WO2024085570A1 - Fluorine-based polymer and method for preparing same - Google Patents

Fluorine-based polymer and method for preparing same Download PDF

Info

Publication number
WO2024085570A1
WO2024085570A1 PCT/KR2023/015969 KR2023015969W WO2024085570A1 WO 2024085570 A1 WO2024085570 A1 WO 2024085570A1 KR 2023015969 W KR2023015969 W KR 2023015969W WO 2024085570 A1 WO2024085570 A1 WO 2024085570A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
acrylamide
meth
monomer
based polymer
Prior art date
Application number
PCT/KR2023/015969
Other languages
French (fr)
Korean (ko)
Inventor
손은호
김주현
허현준
소원욱
박인준
장봉준
백지훈
오명석
김종민
이상구
이명숙
권하진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2024085570A1 publication Critical patent/WO2024085570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming

Definitions

  • the present invention relates to fluorine-based polymers and methods for producing the same.
  • Fluorine-based polymers have excellent hydrophobicity, water repellency, oil repellency, and biostability due to high electrical conductivity, low polarizability, small atomic radius, and strong C-F bond. Additionally, fluorine-based polymers are optically transparent and have low surface energy.
  • fluorine-based polymers are compounds that can be used in the medical field, as they are known to have anti-inflammatory effects when injected into the lungs.
  • fluorine-based polymers long-chain perfluorinated chemicals (PFCs) accumulate in the natural environment, animals, plants, and the human body. According to research until recently, it has not been demonstrated that the long-chain perfluorinated compounds accumulate in humans and cause harmful effects, but it has been reported that harmful effects appear in animal experiments. Considering that the long-chain perfluorinated compounds generally have a long half-life in the human body, exposure to the long-chain perfluorinated compounds is expected to have adverse effects in the human body.
  • a temperature-responsive polymer is a compound that has chemically and physically reversible properties in response to changes in temperature.
  • a representative temperature-sensitive polymer is poly(N-isopropylacrylamide). The material undergoes a phase transition (phase change) rapidly or gradually around the lower critical solution temperature (LCST) due to changes in the hydrophilic/hydrophobic balance of the polymer chain as the temperature rises/decrease. If the temperature is higher than LCST, the hydrogen bonds between the polymer and water are broken, and the polymers clump together to form an opaque state. If the temperature is lower than LCST, the hydrogen bonds are maintained and the polymer becomes transparent.
  • LCST In conventional heat-sensitive polymer compositions, LCST almost always appears at a predetermined temperature of about 30 to 45°C, but the LCST cannot be further adjusted (increased or decreased) or thermal hysteresis occurs, thereby reducing its usability and energy savings. There was a problem of insufficient efficiency. To solve this problem, the LCST temperature can be adjusted when using a general monomer, but the problem is that transparency is lost at room temperature or the LCST changes along the heating/cooling route due to the deepening of the thermal hysteresis, which limits its application. There was this.
  • the present invention is intended to solve the above problems.
  • a functional fluorine compound with a perfluorinated tertiary carbon structure into a temperature-sensitive polymer, the LCST of the temperature-sensitive polymer can be controlled more freely, while its thermal hysteresis is also reduced, making it easier to heat.
  • the purpose is to provide a fluorine-based polymer that can provide a relatively constant LCST regardless of the cooling route and has better biocompatibility such as cell viability.
  • the inventors of the present invention have found that at least part of the hydroxyl group contained in the main chain copolymer containing a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxyl group-containing monomer is oxygen-nucleophilic. )
  • the present invention was completed by discovering that the above-described technical problems could be solved through a method for producing fluorine-based polymers that includes modification with perfluorinated hydrocarbon-based compounds.
  • the present invention includes a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer, and at least some of the hydroxy groups included in the repeating unit derived from the hydroxy group-containing monomer It provides a fluorine-based polymer in which is substituted with an oxygen-nucleophilic perfluorinated hydrocarbon-based ether group.
  • the fluorine-based polymer of the present invention can have its LCST more freely adjusted through modification of the perfluorinated hydrocarbon-based compound, and thermal hysteresis is reduced to provide a relatively constant LCST regardless of the heating and cooling route, while maintaining cell viability. It has better biocompatibility effects.
  • Figures 1 (a) and (b) show the results of nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR) of the polymers of Example 1 and Preparation Example 1.
  • NMR nuclear magnetic resonance spectroscopy
  • FTIR Fourier transform infrared spectroscopy
  • Figure 3 is a thermal hysteresis graph obtained for an aqueous solution (1 wt%) of the polymer of Example 1, the polymer of Comparative Example 1, and the polymer of Comparative Example 4 ⁇ poly(N-isopropylacrylamide) (PNIPAm) ⁇ .
  • Figure 4 is a graph showing the temperature-permeability curve and the start and end temperatures of the permeability according to the concentration (wt%) of the aqueous solution containing the polymer of Example 1 at different weight%.
  • Figure 5 is a graph showing the change in LCST according to the incident wavelength for each of the polymer of Example 1, the polymer of Comparative Example 1, and the polymer (PNIPAm) of Comparative Example 4.
  • Figure 6 is a dynamic light scattering (DLS) spectrum of each polymer aqueous solution containing the polymers of Examples 1 and 2 and the polymers of Comparative Examples 1, 2, and 4 at a concentration of 10 mg/ml.
  • DLS dynamic light scattering
  • Figure 7 is a graph showing the high temperature nuclear magnetic resonance spectroscopy spectrum for the polymer in Example 1 and the normalized integration ratio of each peak according to temperature change.
  • Figure 8 is a graph and image showing the results of cell viability experiments for the polymer of Example 1 and the polymers of Comparative Examples 1 and 4, respectively.
  • the "Lower Critical Solution Temperature (LCST)” refers to the temperature by irradiating light of a specific wavelength (for example, may be 550 nm, but is not limited thereto) to an aqueous solution containing a temperature-sensitive polymer.
  • LCST Low Critical Solution Temperature
  • the present invention provides a method for producing fluorine-based polymers.
  • the method for producing a fluorine-based polymer is to oxygenate at least a portion of the hydroxy groups included in the main chain copolymer comprising a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer. It may include modification with an oxygennucleophilic perfluorinated hydrocarbon-based compound.
  • the repeating unit or temperature-sensitive polymer or polymer derived from the temperature-sensitive monomer of the present invention is a polymer whose physical properties change depending on the external temperature.
  • the polymer of the present invention is predominantly hydrophilic at temperatures below LCST, and exists in the form of a coil through hydrogen bonding with the hydrophilic portion of the polymer and the solvent.
  • hydrophobicity within the polymer is dominant, and the hydrophilicity of the polymer is reduced. It can exist in the form of a globule due to hydrophobic bonds within the polymer rather than hydrogen bonds between parts and the solvent.
  • polymers in the form of coils have low permeability, but polymers in the form of globules may have relatively high permeability.
  • the repeating unit derived from the temperature-sensitive monomer may be a repeating unit derived from a (meth)acrylamide-based monomer.
  • the (meth)acrylamide-based monomer is N-alkyl (meth) ) It may be an acrylamide-based monomer.
  • the N-alkyl (meth)acrylamide monomer may have a C 2 to C 18 alkyl group, a C 2 to C 15 alkyl group, or a C 2 to C 12 alkyl group bonded to the nitrogen atom of the amide group. Since the number of carbon atoms of the alkyl group bonded to the nitrogen atom of the amide group is within the above-mentioned range, the temperature-sensitive characteristics of the copolymer can be sufficiently expressed.
  • the (meth)acrylamide-based monomer is (meth)acrylamide, N-methyl (meth)acrylamide, N-ethyl (meth)acrylamide, and N-propyl (meth)acrylamide.
  • the repeating unit derived from the temperature-sensitive monomer is N-isopropylacrylamide, N,N-diethylacrylamide, 2-(dimethylamino)ethyl methacrylate, N,N- Dimethylacrylamide, acrylamide, 2-(diethylamino)ethyl acrylate, 2-(acryloxyethyl)trimethylammonium chloride, vinyl methyl ether, hydroxyethylmethyl acrylate, 4-hydroxybutyl acrylate, 2- Hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 2-carboxyethyl acrylate, 2-carboxyethyl acrylate oligomer, ethylene glycol methacrylate, 2-(dimethylamino)ethyl methacrylate hydroxypropyl It may be at least one selected from the group consisting of cellulose, vinyl caprolactam, and 2-isopropyl-2-oxazoline.
  • the repeating unit derived from the hydroxy group-containing monomer may be a repeating unit derived from a hydroxy group-containing (meth)acrylamide-based monomer, preferably, a hydroxy group-containing (meth)acrylamide-based monomer.
  • the amide-based monomer may be an N-hydroxyalkyl (meth)acrylamide monomer, and more preferably, the N-hydroxyalkyl (meth)acrylamide monomer has an alkyl group of C 2 to C 18 on the nitrogen atom of the amide group, It may be a C 2 to C 15 alkyl group, or N-hydroxyalkyl (meth)acrylamide to which a C 2 to C 12 alkyl group is bonded. Since the carbon number of the alkyl to which the hydroxy group is connected is within the above-mentioned range, the hydroxy group can be efficiently converted to a perfluorinated hydrocarbon system.
  • the hydroxyl group-containing (meth)acrylamide monomer is N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-hydroxyethylacrylamide, N-hydroxy Ethyl methacrylamide, N-hydroxypropylacrylamide, N-hydroxypropyl methacrylamide, N-hydroxyisopropyl acrylamide, N-hydroxyisopropyl methacrylamide, N-hydroxybutylacrylamide, N -Hydroxybutyl methacrylamide, N-hydroxyisobutylacrylamide, N-hydroxyisobutyl methacrylamide, N-hydroxyisopentyl acrylamide, N-hydroxyisopentyl methacrylamide, N-hydroxy It may include at least one selected from the group consisting of neopentylacrylamide and N-hydroxyneopentyl methacrylamide.
  • the oxygen-nucleophilic perfluorinated hydrocarbon-based compound may include a compound represented by Formula 1 below.
  • Oxygen-nucleophilicity may mean that the lone pair of electrons of the oxygen atom contained in the perfluorinated hydrocarbon-based compound acts as a nucleophile.
  • the oxygen-nucleophilic perfluorinated hydrocarbon compound may contain at least one hydroxy group in the molecule, and the lone pair of electrons of the oxygen atom of the hydroxy group may act as a nucleophile.
  • n, m, and p are the number of repetitions of the unit within the parentheses, and are each integers from 0 to 3.
  • n, m and p may be the same or different from each other.
  • n, m, and p When n, m, and p are 0, it may mean direct bonding.
  • the oxygen-nucleophilic perfluorinated hydrocarbon compound may be a symmetrical compound (n, m, and p are the same).
  • oxygen-nucleophilic perfluorinated hydrocarbon compound may be a compound with an asymmetric structure.
  • the compound represented by Formula 1 may include a compound represented by at least one selected from the following Formulas 1-1 to 1-4.
  • the oxygen-nucleophilic perfluorinated hydrocarbon-based compound may include perfluorinated tert -butyl alcohol.
  • At least a portion of the hydroxy groups contained in the main chain copolymer including a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer are reacted with an oxygen nucleophilic perfluorinated hydrocarbon-based compound.
  • an oxygen nucleophilic perfluorinated hydrocarbon-based compound By modifying, a hydrophobic moiety can be introduced into the polymer, and through this, hydrophobicity can dominate over hydrophilicity within the polymer. Accordingly, the polymer aggregates to minimize the surface energy of the polymer, and also As interference with hydrogen bonds increases, LCST may decrease.
  • the permeability of the polymer may decrease over a wider temperature range.
  • the difference between the start temperature (onset point) and the end temperature (off set point) of the permeability change (phase transition) can be adjusted to be 5 to 30 °C, preferably 10 to 20 °C. There will be.
  • the repeating unit derived from the (B) hydroxy group-containing monomer in the main chain copolymer has a content of more than 0 and 30 mol% or less, more than 3 and 27 mol% or less, or more than 5 and 25 mol% or less. may be included. Since the repeating unit derived from the hydroxyl group-containing monomer is within the above-mentioned range, water solubility can be maintained and sufficient hydroxyl groups can be provided for modification into a fluorine-based polymer.
  • the repeating unit derived from a (meth)acrylamide-based monomer modified (substituted) with an oxygen-nucleophilic perfluorinated hydrocarbon-based ether group is greater than 0 and 30 mol% or less, greater than 5 and 25 mol% or less, Alternatively, it may be more than 10 and less than or equal to 20 mol%.
  • the LCST of the copolymer can be sufficiently adjusted, and the thermal hysteresis is It can be reduced more sufficiently.
  • the higher the content of repeating units derived from (meth)acrylamide-based monomers modified (substituted) with oxygen-nucleophilic perfluorinated hydrocarbon-based ether groups the LCST variation ( ⁇ LCST: cloud point temperature and clear point temperature) difference) increases, and the change in permeability due to heating occurs gently, that is, a phase transition may occur gradually.
  • a method for producing a fluorine-based polymer includes a repeating unit derived from a temperature-sensitive monomer;
  • the step of heating a mixture of the temperature-sensitive monomer and the first solvent in which the hydroxy group-containing monomer is mixed to a temperature of 30° C. or higher it can be included. Specifically, it may include heating to a temperature of 30 to 90°C, 40 to 80°C, 50 to 70°C, or 50 to 60°C.
  • the method for producing a fluorine-based polymer may include adding a polymerization initiator to prepare a main chain copolymer comprising a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer.
  • the polymerization initiator is not limited as long as it is for performing radical polymerization.
  • the polymerization initiator may include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di- tert -butyl peroxide, cumyl hydroperoxide, and potassium persulfate. , azobisisobutyronitrile (AIBN), tert -butyl peroxypivalate, or diisopropyl peroxydicarbonate, etc. can be used.
  • the oxygen-nucleophilic perfluorinated hydrocarbon system may include adding a compound.
  • the second solvent is not limited as long as it is a solvent that can dissolve the hydroxy group-containing copolymer (main chain copolymer).
  • the second solvent may be triphenylphosphine (PPh 3 ), tetrahydro Furan, dimethylformamide, etc. can be used.
  • At least a portion of the hydroxy groups included in the copolymer may be modified with an oxygen-nucleophilic perfluorinated hydrocarbon-based compound, and the modification is performed using the oxygen-nucleophilic (oxygen-nucleophilic) perfluorinated hydrocarbon-based compound.
  • the perfluorinated hydrocarbon-based compound may be added in an amount of 1.5 to 6 equivalents relative to the equivalent of the hydroxyl group of the main chain copolymer.
  • the conversion rate may be sufficient and most of the hydroxyl groups in the polymer may be converted.
  • a catalyst may be further included in order to modify at least a portion of the hydroxy groups included in the hydroxy group-containing copolymer into the oxygen-nucleophilic perfluorinated hydrocarbon-based compound.
  • the catalyst may include diisopropyl azodicarboxylate or diethyl azodicarboxylate.
  • the step of modifying at least a portion of the hydroxy groups included in the hydroxy group-containing copolymer may be performed through a Mitsunobu reaction.
  • a step of heating may be included to modify at least a portion of the hydroxy groups included in the hydroxy group-containing copolymer into an oxygen-nucleophilic perfluorinated hydrocarbon-based compound, for example It may include heating a mixture of the hydroxy group-containing copolymer and the second solvent in which the oxygen-nucleophilic perfluorinated hydrocarbon-based compound is mixed to a temperature of 30° C. or higher. Specifically, it may include heating to a temperature of 30 to 90°C, 40 to 80°C, 50 to 70°C, and 50 to 60°C.
  • the repeating unit derived from the hydroxy group-containing monomer may be 0 to 25 mol%, 3 to 22 mol%, or 5 to 20 mol% of the total content of monomers constituting the copolymer. Since the content of the hydroxy group-containing monomer is within the above-mentioned range, the physical properties of the temperature-sensitive polymer can be maintained and sufficient hydroxy groups for introduction of fluorine groups can be contained.
  • the present invention provides a fluorine-based polymer.
  • the fluorine-based polymer of the present invention generates thermal hysteresis when measuring permeability according to temperature during heating and cooling.
  • Thermal hysteresis can result from the aggregation and dissociation of temperature-sensitive polymers, which can be reversible phase transitions.
  • the arrangement of the surrounding solvent is not stable at temperatures exceeding LCST, and hydrophobic bonds may become dominant.
  • hydrogen bonds are formed between amides within the molecule, which can serve as a cross-link. Due to the hydrophobic bonds and hydrogen bonds between amides, the polymer swells like a gel, causing chain dissociation.
  • the LCST of the fluorine-based polymer can be adjusted by the wavelength of irradiated light. Scattering of fluorine-based polymers may vary depending on the wavelength of incident light. The shorter the wavelength of incident light, the more scattering occurs, so a solution containing a fluorine-based polymer can exhibit higher transmittance at a longer wavelength.
  • the present invention provides an aqueous solution or fluorine-based composition (including water-soluble compositions, etc.) containing a fluorine-based polymer.
  • the fluorine-based polymer may be included in an amount of 0.01 to 3.0 parts by weight, 0.05 to 2.8 parts by weight, 0.1 to 2.5 parts by weight, and 0.15 to 2.0 parts by weight based on 100 parts by weight of the aqueous solution or fluorine-based composition.
  • LCST can be adjusted depending on the concentration of the aqueous solution or fluorine-based composition.
  • the fluorine-based polymer of the present invention can be used as a material for smart windows by utilizing the change in permeability in an aqueous solution or fluorine-based composition due to phase transition.
  • the fluorine-based polymer of the present invention is capable of a more gradual phase transition near LCST, making it possible to observe changes in the permeability of materials such as smart window films according to the increase or decrease in temperature at various levels, making it possible to improve the existing smart window
  • the application may be more comprehensive than that of the fluorine-based polymers used.
  • the fluorine-based polymer and the aqueous solution or fluorine-based composition containing the fluorine-based polymer of the present invention have a small amount of variation in LCST due to heating and cooling in thermal hysteresis, and the change in physical properties due to changes in temperature is minimized, so the precision of sensing can be improved.
  • the fluorine-based polymer of the present invention reduces biotoxicity resulting from long-chain perfluorinated compounds of existing biocompatible polymers, helps cell growth, and can significantly increase cell viability. .
  • the fluorine-based polymer of the present invention changes into a coil and globule form around the LCST temperature, thereby changing its solubility, so it can be used as a drug delivery system (DDS) by taking advantage of the fact that the temperature varies depending on the body's organs. ) can be used as a drug carrier.
  • DDS drug delivery system
  • NIPAm N-isopropylacrylamide
  • HEAAm 2-hydroxyethyl (meth)acrylamide monomer
  • NMP N-methyl 2-pyrrolidone
  • AIBN azobisisobutyronitrile
  • NIPAm N-isopropylacrylamide
  • HEAAm 2-hydroxyethyl (meth)acrylamide monomer
  • NMP N-methyl 2-pyrrolidone
  • AIBN azobisisobutyronitrile
  • the polymers of the Experimental Examples and Comparative Examples were each prepared in an aqueous solution with a concentration of 1 wt%, and then measured using an ultraviolet-visible spectrophotometer (UV). After adding the polymer aqueous solution to a -vis spectrometer, 550 nm light was irradiated to measure the temperature dependent transmittance curve, and the results are shown in Figure 2.
  • PNIPAm a temperature-sensitive polymer, is known to have an LCST in the range of 30 to 45°C, and the transmittance of each aqueous solution decreased to less than 50% at temperatures above LCST.
  • FIG. 3 is a thermal hysteresis curve of the polymer corresponding to Example 1, showing an LCST variation ( ⁇ LCST) of 0.5°C.
  • Figure 3 (b) is a thermal hysteresis curve of the polymer corresponding to Comparative Example 1. There was no temperature difference, so the amount of LCST variation ( ⁇ LCST) was hardly confirmed.
  • Figure 3 (c) is a thermal hysteresis curve of the polymer corresponding to Comparative Example 4, and it was confirmed that an LCST variation ( ⁇ LCST) of about 1°C appeared.
  • the polymers of Example 1 and Comparative Example 1 dissociate at a relatively higher temperature than the polymer of Comparative Example 4 as the hydrogen bonds formed by the amide group within the molecule formed during the heating process are cooled, and the temperature at which phase transition occurs is I was able to confirm that it was high.
  • the polymer of Example 1 had a gradual change in transmittance compared to the polymers of Comparative Examples 1 and 4.
  • Example 1 Each polymer of Example 1 was dissolved in water to obtain 0.1 wt%.
  • LCST was measured as in Experimental Example 3 and is shown in FIG. 4.
  • LCST was observed at 36.2°C.
  • the hysteresis curve of 0.1 wt% decreased the permeability over a wider temperature range (i.e., phase transition occurred more gradually).
  • the start temperature (onset point) and end temperature (off set point) of the permeability change (phase transition) were measured and shown in (b) of FIG. 4.
  • the phase transition occurred over a temperature range of 6.1°C, but in an aqueous solution with a concentration of 0.1 wt%, the transition occurred over a temperature range of 12°C.
  • the permeability decreases close to 0 and that the range of phase transition change can be controlled over a wide range by changing the concentration.
  • the change in LCST according to the incident wavelength was measured for each of the polymers of Example 1, Comparative Example 1, and Comparative Example 4, and is shown in Figure 5.
  • the transmission-temperature curve shifted to a higher temperature value.
  • the LCST which was 34.1°C at a wavelength of 900 nm, was 300. In nm, it was shown as 29.8°C, confirming that there was a difference of about 4.3°C.
  • Figure 6(a) is the dynamic light scattering spectrum of Example 1, and in the case of Figure 6(a), it was confirmed that R h gradually increased from 29°C before reaching 32.7°C, which is the LCST. Through this, it was confirmed that when the hydrophobicity within the polymer increases, it begins to aggregate and form clusters.
  • Figure 6c is a dynamic light scattering spectrum of Comparative Example 4, in which R h with a size of 342 ⁇ 23 (nm) was formed at a temperature above LCST.
  • Examples 1 and 2 in which the NFtB group was introduced showed R h of 242 ⁇ 18 and 320 ⁇ 17 (nm), respectively, above LCST, similar to that of PNIPAm.
  • Comparative Example 1 in Figure 6(a) showed an unstable tendency in which R h continued to increase above LCST. Therefore, through comparison of Examples 1 to 2 and Comparative Examples 1 to 2, as the content of hydroxy groups increases, the behavior of R h becomes unstable, but as the content of NFtB groups increases, R h becomes stable as in Comparative Example 4. It was confirmed that appeared.
  • Figure 7(b) shows the normalized integral (%) of each peak according to temperature change. It was confirmed that the peaks of CH(CH 3 ) 2 (a), CH 3 CHCONH (d+e), CONHCN 2 CH 3 (b'), and CONHCH (g) were near LCST, and the normalized integration ratio began to decrease. The CONHCH 2 CH (c') peak began to decrease at a higher temperature than the other peaks, but decreased most rapidly. Through Figure 7, it was confirmed that the hydrogen bond between the polymer and water is broken and the polymer chain is dehydrated, and that the protons around the NFtB group affect dehydration more than the protons around the main chain and the isopropyl group.
  • Example 1 In order to confirm the cell viability of the polymers of Example 1, Comparative Example 1, and Comparative Example 4, the cell viability in MRC5 (human lung infant cells) was measured using the MTT assay.
  • Figure 8 (a) shows the cytotoxicity measured by dissolving each polymer in MEM at a concentration of 0.1 to 10 mg/ml.
  • the cell viability of the polymers of Example 1, Comparative Example 1, and Comparative Example 4 increased as the concentration of the polymer increased, but decreased at 10 mg/ml.
  • Example 1 and Comparative Example 1 had significantly higher cell survival rates.
  • the cell viability reached about 278 ⁇ 39 (%) at a concentration of 5 mg/ml. Through this, it was confirmed that the polymer of Example 1 was not toxic to cells but rather played a role in growing cells.
  • Figure 8 (b) is an image after a cell viability test of the polymers of Example 1, Comparative Example 1, and Comparative Example 4 at a concentration of 5 mg/ml.
  • the left column of Figure 8 (b) is an image of Example 1, Comparative Example 1, and Comparative Example 4 at 37°C
  • the right column is an image after dissolving the polymer of Example 1 by leaving the sample at 25°C for 30 minutes. It is an image.
  • Example 1 at 37°C the polymer was aggregated because the temperature was higher than LCST, and cells were confirmed to have grown around it. Afterwards, even after the sample was left at 25°C for 30 minutes to dissolve the aggregates, it was confirmed that the grown cells remained intact. Meanwhile, when Comparative Example 1 and Example 1 were compared, the cell survival rate of Example 1 was much better, confirming the bioinert properties of perfluorinated hydrocarbons and the anti-inflammatory effect in the lung.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a method for preparing a fluorine-based polymer and a fluorine-based polymer prepared thereby, the method comprising modifying at least a portion of a hydroxy group contained in a main chain copolymer comprising a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer with an oxygennucleophilic perfluorinated hydrocarbon-based compound.

