115 is opposite the Z direction. As a result, in the secondary circuit, as shown in Figures 6B and 7B (B), current Is1B flows through winding Ws1, connection terminal Ts12, capacitor 19 and load LD, diode D1, connection terminal Ts11, and winding Ws1 in that order, while current Is2B flows through winding Ws2, connection terminal Ts22, capacitor 19 and load LD, diode D2, connection terminal Ts21, and winding Ws2 in that order.
 そして、タイミングt4において、ゲート信号G2が高レベルから低レベルに遷移する。これにより、トランジスタ14がオフ状態になる。タイミングt4~t5の期間(いわゆるデッドタイム)は、トランジスタ13,14の両方がオフ状態である。 Then, at timing t4, gate signal G2 transitions from high to low. This turns transistor 14 off. During the period from timing t4 to t5 (the so-called dead time), both transistors 13 and 14 are in the off state.
 タイミングt5において、ゲート信号G1が低レベルから高レベルに遷移する。これにより、トランジスタ13がオン状態になる。 At timing t5, the gate signal G1 transitions from low to high. This causes the transistor 13 to turn on.
 電力変換装置1は、このような動作を繰り返すことにより、直流電源PDCから供給された直流電力を変圧して出力する。電力変換装置1は、例えばPFM(Pulse Frequency Modulation)を用いてトランジスタ13,14の動作を制御することにより、出力電圧が一定になるように制御する。なお、これに限定されるものではなく、電力変換装置1は、PWM(Pulse Width modulation)を用いてトランジスタ13,14の動作を制御することにより、出力電圧が一定になるように制御してもよい。 By repeating this operation, the power conversion device 1 transforms and outputs the DC power supplied from the DC power source PDC. The power conversion device 1 controls the output voltage to be constant by controlling the operation of transistors 13, 14 using, for example, PFM (Pulse Frequency Modulation). However, this is not limited to this, and the power conversion device 1 may also control the output voltage to be constant by controlling the operation of transistors 13, 14 using PWM (Pulse Width Modulation).
 このように、トランス20では、互いに対向する2つの基体部101,102と、2つの基体部101,102の対向面内に配置され、2つの基体部101,102を磁気結合させる第1の結合部(結合部111)、第2の結合部(結合部112)、第3の結合部(結合部113)、第4の結合部(結合部114)、および第5の結合部(結合部115)とを有する磁気コア100を設けるようにした。第1の結合部および第2の結合部は第1の方向(X方向)にこの順に並設され、第3の結合部および第4の結合部は第1の方向にこの順で並設され、第1の結合部および第3の結合部は第2の方向(Y方向)に並設され、第2の結合部および第4の結合部は第2の方向に並設され、第5の結合部は、第1の結合部、第2の結合部、第3の結合部、および第4の結合部の全体を囲むようにした。また、トランス20では、第1の結合部、第2の結合部、第3の結合部、および第4の結合部のうちの1以上に巻き付けられた第1の巻線(巻線Wp)と、第1の結合部、第2の結合部、第3の結合部、および第4の結合部のうちの1以上に巻き付けられた1または複数の第2の巻線(巻線Ws1~Ws4)とを設けるようにした。これにより、トランス20では、漏れ磁束による損失を低減することができる。 In this way, the transformer 20 is provided with two base parts 101, 102 facing each other, and a magnetic core 100 that is arranged on the facing surfaces of the two base parts 101, 102 and has a first coupling part (coupling part 111), a second coupling part (coupling part 112), a third coupling part (coupling part 113), a fourth coupling part (coupling part 114), and a fifth coupling part (coupling part 115) that magnetically couple the two base parts 101, 102. The first and second coupling parts are arranged in this order in the first direction (X direction), the third and fourth coupling parts are arranged in this order in the first direction, the first and third coupling parts are arranged in this order in the second direction (Y direction), the second and fourth coupling parts are arranged in the second direction, and the fifth coupling part surrounds the first, second, third, and fourth coupling parts in their entirety. In addition, the transformer 20 is provided with a first winding (winding Wp) wound around one or more of the first, second, third, and fourth coupling parts, and one or more second windings (windings Ws1 to Ws4) wound around one or more of the first, second, third, and fourth coupling parts. This allows the transformer 20 to reduce losses due to leakage flux.
