WO2024087666A1 - Procédé et appareil de transmission de signaux de détection et de communication intégrés - Google Patents

Procédé et appareil de transmission de signaux de détection et de communication intégrés Download PDF

Info

Publication number
WO2024087666A1
WO2024087666A1 PCT/CN2023/101133 CN2023101133W WO2024087666A1 WO 2024087666 A1 WO2024087666 A1 WO 2024087666A1 CN 2023101133 W CN2023101133 W CN 2023101133W WO 2024087666 A1 WO2024087666 A1 WO 2024087666A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
sensing
flexible resources
flexible
duration
Prior art date
Application number
PCT/CN2023/101133
Other languages
English (en)
Other versions
WO2024087666A9 (fr
Inventor
Haipeng Lei
Haiming Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2023/101133 priority Critical patent/WO2024087666A1/fr
Publication of WO2024087666A1 publication Critical patent/WO2024087666A1/fr
Publication of WO2024087666A9 publication Critical patent/WO2024087666A9/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • Embodiments of the present disclosure generally relate to wireless communication technology, and more particularly to integrated sensing and communication.
  • a wireless communications system may include one or multiple network communication devices, such as base stations, which may support wireless communications for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology.
  • the wireless communications system may support wireless communications with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers, or the like) .
  • the wireless communications system may support wireless communications across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) (which is also known as new radio (NR) ) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • NR new radio
  • Wireless sensing technologies can acquire information about a remote object and its characteristics without physically contacting it. Perception data of the object can be utilized for analysis, such that meaningful information about the object and its characteristics can be obtained.
  • Perception data of the object can be utilized for analysis, such that meaningful information about the object and its characteristics can be obtained.
  • radar is a widely used wireless sensing technology that uses radio waves to determine, for example, the distance (range) , angle, or instantaneous linear velocity of objects.
  • RF non-radio frequency
  • ToF time-of-flight
  • accelerometers e.g., gyroscopes and LiDARs.
  • Integrated sensing and communication may refer to that the sensing capabilities are provided by the same wireless communication system and infrastructure (e.g., 5G NR or 6G) as used for communication. It is desirable to introduce integrated sensing and communication into a wireless communication system such as a 5G system or a 6G system. It is further desirable to improve integrated sensing and communication services to satisfy various requirements under various application scenarios.
  • 5G NR or 6G wireless communication system and infrastructure
  • the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. Further, as used herein, including in the claims, a “set” may include one or more elements.
  • the BS may include: at least one memory; and at least one processor coupled with the at least one memory and configured to cause the BS to: transmit, to a user equipment (UE) , a configuration for configuring an integrated communication and sensing split pattern including downlink resources, uplink resources, and flexible resources, wherein the flexible resources include a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; perform downlink transmission to the UE within the downlink resources or the first set of flexible resources; switch from the communication function to the sensing function within a first duration of the second set of flexible resources; transmit a sensing signal within a second duration of the second set of flexible resources; receive an echo of the sensing signal within a third duration of the second set of flexible resources; switch from the sensing function to
  • the UE may include at least one memory; and at least one processor coupled with the at least one memory and configured to cause the UE to: receive, from a BS, a configuration for configuring an integrated communication and sensing split pattern including downlink resources, uplink resources, and flexible resources, wherein the flexible resources include a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement, or uplink transmission; perform downlink reception or measurement from the BS within the downlink resources or the first set of flexible resources; perform no downlink reception, measurement or uplink transmission within the second set of flexible resources; and perform uplink transmission to the BS within the first set of flexible resources or the uplink resources.
  • the processor may include at least one controller coupled with at least one memory and configured to cause the processor to: receive, from a base station (BS) , a configuration for configuring an integrated communication and sensing split pattern comprising downlink resources, uplink resources, and flexible resources, wherein the flexible resources comprise a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; perform downlink reception or measurement from the BS within the downlink resources or the first set of flexible resources; perform no downlink reception, measurement or uplink transmission within the second set of flexible resources; and perform uplink transmission to the BS within the first set of flexible resources or the uplink resources.
  • BS base station
  • Some embodiments of the present disclosure provide a method for integrated sensing and communication.
  • the method may include: transmitting, to a UE, a configuration for configuring an integrated communication and sensing split pattern including downlink resources, uplink resources, and flexible resources, wherein the flexible resources include a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; performing downlink transmission to the UE within the downlink resources or the first set of flexible resources; switching from the communication function to the sensing function within a first duration of the second set of flexible resources; transmitting a sensing signal within a second duration of the second set of flexible resources; receiving an echo of the sensing signal within a third duration of the second set of flexible resources; switching from the sensing function to the communication function within a fourth duration of the second set of flexible resources; and performing uplink reception from the UE
  • Some embodiments of the present disclosure provide a method for integrated sensing and communication.
  • the method may include: receiving, from a BS, a configuration for configuring an integrated communication and sensing split pattern including downlink resources, uplink resources, and flexible resources, wherein the flexible resources include a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement, or uplink transmission; performing downlink reception or measurement from the BS within the downlink resources or the first set of flexible resources; performing no downlink reception, measurement or uplink transmission within the second set of flexible resources; and performing uplink transmission to the BS within the first set of flexible resources or the uplink resources.
  • the apparatus may include: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the at least one non-transitory computer-readable medium and the computer executable instructions may be configured to, with the at least one processor, cause the apparatus to perform a method according to some embodiments of the present disclosure.
  • FIG. 1 illustrates a schematic diagram of an integrated sensing and communication system in accordance with some embodiments of the present disclosure
  • FIG. 2 illustrates an exemplary integrated sensing and communication split pattern in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates an exemplary configuration of unavailable resources in accordance with some embodiments of the present disclosure
  • FIGS. 4 and 5 illustrate flow charts of exemplary procedures for integrated sensing and communication in accordance with some embodiments of the present disclosure
  • FIG. 6 illustrates a block diagram of an exemplary apparatus in accordance with some embodiments of the present disclosure
  • FIG. 7 illustrates an example of a UE in accordance with aspects of the present disclosure
  • FIG. 8 illustrates an example of a processor in accordance with aspects of the present disclosure.
  • FIG. 9 illustrates an example of a network equipment (NE) in accordance with aspects of the present disclosure.
  • FIG. 1 illustrates a schematic diagram of wireless communication system 100 in accordance with some embodiments of the present disclosure.
  • the wireless communications system 100 may include one or more NEs 102 (e.g., one or more BSs) , one or more UEs 104, and a core network (CN) 106.
  • the wireless communications system 100 may support various radio access technologies.
  • the wireless communications system 100 may be a 4G network, such as an LTE network or an LTE-Advanced (LTE-A) network.
  • the wireless communications system 100 may be a NR network, such as a 5G network, a 5G-Advanced (5G-A) network, or a 5G ultrawideband (5G-UWB) network.
  • the wireless communications system 100 may be a combination of a 4G network and a 5G network, or other suitable radio access technology including Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20.
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 The wireless communications system 100 may support radio access technologies beyond 5G, for example, 6G. Additionally, the wireless communications system 100 may support technologies, such as time division multiple access (TDMA) , frequency division multiple access (FDMA) , or code division multiple access (CDMA) , etc.
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • the one or more NEs 102 may be dispersed throughout a geographic region to form the wireless communications system 100.
