WO2024088442A1 - 制动能量控制电路及充电机器人 - Google Patents

制动能量控制电路及充电机器人 Download PDF

Info

Publication number
WO2024088442A1
WO2024088442A1 PCT/CN2023/139982 CN2023139982W WO2024088442A1 WO 2024088442 A1 WO2024088442 A1 WO 2024088442A1 CN 2023139982 W CN2023139982 W CN 2023139982W WO 2024088442 A1 WO2024088442 A1 WO 2024088442A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
charging
power supply
supply unit
voltage
Prior art date
Application number
PCT/CN2023/139982
Other languages
English (en)
French (fr)
Inventor
戴勇
Original Assignee
安徽易加能数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽易加能数字科技有限公司 filed Critical 安徽易加能数字科技有限公司
Publication of WO2024088442A1 publication Critical patent/WO2024088442A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of mobile charging technology, and more specifically, to a braking energy control circuit and a charging robot.
  • a storage-type mobile intelligent charging robot has begun to appear on the market. It consists of a large-capacity energy storage battery pack, a charger, a chassis electric drive, etc., in which the chassis electric drive system shares a low-voltage bus with the system control power supply.
  • this mobile charging robot In use, it is usually remotely controlled or automatically driven to the target location for quick and rapid charging, which greatly facilitates people's charging needs and improves the excellent charging experience.
  • this mobile charging robot brakes or goes downhill, its chassis motor will feed back a high short-term high voltage to the low-voltage power supply unit of the system, triggering the overvoltage protection function of the low-voltage power supply unit, causing the low-voltage power supply unit of the system to lose power due to protection, and then causing the control system of the whole machine to lose low-voltage power supply and shut down, which seriously affects the normal operation of the energy storage mobile charger.
  • the present application provides a braking energy control circuit and a charging robot; the present application can monitor in real time the short-term high voltage fed back by the electric drive chassis system of the charging robot when braking or going downhill, and automatically control the discharge resistance within the threshold to absorb this feedback energy, thereby avoiding misprotection of the system's low-voltage power supply unit and ensuring the normal operation of the mobile intelligent charging robot.
  • the present invention discloses a braking energy control circuit, comprising an energy storage battery pack, a low-voltage power supply unit and a chassis electric drive system. It includes a braking energy detection and control unit. The output end of the energy storage battery pack is connected to the low-voltage power supply unit, and the low-voltage power supply unit is connected to the chassis electric drive system. The braking energy detection and control unit is arranged between the low-voltage power supply unit and the chassis electric drive system. The braking energy detection and control unit is used to monitor the short-term high voltage fed back by the chassis electric drive system and absorb the high-voltage energy.
  • the braking energy detection and control unit includes a voltage detection module VC, a discharge resistor R and a relay K4.
  • the positive end of the voltage detection module VC and one end of the relay K4 are commonly connected to the output end of the low-voltage power supply unit.
  • the other end of the relay K4 is connected to the GND of the output end of the low-voltage power supply unit through the discharge resistor R.
  • the negative end of the voltage detection module VC is connected to the GND of the output end of the low-voltage power supply unit.
  • the voltage detection module VC is connected to the relay K4 through a control signal line.
  • a charging robot of the present application includes the above-mentioned braking energy control circuit.
  • it also includes a charging controller, a DC/DC charging module and a charging gun.
  • the input end of the DC/DC charging module is connected to the energy storage battery pack through a relay K1, and the output end of the DC/DC charging module is connected to the charging gun through a relay K2.
  • the charging controller is connected to the energy storage battery pack, the DC/DC charging module, and the charging gun through communication lines.
  • the output end of the low voltage power supply unit is connected to the charging controller and connected to the charging gun through the relay K3.
  • the charging controller is connected to the relay K1 , the relay K2 , and the relay K3 respectively through control signal lines.
  • the low voltage power supply unit includes a power conversion device and a circuit breaker QF, wherein the circuit breaker QF is disposed between the energy storage battery pack and the power conversion device, and the power conversion device converts the high voltage of the energy storage battery pack into a 24V low voltage.
  • the chassis electric drive system includes a motor controller MCU and a motor M, and the motor controller MCU is connected to a low-voltage power supply unit.