 すなわち、例えば、特許文献1に記載の技術では、トランスの中央に、共振コイルに対応する脚部が設けられる。この脚部は、トランスの中央に設けられるので、磁束が集中する。この脚部からの漏れ磁束は、この脚部に巻き付けられた、共振コイルに対応する巻線付近に広がる。よって、この漏れ磁束により、この巻線の配線パターンにおいて渦電流が生じ、エネルギーの損失(フリンジングロス)が生じてしまう。また、この巻線の配線パターンにおいて、集中的に発熱が生じてしまう。本実施の形態に係るトランス20では、このトランスの中央に設けられた脚部の代わりに、結合部111~114を囲む結合部115を設けるようにした。結合部115は、結合部111~114の全体を囲むように設けられるので、磁束が分散する。また、結合部115は、トランス20の中央ではなく、トランス20の端部に設けられるので、XY平面における断面積を大きくすることができ、磁束密度を低減することができる。よって、この結合部115からの漏れ磁束による損失を低減することができる。これにより、トランス20内における集中的な発熱を抑えることができる。 That is, for example, in the technology described in Patent Document 1, a leg corresponding to the resonant coil is provided in the center of the transformer. Since this leg is provided in the center of the transformer, magnetic flux is concentrated. Leakage magnetic flux from this leg spreads to the vicinity of the winding corresponding to the resonant coil that is wound around this leg. Therefore, this leakage magnetic flux generates eddy currents in the wiring pattern of this winding, resulting in energy loss (fringing loss). In addition, heat is generated in a concentrated manner in the wiring pattern of this winding. In the transformer 20 according to this embodiment, instead of the leg provided in the center of the transformer, a coupling part 115 that surrounds the coupling parts 111 to 114 is provided. The coupling part 115 is provided so as to surround the entire coupling parts 111 to 114, so that the magnetic flux is dispersed. In addition, the coupling part 115 is provided at the end of the transformer 20, not in the center of the transformer 20, so that the cross-sectional area in the XY plane can be increased and the magnetic flux density can be reduced. Therefore, the loss due to the leakage magnetic flux from the coupling part 115 can be reduced. This helps prevent concentrated heat generation within the transformer 20.
[効果]
 以上のように本実施の形態では、互いに対向する2つの基体部、2つの基体部の対向面内に配置され、2つの基体部を磁気結合させる第1の結合部、第2の結合部、第3の結合部、第4の結合部、および第5の結合部とを有する磁気コアを設けるようにした。第1の結合部および第2の結合部は第1の方向にこの順に並設され、第3の結合部および第4の結合部は第1の方向にこの順で並設され、第1の結合部および第3の結合部は第2の方向に並設され、第2の結合部および第4の結合部は第2の方向に並設され、第5の結合部は、第1の結合部、第2の結合部、第3の結合部、および第4の結合部の全体を囲むようにした。また、第1の結合部、第2の結合部、第3の結合部、および第4の結合部のうちの1以上に巻き付けられた第1の巻線と、第1の結合部、第2の結合部、第3の結合部、および第4の結合部のうちの1以上に巻き付けられた1または複数の第2の巻線とを設けるようにした。これにより、漏れ磁束による損失を低減することができる。
[effect]
As described above, in this embodiment, a magnetic core is provided that has two base parts facing each other, and a first coupling part, a second coupling part, a third coupling part, a fourth coupling part, and a fifth coupling part that are arranged on the facing surfaces of the two base parts and magnetically couple the two base parts. The first coupling part and the second coupling part are arranged in this order in the first direction, the third coupling part and the fourth coupling part are arranged in this order in the first direction, the first coupling part and the third coupling part are arranged in the second direction, the second coupling part and the fourth coupling part are arranged in the second direction, and the fifth coupling part surrounds the entire first coupling part, the second coupling part, the third coupling part, and the fourth coupling part. In addition, a first winding is wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion, and one or more second windings are wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion, thereby making it possible to reduce loss due to leakage magnetic flux.
[変形例1]
 上記実施の形態では、図3に示したように巻線Wpを結合部111~114に巻き付けたが、これに限定されるものではなく、これに代えて、例えば、図8に示したトランス20Aのように巻き付けてもよい。具体的には、図8(A)に示したように、巻線Wpは、接続端子Tp1から接続端子Tp2に向かう方向において、結合部112,113に巻き付けられる。巻線Wpは、接続端子Tp1から接続端子Tp2に向かう方向において、結合部112,113の全体に時計回りに2回巻き付けられる。この巻線Wpの巻き付け方は、以下に示すように、上記実施の形態に係るトランス20における巻線Wpの巻き付け方(図3)と等価である。
[Modification 1]
In the above embodiment, the winding Wp is wound around the coupling parts 111 to 114 as shown in Fig. 3, but the present invention is not limited to this, and instead, for example, the winding may be wound as in the transformer 20A shown in Fig. 8. Specifically, as shown in Fig. 8(A), the winding Wp is wound around the coupling parts 112 and 113 in the direction from the connection terminal Tp1 to the connection terminal Tp2. The winding Wp is wound clockwise twice around the entire coupling parts 112 and 113 in the direction from the connection terminal Tp1 to the connection terminal Tp2. This winding method of the winding Wp is equivalent to the winding method of the winding Wp in the transformer 20 according to the above embodiment (Fig. 3), as will be described below.