  • One or more of the NE 102 described herein may be or include or may be referred to as a network node, a base station, a network element, a network function, a network entity, a radio access network (RAN) , a NodeB, an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology.
  • An NE 102 and a UE 104 may communicate via a communication link, which may be a wireless or wired connection.
  • an NE 102 and a UE 104 may perform wireless communication (e.g., receive signaling, transmit signaling) over a Uu interface.
  • An NE 102 may provide a geographic coverage area for which the NE 102 may support services for one or more UEs 104 within the geographic coverage area.
  • an NE 102 and a UE 104 may support wireless communication of signals related to services (e.g., voice, video, packet data, messaging, broadcast, etc. ) according to one or multiple radio access technologies.
  • an NE 102 may be moveable, for example, a satellite associated with a non-terrestrial network (NTN) .
  • NTN non-terrestrial network
  • different geographic coverage areas 112 associated with the same or different radio access technologies may overlap, but the different geographic coverage areas may be associated with different NE 102.
  • the one or more UEs 104 may be dispersed throughout a geographic region of the wireless communications system 100.
  • a UE 104 may include or may be referred to as a remote unit, a mobile device, a wireless device, a remote device, a subscriber device, a transmitter device, a receiver device, or some other suitable terminology.
  • the UE 104 may be referred to as a unit, a station, a terminal, or a client, among other examples.
  • the UE 104 may be referred to as an Internet-of-Things (IoT) device, an Internet-of-Everything (IoE) device, or machine-type communication (MTC) device, among other examples.
  • IoT Internet-of-Things
  • IoE Internet-of-Everything
  • MTC machine-type communication
  • a UE 104 may be able to support wireless communication directly with other UEs 104 over a communication link.
  • a UE 104 may support wireless communication directly with another UE 104 over a device-to-device (D2D) communication link.
  • D2D device-to-device
  • the communication link 114 may be referred to as a sidelink.
  • a UE 104 may support wireless communication directly with another UE 104 over a PC5 interface.
  • An NE 102 may support communications with the CN 106, or with another NE 102, or both.
  • an NE 102 may interface with other NE 102 or the CN 106 through one or more backhaul links (e.g., S1, N2, N2, or network interface) .
  • the NE 102 may communicate with each other directly.
  • the NE 102 may communicate with each other or indirectly (e.g., via the CN 106.
  • one or more NEs 102 may include subcomponents, such as an access network entity, which may be an example of an access node controller (ANC) .
  • An ANC may communicate with the one or more UEs 104 through one or more other access network transmission entities, which may be referred to as a radio heads, smart radio heads, or transmission-reception points (TRPs) .
  • TRPs transmission-reception points
  • the CN 106 may support user authentication, access authorization, tracking, connectivity, and other access, routing, or mobility functions.
  • the CN 106 may be an evolved packet core (EPC) , or a 5G core (5GC) , which may include a control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management functions (AMF) ) and a user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management functions
  • S-GW serving gateway
  • PDN gateway Packet Data Network gateway
  • UPF user plane function
  • control plane entity may manage non-access stratum (NAS) functions, such as mobility, authentication, and bearer management (e.g., data bearers, signal bearers, etc. ) for the one or more UEs 104 served by the one or more NEs 102 associated with the CN 106.
  • NAS non-access stratum
  • the CN 106 may communicate with a packet data network over one or more backhaul links (e.g., via an S1, N2, N2, or another network interface) .
  • the packet data network may include an application server.
  • one or more UEs 104 may communicate with the application server.
  • a UE 104 may establish a session (e.g., a protocol data unit (PDU) session, or the like) with the CN 106 via an NE 102.
  • the CN 106 may route traffic (e.g., control information, data, and the like) between the UE 104 and the application server using the established session (e.g., the established PDU session) .
  • the PDU session may be an example of a logical connection between the UE 104 and the CN 106 (e.g., one or more network functions of the CN 106) .
  • the NEs 102 and the UEs 104 may use resources of the wireless communications system 100 (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) ) to perform various operations (e.g., wireless communications) .
  • the NEs 102 and the UEs 104 may support different resource structures.
  • the NEs 102 and the UEs 104 may support different frame structures.
  • the NEs 102 and the UEs 104 may support a single frame structure.
  • the NEs 102 and the UEs 104 may support various frame structures (i.e., multiple frame structures) .
  • the NEs 102 and the UEs 104 may support various frame structures based on one or more numerologies.
  • One or more numerologies may be supported in the wireless communications system 100, and a numerology may include a subcarrier spacing and a cyclic prefix.
  • a first subcarrier spacing e.g., 15 kHz
  • a normal cyclic prefix e.g. 15 kHz
  • the first numerology associated with the first subcarrier spacing (e.g., 15 kHz) may utilize one slot per subframe.
  • a time interval of a resource may be organized according to frames (also referred to as radio frames) .
  • Each frame may have a duration, for example, a 10 millisecond (ms) duration.
  • each frame may include multiple subframes.
  • each frame may include 10 subframes, and each subframe may have a duration, for example, a 1 ms duration.
  • each frame may have the same duration.
  • each subframe of a frame may have the same duration.
  • a time interval of a resource may be organized according to slots.
  • a subframe may include a number (e.g., quantity) of slots.
  • the number of slots in each subframe may also depend on the one or more numerologies supported in the wireless communications system 100.
  • Each slot may include a number (e.g., quantity) of symbols (e.g., OFDM symbols) .
  • the number (e.g., quantity) of slots for a subframe may depend on a numerology.
  • a slot For a normal cyclic prefix, a slot may include 14 symbols.
  • a slot For an extended cyclic prefix (e.g., applicable for 60 kHz subcarrier spacing) , a slot may include 12 symbols.
  • an electromagnetic (EM) spectrum may be split, based on frequency or wavelength, into various classes, frequency bands, frequency channels, etc.
  • the wireless communications system 100 may support one or multiple operating frequency bands, such as frequency range designations FR1 (410 MHz –7.125 GHz) , FR2 (24.25 GHz –52.6 GHz) , FR3 (7.125 GHz –24.25 GHz) , FR4 (52.6 GHz –114.25 GHz) , FR4a or FR4-1 (52.6 GHz –71 GHz) , and FR5 (114.25 GHz –300 GHz) .
  • FR1 410 MHz –7.125 GHz
  • FR2 24.25 GHz –52.6 GHz
  • FR3 7.125 GHz –24.25 GHz
  • FR4 (52.6 GHz –114.25 GHz)
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR5 114.25 GHz
  • the NEs 102 and the UEs 104 may perform wireless communications over one or more of the operating frequency bands.
  • FR1 may be used by the NEs 102 and the UEs 104, among other equipment or devices for cellular communications traffic (e.g., control information, data) .
  • FR2 may be used by the NEs 102 and the UEs 104, among other equipment or devices for short-range, high data rate capabilities.
  • FR1 may be associated with one or multiple numerologies (e.g., at least three numerologies) .
  • FR2 may be associated with one or multiple numerologies (e.g., at least 2 numerologies) .
  • a UE 104 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • a UE 104 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • a UE 104 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, a UE 104 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • a UE 104 may communicate with an NE 102 (e.g., a BS) via uplink (UL) communication signals.
  • An NE 102 may communicate with a UE 104 via downlink (DL) communication signals.
  • an NE 102 and a UE 104 may communicate over licensed spectrums, whereas in some other embodiments, an NE 102 and a UE 104 may communicate over unlicensed spectrums.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the wireless communication system 100 may support integrated sensing and communication.
  • the wireless communication system 100 in addition to supporting the communication function (e.g., NE 102 and UE 104 can communicate with each other via UL or DL communication channels) , the wireless communication system 100 also supports a sensing function.
  • an NE 102 can sense a target (e.g., target 103 in FIG. 1) , such as detect the distance, angle and speed of the target using radar signals and the corresponding radar echo signals.
  • a target 103 is depicted in FIG. 1, it is contemplated that the wireless communication system 100 or an NE 102 can support the detection of any number of targets.
  • a signal waveform that can satisfy both communication and sensing functions is provided.
  • an integrated communication and sensing split pattern is proposed.
  • a time division multiplexing frame structure may be employed.
  • the time division multiplexing frame structure may be applied to the carrier.
  • a subband full-duplex frame structure may be employed.
  • the subband full-duplex frame structure may be applied to a specific subband. More details on the embodiments of the present disclosure will be illustrated in the following text in combination with the appended drawings.
  • a BS may configure an integrated communication and sensing split pattern for a UE.
  • the pattern may be determined according to, for example, the respective performance requirements of sensing and communication functions.
  • the pattern may be configured via higher layer signaling (e.g., radio resource control (RRC) signaling) .
  • RRC radio resource control
  • a slot format of the pattern may be further indicated by dynamic signaling (e.g., a common DCI or a dedicated DCI or a UE-specific DCI for DL or UL scheduling) .
