WO2024087991A1 - 一种输电线路用防雷防单向复合柱式绝缘子 - Google Patents

一种输电线路用防雷防单向复合柱式绝缘子 Download PDF

Info

Publication number
WO2024087991A1
WO2024087991A1 PCT/CN2023/121466 CN2023121466W WO2024087991A1 WO 2024087991 A1 WO2024087991 A1 WO 2024087991A1 CN 2023121466 W CN2023121466 W CN 2023121466W WO 2024087991 A1 WO2024087991 A1 WO 2024087991A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
insulator body
rod
sliding rod
power transmission
Prior art date
Application number
PCT/CN2023/121466
Other languages
English (en)
French (fr)
Inventor
周函宇
杨锐
赵贯超
杨海滨
陈皓东
杨轲程
张磊
Original Assignee
云南电网有限责任公司曲靖供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南电网有限责任公司曲靖供电局 filed Critical 云南电网有限责任公司曲靖供电局
Publication of WO2024087991A1 publication Critical patent/WO2024087991A1/zh

Links

Definitions

  • the utility model relates to the technical field of power transmission lines, in particular to a lightning protection and unidirectional composite post insulator for power transmission lines.
  • Composite post insulators are usually composed of an inner gap group, an upper fitting, a lower fitting and a nonlinear resistor, among which the upper fitting is connected to the transmission line, and the lower fitting is fixed on a conductive mounting bracket and grounded through a conductive mounting bracket or a grounding wire.
  • the inner gap group is broken down to form an ionization channel, the equivalent resistance of the nonlinear resistor decreases, and the current is introduced into the earth through the inside of the insulator for leakage.
  • the power frequency current flows down along the ionization channel, but at this time the equivalent resistance of the nonlinear resistor increases instantly, blocking the power frequency current, and the ionization channel is closed, and the insulator is restored.
  • the nonlinear resistor cannot cut off the power frequency current, and the power frequency current is introduced into the earth through the insulator, causing a continuous single-phase grounding fault.
  • patent CN202011146977.6 discloses a lightning-proof, explosion-proof and single-phase grounding-proof composite column insulator, including an insulator body and a spare insulator, the fault disconnection component includes a movable plate and a fixed plate, the movable end of the movable plate is detachably connected to the fixed plate, a trigger part is provided on the fixed plate, the trigger part includes a magnetic ring, a conductive tube and a detonating tube are provided inside the magnetic ring, the fault connection component includes a metal sleeve and a metal conductive rod, an insulating tube is also connected to the insulator body, one end of the insulating tube is connected to the connecting groove corresponding to the spare insulator to form an insulating connection channel between the connecting groove and the inner wall of the insulating tube for the metal conductive rod to move.
  • the utility model aims to provide a lightning protection and unidirectional composite post insulator for a power transmission line, which has a simple structure, reduces manufacturing costs and is conducive to promotion.
  • the specific solution adopted by the utility model is a lightning protection and one-way composite column insulator for transmission lines: including a conductive mounting bracket connected to a grounding wire, a main insulator body and an auxiliary insulator body arranged on the conductive mounting bracket, upper hardware fittings are arranged at the upper ends of the main insulator body and the auxiliary insulator body, and lower hardware fittings are arranged at the lower ends, and a switching mechanism is also included between the main insulator body and the auxiliary insulator body, and the switching mechanism is used to cut the current from the main insulator body to the auxiliary insulator body; the switching mechanism
  • the structure comprises a guide cylinder arranged on the conductive mounting bracket, a sliding rod is slidably arranged in the guide cylinder, and the sliding rod is coaxially arranged with the guide cylinder;
  • the sliding rod is staggered with a first sleeve, a second sleeve and a third sleeve distributed vertically from top to bottom;
  • the first sleeve is located directly above the hardware on the auxiliary insulator body, and the hardware on the auxiliary insulator body is provided with a lead-out rod distributed vertically;
  • the second sleeve is plugged and matched with the lead-out rod provided on the hardware on the main insulator body, and the third sleeve is plugged and matched with the lead-out rod provided on the hardware below the main insulator body;
  • a driving assembly connected to a sliding rod is provided at the lower edge of the conductive mounting bracket.
  • the driving assembly is used to drive the sliding rod to drive the first sleeve, the second sleeve and the third sleeve to move, so that the first sleeve is plugged into and matched with the lead-out rod on the auxiliary insulator body, and the third sleeve slides out of the lead-out rod on the lower hardware of the main insulator body and is directly below the main insulator body.
  • three connecting rods are alternately arranged on the sliding rod, one end of the connecting rod is fixed on the sliding rod, and the other end is respectively connected to the first sleeve, the second sleeve, and the third sleeve on the corresponding side.
