WO2024087124A1 - 通信方法、装置、用户设备、通信系统以及存储介质 - Google Patents

通信方法、装置、用户设备、通信系统以及存储介质 Download PDF

Info

Publication number
WO2024087124A1
WO2024087124A1 PCT/CN2022/128087 CN2022128087W WO2024087124A1 WO 2024087124 A1 WO2024087124 A1 WO 2024087124A1 CN 2022128087 W CN2022128087 W CN 2022128087W WO 2024087124 A1 WO2024087124 A1 WO 2024087124A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
user equipment
energy source
information related
nwdaf
Prior art date
Application number
PCT/CN2022/128087
Other languages
English (en)
French (fr)
Inventor
吴锦花
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/128087 priority Critical patent/WO2024087124A1/zh
Publication of WO2024087124A1 publication Critical patent/WO2024087124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a communication method, an apparatus, a user equipment, a communication system and a storage medium.
  • Ambient IoT is an IoT that supports ambient power.
  • IoT devices can be powered by energy from the environment. However, due to the instability of ambient energy, it is not possible to continuously provide IoT devices with sufficient power through ambient energy to support continuous wireless communication between the IoT devices and mobile networks.
  • the present disclosure provides a communication method, an apparatus, a user equipment, a communication system and a storage medium.
  • a communication method which is applied to a user equipment, and the method includes:
  • a communication method which is applied to AMF, and the method includes:
  • a communication method which is applied to NWDAF, and the method includes:
  • a communication method which is applied to a communication system, and the method includes:
  • the AMF receives information related to an energy source of the user equipment from the user equipment;
  • AMF sends an analysis request to NWDAF
  • NWDAF performs analysis in response to the analysis request
  • NWDAF sends analysis information to AMF.
  • a communication device which is applied to a user equipment and includes the following modules:
  • the information sending module is used to send information related to the energy source of the user equipment.
  • a communication device which is applied to AMF and includes the following modules:
  • An information receiving module used to receive information related to an energy source of a user device
  • An analysis request sending module used for sending an analysis request
  • the state receiving module is used to receive information related to the energy state and/or prediction of the user equipment.
  • a communication device which is applied to NWDAF and includes the following modules:
  • An analysis request receiving module used for receiving an analysis request
  • an analysis module configured to perform analysis according to the analysis request
  • the analysis information sending module is used to send the analysis information.
  • a communication device which is applied to a communication system and includes the following modules:
  • An AMF receiving module configured for the AMF to receive information related to an energy source of the user equipment from the user equipment;
  • AMF sending module used by AMF to send analysis requests to NWDAF;
  • NWDAF analysis module used for NWDAF to perform analysis according to the analysis request.
  • the NWDAF sending module is used for the NWDAF to send analysis information to the AMF.
  • a user equipment including:
  • a memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions to implement the communication method provided by the first aspect to the fourth aspect of the present disclosure.
  • a communication system comprising:
  • the AMF receives information related to an energy source of the user equipment from the user equipment, and sends an analysis request to the NWDAF;
  • NWDAF performs analysis based on the analysis request and sends analysis information to AMF.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, the steps of the communication method provided by the first to fifth aspects of the present disclosure are implemented.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: by sending energy source information, the user device can utilize the information related to the energy source to better support environmental Internet of Things communications and achieve effective response to always-on communications or on-demand communications.
  • FIG. 1 is a flowchart showing a communication method according to some embodiments.
  • FIG. 2 is a flow chart showing a communication method according to some other embodiments.
  • FIG. 3 is a flow chart showing a communication method according to yet some embodiments.
  • FIG. 4 is a flow chart showing a communication method according to still some embodiments.
  • FIG5 is a flowchart showing a communication method according to some embodiments.
  • FIG6 is a flowchart showing a communication method according to some other embodiments.
  • FIG. 7 is a flowchart showing a communication method according to yet some embodiments.
  • FIG8 is a flowchart showing a communication method according to some embodiments.
  • FIG. 9 is a flow chart showing a communication method according to some embodiments.
  • FIG. 10 is a flowchart showing a communication method according to some embodiments.
  • FIG. 11 is a flow chart showing a communication method according to some embodiments.
  • FIG. 12 is a schematic diagram of a communication system according to some embodiments.
  • FIG. 13 is a schematic diagram of a communication system according to some embodiments.
  • FIG. 14 is a schematic diagram of a communication system according to some embodiments.
  • FIG. 15 is a schematic diagram of a communication system according to some embodiments.
  • FIG. 16 is an exemplary flow chart showing a communication method according to some embodiments.
  • FIG17 is a schematic diagram showing the structure of a user equipment according to some embodiments.
  • FIG18 is a schematic diagram of the structure of a network side device shown in some embodiments.
  • the user equipment (UE) involved in the present disclosure is an ambient IoT device.
  • the user equipment is, for example, a mobile station or tablet computer that can utilize ambient energy, or a mobile terminal or a fixed terminal in various fields that can utilize ambient energy.
  • the specific form of the user equipment is not limited in the present disclosure.
  • the first network side device involved in the present disclosure is, for example, AMF (access and mobility management function), but it may also be other entities capable of management.
  • AMF access and mobility management function
  • the second network side device involved in the present disclosure is, for example, NWDAF (network data analytics function), but may also be other entities capable of performing analysis.
  • NWDAF network data analytics function
  • ambient IoT device For an ambient IoT device that uses solar energy, normal communication can be performed during sunny days, but on rainy days or at night, it may be necessary to use stored power and may have to be in a dormant state that only receives signaling/data or does not send or receive signaling/data. Ambient IoT devices that use other ambient energy sources have similar situations. Therefore, ambient IoT devices may not have continuous energy to cope with always-on communication or on-demand communication.
  • FIG1 is a flow chart of a communication method for a user equipment according to an embodiment of the present disclosure. As shown in FIG1 , the communication method includes the following steps:
  • Step S11 Send information related to the energy source of the user equipment.
  • the energy source of the user device may be at least one of solar energy, light energy, wind energy, motion energy/vibration energy, heat energy, and pressure energy, or any other energy source.
  • information related to the energy source of the user device may be referred to as energy source information.
  • the information related to the energy source of the user device is, for example, a power source indication.
  • the energy source indication may be at least one of solar energy, light energy, wind energy, motion energy, vibration energy, thermal energy, and pressure energy.
  • the user equipment may send information related to the energy source of the user equipment to the first network side device.
  • the user equipment may send information related to the energy source to the first network side device in response to the information sending request.
  • a user device can send energy source information to a first network side device, so that the information related to the energy source can be used to better support environmental Internet of Things communications and achieve effective response to always-on communications or on-demand communications.
  • the user equipment may send information related to the energy source of the user equipment to the first network side device through RAN (Radio Access Network).
  • RAN may also be replaced by AN (Access Network) or a combination of RAN and AN.
  • Sending through RAN may be, for example, sending through a network side device such as a gNB.
  • a network side device such as a gNB.
  • FIG2 is a flow chart of another communication method for a user equipment according to an embodiment of the present disclosure. As shown in FIG2 , the communication method includes the following steps:
  • Step S21 Send information related to the energy source of the user equipment via a NAS message.
  • NAS Non-access stratum
  • a user device can send information related to an energy source of the user device via a NAS message, so that the information related to the energy source can be used to better support environmental IoT communications and achieve effective response to always-on communications or on-demand communications.
  • FIG3 is a flow chart of another communication method for user equipment according to an embodiment of the present disclosure. As shown in FIG3, the communication method includes the following steps:
  • Step S31 sending information related to the energy source of the user equipment via an AS message or via an RRC message.
  • Information related to the energy source of the user equipment is sent via an AS (Access stratum) message or an RRC (Radio Resource Control) message, for example, after being parsed.
  • AS Access stratum
  • RRC Radio Resource Control
  • the user equipment may send information related to the energy source of the user equipment through an AS message.
  • the user equipment may send information related to the energy source of the user equipment to the RAN through an AS message.
  • the user equipment may also send information related to the energy source of the user equipment through an RRC message.
  • the user equipment may send information related to the energy source of the user equipment to the RAN through an RRC message.
  • the RAN may send information related to the energy source of the user equipment to the first network side device through an N2 message.
  • a user device can send information related to an energy source of the user device via an AS message or via RRC, so that the information related to the energy source can be used to better support environmental Internet of Things communications and achieve effective response to always-on communications or on-demand communications.
  • FIG4 is a flow chart of another communication method for a user equipment according to an embodiment of the present disclosure. As shown in FIG4, the communication method includes the following steps:
  • Step S41 sending a registration request including information related to an energy source of the user equipment.
  • a registration request for example, a Registration request, can be used for authentication and/or authorization of a user device.
  • the user device may send a registration request to the first network side device for registration, and the registration request includes information related to the energy source of the user device.
  • the user device may, for example, receive a registration acceptance message after sending the registration request including information related to the energy source of the user device.
  • the registration acceptance message is, for example, Registration Accept.
  • the registration request may include, for example, at least one of a registration type, SUCI, 5G-GUTI, PEI, security parameters, etc.
  • the registration accept message may include, for example, 5G-GUTI.
  • the disclosed embodiment discloses that the user equipment sends information related to the energy source of the user equipment through a registration request, so that the information related to the energy source can be used to better support the communication of the ambient Internet of Things, and realize the effective response of always-on communication or on-demand communication.
  • the disclosed embodiment sends information related to the energy source of the user equipment by sending a registration request, so that the additional signaling overhead can be reduced.
  • FIG5 is a flow chart of a communication method for a first network side device according to an embodiment of the present disclosure. As shown in FIG5, the communication method includes the following steps:
  • Step S51 receiving information related to an energy source of a user equipment.
  • the first network side device may send a reception confirmation to the user equipment after receiving the information related to the energy source of the user equipment.