  • a braking energy control circuit of the present application can monitor in real time the short-term high voltage fed back by the electric drive chassis system when the charging robot brakes or goes downhill, and automatically control the discharge resistor within the threshold to absorb the feedback energy. It can better solve the problem of excessive feedback energy of the motor system caused by braking or long downhill during the movement of the charging robot, which may erroneously trigger the protective power failure of the system low-voltage power supply unit, and effectively ensure the stability and reliability of the charging robot;
  • the braking energy control circuit of the present application has a simple circuit structure design, a relatively low implementation cost, and a high value for promotion and application.
  • FIG1 is a schematic diagram of a braking energy control circuit of a charging robot of the present application.
  • a braking energy control circuit of this embodiment includes an energy storage battery pack BAT, a low-voltage power supply unit, a chassis electric drive system, and a braking energy detection and control unit.
  • the energy storage battery pack BAT is composed of a lithium battery energy storage pack and a battery management system BMS.
  • the output end of the energy storage battery pack BAT is connected to the low-voltage power supply unit, which is composed of a power conversion device DC/DC and a circuit breaker QF.
  • the circuit breaker QF is arranged between the energy storage battery pack and the power conversion device.
  • the power conversion device converts the high voltage of the energy storage battery pack into a 24V low voltage, which is used as the system control power supply and the motor controller MCU working power supply.
  • the low-voltage power supply unit is connected to the chassis electric drive system, which includes a motor controller MCU and a motor M to produce a motion effect.
  • the braking energy detection and control unit is arranged between the low-voltage power supply unit and the chassis electric drive system.
  • the braking energy detection and control unit includes a voltage detection module VC, a discharge resistor R and a relay K4.
  • the positive end of the voltage detection module VC and one end of the relay K4 are connected to the output end of the low-voltage power supply unit.
  • the other end of the relay K4 is connected to the GND of the output end of the low-voltage power supply unit through the discharge resistor R.
  • the negative end of the voltage detection module VC is connected to the GND of the output end of the low-voltage power supply unit.
  • the voltage detection module VC is connected to the relay K4 through a control signal line.
  • the voltage detection module VC in the braking energy detection and control unit is used to monitor the short-term high voltage fed back by the chassis electric drive system during braking or long downhill in real time.
  • the relay K4 will be actively closed to allow the discharge resistor R to absorb the high-voltage energy fed back by the chassis electric drive system. After the absorption is completed, the relay K4 is released normally, and the voltage detection module VC continues to monitor in real time.
  • the charging robot of this embodiment includes a charging controller, a DC/DC charging module, a charging gun, and a braking energy control circuit as described in Example 1.
  • the input end of the DC/DC charging module is connected to the energy storage battery pack through relay K1
  • the output end of the DC/DC charging module is connected to the charging gun through relay K2
  • the charging controller is connected to the energy storage battery pack, the DC/DC charging module, and the charging gun through communication lines.
  • the output end of the low-voltage power supply unit is connected to the charging controller and connected to the charging gun through relay K3.
  • the charging controller is connected to relay K1, relay K2, and relay K3 through control signal lines.
  • the DC/DC in the low-voltage power supply unit is energized and outputs a 24V low-voltage power supply.
  • the charging controller, the motor controller MCU, and the voltage detection module VC in the braking energy detection and control unit are all energized and work.
  • the charging controller executes a self-test program. After the self-test passes, the entire machine is in standby mode.
  • the voltage detection module VC in the braking energy detection and control unit will monitor the feedback voltage of the chassis electric drive system in real time.
  • this feedback voltage endangers the normal operation of the system's low-voltage power supply unit, it will actively close the relay K4 to allow the discharge resistor R to absorb the high-voltage energy fed back by the chassis electric drive system.
  • K4 is released normally, and the voltage detection module VC continues to monitor in real time.
  • This embodiment can better solve the problem of excessive feedback energy of the motor system causing the low-voltage power supply unit of the system to fail to provide protective power due to braking or long downhill descents during the movement of the intelligent charging robot, effectively ensuring the stability and reliability of the system, with low cost and high value for promotion and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请公开了一种制动能量控制电路及充电机器人,属于移动充电技术领域。本申请的制动能量控制电路,包括储能电池组、低压电源单元、底盘电驱系统、制动能量检测与控制单元,储能电池组的输出端连接低压电源单元,低压电源单元连接底盘电驱系统,制动能量检测与控制单元设置于低压电源单元和底盘电驱系统之间,制动能量检测与控制单元用于监测底盘电驱系统回馈的短时高压,并吸收该高压能量。本申请可以实时监测充电机器人在刹车或下坡时由电驱底盘系统回馈的短时高电压,并在阈值内自动控制泄放电阻以吸收此回馈能量,避免系统的低压电源单元误保护,保证可移动智能充电机器人的正常工作。