  • a current sensor for detecting the current in the grounding wire and a controller for controlling the opening and closing of the driving component are arranged between the driving component and the grounding wire, and the current sensor is connected to the controller by electrical signals.
  • an insulating ring is arranged at the place where the driving component passes through the conductive mounting bracket.
  • an insulating mounting seat is arranged between the main insulator body and the conductive mounting bracket.
  • the driving component is an electric push rod
  • the telescopic rod of the electric push rod passes through the conductive mounting bracket to connect the sliding rod
  • an insulating connector is arranged between one end of the telescopic rod of the electric push rod passing through the conductive mounting bracket and the sliding rod.
  • the second sleeve in the switching mechanism of the utility model is plugged and matched with the lead-out rod on the hardware on the main insulation group body, and the third sleeve is plugged and matched with the lower hardware on the main insulator body, so that the main insulator body is in working condition.
  • the first sleeve is located directly above the hardware on the auxiliary insulator body, so that the auxiliary insulator body can be disabled when the main insulator body is in normal use.
  • the sliding rod can be driven downward by the driving machine, and the downward sliding rod drives the third sleeve to separate from the lead-out rod on the lower hardware of the main insulator body, so as to achieve isolation of the main insulator body.
  • the downward sliding rod drives the first sleeve to plug and match with the auxiliary insulator body, so as to introduce the power frequency current flowing from the main insulator body into the conductive mounting bracket into the auxiliary insulator body, which not only avoids the occurrence of unidirectional grounding faults, but also has a simple overall structure and low manufacturing cost, which is conducive to popularization and use.
  • the provision of the elastic spring sheet can increase the contact effect between the first sleeve, the second sleeve and the third sleeve and the corresponding side lead-out rods respectively.
  • FIG1 is a schematic diagram of the front view of the insulator in the initial state of the utility model
  • FIG2 is a schematic diagram of the main structure of the auxiliary insulating body after the main insulator body is damaged in the utility model:
  • FIG. 3 is a schematic cross-sectional structural diagram of a switching mechanism.
  • FIG4 is a schematic cross-sectional view of the first sleeve, the second sleeve or the third sleeve.
  • Figure numerals 1. conductive mounting bracket, 2. insulating mounting seat, 3. lower hardware, 4. main insulator body, 5. upper hardware, 6. lead-out rod, 7. second sleeve, 8. connecting rod, 9. guide cylinder, 10. first sleeve, 11. auxiliary insulator body, 12. insulating ring, 13. driving assembly, 14. current sensor, 15. grounding wire, 16. third sleeve, 17. slide groove, 18. sliding rod, 19. insulating connector, 20. elastic spring.
  • a lightning protection and one-way composite column insulator for a power transmission line of the utility model comprises a conductive mounting bracket 1 connected to a grounding wire 15 , a main insulator body 4 arranged on the conductive mounting bracket 1 , a secondary insulator body 11 and a switching mechanism.
  • the upper ends of the main insulator body 4 and the auxiliary insulator body 11 are embedded with an upper hardware 5, and the lower ends of the main insulator body 4 and the auxiliary insulator body 11 are embedded with a lower hardware 3.
  • a nonlinear resistor is provided inside the body 11.
  • An insulating mounting seat 2 is provided on the outer periphery of the lower hardware 3 on the main insulator body 4, and the insulating mounting seat 2 is used to fix the main insulator body 4 on the conductive mounting bracket 1.
  • the upper end of the insulating mounting seat 2 is fixedly connected to the main insulator body 4, and the lower end of the insulating mounting seat 2 is fixed to the conductive mounting bracket 1.
  • the upper hardware 5 and the lower hardware 3 on the main insulator body 4 are respectively provided with lead rods 6 distributed vertically and cooperating with the switching mechanism.
  • the auxiliary insulator body 11 is located on the right side of the main insulator body 4, the lower hardware 3 on the auxiliary insulator body 11 is fixed on the conductive mounting bracket 1, and the upper hardware 5 on the auxiliary insulator body 11 is provided with lead rods 6 distributed vertically and cooperating with the switching mechanism.
  • the switching mechanism is used to introduce the power frequency current from the main insulator body 4 into the auxiliary insulator body 11, and then into the ground through the grounding wire 15.
  • the switching mechanism includes a guide cylinder 9 and a sliding rod 18 slidably arranged in the guide cylinder 9, and the guide cylinder 9 is fixed in the vertical direction on the conductive mounting bracket 1 located between the main insulator body 4 and the auxiliary insulator body 11.
  • the sliding rod 18 is coaxially arranged with the guide cylinder 9, and the guide cylinder 9 is made of insulating material, and the sliding rod 18 is made of conductive material.
