WO2024085546A1 - Electrochemical system fire extinguishing device and heat pump system using composition having low global warming potential - Google Patents

Electrochemical system fire extinguishing device and heat pump system using composition having low global warming potential Download PDF

Info

Publication number
WO2024085546A1
WO2024085546A1 PCT/KR2023/015834 KR2023015834W WO2024085546A1 WO 2024085546 A1 WO2024085546 A1 WO 2024085546A1 KR 2023015834 W KR2023015834 W KR 2023015834W WO 2024085546 A1 WO2024085546 A1 WO 2024085546A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
electrochemical system
fire extinguishing
less
heat
Prior art date
Application number
PCT/KR2023/015834
Other languages
French (fr)
Korean (ko)
Inventor
최종원
정학근
최영찬
이길봉
이영주
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220133463A external-priority patent/KR20240053716A/en
Priority claimed from KR1020220135868A external-priority patent/KR20240055965A/en
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2024085546A1 publication Critical patent/WO2024085546A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation

Definitions

  • This embodiment relates to a composition having a low temperature warming index and a battery fire extinguishing device and system using the same.
  • lithium secondary batteries such as lithium-ion batteries and lithium-ion polymer batteries.
  • secondary batteries are classified according to the structure of the electrode assembly, which consists of a positive electrode, a negative electrode, and a separator sandwiched between the positive electrode and the negative electrode.
  • Representative examples include long sheet-shaped positive electrodes and negative electrodes.
  • an electrode assembly of an advanced structure which is a mixture of the jelly-roll type and the stack type, has been developed into a predetermined unit.
  • a stacked/folded electrode assembly was developed in which unit cells, in which an anode and a cathode are stacked with a separator interposed between them, are placed on a separator film and wound sequentially.
  • secondary batteries are divided into cylindrical batteries and square batteries in which the electrode assembly is built in a cylindrical or square metal can, and pouch-type batteries in which the electrode assembly is built in a pouch-shaped case of aluminum laminate sheet. are classified.
  • These secondary batteries may be exposed to various environments depending on the usage status and conditions, and it is especially necessary to prevent the risk of explosion for the safety of users.
  • the internal high temperature and high pressure that can be caused by abnormal operating conditions of the secondary battery such as internal short circuit, charging state exceeding the allowed current and voltage, exposure to high temperature, shock due to dropping, etc., are caused by the secondary battery. may cause an explosion.
  • each secondary battery includes a high-pressure relief means that can relieve the high pressure, which is the direct cause of battery explosion.
  • Korean Patent Publication No. 10-2416007 discloses a battery case having a battery space in which a plurality of battery cells are each accommodated, a fire extinguishing spray unit installed in the battery case to detect fire and spray fire extinguishing liquid on the battery cells, and the fire extinguishing device.
  • a battery fire extinguishing system using eco-friendly fire extinguishing liquid which includes a fire extinguishing liquid supply unit that supplies fire extinguishing liquid to the spray unit, and an injection controller that detects abnormalities in the battery cells and controls the fire extinguishing spray unit, the injection controller controls the temperature of the battery cell.
  • It includes two or more of a temperature sensor that detects smoke, a smoke sensor that detects smoke generated from the battery cell, and a pressure sensor that detects the pressure of the battery cell, and detects a fire based on information detected by the two or more. The occurrence is determined and fire extinguishing liquid is sprayed on the battery cell through the fire extinguishing spray unit. When the fire is detected by the injection controller, the fire extinguishing spray unit moves in the direction where the battery cell is located and penetrates the battery cell to create a plurality of short circuit points.
  • a battery fire extinguishing system using an eco-friendly fire extinguishing liquid including a movable member having a plurality of short-circuit spray nozzles that quickly discharges the battery cell by forming a fire extinguishing liquid and simultaneously spraying the fire extinguishing liquid into the inside of the battery cell is disclosed.
  • the fire extinguishing liquid contains a foaming agent that generates bubbles in a solvent containing water from which chlorine ions have been removed, a bubble stabilizer that stabilizes the bubbles, a foam adjuvant that prevents the bubbles from being easily extinguished, and a pour point lowering agent that lowers the freezing temperature of the fire extinguishing mixture.
  • the fire extinguishing fluid containing the fire extinguishing agent In the normal state of the present invention, the fire extinguishing fluid containing the fire extinguishing agent is used, and in the abnormal state of ignition of the battery cell, it acts as a fire extinguishing fluid that is sprayed directly into contact with the battery cell to perform fire extinguishing.
  • a battery pack fire extinguishing system using an insulating refrigerant with low environmental impact has not been disclosed.
  • Korean Patent Publication No. 10-2304158 includes a battery module containing a plurality of battery cells and connected to an external power load; A technology is disclosed that is mounted on the battery module and includes a refrigerant induction unit that passes refrigerant supplied from an external air conditioner and causes the refrigerant to cool the battery module, thereby maintaining the battery cell at an optimal temperature.
  • the refrigerant is for cooling the battery cell, and in abnormal conditions such as ignition of the battery cell, the refrigerant is sprayed in direct contact with the battery cell to extinguish the fire, thereby acting as a fire extinguishing liquid that has little environmental impact.
  • a battery pack fire extinguishing system using a refrigerant has not been disclosed.
  • microcapsules containing a safety-enhancing material are applied to areas that do not directly affect the operation of the battery, and the application area is the battery area.
  • a secondary battery that is prone to heat accumulation and short circuit due to internal/external pressure when abnormalities such as static abnormality or physical shock occur.
  • the technology includes microcapsules, a material that ensures the stability of battery cells for additional fire extinguishing, which lowers the energy density of the battery pack containing the battery cells and makes it difficult to control fire extinguishing in abnormal conditions such as ignition.
  • the present invention serves as a refrigerant for cooling the battery pack, and in the abnormal state of ignition of the battery cell, it is injected into direct contact with the battery cell and acts as a fire extinguishing liquid to perform fire extinguishing.
  • a battery pack fire extinguishing system using a refrigerant has not been disclosed.
  • Korean Patent Publication No. 10-2018-0047439 discloses an electrode assembly including an anode, a cathode, and a separator interposed between the anode and the cathode; a first pack case in which the electrode assembly is stored together with an electrolyte; a second pack case storing the first pack case such that at least a portion of the inner surface is spaced apart from the outer surface of the first pack case; A fire extinguishing agent filled in the space between the outer surface of the first pack case and the inner surface of the second pack case; and a cap assembly coupled to simultaneously seal open surfaces of the first pack case and the second pack case, with the first pack case storing the electrode assembly and the electrolyte and the fire extinguishing agent stored and filled in the second pack case.
  • a battery pack characterized in that a first venting portion is formed that opens to allow the filled fire extinguishing agent to flow into the interior of the first pack case.
  • a first venting portion is formed that opens to allow the filled fire extinguishing agent to flow into the interior of the first pack case.
  • it acts as a refrigerant for cooling the battery pack, and in the abnormal state of ignition of the battery cell, it is directly injected into the battery cell and acts as a fire extinguishing liquid to perform fire extinguishing, which has a small environmental impact.
  • a battery pack fire extinguishing system using an insulating refrigerant has not been disclosed.
  • the refrigerant of the refrigeration device cools the battery pack in its normal state, and when a fire occurs in a battery cell included in the battery pack, it is sensed and sprayed into direct contact with the battery cell to extinguish the fire and vaporize GWP.
  • the purpose of this embodiment is to provide a battery fire extinguishing device using a composition or refrigerant that senses when a fire occurs in a battery and is sprayed directly into the battery to extinguish the fire and evaporate.
  • the object is to provide a battery fire extinguishing device using a composition or refrigerant that cools the battery in the normal state of the battery and extinguishes the fire by being supplied directly to the battery when a fire occurs in the battery.
  • the refrigerant of the cooling device cools the electrical or chemical heat generating device in its normal state, and when a fire occurs in the electrical or chemical heat generating device, it is sensed and sprayed into direct contact with the device to prevent the fire.
  • insulating refrigerants with a GWP Global Warming Potential
  • the composition having a low-temperature warming index may include a refrigerant, and specifically includes a refrigerant having a low-temperature warming index. can do.
  • one embodiment provides an electrochemical system for extinguishing a fire using a refrigerant, comprising: a supply unit for supplying the refrigerant so that the refrigerant directly contacts the electrochemical system; It provides an electrochemical system fire extinguishing device including a storage unit for storing the refrigerant.
  • the supply unit may include an injection device that sprays the refrigerant into the electrochemical system when the electrochemical system is ignited.
  • the spray device may include a nozzle through which the refrigerant is sprayed.
  • the injection port of the nozzle may be sealed with a heat sensitive tube.
  • the storage unit can maintain a pressure higher than atmospheric pressure.
  • the supply unit includes a refrigerant tube that receives the refrigerant from the storage unit, and when the electrochemical system ignites, the refrigerant is discharged to the electrochemical system to extinguish the fire. can do.
  • the refrigerant tube is arranged to be in contact with the electrochemical system, and heat management of the electrochemical system can be performed through heat exchange with the electrochemical system.
  • the refrigerant tube may rupture or melt when the electrochemical system ignites.
  • the refrigerant tube is composed of a thermally conductive material and a thermally sensitive tube, and the thermally responsive tube may rupture or melt when the electrochemical system ignites.
  • the electrochemical system may correspond to one of a battery, battery cell, battery module, battery pack, battery rack, hybrid vehicle, electric vehicle, ESS (Energy Storage System), and distribution board. You can.
  • the refrigerant is a methane-based halogenated carbon compound, refrigerant numbers 10 to 59, and refrigerant numbers 110 to 59 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • Ethane-based halogenated carbon compound No. 179 propane-based halogenated carbon compound No. 200 to 299, cyclic butane-based halogenated carbon compound No. 300 to 399, non-azeotropic mixed refrigerant No. 400 to 499, azeotropic mixed refrigerant No. 500 to 599, 600 to 600 It may include one or more of hydrocarbons, oxygen compounds, sulfur compounds, nitrogen compounds, numbered 699, inorganic compounds numbered 700 to 799, and unsaturated organic compounds numbered 1000 to 1999.
  • the refrigerant is R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, Hydrofluoroolefin-based refrigerants (HFOs), any of R-515B, R-452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D , R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 hydrofluorocarbon-based refrigerant (HFCs), R-22, Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-409A, R402A, R-402B, R-123, R-124,
  • the refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, and a global warming potential (GWP). It is above 0 and below 2, does not fall within the flammable range, and the ozone depletion potential (ODP) may be above 0 and below 0.001.
  • GWP global warming potential
  • the refrigerant contains one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO, and Fullerene in an amount of more than 0 to 5% by weight. May contain nanoparticles.
  • the refrigerant may contain more than 0 and less than 5% by weight of a surfactant including one or more of CTAB and Span-80.
  • one embodiment includes a flash tank that stores refrigerant in a gaseous and liquid state; A compressor that compresses the refrigerant at high temperature and pressure; a first heat exchanger that exchanges heat with the refrigerant and the outside and can operate as an evaporator that absorbs heat or a condenser that emits heat; a second heat exchanger that performs an opposite function to the first heat exchanger and can operate as an evaporator or condenser; a first expansion valve connected to the flash tank and supplying low-temperature and low-pressure refrigerant to the flash tank; a second expansion valve connected to the flash tank, receiving liquid refrigerant from the flash tank and putting it in a low temperature and low pressure state; a first four-way valve selectively connecting the flash tank, the first heat exchanger, the second heat exchanger, and the first expansion valve; a second four-way valve selectively connecting the compressor, the first heat exchanger, and the second heat exchanger; A first valve connected
  • the flash tank includes a device that generates heat by an electrical or chemical reaction, the device exchanges heat with the refrigerant stored in the flash tank, and when a fire occurs in the device, It can be extinguished by the refrigerant stored in the flash tank.
  • the device may correspond to any one of a battery cell, a battery module, a battery pack, a battery rack, a hybrid vehicle, an electric vehicle, an ESS (Energy Storage System), and a distribution board.
  • a battery cell a battery cell
  • a battery module a battery pack
  • a battery rack a hybrid vehicle
  • an electric vehicle an ESS (Energy Storage System)
  • ESS Electronicgy Storage System
  • the heat pump system may operate in any one of a cooling mode, a heating mode, and an intermediate mode.
  • the gaseous refrigerant in the flash tank sequentially circulates through the third valve, the compressor, the second four-way valve, the second heat exchanger operating as a condenser, the first four-way valve, and the first expansion valve. It is supplied to the flash tank as a low-temperature and low-pressure refrigerant, and the liquid refrigerant in the flash tank is supplied to the second valve, the first four-way valve, the first heat exchanger operating as an evaporator, the second four-way valve, The compressor, the second heat exchanger operating as a condenser, the first four-way valve, and the first expansion valve may be sequentially circulated to supply low-temperature and low-pressure refrigerant to the flash tank.
  • the liquid refrigerant in the flash tank is supplied to the second expansion valve, the first four-way valve, and the second expansion valve operating as an evaporator.
  • Liquid refrigerant may be supplied to the flash tank by sequentially circulating through the second heat exchanger, the second four-way valve, the compressor, the first heat exchanger operating as a condenser, the first four-way valve, and the first valve.
  • the gaseous refrigerant in the flash tank sequentially circulates through the third valve, the second four-way valve, and the second heat exchanger. Thus, it can be supplied to the flash tank.
  • the heat pump system may include a pump and a check valve that supply the refrigerant that has passed through the second heat exchanger to the flash tank.
  • the refrigerant is a methane-based halogenated carbon compound with refrigerant numbers 10 to 50, and refrigerant numbers 110 to 170 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • the refrigerant is R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B , R-452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D, R- Hydrofluorocarbon-based refrigerants (HFCs), any of 134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23, R-22, R-409A , R402A, R-402B, R-123, R-124, R401A, R-401B, any one of hydrochloroproporocarbon-based refrigerants (HCFCs) and dodecafluoro-2-methylpentane-3
  • HFCs Hydrofluoro
  • the refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, and a global warming potential (GWP) of 0 or more. and 2 or less, does not fall within the flammable range, and the ozone depletion potential (ODP) may be 0 or more and 0.001 or less.
  • GWP global warming potential
  • the refrigerant is,
  • Another embodiment includes a battery module including one or more battery cells; a cooling device containing a refrigerant that performs heat exchange with the battery module; and a fire extinguishing device that supplies the refrigerant to directly contact the battery module.
  • the cooling device includes a compressor, a condenser, an expansion valve, and an evaporator through which the refrigerant circulates, and at least a portion of the refrigerant passing through the expansion valve is supplied to the refrigerant inflow passage to the battery.
  • Heat exchange is performed with the module, and the refrigerant that has completed heat exchange with the battery module can be recovered through the refrigerant recovery passage and supplied to the cooling device.
  • the battery fire extinguishing system further includes a BMS (Battery Management System) that senses ignition in the battery module, and when the BMS senses ignition in the battery module, the fire extinguishing device is The entire amount of refrigerant that has passed through the expansion valve of the cooling device can be supplied to the battery module.
  • BMS Battery Management System
  • the risk of ignition or explosion due to an increase in internal temperature and pressure caused by an abnormal operating state of the electrochemical system is effectively prevented using a refrigerant, and the effect of improving stability is achieved. there is.
  • the insulating properties of the refrigerant, the low GWP index, and the flammability range are not included, and the vapor pressure is low, so it does not remain in the battery like existing fire extinguishing liquid after extinguishing, which is advantageous for battery recycling.
  • FIG. 1 is a configuration diagram of a battery fire extinguishing device according to this embodiment.
  • Figure 2 is an exemplary diagram of a battery fire extinguishing device according to this embodiment.
  • Figure 3 is a diagram for explaining the injection device according to this embodiment.
  • Figure 4 is another example diagram of a battery fire extinguishing device according to this embodiment.
  • Figure 5 is an exemplary view of a composition tube according to this embodiment.
  • Figure 6 is another exemplary view of a composition tube according to this embodiment.
  • Figure 7 is a configuration diagram of a heat pump system according to this embodiment.
  • Figure 8 is an exemplary diagram of a flash chamber, which is a component of the heat pump system according to this embodiment.
  • Figure 9 is a configuration diagram of the heat pump system according to this embodiment when operating in cooling mode.
  • Figure 10 is a configuration diagram of the heat pump system according to this embodiment when operating in heating mode.
  • Figure 11 is a configuration diagram of the heat pump system according to this embodiment when operating in an intermediate mode.
  • Figure 12 is a configuration diagram of the battery fire extinguishing system according to this embodiment in a normal state.
  • Figure 13 is a configuration diagram of the battery fire extinguishing system according to this embodiment in a fire state.
  • Figure 14 is an example diagram in which the battery fire extinguishing system according to this embodiment is applied.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • a component is described as being “connected,” “coupled,” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It will be understood that elements may be “connected,” “combined,” or “connected.”
  • FIG. 1 is a configuration diagram of an electrochemical system fire extinguishing device according to this embodiment.
  • the electrochemical system fire extinguishing device 100 may include an electrochemical system 110, a supply unit 120, and a storage unit 130.
  • the electrochemical system 110 may include a device that generates heat through an electrical or chemical reaction.
  • the electrochemical system 110 includes a battery, a battery cell, a battery module, a battery pack, and a battery rack. , it may correspond to any one of a hybrid vehicle, an electric vehicle, an ESS (Energy Storage System), and a distribution board, or may be configured to include one or more of these.
  • ESS Electronicgy Storage System
  • a fire that occurs in a battery may be in a state of thermal runaway, which is an exothermic reaction in which a temperature change further accelerates the temperature change, unlike a fire that is generally caused by combustion of combustible materials. Therefore, if a fire occurs in the battery, continuous additional explosions may occur, and even if the fire is extinguished, there may be a risk of re-ignition. Therefore, it may be difficult to extinguish a fire occurring in a battery using conventional methods.
  • the supply unit 120 may be configured to supply refrigerant so that the refrigerant comes into direct contact with the electrochemical system 110.
  • the refrigerant may have insulating properties, and specifically, the refrigerant used in the electrochemical system fire extinguishing device according to this embodiment has electrical conductivity such that no current flows even if supplied to a battery or a device including a battery. You can. That is, it may have an electrical conductivity of 0.1 S/cm or less, 0.01 S/cm or less, 0.001 S/cm or less, 0.0001 S/cm or less, and may have an electrical conductivity of 0 S/cm.
  • the refrigerant according to this embodiment may additionally include insulating oil to increase the insulating properties of the refrigerant.
  • the refrigerant used in the electrochemical system fire extinguishing device 100 may have a saturation evaporation temperature of -10°C or higher and 60°C or lower at normal pressure. Specifically, it may have a saturation evaporation temperature of -10°C or higher, 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, and 50°C or higher. Additionally, the refrigerant used in the electrochemical system fire extinguishing device according to this embodiment may have a saturation evaporation temperature of 60°C or less, 70°C or less, 80°C or less, 90°C or less, and 100°C or less at normal pressure.
  • atmospheric pressure refers to normal atmospheric pressure and may mean 1 atm. Accordingly, when a fire occurs in the electrochemical system 110, even if the refrigerant is directly supplied to the electrochemical system 110 by spraying or discharging, the refrigerant does not remain in the electrochemical system 110 and existing extinguishing substances Compared to water, which is widely used, problems such as corrosion do not occur, so it can have the advantage of enabling recycling of batteries.
  • the refrigerant used in the electrochemical system fire extinguishing device 100 may be non-flammable. In other words, it may not fall within the flammable range, and may be a refrigerant classified as A1 group, indicating non-flammability, by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • the refrigerant used in the electrochemical system fire extinguishing device 100 may be a low-pressure refrigerant.
  • Low-pressure refrigerant may generally refer to a refrigerant whose evaporation pressure is below atmospheric pressure.
  • the refrigerant used in the electrochemical system fire extinguishing device 100 may be an environmentally friendly refrigerant. That is, a material with a relatively small GWP (Global Warming Potential) can be used as the refrigerant. Specifically, the refrigerant according to this embodiment has a GWP (Global Warming Potential) of 0 or more, 0.5 or less, 1 or less, 1.5 or less, 2 or less, It can have a GWP of 2.5 or less and 3 or less. In addition, a material with a relatively small ODP (Ozone Depletion Potential) can be used as the refrigerant. Specifically, the refrigerant according to this embodiment has a value of 0 or more, 0.1 or less, 0.01 or less, 0.001 or less, 0.0001 or less, and 0.00001. It may have the following ODP.
  • GWP Global Warming Potential
  • the refrigerant according to this embodiment can be supplied at a temperature of 0°C or lower, specifically -5°C or lower, and this refrigerant can not only extinguish the fire by lowering the temperature by directly contacting the electrochemical system or the object in which the fire occurred. Rather, it can be expected that the refrigerant can extinguish a fire by cooling the moisture contained in the air and blocking the air.
  • the temperature at which the refrigerant is supplied is not limited to this and may vary depending on the temperature of the place where the electrochemical system is used.
  • the refrigerant that absorbs the heat from the electrochemical system or the object where the fire occurred is vaporized and leaves no residue after the fire is extinguished, which has the effect of preventing corrosion of the electrochemical system and increasing the recyclability of the electrochemical system. You can expect it.
  • the refrigerant used in the electrochemical system fire extinguishing device 100 is a methane-based halogenated carbon compound, refrigerant number 10 to 59 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • Ethane-based halogenated carbon compounds Nos. 110 to 179 propane-based halogenated carbon compounds Nos. 200 to 299, cyclic butane-based halogenated carbon compounds Nos. 300 to 399, non-azeotropic mixed refrigerants Nos. 400 to 499, azeotropic mixed refrigerants Nos. 500 to 599, It may include one or more of hydrocarbons numbered from 600 to 699, oxygen compounds, sulfur compounds, nitrogen compounds, inorganic compounds numbered from 700 to 799, and unsaturated organic compounds numbered from 1000 to 1999.
  • the refrigerants used in the electrochemical system fire extinguishing device 100 are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R- Hydrofluoroolefin-based refrigerants (HFOs), any of 454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R -Hydrofluorocarbon-based refrigerants (HFCs), R- 22, any one of R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B hydrochloroproporocarbon refrigerant (HCFCs) and dodecafluoro-2-methylpentane-3 - May contain one or more of the causal fluorinated ketones
  • the refrigerant used in the electrochemical system fire extinguishing device 100 may further include nanoparticles.
  • nanoparticles may be composed of one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT (Carbon Nano Tube), GO (Graphene Oxide), and Fullerene, and the nanoparticles can be used as a refrigerant.
  • the refrigerant may include 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, and exceeding 0.
  • Nanoparticles can be added to the refrigerant to further improve thermal conductivity.
  • the refrigerant used in the electrochemical system fire extinguishing device 100 may include a surfactant.
  • a non-flammable surfactant may be used so that the surfactant can be used for fire extinguishing.
  • it may include one or more of CTAB and Span-80.
  • Surfactants are included in the refrigerant and can play a role in helping to ensure good contact with the surface of the fire-producing object when the refrigerant is directly supplied to the fire-producing object, including batteries, and the refrigerant can be used in electrochemical systems, etc. Not only can it extinguish a fire by lowering the temperature through an endothermic reaction while attached to the surface, but it can also prevent thermal runaway, which is an additional exothermic reaction.
  • the storage unit 130 may be configured to store the refrigerant according to this embodiment.
  • the refrigerant stored in the storage unit 130 may be moved to the supply unit 120 through a pump (not shown) or a separate supply device, and may be supplied to the electrochemical system 110 through the supply unit 120.
  • the inside of the storage unit 130 may be maintained at a pressure higher than atmospheric pressure, specifically, may have a pressure of more than 1 atm, more than 1 bar, more than 2 bar, more than 3 bar, and less than 10 bar. You can have it.
  • refrigerant may be supplied to the electrochemical system 110 without a pump (not shown) or a separate supply device.
  • the supply unit 120 and the storage unit 130 may be connected to each other through a configuration that allows refrigerant to move.
  • Figure 2 is an exemplary diagram of an electrochemical system fire extinguishing device according to this embodiment.
  • the electrochemical system fire extinguishing device 100 may include a supply unit 120, and the supply unit 120 supplies refrigerant to the electrochemical system when the electrochemical system 110 is ignited. It may include an injection device 121 that sprays at 110. The injection device 121 may receive refrigerant from the storage unit 130.
  • the refrigerant may be injected by the injection device 121, the injected refrigerant may be injected and contacted with the electrochemical system 110, and the refrigerant in contact with the electrochemical system 110 absorbs heat and extinguishes the fire. In addition, it can suppress thermal runaway, which is an additional explosive reaction.
  • the refrigerant is supplied at a temperature below freezing, specifically -5°C or lower, so it not only absorbs heat, but also cools the moisture in the air, blocking the oxygen necessary for combustion in the event of a battery fire, which is expected to have an additional fire suppression effect. You can.
  • Figure 3 is a diagram for explaining the injection device according to this embodiment.
  • the injection device 121 may include a nozzle 1211.
  • the refrigerant stored in the storage unit 130 may be supplied to the injection device 121, and the refrigerant supplied to the injection device 121 may be injected into the electrochemical system 110 through the injection hole of the nozzle 1211. there is.
  • the injection port of the nozzle 1211 may be sealed with a heat sensitive tube 1212.
  • a heat-sensitive tube may mean a composition made of a material that melts (melts) or ruptures when a certain temperature is reached in the event of a fire.
  • the heat-sensitive tube 1212 may be made of a special polymer material that melts or ruptures in response to heat.
  • the refrigerant is supplied to the electrochemical system 110 in the event of a fire without the need for a separate supply device such as a pump. can be supplied.
  • the injection port of the injection device 121 is sealed by the heat-responsive tube 1212, so the refrigerant may not be released, and in case of a fire, the heat generated by the fire
  • Figure 4 is another exemplary diagram of an electrochemical system fire extinguishing device according to this embodiment.
  • the electrochemical system fire extinguishing device 100 may include a supply unit 120, and the supply unit 120 may include a refrigerant tube 122.
  • the refrigerant tube 122 can receive refrigerant from the storage unit 130, and the refrigerant tube 122 is used for normal operation of the electrochemical system 110 in normal times when a fire does not occur in the electrochemical system 110. Thermal management can be performed. Typically, batteries show optimal operating performance at 10 to 40°C, and the refrigerant tube 122 performs heat exchange with the electrochemical system 110 so that the electrochemical system 110 can maintain the optimal temperature.
  • the refrigerant tube 122 may be arranged to be in direct contact with the electrochemical system 110 for heat exchange with the electrochemical system 110. Additionally, the refrigerant tube 122 may be made of a thermally conductive material.
  • the thermally conductive material may include metal or thermally conductive plastic, but is not limited thereto, and various thermally conductive materials may be used.
  • the refrigerant tube 122 may rupture or melt when a fire occurs (ignition) in the electrochemical system 110, and the refrigerant present inside the refrigerant tube 122 may be supplied to the electrochemical system 110. That is, the refrigerant is discharged or discharged in direct contact with the electrochemical system 110, thereby suppressing fire and thermal runaway conditions occurring in the electrochemical system 110.
  • the refrigerant tube 122 may be composed of a heat-sensitive tube.
  • the heat-sensitive tube forming at least a portion of the refrigerant tube 122 is melted or ruptured by heat and removed when a fire occurs (when ignited) in the electrochemical system 110, and thus, inside the refrigerant tube 122. Any refrigerant present may be discharged or discharged directly into the electrochemical system 110.
  • the electrochemical system fire extinguishing device 100 may include one or more refrigerant tubes 122. Additionally, the electrochemical system fire extinguishing device 100 shown in FIG. 4 is merely an example, and the configuration and arrangement of the refrigerant tube 122 may be changed in various ways.
  • Figure 5 is an exemplary diagram of a refrigerant tube according to this embodiment.
  • the refrigerant tube 122 may include one or more circular heat-sensitive tubes 1221.
  • the heat-sensitive tube 1221 included in the refrigerant tube 122 may be melted or ruptured by the heat generated by the fire, and accordingly, the heat-sensitive tube 1221 may be melted or ruptured in the refrigerant tube 122. Holes may form.
  • the refrigerant present inside the refrigerant tube 122 may be discharged or discharged out of the refrigerant tube 122 through the hole created by heat, and the refrigerant is supplied to directly contact the electrochemical system 110, causing fire and heat. It may be possible to extinguish the runaway.
  • Figure 6 is another exemplary diagram of a refrigerant tube according to this embodiment.
  • the refrigerant tube 122 may include one or more linear heat-sensitive tubes 1222.
  • the heat-sensitive tube 1222 included in the refrigerant tube 122 may be melted or ruptured by the heat generated by the fire, and accordingly, the heat-sensitive tube 1222 may be melted or ruptured by the heat generated by the fire.
  • a straight hole may be formed.
  • the refrigerant present inside the refrigerant tube 122 may be discharged or discharged out of the refrigerant tube 122 through the hole created by heat, and the refrigerant is supplied to directly contact the electrochemical system 110, causing fire and heat. It may be possible to extinguish the runaway.
  • the heating runaway temperature of a lithium ion secondary battery typically increases from 188°C to 527°C, causing heat generation and ignition.
  • the overcharge thermal runaway temperature of a lithium-ion secondary battery increases from 110°C to 317°C, causing heat generation and ignition. That is, the electrochemical system fire extinguishing device 100 according to this embodiment not only lowers the temperature of the electrochemical system in order to extinguish and suppress such ignition and thermal runaway, but also blocks oxygen to prevent additional fire damage. Effects can be expected.
  • the normal operating temperature of the battery may be 20°C to 60°C, 30°C to 50°C, or about 40°C.
  • the electrochemical system fire extinguishing device 100 not only performs a fire extinguishing operation in the event of a fire, but also maintains an appropriate temperature of the electrochemical system through a refrigerant. In other words, when the electrochemical system goes down to too low a temperature, it can supply heat, and when the electrochemical system goes up to a too high temperature, it can absorb heat.
  • Figure 7 is a configuration diagram of a heat pump system according to this embodiment.
  • the heat pump system 1000 includes a flash tank 1010, a compressor 1020, a first heat exchanger 1030, a second heat exchanger 1040, and a first expansion valve ( 1050), second expansion valve (1060), first four-way valve (1070), second four-way valve (1080), first valve (1090), second valve (1100), third valve (1110) and fourth It may include a valve 1120.
  • the heat pump system 1000 may include a storage unit 1130, a pump 1140, and a check valve 1150.
  • the heat pump system 1000 may circulate a refrigerant as a working fluid.
  • the flash tank 1010 may be configured to store refrigerant in gaseous and liquid states. Additionally, the flash tank 1010 may include a device 1160 that generates heat through an electrical or chemical reaction. Heat exchange between the refrigerant and the device 1160 can occur in the flash tank 1010, and when a fire occurs in the device 1160, the fire can be extinguished through the refrigerant stored in the flash tank 1010.
  • the compressor 1020 may be configured to compress refrigerant to a high temperature. Specifically, it may be configured to compress low-temperature and low-pressure refrigerant in a gaseous state into a high-temperature and high-pressure state.
  • the compressor 1020 may be connected to the flash tank 1010, and a third valve may be disposed between the flash tank 1010 and the compressor 1020. Additionally, the compressor 1020 may be connected to the second four-way valve 1080. Additionally, the compressor 1020 may be connected to the first heat exchanger 1030 and the second heat exchanger 1040 through the second four-way valve 1080.
  • the first heat exchanger 1030 and the second heat exchanger 1040 may be configured to exchange heat while the refrigerant passes through them.
  • the first heat exchanger 1030 and the second heat exchanger 1040 may operate as an evaporator or a condenser.
  • the evaporator may be configured to allow the refrigerant to absorb heat, and specifically, may be configured to allow the liquid refrigerant in a low temperature state to absorb heat and change into a gaseous refrigerant.
  • the condenser may be configured to allow the refrigerant to emit heat. Specifically, it may be configured to allow a high-temperature and high-pressure gaseous refrigerant to emit heat and change into a liquid refrigerant.
  • the first heat exchanger 1030 may be connected to the first four-way valve 1070 and the second four-way valve 1080.
  • the first heat exchanger 1030 can be selectively connected to the first expansion valve 1050 and the second expansion valve 1060 through the first four-way valve 1070, and the compressor ( 1020) can be optionally connected.
  • selectively connecting may mean that the connection method of each component may vary depending on the operating mode of the heat pump system 1000.
  • the second heat exchanger 1040 may be connected to the first four-way valve 1070 and the second four-way valve 1080.
  • the second heat exchanger 1040 may be selectively connected to the first expansion valve 1050 and the second expansion valve 1060 through the first four-way valve 1070, and the second It can be selectively connected to the compressor 1020 through the four-way valve 1080.
  • the first heat exchanger 1030 and the second heat exchanger 1040 may perform opposite functions to each other. That is, when the first heat exchanger 1030 operates as a condenser, the second heat exchanger 1040 can operate as an evaporator, and when the first heat exchanger 1030 operates as an evaporator, the second heat exchanger 1040 can operate as an evaporator. can operate as a condenser.
  • the first expansion valve 1050 and the second expansion valve 1060 may be configured to lower the pressure of the refrigerant through volume expansion. Specifically, by depressurizing the liquid refrigerant, the pressure and temperature can be lowered and the refrigerant can exist in a gas, liquid, or gas and liquid state.
  • the first expansion valve 1050 can supply low-temperature and low-pressure refrigerant to the flash tank 1010 and can be turned on/off depending on the operating mode of the heat pump system 1000.
  • on refers to a state in which the refrigerant passes and the component operates
  • off refers to a state in which the refrigerant does not pass and the component does not operate.
  • first expansion valve 1050 may be connected to the first four-way valve 1070, and may be connected to the first heat exchanger 1030 and the second heat exchanger 1040 depending on the operating mode.
  • the second expansion valve 1060 can receive refrigerant from the flash tank 1010 and supply it to the first four-way valve 1070, and the heat pump system 1000 according to this embodiment through the first four-way valve 1070. Depending on the operating mode, refrigerant can be selectively supplied to the first heat exchanger 1030 and the second heat exchanger 1040. Additionally, the second expansion valve 1060 may be turned on/off depending on the operating mode of the heat pump system 1000.
  • the first four-way valve 1070 and the second four-way valve 1080 may have a connection method that changes depending on the operating mode. Accordingly, the first four-way valve 1070 may be configured to selectively connect the flash tank 1010, the first heat exchanger 1030, the second heat exchanger 1040, and the first expansion valve 1050. Additionally, the second four-way valve 1080 may be configured to selectively connect the compressor 1020, the first heat exchanger 1030, and the second heat exchanger 1040.
  • selectively connecting may mean that the connection method of each component may vary depending on the operating mode of the heat pump system 1000.
  • the first valve 1090, the second valve 1100, the third valve 1110, and the fourth valve 1120 may be configured to control the flow of refrigerant on/off.
  • the first to fourth valves 1090, 1100, 1110, and 1120 may be configured as solenoid valves. However, it is not limited to this and may be changed in various ways as needed.
  • the first valve 1090 may be connected in parallel with the first expansion valve 1050 and may be turned on and off depending on the operating mode of the heat pump system 1000. When the first valve 1090 is on, the first expansion valve 1050 may be off, and when the first valve 1090 is off, the first expansion valve 1050 may be on.
  • the second valve 1100 may be connected in parallel with the second expansion valve 1060 and may be turned on and off depending on the operating mode of the heat pump system 1000. When the second valve 1100 is on, the second expansion valve 1060 may be off, and when the second valve 1100 is off, the second expansion valve 1060 may be on.
  • the third valve 1110 may be disposed between the flash tank 1010 and the compressor 1020. That is, the third valve 1110 is turned on and off depending on the operating mode of the heat pump system 1000, so that it can be selected whether to supply the refrigerant from the flash tank 1010 to the compressor 1020.
  • the refrigerant passing through the third valve 1110 may be a refrigerant in one or more of liquid and gas states.
  • the fourth valve 1120 may be disposed between the second heat exchanger 1040 and the flash tank 1010. That is, the fourth valve 1120 can be turned on and off depending on the operating mode of the heat pump system 1000, so that it can be selected whether to supply the refrigerant from the second heat exchanger 1040 to the flash tank 1010. there is.
  • the storage unit 1130 may be disposed between the flash tank 1010 and the second heat exchanger 1040 and may be configured to temporarily store liquid refrigerant.
  • the pump 1140 and the check valve 1150 may be disposed between the flash tank 1010 and the second heat exchanger 1040, and the pump 1140 allows the refrigerant from the second heat exchanger 1040 to flow into the flash tank ( Energy may be supplied to 1010, and the check valve 1150 may be configured to prevent the refrigerant from the second heat exchanger 1040 from flowing back.
  • Each component of the heat pump system 1000 can be added or removed as needed, and the arrangement and connection relationship can be changed in various ways as needed.
  • the refrigerant used in the heat pump system 1000 may be a refrigerant with insulating properties. Additionally, it may be a refrigerant with environmentally friendly characteristics.
  • the refrigerant used in this embodiment may have a saturation evaporation temperature of -10°C or higher and 60°C or lower at normal pressure. Specifically, it may have a saturation evaporation temperature of -10°C or higher, 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, and 50°C or higher. Additionally, the refrigerant used in this embodiment may have a saturation evaporation temperature of 60°C or less, 70°C or less, 80°C or less, 90°C or less, and 100°C or less at normal pressure.
  • atmospheric pressure refers to normal atmospheric pressure and may mean 1 atm.
  • the refrigerant used in this embodiment may be a low-pressure refrigerant.
  • Low-pressure refrigerant may generally refer to a refrigerant whose evaporation pressure is below atmospheric pressure.
  • the refrigerant used in this example may be non-flammable. In other words, it may not fall within the flammable range, and may be a refrigerant classified as A1 group, indicating non-flammability, by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • the refrigerant used in this embodiment may have electrical conductivity such that no current flows even when supplied to a battery or a device including a battery. That is, it may have an electrical conductivity of 0.1 S/cm or less, 0.01 S/cm or less, 0.001 S/cm or less, 0.0001 S/cm or less, and may have an electrical conductivity of 0 S/cm.
  • the refrigerant used in this embodiment may be an environmentally friendly refrigerant.
  • a material with a relatively low GWP Global Warming Potential
  • the refrigerant used in this embodiment has a GWP (Global Warming Potential) of 0 or more, 0.5 or less, 1 or less, 1.5 or less, and 2 or less. , may have a GWP of 2.5 or less and 3 or less.
  • the refrigerant may be a material with a relatively low ODP (Ozone Depletion Potential).
  • the refrigerant used in this embodiment has 0 or more, 0.1 or less, 0.01 or less, 0.001 or less, 0.0001 or less, It can have an ODP of less than 0.00001.
  • the refrigerant used in this example is a methane-based halogenated carbon compound with refrigerant numbers 10 to 50 and an ethane-based halogenated carbon compound with refrigerant numbers 110 to 170 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • the refrigerants used in this example are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R- Hydrofluoroolefin-based refrigerants (HFOs), any of 452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D, R-134a, R -507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 hydrofluorocarbon refrigerants (HFCs), R-22, R-409A, R402A, Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-402B, R-123, R-124, R401A, and R-401B, and
  • the refrigerant used in this example may further include nanoparticles.
  • nanoparticles may be composed of one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT (Carbon Nano Tube), GO (Graphene Oxide), and Fullerene, and the nanoparticles can be used as a refrigerant.
  • the refrigerant may include 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, and exceeding 0.
  • Nanoparticles can be added to the refrigerant to further improve thermal conductivity.
  • the refrigerant used in this embodiment may contain a surfactant.
  • a non-flammable surfactant may be used so that the surfactant can be used for fire extinguishing.
  • it may include one or more of CTAB and Span-80.
  • Surfactants are included in the refrigerant, and when the refrigerant is directly supplied to a fire-generating object, including a battery, it can play a role in helping to make good contact with the surface of the fire-generating object, and the refrigerant is used to generate heat. While attached to the surface of a device, it can not only extinguish a fire by lowering the temperature through an endothermic reaction, but also prevent thermal runaway, which is an additional exothermic reaction.
  • the refrigerant used in this embodiment may additionally include insulating oil to increase the insulating properties of the refrigerant.
  • the insulating oil may contain 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, and 10% by weight by weight. and may include weight percent greater than 0, 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less.
  • the refrigerant according to this embodiment can be supplied at a temperature of 0°C or lower, specifically -5°C or lower, and not only can this refrigerant directly contact an object on fire to lower its temperature and extinguish the fire, but the refrigerant can also extinguish the fire.
  • the effect of extinguishing a fire can be expected by cooling the moisture contained in the air and blocking the air.
  • the temperature at which the refrigerant is supplied is not limited to this and may vary depending on the temperature of the place where it is used.
  • the refrigerant that absorbs the heat from the object where the fire occurred is vaporized and leaves no residue after the fire is extinguished, which can be expected to prevent corrosion of devices such as batteries and increase the possibility of recycling.
  • Figure 8 is an exemplary diagram of a flash chamber, which is a component of the heat pump system according to this embodiment.
  • a device 1160 may be placed inside the flash tank 1010.
  • the heat-generating device 1160 may be in direct contact with the gas and liquid stored in the flash tank 1010.
  • the device 1160 may include a battery cell, a battery module, a battery pack, a battery rack, a hybrid vehicle, an electric vehicle, an ESS (Energy Storage System), and a distribution board. That is, the refrigerant used in this embodiment can be used in a variety of ways, such as electronic devices or mechanical devices that can generate heat.
  • ESS Electronicgy Storage System
  • the heat pump system 1000 can be used in a variety of ways, such as electronic devices or mechanical devices that can generate heat, as well as batteries.
  • the heat pump system 1000 may operate in one of a cooling mode, a heating mode, and an intermediate mode.
  • the heating runaway temperature of a lithium ion secondary battery typically increases from 188°C to 527°C, causing heat generation and ignition.
  • the overcharge thermal runaway temperature of a lithium-ion secondary battery increases from 110°C to 317°C, causing heat generation and ignition. That is, the heat pump system 1000 according to this embodiment can be expected to not only lower the temperature of the device in order to extinguish and suppress such ignition and thermal runaway, but also prevent additional fire damage by blocking oxygen. there is.
  • the normal operating temperature of the battery may be 20°C to 60°C, 30°C to 50°C, or about 40°C.
  • the heat pump system 1000 not only extinguishes fire in the event of a fire, but also maintains the appropriate temperature of the device 1160 through refrigerant. That is, when the device 1160 goes down to a temperature that is too low, it can supply heat, and if it goes up to a temperature that is too high, it can absorb heat.
  • Figure 9 is a configuration diagram of the heat pump system according to this embodiment when operating in cooling mode.
  • the gaseous refrigerant in the flash tank 1010 flows through the third valve 1110, the compressor 1020, and the third valve 1110.
  • the second four-way valve (1080), the second heat exchanger (1040) operating as a condenser, the first four-way valve (1070), and the first expansion valve (1050) are sequentially circulated to use a low-temperature and low-pressure refrigerant in the flash tank (1010). It can be supplied to the liquid refrigerant in the flash tank 1010, the second valve 1100, the first four-way valve 1070, the first heat exchanger 1030 operating as an evaporator, and the second four-way valve 1080.
  • the compressor 1020, the second heat exchanger 1040 operating as a condenser, the first four-way valve 1070, and the first expansion valve 1050 are sequentially circulated to produce a flash tank 1010 as a low-temperature and low-pressure refrigerant. can be supplied to
  • the second expansion valve 1060, the first valve 1090, and the fourth valve 1120 may be in an off state.
  • the device 1160 included in the flash tank 1010 can exchange heat with the refrigerant to achieve cooling.
  • Figure 10 is a configuration diagram of the heat pump system according to this embodiment when operating in heating mode.
  • the liquid refrigerant in the flash tank 1010 flows through the second expansion valve 1060 and the first four-way valve ( 1070), a second heat exchanger (1040) operating as an evaporator, a second four-way valve (1080), a compressor (1020), a first heat exchanger (1030) operating as a condenser, a first four-way valve (1070), a first
  • a second heat exchanger (1040) operating as an evaporator
  • a second four-way valve (1080 a compressor
  • a first heat exchanger (1030) operating as a condenser
  • a first four-way valve (1070) a first
  • the first expansion valve 1050, the second valve 1100, the third valve 1110, and The fourth valve 1120 may be in an off state.
  • the liquid refrigerant that has passed through the compressor 1020 and the first heat exchanger 1030 operating as a condenser may be in a relatively warm (high temperature) state, and as this refrigerant is supplied to the flash tank 1010, the flash tank 1010 )
  • the device 1160 included can be heated by heat exchange with the refrigerant. Batteries and devices including batteries have an appropriate temperature for normal operation, and if the temperature of the device is lowered to a too low temperature, normal operation may not occur, so it can be said that there is a need to maintain it at an appropriate temperature.
  • Figure 11 is a configuration diagram of the heat pump system according to this embodiment when operating in an intermediate mode.
  • the gaseous refrigerant in the flash tank 1010 flows through the third valve 1110 and the second four-way valve 1080.
  • the second heat exchanger 1040 may be sequentially circulated and supplied to the flash tank 1010.
  • the gaseous refrigerant may be phase changed to a liquid state through the second heat exchanger 1040.
  • the heat pump system 1000 may include a storage unit 1130, a pump 1140, and a check valve 1150.
  • the storage unit 1130 may be configured to temporarily store the liquid refrigerant that has passed through the fourth valve 1120, and the pump 1140 provides power so that the refrigerant can reach the flash tank 1010.
  • the check valve 1150 may be configured to prevent backflow of refrigerant.
  • the intermediate mode of the heat pump system 1000 may be a mode that operates when cooling and heating of the device 1160 are not required.
  • Figure 12 is a configuration diagram of the battery fire extinguishing system according to this embodiment in a normal state.
  • the battery fire extinguishing system 200 may include a cooling device 210, a fire extinguishing device 220, and a battery module 230. Additionally, the battery fire extinguishing system 200 may allow refrigerant to circulate as a fluid and may include a flow control valve 240 that controls the flow rate of the refrigerant moving from the cooling device 210 to the fire extinguishing device 220.
  • the cooling device 210 may include a compressor 211, a condenser 212, an expansion valve 213, and an evaporator 214.
  • the battery module 230 may be configured to include battery cells.
  • the normal state of the battery fire extinguishing system 200 may mean a state in which no fire occurs in the battery module 230.
  • the refrigerant may circulate through the cooling device 210, which is one component of this embodiment, and part of the refrigerant coming from the expansion valve 213 may be supplied to the fire extinguishing device 220, and the other part may be supplied to the evaporator 214. It can be.
  • the fire extinguishing device 220 can receive refrigerant from the cooling device 210 through the refrigerant inflow passage, and recover the refrigerant to the cooling device 210 through the refrigerant recovery passage and supply it again.
  • the fire extinguishing device 220 can supply refrigerant to directly contact the battery module 230, and thus the refrigerant can exchange heat with the battery module 230.
  • the battery fire extinguishing system 200 may include a battery management system (BMS) (not shown) that senses a fire in the battery module 230.
  • BMS battery management system
  • the BMS may be a component of the battery fire extinguishing system 200 or a component of the fire extinguishing device 220.
  • the refrigerant used in the battery fire extinguishing system 200 may be a refrigerant with insulating properties. Additionally, it may be a refrigerant with environmentally friendly characteristics.
  • the refrigerant used in this embodiment may have a saturation evaporation temperature of -10°C or higher and 60°C or lower at normal pressure. Specifically, it may have a saturation evaporation temperature of -10°C or higher, 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, and 50°C or higher. Additionally, the refrigerant used in this embodiment may have a saturation evaporation temperature of 60°C or less, 70°C or less, 80°C or less, 90°C or less, and 100°C or less at normal pressure.
  • atmospheric pressure refers to normal atmospheric pressure and may mean 1 atm.
  • the refrigerant used in this embodiment may be a low-pressure refrigerant.
  • Low-pressure refrigerant may generally refer to a refrigerant whose evaporation pressure is below atmospheric pressure.
  • the refrigerant used in this example may be non-flammable. In other words, it may not fall within the flammable range, and may be a refrigerant classified as A1 group, indicating non-flammability, by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • the refrigerant used in this embodiment may have electrical conductivity such that no current flows even when supplied to a battery or a device including a battery. That is, it may have an electrical conductivity of 0.1 S/cm or less, 0.01 S/cm or less, 0.001 S/cm or less, 0.0001 S/cm or less, and may have an electrical conductivity of 0 S/cm.
  • the refrigerant used in this embodiment may be an environmentally friendly refrigerant.
  • a material with a relatively low GWP Global Warming Potential
  • the refrigerant used in this embodiment has a GWP (Global Warming Potential) of 0 or more, 0.5 or less, 1 or less, 1.5 or less, and 2 or less. , may have a GWP of 2.5 or less and 3 or less.
  • the refrigerant may be a material with a relatively low ODP (Ozone Depletion Potential).
  • the refrigerant used in this embodiment has 0 or more, 0.1 or less, 0.01 or less, 0.001 or less, 0.0001 or less, It can have an ODP of less than 0.00001.
  • the refrigerant used in this example is a methane-based halogenated carbon compound with refrigerant numbers 10 to 50 and an ethane-based halogenated carbon compound with refrigerant numbers 110 to 170 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
  • the refrigerants used in this example are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R- Hydrofluoroolefin-based refrigerants (HFOs), any of 452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D, R-134a, R -507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 hydrofluorocarbon refrigerants (HFCs), R-22, R-409A, R402A, Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-402B, R-123, R-124, R401A, and R-401B, and
  • the refrigerant used in this example may further include nanoparticles.
  • nanoparticles may be composed of one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT (Carbon Nano Tube), GO (Graphene Oxide), and Fullerene, and the nanoparticles can be used as a refrigerant.
  • the refrigerant may include 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, and exceeding 0.
  • Nanoparticles can be added to the refrigerant to further improve thermal conductivity.
  • the refrigerant used in this embodiment may contain a surfactant.
  • a non-flammable surfactant may be used so that the surfactant can be used for fire extinguishing.
  • it may include one or more of CTAB and Span-80.
  • Surfactants are included in the refrigerant, and when the refrigerant is directly supplied to a fire-generating object, including a battery, it can play a role in helping to make good contact with the surface of the fire-generating object, and the refrigerant is used to generate heat. While attached to the surface of a device, it can not only extinguish a fire by lowering the temperature through an endothermic reaction, but also prevent thermal runaway, which is an additional exothermic reaction.
  • the refrigerant used in this embodiment may additionally include insulating oil to increase the insulating properties of the refrigerant.
  • the insulating oil may contain 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, and 10% by weight by weight. and may include weight percent greater than 0, 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less.
  • the heating runaway temperature of a lithium ion secondary battery typically increases from 188°C to 527°C, causing heat generation and ignition.
  • the overcharge thermal runaway temperature of a lithium-ion secondary battery increases from 110°C to 317°C, causing heat generation and ignition. That is, the battery fire extinguishing system 200 according to this embodiment not only lowers the temperature of the battery module 230 in order to extinguish and suppress such ignition and thermal runaway, but also blocks oxygen to prevent additional fire damage. Effects can be expected.
  • the normal operating temperature of the battery may be 20°C to 60°C, 30°C to 50°C, or about 40°C.
  • the battery fire extinguishing system 200 not only extinguishes fire in the event of a fire, but also maintains the appropriate temperature of the battery module 230 through refrigerant. That is, when the battery module 230 falls to a temperature that is too low, it may supply heat, and if the temperature rises to a too high temperature, it may absorb heat.
  • Figure 13 is a configuration diagram of the battery fire extinguishing system according to this embodiment in an abnormal state.
  • the battery fire extinguishing system 200 may have a different operating method. That is, if a fire occurs in the battery module 230, all of the refrigerant circulating in the cooling device 210 and exiting the expansion valve 213 may be supplied to the fire extinguishing device 220. Additionally, the refrigerant can be supplied to directly contact the battery module 230 to extinguish the fire. Additionally, the refrigerant may be recovered through the refrigerant recovery passage.
  • the refrigerant according to this embodiment can be supplied at a temperature of 0°C or lower, specifically -5°C or lower, and not only can this refrigerant directly contact an object on fire to lower its temperature and extinguish the fire, but the refrigerant can also extinguish the fire.
  • the effect of extinguishing a fire can be expected by cooling the moisture contained in the air and blocking the air.
  • the temperature at which the refrigerant is supplied is not limited to this and may vary depending on the temperature of the place where it is used.
  • the refrigerant that absorbs the heat from the object where the fire occurred is vaporized and leaves no residue after the fire is extinguished, which can be expected to prevent corrosion of devices such as batteries and increase the possibility of recycling.
  • Figure 14 is an example diagram in which the battery fire extinguishing system according to this embodiment is applied.
  • the battery fire extinguishing system 200 can be applied to the battery pack 300, and specifically, the cooling device 210 and the fire extinguishing device 220 are applied to the battery pack 300. It can be applied.
  • the cooling device 210 and the fire extinguishing device 220 may be formed and applied as a single configuration.
  • the battery fire extinguishing system 200 As the battery fire extinguishing system 200 according to this embodiment is applied to the battery pack 300, heat exchange can occur with the battery pack 300 through the refrigerant, and when a fire occurs in the battery pack 300, the refrigerant It can also be supplied for direct contact to extinguish a fire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention relates to an electrochemical system fire extinguishing device and a heat pump system using a composition having a low global warming potential (GWP) and, more specifically, to a fire extinguishing device and a heat pump system, comprising cooling and extinguishing functions of an electrical or chemical heat-generating device using an insulating refrigerant having low environmental impact, wherein the fire extinguishing device cools the electrical or chemical heat-generating device, which is in a normal state, by using a refrigerant of a cooling device, when a fire occurs in the electrical or chemical heat-generating device, senses the occurrence of the fire, extinguishes the fire by means of direct contact jetting onto the electrical or chemical heat-generating device, and uses an insulating refrigerant to be vaporized which has a GWP of 1 or less.