  • dynamic signaling e.g., a common DCI or a dedicated DCI or a UE-specific DCI for DL or UL scheduling
  • the integrated communication and sensing split pattern may include downlink resources, uplink resources, and flexible resources.
  • the flexible resources may include a set (denoted as set #1) of flexible resources for a communication function, a set (denoted as set #2) of flexible resources for a sensing function, or both.
  • set #2 may be consecutive in the time domain within the integrated communication and sensing split pattern and may be unavailable to a UE for downlink reception, measurement or uplink transmission.
  • a UE may not transmit and/or receive any signal or channel in the time resource, and may skip any measurement or monitoring in the time resource.
  • a UE may not transmit and/or receive any signal or channel in the time resource on the subband, and may skip any measurement or monitoring in the time resource on the subband.
  • FIG. 2 illustrates exemplary integrated sensing and communication split pattern 200 in accordance with some embodiments of the present disclosure.
  • pattern 200 may include DL resources, UL resources, and flexible resources.
  • Some of the flexible resources e.g., unavailable resources such as set #2
  • Some or all of the remaining flexible resources can be used for the communication function.
  • a flexible resource e.g., a slot or symbol
  • the communication function e.g., either DL or UL communication
  • a BS may transmit a configuration for configuring pattern 200 to a UE.
  • the configuration may indicate one or more of the following:
  • the first X 1 slots include only downlink symbols and the last X 2 slots include only uplink symbols; the Y 1 symbols after the X 1 slots are downlink symbols; the Y 2 symbols before the last X 2 slots are uplink symbols; and the remaining symbols or slots within pattern 200 are flexible symbols or slots.
  • the starting slot of pattern 200 may always include only DL symbols and the ending slot of pattern 200 may always include only UL symbols.
  • the value of X 1 or X 2 may be equal to or greater than 1.
  • the value of Y 1 or Y 2 may be equal to or greater than 0 and less than 14 (assuming that a slot includes 14 symbols) .
  • the unavailable resources in the flexible resources of pattern 200 are defined by the parameters associated with the unavailable resources in the configuration.
  • the parameters associated with the unavailable resources may indicate one or more of the following:
  • the starting slot and the last slot of the unavailable resources may include at least one unavailable symbol.
  • the offset L may be defined with respect to the start of pattern 200.
  • the offset L may indicate an offset (e.g., L 1 in FIG. 2) between the starting slot of pattern 200 and the starting slot of the unavailable resources.
  • the offset L may be defined with respect to the flexible resources in pattern 200.
  • the offset L may indicate an offset (e.g., L 2 in FIG. 2) between the starting slot of the flexible resources and the starting slot of the unavailable resources.
  • the unavailable resources in pattern 200 may include a duration (denoted as duration #1) for a BS to switch from the communication function to the sensing function (e.g., the number of slots or symbols O for communication-to-sensing switch) , a duration (denoted as duration #2) for the BS to transmit a sensing signal (e.g., the number of slots or symbols I for transmitting a radar signal) , a duration (denoted as duration #3) for the BS to receive an echo of the sensing signal (e.g., the number of slots or symbols J for receiving an echo of the radar signal) and a duration (denoted as duration #4) for the BS to switch from the sensing function to the communication function (e.g., the number of slots or symbols Q for sensing-to-communication switch) .
  • a duration (denoted as duration #1) for a BS to switch from the communication function to the sensing function e.g., the number of slots or symbols O for communication-to-sensing
  • duration #1 may depend on the time taken by the transmitter of the BS to switch between communication and sensing functions (e.g., from the communication function to the sensing function) .
  • Duration #4 e.g., Q
  • Duration #2 e.g., I
  • Duration #3 e.g., J
  • the time for receiving radar echo signals is not limited to one slot.
  • the duration associated with the unavailable resources may indicate each of duration #1 to duration #4. From the perspective of a UE, the behavior of a BS (e.g., performing the sensing function) on the unavailable resources is irrelevant to it, where the UE may only need to know the location of the unavailable resources, and thus it may not need to specify the details of the unavailable resources.
  • the duration associated with the unavailable resources may indicate the duration of the unavailable resources (e.g., the total number of slots and/or symbols of the unavailable resources) or the sum of duration #1 to duration #4 (e.g., a sum of O, I, J and Q) in unit of slots and/or symbols. In some embodiments, the sum of duration #1 to duration #4 may be equal to the duration of the unavailable resources.
  • the number of slots K may be flexibly configured by the BS according to the requirements for the sensing function (e.g., the required maximum detection range or accuracy) . For example, the larger K is, the greater the corresponding J and the maximum detection range are.
  • the parameters associated with the unavailable resources may indicate only one of “the number of slots K” and “the duration associated with the unavailable resources. ”
  • a partial slot (s) is supported (i.e., an unavailable resource may include a partial slot) .
  • the unavailable resource may start from or end at a middle symbol of a slot, and then parameter Z 1 , Z 2 or both may be configured or indicated to indicate the symbol-level position of the unavailable resource.
  • a partial slot (s) is not supported (i.e., an unavailable resource may not include a partial slot) .
  • the unavailable resource may always start from the first symbol (e.g., symbol 0) of a slot and end at the last symbol (e.g., symbol 13) of a slot, and then parameters Z 1 and Z 2 may not be configured or indicated.
  • parameters Z 1 and Z 2 may be defined differently as long as the unavailable resources can be determined.
  • parameters Z 1 may be defined as the number of consecutive symbols for the sensing function in the starting slot of the unavailable resources and parameters Z 2 may be defined as the number of consecutive symbols for the sensing function in the last slot of the unavailable resources.
  • FIG. 3 illustrates an example configuration for unavailable resources in accordance with some embodiments of the present disclosure.
  • FIG. 3 may be an example of the unavailable resources within pattern 200 of FIG. 2.
  • the configuration for configuring pattern 200 may indicate one or more of the following parameters as shown in FIGS. 2 and 3: ⁇ L 1 (or L 2 ) , K, I, J, O, Q, Z 1 , Z 2 ⁇ .
  • the configuration for configuring pattern 200 may indicate one or more of the following parameters as shown in FIGS. 2 and 3: ⁇ L 1 (or L 2 ) , K, S, Z 1 , Z 2 ⁇ , where S denotes a sum of O, I, J and Q.
  • the value of K may not be configured or indicated.
  • the exemplary unavailable resources in FIG. 3 include two partial slots, it is contemplated that the unavailable resources may not include any partial slot, and thus Z 1 and Z 2 may not be configured or indicated, or the unavailable resources may include only one partial slot and only one of Z 1 and Z 2 which is not equal to “0” may not be configured or indicated.
  • the remaining flexible resources in FIG. 3 can be used for the communication function.
  • some or all of the remaining flexible resources may be configured for uplink transmission.
  • some or all of the remaining flexible resources may be configured for downlink transmission.
  • the integrated communication and sensing split pattern as defined above may be applied to a carrier.
  • the configuration for configuring the integrated communication and sensing split pattern is applied to a carrier.
  • This configuration can be referred to as a time division duplex (TDD) frame structure for integrated communication and sensing.
  • the BS may perform the sensing function in the unavailable resources of the pattern on the carrier.
  • the UE would consider all the unavailable resources in the pattern as in an unavailable or disabled state. For example, the UE would not perform downlink reception, measurement or uplink transmission in the unavailable resources on the carrier.
  • the integrated communication and sensing split pattern as defined above may be applied to a subband.
  • the configuration for configuring the integrated communication and sensing split pattern may further indicate one or more of an index of the subband and a bandwidth of the subband.
  • index of the subband or the bandwidth of the subband indicated in the pattern may be determined according to the bandwidth required for the sensing function or the trade-off between the performance of the communication function and sensing function.
  • This configuration can be referred to as a subband full duplex (SBFD) frame structure for integrated communication and sensing.
  • the BS may perform the sensing function in the unavailable resources of the pattern on the indicated subband.
  • the UE would consider all the unavailable resources in the pattern on the indicated subband as in an unavailable or disabled state. For example, the UE would not perform downlink reception, measurement or uplink transmission in the unavailable resources on the subband.
  • the SBFD frame structure for integrated communication and sensing can realize the communication function and sensing function in parallel (e.g., performing the communication function on one subband while performing the sensing function on another subband at the same time) .
  • one or multiple (e.g., two) subbands can be configured with the SBFD frame structure for integrated communication and sensing.