  • Three connecting rods 8 are arranged alternately from top to bottom on the sliding rod 18, and sliding grooves 17 corresponding to the connecting rods 8 are arranged alternately on the side wall of the guide cylinder 9, and the sliding grooves 17 slide and cooperate with the corresponding connecting rods 8 as the sliding rod 18 moves.
  • one end of the connecting rod 8 located on the upper left side of the sliding rod 18 is fixed on the sliding rod 18, and the other end is connected to the second sleeve 7, the inner cavity of the second sleeve 7 is distributed vertically and plugged with the lead-out rod 6 on the hardware 5 on the main insulator body 4.
  • One end of the connecting rod 8 located at the lower left side of the sliding rod 18 is fixed on the sliding rod 18, and the other end is connected to the third sleeve 16.
  • the inner cavity of the third sleeve 16 is distributed vertically and plugged with the lead-out rod 6 on the lower hardware 3 of the main insulator body 4.
  • the upper hardware 5 on the main insulator body 4 is connected to the transmission line
  • the lower hardware 3 on the main insulator body 4 is connected to the conductive mounting bracket 1 through the third sleeve 16, and is grounded through the wiring ground on the conductive mounting bracket 1, so that the main insulator is in a normal working state.
  • the first sleeve 10 is directly above the lead-out rod 6 on the auxiliary insulator body 11.
  • two elastic springs 20 are provided in the first sleeve 10, the second sleeve 7 and the third sleeve 16.
  • the two elastic springs 20 are distributed in opposite directions, so that the first sleeve 10, the second sleeve 7 and the third sleeve 16 maintain a conductive contact state when they are relatively slidably plugged into the lead-out rod 6 on the corresponding side.
  • a driving assembly 13 connected to a sliding rod 18 is provided at the lower edge of the conductive mounting bracket 1.
  • the driving assembly 13 is an electric push rod, and an insulating ring 12 is provided at the place where the electric push rod passes through the conductive mounting bracket 1.
  • the telescopic rod of the electric push rod passes through the conductive mounting bracket 1 and is connected to the sliding rod 18.
  • An insulating connector 19 is provided at the connection between the telescopic rod of the electric push rod and the sliding rod 18.
  • a current sensor 14 and a controller are arranged between the driving component 13 and the grounding wire 15, and the driving component 13, the current sensor 14 and the controller are all powered by the transmission line.
  • the current sensor 14 is used to detect the abnormal current of the grounding wire 15, and transmit the electrical signal to the controller, which then controls the opening and closing of the electric push rod.
  • the controller controls the electric push rod to start, the telescopic rod of the electric push rod retracts and drives the sliding rod 18 to move downward, and the third sleeve 16 slides out of the lead-out rod 6 on the hardware 3 under the main insulator body 4 as the sliding rod 18 moves downward, thereby isolating the main insulator body 4.
  • the second sleeve 7 is always plugged in with the lead-out rod 6 on the hardware 5 on the main insulator body 4 for conduction.
  • the first sleeve 10 is plugged into and matched with the lead-out rod 6 on the auxiliary insulator body 11, so that the power frequency current that cannot be cut off by the nonlinear resistor in the main insulator body 4 is introduced into the auxiliary insulator body 11 through the first sleeve 10, and the power frequency current is introduced into the grounding wire 15 and then into the earth through the connection between the lower hardware 3 on the auxiliary insulator body 11 and the conductive mounting bracket 1, thereby avoiding the occurrence of a one-way grounding fault.
  • the specific implementation of the utility model is as follows: In the initial state as shown in Figure 1, the upper hardware 5 on the main insulator body 4 is connected to the transmission line, the lower hardware 3 on the main insulator body 4 is connected to the conductive mounting bracket 1 through the third sleeve 16, and the conductive mounting bracket 1 is grounded through the grounding wire 15. At this time, the main insulator is in working condition. When the main insulator body 4 is damaged by excessive lightning strike, the current sensor 14 detects the continuous power frequency current and transmits this information electrical signal to the controller, and the controller issues a command for the electric push rod to retract.
  • the telescopic rod of the electric push rod retracts and moves downward, and drives the sliding rod 18 to move downward, then the third sleeve 16 moves downward with the sliding rod 18 to disengage from the lead-out rod 6 on the lower hardware 3 of the main insulator body 4, and the lower hardware 3 on the main insulator body 4 is disconnected from the conductive mounting bracket 1.
  • the second sleeve 7 is always plugged with the lead-out rod 6 on the hardware 5 on the main insulator body 4.
  • the first sleeve 10 is plugged into and matched with the lead-out rod 6 on the upper fitting 5 of the auxiliary insulator body 11 (as shown in the state of FIG. 2 ).
  • the upper fitting 5 on the auxiliary insulator body 11 is conductively connected to the upper fitting 5 on the main insulator body 4 through the third sleeve 16 and the connecting rod 8, thereby cutting the current into the auxiliary insulator body 11.

