WO2024085431A1 - Optical system and camera module - Google Patents

Optical system and camera module Download PDF

Info

Publication number
WO2024085431A1
WO2024085431A1 PCT/KR2023/013289 KR2023013289W WO2024085431A1 WO 2024085431 A1 WO2024085431 A1 WO 2024085431A1 KR 2023013289 W KR2023013289 W KR 2023013289W WO 2024085431 A1 WO2024085431 A1 WO 2024085431A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lenses
optical system
equation
effective diameter
Prior art date
Application number
PCT/KR2023/013289
Other languages
French (fr)
Korean (ko)
Inventor
심주용
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024085431A1 publication Critical patent/WO2024085431A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces

Definitions

  • the present invention relates to an optical system for improved optical performance and a camera module including the same.
  • ADAS Advanced Driving Assistance System
  • ADAS Advanced Driving Assistance System
  • ADAS sensor devices detect vehicles in front and recognize lanes. Afterwards, when the target lane, target speed, and target ahead are determined, the vehicle's ESC (Electrical Stability Control), EMS (Engine Management System), and MDPS (Motor Driven Power Steering) are controlled.
  • ESC Electronic Stability Control
  • EMS Engine Management System
  • MDPS Microtor Driven Power Steering
  • ADAS can be implemented as an automatic parking system, a low-speed city driving assistance system, and a blind spot warning system.
  • Sensor devices for detecting the situation ahead in ADAS include GPS sensors, laser scanners, front radar, and Lidar, and the most representative ones are cameras for photographing the front, rear, and sides of the vehicle.
  • the camera can be placed outside or inside a vehicle to detect the surrounding conditions of the vehicle. Additionally, the camera may be placed inside the vehicle to detect the situation of the driver and passengers. For example, the camera can photograph the driver from a location adjacent to the driver and detect the driver's health status, drowsiness, drinking, etc. In addition, the camera can photograph the passenger at a location adjacent to the passenger, detect whether the passenger is sleeping, state of health, etc., and provide information about the passenger to the driver.
  • the imaging lens that forms the image.
  • interest in high performance such as high image quality and high resolution
  • research is being conducted on optical systems that include multiple lenses to realize this.
  • the characteristics of the optical system change when the camera is exposed to harsh environments, such as high temperature, low temperature, moisture, high humidity, etc., outside or inside the vehicle.
  • the camera has a problem in that it is difficult to uniformly derive excellent optical and aberration characteristics.
  • the embodiment seeks to provide an optical system and camera module with improved optical characteristics.
  • the embodiment seeks to provide an optical system and a camera module with excellent optical performance in low to high temperature environments.
  • Embodiments seek to provide an optical system and a camera module that can prevent or minimize changes in optical properties in various temperature ranges.
  • the optical system includes first to seventh lenses disposed along the optical axis, the first lens has a negative refractive power, and the second lens
  • the composite refractive power of the lens to the seventh lens may have a positive refractive power
  • the effective diameter of the second lens may be the smallest among the first to the seventh lenses
  • the effective diameter of the first lens may be the largest.
  • the fourth lens, the fifth lens, and the seventh lens may be made of plastic, and at least one of the first to third lenses and the sixth lens may be made of glass.
  • the effective diameter of the sixth lens and the seventh lens may be smaller than the effective diameter of the fifth lens.
  • the second lens may have a flat object side.
  • the lens with the smallest absolute value of focal length may be one of the third to fifth lenses.
  • the absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. ⁇ Conditional expression>
  • an optical system includes first to seventh lenses disposed along an optical axis, the first lens has a negative refractive power, and the second lens has a negative refractive power.
  • the combined refractive power of the second to seventh lenses may have positive refractive power, and the effective diameter of the first lens may be larger than the effective diameter of the third lens.
  • the optical system includes a bonded lens in which a lens with positive (+) refractive power and a lens with negative (-) refractive power are bonded, and the bonded lens includes two consecutively arranged lenses among the third to fifth lenses. It can be done with a lens.
  • the bonded lens may be made of plastic, and at least one of the first to third lenses and the sixth lens may be made of glass.
  • the absolute value of the focal distance of the fifth lens may be the smallest, and the absolute value of the focal distance of the sixth lens may be the largest.
  • At least one of the lens disposed closest to the bonded lens on the object side of the bonded lens and the lens disposed closest to the bonded lens on the sensor side of the bonded lens may have a shape in which both sides are convex.
  • the absolute value of the radius of curvature of the sensor side of the bonded lens may be smaller than the absolute value of the radius of curvature of the object side of the bonded lens.
  • an optical system includes first to seventh lenses disposed along an optical axis, and a focal length of the sixth lens among the first to seventh lenses.
  • the absolute value is the largest, the absolute value of the focal length of the fifth lens is the smallest, and the conditional expression below can be satisfied.
  • the ratio of the absolute values of the focal lengths of the sixth lens and the fifth lens may be greater than 5 times and less than 10 times.
  • the absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. ⁇ Conditional expression>
  • the seventh lens may have the smallest thickness among the first to seventh lenses, and in the optical axis, the fourth lens may have the greatest thickness among the first to seventh lenses.
  • the thickness of the second lens at the optical axis may be smaller than the thickness of the third lens and the fourth lens.
  • the first lens may have a meniscus shape convex toward the object.
  • the third lens may have a convex shape on both sides.
  • the first lens, the fifth lens, and the seventh lens have negative (-) refractive power
  • the second lens, the third lens, the fourth lens, and the sixth lens have positive (+) refractive power. You can have it.
  • the optical system includes first to seventh lenses disposed along the optical axis, the first lens has a negative refractive power, and the second lens
  • the composite refractive power of the lens to the seventh lens has a positive refractive power
  • the effective diameter of the second lens is the smallest among the first to third lenses
  • the thickness of the second lens at the optical axis is the It is larger than the thickness of the first lens.
  • the fourth to seventh lenses may be made of plastic, and at least one of the first to third lenses may be made of glass.
  • the effective diameter of the sixth lens and the seventh lens may be smaller than that of the fifth lens, and the effective diameter of the third lens may be the largest among the first to seventh lenses.
  • the second lens may have a meniscus shape convex toward the sensor.
  • the lens with the smallest absolute value of focal length may be one of the third to fifth lenses.
  • the absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. ⁇ Conditional expression>
  • an optical system includes first to seventh lenses disposed along an optical axis, the first lens has a negative refractive power, and the second lens has a negative refractive power.
  • the effective diameter of the sixth lens and the seventh lens may be smaller than the effective diameter of the fifth lens, and the thickness of the second lens at the optical axis may be greater than the thickness of the first lens.
  • the first lens may be made of glass, and the fourth and fifth lenses may be made of plastic.
  • the optical system includes a bonded lens in which a lens with positive (+) refractive power and a lens with negative (-) refractive power are bonded, a lens disposed closest to the bonded lens on an object side of the bonded lens, and At least one of the lenses disposed closest to the bonded lens on the sensor side of the bonded lens may have a shape in which both sides are convex.
  • the absolute value of the radius of curvature of the sensor side of the bonded lens may be smaller than the absolute value of the radius of curvature of the object side of the bonded lens.
  • the object side of the bonded lens may have a convex shape, and the sensor side of the bonded lens may have a concave shape.
  • the bonded lens may be composed of two lenses, one of the third lens to the fifth lens, arranged consecutively.
  • an optical system includes first to seventh lenses disposed along an optical axis, and the focal length of the second lens among the first to seventh lenses is
  • the absolute value of may be the largest
  • the absolute value of the focal length of the fifth lens may be the smallest
  • the ratio of the absolute values of the focal distances of the second lens and the fifth lens may be greater than 5 times and less than 10 times.
  • the ratio of the absolute values of the focal lengths of the second lens and the third lens may be greater than 2 times and less than 10 times.