Description

저온난화 지수를 갖는 조성물을 이용한 전기화학 시스템 소화 장치 및 히트펌프 시스템Electrochemical system fire extinguishing device and heat pump system using a composition having a low temperature warming index
본 실시예는 저온난화 지수를 갖는 조성물 및 이를 이용한 배터리 소화 장치 및 시스템에 관한 것이다.This embodiment relates to a composition having a low temperature warming index and a battery fire extinguishing device and system using the same.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력 저장장치 또한 지대한 관심이 이어지고 있다.Recently, the price of energy sources has risen due to the depletion of fossil fuels, and interest in environmental pollution has increased, and the demand for eco-friendly alternative energy sources has become an essential factor for future life. Accordingly, research continues on various power production technologies such as nuclear power, solar power, wind power, and tidal power, and there is also great interest in power storage devices to use the energy produced in this way more efficiently.
특히, 전기자동차, 재생에너지 저장장치인 ESS(Energy Storage System)에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.In particular, as technology development and demand for electric vehicles and ESS (Energy Storage System), a renewable energy storage device, increase, the demand for batteries as an energy source is rapidly increasing, and accordingly, there is a need for batteries that can meet various needs. A lot of research is being done.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.Typically, in terms of battery shape, there is a high demand for square-shaped secondary batteries and pouch-type secondary batteries that can be applied to products such as mobile phones due to their thin thickness, and in terms of materials, they have advantages such as high energy density, discharge voltage, and output stability. There is high demand for lithium secondary batteries such as lithium-ion batteries and lithium-ion polymer batteries.
또한, 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있으며, 최근에는, 상기 젤리-롤형 전극조립체 및 스택형 전극조립체가 갖는 문제점을 해결하기 위해, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 개발되었다.In addition, secondary batteries are classified according to the structure of the electrode assembly, which consists of a positive electrode, a negative electrode, and a separator sandwiched between the positive electrode and the negative electrode. Representative examples include long sheet-shaped positive electrodes and negative electrodes. A jelly-roll type (wound type) electrode assembly with a structure wound with a separator interposed, and a stacked type (laminated type) electrode assembly in which a plurality of anodes and cathodes cut into units of a predetermined size are stacked sequentially with a separator interposed. etc., and recently, in order to solve the problems of the jelly-roll type electrode assembly and the stack-type electrode assembly, an electrode assembly of an advanced structure, which is a mixture of the jelly-roll type and the stack type, has been developed into a predetermined unit. A stacked/folded electrode assembly was developed in which unit cells, in which an anode and a cathode are stacked with a separator interposed between them, are placed on a separator film and wound sequentially.
또한, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형전지로 분류된다.In addition, depending on the shape of the battery case, secondary batteries are divided into cylindrical batteries and square batteries in which the electrode assembly is built in a cylindrical or square metal can, and pouch-type batteries in which the electrode assembly is built in a pouch-shaped case of aluminum laminate sheet. are classified.
이러한 이차전지는 사용 상태 및 조건에 따라 다양한 환경에 노출될 수 있으며, 사용자의 안전을 위해 특히 폭발의 위험성을 예방하는 것이 요구된다.These secondary batteries may be exposed to various environments depending on the usage status and conditions, and it is especially necessary to prevent the risk of explosion for the safety of users.
더욱 구체적으로, 내부 쇼트, 허용된 전류, 전압을 초과한 충전상태, 고온에의 노출, 낙하등에 의한 충격 등과 같은 이차전지의 비정상적인 작동 상태로 인해 유발될 수 있는 내부의 고온 및 고압은 상기 이차전지의 폭발을 초래할 수 있다.More specifically, the internal high temperature and high pressure that can be caused by abnormal operating conditions of the secondary battery, such as internal short circuit, charging state exceeding the allowed current and voltage, exposure to high temperature, shock due to dropping, etc., are caused by the secondary battery. may cause an explosion.
위와 같은 점들 고려하였을 때에 배터리에서는 적정한 온도를 유지하는 점 및 배터리에서의 화재를 신속하게 진압하여 추가 피해를 발생하지 않도록 하는 것이 중요하다고 할 것이다.Considering the above points, it is important to maintain an appropriate temperature in the battery and quickly extinguish a fire in the battery to prevent additional damage.
따라서, 각각의 이차전지는 상기와 같은 형태적 차이에도 불구하고, 전지 폭발의 직접적인 원인인 고압을 해소할 수 있는 고압 해소 수단을 포함하고 있다.Therefore, despite the above-described morphological differences, each secondary battery includes a high-pressure relief means that can relieve the high pressure, which is the direct cause of battery explosion.
한국 등록특허공보 제10-2416007호에서는 복수 개의 배터리셀이 각각 수용되는 배터리공간을 갖는 배터리케이스, 상기 배터리케이 스에 설치되어 상기 배터리셀에 화재를 감지하여 소화액을 분사하는 소화분사부, 상기 소화분사부로 소화액을 공급하는 소화액공급부, 및 상기 배터리셀의 이상여부를 감지하여 상기 소화분사부를 제어하는 분사컨트롤러를 포함하는 친환경 소화액을 이용한 배터리 소화시스템에 있어서, 상기 분사컨트롤러는 상기 배터리셀의 온도를 감지하는 온도감지센서, 상기 배터리셀에서 발생하는 연기를 감지하는 연기감지센서, 및 상기 배터리셀의 압력을 감지하는 압력감지센서 중 둘 이상을 포함하고, 둘 이상에서 감지된 정보를 기초로 화재의 발생을 판단하여 상기 소화분사부를 통해 상기 배터리셀에 소화액을 분사하며, 상기 소화분사부는 상기 분사컨트롤러에서 화재를 감지시에 상기 배터리셀이 위치한 방향으로 이동하고 상기 배터리셀에 관통하여 복수 개의 단락점을 형성함으로써 상기 배터리셀을 신속하게 방전시킴과, 동시에 상기 배터리셀의 관통한 내부로 소화액을 분사하는 복수 개의 단락 분사노즐을 갖는 가동부재를 포함한 친환경 소화액을 이용한 배터리 소화시스템이 개시되어 있다. 그러나, 상기 소화액은 염소이온을 제거한 물을 포함한 용매에 기포를 발생시키는 기포제, 상기 기포를 안정시키는 기포안정제 상기 기포가 쉽게 꺼지는 것을 방지하는 기포보조제, 및 상기 소화혼합물의 결빙온도를 낮추는 유동점 강하제를 포함한 소화액을 활용한 것으로 본원 발명의 정상상태에서는 배터리 팩의 냉각을 위한 냉매의 역할을 수행하고 배터리 셀의 발화의 비정상상태에서는 상기 배터리 셀에 직접 접촉 분사되어 소화를 수행하는 소화액을 역할을 수행하는 환경적 영향이 적은 절연 냉매를 이용한 배터리 팩 소화 시스템은 개시된 바 없다.Korean Patent Publication No. 10-2416007 discloses a battery case having a battery space in which a plurality of battery cells are each accommodated, a fire extinguishing spray unit installed in the battery case to detect fire and spray fire extinguishing liquid on the battery cells, and the fire extinguishing device. In a battery fire extinguishing system using eco-friendly fire extinguishing liquid, which includes a fire extinguishing liquid supply unit that supplies fire extinguishing liquid to the spray unit, and an injection controller that detects abnormalities in the battery cells and controls the fire extinguishing spray unit, the injection controller controls the temperature of the battery cell. It includes two or more of a temperature sensor that detects smoke, a smoke sensor that detects smoke generated from the battery cell, and a pressure sensor that detects the pressure of the battery cell, and detects a fire based on information detected by the two or more. The occurrence is determined and fire extinguishing liquid is sprayed on the battery cell through the fire extinguishing spray unit. When the fire is detected by the injection controller, the fire extinguishing spray unit moves in the direction where the battery cell is located and penetrates the battery cell to create a plurality of short circuit points. A battery fire extinguishing system using an eco-friendly fire extinguishing liquid including a movable member having a plurality of short-circuit spray nozzles that quickly discharges the battery cell by forming a fire extinguishing liquid and simultaneously spraying the fire extinguishing liquid into the inside of the battery cell is disclosed. However, the fire extinguishing liquid contains a foaming agent that generates bubbles in a solvent containing water from which chlorine ions have been removed, a bubble stabilizer that stabilizes the bubbles, a foam adjuvant that prevents the bubbles from being easily extinguished, and a pour point lowering agent that lowers the freezing temperature of the fire extinguishing mixture. In the normal state of the present invention, the fire extinguishing fluid containing the fire extinguishing agent is used, and in the abnormal state of ignition of the battery cell, it acts as a fire extinguishing fluid that is sprayed directly into contact with the battery cell to perform fire extinguishing. A battery pack fire extinguishing system using an insulating refrigerant with low environmental impact has not been disclosed.
한국 등록특허공보 제10-2304158호에서는 다수의 배터리셀을 포함하고 외부의 전력부하에 접속되는 배터리모듈과; 상기 배터리모듈에 장착되며 외부의 에어컨으로부터 공급된 냉매를 그 내부로 통과시키며 냉매로 하여금 배터리모듈을 냉각하게 하는 냉매유도부를 구비하여 배터리 셀을 최적의 온도로 유지할 수 있는 기술이 개시되어 있다. 그러나 상기 냉매는 배터리 셀의 냉각을 위한 것으로 배터리 셀의 발화와 같은 비정상상태에서 소화를 위해 상기 냉매가 상기 배터리 셀에 직접 접촉 분사되어 소화를 수행하는 소화액을 역할을 수행하는 환경적 영향이 적은 절연 냉매를 이용한 배터리 팩 소화 시스템은 개시된 바 없다.Korean Patent Publication No. 10-2304158 includes a battery module containing a plurality of battery cells and connected to an external power load; A technology is disclosed that is mounted on the battery module and includes a refrigerant induction unit that passes refrigerant supplied from an external air conditioner and causes the refrigerant to cool the battery module, thereby maintaining the battery cell at an optimal temperature. However, the refrigerant is for cooling the battery cell, and in abnormal conditions such as ignition of the battery cell, the refrigerant is sprayed in direct contact with the battery cell to extinguish the fire, thereby acting as a fire extinguishing liquid that has little environmental impact. A battery pack fire extinguishing system using a refrigerant has not been disclosed.
한국 등록특허공보 제10-1066021호에서는 안전성을 담보하는 물질('안전성 담보 물질')을 내장하고 있는 마이크로 캡슐이 전지의 작동에 직접적으로 영향을 미치지 않는 부위에 도포되어 있고, 상기 도포 부위는 전지의 정적 이상 또는 물리적 충격 등 이상 발생시 열축적 현상 및 내압/외압에 의한 단락이 발생하기 쉬운 위치한 이차전지를 개시하고 있다. 그러나 기술은 배터리 셀에 추가적인 소화를 위한 안정성을 담보하는 물질인 마이크로 캡슙을 포함하여 상기 배터리 셀을 포함하는 배터리 팩의 에너지 밀도를 낮추고 발화와 같은 비정상 상태에 소화를 위한 제어가 어렵다. 본원 발명의 정상상태에서는 배터리 팩의 냉각을 위한 냉매의 역할을 수행하고 배터리 셀의 발화의 비정상상태에서는 상기 배터리 셀에 직접 접촉 분사되어 소화를 수행하는 소화액을 역할을 수행하는 환경적 영향이 적은 절연 냉매를 이용한 배터리 팩 소화 시스템은 개시된 바 없다.In Korean Patent Publication No. 10-1066021, microcapsules containing a safety-enhancing material ('safety-enhancing material') are applied to areas that do not directly affect the operation of the battery, and the application area is the battery area. Disclosed is a secondary battery that is prone to heat accumulation and short circuit due to internal/external pressure when abnormalities such as static abnormality or physical shock occur. However, the technology includes microcapsules, a material that ensures the stability of battery cells for additional fire extinguishing, which lowers the energy density of the battery pack containing the battery cells and makes it difficult to control fire extinguishing in abnormal conditions such as ignition. In the normal state of the present invention, it serves as a refrigerant for cooling the battery pack, and in the abnormal state of ignition of the battery cell, it is injected into direct contact with the battery cell and acts as a fire extinguishing liquid to perform fire extinguishing. A battery pack fire extinguishing system using a refrigerant has not been disclosed.
한국 공개특허공보 제10-2018-0047439호에서는 양극, 음극 및 상기 양극과 음극 사이에 개재되어 있는 분리막을 포함하고 있는 전극조립체; 상기 전극조립체가 전해액과 함께 수납되는 제 1 팩 케이스; 내면의 적어도 일부가 상기 제 1 팩 케이스의 외면으로부터 이격되도록, 제 1 팩 케이스를 수납하는 제 2 팩 케이스; 상기 제 1 팩 케이스의 외면과 제 2 팩 케이스의 내면 사이의 이격 공간에 충진되어 있는 소화제(fire extinguishing Agent); 및 상기 전극조립체와 전해액을 수납한 제 1 팩 케이스 및 소화제가 제 2 팩 케이스 내에 수납 및 충진된 상태에서, 상기 제 1 팩 케이스 및 제 2 팩 케이스의 개방된 일면을 동시에 밀봉하도록 결합되는 캡 어셈블리;를 포함하고 있고, 상기 제 1 팩 케이스의 외면과 제 2 팩 케이스의 내면 사이의 이격 공간에서 제 1 팩 케이스의 외면에는, 제 1 팩 케이스 내부의 압력이 임계 압력 이상일 때, 상기 이격 공간에 충진된 소화제가 제 1 팩 케이스의 내부로 유입되도록 개방되는 제 1 벤팅부가 형성되어 있는 것을 특징으로 하는 전지팩을 개시하고 있다. 그러나 본원 발명의 정상상태에서는 배터리 팩의 냉각을 위한 냉매의 역할을 수행하고 배터리 셀의 발화의 비정상상태에서는 상기 배터리 셀에 직접 접촉 분사되어 소화를 수행하는 소화액을 역할을 수행하는 환경적 영향이 적은 절연 냉매를 이용한 배터리 팩 소화 시스템은 개시된 바 없다.Korean Patent Publication No. 10-2018-0047439 discloses an electrode assembly including an anode, a cathode, and a separator interposed between the anode and the cathode; a first pack case in which the electrode assembly is stored together with an electrolyte; a second pack case storing the first pack case such that at least a portion of the inner surface is spaced apart from the outer surface of the first pack case; A fire extinguishing agent filled in the space between the outer surface of the first pack case and the inner surface of the second pack case; and a cap assembly coupled to simultaneously seal open surfaces of the first pack case and the second pack case, with the first pack case storing the electrode assembly and the electrolyte and the fire extinguishing agent stored and filled in the second pack case. Includes ;, on the outer surface of the first pack case in the space between the outer surface of the first pack case and the inner surface of the second pack case, when the pressure inside the first pack case is more than the critical pressure, in the space Disclosed is a battery pack characterized in that a first venting portion is formed that opens to allow the filled fire extinguishing agent to flow into the interior of the first pack case. However, in the normal state of the present invention, it acts as a refrigerant for cooling the battery pack, and in the abnormal state of ignition of the battery cell, it is directly injected into the battery cell and acts as a fire extinguishing liquid to perform fire extinguishing, which has a small environmental impact. A battery pack fire extinguishing system using an insulating refrigerant has not been disclosed.
따라서, 냉동장치의 냉매로 배터리 팩의 정상상태에서는 배터리 팩의 냉각을 수행하고, 배터리 팩에 포함된 배터리 셀에 화재가 발생시 이를 센싱하여 상기 배터리 셀에 직접 접촉 분사되어 화재를 소화하고 기화되는 GWP(Global Warming Potential)이 1이하인 환경적 영향이 적은 절연 냉매를 이용한 전기적 또는 화학적 열발생 디바이스의 냉각 및 소화 기능을 포함하는 장치 및 시스템의 개발이 필요한 실정이다.Therefore, the refrigerant of the refrigeration device cools the battery pack in its normal state, and when a fire occurs in a battery cell included in the battery pack, it is sensed and sprayed into direct contact with the battery cell to extinguish the fire and vaporize GWP. There is a need to develop devices and systems that include cooling and extinguishing functions for electrical or chemical heat generation devices using insulating refrigerants with a low environmental impact (Global Warming Potential) of 1 or less.
이러한 배경에서, 본 실시예의 목적은, 배터리에서 화재가 발생한 경우에 이를 센싱하여 배터리에 직접 분사되어 화재를 소화하고 기화되는 조성물 또는 냉매를 이용한 배터리 소화 장치를 제공하는 것을 목적으로 한다.Against this background, the purpose of this embodiment is to provide a battery fire extinguishing device using a composition or refrigerant that senses when a fire occurs in a battery and is sprayed directly into the battery to extinguish the fire and evaporate.
또한, 배터리의 정상상태에서는 배터리의 냉각을 수행하고, 배터리에서 화재가 발생한 경우에는 배터리에 직접 공급되어 화재를 소화하는, 조성물 또는 냉매를 이용한 배터리 소화 장치를 제공하는 것을 목적으로 한다.In addition, the object is to provide a battery fire extinguishing device using a composition or refrigerant that cools the battery in the normal state of the battery and extinguishes the fire by being supplied directly to the battery when a fire occurs in the battery.
또한, 냉각장치의 냉매로 전기적 또는 화학적 열발생 디바이스의 정상상태에서는 전기적 또는 화학적 열발생 디바이스의 냉각을 수행하고, 전기적 또는 화학적 열발생 디바이스에 화재가 발생시 이를 센싱하여 상기 디바이스에 직접 접촉 분사되어 화재를 소화하고 기화되는 GWP(Global Warming Potential)이 1이하인 절연 냉매를 이용한 환경적 영향이 적은 절연 조성물 또는 냉매를 이용한 전기적 또는 화학적 열발생 디바이스의 냉각 및 소화 기능을 포함하는 장치 및 시스템을 제공하는 것을 목적으로 한다.In addition, the refrigerant of the cooling device cools the electrical or chemical heat generating device in its normal state, and when a fire occurs in the electrical or chemical heat generating device, it is sensed and sprayed into direct contact with the device to prevent the fire. To provide devices and systems that include cooling and extinguishing functions of electrical or chemical heat generation devices using insulating compositions or refrigerants with low environmental impact using insulating refrigerants with a GWP (Global Warming Potential) of 1 or less that extinguish and vaporize. The purpose.
일 실시예에 따른, 저온난화 지수를 갖는 조성물을 이용한 전기화학 시스템 소화 장치 및 히트펌프 시스템에 있어서, 저온난화 지수를 갖는 조성물은 냉매를 포함할 수 있고, 구체적으로 저온난화 지수를 갖는 냉매를 포함할 수 있다.According to one embodiment, in an electrochemical system fire extinguishing device and a heat pump system using a composition having a low-temperature warming index, the composition having a low-temperature warming index may include a refrigerant, and specifically includes a refrigerant having a low-temperature warming index. can do.
전술한 목적을 달성하기 위하여, 일 실시예는, 냉매를 이용하여 화재를 진압하는 전기화학 시스템에 있어서, 상기 전기화학 시스템에 냉매가 직접 접촉하도록 상기 냉매를 공급하는 공급부; 상기 냉매를 저장하는 저장부;를 포함하는, 전기화학 시스템 소화 장치를 제공한다.In order to achieve the above-mentioned object, one embodiment provides an electrochemical system for extinguishing a fire using a refrigerant, comprising: a supply unit for supplying the refrigerant so that the refrigerant directly contacts the electrochemical system; It provides an electrochemical system fire extinguishing device including a storage unit for storing the refrigerant.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 공급부는 상기 전기화학 시스템의 발화 시에 상기 냉매를 상기 전기화학 시스템에 분사하는 분사장치를 포함할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the supply unit may include an injection device that sprays the refrigerant into the electrochemical system when the electrochemical system is ignited.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 분사장치는 상기 냉매가 분사되는 노즐을 포함할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the spray device may include a nozzle through which the refrigerant is sprayed.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 노즐의 분사구는 열감응튜브로 밀폐되어 있을 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the injection port of the nozzle may be sealed with a heat sensitive tube.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 저장부는 대기압보다 높은 압력을 유지할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the storage unit can maintain a pressure higher than atmospheric pressure.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 공급부는 상기 저장부로부터 상기 냉매를 공급받는 냉매튜브를 포함하고,상기 전기화학 시스템의 발화 시에 상기 전기화학 시스템으로 상기 냉매를 방출하여 소화할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the supply unit includes a refrigerant tube that receives the refrigerant from the storage unit, and when the electrochemical system ignites, the refrigerant is discharged to the electrochemical system to extinguish the fire. can do.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매튜브는 상기 전기화학 시스템과 접촉하도록 배치되고, 상기 전기화학 시스템과의 열교환을 통해 상기 전기화학 시스템의 열관리를 수행할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant tube is arranged to be in contact with the electrochemical system, and heat management of the electrochemical system can be performed through heat exchange with the electrochemical system.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매튜브는 상기 전기화학 시스템 발화 시에 파열 또는 용융될 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant tube may rupture or melt when the electrochemical system ignites.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매튜브는 열전도성 물질 및 열감응튜브로 구성되고, 상기 열감응튜브는 상기 전기화학 시스템 발화 시에 파열 또는 용융될 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant tube is composed of a thermally conductive material and a thermally sensitive tube, and the thermally responsive tube may rupture or melt when the electrochemical system ignites.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 전기화학 시스템은 배터리, 배터리셀, 배터리모듈, 배터리팩, 배터리랙, 하이브리드 차량, 전기차, ESS(Energy Storage System), 배전반 중 하나에 해당할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the electrochemical system may correspond to one of a battery, battery cell, battery module, battery pack, battery rack, hybrid vehicle, electric vehicle, ESS (Energy Storage System), and distribution board. You can.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매는 ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의한 냉매번호 10 내지 59번의 메탄계 할로겐화 탄소화합물, 냉매번호 110 내지 179번의 에탄계 할로겐화 탄소화합물, 냉매번호 200 내지 299번의 프로판계 할로겐화 탄소화합물, 300 내지 399번의 환상 부탄계 할로겐화 탄소화합물, 400 내지 499번의 비공비 혼합냉매, 500 내지 599번의 공비 혼합냉매, 600 내지 699번의 탄화수소, 산소화합물, 유황화합물, 질소화합물, 700 내지 799번의 무기화합물 및 1000 내지 1999번의 불포화 유기화합물 중 하나 이상을 포함할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant is a methane-based halogenated carbon compound, refrigerant numbers 10 to 59, and refrigerant numbers 110 to 59 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34. Ethane-based halogenated carbon compound No. 179, propane-based halogenated carbon compound No. 200 to 299, cyclic butane-based halogenated carbon compound No. 300 to 399, non-azeotropic mixed refrigerant No. 400 to 499, azeotropic mixed refrigerant No. 500 to 599, 600 to 600 It may include one or more of hydrocarbons, oxygen compounds, sulfur compounds, nitrogen compounds, numbered 699, inorganic compounds numbered 700 to 799, and unsaturated organic compounds numbered 1000 to 1999.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매는 R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A 중 어느 하나인 하이드로플로오로올레핀계 냉매(HFOs), R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 중 어느 하나인 하이드로플로오로카본계 냉매(HFCs), R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B 중 어느 하나인 하이드로클로로프로오르카본계 냉매(HCFCs) 및 도데카플로로-2-메틸펜탄-3-원인 플로오르화 케톤 중 하나 이상을 포함할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant is R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, Hydrofluoroolefin-based refrigerants (HFOs), any of R-515B, R-452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D , R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 hydrofluorocarbon-based refrigerant (HFCs), R-22, Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-409A, R402A, R-402B, R-123, R-124, R401A, and R-401B, and dodecafluoro-2-methylpentane-3-cause It may contain one or more of fluorinated ketones.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매는 상압에서 포화증발온도가 -10 이상 및 60℃ 이하이고, 전기 전도도가 0 S/cm이며, 지구온난화지수(GWP, Global Warming Potential)이 0 이상 및 2 이하이고, 가연성범위(Flammable range)에 해당되지 않으며, 오존파괴지수(ODP, Ozone Depletion Potential)은 0 이상 및 0.001 이하일 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, and a global warming potential (GWP). It is above 0 and below 2, does not fall within the flammable range, and the ozone depletion potential (ODP) may be above 0 and below 0.001.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매는 Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO 및 Fullerene 중 하나 이상을 포함하는 0 초과 5 이하 중량%의 나노입자를 포함할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant contains one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO, and Fullerene in an amount of more than 0 to 5% by weight. May contain nanoparticles.