Description

불소계 고분자 및 이의 제조 방법Fluorine-based polymer and method for producing the same
[관련출원과의 상호인용][Cross-citation with related applications]
본 출원은 2022. 10. 17.일자 한국 특허 출원 제10-2022-0133371호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0133371, dated October 17, 2022, and all contents disclosed in the document of the Korean Patent Application are included as part of this specification.
[기술분야][Technology field]
본 발명은 불소계 고분자 및 이의 제조 방법에 관한 것이다.The present invention relates to fluorine-based polymers and methods for producing the same.
불소계 고분자는 높은 전기전도도, 낮은 분극률, 작은 원자 반지름 및 강한 C-F 결합으로 인하여, 소수성, 발수성, 발유성 및 생체 안정성이 우수하다. 또한 불소계 고분자는 광학적으로 투명하며, 낮은 표면 에너지를 갖는다. Fluorine-based polymers have excellent hydrophobicity, water repellency, oil repellency, and biostability due to high electrical conductivity, low polarizability, small atomic radius, and strong C-F bond. Additionally, fluorine-based polymers are optically transparent and have low surface energy.
한편, 불소계 고분자는 폐에 주입되어 항염증 효과가 있다고 알려진 것과 같이 의료분야에서 사용될 수 있는 화합물이다. 그러나, 불소계 고분자 중 장쇄 과불소계 화합물(Long-Chain perfluorinated chemical, PFCs)은 자연 환경, 동식물 및 사람의 체내에 축적된다. 최근까지의 연구에 의하면, 사람 내에서 상기 장쇄 과불소계 화합물이 축적되어 유해 효과가 나타난다는 것이 실증된 바 없으나, 동물 실험 단계에서는 유해한 효과가 나타난다는 것이 보고되었다. 일반적으로 상기 장쇄 과불소계 화합물이 인체 내에서 긴 반감기를 갖는다는 점을 고려하면, 상기 장쇄 과불소계 화합물에 노출되는 것이 인체 내에서 악영향을 끼칠 것으로 예상된다. Meanwhile, fluorine-based polymers are compounds that can be used in the medical field, as they are known to have anti-inflammatory effects when injected into the lungs. However, among fluorine-based polymers, long-chain perfluorinated chemicals (PFCs) accumulate in the natural environment, animals, plants, and the human body. According to research until recently, it has not been demonstrated that the long-chain perfluorinated compounds accumulate in humans and cause harmful effects, but it has been reported that harmful effects appear in animal experiments. Considering that the long-chain perfluorinated compounds generally have a long half-life in the human body, exposure to the long-chain perfluorinated compounds is expected to have adverse effects in the human body.
온도 감응성 고분자(temperature-responsive polymer)는 온도의 변화에 반응하여 화학적·물리적으로 가역적인 특성을 가진 화합물이다. 대표적인 온도 감응성 고분자로는 폴리(N-아이소프로필아크릴아미드)가 있다. 상기 물질은 온도의 상승/감소에 따라 고분자 사슬의 친수성·소수성 균형의 변화로 인해 하한임계용액온도(LCST, Lower Critical Solution Temperature) 부근에서 급격히 또는 점진적으로 상전이(상변화)가 일어난다. 온도가 LCST 보다 높을 경우, 고분자와 물 사이의 수소결합이 끊어져 고분자끼리 뭉쳐 불투명한 상태가 되고, 온도가 LCST 보다 낮을 경우, 수소결합을 유지하여 투명한 상태의 형태를 띠게 된다. A temperature-responsive polymer is a compound that has chemically and physically reversible properties in response to changes in temperature. A representative temperature-sensitive polymer is poly(N-isopropylacrylamide). The material undergoes a phase transition (phase change) rapidly or gradually around the lower critical solution temperature (LCST) due to changes in the hydrophilic/hydrophobic balance of the polymer chain as the temperature rises/decrease. If the temperature is higher than LCST, the hydrogen bonds between the polymer and water are broken, and the polymers clump together to form an opaque state. If the temperature is lower than LCST, the hydrogen bonds are maintained and the polymer becomes transparent.
종래의 열 감응성 고분자 조성물은 LCST가 거의 대부분 약 30 내지 45℃의 중의 소정의 온도에서 나타나지만, 이로부터 LCST를 추가적으로 조절(증감)하지 못하거나 또는 그 열적 히스테리시스가 발생됨에 따라 그 활용성 및 에너지 절감 효율이 미비한 문제점이 있었다. 이를 해결하기 위해 일반적인 단량체를 사용할 경우 LCST 온도를 조절할 수 있지만, 상온에서 투명성을 잃어 버리거나, 또는 그 열적 히스테리시스의 심화로 인한 가열/냉각 루트에 따른 LCST가 변해 버리거나 하여서, 그 응용에 제한이 생기는 문제점이 있었다.In conventional heat-sensitive polymer compositions, LCST almost always appears at a predetermined temperature of about 30 to 45°C, but the LCST cannot be further adjusted (increased or decreased) or thermal hysteresis occurs, thereby reducing its usability and energy savings. There was a problem of insufficient efficiency. To solve this problem, the LCST temperature can be adjusted when using a general monomer, but the problem is that transparency is lost at room temperature or the LCST changes along the heating/cooling route due to the deepening of the thermal hysteresis, which limits its application. There was this.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 과불화 3급 탄소 구조의 기능성 불소화합물을 온도 감응성을 갖는 고분자에 도입하여 온도 감응성 고분자의 LCST를 보다 자유롭게 조절하면서도, 그 열적 히스테리시스도 저감되어서 가열/냉각 루트에 무관하게 상대적으로 일정한 LCST를 제공할 수 있으며, 세포 생존율 등의 생체 적합성이 보다 우수한 불소계 고분자를 제공하는 것을 목적으로 한다.The present invention is intended to solve the above problems. By introducing a functional fluorine compound with a perfluorinated tertiary carbon structure into a temperature-sensitive polymer, the LCST of the temperature-sensitive polymer can be controlled more freely, while its thermal hysteresis is also reduced, making it easier to heat. /The purpose is to provide a fluorine-based polymer that can provide a relatively constant LCST regardless of the cooling route and has better biocompatibility such as cell viability.
본 발명의 발명자들은 연구를 거듭한 결과, 온도 감응성 단량체 유래의 반복 단위 및 하이드록시기 함유 단량체 유래의 반복 단위를 포함하는 주쇄 공중합체에 포함된 하이드록시기의 적어도 일부를 산소-친핵성(oxygennucleophilic) 과불화 탄화수소계 화합물로 개질하는 것을 포함하는 불소계 고분자의 제조 방법을 통해 상술한 기술적 과제를 해결할 수 있다는 것을 발견하여 본 발명을 완성하기에 이르렀다.As a result of repeated research, the inventors of the present invention have found that at least part of the hydroxyl group contained in the main chain copolymer containing a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxyl group-containing monomer is oxygen-nucleophilic. ) The present invention was completed by discovering that the above-described technical problems could be solved through a method for producing fluorine-based polymers that includes modification with perfluorinated hydrocarbon-based compounds.
본 발명의 또다른 실시 형태에 따르면, 온도 감응성 단량체 유래의 반복 단위 및 하이드록시기 함유 단량체 유래의 반복 단위를 포함하고, 상기 하이드록시기 함유 단량체 유래의 반복 단위에 포함된 하이드록시기 중의 적어도 일부가 산소-친핵성(oxygen-nucleophilic) 과불화 탄화수소계 에테르기로 치환되어 있는 것인, 불소계 고분자를 제공한다.According to another embodiment of the present invention, it includes a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer, and at least some of the hydroxy groups included in the repeating unit derived from the hydroxy group-containing monomer It provides a fluorine-based polymer in which is substituted with an oxygen-nucleophilic perfluorinated hydrocarbon-based ether group.
본 발명의 불소계 고분자는 과불화 탄화수소계 화합물의 개질을 통하여 그 LCST가 보다 자유롭게 조절될 수 있으며, 열적 히스테리시스가 저감되어서 가열 및 냉각 루트와는 무관하게 상대적으로 일정한 LCST를 제공할 수 있으면서도, 세포 생존율 등의 생체 적합성이 보다 우수한 효과가 있다.The fluorine-based polymer of the present invention can have its LCST more freely adjusted through modification of the perfluorinated hydrocarbon-based compound, and thermal hysteresis is reduced to provide a relatively constant LCST regardless of the heating and cooling route, while maintaining cell viability. It has better biocompatibility effects.
도 1의 (a) 및 (b)는 실시예 1 및 제조예 1의 고분자의 핵자기 공명 분광 분석(NMR) 및 푸리에 변환 적외선 분광 분석(FTIR) 결과이다.Figures 1 (a) and (b) show the results of nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR) of the polymers of Example 1 and Preparation Example 1.
도 2의 (a) 내지 (d)는 실시예 1 내지 3 및 비교예 1 내지 3의 고분자의 각각의 수용액(1 wt%)에 대하여 자외-가시선 분광 광도계(UV-Vis spectrometer)를 통하여 얻어진 온도-투과도 곡선의) 그래프 및 공중합 반복단위 중의 NIPAm 반복단위의 비율에 따른 LCST 변이량(△LCST: 흐림점의 온도와 투명점의 온도의 차이)의 그래프이다.2 (a) to (d) are the temperatures obtained through an ultraviolet-visible spectrophotometer for each aqueous solution (1 wt%) of the polymers of Examples 1 to 3 and Comparative Examples 1 to 3. -Permeability curve) and a graph of the LCST variation (△LCST: difference between the temperature of the cloud point and the temperature of the clear point) according to the ratio of the NIPAm repeat unit in the copolymerization repeat unit.
도 3은 실시예 1의 고분자, 비교예 1의 고분자 및 비교예 4의 고분자 {폴리(N-이소프로필아크릴아미드)(PNIPAm)}의 수용액(1 wt%)에 대하여 각각 얻은 열적 히스테리시스 그래프이다. Figure 3 is a thermal hysteresis graph obtained for an aqueous solution (1 wt%) of the polymer of Example 1, the polymer of Comparative Example 1, and the polymer of Comparative Example 4 {poly(N-isopropylacrylamide) (PNIPAm)}.
도 4는 실시예 1의 고분자를 상이한 중량%로 포함하는 수용액의 농도(wt%)에 따른 온도-투과도 곡선 및 투과도의 시작 온도 및 종료 온도를 나타낸 그래프이다.Figure 4 is a graph showing the temperature-permeability curve and the start and end temperatures of the permeability according to the concentration (wt%) of the aqueous solution containing the polymer of Example 1 at different weight%.
도 5는 실시예 1의 고분자, 비교예 1의 고분자 및 비교예 4의 고분자(PNIPAm)의 각각에 있어서, 입사하는 파장의 따른 LCST의 변화를 나타낸 그래프이다.Figure 5 is a graph showing the change in LCST according to the incident wavelength for each of the polymer of Example 1, the polymer of Comparative Example 1, and the polymer (PNIPAm) of Comparative Example 4.
도 6은 실시예 1 내지 2의 고분자 및 비교예 1, 2 및 4의 고분자를 10 mg/ml의 농도로 포함하는 각각의 고분자 수용액의 동적 광산란(Dynamic Light Scattering, DLS) 분광 스펙트럼이다.Figure 6 is a dynamic light scattering (DLS) spectrum of each polymer aqueous solution containing the polymers of Examples 1 and 2 and the polymers of Comparative Examples 1, 2, and 4 at a concentration of 10 mg/ml.
도 7은 실시예 1에서의 고분자에 대한, 고온 핵자기 공명 분광 스펙트럼 및 온도 변화에 따른 각 피크들의 표준화된 적분비를 나타낸 그래프이다.Figure 7 is a graph showing the high temperature nuclear magnetic resonance spectroscopy spectrum for the polymer in Example 1 and the normalized integration ratio of each peak according to temperature change.
도 8은 실시예 1의 고분자, 및 비교예 1 및 4의 고분자의 각각에 대한 세포 생존율 실험 결과를 나타낸 그래프 및 이미지이다.Figure 8 is a graph and image showing the results of cell viability experiments for the polymer of Example 1 and the polymers of Comparative Examples 1 and 4, respectively.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to facilitate understanding of the present invention.
본 발명에서는 "하한임계용액온도(Lower Critical Solution Temperature, LCST)"는 특정 파장(예를 들어 550 nm일 수 있으나 이에 제한되는 것은 아님)의 빛을 온도 감응성 고분자를 포함하는 수용액에 조사하여서 온도에 따른 투과도를 측정하였을 때, 투과도가 50%가 되는 온도를 의미한다.In the present invention, the "Lower Critical Solution Temperature (LCST)" refers to the temperature by irradiating light of a specific wavelength (for example, may be 550 nm, but is not limited thereto) to an aqueous solution containing a temperature-sensitive polymer. When the transmittance is measured, it refers to the temperature at which the transmittance is 50%.
1. 불소계 고분자의 제조 방법1. Method for producing fluorine-based polymers
본 발명은 불소계 고분자의 제조 방법을 제공한다. The present invention provides a method for producing fluorine-based polymers.
본 발명의 일 실시형태에서, 불소계 고분자의 제조 방법은 온도 감응성 단량체 유래의 반복 단위 및 하이드록시기 함유 단량체 유래의 반복 단위를 포함하는 주쇄 공중합체에 포함된 하이드록시기의 적어도 일부를 산소-친핵성(oxygennucleophilic) 과불화 탄화수소계 화합물로 개질하는 것을 포함할 수 있다.In one embodiment of the present invention, the method for producing a fluorine-based polymer is to oxygenate at least a portion of the hydroxy groups included in the main chain copolymer comprising a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer. It may include modification with an oxygennucleophilic perfluorinated hydrocarbon-based compound.
본 발명의 온도 감응성 단량체 유래의 반복 단위 또는 온도 감응성 중합체 또는 고분자는 외부의 온도에 따라 물성이 바뀌는 고분자이다. 본 발명의 고분자는 LCST 이하의 온도에서 친수성이 우세하여, 고분자의 친수성 부분과 용매와 수소결합을 하여 코일(coil)의 형태로 존재하나, LCST 초과의 온도에서 고분자 내 소수성이 우세하여 고분자의 친수성 부분과 용매와의 수소 결합보다 고분자 내 소수성 결합으로 글로불(globule) 형태로 존재할 수 있다. 이 때, 코일 형태로 있는 고분자는 투과도가 낮으나, 글로뷸 형태로 존재하는 고분자는 투과도가 상대적으로 높을 수 있다. The repeating unit or temperature-sensitive polymer or polymer derived from the temperature-sensitive monomer of the present invention is a polymer whose physical properties change depending on the external temperature. The polymer of the present invention is predominantly hydrophilic at temperatures below LCST, and exists in the form of a coil through hydrogen bonding with the hydrophilic portion of the polymer and the solvent. However, at temperatures above LCST, hydrophobicity within the polymer is dominant, and the hydrophilicity of the polymer is reduced. It can exist in the form of a globule due to hydrophobic bonds within the polymer rather than hydrogen bonds between parts and the solvent. At this time, polymers in the form of coils have low permeability, but polymers in the form of globules may have relatively high permeability.