Abstract

一种输电线路用防雷防单向复合柱式绝缘子,包括导电安装支架、设置在导电安装支架上的主绝缘子本体和副绝缘子本体,主绝缘子本体与副绝缘子本体的上端均设有上金具,下端均设有下金具;主绝缘子本体和副绝缘子本体间设有切换机构,切换机构包括设置在导电安装支架上的导向筒,导向筒内滑动设置有滑动杆,滑动杆上设置有第一套筒、第二套筒以及第三套筒;第一套筒位于副绝缘子本体上金具上的引出杆的正上方;第二套筒与设置于主绝缘子本体上金具上的引出杆插接配合,第三套筒与设置于主绝缘子本体下金具上的引出杆插接配合;导电安装支架下沿设置有连接滑动杆的驱动组件。本实用新型结构简单,降低了制造成本,还有利于推广。

Description

一种输电线路用防雷防单向复合柱式绝缘子 技术领域
本实用新型涉及输电线路技术领域,具体的说是一种输电线路用防雷防单向复合柱式绝缘子。
背景技术
复合柱式绝缘子通常由内间隙组、上金具、下金具和非线性电阻片等组成,其中,上金具与输电线路连接,下金具固定在导电安装支架上,并通过导电安装支架或接地线接地。在雷击时,内间隙组被击穿,形成电离通道,非线性电阻片等效电阻变小,电流经绝缘子内部引入大地泄流。雷电过后,工频电流沿电离通道而下,但此时非线性电阻片等效电阻瞬间变大,阻断了工频电流,随之电离通道关闭,绝缘子恢复。如遇雷击电流过大,绝缘子本体超载并损坏。在雷击过后,非线性电阻片无法切断工频电流,工频电流经绝缘子引入大地,造成持续性单相接地故障。
为了解决上述问题,专利CN202011146977.6公开了一种防雷防爆防单相接地复合柱式绝缘子,包括绝缘子本体和备用绝缘子,故障脱离组件包括动板和定板,动板的活动端与定板可拆卸连接,定板上设有触发部,触发部包括磁环,磁环内设有导电管和导爆管,故障连接组件包括金属套筒和金属导电杆,绝缘子本体上还连接有绝缘管,绝缘管的一端连接于对应备用绝缘子的连接槽上,以在连接槽和绝缘管内壁之间形成供金属导电杆移动的绝缘连接通道。
但是该专利结构较为复杂,并且生产制造成本较高,并不利于推广使用。
实用新型内容
本实用新型旨在提供一种输电线路用防雷防单向复合柱式绝缘子,结构简单,降低了制造成本,还有利于推广。
为了解决以上技术问题,本实用新型采用的具体方案为一种输电线路用防雷防单向复合柱式绝缘子:包括连接有接地线的导电安装支架、设置在导电安装支架上的主绝缘子本体和副绝缘子本体,主绝缘子本体与副绝缘子本体的上端均设有上金具,下端均设有下金具,还包括设置在主绝缘子本体和副绝缘子本体间的切换机构,切换机构用于将电流由主绝缘子本体切入副绝缘子本体;切换机 构包括设置在导电安装支架上的导向筒,导向筒内滑动设置有滑动杆,滑动杆与导向筒同轴设置;
滑动杆上由上至下依次交错设置有沿竖向分布的第一套筒、第二套筒以及第三套筒;第一套筒处于副绝缘子本体上金具的正上方,副绝缘子本体上金具上设置有沿竖向分布的引出杆;第二套筒与设置于主绝缘子本体上金具上的引出杆插接配合,第三套筒与设置于主绝缘子本体下金具上的引出杆插接配合;
导电安装支架下沿设置有连接滑动杆的驱动组件,驱动组件用于驱动滑动杆带动第一套筒、第二套筒以及第三套筒移动,以使第一套筒与副绝缘子本体上的引出杆插接配合、第三套筒滑出主绝缘子本体下金具上的引出杆并处于主绝缘子本体正下方。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:滑动杆上交错设置有三个连接杆,连接杆的一端固定在滑动杆上,另一端分别连接对应侧的第一套筒、第二套筒、第三套筒。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:导向筒的侧壁上交错设有沿竖向分布的并供对应侧连接杆滑动的滑槽。