본 실시예에 따른 전기화학 시스템 소화 장치에 있어서, 상기 냉매는 CTAB, Span-80 중 하나 이상을 포함하는 0 초과 5 이하 중량%의 계면활성제를 포함할 수 있다.In the electrochemical system fire extinguishing device according to this embodiment, the refrigerant may contain more than 0 and less than 5% by weight of a surfactant including one or more of CTAB and Span-80.
전술한 목적을 달성하기 위하여, 일 실시예는, 기체 및 액체 상태의 냉매를 저장하는 플래시탱크; 고온 및 고압 상태로 상기 냉매를 압축시키는 압축기; 상기 냉매와 외부의 열교환이 이루어지고, 열을 흡수하는 증발기 또는 열을 방출하는 응축기로서 동작 가능한 제1열교환기; 상기 제1열교환기와 반대 기능을 수행하며, 증발기 또는 응축기로서 동작 가능한 제2열교환기; 상기 플래시탱크와 연결되고, 저온 및 저압의 냉매를 상기 플래시탱크로 공급하는 제1팽창밸브; 상기 플래시탱크와 연결되고, 상기 플래시탱크로부터 액체 상태의 냉매를 공급받아 저온 및 저압의 상태로 만드는 제2팽창밸브; 상기 플래시탱크, 상기 제1열교환기, 상기 제2열교환기 및 상기 제1팽창밸브를 선택적으로 연결하는 제1사방밸브; 상기 압축기, 상기 제1열교환기 및 상기 제2열교환기를 선택적으로 연결하는 제2사방밸브; 상기 제1팽창밸브와 병렬적으로 연결된 제1밸브; 상기 제2팽창밸브와 병렬적으로 연결된 제2밸브; 상기 플래시탱크와 상기 압축기 사이에 배치된 제3밸브; 및 상기 플래시탱크와 상기 제2열교환기 사이에 배치된 제4밸브;를 포함하는, 히트펌프 시스템을 제공한다. In order to achieve the above-described object, one embodiment includes a flash tank that stores refrigerant in a gaseous and liquid state; A compressor that compresses the refrigerant at high temperature and pressure; a first heat exchanger that exchanges heat with the refrigerant and the outside and can operate as an evaporator that absorbs heat or a condenser that emits heat; a second heat exchanger that performs an opposite function to the first heat exchanger and can operate as an evaporator or condenser; a first expansion valve connected to the flash tank and supplying low-temperature and low-pressure refrigerant to the flash tank; a second expansion valve connected to the flash tank, receiving liquid refrigerant from the flash tank and putting it in a low temperature and low pressure state; a first four-way valve selectively connecting the flash tank, the first heat exchanger, the second heat exchanger, and the first expansion valve; a second four-way valve selectively connecting the compressor, the first heat exchanger, and the second heat exchanger; A first valve connected in parallel with the first expansion valve; a second valve connected in parallel with the second expansion valve; a third valve disposed between the flash tank and the compressor; and a fourth valve disposed between the flash tank and the second heat exchanger.
본 실시예에 따른 히트펌프 시스템에서, 상기 플래시탱크는 전기적 또는 화학적 반응에 의해 열이 발생하는 디바이스를 포함하고, 상기 디바이스는 상기 플래시탱크에 저장된 냉매와 열교환이 이루어지며, 상기 디바이스에 화재 발생 시 상기 플래시탱크에 저장된 냉매에 의해 소화될 수 있다.In the heat pump system according to this embodiment, the flash tank includes a device that generates heat by an electrical or chemical reaction, the device exchanges heat with the refrigerant stored in the flash tank, and when a fire occurs in the device, It can be extinguished by the refrigerant stored in the flash tank.
본 실시예에 따른 히트펌프 시스템에서, 상기 디바이스는 배터리셀, 전지모듈, 전지팩, 전지랙, 하이브리드 차량, 전기차, ESS(Energy Storage System), 배전반 중 어느 하나에 해당할 수 있다.In the heat pump system according to this embodiment, the device may correspond to any one of a battery cell, a battery module, a battery pack, a battery rack, a hybrid vehicle, an electric vehicle, an ESS (Energy Storage System), and a distribution board.
본 실시예에 따른 히트펌프 시스템에서, 상기 히트펌프 시스템은 냉각모드, 가열모드 및 중간모드 중 어느 하나로 작동할 수 있다.In the heat pump system according to this embodiment, the heat pump system may operate in any one of a cooling mode, a heating mode, and an intermediate mode.
본 실시예에 따른 히트펌프 시스템에서, 상기 히트펌프 시스템이 냉각모드로 작동하는 경우, In the heat pump system according to this embodiment, when the heat pump system operates in cooling mode,
상기 플래시탱크 내의 상기 기체 상태의 냉매는 상기 제3밸브, 상기 압축기, 상기 제2사방밸브, 응축기로 동작하는 상기 제2열교환기, 상기 제1사방밸브 및 상기 제1팽창밸브를 순차적으로 순환하여 저온 및 저압의 냉매로서 상기 플래시탱크에 공급되고, 상기 플래시탱크 내의 상기 액체 상태의 냉매는 상기 제2밸브, 상기 제1사방밸브, 증발기로 동작하는 상기 제1열교환기, 상기 제2사방밸브, 상기 압축기, 응축기로 동작하는 상기 제2열교환기, 상기 제1사방밸브 및 상기 제1팽창밸브를 순차적으로 순환하여 저온 및 저압의 냉매로서 상기 플래시탱크에 공급될 수 있다.The gaseous refrigerant in the flash tank sequentially circulates through the third valve, the compressor, the second four-way valve, the second heat exchanger operating as a condenser, the first four-way valve, and the first expansion valve. It is supplied to the flash tank as a low-temperature and low-pressure refrigerant, and the liquid refrigerant in the flash tank is supplied to the second valve, the first four-way valve, the first heat exchanger operating as an evaporator, the second four-way valve, The compressor, the second heat exchanger operating as a condenser, the first four-way valve, and the first expansion valve may be sequentially circulated to supply low-temperature and low-pressure refrigerant to the flash tank.
본 실시예에 따른 히트펌프 시스템에서, 상기 히트펌프 시스템이 가열모드로 작동하는 경우, 상기 플래시탱크 내의 상기 액체 상태의 냉매는 상기 제2팽창밸브, 상기 제1사방밸브, 증발기로 동작하는 상기 제2열교환기, 상기 제2사방밸브, 상기 압축기, 응축기로 동작하는 상기 제1열교환기, 상기 제1사방밸브, 상기 제1밸브를 순차적으로 순환하여 액체 냉매로서 상기 플래시탱크에 공급될 수 있다.In the heat pump system according to this embodiment, when the heat pump system operates in a heating mode, the liquid refrigerant in the flash tank is supplied to the second expansion valve, the first four-way valve, and the second expansion valve operating as an evaporator. Liquid refrigerant may be supplied to the flash tank by sequentially circulating through the second heat exchanger, the second four-way valve, the compressor, the first heat exchanger operating as a condenser, the first four-way valve, and the first valve.
본 실시예에 따른 히트펌프 시스템에서, 상기 히트펌프 시스템이 중간모드로 작동하는 경우, 상기 플래시탱크 내의 상기 기체 상태의 냉매는 상기 제3밸브, 상기 제2사방밸브 및 제2열교환기를 순차적으로 순환하여 상기 플래시탱크로 공급될 수 있다.In the heat pump system according to this embodiment, when the heat pump system operates in the intermediate mode, the gaseous refrigerant in the flash tank sequentially circulates through the third valve, the second four-way valve, and the second heat exchanger. Thus, it can be supplied to the flash tank.
본 실시예에 따른 히트펌프 시스템에서, 상기 제2열교환기를 통과한 냉매를 상기 플래시탱크로 공급하는 펌프 및 체크밸브를 포함할 수 있다.The heat pump system according to this embodiment may include a pump and a check valve that supply the refrigerant that has passed through the second heat exchanger to the flash tank.
본 실시예에 따른 히트펌프 시스템에서, 상기 냉매는 ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의한 냉매번호 10 내지 50번대의 메탄계 할로겐화 탄소화합물, 냉매번호 110 내지 170번대의 에탄계 할로겐화 탄소화합물, 냉매번호 200 내지 290번대의 프로판계 할로겐화 탄소화합물, C300번대의 환상 부탄계 할로겐화 탄소화합물, 400번대의 비공비 혼합냉매, 500번대의 공비 혼합냉매, 600번대의 탄화수소, 산소화합물, 유황화합물, 질소화합물, 700번대의 무기화합물 및 1000번대의 불포화 유기화합물 중 하나 이상을 포함할 수 있다.In the heat pump system according to this embodiment, the refrigerant is a methane-based halogenated carbon compound with refrigerant numbers 10 to 50, and refrigerant numbers 110 to 170 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34. ethane-based halogenated carbon compounds, refrigerant numbers 200 to 290 propane-based halogenated carbon compounds, C300 cyclic butane-based halogenated carbon compounds, 400 non-azeotropic mixed refrigerants, 500 azeotropic mixed refrigerants, 600 hydrocarbons, It may contain one or more of oxygen compounds, sulfur compounds, nitrogen compounds, inorganic compounds in the 700s, and unsaturated organic compounds in the 1000s.
본 실시예에 따른 히트펌프 시스템에서, 상기 냉매는 R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A 중 어느 하나인 하이드로플로오로올레핀계 냉매(HFOs), R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 중 어느 하나인 하이드로플로오로카본계 냉매(HFCs), R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B 중 어느 하나인 하이드로클로로프로오르카본계 냉매(HCFCs) 및 도데카플로로-2-메틸펜탄-3-원인 플로오르화 케톤 중 하나 이상을 포함할 수 있다.In the heat pump system according to this embodiment, the refrigerant is R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B , R-452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D, R- Hydrofluorocarbon-based refrigerants (HFCs), any of 134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23, R-22, R-409A , R402A, R-402B, R-123, R-124, R401A, R-401B, any one of hydrochloroproporocarbon-based refrigerants (HCFCs) and dodecafluoro-2-methylpentane-3-one fluorinated ketone It may include one or more of the following.
본 실시예에 따른 히트펌프 시스템에서, 상기 냉매는 상압에서 포화증발온도가 -10 이상 및 60℃ 이하이고, 전기 전도도가 0 S/cm이며, 지구온난화지수(GWP, Global Warming Potential)이 0 이상 및 2 이하이고, 가연성범위(Flammable range)에 해당되지 않으며, 오존파괴지수(ODP, Ozone Depletion Potential)은 0 이상 및 0.001 이하일 수 있다.In the heat pump system according to this embodiment, the refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, and a global warming potential (GWP) of 0 or more. and 2 or less, does not fall within the flammable range, and the ozone depletion potential (ODP) may be 0 or more and 0.001 or less.
본 실시예에 따른 히트펌프 시스템에서, 상기 냉매는, In the heat pump system according to this embodiment, the refrigerant is,
Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO 및 Fullerene 중 하나 이상을 포함하는 0 초과 5 이하 중량%의 나노입자; CTAB, Span-80 중 하나 이상을 포함하는 0 초과 5 이하 중량%의 계면활성제; 및 상기 냉매는 절연특성을 높이기 위한 절연유; 중 하나 이상을 포함할 수 있다.% by weight of nanoparticles containing one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO and Fullerene; 0 to 5% by weight of a surfactant including one or more of CTAB, Span-80; And the refrigerant is insulating oil to improve insulating properties; It may include one or more of the following.
다른 실시예는, 하나 이상의 배터리셀을 포함하는 배터리모듈; 상기 배터리모듈과 열교환을 수행하는 냉매를 포함하는 냉각장치; 및 상기 냉매를 상기 배터리모듈이 직접 접촉하도록 공급하는 소화장치;를 포함하는, 배터리 소화 시스템을 제공한다.Another embodiment includes a battery module including one or more battery cells; a cooling device containing a refrigerant that performs heat exchange with the battery module; and a fire extinguishing device that supplies the refrigerant to directly contact the battery module.
본 실시예에 따른 배터리 소화 시스템에서, 상기 냉각장치는 상기 냉매가 순환하는 압축기, 응축기, 팽창밸브 및 증발기를 포함하고, 상기 팽창밸브를 통과한 냉매 중 적어도 일부는 냉매유입유로로 공급되어 상기 배터리모듈과 열교환이 이루어지고, 상기 배터리모듈과 열교환을 마친 냉매는 냉매회수유로를 통해 회수되어 상기 냉각장치로 공급될 수 있다.In the battery fire extinguishing system according to this embodiment, the cooling device includes a compressor, a condenser, an expansion valve, and an evaporator through which the refrigerant circulates, and at least a portion of the refrigerant passing through the expansion valve is supplied to the refrigerant inflow passage to the battery. Heat exchange is performed with the module, and the refrigerant that has completed heat exchange with the battery module can be recovered through the refrigerant recovery passage and supplied to the cooling device.
본 실시예에 따른 배터리 소화 시스템에서, 상기 배터리모듈에서의 발화를 센싱하는 BMS(Battery Management System)을 추가로 포함하고, 상기 BMS에서 상기 배터리모듈에서의 발화를 센싱한 경우, 상기 소화장치는 상기 냉각장치의 팽창밸브를 통과한 냉매를 상기 배터리모듈에 전량 공급할 수 있다.The battery fire extinguishing system according to this embodiment further includes a BMS (Battery Management System) that senses ignition in the battery module, and when the BMS senses ignition in the battery module, the fire extinguishing device is The entire amount of refrigerant that has passed through the expansion valve of the cooling device can be supplied to the battery module.
이상에서 설명한 바와 같이 본 실시예에 의하면, 전기화학 시스템의 이상 작동 상태에서 유발되는 내부의 온도 및 압력의 상승에 따른 발화 내지 폭발의 위험을 냉매를 이용하여 효과적으로 방지하고, 안정성을 향상시키는 효과가 있다.As described above, according to this embodiment, the risk of ignition or explosion due to an increase in internal temperature and pressure caused by an abnormal operating state of the electrochemical system is effectively prevented using a refrigerant, and the effect of improving stability is achieved. there is.
또한, 배터리 등을 포함하는 전기화학 시스템 화재 시 단순히 안전벤트만을 이용해 내부의 온도 및 압력을 감소시키는 종래 기술에 비해, 보다 우수한 안전성을 발휘할 수 있는 효과가 있다.In addition, in the event of a fire in an electrochemical system including a battery, etc., it has the effect of demonstrating superior safety compared to conventional technology that reduces the internal temperature and pressure by simply using a safety vent.
또한, 배터리를 포함하는 전기화학 시스템의 소화를 위해 추가적인 복잡한 소화장치를 구비하는 것이 아니라 기존 냉각장치에 이용되는 냉매를 이용함으로써 경제적인 운영이 가능하고, 배터리 팩의 에너지 밀도를 높일 수 있는 효과가 있다.In addition, rather than installing an additional complicated fire extinguishing device to extinguish the electrochemical system including the battery, it is possible to operate economically by using the refrigerant used in the existing cooling device, which has the effect of increasing the energy density of the battery pack. there is.
또한, 본 실시예에 의하면, 냉매의 절연특성, 낮은 GWP 지수, 가연성 범위에 해당하지 않으며, 증기압이 낮아 소화 후 배터리에 기존 소화액과 같이 잔존하지 않아 배터리 재활용에도 유리한 효과가 있다.In addition, according to this embodiment, the insulating properties of the refrigerant, the low GWP index, and the flammability range are not included, and the vapor pressure is low, so it does not remain in the battery like existing fire extinguishing liquid after extinguishing, which is advantageous for battery recycling.
도 1은 본 실시예에 따른 배터리 소화 장치의 구성도이다.1 is a configuration diagram of a battery fire extinguishing device according to this embodiment.
도 2는 본 실시예에 따른 배터리 소화 장치의 일 예시도이다.Figure 2 is an exemplary diagram of a battery fire extinguishing device according to this embodiment.
도 3은 본 실시예에 따른 분사장치를 설명하기 위한 도면이다.Figure 3 is a diagram for explaining the injection device according to this embodiment.
도 4는 본 실시예에 따른 배터리 소화 장치의 다른 일 예시도이다.Figure 4 is another example diagram of a battery fire extinguishing device according to this embodiment.
도 5는 본 실시예에 따른 조성물튜브의 일 예시도이다.Figure 5 is an exemplary view of a composition tube according to this embodiment.
도 6은 본 실시예에 따른 조성물튜브의 다른 일 예시도이다.Figure 6 is another exemplary view of a composition tube according to this embodiment.
도 7은 본 실시예에 따른 히트펌프 시스템의 구성도이다.Figure 7 is a configuration diagram of a heat pump system according to this embodiment.
도 8은 본 실시예에 따른 히트펌프 시스템의 일 구성인 플래시챔버의 예시도이다.Figure 8 is an exemplary diagram of a flash chamber, which is a component of the heat pump system according to this embodiment.
도 9는 본 실시예에 따른 히트펌프 시스템이 냉각모드로 작동할 때의 구성도이다.Figure 9 is a configuration diagram of the heat pump system according to this embodiment when operating in cooling mode.
도 10은 본 실시예에 따른 히트펌프 시스템이 가열모드로 작동할 때의 구성도이다.Figure 10 is a configuration diagram of the heat pump system according to this embodiment when operating in heating mode.
도 11은 본 실시예에 따른 히트펌프 시스템이 중간모드로 작동할 때의 구성도이다.Figure 11 is a configuration diagram of the heat pump system according to this embodiment when operating in an intermediate mode.
도 12는 본 실시예에 따른 배터리 소화 시스템의 정상상태에서의 구성도이다.Figure 12 is a configuration diagram of the battery fire extinguishing system according to this embodiment in a normal state.
도 13은 본 실시예에 따른 배터리 소화 시스템의 화재상태에서의 구성도이다.Figure 13 is a configuration diagram of the battery fire extinguishing system according to this embodiment in a fire state.
도 14는 본 실시예에 따른 배터리 소화 시스템이 적용된 예시도이다.Figure 14 is an example diagram in which the battery fire extinguishing system according to this embodiment is applied.
이하, 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail through illustrative drawings. When adding reference numerals to components in each drawing, it should be noted that identical components are given the same reference numerals as much as possible even if they are shown in different drawings. Additionally, in describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.
또한, 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.Additionally, when describing components, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term. When a component is described as being “connected,” “coupled,” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It will be understood that elements may be “connected,” “combined,” or “connected.”
도 1은 본 실시예에 따른 전기화학 시스템 소화 장치의 구성도이다.1 is a configuration diagram of an electrochemical system fire extinguishing device according to this embodiment.
도 1을 참조하면, 본 실시예에 따른 전기화학 시스템 소화 장치(100)는 전기화학 시스템(110), 공급부(120) 및 저장부(130)를 포함할 수 있다.Referring to FIG. 1, the electrochemical system fire extinguishing device 100 according to this embodiment may include an electrochemical system 110, a supply unit 120, and a storage unit 130.
여기서, 전기화학 시스템(110)는 전기적 또는 화학적 반응에 의해 열을 발생하는 디바이스를 포함하는 것일 수 있고, 구체적으로, 전기화학 시스템(110)는 배터리, 배터리셀, 배터리모듈, 배터리팩, 배터리랙, 하이브리드 차량, 전기차, ESS(Energy Storage System), 배전반 중 어느 하나에 해당하거나, 이 중 하나 이상을 포함하는 구성일 수 있다.Here, the electrochemical system 110 may include a device that generates heat through an electrical or chemical reaction. Specifically, the electrochemical system 110 includes a battery, a battery cell, a battery module, a battery pack, and a battery rack. , it may correspond to any one of a hybrid vehicle, an electric vehicle, an ESS (Energy Storage System), and a distribution board, or may be configured to include one or more of these.
배터리에서 발생한 화재는 일반적으로 가연성 물질이 연소되어 발생하는 화재와는 달리 온도 변화가 그 온도 변화를 더욱 가속시키는 방향으로의 발열 반응인 열폭주 상태일 수 있다. 따라서, 배터리에서 화재가 발생한 경우에는 연속적인 추가 폭발이 발생할 수도 있으며, 화재를 진압한다고 하더라도 재발화의 위험이 존재할 수 있다. 따라서, 통상적인 방식으로는 배터리에서 발생한 화재를 진압하기 어려울 수 있다.A fire that occurs in a battery may be in a state of thermal runaway, which is an exothermic reaction in which a temperature change further accelerates the temperature change, unlike a fire that is generally caused by combustion of combustible materials. Therefore, if a fire occurs in the battery, continuous additional explosions may occur, and even if the fire is extinguished, there may be a risk of re-ignition. Therefore, it may be difficult to extinguish a fire occurring in a battery using conventional methods.
물을 이용한 화재 진압 방식의 경우, 물이 배터리 장치에 남게되어 부식의 문제가 발생할 수 있으므로, 배터리를 다시 재활용할 수 없다는 문제가 발생할 수 있다. 이에 따라, 배터리에서 화재가 발생한 경우, 배터리 화재 진화에 적합한 냉매를 분사하여 화재를 진압할 수 있다.In the case of fire extinguishing methods using water, water may remain in the battery device and cause corrosion, which may lead to the problem that the battery cannot be recycled. Accordingly, if a fire occurs in the battery, the fire can be extinguished by spraying a refrigerant suitable for extinguishing the battery fire.
공급부(120)는 전기화학 시스템(110)에 냉매가 직접 접촉하도록 냉매를 공급하는 구성일 수 있다.The supply unit 120 may be configured to supply refrigerant so that the refrigerant comes into direct contact with the electrochemical system 110.
여기서, 냉매는 절연 특성을 가질 수 있고, 구체적으로는, 본 실시예에 따른 전기화학 시스템 소화 장치에 이용되는 냉매는 배터리 또는 배터리를 포함하는 장치에 공급되더라도 전류가 흐르지 않을 정도의 전기전도도를 가질 수 있다. 즉, 0.1 S/cm 이하, 0.01 S/cm 이하, 0.001 S/cm 이하, 0.0001 S/cm 이하의 전기전도도를 가질 수 있으며, 0 S/cm의 전기전도도를 가질 수 있다.Here, the refrigerant may have insulating properties, and specifically, the refrigerant used in the electrochemical system fire extinguishing device according to this embodiment has electrical conductivity such that no current flows even if supplied to a battery or a device including a battery. You can. That is, it may have an electrical conductivity of 0.1 S/cm or less, 0.01 S/cm or less, 0.001 S/cm or less, 0.0001 S/cm or less, and may have an electrical conductivity of 0 S/cm.
또한, 본 실시예에 따른 냉매는 냉매의 절연 특성을 높이기 위해, 절연유를 추가로 포함할 수 있다.Additionally, the refrigerant according to this embodiment may additionally include insulating oil to increase the insulating properties of the refrigerant.
또한, 본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 상압에서 -10℃ 이상 및 60℃ 이하의 포화증발온도를 가질 수 있다. 구체적으로, -10℃ 이상, 0℃ 이상, 10℃ 이상, 20℃ 이상, 30℃ 이상, 40℃ 이상, 50℃ 이상의 포화증발온도를 가질 수 있다. 또한, 본 실시예에 따른 전기화학 시스템 소화 장치에 이용되는 냉매는 상압에서 60℃ 이하, 70℃ 이하, 80℃ 이하, 90℃ 이하, 100℃ 이하의 포화증발온도를 가질 수 있다. 여기서 상압이란, 통상적인 대기압을 의미하는 것으로, 1 atm을 의미하는 것일 수 있다. 이에 따라, 전기화학 시스템(110)에 화재가 발생한 경우, 전기화학 시스템(110)에 냉매가 직접적으로 분사 또는 배출 등의 방식으로 공급되더라도 냉매가 전기화학 시스템(110)에 남지 않아 기존에 소화물질로 많이 이용되는 물과 비교하여 부식 등의 문제가 발생하지 않아, 배터리의 재활용이 가능해진다는 장점을 가질 수 있다.Additionally, the refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment may have a saturation evaporation temperature of -10°C or higher and 60°C or lower at normal pressure. Specifically, it may have a saturation evaporation temperature of -10°C or higher, 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, and 50°C or higher. Additionally, the refrigerant used in the electrochemical system fire extinguishing device according to this embodiment may have a saturation evaporation temperature of 60°C or less, 70°C or less, 80°C or less, 90°C or less, and 100°C or less at normal pressure. Here, atmospheric pressure refers to normal atmospheric pressure and may mean 1 atm. Accordingly, when a fire occurs in the electrochemical system 110, even if the refrigerant is directly supplied to the electrochemical system 110 by spraying or discharging, the refrigerant does not remain in the electrochemical system 110 and existing extinguishing substances Compared to water, which is widely used, problems such as corrosion do not occur, so it can have the advantage of enabling recycling of batteries.
또한, 본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 비가연성을 나타낼 수 있다. 즉, 가연성범위(Flammable range)에 해당하지 않을 수 있으며, ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의해 미가연성을 나타내는 A1 그룹으로 분류되는 냉매일 수 있다.Additionally, the refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment may be non-flammable. In other words, it may not fall within the flammable range, and may be a refrigerant classified as A1 group, indicating non-flammability, by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
또한, 또한, 본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 저압냉매가 이용될 수 있다. 저압냉매란, 통상적으로 증발압력이 대기압 이하인 냉매를 의미하는 것일 수 있다.Additionally, the refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment may be a low-pressure refrigerant. Low-pressure refrigerant may generally refer to a refrigerant whose evaporation pressure is below atmospheric pressure.
또한, 본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 친환경 냉매가 이용될 수 있다. 즉, 냉매에는 GWP(Global Warming Potential, 지구온난화지수)가 상대적으로 작은 물질이 이용될 수 있으며, 구체적으로, 본 실시예에 따른 냉매는 0 이상 및 0.5 이하, 1 이하, 1.5 이하, 2 이하, 2.5 이하, 3 이하의 GWP를 가질 수 있다. 그리고, 냉매에는 ODP(Ozone Depletion Potential, 오존파괴지수)가 상대적으로 작은 물질이 이용될 수 있으며, 구체적으로 본 실시예에 따른 냉매는 0 이상 및 0.1 이하, 0.01 이하, 0.001 이하, 0.0001 이하, 0.00001 이하의 ODP를 가질 수 있다.Additionally, the refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment may be an environmentally friendly refrigerant. That is, a material with a relatively small GWP (Global Warming Potential) can be used as the refrigerant. Specifically, the refrigerant according to this embodiment has a GWP (Global Warming Potential) of 0 or more, 0.5 or less, 1 or less, 1.5 or less, 2 or less, It can have a GWP of 2.5 or less and 3 or less. In addition, a material with a relatively small ODP (Ozone Depletion Potential) can be used as the refrigerant. Specifically, the refrigerant according to this embodiment has a value of 0 or more, 0.1 or less, 0.01 or less, 0.001 or less, 0.0001 or less, and 0.00001. It may have the following ODP.