본 발명의 일 실시 형태에서, 상기 온도 감응성 단량체 유래의 반복 단위는 (메타)아크릴아미드계 단량체 유래의 반복 단위일 수 있으며, 예를 들어, 상기 (메타)아크릴아미드계 단량체는 N-알킬(메타)아크릴아미드계 단량체일 수 있다. 상기 N-알킬(메타)아크릴아미드계 단량체는 아미드기의 질소 원자에 C2∼C18의 알킬기, C2∼C15의 알킬기, 또는 C2∼C12의 알킬기가 결합될 수 있다. 아미드기의 질소 원자에 결합된 알킬기의 탄소수가 상술한 범위 내에 존재하여, 공중합체의 온도 감응 특성이 충분하게 발현될 수 있다. In one embodiment of the present invention, the repeating unit derived from the temperature-sensitive monomer may be a repeating unit derived from a (meth)acrylamide-based monomer. For example, the (meth)acrylamide-based monomer is N-alkyl (meth) ) It may be an acrylamide-based monomer. The N-alkyl (meth)acrylamide monomer may have a C 2 to C 18 alkyl group, a C 2 to C 15 alkyl group, or a C 2 to C 12 alkyl group bonded to the nitrogen atom of the amide group. Since the number of carbon atoms of the alkyl group bonded to the nitrogen atom of the amide group is within the above-mentioned range, the temperature-sensitive characteristics of the copolymer can be sufficiently expressed.
본 발명의 일 실시 형태에서, 상기 상기 (메타)아크릴아미드계 단량체는 (메타)아크릴아미드, N-메틸(메타)아크릴아미드, N-에틸(메타)아크릴아미드, N-프로필(메타)아크릴아미드, N-(n-부틸)메타크릴아미드, N-(sec-부틸)메타크릴아미드, N-(tert-부틸)메타크릴아미드, N-(n-펜틸)(메타)아크릴아미드, N-(n-헥실)(메타)아크릴아미드, N-(n-헵틸)(메타)아크릴아미드, N-(n-옥틸)(메타)아크릴아미드, N-(tert-옥틸)(메타)아크릴아미드, N-(1,1,3,3-테트라메틸부틸)(메타)아크릴아미드, N-에틸헥실(메타)아크릴아미드, N-(n-노닐)(메타)아크릴아미드, N-(n-데실)(메타)아크릴아미드, N-(n-운데실)(메타)아크릴아미드, N-트리데실(메타)아크릴아미드, N-미리스틸(메타)아크릴아미드, N-펜타데실(메타)아크릴아미드, N-팔미틸(메타)아크릴아미드, N-헵타데실(메타)아크릴아미드, N-노나데실(메타)아크릴아미드, N-아라키닐(메타)아크릴아미드, N-베헤닐(메타)아크릴아미드, N-리그노세레닐(메타)아크릴아미드, N-세로티닐(메타)아크릴아미드, N-멜리시닐(메타)아크릴아미드, N-팔미톨레이닐(메타)아크릴아미드, N-올레일(메타)아크릴아미드, N-리놀릴(메타)아크릴아미드, N-리놀레닐(메타)아크릴아미드, N-스테아릴(메타)아크릴아미드, N-라우릴(메타)아크릴아미드, N,N-디메틸(메타)아크릴아미드, N,N-디에틸(메타)아크릴아미드, 피페리디닐(메타)아크릴아미드 및 모르폴리닐(메타)아크릴아미드로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.In one embodiment of the present invention, the (meth)acrylamide-based monomer is (meth)acrylamide, N-methyl (meth)acrylamide, N-ethyl (meth)acrylamide, and N-propyl (meth)acrylamide. , N-(n-butyl)methacrylamide, N-(sec-butyl)methacrylamide, N-( tert -butyl)methacrylamide, N-(n-pentyl)(meth)acrylamide, N-( n-hexyl)(meth)acrylamide, N-(n-heptyl)(meth)acrylamide, N-(n-octyl)(meth)acrylamide, N-( tert -octyl)(meth)acrylamide, N -(1,1,3,3-Tetramethylbutyl)(meth)acrylamide, N-ethylhexyl(meth)acrylamide, N-(n-nonyl)(meth)acrylamide, N-(n-decyl) (meth)acrylamide, N-(n-undecyl)(meth)acrylamide, N-tridecyl(meth)acrylamide, N-myristyl(meth)acrylamide, N-pentadecyl(meth)acrylamide, N-Palmityl (meth)acrylamide, N-heptadecyl (meth)acrylamide, N-nonadecyl (meth)acrylamide, N-arakinyl (meth)acrylamide, N-behenyl (meth)acrylamide, N-lignoserenyl (meth)acrylamide, N-serotinyl (meth)acrylamide, N-melicinyl (meth)acrylamide, N-palmitoleinyl (meth)acrylamide, N-oleyl ( Meta)acrylamide, N-linolyl (meth)acrylamide, N-linolenyl (meth)acrylamide, N-stearyl (meth)acrylamide, N-lauryl (meth)acrylamide, N, N-dimethyl It may include at least one selected from the group consisting of (meth)acrylamide, N,N-diethyl (meth)acrylamide, piperidinyl (meth)acrylamide, and morpholinyl (meth)acrylamide.
나아가, 본 발명의 일 실시 형태에서, 상기 온도 감응성 단량체 유래의 반복 단위는 N-이소프로필아크릴아미드, N,N-디에틸아크릴아미드, 2-(디메틸아미노)에틸 메타크릴레이트, N,N-디메틸아크릴아미드, 아크릴아미드, 2-(디에틸아미노)에틸아크릴레이트, 2-(아크릴옥시에틸)트리메틸암모늄 클로라이드, 비닐 메틸 에테르, 하이드록시에틸메틸아크릴레이트, 4-하이드록시부틸 아크릴레이트, 2-하이드록시에틸 메타크릴레이트, 3-하이드록시프로필 메타크릴레이트, 2-카복시에틸 아크릴레이트, 2-카복시에틸 아크릴레이트 올리고머, 에틸렌 글리콜 메타크릴레이트, 2-(디메틸아미노)에틸 메타크릴레이트 하이드록시프로필셀룰로오스, 비닐카프로락탐 및 2-이소프로필-2-옥사졸린으로 이루어진 군에서 선택된 적어도 하나일 수도 있다.Furthermore, in one embodiment of the present invention, the repeating unit derived from the temperature-sensitive monomer is N-isopropylacrylamide, N,N-diethylacrylamide, 2-(dimethylamino)ethyl methacrylate, N,N- Dimethylacrylamide, acrylamide, 2-(diethylamino)ethyl acrylate, 2-(acryloxyethyl)trimethylammonium chloride, vinyl methyl ether, hydroxyethylmethyl acrylate, 4-hydroxybutyl acrylate, 2- Hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 2-carboxyethyl acrylate, 2-carboxyethyl acrylate oligomer, ethylene glycol methacrylate, 2-(dimethylamino)ethyl methacrylate hydroxypropyl It may be at least one selected from the group consisting of cellulose, vinyl caprolactam, and 2-isopropyl-2-oxazoline.
본 발명의 일 실시 형태에서, 상기 하이드록시기 함유 단량체 유래의 반복 단위는 하이드록시기 함유 (메타)아크릴아미드계 단량체 유래의 반복 단위일 수 있으며, 바람직하게는, 하이드록시기 함유 (메타)아크릴아미드계 단량체는 N-하이드록시알킬(메타)아크릴아미드 단량체일 수 있으며, 더욱 바람직하게는 상기 N-하이드록시알킬(메타)아크릴아미드 단량체는 아미드기의 질소 원자에 C2∼C18의 알킬기, C2∼C15의 알킬기, 또는 C2∼C12의 알킬기가 결합되어 있는 N-하이드록시알킬(메타)아크릴아미드일 수 있다. 히드록시기가 연결된 알킬의 탄소수가 상술한 범위에 존재함으로 인해, 히드록시기가 과불화 탄화수소계로 효율적으로 전환될 수 있다.In one embodiment of the present invention, the repeating unit derived from the hydroxy group-containing monomer may be a repeating unit derived from a hydroxy group-containing (meth)acrylamide-based monomer, preferably, a hydroxy group-containing (meth)acrylamide-based monomer. The amide-based monomer may be an N-hydroxyalkyl (meth)acrylamide monomer, and more preferably, the N-hydroxyalkyl (meth)acrylamide monomer has an alkyl group of C 2 to C 18 on the nitrogen atom of the amide group, It may be a C 2 to C 15 alkyl group, or N-hydroxyalkyl (meth)acrylamide to which a C 2 to C 12 alkyl group is bonded. Since the carbon number of the alkyl to which the hydroxy group is connected is within the above-mentioned range, the hydroxy group can be efficiently converted to a perfluorinated hydrocarbon system.
본 발명의 일 실시 형태에서, 상기 하이드록시기 함유 (메타)아크릴아미드계 단량체는 N-하이드록시메틸아크릴아미드, N-하이드록시메틸메타크릴아미드, N-하이드록시에틸아크릴아미드, N-하이드록시에틸메타크릴아미드, N-하이드록시프로필아크릴아미드, N-하이드록시프로필메타크릴아미드, N-하이드록시이소프로필아크릴아미드, N-하이드록시이소프로필메타크릴아미드, N-하이드록시부틸아크릴아미드, N-하이드록시부틸메타크릴아미드, N-하이드록시이소부틸아크릴아미드, N-하이드록시이소부틸메타크릴아미드, N-하이드록시이소펜틸아크릴아미드, N-하이드록시이소펜틸메타크릴아미드, N-하이드록시네오펜틸아크릴아미드 및 N-하이드록시네오펜틸메타크릴아미드로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다. In one embodiment of the present invention, the hydroxyl group-containing (meth)acrylamide monomer is N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-hydroxyethylacrylamide, N-hydroxy Ethyl methacrylamide, N-hydroxypropylacrylamide, N-hydroxypropyl methacrylamide, N-hydroxyisopropyl acrylamide, N-hydroxyisopropyl methacrylamide, N-hydroxybutylacrylamide, N -Hydroxybutyl methacrylamide, N-hydroxyisobutylacrylamide, N-hydroxyisobutyl methacrylamide, N-hydroxyisopentyl acrylamide, N-hydroxyisopentyl methacrylamide, N-hydroxy It may include at least one selected from the group consisting of neopentylacrylamide and N-hydroxyneopentyl methacrylamide.
본 발명의 일 실시 형태에서, 상기 산소-친핵성 과불화 탄화수소계 화합물은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다. 산소-친핵성이란, 과불화 탄화수소계 화합물에 함유된 산소원자의 비공유 전자쌍이 친핵체로서 작용하는 것을 의미할 수 있다. 구체적으로, 상기 산소-친핵성 과불화 탄화수소계 화합물은 분자 내에 하이드록시기를 적어도 하나 함유할 수 있고, 상기 하이드록시기의 산소원자의 비공유 전자쌍이 친핵체로서 작용할 수 있다.In one embodiment of the present invention, the oxygen-nucleophilic perfluorinated hydrocarbon-based compound may include a compound represented by Formula 1 below. Oxygen-nucleophilicity may mean that the lone pair of electrons of the oxygen atom contained in the perfluorinated hydrocarbon-based compound acts as a nucleophile. Specifically, the oxygen-nucleophilic perfluorinated hydrocarbon compound may contain at least one hydroxy group in the molecule, and the lone pair of electrons of the oxygen atom of the hydroxy group may act as a nucleophile.
[화학식 1][Formula 1]
Figure PCTKR2023015969-appb-img-000001
Figure PCTKR2023015969-appb-img-000001
상기 화학식 1에서, n, m 및 p는 각각 괄호 내 단위의 반복 수로서, 각각 0 내지 3의 정수이다. In Formula 1, n, m, and p are the number of repetitions of the unit within the parentheses, and are each integers from 0 to 3.
상기 n, m 및 p는 서로 동일하거나, 서로 상이할 수 있다.The n, m and p may be the same or different from each other.
상기 n, m 및 p가 0인 경우에는, 직접결합을 의미하는 것일 수 있다.When n, m, and p are 0, it may mean direct bonding.
상기 산소-친핵성 과불화 탄화수소계 화합물은 대칭 구조의 화합물(n, m, p가 서로 동일)일 수 있다. The oxygen-nucleophilic perfluorinated hydrocarbon compound may be a symmetrical compound (n, m, and p are the same).
또는 상기 산소-친핵성 과불화 탄화수소계 화합물은 비대칭 구조의 화합물일 수도 있다.Alternatively, the oxygen-nucleophilic perfluorinated hydrocarbon compound may be a compound with an asymmetric structure.
상기 화학식 1로 표시되는 화합물은, 하기 화학식 1-1 내지 화학식 1-4 중에 선택되는 적어도 하나로 표시되는 화합물을 포함하는 것일 수 있다.The compound represented by Formula 1 may include a compound represented by at least one selected from the following Formulas 1-1 to 1-4.
[화학식 1-1][Formula 1-1]
Figure PCTKR2023015969-appb-img-000002
Figure PCTKR2023015969-appb-img-000002
[화학식 1-2][Formula 1-2]
Figure PCTKR2023015969-appb-img-000003
Figure PCTKR2023015969-appb-img-000003
[화학식 1-3][Formula 1-3]
Figure PCTKR2023015969-appb-img-000004
Figure PCTKR2023015969-appb-img-000004
[화학식 1-4][Formula 1-4]
Figure PCTKR2023015969-appb-img-000005
Figure PCTKR2023015969-appb-img-000005
바람직하게는 상기 산소-친핵성 과불화 탄화수소계 화합물은 과불화 tert-부틸 알코올을 포함할 수 있다.Preferably, the oxygen-nucleophilic perfluorinated hydrocarbon-based compound may include perfluorinated tert -butyl alcohol.
본 발명의 일 실시 형태에서, 온도 감응성 단량체 유래의 반복 단위 및 하이드록시기 함유 단량체 유래의 반복 단위를 포함하는 주쇄 공중합체에 포함된 하이드록시기의 적어도 일부를 산소 친핵성 과불화 탄화수소계 화합물로 개질함으로써, 고분자 내 소수성 모이어티(moiety)가 도입될 수 있으며, 이를 통해 고분자 내 친수성보다 소수성이 우세하게 작용할 수 있고, 이에 따라 고분자의 표면 에너지를 최소화하기 위해 고분자가 응집(aggregation)하며, 또한 수소결합에 대한 방해가 증가하므로, LCST가 감소할 수 있다. In one embodiment of the present invention, at least a portion of the hydroxy groups contained in the main chain copolymer including a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer are reacted with an oxygen nucleophilic perfluorinated hydrocarbon-based compound. By modifying, a hydrophobic moiety can be introduced into the polymer, and through this, hydrophobicity can dominate over hydrophilicity within the polymer. Accordingly, the polymer aggregates to minimize the surface energy of the polymer, and also As interference with hydrogen bonds increases, LCST may decrease.
또한, 본 발명의 일 실시 형태에서, 고분자 내 산소 친핵성 과불화 탄화수소계 화합물의 함량이 증가할수록, 소수성이 증가하게 되어, 분자간 인력에 영향을 줄 수 있다. 상기 분자간 인력이 증가함에 따라 고분자의 사슬들이 더욱 응집하게 되며, 상전이 또한 일시에 발생하는 것이 아닌, 점진적으로 클러스터를 형성하며 발생할 수 있다. 즉, 고분자 내 산소 친핵성 과불화 탄화수소계 화합물의 함량이 증가할수록 고분자의 투과도는 더 넓은 온도 범위에서 감소하는 형태가 나타날 수 있다. 이로써, 후술하는 온도-투과도 곡선에 있어서, 투과도 변화(상전이)의 시작 온도(onset point)와 종료 온도(off set point)의 차이가 5∼30℃, 바람직하게는 10∼20℃가 되도록 조절할 수 있게 된다.Additionally, in one embodiment of the present invention, as the content of the oxygen-nucleophilic perfluorinated hydrocarbon compound in the polymer increases, hydrophobicity increases, which may affect intermolecular attraction. As the intermolecular attraction increases, the polymer chains become more aggregated, and phase transitions may also occur gradually, forming clusters, rather than occurring all at once. In other words, as the content of oxygen-nucleophilic perfluorinated hydrocarbon compounds in the polymer increases, the permeability of the polymer may decrease over a wider temperature range. As a result, in the temperature-permeability curve described later, the difference between the start temperature (onset point) and the end temperature (off set point) of the permeability change (phase transition) can be adjusted to be 5 to 30 ℃, preferably 10 to 20 ℃. There will be.
본 발명의 일 실시 형태에서, 상기 주쇄 공중합체 중 상기 (B) 하이드록시기 함유 단량체 유래의 반복 단위는 0 초과 30 몰% 이하, 3 초과 27 몰% 이하, 또는 5 초과 25 몰% 이하 의 함량으로 포함될 수 있다. 하이드록시기 함유 단량체 유래의 반복 단위가 상술한 범위 내에 존재함으로 인하여, 물에 대한 용해도를 유지하며, 불소계 고분자로 개질하기 위한 하이드록시기를 충분히 제공할 수 있다. In one embodiment of the present invention, the repeating unit derived from the (B) hydroxy group-containing monomer in the main chain copolymer has a content of more than 0 and 30 mol% or less, more than 3 and 27 mol% or less, or more than 5 and 25 mol% or less. may be included. Since the repeating unit derived from the hydroxyl group-containing monomer is within the above-mentioned range, water solubility can be maintained and sufficient hydroxyl groups can be provided for modification into a fluorine-based polymer.