  • the absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. ⁇ Conditional expression>
  • the fifth lens may have the smallest thickness among the first to seventh lenses, and in the optical axis, the second lens may have the greatest thickness among the first to seventh lenses.
  • the thickness of the second lens at the optical axis may be greater than the thickness of the third lens and the fourth lens.
  • the absolute value of the radius of curvature of the sensor side of the sixth lens may be the largest, and the absolute value of the radius of curvature of the sensor side of the fifth lens may be the smallest.
  • the third lens may have a convex shape on both sides.
  • the absolute value of the radius of curvature of the object side of the third lens may be the same as the absolute value of the radius of curvature of the sensor side of the third lens.
  • the optical system and camera module according to the embodiment may have improved optical characteristics.
  • a plurality of lenses may have a set thickness, refractive power, and distance from adjacent lenses.
  • the optical system and camera module according to the embodiment may have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in a set angle of view range, and may have good optical performance in the peripheral area of the angle of view.
  • the optical system and camera module according to the embodiment may have good optical performance in a low to high temperature range (-40°C to 105°C).
  • a plurality of lenses included in the optical system may have set materials, refractive powers, and refractive indices. Accordingly, when the refractive index of each lens changes due to temperature change and the focal length of each lens changes due to this, mutual compensation can be made by the plastic lens and the glass lens. That is, the optical system can effectively distribute refractive power in a temperature range from low to high temperatures, and prevent or minimize changes in optical properties in the temperature range from low to high temperatures. Therefore, the optical system and camera module according to the embodiment can maintain improved optical properties in various temperature ranges.
  • the optical system and camera module according to the embodiment can satisfy the angle of view set through a mixture of a plastic lens and a glass lens and implement excellent optical characteristics. Because of this, the optical system can provide a slimmer vehicle camera module. Accordingly, the optical system and camera module can be provided for various applications and devices, and can have excellent optical properties even in harsh temperature environments, for example, when exposed to the exterior of a vehicle or inside a vehicle at high temperatures in the summer.
  • FIG. 1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment.
  • FIG. 2 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses of FIG. 1.
  • Figure 3 is a table showing the lens characteristics of the optical system of Figure 1.
  • FIG. 4 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 1.
  • Figure 5 is a table showing the thickness of each lens and the spacing between adjacent lenses in the optical system of Figure 1.
  • FIG. 6 is a table showing Sag values of lens surfaces of the third to sixth lenses in the optical system of FIG. 1.
  • FIG. 7 is a table showing CRA (Chief Ray Angle) data at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of FIG. 1.
  • CRA Choef Ray Angle
  • FIG. 8 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 1 at room temperature.
  • MTF Modulation Transfer Function
  • FIG. 9 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at low temperature.
  • FIG. 10 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at high temperature.
  • FIG. 11 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at room temperature.
  • FIG. 12 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at low temperature.
  • FIG. 13 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at high temperature.
  • Figure 14 is a graph showing relative illuminance according to the height of the image sensor according to the first embodiment.
  • Figure 15 is a side cross-sectional view of an optical system and a camera module having the same according to the second embodiment.
  • FIG. 16 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses of FIG. 15.
  • Figure 17 is a table showing the lens characteristics of the optical system of Figure 15.
  • Figure 18 is a table showing the aspheric coefficients of lenses in the optical system of Figure 15.
  • FIG. 19 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of FIG. 15.
  • FIG. 20 is a table showing Sag values of lens surfaces of the third to sixth lenses in the optical system of FIG. 15.
  • FIG. 21 is a table showing CRA (Chief Ray Angle) data at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of FIG. 15.
  • CRA Choef Ray Angle
  • FIG. 22 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 15 at room temperature.
  • MTF Modulation Transfer Function
  • FIG. 23 is a graph showing data on the diffraction MTF of the optical system of FIG. 15 at low temperature.
  • FIG. 24 is a graph showing data on diffraction MTF at high temperature of the optical system of FIG. 15.
  • Figure 25 is a graph showing data on aberration characteristics of the optical system of Figure 15 at room temperature.
  • Figure 26 is a graph showing data on the aberration characteristics of the optical system of Figure 15 at low temperature.
  • FIG. 27 is a graph showing data on aberration characteristics of the optical system of FIG. 15 at high temperature.
  • Figure 28 is a graph showing relative illuminance according to the height of the image sensor according to the second embodiment.
  • Figure 29 is an example of a vehicle having an optical system according to an embodiment of the invention.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, sequence, or order of the component.
  • a component when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
  • top or bottom means that the two components are directly adjacent to each other. This includes not only cases of contact, but also cases where one or more other components are formed or disposed between two components.
  • top or bottom when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
  • object side may refer to the surface of the lens facing the object side based on the optical axis (OA)
  • sensor side may refer to the surface of the lens facing the imaging surface (image sensor) based on the optical axis. It can mean side.
  • Object side may be “water side”
  • sensor side may be “upper side”. That one side of the lens is convex may mean a convex shape in the optical axis or paraxial region, and that one side of the lens is concave may mean a concave shape in the optical axis or paraxial region.
  • the radius of curvature, center thickness, and optical axis spacing between lenses listed in the table for lens data may refer to values (unit, mm) at the optical axis.
  • the vertical direction may mean a direction perpendicular to the optical axis, and the end of the lens or lens surface may mean the end of the effective area of the lens through which incident light passes.
  • the size of the effective diameter of the lens surface may have a measurement error of up to ⁇ 0.4 mm depending on the measurement method.
  • the paraxial area refers to a very narrow area near the optical axis, and is an area where the distance at which light rays fall from the optical axis (OA) is almost zero.
  • the meaning of optical axis may include the center of each lens or a very narrow area near the optical axis.
  • the optical system 1000 may include five or more lenses.
  • the optical system 1000 and a camera module having the same can be mounted inside or outside the vehicle to monitor the driver or sense external objects or lanes.
  • the material of the lenses can be glass or plastic, and the coefficient of linear expansion of glass is smaller than that of plastic. Accordingly, a glass lens is used to prevent changes in the focal imaging position due to temperature changes.
  • glass lenses are more expensive than plastic lenses, and there is a problem in that it is difficult to meet the demand for lower costs. Accordingly, the lenses in the optical system 1000 are required to be a mixture of glass lenses and plastic lenses.
  • the optical system 1000 can reduce the thickness of the plastic lens, providing lighter weight and lower cost, and the plastic lens can provide good correction for various aberrations such as spherical aberration and chromatic aberration. there is. Additionally, since plastic lenses can provide aspherical lenses, distortion in the peripheral area can be minimized.
  • the optical system 1000 may include n lenses, where the n-th lens may be the last lens adjacent to the image sensor 300, and the n-1-th lens may be the lens closest to the last lens.
  • n is an integer of 5 or more, for example, may be 5 to 8.
  • the n lenses may have a ratio of plastic lenses to glass lenses in the range of 2:3 to 2:6 or 3:4 to 3:5.
  • the optical system 1000 may include a plurality of lens groups LG1 and LG2.
  • each of the plurality of lens groups LG1 and LG2 includes at least one lens.
  • the optical system 1000 may include a first lens group LG1 and a second lens group LG2 sequentially arranged along the optical axis OA from the object side toward the image sensor 300.
  • the number of lenses for each of the first lens group (LG1) and the second lens group (LG2) may be different.
  • the number of lenses of the second lens group (LG2) may be greater than the number of lenses of the first lens group (LG1), for example, 4 times or 5 times the number of lenses of the first lens group (LG1).
  • the first lens group LG1 may include at least one lens.
  • the first lens group LG1 may have three or fewer lenses.
  • the first lens group LG1 may preferably include one lens.
  • the second lens group (LG2) may include two or more lenses.
  • the second lens group (LG2) may have 4 to 7 elements.
  • the second lens group (LG2) may preferably have 6 lenses.