  • the energy source of the user device may be at least one of solar energy, light energy, wind energy, motion/vibration energy, thermal energy and pressure energy, or any other energy source.
  • information related to the energy source of the user device may be referred to as energy source information.
  • the information related to the energy source of the user equipment is, for example, an energy source indication, which may be at least one of solar energy, light energy, wind energy, motion energy, vibration energy, thermal energy, and pressure energy.
  • the first network side device may receive information related to the energy source of the user equipment through the RAN.
  • Receiving through the RAN may be, for example, receiving through a network side device such as a gNB.
  • the first network side device may receive information related to the energy source of the user equipment from the user equipment.
  • the first network side device may receive the information related to the energy source of the user equipment through a NAS message, or may receive the information related to the energy source of the user equipment through an AS message or through an RRC message.
  • the first network-side device may receive a registration request including information related to an energy source of the user equipment.
  • the registration request is, for example, Registration request, which can be used for authentication and/or authorization of the user equipment.
  • the first network side device can send a registration acceptance message to the user equipment.
  • the registration acceptance message is, for example, Registration Accept.
  • the registration acceptance message can include, for example, 5G-GUTI.
  • the first network side device may store information related to the energy source of the user equipment, for example, by means of a UE context.
  • the first network side device may send information related to the energy source of the user equipment to the RAN through an N2 message, and the RAN stores the message in a UE context manner.
  • the disclosed embodiment of the present invention discloses that a first network-side device receives information related to an energy source of a user device, thereby being able to better support ambient Internet of Things communications and achieve effective response to always-on communications or on-demand communications.
  • FIG6 is another communication method for a first network side device according to an embodiment of the present disclosure. As shown in FIG6 , the communication method includes the following steps:
  • Step S61 sending an analysis request.
  • the analysis request is used to request the network side device to send analysis information.
  • the analysis request is, for example, Analytics request.
  • an analysis request is sent to obtain the energy status of the user device.
  • the analysis request may include the energy source and/or location information of the user device.
  • the location information is, for example, a cell ID.
  • the analysis information is, for example, information related to the energy status and/or prediction of the user device.
  • the first network side device may send an analysis request to the second network side device.
  • the first network side device may receive analysis information from the second network side device to use it to manage the communication of the user equipment.
  • the analysis information includes, for example, the energy state of the user equipment.
  • the first network side device can request analysis information by calling Nnwdaf_AnalyticsInfo_Request service operation.
  • the disclosed embodiment discloses that a first network-side device sends an analysis request, which can better support environmental Internet of Things communications and achieve effective response to always-on communications or on-demand communications.
  • FIG7 is another communication method for a first network side device according to an embodiment of the present disclosure. As shown in FIG7 , the communication method includes the following steps:
  • Step S71 receiving information related to the energy state and/or prediction of the user equipment.
  • Receiving the information related to the energy state and/or prediction of the user equipment may be after sending the analysis request or without sending the analysis request.
  • the analysis request is used to request the network side device to send analysis information.
  • the analysis request is, for example, Analytics request.
  • an analysis request is sent to obtain the energy status of the user device.
  • the analysis request may include the energy source and/or location information of the user device.
  • the location information is, for example, a cell ID.
  • the analysis information is, for example, information related to the energy status and/or prediction of the user device.
  • the energy state of the user equipment includes, for example, a normal energy mode, a low energy mode, and a no energy mode.
  • the first network side device and other core network nodes can receive signaling and/or data from the user equipment or send signaling and/or data to the user equipment.
  • the low energy mode the first network side device and other core network nodes only send signaling and/or data to the user equipment, and cannot receive signaling and/or data from the user equipment.
  • the no energy mode the first network side device and other core network nodes do not send signaling and/or data to the user equipment, nor do they receive signaling and/or data from the user equipment.
  • the classification method is not limited to this, and the above-mentioned modes can be partially merged or further split.
  • the first network side device may also store the information and perform processing corresponding to the information.
  • the first network side device may send information related to the energy state and/or prediction of the user equipment to the RAN (for example, through an N2 message).
  • the RAN may store the information and perform processing corresponding to the information. For the processing of different energy states, reference may be made to the relevant content in the above records.
  • a first network-side device receives information related to an energy state and/or prediction of a user device, thereby better supporting ambient IoT communications and achieving effective response to always-on communications or on-demand communications.
  • FIG8 is a communication method for a second network side device according to an embodiment of the present disclosure. As shown in FIG8 , the communication method includes the following steps:
  • Step S81 receiving an analysis request.
  • Step S82 perform analysis according to the analysis request.
  • Step S83 sending analysis information.
  • the analysis request is used to request the network side device to send analysis information.
  • the analysis request is, for example, Analytics request.
  • the analysis request may include the energy source and/or location information of the user equipment.
  • the location information is, for example, a cell ID.
  • the analysis information is, for example, information related to the energy state and/or prediction of the user equipment.
  • the analysis according to the analysis request may include the second network side device performing the analysis itself or with the aid of other entities. Whether the second network side device performs the analysis itself or with the aid of other entities may be determined in advance or may be determined by the second network side device or other entities.
  • the second network side device performs analysis by itself, for example, the second network side device uses relevant information to perform analysis.
  • the analysis is performed with the help of other entities, for example, the second network side device requests relevant information from AF (application function) through NEF (Network Exposure Function) and performs analysis.
  • AF application function
  • NEF Network Exposure Function
  • the second network side device can subscribe to data in AF through NEF by calling Nnef_EventExposure_Subscribe service operation.
  • the relevant information is, for example, weather conditions and/or weather forecasts, specifically, sunny days, rainy days, cloudy days, snowy days, etc.
  • the relevant information may come from a meteorological department and/or an application.
  • the second network side device can obtain relevant information related to the location of the user equipment according to the analysis request.
  • the city or other geographical information can be determined according to the cell ID, and the relevant information can be determined according to the city or other geographical information.
  • subscription to AF can be authorized by NEF, in which case the association between the event trigger and the identity of the second network side device is recorded by NEF.
  • NEF can subscribe to the data in AF by calling Naf_EventExposure_Subscribe service operation based on the request from the second network side device.
  • AF notifies NEF of the data by calling Naf_EventExposure_Notify service operation.
  • the communication method for the user equipment, the communication method for the first network side equipment, and the communication method for the second network side equipment can be combined with each other without contradiction, and the order of the steps can also be exchanged without contradiction.
  • FIG9 is a flow chart of a communication method according to an embodiment of the present disclosure. As shown in FIG9 , the communication method includes the following steps:
  • Step S91 The user equipment sends information related to the energy source of the user equipment to the first network side device.
  • Step S92 The user equipment receives a reception confirmation from the first network side equipment.
  • information related to the energy source of the user equipment is sent, for example, through a registration request, and reception confirmation is sent, for example, through a registration acceptance message.
  • the embodiments of the present disclosure may be combined with the embodiments or implementation methods involved in the communication method for the user equipment, the communication method for the first network side device, and various optional schemes thereof, which will not be described in detail here.
  • Figure 10 is a flow chart of a communication method according to an embodiment of the present disclosure. As shown in Figure 10, the communication method includes the following steps:
  • Step S101 A first network-side device receives information related to an energy source of a user equipment from the user equipment.
  • Step S102 The first network side device sends a reception confirmation to the user equipment.
  • Step S103 The first network side device sends an analysis request to the second network side device.
  • Step S104 The second network side device performs analysis according to the analysis request.
  • Step S105 The second network side device sends analysis information to the first network side device.
  • the embodiments of the present disclosure can be combined with the embodiments or implementation methods involved in the communication method for user equipment, the communication method for the first network side device, the communication method for the second network side device, and their various optional schemes, which will not be repeated here.
  • FIG11 is a flow chart of a communication method according to an embodiment of the present disclosure. As shown in FIG11 , the communication method includes the following steps:
  • Step S111 The first network side device receives information related to an energy source of the user equipment from the user equipment.
  • Step S112 The first network side device sends a reception confirmation to the user equipment.
  • Step S113 The first network side device sends an analysis request to the second network side device.
  • Step S114 The second network-side device requests the AF for information related to the energy source through the NEF according to the analysis request and performs analysis.
  • Step S115 The second network side device sends analysis information to the first network side device.
  • the embodiments of the present disclosure can be combined with the embodiments or implementation methods involved in the communication method for user equipment, the communication method for the first network side device, the communication method for the second network side device, and their various optional schemes, which will not be repeated here.
  • FIG. 12 is a schematic diagram of a communication system according to an embodiment of the present disclosure.
  • the communication system 12 includes a user equipment 121 and a first network side device 122 .
  • the actions performed by the user equipment 121 and the first network side device 122 refer to FIG. 9 and its corresponding embodiment.
  • the embodiments of the present disclosure may be combined with the embodiments or implementation methods involved in the communication method for the user equipment, the communication method for the first network side device, and various optional schemes thereof, which will not be described in detail here.
  • FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present disclosure.
  • the communication system 13 includes a first network side device 132 and a second network side device 133 .
  • the actions performed by the first network-side device 132 and the second network-side device 133 are shown in FIG. 10 and its corresponding embodiments.