본 발명의 일 실시 형태에서, 산소-친핵성 과불화 탄화수소계 에테르기로 개질된(치환된) (메타)아크릴아미드계 단량체 유래의 반복단위는 0 초과 30 몰% 이하, 5 초과 25 몰% 이하, 또는 10 초과 20 몰% 이하일 수 있다. 산소-친핵성 과불화 탄화수소계 에테르기로 개질된(치환된) (메타)아크릴아미드계 단량체 유래의 반복단위가 상술한 범위에 존재함으로 인하여, 공중합체의 LCST가 충분히 조절될 수 있으며, 열적 히스테리시스가 더욱 충분히 저감될 수 있다. 또한, 산소-친핵성 과불화 탄화수소계 에테르기로 개질된(치환된) (메타)아크릴아미드계 단량체 유래의 반복단위의 함량이 높을수록, LCST 변이량(△LCST: 흐림점의 온도와 투명점의 온도의 차이)이 증가하며, 가열에 따른 투과도의 변화가 완만하게 발생, 즉 점진적으로 상전이가 발생할 수 있다.In one embodiment of the present invention, the repeating unit derived from a (meth)acrylamide-based monomer modified (substituted) with an oxygen-nucleophilic perfluorinated hydrocarbon-based ether group is greater than 0 and 30 mol% or less, greater than 5 and 25 mol% or less, Alternatively, it may be more than 10 and less than or equal to 20 mol%. Because the repeating unit derived from a (meth)acrylamide-based monomer modified (substituted) with an oxygen-nucleophilic perfluorinated hydrocarbon-based ether group exists in the above-mentioned range, the LCST of the copolymer can be sufficiently adjusted, and the thermal hysteresis is It can be reduced more sufficiently. In addition, the higher the content of repeating units derived from (meth)acrylamide-based monomers modified (substituted) with oxygen-nucleophilic perfluorinated hydrocarbon-based ether groups, the LCST variation (△LCST: cloud point temperature and clear point temperature) difference) increases, and the change in permeability due to heating occurs gently, that is, a phase transition may occur gradually.
본 발명의 일 실시 형태에서, 불소계 고분자의 제조 방법은 온도 감응성 단량체 유래의 반복 단위; 및 하이드록시기 함유 단량체 유래의 반복 단위;를 포함하는 주쇄 공중합체를 제조하기 위해, 상기 온도 감응성 단량체 및 하이드록시기 함유 단량체가 혼합된 제1 용매의 혼합물을 30℃이상의 온도로 가열하는 단계를 포함할 수 있다. 구체적으로는 30 내지 90℃, 40 내지 80℃, 50 내지 70℃, 또는 50 내지 60℃의 온도로 가열하는 단계를 포함할 수 있다.In one embodiment of the present invention, a method for producing a fluorine-based polymer includes a repeating unit derived from a temperature-sensitive monomer; In order to prepare a main chain copolymer comprising a repeating unit derived from a hydroxy group-containing monomer, the step of heating a mixture of the temperature-sensitive monomer and the first solvent in which the hydroxy group-containing monomer is mixed to a temperature of 30° C. or higher. It can be included. Specifically, it may include heating to a temperature of 30 to 90°C, 40 to 80°C, 50 to 70°C, or 50 to 60°C.
본 발명의 일 실시 형태에서, 불소계 고분자의 제조 방법은 온도 감응성 단량체 유래의 반복 단위 및 하이드록시기 함유 단량체 유래의 반복 단위를 포함하는 주쇄 공중합체를 제조하기 위해 중합 개시제를 첨가하는 단계를 포함할 수 있다. 상기 중합 개시제는 라디칼 중합을 수행하기 위한 것이면 제한되지 않으며, 예를 들어 상기 중합 개시제로 벤조일 퍼옥사이드, 아세틸 퍼옥사이드, 디라우릴 퍼옥사이드, 디 tert-부틸 퍼옥사이드, 큐밀 하이드로퍼옥사이드, 포타슘 퍼설페이트, 아조비스이소부티로니트릴(AIBN), tert-부틸 퍼옥시피발레이트, 또는 디이소프로필 퍼옥시디카보네이트 등을 이용할 수 있다.In one embodiment of the present invention, the method for producing a fluorine-based polymer may include adding a polymerization initiator to prepare a main chain copolymer comprising a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer. You can. The polymerization initiator is not limited as long as it is for performing radical polymerization. For example, the polymerization initiator may include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di- tert -butyl peroxide, cumyl hydroperoxide, and potassium persulfate. , azobisisobutyronitrile (AIBN), tert -butyl peroxypivalate, or diisopropyl peroxydicarbonate, etc. can be used.
본 발명의 일 실시 형태에서, 온도 감응성 단량체 유래의 반복 단위 및 하이드록시기 함유 단량체 유래의 반복 단위를 포함하는 주쇄 공중합체를 제2 용매에 혼합한 후에, 상기 산소-친핵성 과불화 탄화 수소계 화합물을 첨가하는 단계를 포함할 수 있다. 이 때 상기 제2 용매는 상기 하이드록시기 함유 공중합체(주쇄 공중합체)를 용해시킬 수 있는 용매이면 제한되지 않으며, 예를 들어, 상기 제2 용매로 트리페닐포스핀(PPh3), 테트라하이드로퓨란, 또는 디메틸포름아미드 등을 이용할 수 있다.In one embodiment of the present invention, after mixing a main chain copolymer containing a repeating unit derived from a temperature-sensitive monomer and a repeating unit derived from a hydroxy group-containing monomer with a second solvent, the oxygen-nucleophilic perfluorinated hydrocarbon system It may include adding a compound. At this time, the second solvent is not limited as long as it is a solvent that can dissolve the hydroxy group-containing copolymer (main chain copolymer). For example, the second solvent may be triphenylphosphine (PPh 3 ), tetrahydro Furan, dimethylformamide, etc. can be used.
본 발명의 일 실시 형태에서, 공중합체에 포함된 하이드록시기의 적어도 일부를 산소-친핵성(oxygennucleophilic) 과불화 탄화수소계 화합물로 개질할 수 있으며, 상기 개질은 상기 산소-친핵성(oxygen-nucleophilic) 과불화 탄화수소계 화합물은 상기 주쇄 공중합체의 하이드록시기 당량 대비 1.5 내지 6 당량의 함량으로 투입하는 것을 포함할 수 있다. 상기 산소 친핵상 과불화 탄화수소계 화합물의 함량이 주쇄 공중합체의 하이드록시기 당량에 대비하여 상술한 범위 내에 존재함으로 인하여, 전환율이 충분할 수 있으며, 고분자 내의 하이드록시기가 대부분 전환될 수 있다. In one embodiment of the present invention, at least a portion of the hydroxy groups included in the copolymer may be modified with an oxygen-nucleophilic perfluorinated hydrocarbon-based compound, and the modification is performed using the oxygen-nucleophilic (oxygen-nucleophilic) perfluorinated hydrocarbon-based compound. ) The perfluorinated hydrocarbon-based compound may be added in an amount of 1.5 to 6 equivalents relative to the equivalent of the hydroxyl group of the main chain copolymer. Since the content of the oxygen-nucleophilic perfluorinated hydrocarbon compound is within the above-mentioned range compared to the equivalent weight of the hydroxyl group of the main chain copolymer, the conversion rate may be sufficient and most of the hydroxyl groups in the polymer may be converted.
본 발명의 일 실시 형태에서, 하이드록시기 함유 공중합체에 포함된 하이드록시기의 적어도 일부를 상기 산소-친핵성 과불화 탄화수소계 화합물로 개질시키기 위하여, 촉매를 더 포함할 수 있다. 상기 촉매는 디이소프로필 아조디카르복실레이트 또는 디에틸 아조디카르복실레이트 등을 포함할 수 있다.In one embodiment of the present invention, a catalyst may be further included in order to modify at least a portion of the hydroxy groups included in the hydroxy group-containing copolymer into the oxygen-nucleophilic perfluorinated hydrocarbon-based compound. The catalyst may include diisopropyl azodicarboxylate or diethyl azodicarboxylate.
본 발명의 일 실시 형태에서, 상기 하이드록시기 함유 공중합체에 포함된 하이드록시기의 적어도 일부를 개질시키는 단계는 미츠노부 반응 (Mitsunobu reaction)을 통해 수행되는 것일 수 있다.In one embodiment of the present invention, the step of modifying at least a portion of the hydroxy groups included in the hydroxy group-containing copolymer may be performed through a Mitsunobu reaction.
본 발명의 일 실시 형태에서, 상기 하이드록시기 함유 공중합체에 포함된 하이드록시기의 적어도 일부를 산소-친핵성 과불화 탄화수소계 화합물로 개질시키기 위해서 가열하는 단계를 포함할 수 있고, 예를 들어 상기 하이드록시기 함유 공중합체와 상기 산소-친핵성 과불화 탄화수소계 화합물이 혼합된 제2 용매의 혼합물을 30℃ 이상의 온도로 가열하는 단계를 포함할 수 있다. 구체적으로는 30 내지 90℃, 40 내지 80℃, 50 내지 70℃, 50 내지 60℃의 온도로 가열하는 단계를 포함할 수 있다.In one embodiment of the present invention, a step of heating may be included to modify at least a portion of the hydroxy groups included in the hydroxy group-containing copolymer into an oxygen-nucleophilic perfluorinated hydrocarbon-based compound, for example It may include heating a mixture of the hydroxy group-containing copolymer and the second solvent in which the oxygen-nucleophilic perfluorinated hydrocarbon-based compound is mixed to a temperature of 30° C. or higher. Specifically, it may include heating to a temperature of 30 to 90°C, 40 to 80°C, 50 to 70°C, and 50 to 60°C.
본 발명의 일 실시 형태에서, 상기 하이드록시기 함유 단량체 유래의 반복 단위는 공중합체를 구성하는 단량체 전체 함량 중 0 내지 25 몰%, 3 내지 22 몰%, 또는 5 내지 20 몰%일 수 있다. 상기 하이드록시기 함유 단량체의 함량이 상술한 범위에 존재함으로 인하여, 온도 감응성 고분자의 물성을 유지할 수 있으며, 불소기 도입을 위한 하이드록시기를 충분히 포함할 수 있다.In one embodiment of the present invention, the repeating unit derived from the hydroxy group-containing monomer may be 0 to 25 mol%, 3 to 22 mol%, or 5 to 20 mol% of the total content of monomers constituting the copolymer. Since the content of the hydroxy group-containing monomer is within the above-mentioned range, the physical properties of the temperature-sensitive polymer can be maintained and sufficient hydroxy groups for introduction of fluorine groups can be contained.
2. 불소계 고분자2. Fluorine-based polymer
본 발명은 불소계 고분자를 제공한다. The present invention provides a fluorine-based polymer.
본 발명의 불소계 고분자에 관한 설명 중, 불소계 고분자의 제조 방법과 동일한 부분은 전술한 것과 동일하다.In the description of the fluorine-based polymer of the present invention, parts that are the same as the manufacturing method of the fluorine-based polymer are the same as those described above.
본 발명의 불소계 고분자는 가열과 냉각 과정에서 온도에 따른 투과도를 측정함에 있어서 열적 히스테리시스가 발생한다. 열적 히스테리시스는 온도 감응성 고분자들의 응집(aggregation)과 해리(dissociation)로부터 유래될 수 있으며, 이들은 가역적인 상전이일 수 있다. 구체적으로, 불소계 고분자는 LCST 초과의 온도에서 주변 용매의 배열이 안정적이지 않고, 소수성 결합이 우세해 질 수 있다. 또한 분자 내 아미드간의 수소 결합이 형성되어, 가교(cross-link)로서의 역할을 할 수 있으며, 상기 소수성 결합 및 아미드간의 수소 결합으로 인하여 고분자가 겔(gel)처럼 부풀어 오르며, 사슬의 해리(dissociation)을 지연시켜, 가열 시의 LCST에 해당되는 흐림점(cloud point)의 온도와 냉각 시의 LCST에 해당되는 투명점(clearing point)의 온도가 불일치하여 LCST 변이량(△LCST: 흐림점의 온도와 투명점의 온도의 차이)이 발생할 수 있다. The fluorine-based polymer of the present invention generates thermal hysteresis when measuring permeability according to temperature during heating and cooling. Thermal hysteresis can result from the aggregation and dissociation of temperature-sensitive polymers, which can be reversible phase transitions. Specifically, in fluorine-based polymers, the arrangement of the surrounding solvent is not stable at temperatures exceeding LCST, and hydrophobic bonds may become dominant. In addition, hydrogen bonds are formed between amides within the molecule, which can serve as a cross-link. Due to the hydrophobic bonds and hydrogen bonds between amides, the polymer swells like a gel, causing chain dissociation. By delaying, the temperature of the cloud point corresponding to the LCST during heating and the temperature of the clearing point corresponding to the LCST during cooling are mismatched, resulting in the LCST variation (△LCST: the temperature of the clouding point and the clearing point) Differences in point temperature) may occur.
본 발명의 일 실시 형태에서, 불소계 고분자의 LCST는 조사되는 빛의 파장에 의해 조절될 수 있다. 불소계 고분자의 산란은 입사광의 파장에 따라 상이할 수 있다. 입사광의 파장이 짧을수록, 산란이 더 많이 되어, 불소계 고분자를 포함하는 용액은 긴 파장에서 더 높은 투과도이 나타날 수 있다. In one embodiment of the present invention, the LCST of the fluorine-based polymer can be adjusted by the wavelength of irradiated light. Scattering of fluorine-based polymers may vary depending on the wavelength of incident light. The shorter the wavelength of incident light, the more scattering occurs, so a solution containing a fluorine-based polymer can exhibit higher transmittance at a longer wavelength.
본 발명은 불소계 고분자를 포함하는 수용액 또는 불소계 조성물(수용성 조성물 등을 포함한다)을 제공한다.The present invention provides an aqueous solution or fluorine-based composition (including water-soluble compositions, etc.) containing a fluorine-based polymer.
본 발명의 일 실시형태에서 불소계 고분자는 수용액 또는 불소계 조성물 100 중량부에 대하여 0.01 내지 3.0 중량부, 0.05 내지 2.8 중량부, 0.1 내지 2.5 중량부, 0.15 내지 2.0 중량부로 포함될 수 있다. 수용액 또는 불소계 조성물 내 불소계 고분자를 상술한 농도로 포함함으로써, 수용액 또는 불소계 조성물의 농도에 따라 LCST를 조절할 수 있다. In one embodiment of the present invention, the fluorine-based polymer may be included in an amount of 0.01 to 3.0 parts by weight, 0.05 to 2.8 parts by weight, 0.1 to 2.5 parts by weight, and 0.15 to 2.0 parts by weight based on 100 parts by weight of the aqueous solution or fluorine-based composition. By including the fluorine-based polymer in the aqueous solution or fluorine-based composition at the above-mentioned concentration, LCST can be adjusted depending on the concentration of the aqueous solution or fluorine-based composition.
본 발명의 불소계 고분자는, 상전이에 따른 수용액 또는 불소계 조성물 내에서의 투과도 변화를 이용하여 스마트 윈도우의 소재로서 사용될 수 있다. 특히, 본 발명의 불소계 고분자는 LCST 부근에서 보다 점진적인 상전이가 가능하여서, 온도의 증감에 따른 스마트 윈도우의 필름 등의 소재의 투과도의 다양한 수준으로의 변화를 관찰할 수 있게 함으로써, 기존의 스마트 윈도우에 사용되는 불소계 고분자보다 응용도가 더 포괄적일 수 있다. The fluorine-based polymer of the present invention can be used as a material for smart windows by utilizing the change in permeability in an aqueous solution or fluorine-based composition due to phase transition. In particular, the fluorine-based polymer of the present invention is capable of a more gradual phase transition near LCST, making it possible to observe changes in the permeability of materials such as smart window films according to the increase or decrease in temperature at various levels, making it possible to improve the existing smart window The application may be more comprehensive than that of the fluorine-based polymers used.
본 발명의 불소계 고분자 및 불소계 고분자를 포함하는 수용액 또는 불소계 조성물은 열적 히스테리시스에서 가열과 냉각에 따른 LCST의 변이량이 작아, 온도의 변화에 따른 물성 변화가 최소화되므로, 센싱의 정밀도가 향상될 수 있다.The fluorine-based polymer and the aqueous solution or fluorine-based composition containing the fluorine-based polymer of the present invention have a small amount of variation in LCST due to heating and cooling in thermal hysteresis, and the change in physical properties due to changes in temperature is minimized, so the precision of sensing can be improved.