Description

制动能量控制电路及充电机器人
相关申请的交叉引用
本申请要求于2022年10月28日提交中国专利局,申请号为202222873078.7,申请名称为“一种制动能量控制电路及充电机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动充电技术领域,更具体地说,涉及一种制动能量控制电路及充电机器人。
背景技术
随着新能源汽车技术的发展和推广应用,越来越多的人们开始购买和使用电动汽车,快捷、快速充电的需求正在急剧增加。在这个背景和趋势下,一种储能式可移动智能充电机器人开始出现在市面上,它由大容量储能电池组、充电机、底盘电驱等部分构成,其中底盘电驱系统与系统控制电源共用低压母线。
在使用上,通常是采用遥控或自动行驶到目标位置进行快捷和快速充电,极大便利了人们的充电需求,也提高了极好的充电体验。但是,这种可移动充电机器人在刹车或长下坡时,其底盘电机将回馈一个较高的短时高压到系统的低压电源单元,触发了该低压电源单元的过压保护功能,从而使得系统的低压电源单元产生保护性失电,进而导致整机的控制系统失去低压电源而停机,这严重影响了储能式移动充电机的正常工作。
相关技术
申请内容
鉴于上述相关技术存在的问题,本申请提供了一种制动能量控制电路及充电机器人;本申请可以实时监测充电机器人在刹车或下坡时由电驱底盘系统回馈的短时高电压,并在阈值内自动控制泄放电阻以吸收此回馈能量,避免系统的低压电源单元误保护,保证可移动智能充电机器人的正常工作。
为达到上述目的,本申请提供的技术方案为:
本申请的一种制动能量控制电路,包括储能电池组、低压电源单元和底盘电驱系统,还 包括制动能量检测与控制单元,储能电池组的输出端连接低压电源单元,低压电源单元连接底盘电驱系统,制动能量检测与控制单元设置于低压电源单元和底盘电驱系统之间,制动能量检测与控制单元用于监测底盘电驱系统回馈的短时高压,并吸收高压能量。
在一个实施方式中,制动能量检测与控制单元包括电压检测模块VC、泄放电阻R和继电器K4,电压检测模块VC的正端、继电器K4的一端共同与低压电源单元输出端连接,继电器K4的另一端通过泄放电阻R与低压电源单元输出端的GND连接,电压检测模块VC的负端与低压电源单元的输出端的GND连接,电压检测模块VC通过控制信号线连接继电器K4。
本申请的一种充电机器人,包括上述的制动能量控制电路。
在一个实施方式中,还包括充电控制器、DC/DC充电模块和充电枪,DC/DC充电模块的输入端通过继电器K1与储能电池组连接,DC/DC充电模块的输出端通过继电器K2与充电枪连接,充电控制器通过通信线分别与储能电池组、DC/DC充电模块、充电枪连接。
在一个实施方式中,低压电源单元的输出端与充电控制器连接,并通过继电器K3与充电枪连接。
在一个实施方式中,充电控制器通过控制信号线分别连接继电器K1、继电器K2和继电器K3。
在一个实施方式中,低压电源单元包括电源变换装置和断路器QF,断路器QF设置于储能电池组和电源变换装置之间,电源变换装置将储能电池组的高电压转换成24V低压。
在一个实施方式中,底盘电驱系统包括电机控制器MCU和电机M,电机控制器MCU连接低压电源单元。
采用本申请提供的技术方案,与相关技术相比,具有如下有益效果:
(1)本申请的一种制动能量控制电路,可以实时监测充电机器人在刹车或下坡时由电驱底盘系统回馈的短时高电压,并在阈值内自动控制泄放电阻以吸收此回馈能量,能较好的解决充电机器人在移动过程中,因刹车或长下坡而发生的电机系统回馈能量过高,误触发系统低压电源单元保护性失电的问题,有效保证了充电机器人工作的稳定性和可靠性;
(2)本申请的一种制动能量控制电路,电路结构设计简单,实现成本相对较低,具有较高的推广应用价值。
附图说明
图1为本申请的充电机器人制动能量控制电路的示意图。
具体实施方式
为进一步了解本申请的内容,结合附图和实施例对本申请作详细描述。
实施例1
结合图1,本实施例的一种制动能量控制电路,包括储能电池组BAT、低压电源单元、底盘电驱系统和制动能量检测与控制单元。储能电池组BAT由锂电池储能包和电池管理系统BMS构成。储能电池组BAT的输出端连接低压电源单元,低压电源单元由电源变换装置DC/DC和断路器QF构成,断路器QF设置于储能电池组和电源变换装置之间,电源变换装置将储能电池组的高电压转换成24V低压,作系统控制电源和电机控制器MCU工作电源用,低压电源单元连接底盘电驱系统,底盘电驱系统包括电机控制器MCU和电机M,用来产生运动的效果。
所述的制动能量检测与控制单元设置于低压电源单元和底盘电驱系统之间,该制动能量检测与控制单元包括电压检测模块VC、泄放电阻R和继电器K4,电压检测模块VC正端、继电器K4的一端共同与低压电源单元输出端连接,继电器K4的另一端通过泄放电阻R与低压电源单元输出端的GND连接,电压检测模块VC的负端与低压电源单元输出端的GND连接,电压检测模块VC通过控制信号线连接继电器K4。制动能量检测与控制单元中电压检测模块VC用以实时监测底盘电驱系统在刹车或长下坡时回馈的短时高压,当此回馈电压危及系统低压电源单元正常工作时,将主动闭合继电器K4,让泄放电阻R吸收底盘电驱系统回馈的高压能量,吸收完成后,继电器K4被正常释放,电压检测模块VC继续实时监测。
实施例2
本实施例的充电机器人包括充电控制器、DC/DC充电模块、充电枪和如实施例1所述的制动能量控制电路,DC/DC充电模块输入端通过继电器K1与储能电池组连接,DC/DC充电模块的输出端通过继电器K2与充电枪连接,充电控制器通过通信线分别与储能电池组、DC/DC充电模块、充电枪连接。低压电源单元的输出端与充电控制器连接,并通过继电器K3与充电枪连接。充电控制器通过控制信号线分别连接继电器K1、继电器K2和继电器K3。
当闭合断路器QF时,低压电源单元中DC/DC得电并输出24V低压电源,充电控制器、电机控制器MCU及制动能量检测与控制单元中电压检测模块VC均得电工作,其中充电控制器执行自检程序,自检通过后整机处于待机状态。
当智能充电机器人向目标位置移动时,制动能量检测与控制单元中电压检测模块VC将实时监测底盘电驱系统的回馈电压,当此回馈电压危及系统低压电源单元正常工作时,将主动闭合继电器K4,让泄放电阻R吸收底盘电驱系统回馈的高压能量,吸收完成后,K4被正常释放,电压检测模块VC继续实时监测。
本实施例能较好的解决智能充电机器人在移动过程中因刹车或长下坡而发生的电机系统回馈能量过高误触发系统低压电源单元保护性失电的问题,有效保证了系统的稳定性和可靠性,成本低,具有较高的推广应用价值。
以上示意性的对本申请及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本申请的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本申请创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本申请的保护范围。