  • the embodiments of the present disclosure may be combined with the embodiments or implementation methods involved in the communication method for the first network side device and the communication method for the second network side device and their various optional schemes, which will not be described in detail here.
  • FIG. 14 is a schematic diagram of a communication system according to an embodiment of the present disclosure.
  • the communication system 14 includes a first network side device 142 , a second network side device 143 , a NEF 144 , and an AF 145 .
  • the actions performed by the user equipment 141, the first network side device 142, the second network side device 143, the NEF 144, and the AF 145 are shown in FIG. 11 and its corresponding embodiments.
  • the embodiments of the present disclosure can be combined with the embodiments or implementation methods involved in the communication method for user equipment, the communication method for the first network side device, the communication method for the second network side device, and their various optional schemes, which will not be repeated here.
  • FIG. 15 is an exemplary schematic diagram of a communication system according to an embodiment of the present disclosure.
  • FIG. 16 is an exemplary flow chart of a communication method according to an embodiment of the present disclosure.
  • the UE sends a registration request to the AMF through the RAN (such as gNB), which may include parameters: energy source indication, registration type, SUCI, G-GUTI, PEI identifier, security parameters, etc.
  • the energy source indication may be solar energy, light, motion/vibration, heat, pressure, etc.
  • the UE may send the energy source indication to the RAN through an RRC message, and then the RAN may send the energy source indication to the AMF through an N2 message.
  • the AMF After authenticating and authorizing the UE, the AMF sends a Registration Accept message (Registration Accept) to the UE to complete the registration, where the Registration Accept message may include the 5G-GUTI.
  • the AMF may store the energy source of the UE in the UE context in the AMF.
  • the AMF may send the energy source to the RAN via an N2 message, and then the RAN may store the energy source of the UE in the UE context in the RAN.
  • AMF can request analysis information by calling Nnwdaf_AnalyticsInfo_Request service operation.
  • the parameters provided by AMF may include the energy source (solar energy) and the location of the UE (e.g., cell identity).
  • NWDAF determines whether a new data collection operation to AF needs to be triggered.
  • NWDAF subscribes to the data in AF by calling Nnef_EventExposure_Subscribe service operation through NEF.
  • These data can be the weather status and forecast (sunny, rainy, cloudy, snowy, etc.) of the UE's location from the meteorological department/application.
  • the location of the UE can be mapped from the cell identity to the city/geographic location information by NWDAF. If the event subscription is authorized by NEF, NEF will record the association between the event trigger and the NWDAF identity.
  • NEF subscribes to the data in AF by calling Naf_EventExposure_Subscribe service operation.
  • NEF can notify the data to NWDAF by calling Nnef_EventExposure_Notify service operation.
  • the NWDAF can generate analysis information and respond to the AMF with information about the UE's energy state and forecast: energy state mode (normal, low energy, no energy) at the current or future time.
  • energy state mode normal, low energy, no energy
  • the AMF can store the received UE's energy state mode and process the communication accordingly.
  • the AMF and other core network nodes can send/receive UE signaling and data.
  • communication is only for the UE as a receiver, and the AMF and other core network nodes only send signaling and data to the UE.
  • AMF sends the analysis information to the UE's serving RAN via N2 message.
  • RAN may store the received analysis information and process the communication accordingly.
  • the RAN can send signaling and data to the UE, or receive signaling and data from the UE.
  • the RAN For the low energy state mode, communication is only for the UE as a receiver, and the RAN only sends signaling and data to the UE, which may come from the core network or the RAN.
  • the mobile network can support ambient powered IoT communications, although the ambient powered IoT devices may not have continuous energy for always-on or on-demand communications.
  • NWDAF can generate energy state information of the UE based on the energy source and location of the UE.
  • the present disclosure introduces new parameters (energy state mode: normal, low energy, no energy) and corresponding operations in the core network and RAN.
  • the ambient-powered IoT device may report the energy source to the AMF via a NAS message, or may report the energy source to the RAN via an AS message (RRC).
  • RRC AS message
  • the AMF may receive and store the energy source of the environment-powered IoT device from the environment-powered IoT device through a NAS message.
  • the AMF may send an analysis request to the NWDAF to obtain the energy state of the environment-powered IoT device, and the analysis request may include the energy source and location of the environment-powered IoT device.
  • the AMF may store the analysis information from the NWDAF and may use the analysis information to manage the communication of the environment-powered IoT device.
  • the RAN may receive and store the energy source of the environment-powered IoT device from the environment-powered IoT device through an RRC message, or may receive the energy source of the environment-powered IoT device from the AMF through an N2 message.
  • the AMF may receive the energy status and prediction of the environment-powered IoT device from the AMF through an N2 message and use them.
  • NWDAF can analyze and predict the energy status of the environmentally powered IoT device based on the analysis request of the environmentally powered IoT device received from AMF, and return the analysis information to AMF.
  • NWDAF can request additional data/information from AF through NEF.
  • NWDAF can request weather status and forecast (sunny, rainy, cloudy, snowy, etc.) from the meteorological department/application (such as AF).
  • the AF can provide information to the NWDAF via the NEF upon request.
  • a meteorological department/application can provide weather status and forecast (sunny, rainy, cloudy, snowy, etc.).
  • FIG17 is a block diagram of a user device according to some embodiments.
  • the user device may be an environmental function IoT device.
  • the user device 1700 may be a solar cell, a street lamp, a mobile phone, a computer, a digital broadcast terminal, a message transceiver, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a smart car, etc.
  • the user device 1700 may include one or more of the following components: a first processing component 1702 , a first memory 1704 , a first power component 1706 , a multimedia component 1708 , an audio component 1710 , a first input/output interface 1712 , a sensor component 1714 , and a communication component 1716 .
  • the first processing component 1702 generally controls the overall operation of the user device 1700, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the first processing component 1702 may include one or more first processors 1720 to execute instructions to complete all or part of the steps of the above-mentioned communication method.
  • the first processing component 1702 may include one or more modules to facilitate the interaction between the first processing component 1702 and other components.
  • the first processing component 1702 may include a multimedia module to facilitate the interaction between the multimedia component 1708 and the first processing component 1702.
  • the first memory 1704 is configured to store various types of data to support operations on the user device 1700. Examples of such data include instructions for any application or method operating on the user device 1700, contact data, phone book data, messages, pictures, videos, etc.
  • the first memory 1704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the first power supply component 1706 provides power to various components of the user device 1700.
  • the first power supply component 1706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the user device 1700.
  • the multimedia component 1708 includes a screen that provides an output interface between the user device 1700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1708 includes a front camera and/or a rear camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 1710 is configured to output and/or input audio signals.
  • the audio component 1710 includes a microphone (MIC), and when the user device 1700 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the first memory 1704 or sent via the communication component 1716.
  • the audio component 1710 also includes a speaker for outputting audio signals.
  • the first input/output interface 1712 provides an interface between the first processing component 1702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1714 includes one or more sensors for providing various aspects of status assessment for the user device 1700.
  • the sensor assembly 1714 can detect the open/closed state of the user device 1700, the relative positioning of components, such as the display and keypad of the user device 1700, and the sensor assembly 1714 can also detect the position change of the user device 1700 or a component of the user device 1700, the presence or absence of contact between the user and the user device 1700, the orientation or acceleration/deceleration of the user device 1700, and the temperature change of the user device 1700.
  • the sensor assembly 1714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 1714 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1714 may also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1716 is configured to facilitate wired or wireless communication between the user device 1700 and other devices.
  • the user device 1700 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 1716 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1716 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the user device 1700 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above-mentioned communication methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above-mentioned communication methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a first memory 1704 including instructions, and the instructions can be executed by the first processor 1720 of the user equipment 1700 to complete the above communication method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the above-mentioned device can also be a part of an independent electronic device.
  • the device can be an integrated circuit (IC) or a chip, wherein the integrated circuit can be an IC or a collection of multiple ICs; the chip can include but is not limited to the following types: GPU (Graphics Processing Unit), CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), SOC (System on Chip, SoC, system on chip or system-level chip), etc.
  • the above-mentioned integrated circuit or chip can be used to execute executable instructions (or codes) to implement the above-mentioned communication method.
  • the executable instructions can be stored in the integrated circuit or chip, or can be obtained from other devices or equipment, for example, the integrated circuit or chip includes a processor, a memory, and an interface for communicating with other devices.
  • the executable instruction may be stored in the memory, and when the executable instruction is executed by the processor, the above-mentioned communication method is implemented; alternatively, the integrated circuit or chip may receive the executable instruction through the interface and transmit it to the processor for execution, so as to implement the above-mentioned communication method.
  • a computer program product includes a computer program executable by a programmable device, and the computer program has a code portion for executing the above communication method when executed by the programmable device.
  • FIG. 18 is a block diagram of a network side device according to an exemplary embodiment, and the network side device may be the above-mentioned RAN, AMF, NWDAF, NEF, AF, SMF, UPF, etc.
  • the network side device 1800 may be provided as a server.
  • the network side device 1800 includes a second processing component 1822, which further includes one or more processors, and a memory resource represented by a second memory 1832 for storing instructions executable by the second processing component 1822, such as an application.
  • the application stored in the second memory 1832 may include one or more modules, each corresponding to a set of instructions.
  • the second processing component 1822 is configured to execute instructions to perform a communication method.
  • the network side device 1800 may further include a second power supply component 1826 configured to perform power management of the network side device 1800, a wired or wireless network interface 1850 configured to connect the network side device 1800 to a network, and a second input/output interface 1858.
  • the network side device 1800 may operate based on an operating system stored in the memory 1832, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , FreeBSD TM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