  • the first lens group LG1 may include at least one lens made of glass.
  • the first lens group LG1 may provide the lens closest to the object side as a glass lens. This glass material has a small amount of expansion and contraction due to changes in external temperature, and its surface is less likely to be scratched, preventing surface damage.
  • the lens material of the second lens group LG2 may be a mixture of at least one lens made of glass and at least one lens made of plastic.
  • at least one plastic lens may be placed closer to the sensor than a glass lens.
  • the second lens group LG2 may include two or more lenses made of glass, for example, 2 to 4 lenses made of glass.
  • the second lens group LG2 may include, for example, 2 to 6 lenses.
  • the second lens group LG2 may have one or more lenses made of plastic.
  • the second lens group LG2 may include two or more plastic lenses, for example, two to four plastic lenses.
  • At least one lens closest to the object in the optical system 1000 may be made of glass.
  • Three or more lenses closest to the object, for example, three to five lenses, may be made of glass. Since glass lenses have a smaller rate of change in contraction and expansion due to temperature changes than plastic lenses, glass lenses can be placed in an area adjacent to the outside of the lens barrel.
  • At least one lens closest to the image sensor 300 in the optical system 1000 may be made of plastic.
  • at least two lenses closest to the image sensor 300 may be made of plastic, and preferably, at least two lenses adjacent to the image sensor 300 may be made of plastic. That is, since the n-th and n-1-th lenses in the optical system 1000 are disposed as plastic lenses, various aberrations of light on the incident side of the image sensor 300 can be corrected.
  • lenses made of plastic may be continuously arranged, and lenses made of glass may be arranged continuously.
  • lenses made of plastic may be placed between lenses made of glass.
  • lenses made of glass may be placed between lenses made of plastic.
  • Each lens 101-107 may have an object side and a sensor side.
  • the number of lenses with an aspherical sensor side and an aspherical object side may be greater than the number of plastic lenses.
  • the number of lenses with a spherical sensor side and a spherical object side may be smaller than a lens with aspherical surfaces on both sides. Since the optical system 1000 includes more aspherical lenses than spherical lenses, various aberrations can be corrected.
  • the lens with the highest refractive index may be located in the first lens group LG1 or adjacent to the object.
  • the maximum refractive index may be 1.7 or more.
  • the color dispersion of incident light can be increased by a lens with the highest refractive index, and the center thickness can be thinner than the edge thickness. Additionally, since the lens with the maximum refractive index is disposed on the object side, it is easy to change the radius of curvature of the second and subsequent lenses and the center thickness can be increased.
  • the lens with the maximum effective diameter within the optical system 1000 may be placed closest to the object side.
  • a lens having the maximum effective diameter may be placed at the center of the object side and the sensor side.
  • the effective diameter of the lens can increase and then decrease.
  • the effective diameter of the lens may become smaller, then larger, and then smaller again.
  • the effective diameter may be the diameter of the effective area where effective light is incident on each lens.
  • the effective diameter is the length in the direction (X, Y) perpendicular to the optical axis, and is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • “Diameter of the lens surface” may mean “effective diameter of the lens.”
  • the “diameter of the lens” may be the diameter of the entire lens including the flange portion of the lens in addition to the effective area of the lens.
  • the flange of the lens is not shown in FIGS. 1 and 2, the flange may be a part that protrudes from the side of the lens in a direction perpendicular to the optical axis in order to couple the lens to the barrel. The flange may not allow effective light to enter.
  • spacers may be additionally disposed between the flanges of different lenses.
  • Each of the lenses 101-107 may include an effective area and an unactive area.
  • the effective area may be an area through which light incident on each of the lenses passes. In other words, the effective area can be defined as an effective area or effective diameter in which the incident light is refracted to realize optical characteristics.
  • the unactive area may be placed around the active area.
  • the non-effective area may be an area where effective light is not incident from the plurality of lenses. In other words, the non-effective area may be an area unrelated to optical characteristics. Additionally, the end of the non-effective area may be an area fixed to a lens barrel or the like that accommodates the lens.
  • the total top length (TTL) within the optical system 1000 may be greater than 2 times, for example, greater than 4 times and less than or equal to 12 times Imgh.
  • Total track length (TTL) is the distance on the optical axis (OA) from the center of the object side of the first lens to the image surface of the image sensor 300.
  • Imgh is the distance from the optical axis (OA) to the diagonal end of the image sensor 300 or 1/2 of the maximum diagonal length.
  • an effective focal length (EFL) of 10 mm or more and an angle of view (FOV) of less than 45 degrees can be provided as a standard optical system in a vehicle camera module.
  • the optical system and camera module according to the embodiment may be applied to a camera for an Advanced Driving Assistance System (ADAS) installed inside or outside a vehicle.
  • ADAS Advanced Driving Assistance System
  • the optical system 1000 may have a TTL/Imgh condition of 5 or more and 7.5 or more, for example, 6 or more and 7 or less.
  • the optical system 1000 sets the TTL/Imgh value to 5 or more and 7.5 or less, thereby providing a lens optical system for a vehicle.
  • the total number of lenses in the first and second lens groups (LG1, LG2) is 8 or less. Accordingly, the optical system 1000 can provide an image without exaggeration or distortion for the image being formed.
  • the effective diameter of at least one plastic lens within the optical system 1000 may be smaller than the length of the image sensor 300.
  • the effective diameter is the diameter or length of the effective area where light is incident.
  • the length of the image sensor 300 is the maximum length of the diagonal line in the direction perpendicular to the optical axis OA.
  • the number of lenses with an effective diameter larger than the length of the image sensor 300 is 50% or more or 60%, and the number of lenses with an effective diameter smaller than the length of the image sensor 300 is less than 50% or 40%. It may be less than
  • the optical system 1000 may include at least one bonded lens 145 therein.
  • the bonded lens 145 includes at least two lenses having different refractive powers bonded together, and the gap between the two lenses may be less than 0.01 mm.
  • the bonded lens 145 may be a lens in which two lenses with different focal lengths are bonded together.
  • the joint of the two lenses can be bonded with adhesive.
  • the effective diameter of at least one or all lenses disposed on the object side based on the bonded lens 145 may be larger than the length of the image sensor 300.
  • the effective diameter of at least one lens disposed on the sensor side with respect to the bonded lens 145 may be smaller than the length of the image sensor 300.
  • the object-side lens 104 may be longer than the length of the image sensor 300
  • the sensor-side lens 105 may be longer than the length of the image sensor 300.
  • the lenses between the bonded lens 145 and the first lens 101 may be made of glass or plastic. Lenses disposed between the bonded lens 145 and the image sensor 300 may be made of plastic. The lenses between the bonded lens 145 and the first lens 101 may be lenses with spherical surfaces on both sides or aspherical lenses on both sides. The lenses disposed between the bonded lens 145 and the image sensor 300 may be aspherical lenses on both sides. The two sides are the object side and the sensor side. Therefore, by disposing aspherical lenses between the bonded lens 145 and the image sensor 300, optical performance can be improved by correcting curvature aberration and chromatic aberration.
  • the first lens group LG1 and the second lens group LG2 may have a set interval.
  • the optical axis spacing between the first lens group (LG1) and the second lens group (LG2) on the optical axis (OA) is the sensor side of the lens closest to the sensor among the lenses in the first lens group (LG1) and the second lens group ( Among the lenses in LG2), it may be the optical axis spacing between the object side of the lens closest to the object side.
  • the optical axis spacing between the first lens group (LG1) and the second lens group (LG2) may be 3 to 5 times the optical axis distance of the first lens group (LG1), for example, the optical axis distance of the first lens group (LG1) It may range from 4 to 5 times the distance.
  • the optical axis distance between the first lens group (LG1) and the second lens group (LG2) may be less than twice the optical axis distance of the second lens group (LG2), for example, in the range of 1.8 to 1.2 times.