또한, 본 발명의 불소계 고분자는 기존의 생체 적합성 고분자들이 갖는 장쇄 과불소계 화합물에 유래하는 생체 독성을 감소시키고, 세포의 생장에 도움이 되어, 세포 생존율(cell viability)를 더욱 현저하게 증가시킬 수 있다.In addition, the fluorine-based polymer of the present invention reduces biotoxicity resulting from long-chain perfluorinated compounds of existing biocompatible polymers, helps cell growth, and can significantly increase cell viability. .
본 발명의 불소계 고분자는 LCST 온도 부근에서 코일(coil)과 글로불(globule) 형태로 변화하여 용해도가 변화하므로, 체내의 기관에 따라 온도가 다른 점을 이용하여 약물 전달 시스템(drug delivery system, DDS)의 약물 전달체로서 이용될 수 있다. The fluorine-based polymer of the present invention changes into a coil and globule form around the LCST temperature, thereby changing its solubility, so it can be used as a drug delivery system (DDS) by taking advantage of the fact that the temperature varies depending on the body's organs. ) can be used as a drug carrier.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only intended to aid understanding of the present invention, and the scope of the present invention is not limited to these examples in any way.
<실시예 1 내지 3><Examples 1 to 3>
Figure PCTKR2023015969-appb-img-000006
Figure PCTKR2023015969-appb-img-000006
용매(N-메틸 2-피롤리돈(NMP)) 50 mL에 N-이소프로필아크릴아미드(NIPAm) 단량체와 2-하이드록시에틸(메타)아크릴아미드 단량체(HEAAm) 단량체를 혼합하였다. 이어서 질소 분위기 하, 60℃에서 아조비스이소부티로니트릴(AIBN)을 개시제로 중합하여 하이드록시기 함유 공중합체를 제조하였다.N-isopropylacrylamide (NIPAm) monomer and 2-hydroxyethyl (meth)acrylamide monomer (HEAAm) monomer were mixed in 50 mL of solvent (N-methyl 2-pyrrolidone (NMP)). Next, azobisisobutyronitrile (AIBN) was polymerized as an initiator at 60°C under a nitrogen atmosphere to prepare a hydroxy group-containing copolymer.
이어서 용매 (테트라하이드로퓨란(THF)/디메틸포름아미드(DMF)) 30 mL에 하이드록시기 함유 공중합체 0.7 g, 트라이페닐포스핀 (triphenylphosphine, 하이드록시 그룹 대비 1.6 당량), 다이이소프로필 아조디카르복실산(diisopropyl azodicarboxylate, 하이드록시 그룹 대비 1.6 당량), 과불화-t-부틸 알코올 (하이드록시 그룹 대비 2.0 당량)을 혼합하여 50℃ 질소 분위기에서 미츠노부 반응을 통해 하이드록시기 함유 공중합체를 개질하여 하기 표 1과 같은 조성을 가지는 불소계 고분자를 제조하였다. Next, 0.7 g of a hydroxy group-containing copolymer, triphenylphosphine (1.6 equivalents compared to the hydroxy group), and diisopropyl azodicar were added to 30 mL of solvent (tetrahydrofuran (THF)/dimethylformamide (DMF)). Modify the hydroxy group-containing copolymer by mixing boxylic acid (diisopropyl azodicarboxylate, 1.6 equivalents compared to the hydroxy group) and perfluoro-t-butyl alcohol (2.0 equivalents compared to the hydroxy group) through Mitsunobu reaction in a nitrogen atmosphere at 50°C. A fluorine-based polymer having the composition shown in Table 1 below was prepared.
NIPAmNIPAm NHEAAM-FNHEAAM-F
실시예 1Example 1 8080 2020
실시예 2Example 2 9090 1010
실시예 3Example 3 9595 55
<비교예 1 내지 4>
Figure PCTKR2023015969-appb-img-000007
<Comparative Examples 1 to 4>
Figure PCTKR2023015969-appb-img-000007
용매(N-메틸 2-피롤리돈(NMP)) 50 mL에 N-이소프로필아크릴아미드(NIPAm) 단량체 및 필요에 따라 2-하이드록시에틸(메타)아크릴아미드 단량체(HEAAm) 단량체를 혼합하였다. 이어서 질소 분위기 하, 60℃에서 아조비스이소부티로니트릴 (AIBN)을 개시제로 중합하여 하기 표 2와 같은 조성을 가지는 하이드록시기 함유 공중합체 및 N-이소프로필아크릴아미드(NIPAm) 단독 중합체를 제조하였다.N-isopropylacrylamide (NIPAm) monomer and, if necessary, 2-hydroxyethyl (meth)acrylamide monomer (HEAAm) monomer were mixed in 50 mL of solvent (N-methyl 2-pyrrolidone (NMP)). Next, azobisisobutyronitrile (AIBN) was polymerized as an initiator at 60°C under a nitrogen atmosphere to prepare a hydroxyl group-containing copolymer and N-isopropylacrylamide (NIPAm) homopolymer having the compositions shown in Table 2 below. .
NIPAmNIPAm NHEAAMNHEAAM
비교예 1Comparative Example 1 8080 2020
비교예 2Comparative Example 2 9090 1010
비교예 3Comparative Example 3 9595 55
비교예 4Comparative Example 4 100100 00
<실험예 1: 공중합체 제조 확인>상기 실시예 1의 불소계 고분자 및 비교예 1의 하이드록시기 함유 공중합체에 대해 중수소 치환된 아세톤, 디메틸설폭사이드를 용매로 한 핵자기 공명 분광 분석(NMR)한 결과를 도 1의 (a)에 나타내고, 및 푸리에 변환 적외선 분광 분석한 결과(FT-IR)를 도 1의 (b)에 나타내었다. 상기 도 1의 (a)에 의하면, 비교예 1의 메틸렌 기에 해당하는 (b) 3.1 ppm 및 (c) 3.4 ppm가 실시예 1의 불소계 고분자에서 (b') 및 (c')로 이동한 것을 확인할 수 있었으며, 비교예 1의 -OH 기에 해당하는 (f) 4.7 ppm 피크도, 실시예 1에서 NFtB(nonafluoro-tert-butanol)의 도입에 따라 대부분 사라졌다. <Experimental Example 1: Confirmation of copolymer production> Nuclear magnetic resonance spectroscopy (NMR) on the fluorine-based polymer of Example 1 and the hydroxyl group-containing copolymer of Comparative Example 1 using deuterium-substituted acetone and dimethyl sulfoxide as solvents. The results are shown in (a) of FIG. 1, and the results of Fourier transform infrared spectroscopy (FT-IR) are shown in (b) of FIG. According to (a) of FIG. 1, (b) 3.1 ppm and (c) 3.4 ppm corresponding to the methylene group of Comparative Example 1 moved from the fluorine-based polymer of Example 1 to (b') and (c'). It was confirmed that the (f) 4.7 ppm peak corresponding to the -OH group in Comparative Example 1 also mostly disappeared with the introduction of NFtB (nonafluoro- tert -butanol) in Example 1.
상기 도 1의 (b)에 의하면, 실시예 1 및 비교예 1의 스펙트럼에서 아미드 기의 N-H 결합에 해당하는 3300cm-1 피크가 강하고 넓게 존재하는 것을 확인할 수 있었다. 한편, 실시예 1의 스펙트럼에서는 비교예 1의 스펙트럼에서 존재하였던 1060cm-1의 C-O 스트레치(stretch)가 사라지고, 실시예 1에서 C-F 결합(bond)에 해당하는 피크가 950, 990, 1250 cm-1에서 나타나, NFtB 기로 개질하는 반응이 성공적으로 일어났음을 확인할 수 있었다.According to (b) of FIG. 1, it was confirmed that the 3300 cm -1 peak corresponding to the NH bond of the amide group was strong and wide in the spectra of Example 1 and Comparative Example 1. Meanwhile, in the spectrum of Example 1, the CO stretch of 1060 cm -1 that existed in the spectrum of Comparative Example 1 disappears, and the peaks corresponding to the CF bond in Example 1 are 950, 990, and 1250 cm -1 , it was confirmed that the reforming reaction with the NFtB group had occurred successfully.
<실험예 2: 실시예 1 내지 3 및 비교예 1 내지 4의 조성, 분자량, Tg, PDI 확인><Experimental Example 2: Confirmation of composition, molecular weight, Tg, and PDI of Examples 1 to 3 and Comparative Examples 1 to 4>
상기 실험예 1에 따른 도 1의 (a)의 NMR 스펙트럼에서 NIPAm의 이소프로필 기의 피크 (a)와 HEAAM-F의 메틸렌 기의 피크 (b)의 세기(적분 비)로부터 계산되었다. 또한, 실험예 및 비교예들의 분자량, 다분산 지수(polydispersity index, PDI), 유리 전이 온도(glass transition temperature, Tg)는 시차주사열량계 (DSC; Q1000, TA Instruments) 및 겔투과그로마토그래피 (GPC; Waters 2690, Waters Corporation)으로 측정하여 하기 표 3에 나타내었다.It was calculated from the intensity (integration ratio) of the peak (a) of the isopropyl group of NIPAm and the peak (b) of the methylene group of HEAAM-F in the NMR spectrum of Figure 1 (a) according to Experimental Example 1. In addition, the molecular weight, polydispersity index (PDI), and glass transition temperature (Tg) of the experimental examples and comparative examples were measured by differential scanning calorimetry (DSC; Q1000, TA Instruments) and gel permeation chromatography (GPC). Measured using Waters 2690, Waters Corporation) and shown in Table 3 below.
[표 3][Table 3]
Figure PCTKR2023015969-appb-img-000008
Figure PCTKR2023015969-appb-img-000008
<실험예 3: 불소계 고분자의 LCST 확인><Experimental Example 3: Confirmation of LCST of fluorine-based polymer>
실시예 1 내지 3 및 비교예 1 내지 3의 불소계 고분자의 상전이(phase transition) 특성을 알기 위해 실험예 및 비교예의 고분자를 각각 1 wt% 농도의 수용액으로 제조한 후, 자외-가시선 분광 광도계(UV-vis spectrometer)에 고분자 수용액을 투입한 후, 550 nm의 빛을 조사하여 온도 의존성 투과도 곡선(temperature dependent transmittance curve)을 측정하여 그 결과를 도 2에 나타내었다. 온도 감응성 고분자인 PNIPAm은 LCST가 30 내지 45℃의 범위에서 나타나는 것으로 알려져 있는 것인데, 각각의 수용액 모두 LCST 이상의 온도에서 투과도가 50% 미만으로 감소하였다. 비교예 1 내지 3의 고분자 수용액과 실시예 1 내지 3의 고분자 수용액을 각각 비교하였을 때, NFtB기를 고분자에 도입하면, 고분자의 LCST가 낮아지는 것을 확인할 수 있었다. 도 2의 (a)에 의하면, 비교예 1의 고분자 수용액은 43.3℃에서 상전이가 발생하였으나(즉, LCST가 43.3℃임), 실시예 1의 고분자 수용액은 32.7℃에서 상전이가 발생하였다(즉, LCST가 32.7℃임). NFtB기가 도입됨에 따라, 10.6℃만큼 LCST를 낮춘다는 것을 확인하였다. 한편, 실시예 2와 비교예 2, 실시예 3과 비교예 3을 비교하면, 더 적은 함량의 NFtB가 도입될수록, LCST의 감소율이 더 적었다.In order to determine the phase transition characteristics of the fluorine-based polymers of Examples 1 to 3 and Comparative Examples 1 to 3, the polymers of the Experimental Examples and Comparative Examples were each prepared in an aqueous solution with a concentration of 1 wt%, and then measured using an ultraviolet-visible spectrophotometer (UV). After adding the polymer aqueous solution to a -vis spectrometer, 550 nm light was irradiated to measure the temperature dependent transmittance curve, and the results are shown in Figure 2. PNIPAm, a temperature-sensitive polymer, is known to have an LCST in the range of 30 to 45°C, and the transmittance of each aqueous solution decreased to less than 50% at temperatures above LCST. When comparing the polymer aqueous solutions of Comparative Examples 1 to 3 with those of Examples 1 to 3, it was confirmed that when the NFtB group was introduced into the polymer, the LCST of the polymer was lowered. According to (a) of Figure 2, the phase transition occurred at 43.3°C in the polymer aqueous solution of Comparative Example 1 (i.e., LCST was 43.3°C), but the phase transition occurred at 32.7°C in the polymer aqueous solution of Example 1 (i.e., LCST is 32.7℃). It was confirmed that as the NFtB group was introduced, the LCST was lowered by 10.6°C. Meanwhile, when comparing Example 2 and Comparative Example 2 and Example 3 and Comparative Example 3, the smaller the amount of NFtB was introduced, the smaller the reduction rate of LCST.
한편, 공중합 반복단위 중의 NIPAm 반복단위의 비율, 즉, NFtB 기의 함유량에 따른 LCST 변이량(△LCST: 흐림점의 온도와 투명점의 온도의 차이)을 계산하여 도 2의 (d)에 나타내었다. 도 2의 (d)에 의하면 도입된 NFtB group의 함유량에 따라 LCST의 변이량은 비교적 일정하다는 것을 확인할 수 있었다.Meanwhile, the LCST variation (△LCST: difference between the temperature of the cloud point and the temperature of the clear point) according to the ratio of the NIPAm repeat unit in the copolymer repeat unit, that is, the content of the NFtB group, was calculated and shown in Figure 2 (d). . According to Figure 2 (d), it was confirmed that the amount of variation in LCST was relatively constant depending on the content of the introduced NFtB group.
한편, 도 2의 (b), (c)에서 실시예 2 및 실시예 3의 경우, 온도 증가(가열)에 따라 투과도가 급격하게 감소하는 양상을 보였으나, 도 2의 (a)의 실시예 1의 경우 온도 증가에 따라 투과도가 점진적으로 감소하는 것을 확인할 수 있었다.Meanwhile, in the case of Examples 2 and 3 in (b) and (c) of Figure 2, the transmittance showed a sharp decrease as the temperature increased (heating), but in the example of Figure 2 (a) In case 1, it was confirmed that the permeability gradually decreased as the temperature increased.
<실험예 4: 고분자 종류에 따른 열적 히스테리시스 곡선의 확인><Experimental Example 4: Confirmation of thermal hysteresis curve according to polymer type>
자외-가시선 분광 광도계(UV-vis spectrometer)에 실시예 1, 비교예 1 및 비교예 4의 고분자를 각각 투입한 후, 550 nm 빛을 조사하면서 온도를 변화하여 가열-냉각 루트에 따른 투과도의 변화를 측정/관찰하여서 열적 히스테리시스 곡선을 측정하고, 그 결과를 도 3에 나타내었다. 도 3의 (a)는 실시예 1에 해당하는 고분자의 열적 히스테리시스 곡선으로서, 0.5℃의 LCST 변이량(△LCST)가 나타났다. 도 3의 (b)는 비교예 1에 해당하는 고분자의 열적 히스테리시스 곡선으로서, 온도 차이가 없어, LCST 변이량(△LCST)이 거의 확인되지 않았다. 즉, 흐림점(cloud point)와 투명점(clearing point)이 일치하였다. 한편, 도 3의 (c)는 비교예 4에 해당하는 고분자의 열적 히스테리시스 곡선으로서, 약 1℃의 LCST 변이량(△LCST)이 나타나는 것을 확인할 수 있었다. 도 3을 통해, 실시예 1 및 비교예 1의 고분자는 가열 과정에서 형성되었던 분자 내 아미드 기에 의한 수소 결합이 냉각되면서 비교예 4의 고분자보다 상대적으로 높은 온도에서 해리가 되어 상전이가 발생하는 온도가 높다는 것을 확인할 수 있었다. 또한, 실시예 1의 고분자가 비교예 1 및 비교예 4의 고분자에 대비하여, 투과율의 변화가 완만하다는 것을 확인하였다. After adding the polymers of Example 1, Comparative Example 1, and Comparative Example 4 to an ultraviolet-vis spectrometer, the temperature was changed while irradiating 550 nm light to change the transmittance according to the heating-cooling route. The thermal hysteresis curve was measured by measuring/observation, and the results are shown in FIG. 3. Figure 3 (a) is a thermal hysteresis curve of the polymer corresponding to Example 1, showing an LCST variation (ΔLCST) of 0.5°C. Figure 3 (b) is a thermal hysteresis curve of the polymer corresponding to Comparative Example 1. There was no temperature difference, so the amount of LCST variation (ΔLCST) was hardly confirmed. In other words, the cloud point and clearing point coincided. Meanwhile, Figure 3 (c) is a thermal hysteresis curve of the polymer corresponding to Comparative Example 4, and it was confirmed that an LCST variation (ΔLCST) of about 1°C appeared. Through Figure 3, the polymers of Example 1 and Comparative Example 1 dissociate at a relatively higher temperature than the polymer of Comparative Example 4 as the hydrogen bonds formed by the amide group within the molecule formed during the heating process are cooled, and the temperature at which phase transition occurs is I was able to confirm that it was high. In addition, it was confirmed that the polymer of Example 1 had a gradual change in transmittance compared to the polymers of Comparative Examples 1 and 4.