Claims (8)

  1. 一种制动能量控制电路,包括储能电池组、低压电源单元和底盘电驱系统,其特征在于,还包括制动能量检测与控制单元,所述储能电池组的输出端连接所述低压电源单元,所述低压电源单元连接所述底盘电驱系统,所述制动能量检测与控制单元设置于所述低压电源单元和所述底盘电驱系统之间,所述制动能量检测与控制单元用于监测所述底盘电驱系统回馈的短时高压,并吸收高压能量。
  2. 根据权利要求1所述的制动能量控制电路,其特征在于,所述制动能量检测与控制单元包括电压检测模块VC、泄放电阻R和继电器K4,所述电压检测模块VC的正端、所述继电器K4的一端共同与所述低压电源单元的输出端连接,所述继电器K4的另一端通过所述泄放电阻R与所述低压电源单元的输出端的GND连接,所述电压检测模块VC的负端与所述低压电源单元的输出端的GND连接,所述电压检测模块VC通过控制信号线连接所述继电器K4。
  3. 一种充电机器人,其特征在于,包括如权利要求1或2所述的制动能量控制电路。
  4. 根据权利要求3所述的充电机器人,其特征在于,还包括充电控制器、DC/DC充电模块和充电枪,所述DC/DC充电模块的输入端通过继电器K1与所述储能电池组连接,所述DC/DC充电模块的输出端通过继电器K2与所述充电枪连接,所述充电控制器通过通信线分别与所述储能电池组、所述DC/DC充电模块、所述充电枪连接。
  5. 根据权利要求4所述的充电机器人,其特征在于,所述低压电源单元的输出端与所述充电控制器连接,并通过继电器K3与所述充电枪连接。
  6. 根据权利要求5所述的充电机器人,其特征在于,所述充电控制器通过控制信号线分别连接所述继电器K1、所述继电器K2和所述继电器K3。
  7. 根据权利要求6所述的充电机器人,其特征在于,所述低压电源单元包括电源变换装置和断路器QF,所述断路器QF设置于所述储能电池组和所述电源变换装置之间,所述电源变换装置将所述储能电池组的高电压转换成24V低压。
  8. 根据权利要求7所述的充电机器人,其特征在于,所述底盘电驱系统包括电机控制器MCU和电机M,所述电机控制器MCU连接所述低压电源单元。
PCT/CN2023/139982 2022-10-28 2023-12-19 制动能量控制电路及充电机器人 WO2024088442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222873078.7 2022-10-28
CN202222873078.7U CN218472823U (zh) 2022-10-28 2022-10-28 一种制动能量控制电路及充电机器人