一种通信方法、装置、用户设备、通信系统以及存储介质,所述方法包括:发送与用户设备的能量源有关的信息。本公开通过发送与用户设备的能量源有关的信息,如此能够利用与能量源有关的信息更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。

Description

通信方法、装置、用户设备、通信系统以及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种通信方法、装置、用户设备、通信系统以及存储介质。
背景技术
环境供能物联网(Ambient IoT)是一种支持环境能源(ambient power)的物联网。在特定使用场景下可以通过从来自环境的能量(energy)来为物联网设备提供动力。然而,受到环境能量不稳定性的影响,不能持续通过环境能量为物联网设备提供足够的动力,以支撑该物联网设备与移动网络之间进行持续的无线通信。
发明内容
为克服相关技术中存在的问题,本公开提供一种通信方法、装置、用户设备、通信系统以及存储介质。
根据本公开实施例的第一方面,提供一种通信方法,应用于用户设备,方法包括:
发送与用户设备的能量源有关的信息。
根据本公开实施例的第二方面,提供一种通信方法,应用于AMF,方法包括:
接收与用户设备的能量源有关的信息;
发送分析请求;以及
接收与用户设备的能量状态和/或预测有关的信息。
根据本公开实施例的第三方面,提供一种通信方法,应用于NWDAF,方法包括:
接收分析请求;
根据分析请求进行分析;以及
发送分析信息。
根据本公开实施例的第四方面,提供一种通信方法,应用于通信系统,方法包括:
AMF接收来自用户设备的与用户设备的能量源有关的信息;
AMF向NWDAF发送分析请求;
NWDAF根据分析请求进行分析;以及
NWDAF向AMF发送分析信息。
根据本公开实施例的第五方面,提供一种通信装置,应用于用户设备,包括以下模块:
信息发送模块,用于发送与用户设备的能量源有关的信息。
根据本公开实施例的第六方面,提供一种通信装置,应用于AMF,包括以下模块:
信息接收模块,用于接收与用户设备的能量源有关的信息;
分析请求发送模块,用于发送分析请求;以及
状态接收模块,用于接收与用户设备的能量状态和/或预测有关的信息。
根据本公开实施例的第七方面,提供一种通信装置,应用于NWDAF,包括以下模块:
分析请求接收模块,用于接收分析请求;
分析模块,用于根据分析请求进行分析;以及
分析信息发送模块,用于发送分析信息。
根据本公开实施例的第八方面,提供一种通信装置,应用于通信系统,包括以下模块:
AMF接收模块,用于AMF接收来自用户设备的与用户设备的能量源有关的信息;
AMF发送模块,用于AMF向NWDAF发送分析请求;
NWDAF分析模块,用于NWDAF根据分析请求进行分析;以及
NWDAF发送模块,用于NWDAF向AMF发送分析信息。根据本公开实施例的第九方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述可执行指令,以实现本公开第一方面至第四方面所提供的通信方法。
根据本公开实施例的第十方面,提供一种通信系统,该通信系统包括:
AMF,接收来自用户设备的与用户设备的能量源有关的信息,向NWDAF发送分析请求;以及
NWDAF,根据分析请求进行分析,向AMF发送分析信息。
根据本公开实施例的第十一方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面至第五方面所提供的通信方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:用户设备通过发送能量源信息,如此能够利用与能量源有关的信息更好地支持环境物联网通信,实现始终(always-on)通信或按需(on-demand)通信的有效应对。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一些实施例示出的一种通信方法的流程图。
图2是根据另一些实施例示出的一种通信方法的流程图。
图3是根据又一些实施例示出的一种通信方法的流程图。
图4是根据再一些实施例示出的一种通信方法的流程图。
图5是根据一些实施例示出的一种通信方法的流程图。
图6是根据另一些实施例示出的一种通信方法的流程图。
图7是根据又一些实施例示出的一种通信方法的流程图。
图8是根据一些实施例示出的一种通信方法的流程图。
图9是根据一些实施例示出的一种通信方法的流程图。
图10是根据一些实施例示出的一种通信方法的流程图。
图11是根据一些实施例示出的一种通信方法的流程图。
图12是根据一些实施例示出的一种通信系统的示意图。
图13是根据一些实施例示出的一种通信系统的示意图。
图14是根据一些实施例示出的一种通信系统的示意图。
图15是根据一些实施例示出的一种通信系统的示意图。
图16是根据一些实施例示出的一种通信方法的示例流程图。
图17为根据一些实施例示出的一种用户设备的结构示意图;
图18为一些实施例示出的一种网络侧设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不 代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开所涉及的用户设备(User Equipment,UE)是环境供能物联网设备(Ambient IoT device)。用户设备例如是能够利用环境能源的移动台、平板电脑等,也可以是能够利用环境能源的各种领域中的移动终端、固定终端等,在本公开中对用户设备的具体形式不做限定。
本公开所涉及的第一网络侧设备例如是AMF(接入与移动管理功能,access and mobility management function),但也可以是能够进行管理的其他主体。
本公开所涉及的第二网络侧设备例如是NWDAF(网络数据分析功能,network data analytics function),但也可以是能够进行分析的其他主体。
对于利用太阳能的环境供能物联网设备(Ambient IoT device),在阳光明媚的白天可以进行正常通信,而在下雨天或晚上,可能需要使用存储的电力,可能必须处于仅接收信令/数据或处于不发送接收信令/数据的休眠状态。利用其他环境能源的环境供能物联网设备也具有类似情况。因此,环境供能物联网设备可能没有持续的能源以应对始终通信或按需通信。
图1是根据本公开的实施例的用于用户设备的一种通信方法的流程图。如图1所示,该通信方法包括以下步骤:
步骤S11,发送与用户设备的能量源有关的信息。
本公开实施例中,用户设备的能量源(energy source)可以是太阳能(solar)、光能(light)、风能(wind)、运动能/振动能(motion/vibration)、热能(heat)和压力能(pressure)中的至少一个,也可以是其他任何能量源。另外,与用户设备的能量源有关的信息可以称作是能量源信息。
与用户设备的能量源有关的信息例如是能量源指示(power source indication)。能量源指示可以是太阳能、光能、风能、运动能、振动能、热能和压力能中的至少一个。
作为一种具体的实施方式,用户设备可以将与用户设备的能量源有关的信息发送给第一网络侧设备。可选地,用户设备可以响应于信息发送请求,将与能量源有关的信息发送给第一网络侧设备。
本公开实施例公开了,用户设备可以向第一网络侧设备发送能量源信息,如此能够利用与能量源有关的信息更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。
作为一个可选的实施例,用户设备可以通过RAN(无线接入网,Radio Access Network)向第一网络侧设备发送与用户设备的能量源有关的信息。其中,RAN也可以被替换为AN(接入网,Access Network)、或RAN与AN的组合。通过RAN发送例如可以是通过gNB等网络侧设备发送。以下具体说明。
图2是根据本公开的实施例的用于用户设备的另一种通信方法的流程图。如图2所示,该通信方法包括以下步骤:
步骤S21,通过NAS消息发送与用户设备的能量源有关的信息。
通过NAS(Non-access stratum,非接入层)消息发送例如是透明发送,即不查看内容就直接发送。
在不矛盾的情况下,本公开实施例可以与其他用于用户设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合。请参阅上述介绍,这里就不再赘述。
本公开实施例公开了,用户设备可以通过NAS消息发送与用户设备的能量源有关的信息,如此能够利用与能量源有关的信息更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。
图3是根据本公开的实施例的用于用户设备的又一种通信方法的流程图。如图3所示, 该通信方法包括以下步骤:
步骤S31,通过AS消息或通过RRC消息发送与用户设备的能量源有关的信息。
通过AS(Access stratum,接入层)消息或通过RRC(无线资源控制,Radio Resource Control)消息发送与用户设备的能量源有关的信息。例如是解析后发送。
本公开实施例中,用户设备可以通过AS消息发送与用户设备的能量源有关的信息。作为一个具体的实施方式,用户设备可以通过AS消息将与用户设备的能量源有关的信息发送给RAN。本公开实施例中,用户设备还可以通过RRC消息发送与用户设备的能量源有关的信息。作为一个具体的实施方式,用户设备可以通过RRC消息将与用户设备的能量源有关的信息发送给RAN。RAN可以通过N2消息将与用户设备的能量源有关的信息发送给第一网络侧设备。