본 실시예에 따른 냉매는 0℃ 이하, 구체적으로 -5℃ 이하의 온도로 공급될 수 있고, 이러한 냉매가 전기화학 시스템 또는 화재가 발생한 물체에 직접 접촉하여 온도를 낮춰 화재를 진압할 수 있을 뿐만 아니라, 냉매가 공기 중에 포함된 수분을 냉각시켜 공기를 차단함으로써 화재를 진압할 수 있다는 효과를 기대할 수 있다. 냉매가 공급되는 온도는 이에 한정되지 않고, 전기화학 시스템이 이용되는 곳의 기온에 따라 다양하게 변경될 수 있다. 또한, 전기화학 시스템 또는 화재가 발생한 물체의 열을 흡수한 냉매는 기화되어 화재가 진압된 후 잔여물이 남지 않아, 전기화학 시스템의 부식을 방지하고, 전기화학 시스템의 재활용 가능성을 높인다는 효과를 기대할 수 있다.The refrigerant according to this embodiment can be supplied at a temperature of 0°C or lower, specifically -5°C or lower, and this refrigerant can not only extinguish the fire by lowering the temperature by directly contacting the electrochemical system or the object in which the fire occurred. Rather, it can be expected that the refrigerant can extinguish a fire by cooling the moisture contained in the air and blocking the air. The temperature at which the refrigerant is supplied is not limited to this and may vary depending on the temperature of the place where the electrochemical system is used. In addition, the refrigerant that absorbs the heat from the electrochemical system or the object where the fire occurred is vaporized and leaves no residue after the fire is extinguished, which has the effect of preventing corrosion of the electrochemical system and increasing the recyclability of the electrochemical system. You can expect it.
본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의한 냉매번호 10 내지 59번의 메탄계 할로겐화 탄소화합물, 냉매번호 110 내지 179번의 에탄계 할로겐화 탄소화합물, 냉매번호 200 내지 299번의 프로판계 할로겐화 탄소화합물, 300 내지 399번의 환상 부탄계 할로겐화 탄소화합물, 400 내지 499번의 비공비 혼합냉매, 500 내지 599번의 공비 혼합냉매, 600 내지 699번의 탄화수소, 산소화합물, 유황화합물, 질소화합물, 700 내지 799번의 무기화합물 및 1000 내지 1999번의 불포화 유기화합물 중 하나 이상을 포함할 수 있다.The refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment is a methane-based halogenated carbon compound, refrigerant number 10 to 59 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34. Ethane-based halogenated carbon compounds Nos. 110 to 179, propane-based halogenated carbon compounds Nos. 200 to 299, cyclic butane-based halogenated carbon compounds Nos. 300 to 399, non-azeotropic mixed refrigerants Nos. 400 to 499, azeotropic mixed refrigerants Nos. 500 to 599, It may include one or more of hydrocarbons numbered from 600 to 699, oxygen compounds, sulfur compounds, nitrogen compounds, inorganic compounds numbered from 700 to 799, and unsaturated organic compounds numbered from 1000 to 1999.
본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A 중 어느 하나인 하이드로플로오로올레핀계 냉매(HFOs), R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 중 어느 하나인 하이드로플로오로카본계 냉매(HFCs), R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B 중 어느 하나인 하이드로클로로프로오르카본계 냉매(HCFCs) 및 도데카플로로-2-메틸펜탄-3-원인 플로오르화 케톤 중 하나 이상을 포함할 수 있다.The refrigerants used in the electrochemical system fire extinguishing device 100 according to this embodiment are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R- Hydrofluoroolefin-based refrigerants (HFOs), any of 454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R -Hydrofluorocarbon-based refrigerants (HFCs), R- 22, any one of R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B hydrochloroproporocarbon refrigerant (HCFCs) and dodecafluoro-2-methylpentane-3 -May contain one or more of the causal fluorinated ketones.
본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 나노입자를 추가로 포함할 수 있다. 구체적으로, 나노입자는 Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT(Carbon Nano Tube), GO(Graphene Oxide) 및 Fullerene 중 하나 이상으로 구성될 수 있으며, 나노입자는 냉매를 기준으로, 냉매에 1 중량%, 2 중량%, 3 중량%, 4 중량%, 5 중량% 6 중량%, 7 중량%, 8 중량%, 9 중량%, 10 중량%가 포함될 수 있고, 0 초과 및 1 이하, 2 이하, 3 이하, 4 이하, 5 이하, 6 이하, 7 이하, 8 이하, 9 이하, 10 이하 중량%가 포함될 수 있다. 나노입자는 냉매에 추가되어, 열전도성을 추가적으로 향상시키는 역할을 수행할 수 있다.The refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment may further include nanoparticles. Specifically, nanoparticles may be composed of one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT (Carbon Nano Tube), GO (Graphene Oxide), and Fullerene, and the nanoparticles can be used as a refrigerant. As a standard, the refrigerant may include 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, and exceeding 0. and 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less weight percent. Nanoparticles can be added to the refrigerant to further improve thermal conductivity.
본 실시예에 따른 전기화학 시스템 소화 장치(100)에 이용되는 냉매는 계면활성제를 포함할 수 있다. 여기서, 계면활성제는 화재 소화에 이용될 수 있도록, 비가연성 계면활성제가 이용될 수 있다. 구체적으로, CTAB, Span-80 중 하나 이상을 포함할 수 있다. 계면활성제는 냉매에 포함되어, 배터리를 포함하여 화재가 발생한 물체에 냉매가 직접 공급될 때, 화재 발생 물체의 표면에 잘 접촉할 수 있도록 도와주는 역할을 수행할 수 있고, 냉매는 전기화학 시스템 등의 표면에 부착된 채로 흡열반응을 통해 온도를 낮추어 화재를 진압할 뿐만 아니라, 추가적으로 발생하는 발열반응인 열폭주 현상을 방지할 수 있을 수 있다.The refrigerant used in the electrochemical system fire extinguishing device 100 according to this embodiment may include a surfactant. Here, a non-flammable surfactant may be used so that the surfactant can be used for fire extinguishing. Specifically, it may include one or more of CTAB and Span-80. Surfactants are included in the refrigerant and can play a role in helping to ensure good contact with the surface of the fire-producing object when the refrigerant is directly supplied to the fire-producing object, including batteries, and the refrigerant can be used in electrochemical systems, etc. Not only can it extinguish a fire by lowering the temperature through an endothermic reaction while attached to the surface, but it can also prevent thermal runaway, which is an additional exothermic reaction.
공급부(120)의 구체적인 실시예는 도 2 및 도 3을 통해 설명하기로 한다.A specific embodiment of the supply unit 120 will be described with reference to FIGS. 2 and 3.
저장부(130)는 본 실시예에 따른 냉매를 저장하는 구성일 수 있다.The storage unit 130 may be configured to store the refrigerant according to this embodiment.
저장부(130)에 저장된 냉매는 펌프(미도시)나 별도의 공급장치를 통해 공급부(120)로 이동할 수 있고, 공급부(120)를 통해 전기화학 시스템(110)에 공급될 수 있다.The refrigerant stored in the storage unit 130 may be moved to the supply unit 120 through a pump (not shown) or a separate supply device, and may be supplied to the electrochemical system 110 through the supply unit 120.
또는, 저장부(130)의 내부는 대기압보다 높은 압력이 유지될 수 있고, 구체적으로, 1 atm 초과, 1 bar 초과, 2 bar 이상, 3 bar 이상의 압력을 가질 수 있고, 10 bar 이하의 압력을 가질 수도 있다. 저장부(130)의 내부가 대기압보다 높은 압력이 유지됨에 따라, 펌프(미도시)나 별도의 공급장치가 없이도 전기화학 시스템(110)에 냉매가 공급될 수도 있다.Alternatively, the inside of the storage unit 130 may be maintained at a pressure higher than atmospheric pressure, specifically, may have a pressure of more than 1 atm, more than 1 bar, more than 2 bar, more than 3 bar, and less than 10 bar. You can have it. As the pressure inside the storage unit 130 is maintained higher than atmospheric pressure, refrigerant may be supplied to the electrochemical system 110 without a pump (not shown) or a separate supply device.
공급부(120)와 저장부(130)는 냉매가 이동할 수 있는 구성을 통해 서로 연결될 수 있다.The supply unit 120 and the storage unit 130 may be connected to each other through a configuration that allows refrigerant to move.
도 2는 본 실시예에 따른 전기화학 시스템 소화 장치의 일 예시도이다.Figure 2 is an exemplary diagram of an electrochemical system fire extinguishing device according to this embodiment.
도 2를 참조하면, 본 실시예에 따른 전기화학 시스템 소화 장치(100)는 공급부(120)를 포함할 수 있고, 공급부(120)는 전기화학 시스템(110)의 발화 시에 냉매를 전기화학 시스템(110)에 분사하는 분사장치(121)를 포함할 수 있다. 분사장치(121)는 저장부(130)로부터 냉매를 공급받을 수 있다. Referring to FIG. 2, the electrochemical system fire extinguishing device 100 according to this embodiment may include a supply unit 120, and the supply unit 120 supplies refrigerant to the electrochemical system when the electrochemical system 110 is ignited. It may include an injection device 121 that sprays at 110. The injection device 121 may receive refrigerant from the storage unit 130.
냉매는 분사장치(121)에 의해 분사될 수 있고, 분사된 냉매는 전기화학 시스템(110)에 분사되어 접촉될 수 있고, 전기화학 시스템(110)에 접촉된 냉매는 열을 흡수하여 화재를 진압할 뿐만 아니라, 추가적인 폭발 반응인 열폭주를 억제할 수 있다.The refrigerant may be injected by the injection device 121, the injected refrigerant may be injected and contacted with the electrochemical system 110, and the refrigerant in contact with the electrochemical system 110 absorbs heat and extinguishes the fire. In addition, it can suppress thermal runaway, which is an additional explosive reaction.
또한, 냉매는 영하의 온도, 구체적으로 -5℃ 이하의 온도로 공급되어, 열을 흡수할 뿐만 아니라, 공기 중의 수분을 냉각시켜 배터리 화재 발생 시 연소에 필요한 산소를 차단함으로써 추가적인 화재 진압 효과를 기대할 수 있다.In addition, the refrigerant is supplied at a temperature below freezing, specifically -5℃ or lower, so it not only absorbs heat, but also cools the moisture in the air, blocking the oxygen necessary for combustion in the event of a battery fire, which is expected to have an additional fire suppression effect. You can.
도 3은 본 실시예에 따른 분사장치를 설명하기 위한 도면이다.Figure 3 is a diagram for explaining the injection device according to this embodiment.
도 3을 참조하면, 본 실시에에 따른 분사장치(121)는 노즐(1211)을 포함할 수 있다. 저장부(130)에 저장되어 있던 냉매가 분사장치(121)로 공급될 수 있고, 분사장치(121)로 공급된 냉매는 노즐(1211)의 분사구를 통해 전기화학 시스템(110)로 분사될 수 있다. Referring to FIG. 3, the injection device 121 according to this embodiment may include a nozzle 1211. The refrigerant stored in the storage unit 130 may be supplied to the injection device 121, and the refrigerant supplied to the injection device 121 may be injected into the electrochemical system 110 through the injection hole of the nozzle 1211. there is.
노즐(1211)의 분사구는 열감응튜브(1212)로 밀폐될 수 있다. 열감응튜브란, 화재발생 시 일정한 온도가 되면 용융되거나(녹거나) 파열되는 물질로 구성된 구성을 의미하는 것일 수 있다. 열감응튜브(1212)는 열에 반응하여 용융되거나 파열되는 특수 폴리머 재질로 구성될 수 있다.The injection port of the nozzle 1211 may be sealed with a heat sensitive tube 1212. A heat-sensitive tube may mean a composition made of a material that melts (melts) or ruptures when a certain temperature is reached in the event of a fire. The heat-sensitive tube 1212 may be made of a special polymer material that melts or ruptures in response to heat.
노즐(1211)의 분사구가 열감응튜브(1212)로 밀폐되고, 저장부(130)가 대기압 이상의 압력을 유지함에 따라, 펌프 등의 별도의 공급장치 없이도, 화재 발생시 전기화학 시스템(110)로 냉매가 공급될 수 있다. 구체적으로, 화재가 발생하지 않은 평상시에는 분사장치(121)의 분사구가 열감응튜브(1212)에 의해 밀폐되어 있으므로, 냉매가 방출되지 않을 수 있고, 화재가 발생한 경우에는 화재로 인해 발생한 열에 의해 분사구에 위치한 열감응튜브(1212)가 용융되거나 파열되고 이에 따라 대기압보다 높은 압력을 유지하던 저장부(130)에서 냉매가 압력에 따라 별도의 공급장치 없이도 방출될 수 있는 것이다.As the injection port of the nozzle 1211 is sealed with the heat sensitive tube 1212 and the storage unit 130 maintains a pressure above atmospheric pressure, the refrigerant is supplied to the electrochemical system 110 in the event of a fire without the need for a separate supply device such as a pump. can be supplied. Specifically, in normal times when a fire does not occur, the injection port of the injection device 121 is sealed by the heat-responsive tube 1212, so the refrigerant may not be released, and in case of a fire, the heat generated by the fire The heat sensitive tube 1212 located in melts or ruptures, and as a result, the refrigerant can be released from the storage unit 130, which maintained a pressure higher than atmospheric pressure, without a separate supply device depending on the pressure.
도 4는 본 실시예에 따른 전기화학 시스템 소화 장치의 다른 일 예시도이다.Figure 4 is another exemplary diagram of an electrochemical system fire extinguishing device according to this embodiment.
도 4를 참조하면, 본 실시예에 따른 전기화학 시스템 소화 장치(100)는 공급부(120)를 포함할 수 있고, 공급부(120)는 냉매튜브(122)를 포함할 수 있다.Referring to FIG. 4 , the electrochemical system fire extinguishing device 100 according to this embodiment may include a supply unit 120, and the supply unit 120 may include a refrigerant tube 122.
냉매튜브(122)는 저장부(130)로부터 냉매를 공급받을 수 있고, 냉매튜브(122)는 전기화학 시스템(110)가 화재가 발생하지 않은 평상시에는 전기화학 시스템(110)의 정상 작동을 위한 열관리를 수행할 수 있다. 통상 배터리는 10 내지 40℃에서 최적의 작동 퍼포먼스를 보여주는데, 냉매튜브(122)는 전기화학 시스템(110)가 최적의 온도를 유지할 수 있도록 전기화학 시스템(110)와 열교환을 수행하게 된다.The refrigerant tube 122 can receive refrigerant from the storage unit 130, and the refrigerant tube 122 is used for normal operation of the electrochemical system 110 in normal times when a fire does not occur in the electrochemical system 110. Thermal management can be performed. Typically, batteries show optimal operating performance at 10 to 40°C, and the refrigerant tube 122 performs heat exchange with the electrochemical system 110 so that the electrochemical system 110 can maintain the optimal temperature.
또한, 냉매튜브(122)는 전기화학 시스템(110)와의 열교환을 위해 전기화학 시스템(110)와 직접 접촉되도록 배치될 수 있다. 또한, 냉매튜브(122)는 열전도성 물질로 구성될 수 있다. 여기서, 열전도성 물질이란 금속 또는 열전도성 플라스틱 등을 포함할 수 있고, 이에 한정되지 않고, 열전도성이 있는 다양한 물질이 이용될 수 있다.Additionally, the refrigerant tube 122 may be arranged to be in direct contact with the electrochemical system 110 for heat exchange with the electrochemical system 110. Additionally, the refrigerant tube 122 may be made of a thermally conductive material. Here, the thermally conductive material may include metal or thermally conductive plastic, but is not limited thereto, and various thermally conductive materials may be used.
냉매튜브(122)는 전기화학 시스템(110)에서 화재 발생 시(발화 시) 파열 또는 용융되어, 냉매튜브(122) 내부에 존재하는 냉매가 전기화학 시스템(110)에 공급될 수 있다. 즉, 냉매가 전기화학 시스템(110)에 직접 접촉하도록 배출 또는 방출되어 전기화학 시스템(110)에 발생한 화재 및 열폭주 상태를 억제할 수 있다.The refrigerant tube 122 may rupture or melt when a fire occurs (ignition) in the electrochemical system 110, and the refrigerant present inside the refrigerant tube 122 may be supplied to the electrochemical system 110. That is, the refrigerant is discharged or discharged in direct contact with the electrochemical system 110, thereby suppressing fire and thermal runaway conditions occurring in the electrochemical system 110.
또한, 냉매튜브(122)의 적어도 일부는 열감응성튜브로 구성될 수 있다. 이 경우, 냉매튜브(122)의 적어도 일부를 이루는 열감응성튜브는 전기화학 시스템(110)의 화재 발생 시(발화 시) 열에 의해 용융되거나 파열되어 제거되고, 이에 따라, 냉매튜브(122) 내부에 존재하는 냉매가 전기화학 시스템(110)로 직접 방출 혹은 배출될 수 있다.Additionally, at least a portion of the refrigerant tube 122 may be composed of a heat-sensitive tube. In this case, the heat-sensitive tube forming at least a portion of the refrigerant tube 122 is melted or ruptured by heat and removed when a fire occurs (when ignited) in the electrochemical system 110, and thus, inside the refrigerant tube 122. Any refrigerant present may be discharged or discharged directly into the electrochemical system 110.
본 실시예에 따른 전기화학 시스템 소화 장치(100)는 하나 이상의 냉매튜브(122)를 포함할 수 있다. 또한, 도 4에 도시된 전기화학 시스템 소화 장치(100)는 예시에 불과한 것으로서, 냉매튜브(122)의 구성, 배치 등은 다양하게 변경될 수 있다.The electrochemical system fire extinguishing device 100 according to this embodiment may include one or more refrigerant tubes 122. Additionally, the electrochemical system fire extinguishing device 100 shown in FIG. 4 is merely an example, and the configuration and arrangement of the refrigerant tube 122 may be changed in various ways.
도 5는 본 실시예에 따른 냉매튜브의 일 예시도이다.Figure 5 is an exemplary diagram of a refrigerant tube according to this embodiment.
도 5를 참조하면, 본 실시예에 따른 냉매튜브(122)는 원형의 열감응성튜브(1221)를 하나 이상 포함할 수 있다.Referring to FIG. 5, the refrigerant tube 122 according to this embodiment may include one or more circular heat-sensitive tubes 1221.
냉매튜브(122)에 포함된 열감응성튜브(1221)는 전기화학 시스템(110)에 화재가 발생한 경우, 화재로 인해 발생되는 열에 의해 용융 또는 파열될 수 있고, 이에 따라, 냉매튜브(122)에 구멍이 형성될 수 있다. 그리고, 열에 의해 생성된 구멍에 의해 냉매튜브(122) 내부에 존재하던 냉매가 냉매튜브(122) 밖으로 배출 또는 방출될 수 있고, 냉매가 전기화학 시스템(110)에 직접 접촉하도록 공급되어 화재 및 열폭주를 진화할 수 있게 될 수 있다.If a fire occurs in the electrochemical system 110, the heat-sensitive tube 1221 included in the refrigerant tube 122 may be melted or ruptured by the heat generated by the fire, and accordingly, the heat-sensitive tube 1221 may be melted or ruptured in the refrigerant tube 122. Holes may form. In addition, the refrigerant present inside the refrigerant tube 122 may be discharged or discharged out of the refrigerant tube 122 through the hole created by heat, and the refrigerant is supplied to directly contact the electrochemical system 110, causing fire and heat. It may be possible to extinguish the runaway.
도 6은 본 실시예에 따른 냉매튜브의 다른 일 예시도이다.Figure 6 is another exemplary diagram of a refrigerant tube according to this embodiment.
도 6를 참조하면, 본 실시예에 따른 냉매튜브(122)는 직선 형태의 열감응성튜브(1222)를 하나 이상 포함할 수 있다.Referring to FIG. 6, the refrigerant tube 122 according to this embodiment may include one or more linear heat-sensitive tubes 1222.
냉매튜브(122)에 포함된 열감응성튜브(1222)는 전기화학 시스템(110)에 화재가 발생한 경우, 화재로 인해 발생되는 열에 의해 용융 또는 파열될 수 있고, 이에 따라, 냉매튜브(122)에 직선 형태의 구멍이 형성될 수 있다. 그리고, 열에 의해 생성된 구멍에 의해 냉매튜브(122) 내부에 존재하던 냉매가 냉매튜브(122) 밖으로 배출 또는 방출될 수 있고, 냉매가 전기화학 시스템(110)에 직접 접촉하도록 공급되어 화재 및 열폭주를 진화할 수 있게 될 수 있다.If a fire occurs in the electrochemical system 110, the heat-sensitive tube 1222 included in the refrigerant tube 122 may be melted or ruptured by the heat generated by the fire, and accordingly, the heat-sensitive tube 1222 may be melted or ruptured by the heat generated by the fire. A straight hole may be formed. In addition, the refrigerant present inside the refrigerant tube 122 may be discharged or discharged out of the refrigerant tube 122 through the hole created by heat, and the refrigerant is supplied to directly contact the electrochemical system 110, causing fire and heat. It may be possible to extinguish the runaway.
리튬 이온 이차전지의 가열폭주 온도는 통상적으로 188℃ 에서 527℃로 온도가 상승하면서, 발열 및 발화가 진행된다. 리튬 이온 이차전지의 과충전 열폭주 온도는 110℃에서 317℃로 온도가 상승하면서 발열 및 발화가 진행된다. 즉, 본 실시예에 따른 전기화학 시스템 소화 장치(100)는 이러한 발화 및 열폭주를 소화 및 억제하기 위해, 전기화학 시스템의 온도를 낮출 뿐만 아니라, 산소를 차단하여 추가적인 화재 피해를 방지할 수 있다는 효과를 기대할 수 있다.The heating runaway temperature of a lithium ion secondary battery typically increases from 188°C to 527°C, causing heat generation and ignition. The overcharge thermal runaway temperature of a lithium-ion secondary battery increases from 110°C to 317°C, causing heat generation and ignition. That is, the electrochemical system fire extinguishing device 100 according to this embodiment not only lowers the temperature of the electrochemical system in order to extinguish and suppress such ignition and thermal runaway, but also blocks oxygen to prevent additional fire damage. Effects can be expected.
또한, 배터리의 정상운영온도는 20℃ 내지 60℃ 또는 30℃ 내지 50℃ 또는 약 40℃ 정도일 수 있다. 본 실시예에 따른 전기화학 시스템 소화 장치(100)는 화재 발생시 소화 작동을 할 뿐만 아니라, 냉매를 통해 전기화학 시스템의 적정 온도를 유지시키는 역할을 수행할 수도 있다. 즉, 전기화학 시스템이 너무 낮은 온도로 내려간 경우, 열을 공급할 수도 있고, 전기화학 시스템이 너무 높은 온도로 올라간 경우, 열을 흡수할 수도 있는 것이다.Additionally, the normal operating temperature of the battery may be 20°C to 60°C, 30°C to 50°C, or about 40°C. The electrochemical system fire extinguishing device 100 according to this embodiment not only performs a fire extinguishing operation in the event of a fire, but also maintains an appropriate temperature of the electrochemical system through a refrigerant. In other words, when the electrochemical system goes down to too low a temperature, it can supply heat, and when the electrochemical system goes up to a too high temperature, it can absorb heat.
도 7은 본 실시예에 따른 히트펌프 시스템의 구성도이다.Figure 7 is a configuration diagram of a heat pump system according to this embodiment.
도 7을 참조하면, 본 실시예에 따른 히트펌프 시스템(1000)은 플래시탱크(1010), 압축기(1020), 제1열교환기(1030), 제2열교환기(1040), 제1팽창밸브(1050), 제2팽창밸브(1060), 제1사방밸브(1070), 제2사방밸브(1080), 제1밸브(1090), 제2밸브(1100), 제3밸브(1110) 및 제4밸브(1120)을 포함할 수 있다.Referring to FIG. 7, the heat pump system 1000 according to this embodiment includes a flash tank 1010, a compressor 1020, a first heat exchanger 1030, a second heat exchanger 1040, and a first expansion valve ( 1050), second expansion valve (1060), first four-way valve (1070), second four-way valve (1080), first valve (1090), second valve (1100), third valve (1110) and fourth It may include a valve 1120.
또한, 본 실시예에 따른 히트펌프 시스템(1000)은 저장부(1130), 펌프(1140) 및 체크밸브(1150)을 포함할 수 있다.Additionally, the heat pump system 1000 according to this embodiment may include a storage unit 1130, a pump 1140, and a check valve 1150.
본 실시예에 따른 히트펌프 시스템(1000)은 냉매가 작동 유체로서 순환할 수 있다.The heat pump system 1000 according to this embodiment may circulate a refrigerant as a working fluid.
플래시탱크(1010)는 기체 및 액체 상태의 냉매를 저장하는 구성일 수 있다. 또한, 플래시탱크(1010)는 전기적 또는 화학적 반응에 의해 열이 발생하는 디바이스(1160)를 포함할 수 있다. 플래시탱크(1010)에서는 냉매와 디바이스(1160) 간의 열교환이 이루어질 수 있고, 디바이스(1160)의 화재 발생 시 플래시탱크(1010)에 저장된 냉매를 통해 화재가 진압될 수 있다.The flash tank 1010 may be configured to store refrigerant in gaseous and liquid states. Additionally, the flash tank 1010 may include a device 1160 that generates heat through an electrical or chemical reaction. Heat exchange between the refrigerant and the device 1160 can occur in the flash tank 1010, and when a fire occurs in the device 1160, the fire can be extinguished through the refrigerant stored in the flash tank 1010.
압축기(1020)는 냉매를 고온으로 압축하는 역할을 수행하는 구성일 수 있다. 구체적으로는, 기체 상태의 저온 및 저압의 냉매를 고온 및 고압의 상태로 압축하는 구성일 수 있다. The compressor 1020 may be configured to compress refrigerant to a high temperature. Specifically, it may be configured to compress low-temperature and low-pressure refrigerant in a gaseous state into a high-temperature and high-pressure state.
도 7을 참조하면, 본 실시예에 따른 압축기(1020)는 플래시탱크(1010)와 연결될 수 있고, 플래시탱크(1010) 및 압축기(1020) 사이에는 제3밸브가 배치될 수 있다. 또한, 압축기(1020)는 제2사방밸브(1080)와 연결될 수 있다. 또한, 압축기(1020) 제2사방밸브(1080)를 통해 제1열교환기(1030) 및 제2열교환기(1040)와 연결될 수 있다.Referring to FIG. 7, the compressor 1020 according to this embodiment may be connected to the flash tank 1010, and a third valve may be disposed between the flash tank 1010 and the compressor 1020. Additionally, the compressor 1020 may be connected to the second four-way valve 1080. Additionally, the compressor 1020 may be connected to the first heat exchanger 1030 and the second heat exchanger 1040 through the second four-way valve 1080.
제1열교환기(1030) 및 제2열교환기(1040)는 냉매가 통과하면서 열교환이 이루어지는 구성일 수 있다. 제1열교환기(1030) 및 제2열교환기(1040)는 증발기 또는 응축기로서 작동할 수 있다. The first heat exchanger 1030 and the second heat exchanger 1040 may be configured to exchange heat while the refrigerant passes through them. The first heat exchanger 1030 and the second heat exchanger 1040 may operate as an evaporator or a condenser.
여기서, 증발기는 냉매가 열을 흡수하도록 하는 구성일 수 있고, 구체적으로는, 저온 상태의 액체 냉매가 열을 흡수하여 기체 냉매로 변화하도록 하는 구성일 수 있다. 또한, 응축기는 냉매가 열을 방출하도록 하는 구성일 수 있고, 구체적으로는, 고온 및 고압의 기체 냉매가 열을 방출하여 액체 냉매로 변화하도록 하는 구성일 수 있다.Here, the evaporator may be configured to allow the refrigerant to absorb heat, and specifically, may be configured to allow the liquid refrigerant in a low temperature state to absorb heat and change into a gaseous refrigerant. Additionally, the condenser may be configured to allow the refrigerant to emit heat. Specifically, it may be configured to allow a high-temperature and high-pressure gaseous refrigerant to emit heat and change into a liquid refrigerant.