Publications (1)

Publication Number Publication Date
WO2024088442A1 true WO2024088442A1 (zh) 2024-05-02

Family

ID=85147287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/139982 WO2024088442A1 (zh) 2022-10-28 2023-12-19 制动能量控制电路及充电机器人

Country Status (2)

Country Link
CN (1) CN218472823U (zh)
WO (1) WO2024088442A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218472823U (zh) * 2022-10-28 2023-02-10 安徽易加能数字科技有限公司 一种制动能量控制电路及充电机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263894A (ja) * 2005-03-25 2006-10-05 Seiko Epson Corp 多関節ロボットのモータブレーキ解除装置
CN209402226U (zh) * 2019-01-07 2019-09-17 中国科学院深圳先进技术研究院 一种具有垂直性负载的再生制动能量回收装置及机器人
CN111313801A (zh) * 2018-12-12 2020-06-19 上海安浦鸣志自动化设备有限公司 一种电机反电势能量回馈及泄放的系统
CN111355227A (zh) * 2020-04-09 2020-06-30 西北机电工程研究所 用于外骨骼机器人电机控制器的母线电压保护泄放电路
CN112803397A (zh) * 2021-01-07 2021-05-14 配天机器人技术有限公司 一种机器人的供电控制系统及供电控制方法
CN218472823U (zh) * 2022-10-28 2023-02-10 安徽易加能数字科技有限公司 一种制动能量控制电路及充电机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263894A (ja) * 2005-03-25 2006-10-05 Seiko Epson Corp 多関節ロボットのモータブレーキ解除装置
CN111313801A (zh) * 2018-12-12 2020-06-19 上海安浦鸣志自动化设备有限公司 一种电机反电势能量回馈及泄放的系统
CN209402226U (zh) * 2019-01-07 2019-09-17 中国科学院深圳先进技术研究院 一种具有垂直性负载的再生制动能量回收装置及机器人
CN111355227A (zh) * 2020-04-09 2020-06-30 西北机电工程研究所 用于外骨骼机器人电机控制器的母线电压保护泄放电路
CN112803397A (zh) * 2021-01-07 2021-05-14 配天机器人技术有限公司 一种机器人的供电控制系统及供电控制方法
CN218472823U (zh) * 2022-10-28 2023-02-10 安徽易加能数字科技有限公司 一种制动能量控制电路及充电机器人

Also Published As

Publication number Publication date
CN218472823U (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
WO2024088442A1 (zh) 制动能量控制电路及充电机器人
CN109532494B (zh) 一种纯电动汽车高压上电控制方法及高压下电控制方法
CN108437835B (zh) 电源系统
CN113459810A (zh) 基于全功率电电混合燃料电池汽车的下电控制方法
CN209305363U (zh) 一种预充电阻保护系统
CN205749687U (zh) 一种风电变桨超级电容容量检测装置
CN105514935B (zh) 一种带延时功能的欠压控制器及其控制方法
CN101572332A (zh) 一种高压电池的控制系统及其控制方法
CN107543990B (zh) 再生能量回收试验系统及试验方法
CN104057838B (zh) 电动车驱动系统及其母线电容放电方法
CN109301908A (zh) 快速充电系统、充电方法及高空作业设备
CN105109429B (zh) 一种基于车载无线终端的电源管理方法
CN207481815U (zh) 电动汽车高压上下电系统
CN103612571B (zh) 电动汽车蓄电池故障紧急控制系统
CN203398867U (zh) 一种长寿命ups电源
CN102501771A (zh) 用于客车高压电安全保护的控制方法
WO2020211238A1 (zh) 一种移动充电车充电系统
WO2024104243A1 (zh) 一种氢燃料混合动力机车的停机控制方法及相关设备
CN103434411A (zh) 一种在线充电式电动车制动能量的回收系统
CN210062685U (zh) 高压放电装置和车辆
WO2023040368A1 (zh) 一种驻车控制器的备用电源系统
CN216861185U (zh) 一种防爆锂电池系统上电与下电控制装置
CN212258505U (zh) 适用于储能柜的bms电池管理设备
CN203632293U (zh) 电动汽车蓄电池故障紧急控制系统
CN201761370U (zh) 纯电动车电机驱动控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882017

Country of ref document: EP

Kind code of ref document: A1