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:驱动组件与接地线间设置有用于检测接地线内电流的电流传感器和用于控制驱动组件启闭的控制器,电流传感器与控制器电信号连接。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:驱动组件穿过导电安装支架处设置有绝缘环。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:主绝缘子本体与导电安装支架间设置有绝缘安装座。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:驱动组件为电动推杆,电动推杆的伸缩杆穿过导电安装支架连接滑动杆。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:电动推杆的伸缩杆穿过导电安装支架的一端与滑动杆间设置有绝缘连接件。
作为本实用新型一种输电线路用防雷防单向复合柱式绝缘子的进一步优化:第一套筒、第二套筒以及第三套筒内均设置有两个朝向相对方向分布的弹性簧片。
有益效果
本实用新型切换机构中的第二套筒与主绝缘组本体上金具上的引出杆插接配合、第三套筒与主绝缘子本体上的下金具插接配合,使得主绝缘子本体处于工作状态。而第一套筒处于副绝缘子本体上金具的正上方,能够在主绝缘子本体正常使用状态下不启用副绝缘子本体。而当雷击造成主绝缘子本体损坏后,可通过驱动机带动滑动杆下移,下移的滑动杆带动第三套筒脱离主绝缘子本体下金具上的引出杆,实现主绝缘子本体的隔离。而下移的滑动杆带动第一套筒与副绝缘子本体插接配合,从而将由主绝缘子本体流入导电安装支架的工频电流引入副绝缘子本体,不仅避免了单向接地故障的发生,而且整体结构较简单、制造成本低,有利于推广使用。
优选的,弹性簧片的设置能够增加第一套筒、第二套筒以及第三套筒分别与对应侧引出杆的接触效果。
附图说明
图1为本实用新型中绝缘子初始状态的主视结构示意图;
图2为本实用新型中主绝缘子本体损坏后启用副绝缘本体的主视结构示意图:
图3为切换机构的剖视结构示意图。
图4为第一套筒、第二套筒或第三套筒的剖视结构示意图。
附图标记:1、导电安装支架,2、绝缘安装座,3、下金具,4、主绝缘子本体,5、上金具,6、引出杆,7、第二套筒,8、连接杆,9、导向筒,10、第一套筒,11、副绝缘子本体,12、绝缘环,13、驱动组件,14、电流传感器,15、接地线,16、第三套筒,17、滑槽,18、滑动杆,19、绝缘连接件,20、弹性簧片。
具体实施方式
如图1所示,本实用新型的一种输电线路用防雷防单向复合柱式绝缘子,包括连接接地线15的导电安装支架1、设置在导电安装支架1上的主绝缘子本体4、副绝缘子本体11以及切换机构。
主绝缘子本体4和副绝缘子本体11的上端嵌设有上金具5,主绝缘子本体4和副绝缘子本体11的下端嵌设有下金具3,且主绝缘子本体4和副绝缘子 本体11内部均设有非线性电阻片。主绝缘子本体4上的下金具3外周设置有绝缘安装座2,绝缘安装座2用于将主绝缘子本体4固定在导电安装支架1上。绝缘安装座2的上端与主绝缘子本体4固定连接,绝缘安装座2的下端固定在导电安装支架1上。主绝缘子本体4上的上金具5和下金具3上分别设置有沿竖向分布的并与切换机构配合的引出杆6。副绝缘子本体11位于主绝缘子本体4的右侧,副绝缘子本体11上的下金具3固定在导电安装支架1上,且副绝缘子本体11上的上金具5上均设置有沿竖向分布的并与切换机构配合的引出杆6。