  • a corresponding integrated communication and sensing split pattern may be configured and may include a set of flexible resources for the sensing function (e.g., unavailable resources from the perspective of a UE) .
  • the configuration may indicate one or more integrated communication and sensing split patterns (e.g., pattern #1A and pattern #2A) applied to respective subbands (e.g., subband #1A and subband #2A) .
  • the configuration may indicate a set of flexible resources for the sensing function (denoted as set #1A) for pattern #1A and a set of flexible resources for the sensing function (denoted as set #2A) for pattern #2A.
  • set #1A for the sensing function
  • set #2A a set of flexible resources for the sensing function
  • independent sensing function configuration per subband may be supported.
  • set #1A for subband #1A and set #2A for subband #2A may be independently configured.
  • the resources for the sensing function i.e., the unavailable resources from the UE’s perspective
  • the parameters associated with the unavailable resources may be shared among the subbands indicated in the configuration.
  • set #1A for subband #1A and set #2A for subband #2A may be determined based on the same parameters associated with the unavailable resources in the configuration.
  • pattern #1A or pattern #2A may or may not include flexible resources for the communication function.
  • the communication function and sensing function may be configured on separate subbands.
  • the configuration may indicate one or more patterns (e.g., pattern #1B and pattern #2B) applied to respective subbands (e.g., subband #1B and subband #2B) .
  • the flexible resources within pattern #1B may only support the communication function.
  • pattern #1B may not include flexible resources for the sensing function (e.g., unavailable resources as described above) .
  • the flexible resources within pattern #2B may only support the sensing function.
  • pattern #2B may include a set of flexible resources (denoted as set #2B) for the sensing function and may not include flexible resources for the communication function.
  • the SBFD frame structure for integrated communication and sensing may be applied.
  • more than one subband may be configured for the UE, and at least one of the configured subbands may support the sensing function at the BS.
  • the TDD frame structure for integrated communication and sensing may be applied.
  • the detailed slot format for the flexible resources (e.g., a flexible slot or symbol) within the integrated communication and sensing split pattern can be indicated by dynamic signaling (e.g., downlink control information (DCI) ) .
  • DCI downlink control information
  • a BS may transmit, to a UE, a DCI indicating a slot format for the flexible resources (e.g., slot n in FIG. 2) within an integrated communication and sensing split pattern.
  • the UE may determine that a set of symbols of slot n is unavailable to the UE for downlink reception, measurement or uplink transmission.
  • a DCI may indicate (e.g., by a slot format indicator (SFI) in a common DCI) the function (e.g., sensing or communication) or the transmission direction (e.g., UL or DL) of a flexible slot or symbol, or change the function or transmission direction of a flexible slot or symbol previously configured by the BS into a different function or transmission direction.
  • SFI slot format indicator
  • a flexible resource e.g., a slot or symbol
  • the flexible resource may be used by the BS to perform the sensing function and may be unavailable for the UE (e.g., unavailable for downlink reception, measurement or uplink transmission) .
  • the slot format may be applied to a carrier or a subband.
  • the slot format may be selected from a table of slot formats, which may be preconfigured or configured for a UE or predefined, for example, in a standard (s) .
  • Table 1 shows an exemplary slot format table. It should be understood that Table 1 is only for illustrative purposes, and should not be construed as limiting the embodiments of the present disclosure.
  • Table 2 below shows another exemplary slot format table. It should be understood that Table 2 is only for illustrative purposes, and should not be construed as limiting the embodiments of the present disclosure.
  • Table 2 Exemplary slot format per subband
  • a slot include 14 symbols which can be indexed from “0” to “13” and “U, ” “D, ” “N” and “X” refer to different states of a symbol.
  • U stands for an uplink symbol (i.e., for communication function)
  • D stands for a downlink symbol (i.e., for communication function)
  • N stands for an unavailable symbol (i.e., for sensing function)
  • X stands for a flexible symbol.
  • a UE should not perform downlink reception, measurement or uplink transmission on a symbol that is indicated as “N. ”
  • Table 1 can be applied to a subband or a carrier.
  • a DCI can indicate a specific slot format from Table 1 (e.g., by indicating a corresponding format index) that can be applied to the carrier or a specific slot format combination from a set of slot format combinations which may be configured by RRC signaling.
  • each slot format combination may include one or multiple slot formats for one or multiple consecutive slots for the corresponding carrier.
  • a slot format combination may indicate a single slot format which can be applied to one or multiple consecutive slots of the carrier.
  • a slot format combination may indicate a plurality of (e.g., two) slot formats which can be respectively applied to multiple (e.g., two) consecutive slots of the carrier.
  • each slot format combination may indicate one or multiple format indexes from Table 1.
  • a DCI can indicate a specific slot format from Table 1 that can be applied to each configured subband or a specific slot format combination from a set of slot format combinations which may be configured by RRC signaling.
  • each slot format combination may include one or multiple slot formats for one or multiple consecutive slots for the corresponding subband.
  • a slot format combination may indicate a single slot format which can be applied to one or multiple consecutive slots of each configured subband.
  • a slot format combination may indicate a plurality of (e.g., two) slot formats which can be respectively applied to multiple (e.g., two) consecutive slots of each configured subband.
  • each slot format combination may indicate one or multiple format indexes from Table 1.
  • Table 2 defines the slot format per subband.
  • Table 2 shows that each format index corresponds to respective slot formats for two subbands, it is contemplated that each format index can correspond to respective slot formats for more than two subbands in some other embodiments of the present disclosure.
  • a DCI can indicate a format index from Table 2 and the multiple slot formats (e.g., two slot formats denoted as format #1 and format #2) corresponding to the indicated format index can be respectively applied to the configured subbands.
  • the BS may transmit a configuration indicating more than one pattern (e.g., “pattern #1A or pattern #2A” or “pattern #1B and pattern #2B” as described above) each associated with a corresponding subband, format #1 and format #2 may be respectively applied to the subbands of the more than one patterns.
  • format #1 may be applied to subband #1A (or subband #1B)
  • format #1 may be applied to subband #2A (or subband #2B) .
  • a DCI can indicate a specific slot format combination from a set of slot format combinations which may be configured by RRC signaling.
  • each slot format combination may include one or multiple slot formats for one or multiple consecutive slots for the configured subbands.
  • each slot format combination may indicate one or multiple format indexes from Table 2.
  • a DCI may schedule a UE to perform downlink reception or uplink transmission within one or more of the downlink resources, the uplink resources, and the flexible resources within the integrated communication and sensing split pattern.
  • a BS may transmit a DCI scheduling a UE to perform a sensing function or communication function (e.g., UL or DL) on a flexible resource (e.g., a flexible slot or symbol) within an integrated communication and sensing split pattern.
  • a sensing function or communication function e.g., UL or DL
  • a flexible resource e.g., a flexible slot or symbol
  • FIG. 4 illustrates a flow chart of exemplary procedure 400 for integrated sensing and communication in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 4.
  • the procedure may be performed by a BS or an NE (for example, NE 102 in FIG. 1) .
  • the BS or NE may execute a set of instructions to control the function elements of the BS or NE to perform the described procedures, functions or operations.
  • a BS may transmit, to a UE, a configuration for configuring an integrated communication and sensing split pattern including downlink resources, uplink resources, and flexible resources, wherein the flexible resources may include a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function.
  • the second set of flexible resources may be consecutive in the time domain within the integrated communication and sensing split pattern and may be unavailable to the UE for downlink reception, measurement or uplink transmission.
  • the BS may perform downlink transmission to the UE within the downlink resources or the first set of flexible resources.
  • the first set of flexible resources may be configured for downlink communication.
  • the BS may switch from the communication function to the sensing function within a first duration (e.g., duration #1 or O) of the second set of flexible resources.
  • the BS may transmit a sensing signal within a second duration (e.g., duration #2 or I) of the second set of flexible resources.
  • the BS may receive an echo of the sensing signal within a third duration (e.g., duration #3 or J) of the second set of flexible resources.
  • the BS may switch from the sensing function to the communication function within a fourth duration (e.g., duration #4 or Q) of the second set of flexible resources.
  • the BS may perform uplink reception from the UE within the first set of flexible resources or the uplink resources.
  • the first set of flexible resources may be configured for uplink communication.