  • the optical axis distance of the second lens group LG2 is the optical axis distance between the object side of the lens closest to the object side of the second lens group LG2 and the sensor side of the lens closest to the image sensor 300.
  • the sensor side of the object-side lens may be concave and the object-side of the sensor-side lens may be flat. That is, the sensor side closest to the sensor side in the first lens group LG1 may be concave, and the object side closest to the object side in the second lens group LG2 may be flat.
  • the first lens group (LG1) diffuses the light incident through the object side
  • the second lens group (LG2) refracts the light diffused through the first lens group (LG1) into the area of the image sensor 300. I can do it for you.
  • the first lens group LG1 may have negative (-) refractive power
  • the second lens group LG2 may have positive (+) refractive power.
  • the focal distance of the first lens group LG1 may be greater than the focal distance of the second lens group LG2, for example, 5 times or more, for example, in the range of 5 to 10 times.
  • the effective focal length (EFL) of the optical system 1000 may be smaller than the absolute value of the focal length of the first lens group LG1.
  • the effective focal length (EFL) of the optical system 1000 may be smaller than the absolute value of the focal distance of the first lens group (LG1) and greater than the absolute value of the focal distance of the second lens group (LG2).
  • the number of lenses with positive (+) refractive power within the optical system 1000 may be equal to or greater than the number of lenses with negative (-) refractive power.
  • the number of lenses with negative (-) refractive power may be more than 50% of the total number of lenses.
  • the average refractive index of lenses with positive (+) refractive power may be greater than the average of lenses with negative (-) refractive power. Accordingly, the dispersion value of lenses with negative (-) refractive power may be smaller than the dispersion value of lenses with positive (+) refractive power.
  • the lens unit 100 may be a mixture of glass lenses and plastic lenses.
  • the number of lenses made of plastic may be 60% or less, 30% to 60%, or 30% to 50% of the total number of lenses. Accordingly, if more plastic lenses are placed within the camera module, the weight of the camera module can be reduced, and the plastic material makes it easy to polish and process, has strong external impact, and is highly price competitive and easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance.
  • the first embodiment of the invention can reduce the weight of the camera module by mixing more plastic lenses in the optical system 1000, provide a cheaper manufacturing cost, and prevent deterioration of optical properties due to temperature changes.
  • Various types of plastic lenses can replace glass lenses, and polishing and processing of lens surfaces such as aspherical surfaces or free-form surfaces can be easy.
  • the lens unit 100 may include lenses of a first material and lenses of a second material arranged along the optical axis OA.
  • the first material may be glass, and the second material may be plastic.
  • Lenses of the first material may be disposed between lenses of the second material.
  • Lenses of the second material may be disposed between lenses of the first material.
  • the lens unit 100 may include a lens of a first material having an aspherical surface along the optical axis OA, lenses of a first material having a spherical surface, and lenses of a second material having an aspherical surface.
  • the first material may be glass, and the second material may be plastic.
  • a lens made of a first material having a spherical surface may be disposed between lenses made of a second material having an aspherical surface.
  • the lens of the second material may be disposed between the lens of the first material having an aspherical surface and the lens of the first material having a spherical surface.
  • the effective diameter of the lens closest to the object within the lens unit 100 may be larger than the effective diameter of the lens closest to the image sensor 300. Accordingly, the brightness of the optical system can be controlled.
  • the effective diameter may be the average effective diameter of the object side and the sensor side of each lens.
  • the lens unit 100 includes a first lens 101, a second lens 102, a third lens 103, a fourth lens 104, and a fifth lens aligned along the optical axis from the object side toward the sensor side. (105), it may include a sixth lens (106) and a seventh lens (107).
  • the plastic lens may be a bonded lens or at least one lens adjacent to the image sensor.
  • the focal length (F6) of the sixth lens 106 may be the largest in the optical system and may be larger than the focal length (absolute value) of the second lens group (LG2). In other words, the condition
  • the average effective diameter of plastic lenses is PLca_Aver, and if the average effective diameter of glass lenses is GLca_Aver, the condition of PLca_Aver ⁇ GLca_Aver can be satisfied. Additionally, the condition of 1 ⁇ GLca_Aver / PLca_Aver ⁇ 1.5 can be satisfied. Additionally, the relationship between the length of the image sensor 300 and the average effective diameter (PLca_Aver) of the plastic lens may satisfy the condition of 1 ⁇ PLca_Aver/(Imgh*2) ⁇ 1.5.
  • the relationship between the average effective age of the glass material and the length of the image sensor 300 may satisfy the condition of 1.1 ⁇ GLca_Aver/(Imgh*2) ⁇ 1.5.
  • the difference between the maximum length of the image sensor 300 and the effective diameter of the plastic lens may be arranged to be small. Accordingly, by placing a plastic lens with a small effective diameter adjacent to the image sensor 300, the plastic lenses can disperse color from the center of the image sensor 300 to the periphery.
  • the average effective diameter of the glass materials may be 10 mm or more, for example, in the range of 10 mm to 15 mm.
  • the average effective diameter of the plastic material may be 8 mm or more, for example, in the range of 8 mm to 12 mm.
  • the lens with the minimum effective diameter may be made of plastic, and the lens with the maximum effective diameter may be made of glass.
  • the minimum effective diameter within the lens unit 100 may be in the range of 7 mm to 10 mm, and the maximum effective diameter may be in the range of 11 mm to 18 mm.
  • Plastic lenses are designed to have a smaller effective diameter than glass lenses and are placed so as not to contact the lens barrel, thereby minimizing changes in optical performance due to temperature changes. Additionally, the optical system 1000 can control incident light to improve resolution and chromatic aberration control characteristics, and can improve vignetting characteristics of the optical system 1000.
  • the optical system 1000 or camera module may include an image sensor 300.
  • the image sensor 300 can detect light and convert it into an electrical signal.
  • the image sensor 300 can detect light that sequentially passes through the lens unit 100.
  • the image sensor 300 may include an element that can detect incident light, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the length of the image sensor 300 is the maximum length in the diagonal direction orthogonal to the optical axis (OA), is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1), and is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1). It may be larger than the effective diameter of the lens closest to the sensor.
  • the number of lenses having an effective diameter larger than the length of the image sensor 300 may be 4 to 6, and the number of lenses having an effective diameter smaller than the length of the image sensor 300 may be 1 to 3.
  • the optical system 1000 or camera module may include a filter 500.
  • the filter 500 may be disposed between the second lens group LG2 and the image sensor 300.
  • the filter 500 may be disposed between the image sensor 300 and a lens of the lens unit 100 closest to the sensor.
  • the filter 500 may be disposed between the nth lens and the image sensor 300.
  • the cover glass 400 is disposed between the filter 500 and the image sensor 300, protects the upper part of the image sensor 192, and can prevent the reliability of the image sensor 192 from deteriorating. Cover glass 400 may be removed.
  • the cover glass 400 may be a protective glass.
  • the filter 500 may include an infrared filter or an infrared cut-off filter.
  • the filter 500 may pass light in a set wavelength band and filter light in a different wavelength band.
  • radiant heat emitted from external light can be blocked from being transmitted to the image sensor 300. Additionally, the filter 500 can transmit visible light and reflect infrared rays.
  • the optical system 1000 may include an aperture (Stop).
  • the aperture can control the amount of light incident on the optical system 1000.
  • the effective diameter of the lens surface tends to increase from the object side to the aperture.
  • the effective diameter of the lens surfaces tends to decrease as it moves from the aperture to the sensor.
  • the fact that the effective diameter of the lens planes tends to increase or decrease does not mean only when the effective diameter of the lens planes increases or decreases. For example, this includes cases where the effective diameter of the lens surfaces increases and then decreases as it moves from the aperture to the sensor side.
  • the aperture may be placed at a set position.