 図9(A)は、上記実施の形態に係るトランス20の巻線Wpを示し、図9(B)は、本変形例に係るトランス20Aの巻線Wpを示す。図9において、巻線Wpに示した矢印は、接続端子Tp1から接続端子Tp2に向かって、電流Ipが流れている場合における電流Ipの方向を示す。 FIG. 9(A) shows the winding Wp of the transformer 20 according to the above embodiment, and FIG. 9(B) shows the winding Wp of the transformer 20A according to this modified example. In FIG. 9, the arrow shown on the winding Wp indicates the direction of the current Ip when the current Ip flows from the connection terminal Tp1 to the connection terminal Tp2.
 上記実施の形態に係るトランス20(図9(A))では、符号Wで示したように、結合部111および結合部115Aの間の巻線Wpには、互いに異なる方向の電流が流れている。よって、結合部111および結合部115Aの間の巻線Wpには、電流は流れていないとみなすことができる。結合部111の周囲では、結合部111と結合部112との間に上向きの電流が流れ、結合部111と結合部113との間に左向きの電流が流れている。 In the transformer 20 (Figure 9 (A)) according to the above embodiment, as indicated by the symbol W, currents flow in different directions in the winding Wp between the coupling parts 111 and 115A. Therefore, it can be considered that no current flows in the winding Wp between the coupling parts 111 and 115A. Around the coupling part 111, an upward current flows between the coupling parts 111 and 112, and a leftward current flows between the coupling parts 111 and 113.
 同様に、結合部114および結合部115Bの間の巻線Wpには、互いに異なる方向の電流が流れている。よって、結合部114および結合部115Aの間の巻線Wpには、電流は流れていないとみなすことができる。結合部114の周囲では、結合部113と結合部114との間に下向きの電流が流れ、結合部112と結合部114との間に右向きの電流が流れている。 Similarly, currents flow in different directions in the winding Wp between the joints 114 and 115B. Therefore, it can be considered that no current flows in the winding Wp between the joints 114 and 115A. Around the joint 114, a downward current flows between the joints 113 and 114, and a rightward current flows between the joints 112 and 114.
 このように、結合部111および結合部115Aの間の巻線Wp、および結合部114および結合部115Aの間の巻線Wpには、電流は流れていないとみなせることを考慮し、巻線Wpを、図9(A)に示した巻き付け方から図9(B)に示した巻き付け方に変更することができる。この図9(B)において、例えば、結合部111の周囲では、図9(A)と同様に、結合部111と結合部112との間に上向きの電流が流れ、結合部111と結合部113との間に左向きの電流が流れている。この図9(B)において、例えば、結合部114の周囲では、図9(A)と同様に、結合部113と結合部114との間に下向きの電流が流れ、結合部112と結合部114との間に右向きの電流が流れている。よって、図9(B)に示したトランス20Aの巻線Wpの巻き付け方は、図9(A)に示したトランス20の巻線Wpの巻き付け方と等価である。 In this way, considering that no current can be considered to flow in the winding Wp between the joint 111 and the joint 115A, and between the joint 114 and the joint 115A, the winding Wp can be changed from the winding shown in FIG. 9(A) to the winding shown in FIG. 9(B). In FIG. 9(B), for example, around the joint 111, an upward current flows between the joint 111 and the joint 112, as in FIG. 9(A), and a leftward current flows between the joint 111 and the joint 113. In FIG. 9(B), for example, around the joint 114, a downward current flows between the joint 113 and the joint 114, as in FIG. 9(A), and a rightward current flows between the joint 112 and the joint 114. Therefore, the winding method of the winding Wp of the transformer 20A shown in FIG. 9(B) is equivalent to the winding method of the winding Wp of the transformer 20 shown in FIG. 9(A).
[変形例2]
 上記実施の形態では、図2,3に示したように、結合部115が2つの結合部115A,115Bを含むようにしたが、これに限定されるものではない。これに代えて、例えば、図10,11に示すトランス20Bのように、結合部115は3つ以上の結合部(この例では4つの結合部115A~115D)を含んでもよい。ここで、結合部115A~115Dは、本開示における「複数の部分結合部」の一具体例に対応する。これにより、基板200における、トランス20Bの外側の部分と、基板200における基体部101,102に挟まれた部分とが、より多くの箇所で互いに接続されるので、構造上の安定性を高めることができる。
[Modification 2]
In the above embodiment, as shown in Figs. 2 and 3, the coupling portion 115 includes two coupling portions 115A and 115B, but this is not limited thereto. Instead, for example, as in the transformer 20B shown in Figs. 10 and 11, the coupling portion 115 may include three or more coupling portions (four coupling portions 115A to 115D in this example). Here, the coupling portions 115A to 115D correspond to a specific example of "plural partial coupling portions" in this disclosure. As a result, the outer portion of the transformer 20B and the portion of the substrate 200 sandwiched between the base portions 101 and 102 are connected to each other at more points, thereby improving structural stability.