  • the configuration for configuring the integrated communication and sensing split pattern indicates an offset (e.g., L 1 ) between a starting slot of the integrated communication and sensing split pattern and a starting slot of the second set of flexible resources. In some embodiments of the present disclosure, the configuration for configuring the integrated communication and sensing split pattern indicates an offset (e.g., L 2 ) between a starting slot of the flexible resources and a starting slot of the second set of flexible resources.
  • the configuration for configuring the integrated communication and sensing split pattern indicates the first duration, the second duration, the third duration and the fourth duration, or indicates a duration of the second set of flexible resources or a sum of the first duration, the second duration, the third duration and the fourth duration.
  • the configuration for configuring the integrated communication and sensing split pattern indicates one or more of the following: a first number of consecutive symbols (e.g., Z 1 ) for uplink or downlink transmission at the beginning of a starting slot of the second set of flexible resources; and a second number of consecutive symbols (e.g., Z 2 ) for uplink or downlink transmission at the end of the last slot of the second set of flexible resources.
  • a first number of consecutive symbols e.g., Z 1
  • Z 2 a second number of consecutive symbols
  • the BS may transmit, to the UE, a common DCI or a UE-specific DCI to indicate a slot format for the flexible resources within the integrated communication and sensing split pattern.
  • the BS may transmit a DCI to the UE.
  • the DCI may indicate a slot format for the flexible resources within the integrated communication and sensing split pattern.
  • the slot format may indicate that a set of symbols of a slot within the first set of flexible resources is unavailable to the UE for downlink reception, measurement or uplink transmission.
  • the slot format may include a state indicating a corresponding symbol of the set of symbols is unavailable to the UE for downlink reception, measurement or uplink transmission.
  • the BS may transmit a DCI to the UE, wherein the DCI schedules the UE to perform downlink reception or uplink transmission within the downlink resources, the uplink resources, the first set of flexible resources, or any combination thereof.
  • the configuration for configuring the integrated communication and sensing split pattern is applied to a carrier.
  • the configuration for configuring the integrated communication and sensing split pattern is applied to a first subband and indicates one or more of: an index of the first subband and a bandwidth of the first subband.
  • the configuration for configuring the integrated communication and sensing split pattern may include an additional integrated communication and sensing split pattern applied to a second subband and indicates one or more of: an index of the second subband and a bandwidth of the second subband.
  • the additional integrated communication and sensing split pattern may include a third set of flexible resources for the sensing function, wherein the third set of flexible resources is consecutive in the time domain, independently configured from the second set of flexible resources and unavailable to the UE for downlink reception, measurement or uplink transmission on the second subband.
  • FIG. 5 illustrates a flow chart of exemplary procedure 500 for integrated sensing and communication in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 5.
  • the procedure may be performed by a UE, for example, UE 104 in FIG. 1.
  • the UE may execute a set of instructions to control the function elements of the UE to perform the described procedures, functions or operations.
  • the UE may receive, from a BS, a configuration for configuring an integrated communication and sensing split pattern including downlink resources, uplink resources, and flexible resources, wherein the flexible resources include a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function.
  • the second set of flexible resources may be consecutive in a time domain within the integrated communication and sensing split pattern and may be unavailable to the UE for downlink reception, measurement, or uplink transmission.
  • the UE may perform downlink reception from the BS within the downlink resources or the first set of flexible resources.
  • the first set of flexible resources may be configured for downlink communication.
  • the UE may perform no downlink reception, measurement or uplink transmission within the second set of flexible resources. For example, operation 513 may be omitted.
  • the UE may perform uplink transmission to the BS within the first set of flexible resources or the uplink resources.
  • the first set of flexible resources may be configured for uplink communication.
  • the configuration for configuring the integrated communication and sensing split pattern indicates an offset (e.g., L 1 ) between a starting slot of the integrated communication and sensing split pattern and a starting slot of the second set of flexible resources. In some embodiments of the present disclosure, the configuration for configuring the integrated communication and sensing split pattern indicates an offset (e.g., L 2 ) between a starting slot of the flexible resources and a starting slot of the second set of flexible resources.
  • the configuration for configuring the integrated communication and sensing split pattern indicates a first duration for the BS to switch from the communication function to the sensing function, a second duration for the BS to transmit a sensing signal, a third duration for the BS to receive an echo of the sensing signal and a fourth duration for the BS to switch from the sensing function to the communication function.
  • the configuration for configuring the integrated communication and sensing split pattern indicates a duration of the second set of flexible resources or a sum of the first duration, the second duration, the third duration and the fourth duration.
  • the configuration for configuring the integrated communication and sensing split pattern indicates one or more of the following: a first number of consecutive symbols (e.g., Z 1 ) for uplink or downlink transmission at the beginning of a starting slot of the second set of flexible resources; and a second number of consecutive symbols (e.g., Z 2 ) for uplink or downlink transmission at the end of the last slot of the second set of flexible resources.
  • a first number of consecutive symbols e.g., Z 1
  • Z 2 a second number of consecutive symbols
  • the UE may receive, from the BS, a common DCI or a UE-specific DCI to indicate a slot format for the flexible resources within the integrated communication and sensing split pattern.
  • the UE may receive a DCI from the BS.
  • the DCI may indicate a slot format for the flexible resources within the integrated communication and sensing split pattern.
  • the slot format may indicate that a set of symbols of a slot within the first set of flexible resources is unavailable to the UE for downlink reception, measurement or uplink transmission.
  • the slot format may include a state indicating a corresponding symbol of the set of symbols is unavailable to the UE for downlink reception, measurement or uplink transmission.
  • the UE may receive a DCI from the BS, wherein the DCI schedules the UE to perform downlink reception or uplink transmission within the downlink resources, the uplink resources, the first set of flexible resources, or any combination thereof.
  • the configuration for configuring the integrated communication and sensing split pattern is applied to a carrier.
  • the configuration for configuring the integrated communication and sensing split pattern is applied to a first subband and indicates one or more of: an index of the first subband and a bandwidth of the first subband.
  • the configuration for configuring the integrated communication and sensing split pattern may include an additional integrated communication and sensing split pattern applied to a second subband and indicates one or more of: an index of the second subband and a bandwidth of the second subband.
  • the additional integrated communication and sensing split pattern may include a third set of flexible resources for the sensing function, wherein the third set of flexible resources is consecutive in the time domain, independently configured from the second set of flexible resources and unavailable to the UE for downlink reception, measurement or uplink transmission on the second subband.
  • FIG. 6 illustrates a block diagram of exemplary apparatus 600 according to some embodiments of the present disclosure.
  • the apparatus 600 may include at least one processor 606 and at least one transceiver 602 coupled to the processor 606.
  • the apparatus 600 may be a UE or an NE (e.g., a BS) .
  • the transceiver 602 may be divided into two devices, such as a receiving circuitry and a transmitting circuitry.
  • the apparatus 600 may further include an input device, a memory, and/or other components.
  • the apparatus 600 may be a UE.
  • the transceiver 602 and the processor 606 may interact with each other so as to perform the operations with respect to the UE described in FIGS. 1-5.
  • the apparatus 600 may be an NE (e.g., a BS) .
  • the transceiver 602 and the processor 606 may interact with each other so as to perform the operations with respect to the BS or NE described in FIGS. 1-5.
  • the apparatus 600 may further include at least one non-transitory computer-readable medium.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 606 to implement the method with respect to the UE as described above.
  • the computer-executable instructions when executed, cause the processor 606 interacting with transceiver 602 to perform the operations with respect to the UE described in FIGS. 1-5.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 606 to implement the method with respect to the BS or NE as described above.
  • the computer-executable instructions when executed, cause the processor 606 interacting with transceiver 602 to perform the operations with respect to the BS or NE described in FIGS. 1-5.