在不矛盾的情况下,本公开实施例可以与其他用于用户设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例公开了,用户设备可以通过AS消息或通过RRC发送与用户设备的能量源有关的信息,如此能够利用与能量源有关的信息更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。
图4是根据本公开的实施例的用于用户设备的再一种通信方法的流程图。如图4所示,该通信方法包括以下步骤:
步骤S41,发送包括与用户设备的能量源有关的信息的注册请求。
注册请求例如是Registration request,可以用于用户设备进行认证(authentication)和/或授权(authorization)。
例如,用户设备可以向第一网络侧设备发送注册请求以便进行注册,在注册请求中包括与用户设备的能量源有关的信息。用户设备例如可以在发送包括与用户设备的能量源有关的信息的注册请求后,接收注册接受消息。注册接受消息例如是Registration Accept。
注册请求例如可以包括注册类型、SUCI、5G-GUTI、PEI、安全参数等中的至少一者。注册接受消息例如可以包括5G-GUTI。
在不矛盾的情况下,本公开实施例可以与其他用于用户设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例公开了,用户设备通过注册请求发送与用户设备的能量源有关的信息,如此能够利用与能量源有关的信息更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。另外,本公开通过发送注册请求来发送与用户设备的能量源有关的信息,如此能够保证减少额外的信令开销。
图5是根据本公开的实施例的用于第一网络侧设备的一种通信方法的流程图。如图5所示,该通信方法包括以下步骤:
步骤S51,接收与用户设备的能量源有关的信息。
可选地,第一网络侧设备可以在接收到与用户设备的能量源有关的信息后,向用户设备发送接收确认。
本公开实施例中,用户设备的能量源可以是太阳能、光能、风能、运动能/振动能(motion/vibration)、热能和压力能中的至少一个,也可以是其他任何能量源。另外,与用户设备的能量源有关的信息可以称作是能量源信息。
与用户设备的能量源有关的信息例如是能量源指示。能量源指示可以是太阳能、光能、风能、运动能、振动能、热能和压力能中的至少一个。
作为一个可选的实施例,第一网络侧设备可以通过RAN接收与用户设备的能量源有关的信息。通过RAN接收例如可以是通过gNB等网络侧设备接收。
本公开实施例中,第一网络侧设备可以从用户设备接收与用户设备的能量源有关的信 息。可选地,第一网络侧设备可以通过NAS消息接收与用户设备的能量源有关的信息,也可以通过AS消息或通过RRC消息接收与用户设备的能量源有关的信息。
在一个可选的实施例中,第一网络侧设备可以接收包括与用户设备的能量源有关的信息的注册请求。
注册请求例如是Registration request,可以用于用户设备进行鉴权(authentication)和/或授权(authorization)。可选地,第一网络侧设备可以向用户设备发送注册接受消息。注册接受消息例如是Registration Accept。注册接受消息例如可以包括5G-GUTI。
第一网络侧设备可以存储与用户设备的能量源有关的信息。例如,通过UE上下文的方式来存储。
可选地,第一网络侧设备可以通过N2消息将与用户设备的能量源有关的信息发送给RAN,RAN以UE上下文的方式存储该消息。
本公开实施例公开了,第一网络侧设备接收与用户设备的能量源有关的信息,如此能够更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。
图6是根据本公开的实施例的用于第一网络侧设备的另一种通信方法。如图6所示,该通信方法包括以下步骤:
步骤S61,发送分析请求。
分析请求用于请求网络侧设备发送分析信息。分析请求例如是Analytics request。作为一种可选的方式,发送分析请求以获取用户设备的能源状态。分析请求可以包括用户设备的能量源和/或位置信息。其中,位置信息例如是小区ID。分析信息例如是与用户设备的能量状态和/或预测有关的信息。
作为一个具体的实施方式,第一网络侧设备可以向第二网络侧设备发送分析请求。可选地,第一网络侧设备可以接收来自第二网络侧设备的分析信息以将其用于管理用户设备的通信。分析信息例如包括用户设备的能量状态。
可选地,第一网络侧设备可以通过调用Nnwdaf_AnalyticsInfo_Request service operation来请求分析信息。
在不矛盾的情况下,本公开实施例可以与其他用于第一网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例公开了,第一网络侧设备发送分析请求,如此能够更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。
图7是根据本公开的实施例的用于第一网络侧设备的又一种通信方法。如图7所示,该通信方法包括以下步骤:
步骤S71,接收与用户设备的能量状态和/或预测有关的信息。
接收与用户设备的能量状态和/或预测有关的信息可以是在发送分析请求后接收,也可以是未发送分析请求的情况下的接收。
分析请求用于请求网络侧设备发送分析信息。分析请求例如是Analytics request。作为一种可选的方式,发送分析请求以获取用户设备的能源状态。分析请求可以包括用户设备的能量源和/或位置信息。其中,位置信息例如是小区ID。分析信息例如是与用户设备的能量状态和/或预测有关的信息。
用户设备的能量状态例如包括普通能量模式、低能量模式、无能量模式。在普通能量模式中,第一网络侧设备和其他核心网络节点可以从用户设备接收或向用户设备发送信令和/或数据。在低能量模式中,第一网络侧设备和其他核心网络节点仅向用户设备发送信令和/或数据,不能从用户设备接收信令和/或数据。在无能量模式中,第一网络侧设备和其他核心网络节点不向用户设备发送信令和/或数据,也不从用户设备接收信令和/或数据。分类方式不限于此,可以将上述模式部分合并,或者进行进一步的拆分。
在接收与用户设备的能量状态和/或预测有关的信息后,第一网络侧设备也可以将该信息存储,并进行与该信息对应的处理。
在可选的实施例中,在第一网络侧设备接收与用户设备的能量源有关的信息后,可以(例如通过N2消息)向RAN发送与用户设备的能量状态和/或预测有关的信息。RAN可以将该信息存储,并进行与该信息对应的处理。针对不同能量状态的处理可参考上述记载中的相关内容。
在不矛盾的情况下,本公开实施例可以与其他用于第一网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例公开了,第一网络侧设备接收与用户设备的能量状态和/或预测有关的信息,如此能够更好地支持环境物联网通信,实现始终通信或按需通信的有效应对。
图8是根据本公开的实施例的用于第二网络侧设备的一种通信方法。如图8所示,该通信方法包括以下步骤:
步骤S81,接收分析请求。
步骤S82,根据分析请求进行分析。
步骤S83,发送分析信息。
分析请求用于请求网络侧设备发送分析信息。分析请求例如是Analytics request。分析请求可以包括用户设备的能量源和/或位置信息。其中,位置信息例如是小区ID。分析信息例如是与用户设备的能量状态和/或预测有关的信息。
根据分析请求进行分析可以包括第二网络侧设备自行进行分析,或者借助其他主体进行分析。是第二网络侧设备自行进行分析还是借助其他主体进行分析可以预先被确定,也可以由第二网络侧设备或其他主体来确定。
第二网络侧设备自行进行分析例如是第二网络侧设备利用相关信息进行分析。借助其他主体进行分析例如是,第二网络侧设备通过NEF(网络开放功能,Network Exposure Function)向AF(应用功能,application function)请求相关信息并进行分析。例如,第二网络侧设备可以通过调用Nnef_EventExposure_Subscribe service operation,从而通过NEF订阅(subscribe)AF中的数据。
对于利用太阳能的用户设备,相关信息例如是天气状态和/或天气预测,具体而言是晴天、雨天、阴天、雪天等。可选地,相关消息可以来自气象部门和/或应用程序。
在可选的实施方式中,第二网络侧设备可以根据分析请求中的用户设备的位置,获取与该位置有关的相关消息。例如,可以根据小区ID确定所在城市或者其他地理信息,根据所在城市或者其他地理信息确定相关消息。
可选地,订阅AF可以通过NEF来授权,此时,由NEF记录事件触发器与第二网络侧设备身份的关联。可选地,NEF可以根据来自第二网络侧设备的请求,调用Naf_EventExposure_Subscribe service operation来订阅AF中的数据。可选地,如果NEF订阅了AF中的数据,AF通过调用Naf_EventExposure_Notify service operation,将数据通知给NEF。
在本公开中,用于用户设备的通信方法、用于第一网络侧设备的通信方法、用于第二网络侧设备的通信方法可以在不矛盾的情况下相互组合,也可以在不矛盾的情况下交换步骤的顺序。
图9是根据本公开的实施例的一种通信方法的流程图。如图9所示,该通信方法包括以下步骤:
步骤S91,用户设备向第一网络侧设备发送与用户设备的能量源有关的信息。
步骤S92,用户设备接收来自第一网络侧设备的接收确认。
其中,与用户设备的能量源有关的信息例如通过注册请求来发送,接收确认例如通过 注册接受消息来发送。