  • the aperture may be disposed around the object side or sensor side of the lens closest to the object side among the lenses of the second lens group LG2.
  • the aperture may be disposed around the object side or sensor side of the object side lens of the first lens group LG1.
  • at least one lens selected from among the plurality of lenses may function as an aperture.
  • the object side or the sensor side of one lens selected from among the lenses of the optical system 1000 may function as an aperture to control the amount of light.
  • the sum of the refractive indices of the lenses of the lens unit 100 may be 8 or more, for example, in the range of 8 to 15, and the average refractive index may be in the range of 1.58 to 1.7.
  • the sum of the Abbe numbers of each lens may be 300 or more, for example, in the range of 310 to 350, and the average of the Abbe numbers may be 50 or less, for example, in the range of 35 to 47.
  • the sum of the central thicknesses of all lenses may be 18 mm or more, for example, in the range of 20 mm to 25 mm, and the average of the central thicknesses may be in the range of 2.8 mm to 3.5 mm.
  • the sum of the center spacings between the lenses at the optical axis (OA) may be greater than 10 mm, for example in the range of 10 mm to 18 mm, and may be less than the sum of the center thicknesses of the lenses.
  • the average value of the effective diameter of each lens surface (S1-S14) of the lens unit 100 may be 8 mm or more, for example, in the range of 8 mm to 15 mm.
  • the angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees.
  • the F number of the optical system or camera module may be 2.4 or less, for example, in the range of 1.4 to 2.4 or 1.5 to 1.8.
  • the maximum angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees.
  • the horizontal field of view (FOV_H) of the vehicle optical system in the Y-axis direction may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees.
  • the vertical angle of view is provided at a smaller angle than the horizontal angle of view, and may be 20 degrees or less, for example, in the range of 10 to 20 degrees.
  • the sensor length in the horizontal direction (Y) may be 8.064 mm ⁇ 0.5 mm
  • the sensor height in the vertical direction (X) may be 4.54 mm ⁇ 0.5 mm.
  • Horizontal angle of view (FOV_H) is the angle of view based on the horizontal length of the sensor. Accordingly, it is possible to suppress changes in the focus imaging position due to temperature changes, and it is possible to provide a vehicle camera in which various aberrations are well corrected.
  • the first lens 101 can be made of glass even though it is designed using both a plastic lens and a glass lens. This has the advantage that glass material is more resistant to scratches than plastic material and is not sensitive to external temperature.
  • the first lens 101 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
  • the angle of view may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees.
  • This horizontal angle of view may be a preset angle for an advanced driver assistance system (ADAD).
  • ADAD advanced driver assistance system
  • the optical system 1000 according to the first embodiment may further include a reflection member for changing the path of light.
  • the reflection member may be implemented as a prism that reflects incident light from the first lens group LG1 in the direction of the lenses.
  • FIG. 1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment
  • FIG. 2 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses according to FIG. 1
  • FIG. 3 is a side cross-sectional view of FIG. 1.
  • FIG. 1 is a table showing the lens characteristics of the optical system of
  • Figure 4 is a table showing the aspheric coefficients of the lenses in the optical system of Figure 1
  • Figure 5 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of Figure 1
  • 6 is a table showing the Sag values of the lens surfaces of the third to sixth lenses in the optical system of Figure 1
  • Figure 7 is a table showing the Chief Ray Angle (CRA) at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of Figure 1.
  • CRA Chief Ray Angle
  • FIG. 14 is a graph showing relative illuminance according to the height of the image sensor according to the first embodiment.
  • the optical system 1000 includes a lens unit 100, and the lens unit 100 may include first to seventh lenses 101 to 107.
  • the first to seventh lenses 101 to 107 may be sequentially arranged along the optical axis OA of the optical system 1000.
  • Light corresponding to information on the object may pass through the first to seventh lenses 101 to 107 and the filter 500 and be incident on the image sensor 300.
  • the first lens 101 is the lens closest to the object in the first lens group LG1.
  • the seventh lens 107 is the closest lens to the image sensor 107 in the second lens group LG2 or the lens unit 100.
  • the first lens 101 may be the first lens group (LG1), and the second to seventh lenses (102, 103, 104, 105, 106, and 107) may be the second lens group (LG2).
  • the aperture may be disposed either around the object side or sensor side of the first lens 101, or around the object side or sensor side of the second lens 102.
  • the aperture (Stop) may be disposed around the object side of the second lens 102.
  • the first lens 101 may be placed closest to the object.
  • the first lens 101 may be placed furthest from the sensor side.
  • the first lens 101 may have negative refractive power at the optical axis OA.
  • the first lens 101 may include a plastic material or a glass material, for example, a glass material.
  • the first lens 101 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and can protect the entrance side of the optical system 1000.
  • the object-side first surface S1 of the first lens 101 may be convex, and the sensor-side second surface S2 may be concave.
  • the first lens 101 may have a meniscus shape that is convex toward the object.
  • the first lens 101 is made of glass and may have an aspherical surface.
  • the aspherical coefficients of the first and second surfaces (S1 and S2) can be provided as L1S1 and L1S2 in FIG. 4.
  • This first lens 101 can be manufactured as a lens with an aspherical surface by injection molding a glass material.
  • the first lens 101 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
  • the effective radius r11 of the first lens 101 may be larger than the effective radius of the plastic lenses.
  • at least one of the object side and the sensor side of the first lens 101 may have a free curved surface, that is, a non-rotationally symmetric curved surface.
  • the effective diameter of the sensor side of the second lens 102 can be designed to be smaller than the effective diameter of the object side.
  • the first surface S1 of the first lens 101 may be provided without a critical point from the optical axis OA to the end of the effective area, that is, the edge.
  • the second surface S2 of the first lens 101 may be provided without a critical point.
  • the refractive index (n1) of the first lens 101 may satisfy the condition of n1>1.7 or n1>1.72. Since the refractive index (n1) of the first lens 101 is the largest in the lens unit 100, the radius of curvature of the first and second lenses 101 and 102 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 101 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 101 and 102. In this case, the lens manufacturing process is It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
  • the second lens 102 may be disposed second on the object side.
  • the second lens 102 may be placed sixth on the sensor side.
  • the second lens 102 may be disposed between the first lens 101 and the third lens 103.
  • the second lens 102 may have negative refractive power at the optical axis (OA).
  • the second lens 102 may include plastic or glass.
  • the second lens 102 may be made of glass.
  • the object-side third surface S3 of the second lens 102 may be flat, and the sensor-side fourth surface S4 may be convex.
  • the object-side third surface S3 of the second lens 102 may have a gently curved surface. There is a problem in forming a curved surface when manufacturing a lens made of glass, but the object-side third surface S3 of the second lens 102 is formed as a flat plate, so manufacturing can be easy.
  • the second lens 102 is made of glass and may have a spherical surface. At least one or both of the third surface S3 and the fourth surface S4 may be spherical. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the aperture stop may be disposed around the third surface S3 on the object side of the second lens 102.
  • the composite focal length of the second to seventh lenses (102-107) disposed on the sensor side of the aperture can have a positive value, can reduce TTL within the angle of view range, and enable miniaturization of the optical system. . Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 25 to 36 degrees.
  • FOV_H horizontal angle of view
  • the third lens 103 may be arranged third from the object side.
  • the third lens 103 may be placed fifth on the sensor side.
  • the third lens 103 may be disposed between the second lens 102 and the fourth lens 104.
  • the third lens 103 may have positive (+) refractive power at the optical axis (OA).
  • the third lens 103 may include plastic or glass.
  • the third lens 103 may be made of glass.
  • the object-side fifth surface S5 of the third lens 103 may be convex, and the sensor-side sixth surface S6 may be convex.
  • the third lens 103 may have a shape in which both sides are convex at the optical axis (OA). Since both sides of the third lens 103 are convex, the TTL and number of lenses of the optical system can be minimized and light can be effectively refracted.