  • FIG. 7 illustrates an example of a UE 700 in accordance with aspects of the present disclosure.
  • the UE 700 may include a processor 702, a memory 704, a controller 706, and a transceiver 708.
  • the processor 702, the memory 704, the controller 706, or the transceiver 708, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. These components may be coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces.
  • the processor 702, the memory 704, the controller 706, or the transceiver 708, or various combinations or components thereof may be implemented in hardware (e.g., circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , or other programmable logic device, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • the processor 702 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination thereof) .
  • the processor 702 may be configured to operate the memory 704.
  • the memory 704 may be integrated into the processor 702.
  • the processor 702 may be configured to execute computer-readable instructions stored in the memory 704 to cause the UE 700 to perform various functions of the present disclosure.
  • the memory 704 may include volatile or non-volatile memory.
  • the memory 704 may store computer-readable, computer-executable code including instructions when executed by the processor 702 cause the UE 700 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as the memory 704 or another type of memory.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • the processor 702 and the memory 704 coupled with the processor 702 may be configured to cause the UE 700 to perform one or more of the functions described herein (e.g., executing, by the processor 702, instructions stored in the memory 704) .
  • the processor 702 may support wireless communication at the UE 700 in accordance with examples as disclosed herein.
  • the UE 700 may be configured to support means for performing the operations as described with respect to FIG. 5.
  • the UE 700 may be configured to support a means for receiving, from a BS (or an NE) , a configuration for configuring an integrated communication and sensing split pattern comprising downlink resources, uplink resources, and flexible resources, wherein the flexible resources comprise a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; a means for performing downlink reception or measurement from the BS within the downlink resources or the first set of flexible resources; and a means for performing uplink transmission to the BS within the first set of flexible resources or the uplink resources.
  • the UE 700 may perform no downlink reception, measurement or uplink transmission within the second set of flexible resources.
  • the controller 706 may manage input and output signals for the UE 700.
  • the controller 706 may also manage peripherals not integrated into the UE 700.
  • the controller 706 may utilize an operating system such as or other operating systems.
  • the controller 706 may be implemented as part of the processor 702.
  • the UE 700 may include at least one transceiver 708. In some other implementations, the UE 700 may have more than one transceiver 708.
  • the transceiver 708 may represent a wireless transceiver.
  • the transceiver 708 may include one or more receiver chains 710, one or more transmitter chains 712, or a combination thereof.
  • a receiver chain 710 may be configured to receive signals (e.g., control information, data, packets) over a wireless medium.
  • the receiver chain 710 may include one or more antennas for receive the signal over the air or wireless medium.
  • the receiver chain 710 may include at least one amplifier (e.g., a low-noise amplifier (LNA) ) configured to amplify the received signal.
  • the receiver chain 710 may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal.
  • the receiver chain 710 may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
  • a transmitter chain 712 may be configured to generate and transmit signals (e.g., control information, data, packets) .
  • the transmitter chain 712 may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium.
  • the at least one modulator may be configured to support one or more techniques such as amplitude modulation (AM) , frequency modulation (FM) , or digital modulation schemes like phase-shift keying (PSK) or quadrature amplitude modulation (QAM) .
  • the transmitter chain 712 may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium.
  • the transmitter chain 712 may also include one or more antennas for transmitting the amplified signal into the air or wireless medium.
  • exemplary UE 700 may be changed, for example, some of the components in exemplary UE 700 may be omitted or modified or new component (s) may be added to exemplary UE 700, without departing from the spirit and scope of the disclosure.
  • the UE 700 may not include the controller 706.
  • FIG. 8 illustrates an example of a processor 800 in accordance with aspects of the present disclosure.
  • the processor 800 may be an example of a processor configured to perform various operations in accordance with examples as described herein.
  • the processor 800 may include a controller 802 configured to perform various operations in accordance with examples as described herein.
  • the processor 800 may optionally include at least one memory 804, which may be, for example, an L1/L2/L3 cache. Additionally, or alternatively, the processor 800 may optionally include one or more arithmetic-logic units (ALUs) 806.
  • ALUs arithmetic-logic units
  • One or more of these components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces (e.g., buses) .
  • the processor 800 may be a processor chipset and include a protocol stack (e.g., a software stack) executed by the processor chipset to perform various operations (e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) in accordance with examples as described herein.
  • a protocol stack e.g., a software stack
  • operations e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading
  • the processor chipset may include one or more cores, one or more caches (e.g., memory local to or included in the processor chipset (e.g., the processor 800) or other memory (e.g., random access memory (RAM) , read-only memory (ROM) , dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , static RAM (SRAM) , ferroelectric RAM (FeRAM) , magnetic RAM (MRAM) , resistive RAM (RRAM) , flash memory, phase change memory (PCM) , and others) .
  • RAM random access memory
  • ROM read-only memory
  • DRAM dynamic RAM
  • SDRAM synchronous dynamic RAM
  • SRAM static RAM
  • FeRAM ferroelectric RAM
  • MRAM magnetic RAM
  • RRAM resistive RAM
  • PCM phase change memory
  • the controller 802 may be configured to manage and coordinate various operations (e.g., signaling, receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) of the processor 800 to cause the processor 800 to support various operations in accordance with examples as described herein.
  • the controller 802 may operate as a control unit of the processor 800, generating control signals that manage the operation of various components of the processor 800. These control signals include enabling or disabling functional units, selecting data paths, initiating memory access, and coordinating timing of operations.
  • the controller 802 may be configured to fetch (e.g., obtain, retrieve, receive) instructions from the memory 804 and determine subsequent instruction (s) to be executed to cause the processor 800 to support various operations in accordance with examples as described herein.
  • the controller 802 may be configured to track memory address of instructions associated with the memory 804.
  • the controller 802 may be configured to decode instructions to determine the operation to be performed and the operands involved.
  • the controller 802 may be configured to interpret the instruction and determine control signals to be output to other components of the processor 800 to cause the processor 800 to support various operations in accordance with examples as described herein.
  • the controller 802 may be configured to manage flow of data within the processor 800.
  • the controller 802 may be configured to control transfer of data between registers, ALUs, and other functional units of the processor 800.
  • the memory 804 may include one or more caches (e.g., memory local to or included in the processor 800 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc. In some implementations, the memory 804 may reside within or on a processor chipset (e.g., local to the processor 800) . In some other implementations, the memory 804 may reside external to the processor chipset (e.g., remote to the processor 800) .
  • caches e.g., memory local to or included in the processor 800 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc.
  • the memory 804 may reside within or on a processor chipset (e.g., local to the processor 800) . In some other implementations, the memory 804 may reside external to the processor chipset (e.g., remote to the processor 800) .
  • the memory 804 may store computer-readable, computer-executable code including instructions that, when executed by the processor 800, cause the processor 800 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the controller 802 and/or the processor 800 may be configured to execute computer-readable instructions stored in the memory 804 to cause the processor 800 to perform various functions.
  • the processor 800 and/or the controller 802 may be coupled with or to the memory 804, the processor 800, the controller 802, and the memory 804 may be configured to perform various functions described herein.
  • the processor 800 may include multiple processors and the memory 804 may include multiple memories. One or more of the multiple processors may be coupled with one or more of the multiple memories, which may, individually or collectively, be configured to perform various functions herein.
  • the one or more ALUs 806 may be configured to support various operations in accordance with examples as described herein.
  • the one or more ALUs 806 may reside within or on a processor chipset (e.g., the processor 800) .
  • the one or more ALUs 806 may reside external to the processor chipset (e.g., the processor 800) .