在不矛盾的情况下,本公开实施例可以与用于用户设备的通信方法、用于第一网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
图10是根据本公开的实施例的一种通信方法的流程图。如图10所示,该通信方法包括以下步骤:
步骤S101,第一网络侧设备接收来自用户设备的与用户设备的能量源有关的信息。
步骤S102,第一网络侧设备向用户设备发送接收确认。
步骤S103,第一网络侧设备向第二网络侧设备发送分析请求。
步骤S104,第二网络侧设备根据分析请求进行分析。
步骤S105,第二网络侧设备向第一网络侧设备发送分析信息。
在不矛盾的情况下,本公开实施例可以与用于用户设备的通信方法、用于第一网络侧设备的通信方法、用于第二网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
图11是根据本公开的实施例的一种通信方法的流程图。如图11所示,该通信方法包括以下步骤:
步骤S111,第一网络侧设备接收来自用户设备的与用户设备的能量源有关的信息。
步骤S112,第一网络侧设备向用户设备发送接收确认。
步骤S113,第一网络侧设备向第二网络侧设备发送分析请求。
步骤S114,第二网络侧设备根据分析请求,通过NEF向AF请求与能量源有关的信息并进行分析。
步骤S115,第二网络侧设备向第一网络侧设备发送分析信息。
在不矛盾的情况下,本公开实施例可以与用于用户设备的通信方法、用于第一网络侧设备的通信方法、用于第二网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
图12是根据本公开的实施例的一种通信系统的示意图。
通信系统12包括用户设备121、第一网络侧设备122。
用户设备121、第一网络侧设备122所进行的动作参见图9及其对应的实施例。
在不矛盾的情况下,本公开实施例可以与用于用户设备的通信方法、用于第一网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
图13是根据本公开的实施例的一种通信系统的示意图。
通信系统13包括第一网络侧设备132、第二网络侧设备133。
第一网络侧设备132、第二网络侧设备133所进行的动作参见图10及其对应的实施例。
在不矛盾的情况下,本公开实施例可以与用于第一网络侧设备的通信方法、用于第二网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
图14是根据本公开的实施例的一种通信系统的示意图。
通信系统14包括第一网络侧设备142、第二网络侧设备143、NEF144、AF145。
用户设备141、第一网络侧设备142、第二网络侧设备143、NEF144、AF145所进行的动作参见图11及其对应的实施例。
在不矛盾的情况下,本公开实施例可以与用于用户设备的通信方法、用于第一网络侧设备的通信方法、用于第二网络侧设备的通信方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
图15是根据本公开的实施例的一种通信系统的示例示意图。
图16是根据本公开的实施例的一种通信方式的示例流程图。
如图15、图16所示,本公开的一种具体方案的示例如下:
1.UE通过RAN(如gNB)向AMF发送注册请求(Registration request),该注册请求可以包括参数:能量源指示、注册类型、SUCI、G-GUTI、PEI标识、安全参数等。能量源指示可以是太阳能、光、运动/振动、热、压力等。可选地,UE可以通过RRC消息将能量源指示发送给RAN,然后RAN通过N2消息将该能量源指示发送给AMF。
2.在对UE进行认证和授权后,AMF发送注册接受消息(Registration Accep)给UE,以完成注册,其中,注册接受消息可以包括5G-GUTI。AMF可以将UE的能量源存储在AMF中的UE上下文中。可选地,AMF可以通过N2消息将能量源发送给RAN,然后RAN可以将UE的能量源存储在RAN中的UE上下文中。
3.AMF可以通过调用Nnwdaf_AnalyticsInfo_Request服务操作(service operation)来请求分析信息,由AMF提供的参数可以包括能量源(太阳能)和UE的位置(例如,小区标识)。当收到分析请求时,NWDAF确定是否需要触发向AF的新的数据收集操作。
4.NWDAF通过NEF调用Nnef_EventExposure_Subscribe服务操作来订阅AF中的数据,这些数据可以是来自气象部门/应用程序的UE所在位置的天气状态和预测(晴天、雨天、阴天、雪天等)。UE的位置可以由NWDAF从小区标识映射到城市/地理位置信息。如果事件订阅得到NEF的授权,NEF则会记录事件触发器和NWDAF身份的关联。
5.根据NWDAF的请求,NEF通过调用Naf_EventExposure_Subscribe服务操作来订阅AF中的数据。
6.如果NEF中订阅了数据,AF根据步骤4和步骤5中订阅的事件报告信息,通过调用Naf_EventExposure_Notify服务操作将数据通知给NEF。
7.如果NEF收到来自AF的通知,则NEF可以通过调用Nnef_EventExposure_Notify服务操作将数据通知给NWDAF。
8.基于从AF处接收到的数据(例如,UE所在位置的天气状态和预测),NWDAF可以生成分析信息,并向AMF响应关于UE能量状态和预测的信息:当前或未来时间的能量状态模式(普通、低能量、无能量)。AMF可以存储收到的UE的能量状态模式并相应的地处理通信。
对于普通能量状态模式,通信是普通的,AMF和其他核心网络节点可以发送/接收UE的信令和数据。
对于低能量状态模式,通信只针对作为接收器的UE,AMF和其他核心网络节点只向UE发送信令和数据。
对于无能量状态模式,通信被停止,AMF和其他核心网络节点不向UE发送/从UE接收信令和数据。
9.AMF通过N2消息将分析信息发送给UE的服务RAN,RAN可以存储收到的分析信息,并相应的处理通信。
例如,对于普通能量状态模式,通信是普通的,RAN可以向UE发送信令和数据,或者从UE接收信令和数据。
对于低能量状态模式,通信只针对作为接收器的UE,RAN只向UE发送信令和数据,信令和数据可能来自核心网或RAN。
对于无能量状态模式,通信被停止,RAN不向UE发送/从UE接收信令和数据。
本公开实施例中,移动网络可以支持环境供能物联网通信,尽管环境供能物联网设备可能没有持续的能量进行始终通信或按需通信。NWDAF可以根据UE的能量源和位置生成UE的能量状态信息,本公开在核心网和RAN中引入了新的参数(能量状态模式:普通、低能量、无能量)和相应的操作。
作为一种示例,在本公开中,环境供能物联网设备可以通过NAS消息将能量源报告 给AMF,或者可以通过AS消息(RRC)将能量源报告给RAN。
作为一种示例,在本公开中,AMF可以通过NAS消息从环境供能物联网设备接收并存储环境供能物联网设备的能量源。AMF可以向NWDAF发送分析请求,以获得环境供能物联网设备的能量状态,该分析请求可以包括环境供能物联网设备的能量源和位置。AMF可以存储来自NWDAF的分析信息,并可以利用该分析信息对环境供能物联网设备的通信进行管理。
作为一种示例,在本公开中,RAN可以通过RRC消息从环境供能物联网设备接收并存储环境供能物联网设备的能量源,或者可以通过N2消息从AMF处接收该环境供能物联网设备的能量源。AMF可以通过N2消息从AMF处接收环境供能物联网设备的能量状态和预测并使用它们。
作为一种示例,在本公开中,NWDAF可以基于其从AMF处接收到的环境供能物联网设备的分析请求,对环境供能物联网设备的能量状态进行分析和预测,并将分析信息返回给AMF。为了进行分析,NWDAF可以通过NEF向AF请求额外的数据/信息。例如,对于太阳能物联网设备(solar power enabled IoT device),NWDAF可以向气象部门/应用程序(如,AF)请求天气状态和预测(晴天、雨天、阴天、雪天等)。
作为一种示例,AF可以根据请求通过NEF向NWDAF提供信息。例如,气象部门/应用程序可以提供天气状态和预测(晴天、雨天、阴天、雪天等)。
上述各示例可以应用于本公开所述的所有方法、装置、设备、存储介质、系统等实施例,在此不再赘述。
图17是根据一些实施例示出的一种用户设备的框图,本申请实施例中该用户设备可以为环境功能物联网设备。例如,用户设备1700可以是太阳能电池、路灯、移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,智能汽车等。
参照图17,用户设备1700可以包括以下一个或多个组件:第一处理组件1702,第一存储器1704,第一电源组件1706,多媒体组件1708,音频组件1710,第一输入/输出接口1712,传感器组件1714,以及通信组件1716。
第一处理组件1702通常控制用户设备1700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。第一处理组件1702可以包括一个或多个第一处理器1720来执行指令,以完成上述的通信方法的全部或部分步骤。此外,第一处理组件1702可以包括一个或多个模块,便于第一处理组件1702和其他组件之间的交互。例如,第一处理组件1702可以包括多媒体模块,以方便多媒体组件1708和第一处理组件1702之间的交互。
第一存储器1704被配置为存储各种类型的数据以支持在用户设备1700的操作。这些数据的示例包括用于在用户设备1700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。第一存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