[変形例3]
 上記の実施の形態では、図2,3に示したように、XY平面において、結合部111,114の断面積は、結合部112,113の断面積よりも小さいようにしたが、これに限定されるものではない。これに代えて、例えば図12に示すトランス20Cのように、結合部111~114の断面積を互いに等しくしてもよい。
[Modification 3]
In the above embodiment, as shown in Figures 2 and 3, the cross-sectional area of the coupling parts 111 and 114 in the XY plane is smaller than the cross-sectional area of the coupling parts 112 and 113, but this is not limited to this. Instead, the cross-sectional areas of the coupling parts 111 to 114 may be equal to each other, as in the transformer 20C shown in Figure 12, for example.
[変形例4]
 上記実施の形態では、ダイオードD1~D4を用いて整流回路17を構成したが、これに限定されるものではなく、これに代えて、例えば、トランジスタを用いて整流回路を構成し、いわゆる同期整流を行うようにしてもよい。
[Modification 4]
In the above embodiment, the rectifier circuit 17 is configured using diodes D1 to D4, but this is not limited to this. Instead, for example, the rectifier circuit may be configured using transistors to perform so-called synchronous rectification.
[変形例5]
 上記の実施の形態では、図1に示したように、2つのトランジスタ13,14を有するスイッチング回路12を設けたが、これに限定されるものではない。これに代えて、例えば、図13に示す電力変換装置1Dのように、4つのトランジスタ23~26を有するスイッチング回路12Dを設けてもよい。スイッチング回路12Dは、いわゆるフルブリッジ型の回路であり、トランジスタ23~26を有している。トランジスタ23~26のそれぞれは、この例では、N型のFETである。トランジスタ23のドレインは電圧線L11に接続され、ゲートには図示しない制御部からゲート信号G1が供給され、ソースはトランジスタ24のドレインおよびキャパシタ15の一端に接続される。トランジスタ24のドレインはトランジスタ23のソースおよびキャパシタ15の一端に接続され、ゲートには図示しない制御部からゲート信号G2が供給され、ソースは基準電圧線L12に接続される。トランジスタ25のドレインは電圧線L11に接続され、ゲートには図示しない制御部からゲート信号G3が供給され、ソースはトランジスタ26のドレインおよびトランス20の接続端子Tp2に接続される。トランジスタ26のドレインはトランジスタ25のソースおよびトランス20の接続端子Tp2に接続され、ゲートには図示しない制御部からゲート信号G4が供給され、ソースは基準電圧線L12に接続される。
[Modification 5]
In the above embodiment, as shown in FIG. 1, the switching circuit 12 having two transistors 13 and 14 is provided, but the present invention is not limited to this. Instead of this, for example, a switching circuit 12D having four transistors 23 to 26 may be provided as in a power conversion device 1D shown in FIG. 13. The switching circuit 12D is a so-called full-bridge type circuit and has transistors 23 to 26. In this example, each of the transistors 23 to 26 is an N-type FET. The drain of the transistor 23 is connected to the voltage line L11, the gate is supplied with a gate signal G1 from a control unit (not shown), and the source is connected to the drain of the transistor 24 and one end of the capacitor 15. The drain of the transistor 24 is connected to the source of the transistor 23 and one end of the capacitor 15, the gate is supplied with a gate signal G2 from a control unit (not shown), and the source is connected to the reference voltage line L12. The drain of the transistor 25 is connected to the voltage line L11, the gate is supplied with a gate signal G3 from a control unit (not shown), and the source is connected to the drain of the transistor 26 and the connection terminal Tp2 of the transformer 20. The drain of the transistor 26 is connected to the source of the transistor 25 and the connection terminal Tp2 of the transformer 20, the gate receives a gate signal G4 from a control unit (not shown), and the source is connected to the reference voltage line L12.
[変形例6]
 上記実施の形態では、図1に示したように、整流回路17およびトランス20は、センタータップ型の回路を構成したが、これに限定されるものではない。以下に、本変形例について詳細に説明する。
[Modification 6]
In the above embodiment, the rectifier circuit 17 and the transformer 20 constitute a center tap type circuit as shown in Fig. 1, but the present invention is not limited to this. The present modification will be described in detail below.
 図14は、本変形例に係る電力変換装置1Eの一構成例を表すものである。電力変換装置1Eは、スイッチング回路12Dと、トランス20Eと、整流回路17Eとを備えている。 FIG. 14 shows an example of the configuration of a power conversion device 1E according to this modified example. The power conversion device 1E includes a switching circuit 12D, a transformer 20E, and a rectifier circuit 17E.
スイッチング回路12Dは、いわゆるフルブリッジ型の回路であり、図13に示した回路と同じである。 The switching circuit 12D is a so-called full-bridge type circuit, and is the same as the circuit shown in Figure 13.