  • the third lens 103 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 104 may be placed fourth on the object side.
  • the fourth lens 104 may be placed fourth on the sensor side.
  • the fourth lens 104 may be disposed between the third lens 103 and the fifth lens 105.
  • the fourth lens 104 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fourth lens 104 may have positive (+) refractive power.
  • the fourth lens 104 may have a positive (+) refractive power that is different from that of the fifth lens 105.
  • the fourth lens 104 may include plastic or glass.
  • the fourth lens 104 may be made of plastic.
  • the fourth lens 104 may be made of the same material as the fifth lens 105.
  • the object-side seventh surface S7 of the fourth lens 104 may be convex, and the sensor-side eighth surface S8 may be concave.
  • the fourth lens 104 may have a meniscus shape that is convex toward the object.
  • the fourth lens 104 is made of plastic and may have an aspherical surface.
  • At least one or both of the seventh surface (S7) and the eighth surface (S8) may be spherical.
  • the object-side seventh surface S7 may be aspherical
  • the sensor-side eighth surface S8 may be spherical.
  • the aspherical coefficient of the seventh surface S7 may be provided as S1 of L4 in FIG. 4.
  • the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fifth lens 105 may be placed fifth on the object side.
  • the fifth lens 105 may be placed third on the sensor side.
  • the fifth lens 105 may be disposed between the fourth lens 104 and the sixth lens 106.
  • the fifth lens 105 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fifth lens 105 may have negative (-) refractive power.
  • the fifth lens 105 may have a negative (-) refractive power that is different from the refractive power of the fourth lens 104.
  • the fifth lens 105 may include plastic or glass.
  • the fifth lens 105 may be made of plastic.
  • the fifth lens 105 may be made of the same material as the fourth lens 104.
  • the object-side ninth surface S9 of the fifth lens 105 may be convex, and the sensor-side tenth surface S10 may be concave.
  • the fifth lens 105 may have a meniscus shape in which the object side is convex at the optical axis OA.
  • the fifth lens 105 is made of plastic and may have an aspherical surface. At least one of the ninth surface (S9) and the tenth surface (S10) may be an aspherical surface.
  • the object-side ninth surface S9 of the fifth lens 105 may be a spherical surface
  • the sensor-side tenth surface S10 of the fifth lens 105 may be an aspherical surface.
  • the aspheric coefficient of the tenth surface (S10) may be provided as S2 of L5 in FIG. 4. At least one or both of the 9th and 10th surfaces S9 and S10 of the fifth lens 105 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 104 and the fifth lens 105 may be bonded.
  • the bonding surface between the fourth lens 104 and the fifth lens 105 can be defined as the eighth surface S8.
  • the eighth surface S7 may be the same as the ninth surface of the fifth lens 105.
  • the object side of the bonded lens 145 may be convex, and the sensor side may be concave.
  • the gap between the fourth and fifth lenses 104 and 105 may be less than 0.01 mm, and may be bonded with adhesive.
  • the gap between the fourth and fifth lenses 104 and 105 may be less than 0.01 mm from the optical axis OA to the end of the effective area.
  • the fourth and fifth lenses 104 and 105 may have opposite refractive powers.
  • the bonding surface S8 of the bonded lens 145 may be spherical, and the non-bonded surfaces S7 and S10 of the bonded lens 145 may be aspherical.
  • the value of the radius of curvature of the bonding surface S8 of the bonded lens 145 may be greater than 30.
  • the value of the radius of curvature of the bonding surface S8 of the bonded lens 145 may be greater than 50.
  • the bonding surface S8 of the bonded lens 145 may be formed in a gentle shape. Through this, the adhesion process of the fourth lens 104 and the fifth lens 105 forming the bonded lens 145 is advantageous, and adhesion retention can be increased.
  • the product of the refractive power of the object-side fourth lens 104 of the bonded lens 145 and the refractive power of the sensor-side fifth lens 105 may be less than 0.
  • the product of the focal length of the object-side fourth lens 104 of the bonded lens 145 and the focal length of the sensor-side fifth lens 105 may be less than 0. Accordingly, the aberration characteristics of the optical system can be improved. If the refractive powers of the two lenses of the bonded lens 145 are the same, there is a limit to improving the aberration.
  • the object-side third lens 103 and the sensor-side sixth lens 106 may have positive refractive power. Accordingly, the third lens 103, the bonded lens 145, and the sixth lens 106 can refract some of the incident light in the optical axis direction and mutually correct chromatic aberration.
  • the focal length of the third lens 103 disposed on the object side with respect to the bonded lens 145 may be smaller than the focal length of the sixth lens 106 disposed on the sensor side.
  • the power of the third lens 103 disposed on the object side with respect to the bonded lens 145 may be greater than the power of the sixth lens 106 disposed on the sensor side.
  • the effective diameter of the fourth lens 104 may be larger than the diagonal length of the image sensor 300.
  • the effective diameter of the fourth lens 104 is the average of the effective diameters of the seventh surface S7 and the eighth surface S8, and may be larger than the diagonal length of the image sensor 300.
  • the effective diameter of the fifth lens 105 may be smaller than the effective diameter of the fourth lens 104 and larger than the diagonal length of the image sensor 300.
  • the effective diameter of the 7th surface (S7) of the fourth lens 104 is CA_L4S1 and the effective diameter of the 8th surface (S8) is CA_L4S2, the effective diameter of the 7th and 8th surfaces (S7, S8) is 1 ⁇ CA_L4S1/CA_L4S2 The condition of ⁇ 1.5 can be satisfied. If the effective diameter of the 9th surface (S9) of the fifth lens 105 is CA_L5S1 and the effective diameter of the 10th surface (S10) is CA_L5S2, the effective diameters of the 9th and 10th surfaces meet the condition of 1 ⁇ CA_L5S1/CA_L5S2 ⁇ 1.5. You can be satisfied.
  • the bonded lens 145 is made by bonding plastic lenses with different refractive indices and has an aspherical refractive surface.
  • the lenses disposed on the sensor side rather than the bonded lens 145 are spherical lenses or glass lenses, they are aspherical.
  • Aberrations can be compensated for. Since the position of the bonded lens 145 is located in any two consecutive lenses among the third to sixth lenses in the middle or behind the middle within the lens unit 100, chromatic aberration correction can be more efficient.
  • the sixth lens 106 may be placed sixth on the object side.
  • the sixth lens 106 may be placed second on the sensor side.
  • the sixth lens 106 may be disposed between the fifth lens 105 and the seventh lens 107.
  • the sixth lens 106 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the sixth lens 106 may have positive (+) refractive power.
  • the sixth lens 106 may include plastic or glass.
  • the sixth lens 106 may be made of glass.
  • the object-side 11th surface S11 of the sixth lens 106 may be convex and the sensor-side 12th surface S12 may be concave.
  • the sixth lens 106 may have a meniscus shape that is convex from the optical axis OA toward the object.
  • At least one or both of the 11th surface (S11) and the 12th surface (S12) may be spherical.
  • both the 11th surface (S11) and the 12th surface (S12) may be spherical.
  • the 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 may be provided without at least one critical point from the optical axis OA to the end of the effective area.
  • the seventh lens 107 may be placed closest to the sensor side.
  • the seventh lens 107 may be placed furthest from the object.
  • the seventh lens 107 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the seventh lens 107 may have negative (-) refractive power.
  • the seventh lens 107 may include plastic or glass.
  • the seventh lens 107 may be made of plastic.
  • the object-side 13th surface S13 of the seventh lens 107 may be convex, and the sensor-side 14th surface S14 may be concave.
  • the seventh lens 107 may have a meniscus shape convex toward the object.
  • At least one of the 13th surface (S13) and the 14th surface (S14) may be an aspherical surface.