第一电源组件1706为用户设备1700的各种组件提供电力。第一电源组件1706可以包括电源管理系统,一个或多个电源,及其他与为用户设备1700生成、管理和分配电力相关联的组件。
多媒体组件1708包括在所述用户设备1700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多 个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1708包括一个前置摄像头和/或后置摄像头。当用户设备1700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1710被配置为输出和/或输入音频信号。例如,音频组件1710包括一个麦克风(MIC),当用户设备1700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在第一存储器1704或经由通信组件1716发送。在一些实施例中,音频组件1710还包括一个扬声器,用于输出音频信号。
第一输入/输出接口1712为第一处理组件1702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1714包括一个或多个传感器,用于为用户设备1700提供各个方面的状态评估。例如,传感器组件1714可以检测到用户设备1700的打开/关闭状态,组件的相对定位,例如所述组件为用户设备1700的显示器和小键盘,传感器组件1714还可以检测用户设备1700或用户设备1700一个组件的位置改变,用户与用户设备1700接触的存在或不存在,用户设备1700方位或加速/减速和用户设备1700的温度变化。传感器组件1714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1716被配置为便于用户设备1700和其他设备之间有线或无线方式的通信。用户设备1700可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备1700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述通信方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的第一存储器1704,上述指令可由用户设备1700的第一处理器1720执行以完成上述通信方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
上述装置除了可以是独立的电子设备外,也可是独立电子设备的一部分,例如在一种实施例中,该装置可以是集成电路(Integrated Circuit,IC)或芯片,其中该集成电路可以是一个IC,也可以是多个IC的集合;该芯片可以包括但不限于以下种类:GPU(Graphics Processing Unit,图形处理器)、CPU(Central Processing Unit,中央处理器)、FPGA(Field Programmable Gate Array,可编程逻辑阵列)、DSP(Digital Signal Processor,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、SOC(System on Chip,SoC,片上系统或系统级芯片)等。上述的集成电路或芯片中可以用于执行可执行 指令(或代码),以实现上述的通信方法。其中该可执行指令可以存储在该集成电路或芯片中,也可以从其他的装置或设备获取,例如该集成电路或芯片中包括处理器、存储器,以及用于与其他的装置通信的接口。该可执行指令可以存储于该存储器中,当该可执行指令被处理器执行时实现上述的通信方法;或者,该集成电路或芯片可以通过该接口接收可执行指令并传输给该处理器执行,以实现上述的通信方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的通信方法的代码部分。
图18是根据一示例性实施例示出的一种网络侧设备的框图,该网络侧设备可以是上述RAN、AMF、NWDAF、NEF、AF、SMF以及UPF等。例如,网络侧设备1800可以被提供为一服务器。参照图18,网络侧设备1800包括第二处理组件1822,其进一步包括一个或多个处理器,以及由第二存储器1832所代表的存储器资源,用于存储可由第二处理组件1822的执行的指令,例如应用程序。第二存储器1832中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,第二处理组件1822被配置为执行指令,以执行通信方法。
网络侧设备1800还可以包括一个第二电源组件1826被配置为执行网络侧设备1800的电源管理,一个有线或无线网络接口1850被配置为将网络侧设备1800连接到网络,和一个第二输入/输出接口1858。网络侧设备1800可以操作基于存储在存储器1832的操作系统,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM,FreeBSD TM或类似。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种通信方法,应用于用户设备,其特征在于,包括以下步骤:
    发送与用户设备的能量源有关的信息。
  2. 如权利要求1所述的通信方法,
    通过NAS消息发送与用户设备的能量源有关的信息。
  3. 如权利要求1所述的通信方法,
    通过AS消息或通过RRC消息发送与用户设备的能量源有关的信息。
  4. 如权利要求1至3的任一项所述的通信方法,
    在发送与用户设备的能量源有关的信息后,接收来自AMF的接收确认。
  5. 如权利要求1至3的任一项所述的通信方法,
    发送注册请求,所述注册请求包括与用户设备的能量源有关的信息。
  6. 一种通信方法,应用于AMF,其特征在于,包括以下步骤:
    接收与用户设备的能量源有关的信息;
    发送分析请求;以及
    接收与用户设备的能量状态和/或预测有关的信息。
  7. 一种通信方法,应用于NWDAF,其特征在于,包括以下步骤:
    接收分析请求;
    根据分析请求进行分析;以及
    发送分析信息。
  8. 如权利要求7所述的通信方法,
    在根据分析请求进行分析的步骤中,根据分析请求,通过NEF向AF请求与能量源有关的信息并进行分析。
  9. 一种通信方法,应用于通信系统,其特征在于,包括以下步骤:
    AMF接收来自用户设备的与用户设备的能量源有关的信息;
    AMF向NWDAF发送分析请求;
    NWDAF根据分析请求进行分析;以及
    NWDAF向AMF发送分析信息。
  10. 如权利要求9所述的通信方法,
    在NWDAF根据分析请求进行分析的步骤中,NWDAF根据分析请求,通过NEF向AF请求与能量源有关的信息并进行分析。
  11. 一种通信装置,应用于用户设备,其特征在于,包括以下模块:
    信息发送模块,用于发送与用户设备的能量源有关的信息。
  12. 一种通信装置,应用于AMF,其特征在于,包括以下模块:
    信息接收模块,用于接收与用户设备的能量源有关的信息;
    分析请求发送模块,用于发送分析请求;以及
    状态接收模块,用于接收与用户设备的能量状态和/或预测有关的信息。
  13. 一种通信装置,应用于NWDAF,其特征在于,包括以下模块:
    分析请求接收模块,用于接收分析请求;
    分析模块,用于根据分析请求进行分析;以及
    分析信息发送模块,用于发送分析信息。
  14. 一种通信装置,应用于通信系统,其特征在于,包括以下模块:
    AMF接收模块,用于AMF接收来自用户设备的与用户设备的能量源有关的信息;
    AMF发送模块,用于AMF向NWDAF发送分析请求;
    NWDAF分析模块,用于NWDAF根据分析请求进行分析;以及
    NWDAF发送模块,用于NWDAF向AMF发送分析信息。
  15. 一种用户设备,通过执行计算机可执行指令,实现权利要求1至5中任一项所述的方法。
  16. 一种通信系统,其特征在于,包括:
    AMF,接收来自用户设备的与用户设备的能量源有关的信息,向NWDAF发送分析请求;以及
    NWDAF,根据分析请求进行分析,向AMF发送分析信息。
  17. 如权利要求16所述的通信系统,其特征在于,
    所述通信系统还包括NEF、AF,
    NWDAF根据分析请求,通过NEF向AF请求与能量源有关的信息并进行分析。
  18. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-10中任一项所述的方法。
PCT/CN2022/128087 2022-10-27 2022-10-27 通信方法、装置、用户设备、通信系统以及存储介质 WO2024087124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128087 WO2024087124A1 (zh) 2022-10-27 2022-10-27 通信方法、装置、用户设备、通信系统以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128087 WO2024087124A1 (zh) 2022-10-27 2022-10-27 通信方法、装置、用户设备、通信系统以及存储介质