<실험예 5: 농도의 차이에 따른 히스테리시스 곡선의 확인><Experimental Example 5: Confirmation of hysteresis curve according to difference in concentration>
실시예 1의 고분자를 물에 각각 녹여 0.1 wt%. 0.2 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt% 농도의 수용액을 제조한 후, 실험예 3과 같이 LCST를 측정하여 도 4에 나타내었다. 0.1 wt%에서는 36.2℃에서 LCST가 나타났다. 또한, 1 wt% 농도의 수용액에 대비하여 0.1 wt%의 히스테리시스 곡선이 더욱 넓은 온도 범위에 걸쳐서 투과도이 감소하는 것(즉, 보다 점진적으로 상전이가 일어나는 것)을 확인할 수 있었다. 상기 상이한 농도의 수용액의 상전이 특성이 변화하는 범위를 계산하기 위하여, 투과도 변화(상전이)의 시작 온도(onset point)와 종료 온도(off set point)를 측정하여 도 4의 (b)에 나타내었다. 2.0 wt% 농도의 수용액에서는 6.1℃의 온도 범위에 걸쳐 상전이가 발생하였으나, 0.1 wt% 농도의 수용액에서는 12℃의 온도 범위에 걸쳐 전이가 발생하였다. 즉, 0.1 내지 0.2 wt%의 농도의 수용액이라도 투과도가 0에 가깝게 감소한다는 점 및 농도 변화를 통해 상전이 변화 범위를 광범위하게 조절할 수 있음을 확인하였다.Each polymer of Example 1 was dissolved in water to obtain 0.1 wt%. After preparing aqueous solutions with concentrations of 0.2 wt%, 0.5 wt%, 1.0 wt%, and 2.0 wt%, LCST was measured as in Experimental Example 3 and is shown in FIG. 4. At 0.1 wt%, LCST was observed at 36.2°C. In addition, compared to an aqueous solution with a concentration of 1 wt%, it was confirmed that the hysteresis curve of 0.1 wt% decreased the permeability over a wider temperature range (i.e., phase transition occurred more gradually). In order to calculate the range in which the phase transition characteristics of aqueous solutions of different concentrations change, the start temperature (onset point) and end temperature (off set point) of the permeability change (phase transition) were measured and shown in (b) of FIG. 4. In an aqueous solution with a concentration of 2.0 wt%, the phase transition occurred over a temperature range of 6.1°C, but in an aqueous solution with a concentration of 0.1 wt%, the transition occurred over a temperature range of 12°C. In other words, it was confirmed that even in an aqueous solution with a concentration of 0.1 to 0.2 wt%, the permeability decreases close to 0 and that the range of phase transition change can be controlled over a wide range by changing the concentration.
<실험예 6: 입사 파장에 따른 LCST 변화의 확인><Experimental Example 6: Confirmation of LCST change according to incident wavelength>
실시예 1, 비교예 1 및 비교예 4의 고분자의 각각에 대하여 입사하는 파장의 따른 LCST의 변화를 측정하여 도 5에 나타내었다. 비교예 1 및 비교예 4의 고분자는 입사하는 파장이 길어질수록, 투과-온도 곡선이 더 높은 온도 값(temperature value)으로 이동하였다. 이로 인해, LCST의 변화가 나타났으나, 변화의 폭이 작았다. 한편, 실시예 1의 고분자의 경우, 입사하는 파장이 길어짐에 따라 투과-온도 곡선이 더 높은 온도 값(temperature value)로 이동(시프트)하여, 900 nm의 파장에서는 34.1℃로 나타났던 LCST가 300 nm에서는 29.8℃로 나타나서, 약 4.3℃의 차이가 발생한 것을 확인할 수 있었다. 이를 통해, 실시예 1의 고분자는 비교예 1의 고분자에 비해, LCST에 도달하기 전 점진적으로 응집되어 크기가 커지며, 파장에 따라 산란 강도가 변화하여 LCST 수치가 변화함을 확인하였다. 즉, 파장에 따라 LCST를 조절할 수 있음을 확인하였다. The change in LCST according to the incident wavelength was measured for each of the polymers of Example 1, Comparative Example 1, and Comparative Example 4, and is shown in Figure 5. For the polymers of Comparative Examples 1 and 4, as the incident wavelength became longer, the transmission-temperature curve shifted to a higher temperature value. As a result, a change in LCST occurred, but the extent of the change was small. Meanwhile, in the case of the polymer of Example 1, the transmission-temperature curve shifted to a higher temperature value as the incident wavelength became longer, and the LCST, which was 34.1°C at a wavelength of 900 nm, was 300. In nm, it was shown as 29.8℃, confirming that there was a difference of about 4.3℃. Through this, it was confirmed that compared to the polymer of Comparative Example 1, the polymer of Example 1 gradually aggregated and increased in size before reaching LCST, and the scattering intensity changed depending on the wavelength, resulting in a change in LCST value. In other words, it was confirmed that LCST can be adjusted depending on the wavelength.
<실험예 7: 동적 광산란(DLS) 분광법에 의한 응집 확인><Experimental Example 7: Confirmation of aggregation by dynamic light scattering (DLS) spectroscopy>
실시예 1 내지 2 및 비교예 1 내지 2 및 비교예 4의 고분자를 각각 10 mg/ml의 농도로 포함하는 고분자 수용액을 제조한 후, 다양한 온도에서 동적 광산란(Dynamic Light Scattering, DLS) 분광법을 실시하였다. 실시예 1 내지 2 및 비교예 1 내지 2 및 비교예 4는 모두 LCST 이하의 온도에서 물 분자와 강한 수소결합을 하며 25 nm 이하의 유체 역학적 반경(hydrodynamic radius, Rh)을 보였다. 실시예 1 내지 2 및 비교예 1 내지 2 및 비교예 4의 고분자는 온도가 증가함에 따라 응집(aggregate)하여, LCST 이상의 온도가 되자, Rh가 크게 증가하였다. 실시예 1 내지 2 및 비교예 1 내지 2 및 비교예 4의 고분자는 자외-가시선 분광 광도계(UV-vis spectrometer)에서 관찰되었던 투과도 감소 구간과 유사한 온도에서 응집이 발생하는 것을 확인할 수 있었다. After preparing a polymer aqueous solution containing the polymers of Examples 1 to 2 and Comparative Examples 1 to 2 and Comparative Example 4 at a concentration of 10 mg/ml, Dynamic Light Scattering (DLS) spectroscopy was performed at various temperatures. did. Examples 1 to 2 and Comparative Examples 1 to 2 and Comparative Example 4 all showed strong hydrogen bonding with water molecules at a temperature below LCST and a hydrodynamic radius (R h ) of 25 nm or less. The polymers of Examples 1 to 2 and Comparative Examples 1 to 2 and Comparative Example 4 aggregated as the temperature increased, and when the temperature reached LCST or higher, R h increased significantly. It was confirmed that the polymers of Examples 1 to 2, Comparative Examples 1 to 2, and Comparative Example 4 agglomerated at a temperature similar to the transmittance reduction section observed in an ultraviolet-vis spectrometer (UV-vis spectrometer).
도 6의 (a)는 실시예 1의 동적 광산란 스펙트럼이며, 도 6의 (a)의 경우 LCST인 32.7℃가 도달하기 전 29℃에서부터 R h가 서서히 증가한 것을 확인할 수 있었다. 이를 통해, 고분자 내 소수성이 증가하는 경우 클러스터(cluster)를 형성하며 응집(aggregate)하기 시작한다는 것을 확인할 수 있었다. Figure 6(a) is the dynamic light scattering spectrum of Example 1, and in the case of Figure 6(a), it was confirmed that R h gradually increased from 29°C before reaching 32.7°C, which is the LCST. Through this, it was confirmed that when the hydrophobicity within the polymer increases, it begins to aggregate and form clusters.
도 6c는 비교예 4의 동적 광산란 스펙트럼이며, 비교예 4는 LCST 이상의 온도에서 342±23 (nm) 크기의 R h가 형성되었다. 도 6의 (a), (b)에서 NFtB 기가 도입된 실시예 1 및 실시예 2는 LCST 이상에서 각각 242±18, 320±17 (nm)로 PNIPAm과 비슷한 정도의 R h가 나타났다. 한편, 도 6의 (a)의 비교예 1은 LCST 이상에서 R h가 계속해서 커지는 불안정한 경향을 나타내었다. 따라서, 실시예 1 내지 2 및 비교예 1 내지 2의 비교를 통해, 하이드록시 기의 함량이 증가할수록 R h의 거동이 불안정하지만 NFtB 기의 함량이 증가할 수록, 비교예 4와 같이 안정적인 R h가 나타난다는 것을 확인할 수 있었다.Figure 6c is a dynamic light scattering spectrum of Comparative Example 4, in which R h with a size of 342 ± 23 (nm) was formed at a temperature above LCST. In Figures 6 (a) and (b), Examples 1 and 2 in which the NFtB group was introduced showed R h of 242 ± 18 and 320 ± 17 (nm), respectively, above LCST, similar to that of PNIPAm. On the other hand, Comparative Example 1 in Figure 6(a) showed an unstable tendency in which R h continued to increase above LCST. Therefore, through comparison of Examples 1 to 2 and Comparative Examples 1 to 2, as the content of hydroxy groups increases, the behavior of R h becomes unstable, but as the content of NFtB groups increases, R h becomes stable as in Comparative Example 4. It was confirmed that appeared.
<실험예 8: 탈수(dehydration)에 영향을 주는 작용기의 확인><Experimental Example 8: Confirmation of functional groups that affect dehydration>
실시예 1의 고분자 중 어떠한 작용기가 탈수(dehydration)에 영향을 끼치는지 관찰하기 위해 고온 핵자기 공명 분광 분석을 실시하여, 도 7에 나타내었다. 구체적으로, 실시예 1의 고분자를 D2O에 투입하여 1.0 wt%의 D2O 용액이 되도록 제조한 후, 25 내지 45℃에서 1H NMR 측정하여, 그 결과를 나타내었다. 특성 신호(characteristic signal)는 D2O 피크 δ = 4.70 ppm을 기준으로 표준화(normalized)되었다. 도 7의 (a)에 의하면 온도가 증가함에 따라 피크의 세기는 LCST 근처의 온도에서 줄어들기 시작하였으며, 온도가 계속 증가함에 따라 일부 피크는 사라졌다. 이를 통해 LCST 이상의 온도에서 고분자 사슬과 D2O와의 수소 결합이 약화되고 탈수가 발생함을 확인할 수 있었다.High-temperature nuclear magnetic resonance spectroscopic analysis was performed to observe which functional group among the polymers of Example 1 affects dehydration, and is shown in FIG. 7. Specifically, the polymer of Example 1 was added to D 2 O to prepare a 1.0 wt% D 2 O solution, and then 1 H NMR was measured at 25 to 45°C, and the results were shown. The characteristic signal was normalized to the D 2 O peak δ = 4.70 ppm. According to (a) of Figure 7, as the temperature increased, the intensity of the peak began to decrease at a temperature near LCST, and as the temperature continued to increase, some peaks disappeared. Through this, it was confirmed that at temperatures above LCST, the hydrogen bond between the polymer chain and D 2 O is weakened and dehydration occurs.
한편, 도 7의 (b)는 온도 변화에 따른 각 피크들의 표준화된 적분비(normalized integral (%))를 나타낸 것이다. CH(CH3)2 (a), CH3CHCONH (d+e), CONHCN2CH3 (b'), CONHCH (g) 피크는 LCST 근처에서, 표준화된 적분비가 감소하기 시작한 것을 확인하였다. CONHCH2CH (c') 피크는 다른 피크보다 더 높은 온도에서 감소하기 시작하였으나 가장 급격하게 감소하였다. 도 7를 통하여, 고분자와 물 사이 수소 결합이 끊어지며 고분자 사슬이 탈수되며, 주쇄와 이소프로필 기 주변의 양성자(proton)보다 NFtB 기 주위의 양성자가 탈수에 더 영향을 줌을 확인할 수 있었다. Meanwhile, Figure 7(b) shows the normalized integral (%) of each peak according to temperature change. It was confirmed that the peaks of CH(CH 3 ) 2 (a), CH 3 CHCONH (d+e), CONHCN 2 CH 3 (b'), and CONHCH (g) were near LCST, and the normalized integration ratio began to decrease. The CONHCH 2 CH (c') peak began to decrease at a higher temperature than the other peaks, but decreased most rapidly. Through Figure 7, it was confirmed that the hydrogen bond between the polymer and water is broken and the polymer chain is dehydrated, and that the protons around the NFtB group affect dehydration more than the protons around the main chain and the isopropyl group.
<실험예 9: 세포 생존율의 확인><Experimental Example 9: Confirmation of cell viability>
실시예 1, 비교예 1 및 비교예 4의 고분자의 세포 생존율(cell viability)을 확인하기 위하여, MTT 분석(MTT assay) 방식을 이용하여, MRC5 (인간폐유아세포)에서의 세포 생존율을 측정하였다. 도 8의 (a)는 각 고분자를 0.1 내지 10 mg/ml의 농도로 MEM에 용해하여 측정한 세포 독성을 측정하였다. 상기 실시예 1, 비교예 1 및 비교예 4의 고분자는 고분자의 농도가 증가할수록 세포 생존율이 증가하였으나, 10 mg/ml에서 감소하였다. 비교예 4와 비교하였을 때, 실시예 1 및 비교예 1은 세포 생존율이 월등히 컸다. 특히, 실시예 1의 경우 5 mg/ml의 농도에서 세포 생존율이 약 278±39 (%)에 달했다. 이를 통해 실시예 1의 고분자가 세포에 독성을 지닌 것이 아닌 오히려 세포를 성장시키는 역할을 할 수 있다는 것을 확인하였다. In order to confirm the cell viability of the polymers of Example 1, Comparative Example 1, and Comparative Example 4, the cell viability in MRC5 (human lung infant cells) was measured using the MTT assay. Figure 8 (a) shows the cytotoxicity measured by dissolving each polymer in MEM at a concentration of 0.1 to 10 mg/ml. The cell viability of the polymers of Example 1, Comparative Example 1, and Comparative Example 4 increased as the concentration of the polymer increased, but decreased at 10 mg/ml. When compared to Comparative Example 4, Example 1 and Comparative Example 1 had significantly higher cell survival rates. In particular, in Example 1, the cell viability reached about 278±39 (%) at a concentration of 5 mg/ml. Through this, it was confirmed that the polymer of Example 1 was not toxic to cells but rather played a role in growing cells.
도 8의 (b)는 5 mg/ml의 농도에서 실시예 1, 비교예 1 및 비교예 4의 고분자를 세포 생존율 실험을 한 후의 이미지이다. 도 8의 (b)의 왼쪽 칼럼은 37℃에서의 실시예 1, 비교예 1 및 비교예 4의 이미지이며, 오른쪽 칼럼은 25℃에서 샘플을 30분간 방치하여, 실시예 1의 고분자를 녹인 후의 이미지이다. 37℃에서의 실시예 1은 LCST보다 높은 온도이므로 고분자가 응집되어 있었으며, 그 주위로 세포들이 성장한 모습을 확인하였다. 그 후 25℃에서 샘플을 30분간 방치하여 응집체를 녹인 후에도, 성장한 세포들은 그대로 유지된 것을 확인할 수 있었다. 한편, 비교예 1과 실시예 1을 비교하였을 때, 실시예 1의 세포 생존율이 훨씬 더 우수하여, 과불화탄화수소의 생체 불활성 특성 및 폐에서의 항염 효과를 확인할 수 있었다.Figure 8 (b) is an image after a cell viability test of the polymers of Example 1, Comparative Example 1, and Comparative Example 4 at a concentration of 5 mg/ml. The left column of Figure 8 (b) is an image of Example 1, Comparative Example 1, and Comparative Example 4 at 37°C, and the right column is an image after dissolving the polymer of Example 1 by leaving the sample at 25°C for 30 minutes. It is an image. In Example 1 at 37°C, the polymer was aggregated because the temperature was higher than LCST, and cells were confirmed to have grown around it. Afterwards, even after the sample was left at 25°C for 30 minutes to dissolve the aggregates, it was confirmed that the grown cells remained intact. Meanwhile, when Comparative Example 1 and Example 1 were compared, the cell survival rate of Example 1 was much better, confirming the bioinert properties of perfluorinated hydrocarbons and the anti-inflammatory effect in the lung.