본 실시예에 따른 제1열교환기(1030)는 제1사방밸브(1070) 및 제2사방밸브(1080)와 연결될 수 있다. 제1열교환기(1030)는 제1사방밸브(1070)를 통해 제1팽창밸브(1050) 및 제2팽창밸브(1060)와 선택적으로 연결될 수 있고, 제2사방밸브(1080)를 통해 압축기(1020)와 선택적으로 연결될 수 있다. 여기서, 선택적으로 연결한다는 것은 히트펌프 시스템(1000)의 작동모드에 따라 각 구성의 연결방식이 달라질 수 있다는 것을 의미할 수 있다.The first heat exchanger 1030 according to this embodiment may be connected to the first four-way valve 1070 and the second four-way valve 1080. The first heat exchanger 1030 can be selectively connected to the first expansion valve 1050 and the second expansion valve 1060 through the first four-way valve 1070, and the compressor ( 1020) can be optionally connected. Here, selectively connecting may mean that the connection method of each component may vary depending on the operating mode of the heat pump system 1000.
본 실시예에 따른 제2열교환기(1040)는 제1사방밸브(1070) 및 제2사방밸브(1080)와 연결될 수 있다. 제2열교환기(1040)는 제1사방밸브(1070)를 통해 제1사방밸브(1070)를 통해 제1팽창밸브(1050) 및 제2팽창밸브(1060)와 선택적으로 연결될 수 있고, 제2사방밸브(1080)를 통해 압축기(1020)와 선택적으로 연결될 수 있다.The second heat exchanger 1040 according to this embodiment may be connected to the first four-way valve 1070 and the second four-way valve 1080. The second heat exchanger 1040 may be selectively connected to the first expansion valve 1050 and the second expansion valve 1060 through the first four-way valve 1070, and the second It can be selectively connected to the compressor 1020 through the four-way valve 1080.
본 실시예에 따른 제1열교환기(1030) 및 제2열교환기(1040)는 서로 반대 기능을 수행할 수 있다. 즉, 제1열교환기(1030)가 응축기로서 작동할 때에 제2열교환기(1040)는 증발기로서 작동할 수 있고, 제1열교환기(1030)가 증발기로 작동할 때에 제2열교환기(1040)는 응축기로서 작동할 수 있다.The first heat exchanger 1030 and the second heat exchanger 1040 according to this embodiment may perform opposite functions to each other. That is, when the first heat exchanger 1030 operates as a condenser, the second heat exchanger 1040 can operate as an evaporator, and when the first heat exchanger 1030 operates as an evaporator, the second heat exchanger 1040 can operate as an evaporator. can operate as a condenser.
제1팽창밸브(1050) 및 제2팽창밸브(1060)는 부피 팽창을 통해 냉매의 압력을 낮추는 역할을 수행하는 구성일 수 있다. 구체적으로는, 액체 냉매를 감압함으로써 압력 및 온도를 낮추고, 냉매가 기체, 액체 또는 기체 및 액체 상태로 존재하도록 할 수 있다.The first expansion valve 1050 and the second expansion valve 1060 may be configured to lower the pressure of the refrigerant through volume expansion. Specifically, by depressurizing the liquid refrigerant, the pressure and temperature can be lowered and the refrigerant can exist in a gas, liquid, or gas and liquid state.
제1팽창밸브(1050)는 저온 및 저압의 냉매를 플래시탱크(1010)에 공급할 수 있고, 히트펌프 시스템(1000)의 작동 모드에 따라 온/오프(on/off)될 수 있다. 여기서, 온(on)이란, 냉매가 통과하여 구성이 작동하는 상태를 말하고, 오프(off)란, 냉매가 통과하지 못하여 구성이 작동하지 않는 상태를 말한다.The first expansion valve 1050 can supply low-temperature and low-pressure refrigerant to the flash tank 1010 and can be turned on/off depending on the operating mode of the heat pump system 1000. Here, on refers to a state in which the refrigerant passes and the component operates, and off refers to a state in which the refrigerant does not pass and the component does not operate.
또한, 제1팽창밸브(1050)는 제1사방밸브(1070)와 연결될 수 있고, 작동 모드에 따라 제1열교환기(1030) 및 제2열교환기(1040)와 연결될 수 있다.Additionally, the first expansion valve 1050 may be connected to the first four-way valve 1070, and may be connected to the first heat exchanger 1030 and the second heat exchanger 1040 depending on the operating mode.
제2팽창밸브(1060)는 플래시탱크(1010)로부터 냉매를 공급받아 제1사방밸브(1070)로 공급할 수 있고, 제1사방밸브(1070)를 통해 본 실시예에 따른 히트펌프 시스템(1000)의 작동 모드에 따라 제1열교환기(1030) 및 제2열교환기(1040)에 냉매를 선택적으로 공급할 수 있다. 또한, 제2팽창밸브(1060)는 히트펌프 시스템(1000)의 작동 모드에 따라 온/오프될 수 있다.The second expansion valve 1060 can receive refrigerant from the flash tank 1010 and supply it to the first four-way valve 1070, and the heat pump system 1000 according to this embodiment through the first four-way valve 1070. Depending on the operating mode, refrigerant can be selectively supplied to the first heat exchanger 1030 and the second heat exchanger 1040. Additionally, the second expansion valve 1060 may be turned on/off depending on the operating mode of the heat pump system 1000.
제1사방밸브(1070) 및 제2사방밸브(1080)는 작동모드에 따라 연결방식이 변경되는 구성일 수 있다. 이에 따라, 제1사방밸브(1070)는 플래시탱크(1010), 제1열교환기(1030), 제2열교환기(1040) 및 제1팽창밸브(1050)를 선택적으로 연결하는 구성일 수 있다. 또한, 제2사방밸브(1080)는 압축기(1020), 제1열교환기(1030) 및 제2열교환기(1040)를 선택적으로 연결하는 구성일 수 있다. 여기서, 선택적으로 연결한다는 것은 히트펌프 시스템(1000)의 작동모드에 따라 각 구성의 연결방식이 달라질 수 있다는 것을 의미할 수 있다.The first four-way valve 1070 and the second four-way valve 1080 may have a connection method that changes depending on the operating mode. Accordingly, the first four-way valve 1070 may be configured to selectively connect the flash tank 1010, the first heat exchanger 1030, the second heat exchanger 1040, and the first expansion valve 1050. Additionally, the second four-way valve 1080 may be configured to selectively connect the compressor 1020, the first heat exchanger 1030, and the second heat exchanger 1040. Here, selectively connecting may mean that the connection method of each component may vary depending on the operating mode of the heat pump system 1000.
제1밸브(1090), 제2밸브(1100), 제3밸브(1110), 제4밸브(1120)는 냉매의 흐름을 온/오프로 제어하는 구성일 수 있다. 제1밸브 내지 제4밸브(1090, 1100, 1110, 1120)는 솔레노이드 밸브로 구성될 수 있다. 그러나, 이에 한정되지 않고, 필요에 따라 다양하게 변경될 수 있다. The first valve 1090, the second valve 1100, the third valve 1110, and the fourth valve 1120 may be configured to control the flow of refrigerant on/off. The first to fourth valves 1090, 1100, 1110, and 1120 may be configured as solenoid valves. However, it is not limited to this and may be changed in various ways as needed.
제1밸브(1090)은 제1팽창밸브(1050)와 병렬적으로 연결될 수 있고, 히트펌프 시스템(1000)의 작동모드에 따라 온오프될 수 있다. 제1밸브(1090)가 온일 때에는 제1팽창밸브(1050)가 오프일 수 있고, 제1밸브(1090)가 오프일 때에는 제1팽창밸브(1050)가 온일 수 있다. 제2밸브(1100)는 제2팽창밸브(1060)와 병렬적으로 연결될 수 있고, 히트펌프 시스템(1000)의 작동모드에 따라 온오프될 수 있다. 제2밸브(1100)가 온일 때에는 제2팽창밸브(1060)가 오프일 수 있고, 제2밸브(1100)가 오프일 때에는 제2팽창밸브(1060)가 온일 수 있다.The first valve 1090 may be connected in parallel with the first expansion valve 1050 and may be turned on and off depending on the operating mode of the heat pump system 1000. When the first valve 1090 is on, the first expansion valve 1050 may be off, and when the first valve 1090 is off, the first expansion valve 1050 may be on. The second valve 1100 may be connected in parallel with the second expansion valve 1060 and may be turned on and off depending on the operating mode of the heat pump system 1000. When the second valve 1100 is on, the second expansion valve 1060 may be off, and when the second valve 1100 is off, the second expansion valve 1060 may be on.
제3밸브(1110)는 플래시탱크(1010)와 압축기(1020) 사이에 배치될 수 있다. 즉, 제3밸브(1110)는 히트펌프 시스템(1000)의 작동모드에 따라 온오프가 변경되어, 플래시탱크(1010)로부터 나온 냉매를 압축기(1020)로 공급할지 여부가 선택될 수 있다. 제3밸브(1110)를 통과하는 냉매는 액체 및 기체 중 하나 이상의 상태의 냉매일 수 있다.The third valve 1110 may be disposed between the flash tank 1010 and the compressor 1020. That is, the third valve 1110 is turned on and off depending on the operating mode of the heat pump system 1000, so that it can be selected whether to supply the refrigerant from the flash tank 1010 to the compressor 1020. The refrigerant passing through the third valve 1110 may be a refrigerant in one or more of liquid and gas states.
제4밸브(1120)는 제2열교환기(1040)와 플래시탱크(1010) 사이에 배치될 수 있다. 즉, 제4밸브(1120)는 히트펌프 시스템(1000)의 작동모드에 따라 온오프가 변경되어, 제2열교환기(1040)로부터 나온 냉매를 플래시탱크(1010)로 공급할지 여부가 선택될 수 있다. The fourth valve 1120 may be disposed between the second heat exchanger 1040 and the flash tank 1010. That is, the fourth valve 1120 can be turned on and off depending on the operating mode of the heat pump system 1000, so that it can be selected whether to supply the refrigerant from the second heat exchanger 1040 to the flash tank 1010. there is.
저장부(1130)는 플래시탱크(1010)와 제2열교환기(1040) 사이에 배치될 수 있고, 액체 상태의 냉매를 임시적으로 저장해두는 구성일 수 있다.The storage unit 1130 may be disposed between the flash tank 1010 and the second heat exchanger 1040 and may be configured to temporarily store liquid refrigerant.
펌프(1140) 및 체크밸브(1150)는 플래시탱크(1010)와 제2열교환기(1040) 사이에 배치될 수 있고, 펌프(1140)는 제2열교환기(1040)로부터 나온 냉매가 플래시탱크(1010)로 공급되도록 에너지를 공급할 수 있고, 체크밸브(1150)는 제2열교환기(1040)로부터 나온 냉매가 역류하지 않도록 하는 구성일 수 있다.The pump 1140 and the check valve 1150 may be disposed between the flash tank 1010 and the second heat exchanger 1040, and the pump 1140 allows the refrigerant from the second heat exchanger 1040 to flow into the flash tank ( Energy may be supplied to 1010, and the check valve 1150 may be configured to prevent the refrigerant from the second heat exchanger 1040 from flowing back.
히트펌프 시스템(1000)의 각 구성은 필요에 따라 부가 및 제거될 수 있고, 배치 및 연결관계는 필요에 따라 다양하게 변경될 수 있다.Each component of the heat pump system 1000 can be added or removed as needed, and the arrangement and connection relationship can be changed in various ways as needed.
본 실시예에 따른 히트펌프 시스템(1000)에 이용되는 냉매는 절연 특성을 가진 냉매일 수 있다. 또한, 환경 친화적인 특성을 가진 냉매일 수 있다.The refrigerant used in the heat pump system 1000 according to this embodiment may be a refrigerant with insulating properties. Additionally, it may be a refrigerant with environmentally friendly characteristics.
구체적으로, 본 실시예에 이용되는 냉매는 상압에서 -10℃ 이상 및 60℃ 이하의 포화증발온도를 가질 수 있다. 구체적으로, -10℃ 이상, 0℃ 이상, 10℃ 이상, 20℃ 이상, 30℃ 이상, 40℃ 이상, 50℃ 이상의 포화증발온도를 가질 수 있다. 또한, 본 실시예에 이용되는 냉매는 상압에서 60℃ 이하, 70℃ 이하, 80℃ 이하, 90℃ 이하, 100℃ 이하의 포화증발온도를 가질 수 있다. 여기서 상압이란, 통상적인 대기압을 의미하는 것으로, 1 atm을 의미하는 것일 수 있다. 이에 따라, 배터리나 배터리를 포함하는 장치에 화재가 발생한 경우, 냉매가 직접적으로 분사 또는 배출 등의 방식으로 공급되더라도 냉매가 남지 않아 기존에 소화물질로 많이 이용되는 물과 비교하여 부식 등의 문제가 발생하지 않아, 배터리의 재활용이 가능해진다는 장점을 가질 수 있다.Specifically, the refrigerant used in this embodiment may have a saturation evaporation temperature of -10°C or higher and 60°C or lower at normal pressure. Specifically, it may have a saturation evaporation temperature of -10°C or higher, 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, and 50°C or higher. Additionally, the refrigerant used in this embodiment may have a saturation evaporation temperature of 60°C or less, 70°C or less, 80°C or less, 90°C or less, and 100°C or less at normal pressure. Here, atmospheric pressure refers to normal atmospheric pressure and may mean 1 atm. Accordingly, in the event of a fire in a battery or a device containing a battery, no refrigerant remains even if the refrigerant is supplied directly by spraying or discharge, so problems such as corrosion are eliminated compared to water, which is commonly used as an extinguishing agent. This can have the advantage of not occurring, making it possible to recycle the battery.
또한, 본 실시예에 이용되는 냉매는 저압냉매가 이용될 수 있다. 저압냉매란, 통상적으로 증발압력이 대기압 이하인 냉매를 의미하는 것일 수 있다.Additionally, the refrigerant used in this embodiment may be a low-pressure refrigerant. Low-pressure refrigerant may generally refer to a refrigerant whose evaporation pressure is below atmospheric pressure.
본 실시예에 이용되는 냉매는 비가연성을 나타낼 수 있다. 즉, 가연성범위(Flammable range)에 해당하지 않을 수 있으며, ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의해 미가연성을 나타내는 A1 그룹으로 분류되는 냉매일 수 있다.The refrigerant used in this example may be non-flammable. In other words, it may not fall within the flammable range, and may be a refrigerant classified as A1 group, indicating non-flammability, by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
본 실시예에 이용되는 냉매는 배터리 또는 배터리를 포함하는 장치에 공급되더라도 전류가 흐르지 않을 정도의 전기전도도를 가질 수 있다. 즉, 0.1 S/cm 이하, 0.01 S/cm 이하, 0.001 S/cm 이하, 0.0001 S/cm 이하의 전기전도도를 가질 수 있으며, 0 S/cm의 전기전도도를 가질 수 있다.The refrigerant used in this embodiment may have electrical conductivity such that no current flows even when supplied to a battery or a device including a battery. That is, it may have an electrical conductivity of 0.1 S/cm or less, 0.01 S/cm or less, 0.001 S/cm or less, 0.0001 S/cm or less, and may have an electrical conductivity of 0 S/cm.
본 실시예에 이용되는 냉매는 친환경 냉매가 이용될 수 있다. 즉, 냉매에는 GWP(Global Warming Potential, 지구온난화지수)가 상대적으로 작은 물질이 이용될 수 있으며, 구체적으로, 본 실시예에 이용되는 냉매는 0 이상 및 0.5 이하, 1 이하, 1.5 이하, 2 이하, 2.5 이하, 3 이하의 GWP를 가질 수 있다. 그리고, 냉매에는 ODP(Ozone Depletion Potential, 오존파괴지수)가 상대적으로 작은 물질이 이용될 수 있으며, 구체적으로 본 실시예에 이용되는 냉매는 0 이상 및 0.1 이하, 0.01 이하, 0.001 이하, 0.0001 이하, 0.00001 이하의 ODP를 가질 수 있다.The refrigerant used in this embodiment may be an environmentally friendly refrigerant. In other words, a material with a relatively low GWP (Global Warming Potential) can be used as the refrigerant. Specifically, the refrigerant used in this embodiment has a GWP (Global Warming Potential) of 0 or more, 0.5 or less, 1 or less, 1.5 or less, and 2 or less. , may have a GWP of 2.5 or less and 3 or less. In addition, the refrigerant may be a material with a relatively low ODP (Ozone Depletion Potential). Specifically, the refrigerant used in this embodiment has 0 or more, 0.1 or less, 0.01 or less, 0.001 or less, 0.0001 or less, It can have an ODP of less than 0.00001.
본 실시예에 이용되는 냉매는 ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의한 냉매번호 10 내지 50번대의 메탄계 할로겐화 탄소화합물, 냉매번호 110 내지 170번대의 에탄계 할로겐화 탄소화합물, 냉매번호 200 내지 290번대의 프로판계 할로겐화 탄소화합물, C300번대의 환상 부탄계 할로겐화 탄소화합물, 400번대의 비공비 혼합냉매, 500번대의 공비 혼합냉매, 600번대의 탄화수소, 산소화합물, 유황화합물, 질소화합물, 700번대의 무기화합물 및 1000번대의 불포화 유기화합물 중 하나 이상을 포함할 수 있다.The refrigerant used in this example is a methane-based halogenated carbon compound with refrigerant numbers 10 to 50 and an ethane-based halogenated carbon compound with refrigerant numbers 110 to 170 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34. Compound, refrigerant number 200 to 290 propane halogenated carbon compound, C300 cyclic butane halogenated carbon compound, 400 non-azeotropic mixed refrigerant, 500 azeotropic mixed refrigerant, 600 hydrocarbon, oxygen compound, sulfur compound , nitrogen compounds, inorganic compounds in the 700s, and unsaturated organic compounds in the 1000s.
또한, 본 실시예에 이용되는 냉매는 R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A 중 어느 하나인 하이드로플로오로올레핀계 냉매(HFOs), R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 중 어느 하나인 하이드로플로오로카본계 냉매(HFCs), R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B 중 어느 하나인 하이드로클로로프로오르카본계 냉매(HCFCs) 및 도데카플로로-2-메틸펜탄-3-원인 플로오르화 케톤 중 하나 이상을 포함할 수 있다.In addition, the refrigerants used in this example are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R- Hydrofluoroolefin-based refrigerants (HFOs), any of 452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D, R-134a, R -507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 hydrofluorocarbon refrigerants (HFCs), R-22, R-409A, R402A, Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-402B, R-123, R-124, R401A, and R-401B, and at least one of dodecafluoro-2-methylpentane-3-origin fluorinated ketones may include.
본 실시예에 이용되는 냉매는 나노입자를 추가로 포함할 수 있다. 구체적으로, 나노입자는 Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT(Carbon Nano Tube), GO(Graphene Oxide) 및 Fullerene 중 하나 이상으로 구성될 수 있으며, 나노입자는 냉매를 기준으로, 냉매에 1 중량%, 2 중량%, 3 중량%, 4 중량%, 5 중량% 6 중량%, 7 중량%, 8 중량%, 9 중량%, 10 중량%가 포함될 수 있고, 0 초과 및 1 이하, 2 이하, 3 이하, 4 이하, 5 이하, 6 이하, 7 이하, 8 이하, 9 이하, 10 이하 중량%가 포함될 수 있다. 나노입자는 냉매에 추가되어, 열전도성을 추가적으로 향상시키는 역할을 수행할 수 있다.The refrigerant used in this example may further include nanoparticles. Specifically, nanoparticles may be composed of one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT (Carbon Nano Tube), GO (Graphene Oxide), and Fullerene, and the nanoparticles can be used as a refrigerant. As a standard, the refrigerant may include 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, and exceeding 0. and 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less weight percent. Nanoparticles can be added to the refrigerant to further improve thermal conductivity.
본 실시예에 이용되는 냉매는 계면활성제를 포함할 수 있다. 여기서, 계면활성제는 화재 소화에 이용될 수 있도록, 비가연성 계면활성제가 이용될 수 있다. 구체적으로, CTAB, Span-80 중 하나 이상을 포함할 수 있다. 계면활성제는 냉매에 포함되어, 배터리를 포함하여 화재가 발생한 물체에 냉매가 직접 공급될 때, 화재 발생 물체의 표면에 잘 접촉할 수 있도록 도와주는 역할을 수행할 수 있고, 냉매는 열이 발생하는 디바이스 등의 표면에 부착된 채로 흡열반응을 통해 온도를 낮추어 화재를 진압할 뿐만 아니라, 추가적으로 발생하는 발열반응인 열폭주 현상을 방지할 수 있을 수 있다.The refrigerant used in this embodiment may contain a surfactant. Here, a non-flammable surfactant may be used so that the surfactant can be used for fire extinguishing. Specifically, it may include one or more of CTAB and Span-80. Surfactants are included in the refrigerant, and when the refrigerant is directly supplied to a fire-generating object, including a battery, it can play a role in helping to make good contact with the surface of the fire-generating object, and the refrigerant is used to generate heat. While attached to the surface of a device, it can not only extinguish a fire by lowering the temperature through an endothermic reaction, but also prevent thermal runaway, which is an additional exothermic reaction.
본 실시예에 이용되는 냉매는 냉매의 절연 특성을 높이기 위해, 절연유를 추가로 포함할 수 있다. 절연유는 냉매를 기준으로, 냉매에 1 중량%, 2 중량%, 3 중량%, 4 중량%, 5 중량% 6 중량%, 7 중량%, 8 중량%, 9 중량%, 10 중량%가 포함될 수 있고, 0 초과 및 1 이하, 2 이하, 3 이하, 4 이하, 5 이하, 6 이하, 7 이하, 8 이하, 9 이하, 10 이하 중량%가 포함될 수 있다.The refrigerant used in this embodiment may additionally include insulating oil to increase the insulating properties of the refrigerant. Based on the refrigerant, the insulating oil may contain 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, and 10% by weight by weight. and may include weight percent greater than 0, 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less.
본 실시예에 따른 냉매는 0℃ 이하, 구체적으로 -5℃ 이하의 온도로 공급될 수 있고, 이러한 냉매가 화재가 발생한 물체에 직접 접촉하여 온도를 낮춰 화재를 진압할 수 있을 뿐만 아니라, 냉매가 공기 중에 포함된 수분을 냉각시켜 공기를 차단함으로써 화재를 진압할 수 있다는 효과를 기대할 수 있다. 냉매가 공급되는 온도는 이에 한정되지 않고, 이용되는 곳의 기온에 따라 다양하게 변경될 수 있다. 또한,화재가 발생한 물체의 열을 흡수한 냉매는 기화되어 화재가 진압된 후 잔여물이 남지 않아, 배터리 등의 디바이스의 부식을 방지하고, 재활용 가능성을 높인다는 효과를 기대할 수 있다.The refrigerant according to this embodiment can be supplied at a temperature of 0°C or lower, specifically -5°C or lower, and not only can this refrigerant directly contact an object on fire to lower its temperature and extinguish the fire, but the refrigerant can also extinguish the fire. The effect of extinguishing a fire can be expected by cooling the moisture contained in the air and blocking the air. The temperature at which the refrigerant is supplied is not limited to this and may vary depending on the temperature of the place where it is used. In addition, the refrigerant that absorbs the heat from the object where the fire occurred is vaporized and leaves no residue after the fire is extinguished, which can be expected to prevent corrosion of devices such as batteries and increase the possibility of recycling.
도 8은 본 실시예에 따른 히트펌프 시스템의 일 구성인 플래시챔버의 예시도이다.Figure 8 is an exemplary diagram of a flash chamber, which is a component of the heat pump system according to this embodiment.
도 8을 참조하면, 플래시탱크(1010)의 내부에 디바이스(1160)이 배치될 수 있다. 열이 발생하는 디바이스(1160)는 플래시탱크(1010) 내에 저장된 기체 및 액체와 직접적으로 접촉할 수 있다.Referring to FIG. 8, a device 1160 may be placed inside the flash tank 1010. The heat-generating device 1160 may be in direct contact with the gas and liquid stored in the flash tank 1010.
여기서, 디바이스(1160)는 배터리셀, 전지모듈, 전지팩, 전지랙, 하이브리드 차량, 전기차, ESS(Energy Storage System) 및 배전반을 포함할 수 있다. 즉, 본 실시예에 이용되는 냉매는 열이 발생할 수 있는 전자장치나 기계장치 등에도 다양하게 이용될 수 있다. Here, the device 1160 may include a battery cell, a battery module, a battery pack, a battery rack, a hybrid vehicle, an electric vehicle, an ESS (Energy Storage System), and a distribution board. That is, the refrigerant used in this embodiment can be used in a variety of ways, such as electronic devices or mechanical devices that can generate heat.
본 실시예에 따른 히트펌프 시스템(1000)은 배터리뿐만 아니라 열이 발생할 수 있는 전자장치나 기계장치 등 다양하게 이용될 수 있다. The heat pump system 1000 according to this embodiment can be used in a variety of ways, such as electronic devices or mechanical devices that can generate heat, as well as batteries.
또한, 본 실시예에 따른 히트펌프 시스템(1000)은 냉각모드, 가열모드, 중간모드 중 하나로 작동할 수 있다.Additionally, the heat pump system 1000 according to this embodiment may operate in one of a cooling mode, a heating mode, and an intermediate mode.
리튬 이온 이차전지의 가열폭주 온도는 통상적으로 188℃ 에서 527℃로 온도가 상승하면서, 발열 및 발화가 진행된다. 리튬 이온 이차전지의 과충전 열폭주 온도는 110℃에서 317℃로 온도가 상승하면서 발열 및 발화가 진행된다. 즉, 본 실시예에 따른 히트펌프 시스템(1000)은 이러한 발화 및 열폭주를 소화 및 억제하기 위해, 디바이스의 온도를 낮출 뿐만 아니라, 산소를 차단하여 추가적인 화재 피해를 방지할 수 있다는 효과를 기대할 수 있다.The heating runaway temperature of a lithium ion secondary battery typically increases from 188°C to 527°C, causing heat generation and ignition. The overcharge thermal runaway temperature of a lithium-ion secondary battery increases from 110°C to 317°C, causing heat generation and ignition. That is, the heat pump system 1000 according to this embodiment can be expected to not only lower the temperature of the device in order to extinguish and suppress such ignition and thermal runaway, but also prevent additional fire damage by blocking oxygen. there is.
또한, 배터리의 정상운영온도는 20℃ 내지 60℃ 또는 30℃ 내지 50℃ 또는 약 40℃ 정도일 수 있다. 본 실시예에 따른 히트펌프 시스템(1000)은 화재 발생시 소화 작동을 할 뿐만 아니라, 냉매를 통해 디바이스(1160)의 적정 온도를 유지시키는 역할을 수행할 수도 있다. 즉, 디바이스(1160)가 너무 낮은 온도로 내려간 경우, 열을 공급할 수도 있고, 너무 높은 온도로 올라간 경우, 열을 흡수할 수도 있는 것이다.Additionally, the normal operating temperature of the battery may be 20°C to 60°C, 30°C to 50°C, or about 40°C. The heat pump system 1000 according to this embodiment not only extinguishes fire in the event of a fire, but also maintains the appropriate temperature of the device 1160 through refrigerant. That is, when the device 1160 goes down to a temperature that is too low, it can supply heat, and if it goes up to a temperature that is too high, it can absorb heat.
도 9는 본 실시예에 따른 히트펌프 시스템이 냉각모드로 작동할 때의 구성도이다.Figure 9 is a configuration diagram of the heat pump system according to this embodiment when operating in cooling mode.