  • both the 13th surface S13 and the 14th surface S14 may be aspherical surfaces.
  • the aspheric coefficients of the 13th and 14th surfaces (S13 and S14) may be provided as S1 and S2 of L7 in FIG. 4.
  • the 13th surface S13 of the seventh lens 107 may have a critical point from the optical axis OA to the end of the effective area.
  • the 13th surface S13 may be located at more than 50% of the effective radius r71 from the optical axis OA, or may be located in the range of 52% to 70%, or 53% to 60%.
  • the 14th surface S14 has a critical point, it may be located at more than 70% of the effective radius r72 from the optical axis OA, or within a range of 70% to 90% or 75% to 85%.
  • the seventh lens 107 may be a plastic lens closest to the image sensor 300. Additionally, by disposing one or more plastic lenses adjacent to the image sensor 300, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 300, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing one lens 107 adjacent to the image sensor 300 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
  • At least one or both of the 13th surface S13 and the 14th surface S14 of the seventh lens 107 may have a critical point.
  • the 13th surface S13 of the seventh lens 107 may have a first critical point P1 from the optical axis OA to the end of the effective area.
  • the first critical point P1 of the 13th surface S13 may be located at 55% or more of the effective radius from the optical axis OA, or may be located at 55% to 75% of the effective radius, or 60% to 70% of the effective radius.
  • the first critical point of the 13th surface S13 may be located at a distance of 2 mm or more from the optical axis OA, for example, in the range of 2.1 mm to 2.5 mm or 2.2 mm to 2.3 mm.
  • the 13th side S13 may be provided without a critical point.
  • the 13th surface (S13) having this first critical point (P1) can refract incident light to the center and periphery and improve aberration.
  • the first and second critical points (P1, P2) are the optical axis (OA) and the sign of the slope value with respect to the direction perpendicular to the optical axis (OA) is changed from positive (+) to negative (-) or from negative (-) to positive (+). ), which may mean a point where the slope value is 0.
  • the first and second critical points (P1, P2) may be points where the slope value of the tangent line passing through the lens surface increases and then decreases, or decreases and then increases.
  • the 14th surface S14 of the seventh lens 107 may have at least one second critical point P2 from the optical axis OA to the end of the effective area.
  • the second critical point (P2) of the 14th surface (S14) may be located at a distance of 60% or more of the effective radius (r72) from the optical axis (OA), or may be located in the range of 60% to 80% or 65% to 75% of the effective radius (r72). there is.
  • the second critical point P2 of the 14th surface S14 may be located at a distance of 2.9 mm or more from the optical axis OA, for example, in the range of 2.9 mm to 3.9 mm or 3.1 mm to 3.7 mm. Accordingly, the second critical point P2 is disposed closer to the edge than the first critical point P1, so that the seventh lens 107 can refract the incident light to the periphery of the image sensor 300.
  • the average effective radius of the 13th and 14th surfaces (S13, S14) of the seventh lens 107 is arranged to be smaller than Imgh, which is 1/2 of the diagonal length of the image sensor 300, which has a second critical point (P2). Light can be refracted to the periphery of the image sensor 300 by the fourteenth surface S14.
  • Sag41 represents the height from the center of the seventh surface (S7) of the fourth lens 104 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), Sag41
  • the maximum value of may be the height at the edge of the seventh surface S5.
  • Sag42 represents the height from the center of the eighth surface (S8) of the fourth lens 104 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), and the maximum value of Sag42 is the eighth surface ( It may be the height at the edge of S8).
  • Sag52 represents the height from the center of the ninth surface (S9) of the fifth lens 105 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), and the maximum value of Sag52 is on the ninth surface ( It may be the height at the edge of S9).
  • Sag61 represents the height from the center of the 11th surface (S11) of the sixth lens 106 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), and the maximum value of Sag61 is the 11th surface ( It may be the height at the edge of S11).
  • Sag62 is the height from the center of the twelfth surface S12 of the sixth lens 106 to the lens surface in the direction (X, Y) perpendicular to the optical axis OA, and the maximum Sag value is the height at the edge.
  • the maximum Sag values can satisfy:
  • Max_Sag51 ⁇ Max_Sag52 ⁇ Max_Sag41 can be satisfied.
  • Max_Sag52 and Max_Sag61 can be less than 1.
  • the lens surface is located on the sensor side based on a straight line perpendicular to the optical axis (OA), and if it is a negative value, the lens surface is located on the sensor side based on a straight line perpendicular to the optical axis (OA). It is located on the object side.
  • the object side and the sensor side of the seventh lens 107 may be the sides with the smallest difference between the maximum and minimum Sag values. This means that the distance between the object side and the sensor side of the seventh lens 107 is constant, and the average radius of curvature may be larger than the average radius of curvature of the other lenses.
  • the center thickness of the first to seventh lenses 101 to 107 is indicated by CT1 to CT7
  • the edge thickness which is the end of the effective area of each lens, is indicated by ET1 to ET7
  • the thickness between the two adjacent lenses is indicated by CT1 to CT7.
  • the center gap is indicated by CG1 ⁇ CG6, and the edge gap between the edges of each lens is indicated by EG1 ⁇ EG6.
  • the center thickness of the bonded lens 145 is expressed as CT34
  • the edge thickness is expressed as ET45.
  • back focal length (BFL) is the optical axis distance from the image sensor 300 to the center of the last lens.
  • TTL is the optical axis distance from the center of the first surface S1 of the first lens 101 to the upper surface of the image sensor 300.
  • FIG. 3 is an example of lens data of the optical system of the embodiment of FIG. 1.
  • the radius of curvature at the optical axis (OA) of the first to seventh lenses (101, 102, 103, 104, 105, 106, 107), the thickness of the lens, the center distance between the lenses, d-line
  • You can set the size of the refractive index, Abbe's Number, and clear aperture (CA).
  • the lens surfaces of the first, second, sixth, and seventh lenses (101, 102, 106, and 107) among the lenses of the lens unit 100 may include an aspherical surface with a 30th order aspheric coefficient.
  • the first, second, sixth, and seventh lenses 101, 102, 106, and 107 may include a lens surface having a 30th order aspherical coefficient.
  • an aspheric surface with a 30th order aspheric coefficient (a value other than “0”) can particularly significantly change the shape of the aspherical surface in the peripheral area, so the optical performance of the peripheral area of the field of view (FOV) can be well corrected.
  • the thickness (T1-T7) of the first to seventh lenses (101, 102, 103, 104, 105, 106, and 107) and the gap (G1-G6) between two adjacent lenses can be set.
  • the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
  • the object-side third surface S3 of the second lens 102 is flat and the radius of curvature may be infinite. Comparing the absolute value of the radius of curvature of each lens, among the lens surfaces having curvature, the radius of curvature of the object-side 13th surface (S13) of the seventh lens (107) at the optical axis (OA) is the largest, and the radius of curvature of the object-side 13th surface (S13) of the seventh lens (107) is the largest.
  • the radius of curvature of the tenth surface (S10) on the sensor side of ) may be the smallest among the lenses.
  • the difference between the maximum radius of curvature and the minimum radius of curvature may be 50 times or more, for example, in the range of 52 to 58 times.
  • the central thickness (CT4) of the fourth lens 104 is the largest among the lenses
  • CT7 of the seventh lens 107 is the smallest among the lenses.
  • the difference between the maximum and minimum center thickness of the lens may be in the range of 1.5 mm or more and 2.5 mm or less.
  • the center spacing (CG1) between the first lens 101 and the second lens 102 is the maximum, and the center spacing between the second and third lenses 102 and 103 is the maximum. It can be minimal.
  • the minimum center spacing excludes the bonding surface of the bonding lens 145.
  • the difference between the maximum center spacing and the minimum center spacing among the spaced apart lenses may be 10 mm or more, for example, in the range of 10 mm to 15 mm.