如图1及图3所示,切换机构用于将工频电流由主绝缘子本体4引入副绝缘子本体11,并通过接地线15引入大地。切换机构包括导向筒9和滑动设置在导向筒9内的滑动杆18,导向筒9沿竖直方向固定在位于主绝缘子本体4与副绝缘子本体11之间的导电安装支架1上。滑动杆18与导向筒9同轴设置,且导向筒9为绝缘材质,滑动杆18为导电材质。
滑动杆18上由上至下依次交错设置有三个连接杆8,导向筒9的侧壁上间隔交错设有沿竖向分布的并与连接杆8相对应的滑槽17,滑槽17随滑动杆18的移动而与相对应的连接杆8滑动配合。其中,位于滑动杆18左侧上方的连接杆8一端固定在滑动杆18上,另一端连接有第二套筒7,第二套筒7的内腔沿竖向分布并与主绝缘子本体4上金具5上的引出杆6插接配合。
位于滑动杆18左侧下方的连接杆8一端固定在滑动杆18上,另一端连接有第三套筒16,第三套筒16的内腔沿竖向分布并与主绝缘子本体4下金具3上的引出杆6插接配合。在绝缘子的正常使用状态下,主绝缘子本体4上的上金具5连接输电线路,主绝缘子本体4上的下金具3通过第三套筒16连接导电安装支架1,并通过导电安装支架1上的接线地接地,使得主绝缘子处于正常的工作状态。位于滑动杆18右侧最上方的连接杆8的一端固定在滑动杆18上,另一端上连接有第一套筒10,第一套筒10处于副绝缘子本体11上引出杆6的正上方。
如图4所示,第一套筒10、第二套筒7以及第三套筒16内均设置有两个弹性簧片20,两个弹性簧片20朝向相对方向分布,使得第一套筒10、第二套筒7以及第三套筒16与对应侧的引出杆6相对滑动插接配合时保持导电接触的状态。
如图3所示,导电安装支架1下沿设置有连接滑动杆18的驱动组件13,驱动组件13为电动推杆,电动推杆穿过导电安装支架1处设置有绝缘环12。电动推杆的伸缩杆穿过导电安装支架1与滑动杆18连接,电动推杆的伸缩杆与滑动杆18的连接处设置有绝缘连接件19。
如图2所示,驱动组件13与接地线15间设置于电流传感器14和控制器(图中未示出),且驱动组件13、电流传感器14以及控制器均由输电线路取电。电流传感器14用于检测接地线15的电流异常,并将此电信号传输于控制器,再由控制器控制电动推杆的启闭。控制器控制电动推杆启动后,电动推杆的伸缩杆回缩并带动滑动杆18下移,第三套筒16随滑动杆18的下移滑出主绝缘子本体4下金具3上的引出杆6,实现对主绝缘子本体4的隔离。第二套筒7始终与主绝缘子本体4上金具5上的引出杆6插接配合用以导电。然而,第一套筒10随滑动杆18的下移与副绝缘子本体11上的引出杆6插接配合,从而将主绝缘子本体4内的非线性电阻片无法切断的工频电流通过第一套筒10引入副绝缘子本体11,并通过副绝缘子本体11上的下金具3与导电安装支架1的连接将工频电流引入接地线15,进而引入大地,从而避免发生单向接地的故障。
本实用新型的具体实施方式如下:在如图1所示的初始状态下,主绝缘子本体4上的上金具5连接输电线路,主绝缘子本体4上的下金具3通过第三套筒16连接导电安装支架1,导电安装支架1通过接地线15接地,此时,主绝缘子处于工作状态。当雷击过大造成主绝缘子本体4损坏后,电流传感器14检测出持续的工频电流,并将此信息电信号传输于控制器,由控制器发出电动推杆回缩的指令。此时,电动推杆的伸缩杆回缩下移,并带动滑动杆18下移,则第三套筒16随滑动杆18下移脱离主绝缘子本体4下金具3上的引出杆6,主绝缘子本体4上的下金具3断开与导电安装支架1的连接。第二套筒7一直与主绝缘子本体4上金具5上的引出杆6插接配合。而第一套筒10随滑动杆18的下移与副绝缘子本体11上金具5上的引出杆6插接配合(如图2所示的状态),副绝缘子本体11上的上金具5通过第三套筒16、连接杆8与主绝缘子本体4上的上金具5导电连接,从而将电流切入副绝缘子本体11。