 トランス20Eは、接続端子Tp1,Tp2,Ts1A,Ts1B,Ts2A,Ts2Bと、巻線Wp1,Wp2と、巻線Ws11,Ws12とを有している。接続端子Tp1はキャパシタ15の他端に接続され、接続端子Tp2はトランジスタ25のソースおよびトランジスタ26のドレインに接続される。接続端子Ts1A,Ts1B,Ts2A,Ts2Bは、整流回路17Eに接続される。巻線Ws11,Ws12は、トランス20Eの2次側巻線である。巻線Ws11の一端は接続端子Ts1Aに接続され、他端は接続端子Ts1Bに接続される。巻線Ws12の一端は接続端子Ts2Aに接続され、他端は接続端子Ts2Bに接続される。ここで、巻線Ws11,Ws12は、本開示における「第2の巻線」の一具体例に対応する。 The transformer 20E has connection terminals Tp1, Tp2, Ts1A, Ts1B, Ts2A, and Ts2B, windings Wp1, Wp2, and windings Ws11 and Ws12. The connection terminal Tp1 is connected to the other end of the capacitor 15, and the connection terminal Tp2 is connected to the source of the transistor 25 and the drain of the transistor 26. The connection terminals Ts1A, Ts1B, Ts2A, and Ts2B are connected to the rectifier circuit 17E. The windings Ws11 and Ws12 are secondary windings of the transformer 20E. One end of the winding Ws11 is connected to the connection terminal Ts1A, and the other end is connected to the connection terminal Ts1B. One end of the winding Ws12 is connected to the connection terminal Ts2A, and the other end is connected to the connection terminal Ts2B. Here, the windings Ws11 and Ws12 correspond to a specific example of a "second winding" in this disclosure.
 図15は、トランス20Eの巻線の一構成例を表すものであり、図15(A)は第1層である配線層LA1を示し、図15(B)は第2層である配線層LA2を示す。図16は、電力変換装置1Eにおける巻線Wp(巻線Wp1,Ws1)および巻線Ws11,Ws12の一接続例を表すものである。この例では、巻線Wpは配線層LA1(図15(A))に設けられ、巻線Ws11,Ws12は配線層LA2(図15(B))に設けられる。図15(B)に示したように、この例では、巻線Ws11は、2つの結合部113,114に巻き付けられ、巻線Ws12は、2つの結合部111,112に巻き付けられる。具体的には、巻線Ws11は、接続端子Ts1Aから接続端子Ts1Bに向かう方向において、結合部113に時計回りに1回巻き付けられ、結合部114に反時計回りに1回巻き付けられる。巻線Ws12は、接続端子Ts2Aから接続端子Ts2Bに向かう方向において、結合部111に反時計回りに1回巻き付けられ、結合部112に時計回りに1回巻き付けられる。 Figure 15 shows an example of the configuration of the windings of transformer 20E, where Figure 15(A) shows the first layer, wiring layer LA1, and Figure 15(B) shows the second layer, wiring layer LA2. Figure 16 shows an example of the connection of winding Wp (windings Wp1, Ws1) and windings Ws11, Ws12 in power conversion device 1E. In this example, winding Wp is provided in wiring layer LA1 (Figure 15(A)), and windings Ws11, Ws12 are provided in wiring layer LA2 (Figure 15(B)). As shown in Figure 15(B), in this example, winding Ws11 is wound around two coupling parts 113, 114, and winding Ws12 is wound around two coupling parts 111, 112. Specifically, the winding Ws11 is wound once clockwise around the coupling portion 113 in the direction from the connection terminal Ts1A to the connection terminal Ts1B, and once counterclockwise around the coupling portion 114. The winding Ws12 is wound once counterclockwise around the coupling portion 111 in the direction from the connection terminal Ts2A to the connection terminal Ts2B, and once clockwise around the coupling portion 112.
 整流回路17E(図14)は、いわゆるフルブリッジ型の整流回路であり、ダイオードD11,D12,D13,D14を有している。ダイオードD11のアノードはダイオードD12のカソードおよびトランス20Eの接続端子Ts1A,Ts2Aに接続され、カソードは電圧線L21に接続される。ダイオードD12のアノードは基準電圧線L22に接続され、カソードはダイオードD11のアノードおよびトランス20Eの接続端子Ts1A,Ts2Aに接続される。ダイオードD13のアノードはダイオードD14のカソードおよびトランス20Eの接続端子Ts1B,Ts2Bに接続され、カソードは電圧線L21に接続される。ダイオードD14のアノードは基準電圧線L22に接続され、カソードはダイオードD13のアノードおよびトランス20Eの接続端子Ts1B,Ts2Bに接続される。 The rectifier circuit 17E (FIG. 14) is a so-called full-bridge type rectifier circuit, and has diodes D11, D12, D13, and D14. The anode of the diode D11 is connected to the cathode of the diode D12 and the connection terminals Ts1A and Ts2A of the transformer 20E, and the cathode is connected to the voltage line L21. The anode of the diode D12 is connected to the reference voltage line L22, and the cathode is connected to the anode of the diode D11 and the connection terminals Ts1A and Ts2A of the transformer 20E. The anode of the diode D13 is connected to the cathode of the diode D14 and the connection terminals Ts1B and Ts2B of the transformer 20E, and the cathode is connected to the voltage line L21. The anode of the diode D14 is connected to the reference voltage line L22, and the cathode is connected to the anode of the diode D13 and the connection terminals Ts1B and Ts2B of the transformer 20E.