Claims (22)

  1. (A) 온도 감응성 단량체 유래의 반복 단위; 및 (B) 하이드록시기 함유 단량체 유래의 반복 단위;를 포함하는 주쇄 공중합체에 포함된 하이드록시기의 적어도 일부를 산소-친핵성(oxygennucleophilic) 과불화 탄화수소계 화합물로 개질하는 것을 포함하는, 불소계 고분자의 제조 방법.(A) Repeating units derived from temperature-sensitive monomers; and (B) a repeating unit derived from a hydroxy group-containing monomer; modifying at least a portion of the hydroxy groups included in the main chain copolymer with an oxygen-nucleophilic perfluorinated hydrocarbon-based compound. Method for producing polymers.
  2. 청구항 1에 있어서,In claim 1,
    상기 (A) 온도 감응성 단량체 유래의 반복 단위는 (메타)아크릴아미드계 단량체 유래의 반복 단위이고, 상기 (B) 하이드록시기 함유 단량체 유래의 반복 단위는 하이드록시기 함유 (메타)아크릴아미드계 단량체 유래의 반복 단위;를 포함하는, 불소계 고분자의 제조 방법.The repeating unit derived from the (A) temperature-sensitive monomer is a repeating unit derived from a (meth)acrylamide-based monomer, and the repeating unit derived from the hydroxyl group-containing monomer (B) is a hydroxyl group-containing (meth)acrylamide-based monomer. A method for producing a fluorine-based polymer, including a repeating unit derived from a fluorine-based polymer.
  3. 청구항 2에 있어서,In claim 2,
    상기 (메타)아크릴아미드계 단량체는 N-알킬(메타)아크릴아미드계 단량체를 포함하는 것인, 불소계 고분자의 제조 방법.A method for producing a fluorine-based polymer, wherein the (meth)acrylamide-based monomer includes an N-alkyl (meth)acrylamide-based monomer.
  4. 청구항 3에 있어서,In claim 3,
    상기 N-알킬(메타)아크릴아미드계 단량체는 아미드기의 질소 원자에 C2∼C18의 알킬기가 결합되어 있는 N-알킬(메타)아크릴아미드를 포함하는 것인, 불소계 고분자의 제조 방법.The N-alkyl (meth)acrylamide monomer includes N-alkyl (meth)acrylamide in which an alkyl group of C 2 to C 18 is bonded to the nitrogen atom of the amide group.
  5. 청구항 2에 있어서, In claim 2,
    상기 하이드록시기 함유 (메타)아크릴아미드계 단량체는 N-하이드록시알킬(메타)아크릴아미드계 단량체를 포함하는 것인, 불소계 고분자의 제조 방법.A method for producing a fluorine-based polymer, wherein the hydroxy group-containing (meth)acrylamide-based monomer includes an N-hydroxyalkyl (meth)acrylamide-based monomer.
  6. 청구항 5에 있어서,In claim 5,
    상기 N-하이드록시알킬(메타)아크릴아미드계 단량체는 아미드기의 질소 원자에 C2∼C18의 알킬기가 결합되어 있는 N-하이드록시알킬(메타)아크릴아미드를 포함하는 것인, 불소계 고분자의 제조 방법.The N-hydroxyalkyl (meth)acrylamide monomer is a fluorine-based polymer comprising N-hydroxyalkyl (meth)acrylamide in which an alkyl group of C 2 to C 18 is bonded to the nitrogen atom of the amide group. Manufacturing method.
  7. 청구항 1에 있어서,In claim 1,
    상기 산소-친핵성 과불화 탄화수소계 화합물은 과불화 3급 알코올을 포함하는 것인, 불소계 고분자의 제조방법.A method for producing a fluorine-based polymer, wherein the oxygen-nucleophilic perfluorinated hydrocarbon-based compound includes a perfluorinated tertiary alcohol.
  8. 청구항 1에 있어서,In claim 1,
    상기 산소-친핵성 과불화 탄화수소계 화합물은 하기 화학식 1로 표시되는 화합물을 포함하는 것인, 불소계 고분자의 제조 방법:A method for producing a fluorine-based polymer, wherein the oxygen-nucleophilic perfluorinated hydrocarbon-based compound includes a compound represented by the following formula (1):
    [화학식 1] [Formula 1]
    Figure PCTKR2023015969-appb-img-000009
    Figure PCTKR2023015969-appb-img-000009
    (상기 화학식 1에서, n, m 및 p는 각각 괄호 내 단위의 반복 수로서, 각각 0 내지 3의 정수이다.)(In Formula 1, n, m, and p are the repeating numbers of the units in parentheses, and are each integers from 0 to 3.)
  9. 청구항 1에 있어서,In claim 1,
    상기 주쇄 공중합체 중 상기 (B) 하이드록시기 함유 단량체 유래의 반복 단위는 0 초과 30 몰% 이하의 함량으로 포함되는 것인, 불소계 고분자의 제조 방법.A method for producing a fluorine-based polymer, wherein the repeating unit derived from the (B) hydroxy group-containing monomer in the main chain copolymer is contained in an amount of more than 0 and 30 mol% or less.
  10. 청구항 1에 있어서,In claim 1,
    상기 개질은, 상기 산소-친핵성(oxygen-nucleophilic) 과불화 탄화수소계 화합물을 상기 주쇄 공중합체의 하이드록시기 당량 대비 1.5 내지 6 당량의 함량으로 투입하는 것을 포함하는, 불소계 고분자의 제조방법.The modification includes adding the oxygen-nucleophilic perfluorinated hydrocarbon compound in an amount of 1.5 to 6 equivalents relative to the equivalent weight of the hydroxyl group of the main chain copolymer.
  11. (C) 온도 감응성 단량체 유래의 반복 단위 및 (D) 하이드록시기 함유 단량체 유래의 반복 단위를 포함하고,(C) a repeating unit derived from a temperature-sensitive monomer and (D) a repeating unit derived from a hydroxy group-containing monomer,
    상기 (D) 하이드록시기 함유 단량체 유래의 반복 단위에 포함된 하이드록시기 중의 적어도 일부가 산소-친핵성(oxygen-nucleophilic) 과불화 탄화수소계 에테르기로 치환되어 있는 것인, 불소계 고분자.(D) A fluorine-based polymer in which at least a portion of the hydroxy groups contained in the repeating unit derived from the hydroxy group-containing monomer is substituted with an oxygen-nucleophilic perfluorinated hydrocarbon-based ether group.
  12. 청구항 11에 있어서,In claim 11,
    상기 (C) 온도 감응성 단량체 유래의 반복 단위는 (메타)아크릴아미드계 단량체로 유래의 반복 단위이거나 상기 (D) 하이드록시기 함유 단량체 유래의 반복 단위는 하이드록시기 함유 (메타)아크릴아미드계 단량체 유래의 반복 단위를 포함하는, 불소계 고분자.The repeating unit derived from the (C) temperature-sensitive monomer is a repeating unit derived from a (meth)acrylamide-based monomer, or the repeating unit derived from the (D) hydroxy group-containing monomer is a hydroxy group-containing (meth)acrylamide-based monomer. A fluorine-based polymer containing a repeating unit derived from a fluorine-based polymer.
  13. 청구항 12에 있어서,In claim 12,
    상기 (메타)아크릴아미드계 단량체는 N-알킬(메타)아크릴아미드계 단량체를 포함하는 것인, 불소계 고분자.The (meth)acrylamide-based monomer is a fluorine-based polymer that includes an N-alkyl (meth)acrylamide-based monomer.
  14. 청구항 13에 있어서, In claim 13,
    상기 N-알킬(메타)아크릴아미드계 단량체는 아미드기의 질소 원자에 C2∼C18의 알킬기가 결합되어 있는 N-알킬(메타)아크릴아미드를 포함하는 것인, 불소계 고분자.The N-alkyl (meth)acrylamide monomer is a fluorine-based polymer that includes N-alkyl (meth)acrylamide in which an alkyl group of C 2 to C 18 is bonded to the nitrogen atom of the amide group.
  15. 청구항 12에 있어서,In claim 12,
    상기 하이드록시기 함유 (메타)아크릴아미드계 단량체는 N-하이드록시알킬(메타)아크릴아미드계 단량체를 포함하는 것인, 불소계 고분자.A fluorine-based polymer wherein the hydroxyl group-containing (meth)acrylamide-based monomer includes an N-hydroxyalkyl (meth)acrylamide-based monomer.
  16. 청구항 15에 있어서,In claim 15,
    상기 N-하이드록시알킬(메타)아크릴아미드계 단량체는 아미드기의 질소 원자에 C2∼C18의 알킬기가 결합되어 있는 N-하이드록시알킬(메타)아크릴아미드를 포함하는 것인, 불소계 고분자.The N-hydroxyalkyl (meth)acrylamide monomer is a fluorine-based polymer that includes N-hydroxyalkyl (meth)acrylamide in which an alkyl group of C 2 to C 18 is bonded to the nitrogen atom of the amide group.
  17. 청구항 11에 있어서,In claim 11,
    상기 산소-친핵성 과불화 탄화수소계 화합물은 과불화 3급 알코올을 포함하는 것인, 불소계 고분자.A fluorine-based polymer wherein the oxygen-nucleophilic perfluorinated hydrocarbon-based compound includes a perfluorinated tertiary alcohol.
  18. 청구항 11에 있어서,In claim 11,
    상기 산소-친핵성 과불화 탄화수소계 화합물은 하기 화학식 1로 표시되는 화합물을 포함하는 것인, 불소계 고분자:A fluorine-based polymer wherein the oxygen-nucleophilic perfluorinated hydrocarbon-based compound includes a compound represented by the following formula (1):
    [화학식 1] [Formula 1]
    Figure PCTKR2023015969-appb-img-000010
    Figure PCTKR2023015969-appb-img-000010
    (상기 화학식 1에서, n, m 및 p는 각각 괄호 내 단위의 반복 수로서, 각각 0 내지 3의 정수이다.)(In Formula 1, n, m, and p are the repeating numbers of the units in parentheses, and are each integers from 0 to 3.)
  19. 청구항 11에 있어서, In claim 11,
    상기 불소계 고분자는 온도-투과도 곡선에서의 상전이의 시작 온도(onset point)와 종료 온도(off set point)의 차이가 5 내지 30℃인 것인, 불소계 고분자.The fluorine-based polymer is a fluorine-based polymer in which the difference between the start temperature (onset point) and the end temperature (off set point) of the phase transition in the temperature-permeability curve is 5 to 30 ° C.
  20. 청구항 11 내지 청구항 19 중 어느 한 항에 따른 불소계 고분자를 포함하는 불소계 조성물. A fluorine-based composition comprising the fluorine-based polymer according to any one of claims 11 to 19.
  21. 청구항 20에 있어서, In claim 20,
    상기 불소계 고분자는 상기 불소계 조성물 100 중량부에 대해 0.1 내지 2.5 중량부로 포함되어 있는, 불소계 조성물. The fluorine-based polymer is contained in an amount of 0.1 to 2.5 parts by weight based on 100 parts by weight of the fluorine-based composition.
  22. 청구항 11 내지 청구항 19 중 어느 한 항의 불소계 고분자를 함유하는, 고분자 필름으로서,A polymer film containing the fluorine-based polymer of any one of claims 11 to 19,
    상기 고분자 필름은 스마트 윈도우 커버용 필름, 감온 포장재 필름 또는 의약 전달 기구(DDS) 부착용 필름인, 고분자 필름.The polymer film is a film for smart window covers, a temperature-sensitive packaging film, or a film for attaching a drug delivery device (DDS).
PCT/KR2023/015969 2022-10-17 2023-10-17 Fluorine-based polymer and method for preparing same WO2024085570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220133371A KR20240053369A (en) 2022-10-17 2022-10-17 Fluorine-based polymer and method of preparing thereof
KR10-2022-0133371 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024085570A1 true WO2024085570A1 (en) 2024-04-25