Claims (9)

  1. 一种输电线路用防雷防单向复合柱式绝缘子,包括连接有接地线(15)的导电安装支架(1)、设置在导电安装支架(1)上的主绝缘子本体(4)和副绝缘子本体(11),主绝缘子本体(4)与副绝缘子本体(11)的上端均设有上金具(5),下端均设有下金具(3),其特征在于:还包括设置在主绝缘子本体(4)和副绝缘子本体(11)间的切换机构,切换机构用于将电流由主绝缘子本体(4)切入副绝缘子本体(11);切换机构包括设置在导电安装支架(1)上的导向筒(9),导向筒(9)内滑动设置有滑动杆(18),滑动杆(18)与导向筒(9)同轴设置;
    滑动杆(18)上由上至下依次交错设置有沿竖向分布的第一套筒(10)、第二套筒(7)以及第三套筒(16);第一套筒(10)处于副绝缘子本体(11)上金具(5)的正上方,副绝缘子本体(11)上金具(5)上设置有沿竖向分布的引出杆(6);第二套筒(7)与设置于主绝缘子本体(4)上金具(5)上的引出杆(6)插接配合,第三套筒(16)与设置于主绝缘子本体(4)下金具(3)上的引出杆(6)插接配合;
    导电安装支架(1)下沿设置有连接滑动杆(18)的驱动组件(13),驱动组件(13)用于驱动滑动杆(18)带动第一套筒(10)、第二套筒(7)以及第三套筒(16)移动,以使第一套筒(10)与副绝缘子本体(11)上的引出杆(6)插接配合、第三套筒(16)滑出主绝缘子本体(4)下金具(3)上的引出杆(6)并处于主绝缘子本体(4)正下方。
  2. 根据权利要求1所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:滑动杆(18)上交错设置有三个连接杆(8),连接杆(8)的一端固定在滑动杆(18)上,另一端分别连接对应侧的第一套筒(10)、第二套筒(7)、第三套筒(16)。
  3. 根据权利要求2所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:导向筒(9)的侧壁上交错设有沿竖向分布的并供对应侧连接杆(8)滑动的滑槽(17)。
  4. 根据权利要求1所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:驱动组件(13)与接地线(15)间设置有用于检测接地线(15)内电流的电流传感器(14)和用于控制驱动组件(13)启闭的控制器,电流传感器(14) 与控制器电信号连接。
  5. 根据权利要求1所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:驱动组件(13)穿过导电安装支架(1)处设置有绝缘环(12)。
  6. 根据权利要求1所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:主绝缘子本体(4)与导电安装支架(1)间设置有绝缘安装座(2)。
  7. 根据权利要求1所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:驱动组件(13)为电动推杆,电动推杆的伸缩杆穿过导电安装支架(1)连接滑动杆(18)。
  8. 根据权利要求7所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:电动推杆的伸缩杆穿过导电安装支架(1)的一端与滑动杆(18)间设置有绝缘连接件(19)。
  9. 根据权利要求1所述的一种输电线路用防雷防单向复合柱式绝缘子,其特征在于:第一套筒(10)、第二套筒(7)以及第三套筒(16)内均设置有两个朝向相对方向分布的弹性簧片(20)。
PCT/CN2023/121466 2022-10-25 2023-09-26 一种输电线路用防雷防单向复合柱式绝缘子 WO2024087991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222843891.XU CN218730161U (zh) 2022-10-25 2022-10-25 一种输电线路用防雷防单向复合柱式绝缘子
CN202222843891.X 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087991A1 true WO2024087991A1 (zh) 2024-05-02