[その他の変形例]
 また、これらの変形例のうちの2以上を組み合わせてもよい
[Other Modifications]
Two or more of these modifications may also be combined.
 以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等には限定されず、種々の変形が可能である。 The present invention has been described above using embodiments and modifications, but the present invention is not limited to these embodiments and various modifications are possible.
 例えば、上記実施の形態では、図1に示したように、トランス20に複数の2次側巻線である巻線Ws1~Ws4を設けたが、これに限定されるものではなく、例えば1つの2次側巻線を設けてもよい。 For example, in the above embodiment, as shown in FIG. 1, multiple secondary windings, Ws1 to Ws4, are provided on the transformer 20, but this is not limited thereto, and for example, a single secondary winding may be provided.
 例えば、上記実施の形態では、多層基板の配線層を用いて巻線を構成したが、これに限定されるものではなく、ワイヤを用いて巻線を構成してもよい。 For example, in the above embodiment, the windings are formed using the wiring layers of a multi-layer board, but this is not limited to this, and the windings may also be formed using wire.
 本明細書中に記載された効果はあくまで例示であり、本開示の効果は、本明細書中に記載された効果に限定されない。よって、本開示に関して、他の効果が得られてもよい。 The effects described in this specification are merely examples, and the effects of this disclosure are not limited to the effects described in this specification. Therefore, other effects may be obtained with respect to this disclosure.
 さらに、本開示は、以下の態様を取り得る。 Furthermore, the present disclosure may take the following forms:
(1)
 互いに対向する2つの基体部と、前記2つの基体部の対向面内に配置され、前記2つの基体部を磁気結合させる第1の結合部、第2の結合部、第3の結合部、第4の結合部、および第5の結合部を有し、前記第1の結合部および前記第2の結合部は第1の方向にこの順に並設され、前記第3の結合部および前記第4の結合部は前記第1の方向にこの順で並設され、前記第1の結合部および前記第3の結合部は第2の方向に並設され、前記第2の結合部および前記第4の結合部は前記第2の方向に並設され、前記第5の結合部は、前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部の全体を囲むように設けられた磁気コアと、
 前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部のうちの1以上に巻き付けられた第1の巻線と、
 前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部のうちの1以上に巻き付けられた1または複数の第2の巻線と
 を備えた磁性部品。
(2)
 第1の接続端子と、第2の接続端子とをさらに備え、
 前記第1の巻線は、前記第1の接続端子から前記第2の接続端子に向かう方向において、前記第2の結合部および前記第3の結合部に第1の巻方向に巻き付けられた
 前記(1)に記載の磁性部品。
(3)
 第1の接続端子と、第2の接続端子とをさらに備え、
 前記第1の巻線は、前記第1の接続端子から前記第2の接続端子に向かう方向において、前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部の全体に第1の巻方向に巻き付けられた第1の部分と、前記第1の結合部および前記第4の結合部のそれぞれに第2の巻方向に巻き付けられ、前記第2の結合部および前記第3の結合部のそれぞれに前記第1の巻方向に巻き付けられた第2の部分とを有する
 前記(1)に記載の磁性部品。
(4)
 前記第1の結合部の断面積および前記第4の結合部の断面積のそれぞれは、前記第2の結合部の断面積および前記第3の結合部の断面積のそれぞれより小さい
 前記(1)から(3)のいずれかに記載の磁性部品。
(5)
 前記第5の結合部は、複数の部分結合部を有する
 前記(1)から(4)のいずれかに記載の磁性部品。
(6)
 第3の接続端子と、第4の接続端子とをさらに備え、
 前記1または複数の第2の巻線は、前記第3の接続端子から前記第4の接続端子に向かう方向において、前記第1の結合部に第3の巻方向に巻き付けられ、前記第2の結合部に第4の巻方向に巻き付けられた巻線を含む
 前記(1)から(5)のいずれかに記載の磁性部品。
(7)
 前記(1)から(6)のいずれかに記載の磁性部品と、
 前記磁性部品の前記第1の巻線に接続され、1または複数のスイッチング素子を有するスイッチング回路と、
 前記磁性部品の前記1または複数の第2の巻線に接続された整流回路と、
 前記整流回路に接続された平滑回路と
 を備えた電力変換装置。
 
 
 
(1)
a magnetic core having two base parts facing each other, and a first coupling part, a second coupling part, a third coupling part, a fourth coupling part, and a fifth coupling part that are arranged on opposing surfaces of the two base parts and magnetically couple the two base parts, the first coupling part and the second coupling part being arranged side by side in this order in a first direction, the third coupling part and the fourth coupling part being arranged side by side in this order in the first direction, the first coupling part and the third coupling part being arranged side by side in a second direction, the second coupling part and the fourth coupling part being arranged side by side in the second direction, and the fifth coupling part being provided to surround the entirety of the first coupling part, the second coupling part, the third coupling part, and the fourth coupling part;
a first winding wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion;
and one or more second windings wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion.