  • One or more ALUs 806 may perform one or more computations such as addition, subtraction, multiplication, and division on data.
  • one or more ALUs 806 may receive input operands and an operation code, which determines an operation to be executed.
  • One or more ALUs 806 be configured with a variety of logical and arithmetic circuits, including adders, subtractors, shifters, and logic gates, to process and manipulate the data according to the operation. Additionally, or alternatively, the one or more ALUs 806 may support logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 806 to handle conditional operations, comparisons, and bitwise operations.
  • logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 806 to handle conditional operations, comparisons, and bitwise operations.
  • the processor 800 may support wireless communication in accordance with examples as disclosed herein.
  • the processor 800 may be configured to support means for performing the operations as described with respect to FIG. 4.
  • the processor 800 may be configured to or operable to support a means for transmitting, to a UE, a configuration for configuring an integrated communication and sensing split pattern comprising downlink resources, uplink resources, and flexible resources, wherein the flexible resources comprise a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; a means for performing downlink transmission to the UE within the downlink resources or the first set of flexible resources; a means for switching from the communication function to the sensing function within a first duration of the second set of flexible resources; a means for transmitting a sensing signal within a second duration of the second set of flexible resources; a means for receiving an echo of the sensing signal within a third duration of the second set of flexible
  • the processor 800 may be configured to support means for performing the operations as described with respect to FIG. 5.
  • the processor 800 may be configured to support a means for receiving, from a BS (or an NE) , a configuration for configuring an integrated communication and sensing split pattern comprising downlink resources, uplink resources, and flexible resources, wherein the flexible resources comprise a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; a means for performing downlink reception or measurement from the BS within the downlink resources or the first set of flexible resources; and a means for performing uplink transmission to the BS within the first set of flexible resources or the uplink resources.
  • the processor 800 may perform no downlink reception, measurement or uplink transmission within the second set of flexible resources.
  • exemplary processor 800 may be changed, for example, some of the components in exemplary processor 800 may be omitted or modified or new component (s) may be added to exemplary processor 800, without departing from the spirit and scope of the disclosure.
  • the processor 800 may not include the ALUs 806.
  • FIG. 9 illustrates an example of an NE 900 in accordance with aspects of the present disclosure.
  • the NE 900 may include a processor 902, a memory 904, a controller 906, and a transceiver 908.
  • the processor 902, the memory 904, the controller 906, or the transceiver 908, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. These components may be coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces.
  • the processor 902, the memory 904, the controller 906, or the transceiver 908, or various combinations or components thereof may be implemented in hardware (e.g., circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, or other programmable logic device, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • the processor 902 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination thereof) .
  • the processor 902 may be configured to operate the memory 904.
  • the memory 904 may be integrated into the processor 902.
  • the processor 902 may be configured to execute computer-readable instructions stored in the memory 904 to cause the NE 900 to perform various functions of the present disclosure.
  • the memory 904 may include volatile or non-volatile memory.
  • the memory 904 may store computer-readable, computer-executable code including instructions when executed by the processor 902 cause the NE 900 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as the memory 904 or another type of memory.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • the processor 902 and the memory 904 coupled with the processor 902 may be configured to cause the NE 900 to perform one or more of the functions described herein (e.g., executing, by the processor 902, instructions stored in the memory 904) .
  • the processor 902 may support wireless communication at the NE 900 in accordance with examples as disclosed herein.
  • the NE 900 may be configured to support means for performing the operations as described with respect to FIG. 4.
  • the NE 900 may be configured to support a means for transmitting, to a UE, a configuration for configuring an integrated communication and sensing split pattern comprising downlink resources, uplink resources, and flexible resources, wherein the flexible resources comprise a first set of flexible resources for a communication function and a second set of flexible resources for a sensing function, and wherein the second set of flexible resources is consecutive in a time domain within the integrated communication and sensing split pattern and is unavailable to the UE for downlink reception, measurement or uplink transmission; a means for performing downlink transmission to the UE within the downlink resources or the first set of flexible resources; a means for switching from the communication function to the sensing function within a first duration of the second set of flexible resources; a means for transmitting a sensing signal within a second duration of the second set of flexible resources; a means for receiving an echo of the sensing signal within a third duration of the second set of flexible resources; a means for switching from the sensing function to the communication function within a fourth duration of the second set of
  • the controller 906 may manage input and output signals for the NE 900.
  • the controller 906 may also manage peripherals not integrated into the NE 900.
  • the controller 906 may utilize an operating system such as or other operating systems.
  • the controller 906 may be implemented as part of the processor 902.
  • the NE 900 may include at least one transceiver 908. In some other implementations, the NE 900 may have more than one transceiver 908.
  • the transceiver 908 may represent a wireless transceiver.
  • the transceiver 908 may include one or more receiver chains 910, one or more transmitter chains 912, or a combination thereof.
  • a receiver chain 910 may be configured to receive signals (e.g., control information, data, packets) over a wireless medium.
  • the receiver chain 910 may include one or more antennas for receive the signal over the air or wireless medium.
  • the receiver chain 910 may include at least one amplifier (e.g., an LNA) configured to amplify the received signal.
  • the receiver chain 910 may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal.
  • the receiver chain 910 may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
  • a transmitter chain 912 may be configured to generate and transmit signals (e.g., control information, data, packets) .
  • the transmitter chain 912 may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium.
  • the at least one modulator may be configured to support one or more techniques such as AM, FM, or digital modulation schemes like PSK or QAM.
  • the transmitter chain 912 may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium.
  • the transmitter chain 912 may also include one or more antennas for transmitting the amplified signal into the air or wireless medium.
  • exemplary NE 900 may be changed, for example, some of the components in exemplary NE 900 may be omitted or modified or new component (s) may be added to exemplary NE 900, without departing from the spirit and scope of the disclosure.
  • the NE 900 may not include the controller 906.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the operations or steps of the methods may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
  • the terms “includes, “ “including, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the term “having” or the like, as used herein, is defined as "including.
  • Expressions such as “A and/or B” or “at least one of A and B” may include any and all combinations of words enumerated along with the expression.
  • the expression “A and/or B” or “at least one of A and B” may include A, B, or both A and B.
  • the wording "the first, " “the second” or the like is only used to clearly illustrate the embodiments of the present disclosure, but is not used to limit the substance of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Des modes de réalisation de la présente divulgation concernent des procédés et des appareils pour transmettre des signaux de détection et de communication intégrés. Selon certains modes de réalisation de la divulgation, une BS peut : transmettre à un UE une configuration pour configurer un modèle de division de communication et de détection intégrés comprenant des ressources de liaison descendante, des ressources de liaison montante et des ressources flexibles, les ressources flexibles comprenant un premier ensemble de ressources flexibles pour une fonction de communication et un second ensemble de ressources flexibles pour une fonction de détection, le second ensemble de ressources flexibles étant consécutif dans un domaine temporel dans le modèle de division de communication et de détection intégrés et étant indisponible pour l'UE pour une réception de liaison descendante, une mesure ou une transmission de liaison montante.
PCT/CN2023/101133 2023-06-19 2023-06-19 Procédé et appareil de transmission de signaux de détection et de communication intégrés WO2024087666A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/101133 WO2024087666A1 (fr) 2023-06-19 2023-06-19 Procédé et appareil de transmission de signaux de détection et de communication intégrés