도 9를 참조하면, 본 실시예에 따른 히트펌프 시스템(1000)이 냉각모드로 작동하는 경우에는, 플래시탱크(1010) 내의 기체 상태의 냉매는 제3밸브(1110), 압축기(1020), 제2사방밸브(1080), 응축기로 동작하는 제2열교환기(1040), 제1사방밸브(1070) 및 제1팽창밸브(1050)를 순차적으로 순환하여 저온 및 저압의 냉매로서 플래시탱크(1010)에 공급될 수 있고, 플래시탱크(1010) 내의 액체 상태의 냉매는 제2밸브(1100), 제1사방밸브(1070), 증발기로 동작하는 제1열교환기(1030), 제2사방변(1080), 압축기(1020), 응축기로 동작하는 제2열교환기(1040), 제1사방밸브(1070) 및 제1팽창밸브(1050)를 순차적으로 순환하여 저온 및 저압의 냉매로서 플래시탱크(1010)에 공급될 수 있다.Referring to FIG. 9, when the heat pump system 1000 according to this embodiment operates in the cooling mode, the gaseous refrigerant in the flash tank 1010 flows through the third valve 1110, the compressor 1020, and the third valve 1110. The second four-way valve (1080), the second heat exchanger (1040) operating as a condenser, the first four-way valve (1070), and the first expansion valve (1050) are sequentially circulated to use a low-temperature and low-pressure refrigerant in the flash tank (1010). It can be supplied to the liquid refrigerant in the flash tank 1010, the second valve 1100, the first four-way valve 1070, the first heat exchanger 1030 operating as an evaporator, and the second four-way valve 1080. ), the compressor 1020, the second heat exchanger 1040 operating as a condenser, the first four-way valve 1070, and the first expansion valve 1050 are sequentially circulated to produce a flash tank 1010 as a low-temperature and low-pressure refrigerant. can be supplied to
또한, 도 9를 참조하면, 본 실시예에 따른 히트펌프 시스템(1000)이 냉각모드로 작동하는 경우에, 제2팽창밸브(1060), 제1밸브(1090) 및 제4밸브(1120)는 오프 상태일 수 있다.Additionally, referring to FIG. 9, when the heat pump system 1000 according to this embodiment operates in the cooling mode, the second expansion valve 1060, the first valve 1090, and the fourth valve 1120 It may be in an off state.
제1팽창밸브(1050)를 거친 저온의 냉매가 플래시탱크(1010)로 공급됨으로써, 플래시탱크(1010)에 포함된 디바이스(1160)는 냉매와 열교환이 이루어져 냉각이 이루어질 수 있다.As the low-temperature refrigerant that has passed through the first expansion valve 1050 is supplied to the flash tank 1010, the device 1160 included in the flash tank 1010 can exchange heat with the refrigerant to achieve cooling.
도 10은 본 실시예에 따른 히트펌프 시스템이 가열모드로 작동할 때의 구성도이다.Figure 10 is a configuration diagram of the heat pump system according to this embodiment when operating in heating mode.
도 10을 참조하면, 본 실시예에 따른 히트펌프 시스템(1000)이 가열모드로 작동하는 경우에는, 플래시탱크(1010) 내의 액체 상태의 냉매는 제2팽창밸브(1060), 제1사방밸브(1070), 증발기로 동작하는 제2열교환기(1040), 제2사방밸브(1080), 압축기(1020), 응축기로 동작하는 제1열교환기(1030), 제1사방밸브(1070), 제1밸브(1090)를 순차적으로 순환하여 액체 냉매로서 플래시탱크(1010)에 공급될 수 있다.Referring to FIG. 10, when the heat pump system 1000 according to the present embodiment operates in the heating mode, the liquid refrigerant in the flash tank 1010 flows through the second expansion valve 1060 and the first four-way valve ( 1070), a second heat exchanger (1040) operating as an evaporator, a second four-way valve (1080), a compressor (1020), a first heat exchanger (1030) operating as a condenser, a first four-way valve (1070), a first By sequentially circulating the valve 1090, liquid refrigerant can be supplied to the flash tank 1010.
또한, 도 10을 참조하면, 본 실시예에 따른 히트펌프 시스템(1000)이 가열모드로 작동하는 경우에, 제1팽창밸브(1050), 제2밸브(1100), 제3밸브(1110) 및 제4밸브(1120)는 오프 상태일 수 있다.Additionally, referring to FIG. 10, when the heat pump system 1000 according to this embodiment operates in the heating mode, the first expansion valve 1050, the second valve 1100, the third valve 1110, and The fourth valve 1120 may be in an off state.
압축기(1020) 및 응축기로 작동하는 제1열교환기(1030)을 거친 액체 냉매는 상대적으로 따뜻한(고온의) 상태일 수 있고, 이러한 냉매가 플래시탱크(1010)에 공급됨에 따라, 플래시탱크(1010)에 포함된 디바이스(1160)는 냉매와 열교환이 이루어져 가열이 이루어질 수 있다. 배터리 및 배터리를 포함한 디바이스는 정상 작동을 위한 적정 온도가 존재하며, 디바이스의 온도가 너무 낮은 온도로 낮아지게 되면 정상 작동이 이루어지지 않을 수 있으므로, 적정 온도로 유지할 필요성이 있다고 할 수 있다.The liquid refrigerant that has passed through the compressor 1020 and the first heat exchanger 1030 operating as a condenser may be in a relatively warm (high temperature) state, and as this refrigerant is supplied to the flash tank 1010, the flash tank 1010 ) The device 1160 included can be heated by heat exchange with the refrigerant. Batteries and devices including batteries have an appropriate temperature for normal operation, and if the temperature of the device is lowered to a too low temperature, normal operation may not occur, so it can be said that there is a need to maintain it at an appropriate temperature.
도 11은 본 실시예에 따른 히트펌프 시스템이 중간모드로 작동할 때의 구성도이다.Figure 11 is a configuration diagram of the heat pump system according to this embodiment when operating in an intermediate mode.
도 11을 참조하면, 본 실시예에 따른 히트펌프 시스템(1000)이 중간모드로 작동하는 경우에는, 플래시탱크(1010) 내의 기체 상태의 냉매는 제3밸브(1110), 제2사방밸브(1080) 및 제2열교환기(1040)를 순차적으로 순환하여 플래시탱크(1010)로 공급될 수 있다. 여기서, 제2열교환기(1040)를 통해 기체 상태의 냉매는 액체 상태로 상변화가 이루어질 수 있다. 히트펌프 시스템(1000)은 저장부(1130), 펌프(1140) 및 체크밸브(1150)를 포함할 수 있다. 저장부(1130)는 제4밸브(1120)를 통과한 액체 상태의 냉매를 임시적으로 저장하는 구성일 수 있고, 펌프(1140)는 냉매가 플래시탱크(1010)로 도달할 수 있도록 동력을 제공하는 구성일 수 있으며, 체크밸브(1150)는 냉매의 역류를 방지하는 구성일 수 있다.Referring to FIG. 11, when the heat pump system 1000 according to this embodiment operates in the intermediate mode, the gaseous refrigerant in the flash tank 1010 flows through the third valve 1110 and the second four-way valve 1080. ) and the second heat exchanger 1040 may be sequentially circulated and supplied to the flash tank 1010. Here, the gaseous refrigerant may be phase changed to a liquid state through the second heat exchanger 1040. The heat pump system 1000 may include a storage unit 1130, a pump 1140, and a check valve 1150. The storage unit 1130 may be configured to temporarily store the liquid refrigerant that has passed through the fourth valve 1120, and the pump 1140 provides power so that the refrigerant can reach the flash tank 1010. The check valve 1150 may be configured to prevent backflow of refrigerant.
히트펌프 시스템(1000)의 중간모드는 디바이스(1160)의 냉각 및 가열이 필요하지 않은 경우에 작동하는 모드일 수 있다.The intermediate mode of the heat pump system 1000 may be a mode that operates when cooling and heating of the device 1160 are not required.
도 12는 본 실시예에 따른 배터리 소화 시스템의 정상상태에서의 구성도이다.Figure 12 is a configuration diagram of the battery fire extinguishing system according to this embodiment in a normal state.
도 12를 참조하면, 본 실시예에 따른 배터리 소화 시스템(200)은 냉각장치(210), 소화장치(220) 및 배터리모듈(230)을 포함할 수 있다. 또한, 배터리 소화 시스템(200)은 냉매가 유체로서 순환할 수 있고, 냉각장치(210)에서 소화장치(220)로 이동하는 냉매의 유량을 조절하는 유량조절밸브(240)를 포함할 수 있다. 냉각장치(210)는 압축기(211), 응축기(212), 팽창밸브(213) 및 증발기(214)를 포함할 수 있다. 여기서, 배터리모듈(230)은 배터리셀을 포함하는 구성일 수 있다.Referring to FIG. 12, the battery fire extinguishing system 200 according to this embodiment may include a cooling device 210, a fire extinguishing device 220, and a battery module 230. Additionally, the battery fire extinguishing system 200 may allow refrigerant to circulate as a fluid and may include a flow control valve 240 that controls the flow rate of the refrigerant moving from the cooling device 210 to the fire extinguishing device 220. The cooling device 210 may include a compressor 211, a condenser 212, an expansion valve 213, and an evaporator 214. Here, the battery module 230 may be configured to include battery cells.
본 실시예에 따른 배터리 소화 시스템(200)의 정상상태란 배터리모듈(230)에서 화재가 발생하지 않은 상태를 의미하는 것일 수 있다.The normal state of the battery fire extinguishing system 200 according to this embodiment may mean a state in which no fire occurs in the battery module 230.
냉매는 본 실시예의 일 구성인 냉각장치(210)를 순환할 수 있고, 팽창밸브(213)로부터 나오는 냉매의 일부는 소화장치(220)로 공급될 수 있고, 다른 일부는 증발기(214)로 공급될 수 있다. 소화장치(220)는 냉매유입유로를 통해 냉각장치(210)로부터 냉매를 공급받을 수 있고, 냉매회수유로를 통해 냉각장치(210)로 냉매를 회수하여 다시 공급할 수 있다.The refrigerant may circulate through the cooling device 210, which is one component of this embodiment, and part of the refrigerant coming from the expansion valve 213 may be supplied to the fire extinguishing device 220, and the other part may be supplied to the evaporator 214. It can be. The fire extinguishing device 220 can receive refrigerant from the cooling device 210 through the refrigerant inflow passage, and recover the refrigerant to the cooling device 210 through the refrigerant recovery passage and supply it again.
소화장치(220)는 배터리모듈(230)에 직접 접촉하도록 냉매를 공급할 수 있고, 이에 따라, 냉매는 배터리모듈(230)와 열교환이 이루어질 수 있다.The fire extinguishing device 220 can supply refrigerant to directly contact the battery module 230, and thus the refrigerant can exchange heat with the battery module 230.
본 실시예에 따른 배터리 소화 시스템(200)는 배터리모듈(230)에서의 화재를 센싱하는 BMS(Battery Management System)(미도시)을 포함할 수 있다. BMS는 배터리 소화 시스템(200)의 일 구성일 수도 있고, 소화장치(220)의 일 구성일 수도 있다.The battery fire extinguishing system 200 according to this embodiment may include a battery management system (BMS) (not shown) that senses a fire in the battery module 230. The BMS may be a component of the battery fire extinguishing system 200 or a component of the fire extinguishing device 220.
본 실시예에 따른 배터리 소화 시스템(200)에 이용되는 냉매는 절연 특성을 가진 냉매일 수 있다. 또한, 환경 친화적인 특성을 가진 냉매일 수 있다.The refrigerant used in the battery fire extinguishing system 200 according to this embodiment may be a refrigerant with insulating properties. Additionally, it may be a refrigerant with environmentally friendly characteristics.
구체적으로, 본 실시예에 이용되는 냉매는 상압에서 -10℃ 이상 및 60℃ 이하의 포화증발온도를 가질 수 있다. 구체적으로, -10℃ 이상, 0℃ 이상, 10℃ 이상, 20℃ 이상, 30℃ 이상, 40℃ 이상, 50℃ 이상의 포화증발온도를 가질 수 있다. 또한, 본 실시예에 이용되는 냉매는 상압에서 60℃ 이하, 70℃ 이하, 80℃ 이하, 90℃ 이하, 100℃ 이하의 포화증발온도를 가질 수 있다. 여기서 상압이란, 통상적인 대기압을 의미하는 것으로, 1 atm을 의미하는 것일 수 있다. 이에 따라, 배터리나 배터리를 포함하는 장치에 화재가 발생한 경우, 냉매가 직접적으로 분사 또는 배출 등의 방식으로 공급되더라도 냉매가 남지 않아 기존에 소화물질로 많이 이용되는 물과 비교하여 부식 등의 문제가 발생하지 않아, 배터리의 재활용이 가능해진다는 장점을 가질 수 있다.Specifically, the refrigerant used in this embodiment may have a saturation evaporation temperature of -10°C or higher and 60°C or lower at normal pressure. Specifically, it may have a saturation evaporation temperature of -10°C or higher, 0°C or higher, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, and 50°C or higher. Additionally, the refrigerant used in this embodiment may have a saturation evaporation temperature of 60°C or less, 70°C or less, 80°C or less, 90°C or less, and 100°C or less at normal pressure. Here, atmospheric pressure refers to normal atmospheric pressure and may mean 1 atm. Accordingly, in the event of a fire in a battery or a device containing a battery, no refrigerant remains even if the refrigerant is supplied directly by spraying or discharge, so problems such as corrosion are eliminated compared to water, which is commonly used as an extinguishing agent. This can have the advantage of not occurring, making it possible to recycle the battery.
또한, 본 실시예에 이용되는 냉매는 저압냉매가 이용될 수 있다. 저압냉매란, 통상적으로 증발압력이 대기압 이하인 냉매를 의미하는 것일 수 있다.Additionally, the refrigerant used in this embodiment may be a low-pressure refrigerant. Low-pressure refrigerant may generally refer to a refrigerant whose evaporation pressure is below atmospheric pressure.
본 실시예에 이용되는 냉매는 비가연성을 나타낼 수 있다. 즉, 가연성범위(Flammable range)에 해당하지 않을 수 있으며, ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의해 미가연성을 나타내는 A1 그룹으로 분류되는 냉매일 수 있다.The refrigerant used in this example may be non-flammable. In other words, it may not fall within the flammable range, and may be a refrigerant classified as A1 group, indicating non-flammability, by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34.
본 실시예에 이용되는 냉매는 배터리 또는 배터리를 포함하는 장치에 공급되더라도 전류가 흐르지 않을 정도의 전기전도도를 가질 수 있다. 즉, 0.1 S/cm 이하, 0.01 S/cm 이하, 0.001 S/cm 이하, 0.0001 S/cm 이하의 전기전도도를 가질 수 있으며, 0 S/cm의 전기전도도를 가질 수 있다.The refrigerant used in this embodiment may have electrical conductivity such that no current flows even when supplied to a battery or a device including a battery. That is, it may have an electrical conductivity of 0.1 S/cm or less, 0.01 S/cm or less, 0.001 S/cm or less, 0.0001 S/cm or less, and may have an electrical conductivity of 0 S/cm.
본 실시예에 이용되는 냉매는 친환경 냉매가 이용될 수 있다. 즉, 냉매에는 GWP(Global Warming Potential, 지구온난화지수)가 상대적으로 작은 물질이 이용될 수 있으며, 구체적으로, 본 실시예에 이용되는 냉매는 0 이상 및 0.5 이하, 1 이하, 1.5 이하, 2 이하, 2.5 이하, 3 이하의 GWP를 가질 수 있다. 그리고, 냉매에는 ODP(Ozone Depletion Potential, 오존파괴지수)가 상대적으로 작은 물질이 이용될 수 있으며, 구체적으로 본 실시예에 이용되는 냉매는 0 이상 및 0.1 이하, 0.01 이하, 0.001 이하, 0.0001 이하, 0.00001 이하의 ODP를 가질 수 있다.The refrigerant used in this embodiment may be an environmentally friendly refrigerant. In other words, a material with a relatively low GWP (Global Warming Potential) can be used as the refrigerant. Specifically, the refrigerant used in this embodiment has a GWP (Global Warming Potential) of 0 or more, 0.5 or less, 1 or less, 1.5 or less, and 2 or less. , may have a GWP of 2.5 or less and 3 or less. In addition, the refrigerant may be a material with a relatively low ODP (Ozone Depletion Potential). Specifically, the refrigerant used in this embodiment has 0 or more, 0.1 or less, 0.01 or less, 0.001 or less, 0.0001 or less, It can have an ODP of less than 0.00001.
본 실시예에 이용되는 냉매는 ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의한 냉매번호 10 내지 50번대의 메탄계 할로겐화 탄소화합물, 냉매번호 110 내지 170번대의 에탄계 할로겐화 탄소화합물, 냉매번호 200 내지 290번대의 프로판계 할로겐화 탄소화합물, C300번대의 환상 부탄계 할로겐화 탄소화합물, 400번대의 비공비 혼합냉매, 500번대의 공비 혼합냉매, 600번대의 탄화수소, 산소화합물, 유황화합물, 질소화합물, 700번대의 무기화합물 및 1000번대의 불포화 유기화합물 중 하나 이상을 포함할 수 있다.The refrigerant used in this example is a methane-based halogenated carbon compound with refrigerant numbers 10 to 50 and an ethane-based halogenated carbon compound with refrigerant numbers 110 to 170 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34. Compound, refrigerant number 200 to 290 propane halogenated carbon compound, C300 cyclic butane halogenated carbon compound, 400 non-azeotropic mixed refrigerant, 500 azeotropic mixed refrigerant, 600 hydrocarbon, oxygen compound, sulfur compound , nitrogen compounds, inorganic compounds in the 700s, and unsaturated organic compounds in the 1000s.
또한, 본 실시예에 이용되는 냉매는 R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A 중 어느 하나인 하이드로플로오로올레핀계 냉매(HFOs), R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 중 어느 하나인 하이드로플로오로카본계 냉매(HFCs), R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B 중 어느 하나인 하이드로클로로프로오르카본계 냉매(HCFCs) 및 도데카플로로-2-메틸펜탄-3-원인 플로오르화 케톤 중 하나 이상을 포함할 수 있다.In addition, the refrigerants used in this example are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R- Hydrofluoroolefin-based refrigerants (HFOs), any of 452A, R-466A, R-450A, EC40, R-471A, R-407A, R-407F, R-410A, R-422D, R-134a, R -507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 hydrofluorocarbon refrigerants (HFCs), R-22, R-409A, R402A, Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-402B, R-123, R-124, R401A, and R-401B, and at least one of dodecafluoro-2-methylpentane-3-origin fluorinated ketones may include.
본 실시예에 이용되는 냉매는 나노입자를 추가로 포함할 수 있다. 구체적으로, 나노입자는 Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT(Carbon Nano Tube), GO(Graphene Oxide) 및 Fullerene 중 하나 이상으로 구성될 수 있으며, 나노입자는 냉매를 기준으로, 냉매에 1 중량%, 2 중량%, 3 중량%, 4 중량%, 5 중량% 6 중량%, 7 중량%, 8 중량%, 9 중량%, 10 중량%가 포함될 수 있고, 0 초과 및 1 이하, 2 이하, 3 이하, 4 이하, 5 이하, 6 이하, 7 이하, 8 이하, 9 이하, 10 이하 중량%가 포함될 수 있다. 나노입자는 냉매에 추가되어, 열전도성을 추가적으로 향상시키는 역할을 수행할 수 있다.The refrigerant used in this example may further include nanoparticles. Specifically, nanoparticles may be composed of one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT (Carbon Nano Tube), GO (Graphene Oxide), and Fullerene, and the nanoparticles can be used as a refrigerant. As a standard, the refrigerant may include 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, and exceeding 0. and 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less weight percent. Nanoparticles can be added to the refrigerant to further improve thermal conductivity.
본 실시예에 이용되는 냉매는 계면활성제를 포함할 수 있다. 여기서, 계면활성제는 화재 소화에 이용될 수 있도록, 비가연성 계면활성제가 이용될 수 있다. 구체적으로, CTAB, Span-80 중 하나 이상을 포함할 수 있다. 계면활성제는 냉매에 포함되어, 배터리를 포함하여 화재가 발생한 물체에 냉매가 직접 공급될 때, 화재 발생 물체의 표면에 잘 접촉할 수 있도록 도와주는 역할을 수행할 수 있고, 냉매는 열이 발생하는 디바이스 등의 표면에 부착된 채로 흡열반응을 통해 온도를 낮추어 화재를 진압할 뿐만 아니라, 추가적으로 발생하는 발열반응인 열폭주 현상을 방지할 수 있을 수 있다.The refrigerant used in this embodiment may contain a surfactant. Here, a non-flammable surfactant may be used so that the surfactant can be used for fire extinguishing. Specifically, it may include one or more of CTAB and Span-80. Surfactants are included in the refrigerant, and when the refrigerant is directly supplied to a fire-generating object, including a battery, it can play a role in helping to make good contact with the surface of the fire-generating object, and the refrigerant is used to generate heat. While attached to the surface of a device, it can not only extinguish a fire by lowering the temperature through an endothermic reaction, but also prevent thermal runaway, which is an additional exothermic reaction.
본 실시예에 이용되는 냉매는 냉매의 절연 특성을 높이기 위해, 절연유를 추가로 포함할 수 있다. 절연유는 냉매를 기준으로, 냉매에 1 중량%, 2 중량%, 3 중량%, 4 중량%, 5 중량% 6 중량%, 7 중량%, 8 중량%, 9 중량%, 10 중량%가 포함될 수 있고, 0 초과 및 1 이하, 2 이하, 3 이하, 4 이하, 5 이하, 6 이하, 7 이하, 8 이하, 9 이하, 10 이하 중량%가 포함될 수 있다.The refrigerant used in this embodiment may additionally include insulating oil to increase the insulating properties of the refrigerant. Based on the refrigerant, the insulating oil may contain 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, and 10% by weight by weight. and may include weight percent greater than 0, 1 or less, 2 or less, 3 or less, 4 or less, 5 or less, 6 or less, 7 or less, 8 or less, 9 or less, and 10 or less.
리튬 이온 이차전지의 가열폭주 온도는 통상적으로 188℃ 에서 527℃로 온도가 상승하면서, 발열 및 발화가 진행된다. 리튬 이온 이차전지의 과충전 열폭주 온도는 110℃에서 317℃로 온도가 상승하면서 발열 및 발화가 진행된다. 즉, 본 실시예에 따른 배터리 소화 시스템(200)은 이러한 발화 및 열폭주를 소화 및 억제하기 위해, 배터리모듈(230)의 온도를 낮출 뿐만 아니라, 산소를 차단하여 추가적인 화재 피해를 방지할 수 있다는 효과를 기대할 수 있다.The heating runaway temperature of a lithium ion secondary battery typically increases from 188°C to 527°C, causing heat generation and ignition. The overcharge thermal runaway temperature of a lithium-ion secondary battery increases from 110°C to 317°C, causing heat generation and ignition. That is, the battery fire extinguishing system 200 according to this embodiment not only lowers the temperature of the battery module 230 in order to extinguish and suppress such ignition and thermal runaway, but also blocks oxygen to prevent additional fire damage. Effects can be expected.
또한, 배터리의 정상운영온도는 20℃ 내지 60℃ 또는 30℃ 내지 50℃ 또는 약 40℃ 정도일 수 있다. 본 실시예에 따른 배터리 소화 시스템(200)는 화재 발생시 소화 작동을 할 뿐만 아니라, 냉매를 통해 배터리모듈(230)의 적정 온도를 유지시키는 역할을 수행할 수도 있다. 즉, 배터리모듈(230)가 너무 낮은 온도로 내려간 경우, 열을 공급할 수도 있고, 너무 높은 온도로 올라간 경우, 열을 흡수할 수도 있는 것이다.Additionally, the normal operating temperature of the battery may be 20°C to 60°C, 30°C to 50°C, or about 40°C. The battery fire extinguishing system 200 according to this embodiment not only extinguishes fire in the event of a fire, but also maintains the appropriate temperature of the battery module 230 through refrigerant. That is, when the battery module 230 falls to a temperature that is too low, it may supply heat, and if the temperature rises to a too high temperature, it may absorb heat.
도 13은 본 실시예에 따른 배터리 소화 시스템의 비정상상태에서의 구성도이다.Figure 13 is a configuration diagram of the battery fire extinguishing system according to this embodiment in an abnormal state.
도 13을 참조하면, 본 실시예에 따른 배터리 소화 시스템(200)은 작동 방식이 달라질 수 있다. 즉, 배터리모듈(230)에서 화재가 발생한 경우, 냉각장치(210)를 순환하던 냉매 중 팽창밸브(213)를 나오는 냉매 전량이 소화장치(220)로 공급될 수 있다. 그리고, 냉매는 배터리모듈(230)로 직접 접촉하도록 공급되어 화재를 소화할 수 있다. 그리고, 냉매는 냉매회수유로를 통해 회수될 수도 있다.Referring to FIG. 13, the battery fire extinguishing system 200 according to this embodiment may have a different operating method. That is, if a fire occurs in the battery module 230, all of the refrigerant circulating in the cooling device 210 and exiting the expansion valve 213 may be supplied to the fire extinguishing device 220. Additionally, the refrigerant can be supplied to directly contact the battery module 230 to extinguish the fire. Additionally, the refrigerant may be recovered through the refrigerant recovery passage.
본 실시예에 따른 냉매는 0℃ 이하, 구체적으로 -5℃ 이하의 온도로 공급될 수 있고, 이러한 냉매가 화재가 발생한 물체에 직접 접촉하여 온도를 낮춰 화재를 진압할 수 있을 뿐만 아니라, 냉매가 공기 중에 포함된 수분을 냉각시켜 공기를 차단함으로써 화재를 진압할 수 있다는 효과를 기대할 수 있다. 냉매가 공급되는 온도는 이에 한정되지 않고, 이용되는 곳의 기온에 따라 다양하게 변경될 수 있다. 또한,화재가 발생한 물체의 열을 흡수한 냉매는 기화되어 화재가 진압된 후 잔여물이 남지 않아, 배터리 등의 디바이스의 부식을 방지하고, 재활용 가능성을 높인다는 효과를 기대할 수 있다.The refrigerant according to this embodiment can be supplied at a temperature of 0°C or lower, specifically -5°C or lower, and not only can this refrigerant directly contact an object on fire to lower its temperature and extinguish the fire, but the refrigerant can also extinguish the fire. The effect of extinguishing a fire can be expected by cooling the moisture contained in the air and blocking the air. The temperature at which the refrigerant is supplied is not limited to this and may vary depending on the temperature of the place where it is used. In addition, the refrigerant that absorbs the heat from the object where the fire occurred is vaporized and leaves no residue after the fire is extinguished, which can be expected to prevent corrosion of devices such as batteries and increase the possibility of recycling.
도 14는 본 실시예에 따른 배터리 소화 시스템이 적용된 예시도이다.Figure 14 is an example diagram in which the battery fire extinguishing system according to this embodiment is applied.
도 14를 참조하면, 본 실시예에 따른 배터리 소화 시스템(200)은 배터리팩(300)에 적용될 수 있고, 구체적으로는, 냉각장치(210) 및 소화장치(220)가 배터리팩(300)에 적용될 수 있다. 여기서, 냉각장치(210) 및 소화장치(220)는 하나의 구성으로 형성되어 적용될 수도 있다.Referring to FIG. 14, the battery fire extinguishing system 200 according to this embodiment can be applied to the battery pack 300, and specifically, the cooling device 210 and the fire extinguishing device 220 are applied to the battery pack 300. It can be applied. Here, the cooling device 210 and the fire extinguishing device 220 may be formed and applied as a single configuration.
본 실시예에 따른 배터리 소화 시스템(200)이 배터리팩(300)에 적용됨에 따라, 냉매를 통해 배터리팩(300)과 열교환이 이루어질 수 있고, 배터리팩(300)에서 화재가 발생한 경우, 냉매가 직접 접촉하도록 공급되어 화재를 진압할 수도 있다.As the battery fire extinguishing system 200 according to this embodiment is applied to the battery pack 300, heat exchange can occur with the battery pack 300 through the refrigerant, and when a fire occurs in the battery pack 300, the refrigerant It can also be supplied for direct contact to extinguish a fire.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as “include,” “comprise,” or “have,” as used above, mean that the corresponding component may be included, unless specifically stated to the contrary, and do not exclude other components. It should be interpreted that it may further include other components. All terms, including technical or scientific terms, unless otherwise defined, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Commonly used terms, such as terms defined in a dictionary, should be interpreted as consistent with the meaning in the context of the related technology, and should not be interpreted in an idealized or overly formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications and variations will be possible to those skilled in the art without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.