Family

ID=85593733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121466 WO2024087991A1 (zh) 2022-10-25 2023-09-26 一种输电线路用防雷防单向复合柱式绝缘子

Country Status (2)

Country Link
CN (1) CN218730161U (zh)
WO (1) WO2024087991A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218730161U (zh) * 2022-10-25 2023-03-24 云南电网有限责任公司曲靖供电局 一种输电线路用防雷防单向复合柱式绝缘子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110006154A (ko) * 2009-07-13 2011-01-20 배한주 일체형으로 형성된 전주용 라인 포스트 애자와 폴리머 피뢰기 설치구조
CN203895206U (zh) * 2014-06-12 2014-10-22 宜兴华源电工设备有限公司 一种双重防雷防爆复合柱式绝缘子
CN110648808A (zh) * 2019-09-06 2020-01-03 国网浙江省电力有限公司衢州供电公司 架空线路用防单相接地式防雷穿刺绝缘子
CN112289530A (zh) * 2020-10-23 2021-01-29 河南四达电力设备股份有限公司 一种防雷防爆防单相接地复合柱式绝缘子
CN218730161U (zh) * 2022-10-25 2023-03-24 云南电网有限责任公司曲靖供电局 一种输电线路用防雷防单向复合柱式绝缘子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110006154A (ko) * 2009-07-13 2011-01-20 배한주 일체형으로 형성된 전주용 라인 포스트 애자와 폴리머 피뢰기 설치구조
CN203895206U (zh) * 2014-06-12 2014-10-22 宜兴华源电工设备有限公司 一种双重防雷防爆复合柱式绝缘子
CN110648808A (zh) * 2019-09-06 2020-01-03 国网浙江省电力有限公司衢州供电公司 架空线路用防单相接地式防雷穿刺绝缘子
CN112289530A (zh) * 2020-10-23 2021-01-29 河南四达电力设备股份有限公司 一种防雷防爆防单相接地复合柱式绝缘子
CN218730161U (zh) * 2022-10-25 2023-03-24 云南电网有限责任公司曲靖供电局 一种输电线路用防雷防单向复合柱式绝缘子

Also Published As

Publication number Publication date
CN218730161U (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2024087991A1 (zh) 一种输电线路用防雷防单向复合柱式绝缘子
CN203151088U (zh) 一种单相接地故障隔离装置
CN201215781Y (zh) 40.5kV永磁固封式户内高压真空断路器
CN201060794Y (zh) 真空断路器
CN201498869U (zh) 真空环网柜
CN201075318Y (zh) 一种绝缘子串电弧泄放装置
CN207602466U (zh) 一种路灯快速涡流驱动电源控制开关
CN208336119U (zh) 两极漏电断路器
CN202816779U (zh) 固体绝缘极柱
CN205810683U (zh) 分级开合的高压真空灭弧室
CN104143451B (zh) 一种高速接地开关及其构成的接地开关装配单元
CN201118539Y (zh) 智能型复合开关
CN101930870A (zh) 三相三工位隔离电缆接头全屏蔽真空断路器
CN112289530B (zh) 一种防雷防爆防单相接地复合柱式绝缘子
CN210296210U (zh) 一种户外高压隔离开关
CN201812734U (zh) 三相三工位隔离电缆接头全屏蔽真空断路器
CN203301033U (zh) 一种模块化固体绝缘环网柜
CN207200252U (zh) 一种高可靠性快速开关型故障限流器
CN112269109A (zh) 气体绝缘输电线路试验装置及试验方法
CN206271607U (zh) 一种侧挂式隔离接地联动式真空断路器
CN202996694U (zh) 固体绝缘筒
CN203055774U (zh) 三工位固体全绝缘开关
CN213845131U (zh) 一种带球形触头的隔离开关
CN203631994U (zh) 固体绝缘开关柜隔离装置
CN212062327U (zh) 一种智能户外断路器