(2)
Further comprising a first connection terminal and a second connection terminal,
The magnetic component described in (1), wherein the first winding is wound around the second coupling portion and the third coupling portion in a first winding direction in a direction from the first connection terminal toward the second connection terminal.
(3)
Further comprising a first connection terminal and a second connection terminal,
The magnetic component described in (1), wherein the first winding has, in a direction from the first connection terminal toward the second connection terminal, a first portion wound in a first winding direction around the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion, and a second portion wound in a second winding direction around each of the first coupling portion and the fourth coupling portion, and wound in the first winding direction around each of the second coupling portion and the third coupling portion.
(4)
The magnetic component according to any one of (1) to (3), wherein a cross-sectional area of the first coupling portion and a cross-sectional area of the fourth coupling portion are smaller than a cross-sectional area of the second coupling portion and a cross-sectional area of the third coupling portion, respectively.
(5)
The magnetic component according to any one of (1) to (4), wherein the fifth joint portion has a plurality of partial joint portions.
(6)
Further comprising a third connection terminal and a fourth connection terminal;
The magnetic component described in any one of (1) to (5), wherein the one or more second windings include a winding wound in a third winding direction around the first coupling portion and in a fourth winding direction around the second coupling portion in a direction from the third connection terminal toward the fourth connection terminal.
(7)
A magnetic component according to any one of (1) to (6) above;
a switching circuit connected to the first winding of the magnetic component and having one or more switching elements;
a rectifier circuit connected to the one or more second windings of the magnetic component;
A power conversion device comprising: a smoothing circuit connected to the rectifier circuit.


Claims (7)

  1.  互いに対向する2つの基体部と、前記2つの基体部の対向面内に配置され、前記2つの基体部を磁気結合させる第1の結合部、第2の結合部、第3の結合部、第4の結合部、および第5の結合部を有し、前記第1の結合部および前記第2の結合部は第1の方向にこの順に並設され、前記第3の結合部および前記第4の結合部は前記第1の方向にこの順で並設され、前記第1の結合部および前記第3の結合部は第2の方向に並設され、前記第2の結合部および前記第4の結合部は前記第2の方向に並設され、前記第5の結合部は、前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部の全体を囲むように設けられた磁気コアと、
     前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部のうちの1以上に巻き付けられた第1の巻線と、
     前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部のうちの1以上に巻き付けられた1または複数の第2の巻線と
     を備えた磁性部品。
    a magnetic core having two base parts facing each other, and a first coupling part, a second coupling part, a third coupling part, a fourth coupling part, and a fifth coupling part that are arranged on opposing surfaces of the two base parts and magnetically couple the two base parts, the first coupling part and the second coupling part being arranged side by side in this order in a first direction, the third coupling part and the fourth coupling part being arranged side by side in this order in the first direction, the first coupling part and the third coupling part being arranged side by side in a second direction, the second coupling part and the fourth coupling part being arranged side by side in the second direction, and the fifth coupling part being provided to surround the entirety of the first coupling part, the second coupling part, the third coupling part, and the fourth coupling part;
    a first winding wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion;
    and one or more second windings wound around one or more of the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion.
  2.  第1の接続端子と、第2の接続端子とをさらに備え、
     前記第1の巻線は、前記第1の接続端子から前記第2の接続端子に向かう方向において、前記第2の結合部および前記第3の結合部に第1の巻方向に巻き付けられた
     請求項1に記載の磁性部品。
    Further comprising a first connection terminal and a second connection terminal,
    The magnetic component according to claim 1 , wherein the first winding is wound in a first winding direction around the second coupling portion and the third coupling portion in a direction from the first connection terminal toward the second connection terminal.
  3.  第1の接続端子と、第2の接続端子とをさらに備え、
     前記第1の巻線は、前記第1の接続端子から前記第2の接続端子に向かう方向において、前記第1の結合部、前記第2の結合部、前記第3の結合部、および前記第4の結合部の全体に第1の巻方向に巻き付けられた第1の部分と、前記第1の結合部および前記第4の結合部のそれぞれに第2の巻方向に巻き付けられ、前記第2の結合部および前記第3の結合部のそれぞれに前記第1の巻方向に巻き付けられた第2の部分とを有する
     請求項1に記載の磁性部品。
    Further comprising a first connection terminal and a second connection terminal,
    2. The magnetic component according to claim 1, wherein the first winding has, in a direction from the first connection terminal toward the second connection terminal, a first portion wound in a first winding direction around the first coupling portion, the second coupling portion, the third coupling portion, and the fourth coupling portion, and a second portion wound in a second winding direction around each of the first coupling portion and the fourth coupling portion, and wound in the first winding direction around each of the second coupling portion and the third coupling portion.