Claims (15)

  1. 냉매를 이용하여 화재를 진압하는 전기화학 시스템 소화 장치에 있어서,In an electrochemical system fire extinguishing device that extinguishes a fire using a refrigerant,
    상기 전기화학 시스템에 냉매가 직접 접촉하도록 상기 냉매를 공급하는 공급부;a supply unit that supplies the refrigerant so that the refrigerant comes into direct contact with the electrochemical system;
    상기 냉매를 저장하는 저장부;a storage unit that stores the refrigerant;
    를 포함하는, 전기화학 시스템 소화 장치.Including, electrochemical system fire extinguishing device.
  2. 제 1 항에 있어서,According to claim 1,
    상기 공급부는 상기 전기화학 시스템의 발화 시에 상기 냉매를 상기 전기화학 시스템에 분사하는 분사장치를 포함하는, 전기화학 시스템 소화 장치.The supply unit includes an injection device for spraying the refrigerant into the electrochemical system when the electrochemical system is ignited.
  3. 제 2 항에 있어서,According to claim 2,
    상기 분사장치는 상기 냉매가 분사되는 노즐을 포함하고, 상기 노즐의 분사구는 열감응튜브로 밀폐되어 있는, 전기화학 시스템 소화 장치.The injection device includes a nozzle through which the refrigerant is sprayed, and the injection port of the nozzle is sealed with a heat sensitive tube.
  4. 제 1 항에 있어서,According to claim 1,
    상기 공급부는 상기 저장부로부터 상기 냉매를 공급받는 냉매튜브를 포함하고,The supply unit includes a refrigerant tube that receives the refrigerant from the storage unit,
    상기 전기화학 시스템의 발화 시에 상기 전기화학 시스템으로 상기 냉매를 방출하여 소화하는, 전기화학 시스템 소화 장치.An electrochemical system fire extinguishing device that extinguishes the fire by releasing the refrigerant into the electrochemical system upon ignition of the electrochemical system.
  5. 제 4 항에 있어서,According to claim 4,
    상기 냉매튜브는 상기 전기화학 시스템과의 열교환을 통해 상기 전기화학 시스템의 열관리를 수행하는, 전기화학 시스템 소화 장치.The refrigerant tube is an electrochemical system fire extinguishing device that performs heat management of the electrochemical system through heat exchange with the electrochemical system.
  6. 제 4 항에 있어서,According to claim 4,
    상기 냉매튜브는 열전도성 물질 및 열감응튜브로 구성되고,The refrigerant tube is composed of a thermally conductive material and a thermally sensitive tube,
    상기 열감응튜브는 상기 전기화학 시스템 발화 시에 파열 또는 용융되는, 전기화학 시스템 소화 장치.The heat sensitive tube is ruptured or melted when the electrochemical system ignites.
  7. 제 1 항에 있어서,According to claim 1,
    상기 전기화학 시스템은 배터리셀, 배터리모듈, 배터리팩, 배터리랙, 하이브리드 차량, 전기차, ESS(Energy Storage System), 배전반 중 하나에 해당하는, 전기화학 시스템 소화 장치.The electrochemical system is an electrochemical system fire extinguishing device that corresponds to one of a battery cell, battery module, battery pack, battery rack, hybrid vehicle, electric vehicle, ESS (Energy Storage System), and distribution board.
  8. 제 1 항에 있어서,According to claim 1,
    상기 냉매는 ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)Standard 34에 의한 냉매번호 10 내지 59번의 메탄계 할로겐화 탄소화합물, 냉매번호 110 내지 179번의 에탄계 할로겐화 탄소화합물, 냉매번호 200 내지 299번의 프로판계 할로겐화 탄소화합물, 300 내지 399번의 환상 부탄계 할로겐화 탄소화합물, 400 내지 499번의 비공비 혼합냉매, 500 내지 599번의 공비 혼합냉매, 600 내지 699번의 탄화수소, 산소화합물, 유황화합물, 질소화합물, 700 내지 799번의 무기화합물 및 1000 내지 1999번의 불포화 유기화합물 중 하나 이상을 포함하는, 전기화학 시스템 소화 장치.The refrigerant is a methane-based halogenated carbon compound with refrigerant numbers 10 to 59, an ethane-based halogenated carbon compound with refrigerant numbers 110 to 179, and refrigerant numbers 200 to 299 according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 34. Propane-based halogenated carbon compounds of Nos. 300 to 399, cyclic butane-based halogenated carbon compounds of Nos. 300 to 399, non-azeotropic mixed refrigerants of Nos. 400 to 499, azeotropic mixed refrigerants of Nos. 500 to 599, hydrocarbons, oxygen compounds, sulfur compounds, nitrogen compounds of Nos. 600 to 699, An electrochemical system fire extinguishing device, comprising at least one of the inorganic compounds numbered 700 to 799 and the unsaturated organic compounds numbered 1000 to 1999.
  9. 제 1 항에 있어서,According to claim 1,
    상기 냉매는 R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R-450A, EC40, R-471A 중 어느 하나인 하이드로플로오로올레핀계 냉매(HFOs),The refrigerants are R1234yf, R-1233zd, R-1234ze, R1224yd, R1336mzz, EC11, EC21, R-448A, R-455A, R-454A, R-454B, R-515B, R-452A, R-466A, R Hydrofluoroolefin-based refrigerants (HFOs), any of -450A, EC40, or R-471A,
    R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 중 어느 하나인 하이드로플로오로카본계 냉매(HFCs),Any of R-407A, R-407F, R-410A, R-422D, R-134a, R-507A, R-245fa, R-407C, R-408A, R-404A, R-508B, R-23 Hydrofluorocarbon-based refrigerants (HFCs),
    R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, R-401B 중 어느 하나인 하이드로클로로프로오르카본계 냉매(HCFCs) 및Hydrochloroproporocarbon-based refrigerants (HCFCs), which are any of R-22, R-409A, R402A, R-402B, R-123, R-124, R401A, and R-401B, and
    도데카플로로-2-메틸펜탄-3-원인 플로오르화 케톤 중 하나 이상을 포함하는, 전기화학 시스템 소화 장치.An electrochemical system fire extinguishing device comprising one or more of the following fluorinated ketones: dodecafluoro-2-methylpentane-3-causal fluorinated ketone.
  10. 제 1 항에 있어서,According to claim 1,
    상기 냉매는 상압에서 포화증발온도가 -10 이상 및 60℃ 이하이고, 전기 전도도가 0 S/cm이며, 지구온난화지수(GWP, Global Warming Potential)이 0 이상 및 2 이하이고, 가연성범위(Flammable range)에 해당되지 않으며, 오존파괴지수(ODP, Ozone Depletion Potential)은 0 이상 및 0.001 이하인, 전기화학 시스템 소화 장치.The refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, a global warming potential (GWP) of 0 or more and 2 or less, and a flammable range. ), and the ozone depletion potential (ODP) is greater than 0 and less than 0.001, and is an electrochemical system fire extinguishing device.
  11. 제 1 항에 있어서,According to claim 1,
    상기 냉매는 Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO 및 Fullerene 중 하나 이상을 포함하는 0 초과 5 이하 중량%의 나노입자를 포함하는, 전기화학 시스템 소화 장치.The electrochemical system fire extinguishing device, wherein the refrigerant contains more than 0 and less than or equal to 5% by weight of nanoparticles including one or more of Au, Ag, Cu, Al, CuO, Co, Fe, TiO2, CNT, GO and Fullerene.
  12. 제 1 항에 있어서,According to claim 1,
    상기 냉매는 CTAB, Span-80 중 하나 이상을 포함하는 0 초과 5 이하 중량%의 계면활성제를 포함하는, 전기화학 시스템 소화 장치.The electrochemical system fire extinguishing device, wherein the refrigerant contains more than 0 and less than or equal to 5% by weight of a surfactant including one or more of CTAB and Span-80.
  13. 기체 및 액체 상태의 냉매를 저장하는 플래시탱크;A flash tank that stores refrigerant in gaseous and liquid states;
    고온 및 고압 상태로 상기 냉매를 압축시키는 압축기;A compressor that compresses the refrigerant at high temperature and pressure;
    상기 냉매와 외부의 열교환이 이루어지고, 열을 흡수하는 증발기 또는 열을 방출하는 응축기로서 동작 가능한 제1열교환기;a first heat exchanger that exchanges heat with the refrigerant and the outside and can operate as an evaporator that absorbs heat or a condenser that emits heat;
    상기 제1열교환기와 반대 기능을 수행하며, 증발기 또는 응축기로서 동작 가능한 제2열교환기;a second heat exchanger that performs an opposite function to the first heat exchanger and can operate as an evaporator or condenser;
    상기 플래시탱크와 연결되고, 저온 및 저압의 냉매를 상기 플래시탱크로 공급하는 제1팽창밸브;a first expansion valve connected to the flash tank and supplying low-temperature and low-pressure refrigerant to the flash tank;
    상기 플래시탱크와 연결되고, 상기 플래시탱크로부터 액체 상태의 냉매를 공급받아 저온 및 저압의 상태로 만드는 제2팽창밸브;a second expansion valve connected to the flash tank, receiving liquid refrigerant from the flash tank and putting it in a low temperature and low pressure state;
    상기 플래시탱크, 상기 제1열교환기, 상기 제2열교환기 및 상기 제1팽창밸브를 선택적으로 연결하는 제1사방밸브;a first four-way valve selectively connecting the flash tank, the first heat exchanger, the second heat exchanger, and the first expansion valve;
    상기 압축기, 상기 제1열교환기 및 상기 제2열교환기를 선택적으로 연결하는 제2사방밸브;a second four-way valve selectively connecting the compressor, the first heat exchanger, and the second heat exchanger;
    상기 제1팽창밸브와 병렬적으로 연결된 제1밸브;A first valve connected in parallel with the first expansion valve;
    상기 제2팽창밸브와 병렬적으로 연결된 제2밸브;a second valve connected in parallel with the second expansion valve;
    상기 플래시탱크와 상기 압축기 사이에 배치된 제3밸브; 및 a third valve disposed between the flash tank and the compressor; and
    상기 플래시탱크와 상기 제2열교환기 사이에 배치된 제4밸브;a fourth valve disposed between the flash tank and the second heat exchanger;
    를 포함하고, Including,
    상기 플래시탱크 내부에 전기적 또는 화학적 반응에 의해 열이 발생하는 디바이스가 배치되고,A device that generates heat by electrical or chemical reaction is disposed inside the flash tank,
    상기 디바이스는 상기 플래시탱크에 저장된 냉매와 열교환이 이루어지며, 상기 디바이스에 화재 발생 시 상기 플래시탱크에 저장된 냉매에 의해 소화되는, 히트펌프 시스템.The device exchanges heat with the refrigerant stored in the flash tank, and when a fire occurs in the device, it is extinguished by the refrigerant stored in the flash tank.
  14. 제 13 항에 있어서,According to claim 13,
    상기 냉매는 상압에서 포화증발온도가 -10 이상 및 60℃ 이하이고, 전기 전도도가 0 S/cm이며, 지구온난화지수(GWP, Global Warming Potential)이 0 이상 및 2 이하이고, 가연성범위(Flammable range)에 해당되지 않으며, 오존파괴지수(ODP, Ozone Depletion Potential)은 0 이상 및 0.001 이하인, 히트펌프 시스템.The refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, a global warming potential (GWP) of 0 or more and 2 or less, and a flammable range. ), and the ozone depletion potential (ODP) is greater than 0 and less than 0.001, a heat pump system.
  15. 제 13 항에 있어서,According to claim 13,
    상기 냉매는 상압에서 포화증발온도가 -10 이상 및 60℃ 이하이고, 전기 전도도가 0 S/cm이며, 지구온난화지수(GWP, Global Warming Potential)이 0 이상 및 2 이하이고, 가연성범위(Flammable range)에 해당되지 않으며, 오존파괴지수(ODP, Ozone Depletion Potential)은 0 이상 및 0.001 이하인, 히트펌프 시스템.The refrigerant has a saturation evaporation temperature of -10 or more and 60°C or less at normal pressure, an electrical conductivity of 0 S/cm, a global warming potential (GWP) of 0 or more and 2 or less, and a flammable range. ), and the ozone depletion potential (ODP) is greater than 0 and less than 0.001, a heat pump system.
PCT/KR2023/015834 2022-10-17 2023-10-13 Electrochemical system fire extinguishing device and heat pump system using composition having low global warming potential WO2024085546A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0133463 2022-10-17
KR1020220133463A KR20240053716A (en) 2022-10-17 2022-10-17 Electrochemical system fire extinguishing device using refrigerant
KR10-2022-0135868 2022-10-20
KR1020220135868A KR20240055965A (en) 2022-10-20 2022-10-20 A heat pump system and battery fire extinguish system comprising cooling and extinguishing functions of an electrical or chemical heat generating device using an insulating refrigerant with low environmental impact