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/101133 WO2024087666A1 (fr) 2023-06-19 2023-06-19 Procédé et appareil de transmission de signaux de détection et de communication intégrés

Publications (2)

Publication Number Publication Date
WO2024087666A1 true WO2024087666A1 (fr) 2024-05-02
WO2024087666A9 WO2024087666A9 (fr) 2024-07-04

Family

ID=90829931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101133 WO2024087666A1 (fr) 2023-06-19 2023-06-19 Procédé et appareil de transmission de signaux de détection et de communication intégrés

Country Status (1)

Country Link
WO (1) WO2024087666A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210286045A1 (en) * 2020-03-13 2021-09-16 Huawei Technologies Co., Ltd. Method and apparatus for communication and sensing in wireless communication network operating in half-duplex mode
US20220256519A1 (en) * 2021-02-04 2022-08-11 Samsung Electronics Co., Ltd. Sensing in wireless communications system
CN115996464A (zh) * 2021-10-18 2023-04-21 恩智浦有限公司 用于组合执行无线通信和感测的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210286045A1 (en) * 2020-03-13 2021-09-16 Huawei Technologies Co., Ltd. Method and apparatus for communication and sensing in wireless communication network operating in half-duplex mode
US20220256519A1 (en) * 2021-02-04 2022-08-11 Samsung Electronics Co., Ltd. Sensing in wireless communications system
CN115996464A (zh) * 2021-10-18 2023-04-21 恩智浦有限公司 用于组合执行无线通信和感测的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "New SID on integrating sensing with communication in NR", 3GPP DRAFT; RP-221292, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Budapest, Hungary; 20220606 - 20220609, 30 May 2022 (2022-05-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052154334 *

Also Published As

Publication number Publication date
WO2024087666A9 (fr) 2024-07-04

Similar Documents

Publication Publication Date Title
WO2024087666A9 (fr) Procédé et appareil de transmission de signaux de détection et de communication intégrés
WO2024152555A1 (fr) Procédé et appareil de transmission de pssch dans un créneau psfch sur un spectre sans licence
WO2024074068A1 (fr) Conception de forme d'onde pour système de détection et de communication intégré
WO2024169218A1 (fr) Accès aléatoire pour détection
WO2024082791A1 (fr) Procédé et appareil d'attribution dynamique de ressources pour une transmission de liaison latérale sur un spectre sans licence
WO2024103833A9 (fr) Procédé et appareil de transmission de pucch sur une porteuse sous licence pour une transmission en liaison latérale sur un spectre sans licence
WO2024119844A1 (fr) Procédé et appareil de priorisation de canaux de rétroaction de liaison latérale physique sur un spectre sans licence
WO2024103835A1 (fr) Procédé et appareil de génération d'informations de harq-ack associées à une transmission de liaison latérale pour une transmission de pucch
WO2024093323A1 (fr) Détermination de groupes d'occasions rach
WO2024087730A1 (fr) Procédés et appareils pour srs avec saut de cs et/ou saut de décalage de peigne
WO2024159785A1 (fr) Procédés et appareils de rapport de csi
WO2024146194A1 (fr) Procédé et appareil de prise en charge de mise en rapport d'informations relatives au positionnement
WO2024093394A1 (fr) Récupération d'informations système
WO2024159782A1 (fr) Configuration de cellule candidate pour une ltm
WO2024093337A1 (fr) Dispositifs et procédés de communication
WO2024159793A1 (fr) Dispositifs et procédés pour des opérations de stockage et de transfert
WO2024087743A1 (fr) Procédés et appareils pour srs avec saut de cs et/ou saut de décalage de peigne
WO2024093414A1 (fr) Mesure de positionnement de phase de porteuse
WO2024159789A1 (fr) Procédé et appareil d'agrégation de spectres fragmentés
WO2024093429A1 (fr) Fonctionnement à pleine puissance pour une transmission ul multi-panneau simultanée
WO2024159790A1 (fr) Agrégation de bande passante pour positionnement
WO2024164737A1 (fr) Procédés et appareils de rapport de csi sélectionné par un ue
WO2024159779A1 (fr) Procédé et appareil de prise en charge d'un multiplexage d'informations de commande de liaison montante
WO2024109199A1 (fr) Détermination de fonction de réseau
WO2024159837A1 (fr) Procédé et appareil d'indication de dormance de cellule secondaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881257

Country of ref document: EP

Kind code of ref document: A1