  4.  前記第1の結合部の断面積および前記第4の結合部の断面積のそれぞれは、前記第2の結合部の断面積および前記第3の結合部の断面積のそれぞれより小さい
     請求項1に記載の磁性部品。
    The magnetic component according to claim 1 , wherein a cross-sectional area of the first coupling portion and a cross-sectional area of the fourth coupling portion are smaller than a cross-sectional area of the second coupling portion and a cross-sectional area of the third coupling portion, respectively.
  5.  前記第5の結合部は、複数の部分結合部を有する
     請求項1に記載の磁性部品。
    The magnetic component according to claim 1 , wherein the fifth joint portion has a plurality of partial joint portions.
  6.  第3の接続端子と、第4の接続端子とをさらに備え、
     前記1または複数の第2の巻線は、前記第3の接続端子から前記第4の接続端子に向かう方向において、前記第1の結合部に第3の巻方向に巻き付けられ、前記第2の結合部に第4の巻方向に巻き付けられた巻線を含む
     請求項1に記載の磁性部品。
    Further comprising a third connection terminal and a fourth connection terminal;
    2. The magnetic component according to claim 1, wherein the one or more second windings include a winding wound in a third winding direction around the first coupling portion and in a fourth winding direction around the second coupling portion in a direction from the third connection terminal toward the fourth connection terminal.
  7.  請求項1から請求項6のいずれか一項に記載の磁性部品と、
     前記磁性部品の前記第1の巻線に接続され、1または複数のスイッチング素子を有するスイッチング回路と、
     前記磁性部品の前記1または複数の第2の巻線に接続された整流回路と、
     前記整流回路に接続された平滑回路と
     を備えた電力変換装置。
     
    A magnetic component according to any one of claims 1 to 6;
    a switching circuit connected to the first winding of the magnetic component and having one or more switching elements;
    a rectifier circuit connected to the one or more second windings of the magnetic component;
    A power conversion device comprising: a smoothing circuit connected to the rectifier circuit.
PCT/JP2022/039509 2022-10-24 2022-10-24 Magnetic component and power conversion device WO2024089738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039509 WO2024089738A1 (en) 2022-10-24 2022-10-24 Magnetic component and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039509 WO2024089738A1 (en) 2022-10-24 2022-10-24 Magnetic component and power conversion device

Publications (1)

Publication Number Publication Date
WO2024089738A1 true WO2024089738A1 (en) 2024-05-02

Family

ID=90830271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039509 WO2024089738A1 (en) 2022-10-24 2022-10-24 Magnetic component and power conversion device

Country Status (1)

Country Link
WO (1) WO2024089738A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120910A (en) * 1995-10-24 1997-05-06 Nagano Japan Radio Co Inductor and core thereof
JP2019029677A (en) * 2017-08-03 2019-02-21 デルタ エレクトロニクス インコーポレイティド Magnetic module and power conversion device using the same
JP2022086183A (en) * 2020-11-30 2022-06-09 Tdk株式会社 Magnetic component, power conversion device, and power conversion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120910A (en) * 1995-10-24 1997-05-06 Nagano Japan Radio Co Inductor and core thereof
JP2019029677A (en) * 2017-08-03 2019-02-21 デルタ エレクトロニクス インコーポレイティド Magnetic module and power conversion device using the same
JP2022086183A (en) * 2020-11-30 2022-06-09 Tdk株式会社 Magnetic component, power conversion device, and power conversion system

Similar Documents

Publication Publication Date Title
US10886046B2 (en) Integrated magnetic component and switched mode power converter
EP1760867B1 (en) Switching power supply unit
JP4162037B2 (en) Composite transformer and isolated switching power supply
US7209024B2 (en) Filter circuit and power supply unit
US9390848B2 (en) Integrated magnetics transformer assembly
JP5304231B2 (en) Coil substrate structure and switching power supply device
US7351931B2 (en) Switching power supply apparatus and electronic device using the same
US6952353B2 (en) Integrated magnetic isolated two-inductor boost converter
JP2000260639A (en) Coil device and switching power supply device
JP2007043765A (en) Switching power supply
US20110032062A1 (en) Transformer improved in leakage inductance
KR101835528B1 (en) Switching power supply with laminated structure
JP2004297994A (en) Isolated switching dc/dc converter
WO2024089738A1 (en) Magnetic component and power conversion device
US20230238173A1 (en) Magnetic device and electronic device with same
US20230125248A1 (en) Magnetic component, power conversion apparatus, and power conversion system
US20230155510A1 (en) Switching power supply circuit
JP2022086183A (en) Magnetic component, power conversion device, and power conversion system
US6356461B1 (en) Transformer flux observer for a full bridge power converter and method of operation thereof
JP3796647B2 (en) DC / DC converter
JP7391920B2 (en) electronic circuits and methods
CN108886324B (en) Insulation type boost converter
JP7354939B2 (en) Switching power supplies and power supply systems
JP2003088118A (en) Resonance dc-dc converter