Publications (1)

Publication Number Publication Date
WO2024085546A1 true WO2024085546A1 (en) 2024-04-25

Family

ID=90737946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015834 WO2024085546A1 (en) 2022-10-17 2023-10-13 Electrochemical system fire extinguishing device and heat pump system using composition having low global warming potential

Country Status (1)

Country Link
WO (1) WO2024085546A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349521A (en) * 1993-05-04 1994-12-22 Programme 3 Patent Holdings High-temperature storage battery
KR20120068897A (en) * 2009-09-09 2012-06-27 허니웰 인터내셔널 인코포레이티드 Monochlorotrifluoropropene compounds and compositions and methods using same
KR20120087384A (en) * 2011-01-28 2012-08-07 엘지전자 주식회사 Refrigerating cycle apparatus with flash tank
KR20160149604A (en) * 2015-06-18 2016-12-28 주식회사 엘지화학 Lightweight cooling plate, battery module comprising the same and fabricating method thereof
KR20180072368A (en) * 2016-12-21 2018-06-29 윤유빈 Integrating type air conditioning and heat pump system
KR102452775B1 (en) * 2022-02-28 2022-10-11 (주)안국엔지니어링 Fire Suppression System for Battery with Function of Cool Down Fire Extinguishing Agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349521A (en) * 1993-05-04 1994-12-22 Programme 3 Patent Holdings High-temperature storage battery
KR20120068897A (en) * 2009-09-09 2012-06-27 허니웰 인터내셔널 인코포레이티드 Monochlorotrifluoropropene compounds and compositions and methods using same
KR20120087384A (en) * 2011-01-28 2012-08-07 엘지전자 주식회사 Refrigerating cycle apparatus with flash tank
KR20160149604A (en) * 2015-06-18 2016-12-28 주식회사 엘지화학 Lightweight cooling plate, battery module comprising the same and fabricating method thereof
KR20180072368A (en) * 2016-12-21 2018-06-29 윤유빈 Integrating type air conditioning and heat pump system
KR102452775B1 (en) * 2022-02-28 2022-10-11 (주)안국엔지니어링 Fire Suppression System for Battery with Function of Cool Down Fire Extinguishing Agent

Similar Documents

Publication Publication Date Title
Xu et al. Mitigation strategies for Li-ion battery thermal runaway: A review
KR20190085005A (en) Battery system
Zhang et al. An inorganic composite membrane as the separator of Li-ion batteries
Balakrishnan et al. Safety mechanisms in lithium-ion batteries
US8547069B2 (en) Safety switch for secondary battery module for electric vehicle and charging and discharging system for secondary battery module for electric vehicle using the same
WO2016182170A1 (en) Battery module
KR20180088467A (en) Low-profile pressure relief for lithium-ion batteries
TW201523970A (en) Portable electrical energy storage device with thermal runaway mitigation
Rao et al. Study of fire tests and fire safety measures on lithiumion battery used on ships
CN114930607A (en) Battery pack including fire suppression device
KR20130064031A (en) Secondary battery with improved safety
KR102473248B1 (en) Fire Targeting Injection System for Fire Extinguishing of Batteries
WO2021045376A1 (en) Battery pack, and battery rack and power storage device comprising same
WO2024085546A1 (en) Electrochemical system fire extinguishing device and heat pump system using composition having low global warming potential
Augeard et al. Contribution to the study of electric arcs in lithium-ion batteries
Hu et al. Advancements in the safety of Lithium-Ion Battery: The trigger, consequence and mitigation method of thermal runaway
US20220158277A1 (en) Non-destructive battery fire suppression
CN115021367A (en) Inerting explosion-proof liquid cooling lithium battery energy storage power station and control method thereof
WO2022094013A1 (en) Thermal protection of lithium ion batteries
KR101449787B1 (en) Secondary battery with improved safety
CN101133505A (en) Lithium secondary battery including discharge unit
CN103500861A (en) Explosion prevention and fire extinction testing device for lithium ion battery
KR20240053716A (en) Electrochemical system fire extinguishing device using refrigerant
KR20240055965A (en) A heat pump system and battery fire extinguish system comprising cooling and extinguishing functions of an electrical or chemical heat generating device using an insulating refrigerant with low environmental impact
EP4308256A1 (en) Thermal protection of lithium ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23880124

Country of ref document: EP

Kind code of ref document: A1