Family

ID=90738090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015969 WO2024085570A1 (en) 2022-10-17 2023-10-17 Fluorine-based polymer and method for preparing same

Country Status (2)

Country Link
KR (1) KR20240053369A (en)
WO (1) WO2024085570A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014284A (en) * 2000-06-27 2003-02-15 아토피나 Heat-sensitive water soluble copolymers based on (poly)ethoxylated (meth)acrylate, method for making same and use for preparing adhesive films and binders for textile webs
JP4487029B2 (en) * 2009-04-09 2010-06-23 独立行政法人産業技術総合研究所 Thermoresponsive polymer derivative having both lower critical temperature and upper critical temperature
JP2019189699A (en) * 2018-04-20 2019-10-31 ダイキン工業株式会社 Coating modifier, and coating composition
JP6819694B2 (en) * 2016-11-01 2021-01-27 ダイキン工業株式会社 Fluorine-containing polymer and surface treatment agent composition
KR102353641B1 (en) * 2020-10-14 2022-01-21 한국화학연구원 Method for Preparing Fluorine-Based Polymer, Fluorine-Based Polymer, and Polymer Membrane Comprising the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014284A (en) * 2000-06-27 2003-02-15 아토피나 Heat-sensitive water soluble copolymers based on (poly)ethoxylated (meth)acrylate, method for making same and use for preparing adhesive films and binders for textile webs
JP4487029B2 (en) * 2009-04-09 2010-06-23 独立行政法人産業技術総合研究所 Thermoresponsive polymer derivative having both lower critical temperature and upper critical temperature
JP6819694B2 (en) * 2016-11-01 2021-01-27 ダイキン工業株式会社 Fluorine-containing polymer and surface treatment agent composition
JP2019189699A (en) * 2018-04-20 2019-10-31 ダイキン工業株式会社 Coating modifier, and coating composition
KR102353641B1 (en) * 2020-10-14 2022-01-21 한국화학연구원 Method for Preparing Fluorine-Based Polymer, Fluorine-Based Polymer, and Polymer Membrane Comprising the Same

Also Published As

Publication number Publication date
KR20240053369A (en) 2024-04-24

Similar Documents

Publication Publication Date Title
KR100808116B1 (en) Anti-fouling copolymers resin coating material
JP3253679B2 (en) Preparation of macromonomer and comb polymer
CN113698599A (en) Polyimide resin and preparation method thereof
CN118005923B (en) Polyamic acid ester varnish for flexible OLED display panel and preparation method thereof
WO2024085570A1 (en) Fluorine-based polymer and method for preparing same
JP2022083035A (en) Method for producing copolymer
US5565539A (en) Contact lenses with hydrophilic crosslinkers
US5654350A (en) Contact lenses with hydrophilic crosslinkers
CN114195962B (en) Amphiphilic fluorine-containing block polymer and preparation method and application thereof
JP3285622B2 (en) Block copolymer
EP0747734B1 (en) Contact lenses with hydrophilic crosslinkers
US3590102A (en) Graft polymers of acrylonitrile onto polyvinylamide
WO2013180553A1 (en) Polymer, method for preparing same, and composition and film comprising same
US5563183A (en) Contact lenses with hydrophilic crosslinkers
JP5917915B2 (en) Cross-linking method by thermal Huisgen reaction, cross-linkable color-forming polymer and cross-linked polymer material having stable electro-optical properties
CN114656591B (en) Water-soluble macromolecular photoinitiator and preparation method and application thereof
KR20190138535A (en) The polyimide composition and a polyimide film having excellent ultraviolet stability prepared therefrom
WO2024144097A1 (en) Method for controlling properties of polyvinylidene fluoride-based polymer having vinyl group by using multifunctional radical scavenger
CN114031708B (en) Preparation method of low molecular weight styrene-maleic anhydride copolymer
CN114276542B (en) Preparation method of flame-retardant polyimide
WO2016013887A1 (en) Method for polymerizing fluorine-based monomers comprising fluorine-based emulsifiers, and fluorine-based polymers prepared thereby
WO2018217013A2 (en) Temperature-sensitive gas hydrate inhibitor and preparation method therefor
RU2064938C1 (en) Method of synthesis of fluorine-containing polymers
CN113621212A (en) Liquid crystal polymer composite material doped with carbon nano tube and preparation method thereof
JPH05105717A (en) Process for manufacturing thermoplastic substance, obtained thermoplastic substance and use of same as highly heat-resistant transparent substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23880147

Country of ref document: EP

Kind code of ref document: A1