Publications (1)

Publication Number Publication Date
WO2024087124A1 true WO2024087124A1 (zh) 2024-05-02

Family

ID=90829526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128087 WO2024087124A1 (zh) 2022-10-27 2022-10-27 通信方法、装置、用户设备、通信系统以及存储介质

Country Status (1)

Country Link
WO (1) WO2024087124A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253801A (zh) * 2016-08-18 2016-12-21 国网天津市电力公司 一种面向电力物联网节点的风光混合供电系统
CN108924916A (zh) * 2018-06-22 2018-11-30 京信通信系统(中国)有限公司 窄带通信系统的终端节能方法、装置与系统
US20190098490A1 (en) * 2016-05-30 2019-03-28 Huawei Technologies Co., Ltd. User information obtaining method and apparatus, identifier correspondence storage method and apparatus, and device
CN213659211U (zh) * 2020-12-14 2021-07-09 上海海洋大学 一种基于物联网的太阳能发电智能管理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098490A1 (en) * 2016-05-30 2019-03-28 Huawei Technologies Co., Ltd. User information obtaining method and apparatus, identifier correspondence storage method and apparatus, and device
CN106253801A (zh) * 2016-08-18 2016-12-21 国网天津市电力公司 一种面向电力物联网节点的风光混合供电系统
CN108924916A (zh) * 2018-06-22 2018-11-30 京信通信系统(中国)有限公司 窄带通信系统的终端节能方法、装置与系统
CN213659211U (zh) * 2020-12-14 2021-07-09 上海海洋大学 一种基于物联网的太阳能发电智能管理系统

Similar Documents

Publication Publication Date Title
WO2016206293A1 (zh) 运营商网络的接入方法和装置
WO2019000414A1 (zh) 蜂窝网络中实现边缘计算的方法、装置、设备及基站
WO2019056271A1 (zh) 网络连接方法及装置
US20230180180A1 (en) Paging processing methods, base station and user equipment
WO2022095712A1 (zh) 数据分享方法、装置、系统及电子设备
WO2024087124A1 (zh) 通信方法、装置、用户设备、通信系统以及存储介质
KR20130035533A (ko) 이동 단말기, 서버 및 서버의 제어 방법
US20190037612A1 (en) Connecting method to an information capture device
CN110798444B (zh) 一种基于物联网的数据同步方法以及装置
WO2019000275A1 (zh) 一种实现无线网络边缘计算的方法及装置
CN118266196A (zh) 通信方法、装置、用户设备、通信系统以及存储介质
US11109431B2 (en) Method and apparatus for establishing quick connection between internet of things devices, and device
US11252640B2 (en) Method, apparatus, device and base station for implementing internet of things device bootstrapping
WO2024065312A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024031399A1 (zh) Ue加入pin的方法及装置、通信设备及存储介质
WO2023245588A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024138758A1 (zh) 感知信息的获取方法、装置
WO2024031390A1 (zh) 个人物联网信息更新方法、装置、通信设备及存储介质
WO2024031523A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023226056A1 (zh) 更新配置接收、发送方法和装置、通信装置及存储介质
WO2023142095A1 (zh) Ue发现消息保护方法、装置、通信设备及存储介质
WO2024145947A1 (zh) 信息处理方法及装置、通信设备及存储介质
JP6861847B2 (ja) 通信方法及び通信装置
WO2023015504A1 (zh) 寻呼方法、装置、通信设备及存储介质
CN117616790A (zh) 语音设备组网方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963108

Country of ref document: EP

Kind code of ref document: A1