  • a lens with the maximum effective diameter may be disposed between the first lens 101 closest to the object and the seventh lens 107 closest to the image sensor 300.
  • the lens having the maximum effective diameter may be a glass lens.
  • the lens with the maximum effective diameter can be placed closest to the object side.
  • the lens having the maximum effective diameter may be the first lens 101.
  • the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • the lens surface having the maximum effective diameter may be the object-side first surface S1 of the first lens 101.
  • the lens with the minimum effective diameter may be any one of plastic lenses and, for example, may be placed closest to the image sensor 300.
  • the lens with the minimum effective diameter may be the seventh lens 107.
  • the lens surface having the minimum effective diameter may be the 13th surface (S13) of the 7th lens 107.
  • the effective diameter of each of the first to fourth lenses (101-104) adjacent to the object side may be larger than the effective diameter of the fifth, sixth, and seventh lenses (105, 106, and 107) adjacent to the sensor side.
  • the effective diameters of the first to fourth lenses 101 - 104 may be larger than the diagonal length of the image sensor 300 .
  • the average effective diameter of the sixth lens 106 and the seventh lens 107 may be smaller than the diagonal length of the image sensor 300. Accordingly, light incident through a plurality of lenses aligned along the optical axis can be guided to the image sensor 300.
  • the refractive index of the first lens 101 is the highest among lenses and may be greater than 1.7, for example, greater than 1.72.
  • the refractive index of the fourth lens 104 is the smallest among the lenses and may be less than 1.6, for example, less than 1.55.
  • the difference between the maximum and minimum refractive indices may be 0.2 or more.
  • the Abbe numbers of the second lens 102 and the third lens 103 are the largest among the lenses and may be 60 or more.
  • the Abbe number of the fifth lens 105 and the seventh lens 107 is the minimum among the lenses and may be 25 or less.
  • the difference between the maximum refractive index and the minimum Abbe number may be 40 or more.
  • the Abbe number of the second lens 102 and the third lens 103 adjacent to the bonded lens 145 is the largest, and the Abbe number of the fifth lens 105 and the seventh lens 107 adjacent to the image sensor 300 is set to the largest.
  • the focal lengths F1, F5, and F7 of the first, fifth, and seventh lenses 101, 105, and 107 may have a negative (-) sign.
  • the first, fifth, and seventh lenses (101, 105, and 107) may have negative refractive power.
  • the focal lengths F2, F3, F4, and F6 of the second, third, fourth, and sixth lenses 102, 103, 104, and 106 may have a positive (+) sign.
  • the second, third, fourth, and sixth lenses (102, 103, 104, and 106) may have positive (+) refractive power.
  • Second, third, and fourth lenses 102, 103, and 104 with positive (+) refractive power may be disposed on the sensor side of the first lens 101 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
  • first lens 101 and the second lens 102 which are lenses disposed adjacently, may satisfy the following conditions.
  • the second lens 102 has positive refractive power and the first lens 101 has negative refractive power, so according to conditions 1 and 2, the refractive index of the second lens is greater than that of the first lens. It is smaller than the refractive index, and the dispersion value of the second lens is greater than the dispersion value of the first lens.
  • Chromatic aberration occurring in glass lenses can be corrected with glass lenses.
  • the first lens 101 and the second lens 102 which are glass lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.16 and the Abbe number difference of 20 to 60, thereby reducing chromatic aberration occurring in the glass lens. It can be compensated with
  • Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes.
  • the first lens 101 and the second lens 102 are used to correct the chromatic aberration occurring in the glass lens, and the fourth lens 104 and the fifth lens 105 are used. This corrects chromatic aberration occurring in plastic lenses.
  • the chromatic aberration occurring in the plastic lens can be compensated for by the bonded lens, the fourth lens 104 and the fifth lens 105, satisfying a refractive index difference of 0.1 to 0.15 and an Abbe number difference of 20 to 60. .
  • the difference in refractive index is rounded to the third decimal place, and the Abbe number difference is rounded to the first decimal place to compare values.
  • chromatic dispersion can be reduced by the glass lenses and chromatic dispersion can be increased by the plastic lenses.
  • the focal length of the sixth lens 106 is the largest among the lenses and may be 80 or more or 100 or more.
  • the sixth lens 106 may have the largest focal length and the smallest refractive power.
  • the focal length of the fifth lens 105 is the smallest among the lenses and may be 20 or less or 15 or less.
  • the lens with the minimum focal length may be the third lens 103.
  • the third lens 103 may be 30 or less or 25 or less.
  • the difference between the maximum and minimum focus distances may be 50 or more or 80 or more. Accordingly, it is possible to have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in the field of view range set in the optical system, and good optical performance in the periphery of the field of view.
  • the critical point is the point at which the trend of the sag value changes. In other words, it is the point where the sag value increases and then decreases, or the point where the sag value decreases and then increases. Referring to FIG. 6, it can be seen that the sensor side of the seventh lens 107 has a critical point between a point 1.8 mm apart and a point 2.0 mm apart in the direction perpendicular to the optical axis.
  • the sag value increases to a point 1.9 mm apart in the direction perpendicular to the optical axis, and then decreases as it goes from a point 1.9 mm apart to a point 4.6 mm apart in the direction perpendicular to the optical axis. I'm doing it. If a critical point exists on the sensor side of the seventh lens (107), that is, the sensor side of the last lens, that is, the lens side closest to the sensor, the TTL can be reduced, making it easy to miniaturize and lighten the optical system.
  • the thickness T1 of the first lens 101 may have a difference between the maximum thickness and the minimum thickness of 1 times or more, for example, 1 to 1.2 times, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum.
  • the thickness T2 of the second lens 102 may have a maximum thickness ranging from 1 to 1.3 times the minimum thickness.
  • the second lens 102 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2).
  • the thickness T3 of the third lens 103 may be maximum at the center and minimum at the edge, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness.
  • the thickness T4 of the fourth lens 104 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.8 to 2.2 times the minimum thickness.
  • the thickness T5 of the fifth lens 105 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
  • the thickness T6 of the sixth lens 106 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.0 to 1.3 times the minimum thickness.
  • the thickness T7 of the seventh lens 107 may be minimum at the center and maximum at the edge, with the maximum thickness being in the range of 1 to 1.2 times the minimum thickness.
  • the center thickness (CT45) of the bonded lens 145 may be greater than the edge thickness (ET45).
  • the center thickness (CT45) of the bonded lens 145 is the distance from the center of the object-side seventh surface (S7) of the fourth lens 104 to the center of the tenth surface (S10) of the fifth lens 105, and the edge
  • the thickness ET45 is the distance from the end of the effective area of the seventh surface S7 to the tenth surface S10 in the optical axis direction.
  • the maximum thickness of the bonded lens 145 is at the center, the minimum thickness is at the edge, and the maximum thickness may be in the range of 1 to 1.2 times the minimum thickness.
  • the first interval G1 between the first and second lenses 101 and 102 may be maximum at the center and minimum at the edges.
  • the second gap G2 between the second and third lenses 102 and 103 may be maximum at the edge and minimum at the center.
  • the third gap G3 between the third and fourth lenses 103 and 104 may be maximum at the edge and minimum at the center.
  • the fifth gap G5 between the fifth and sixth lenses 105 and 106 may be maximum at the center and minimum at the edges.
  • the sixth gap G6 between the sixth and seventh lenses 106 and 107 may be maximum at the center and minimum at the edges.
  • the chief ray angle (CRA) in the optical system and camera module of FIG. 1 is 10 degrees or more in the 1-field, which is the end of the diagonal length of the image sensor, for example, in the range of 10 to 35 degrees or 10 degrees. It may range from degrees to 25 degrees. Additionally, the angle difference of the main ray from low temperature (-40 degrees) to high temperature (95 degrees) may be less than 1 degree. Accordingly, even if the temperature changes from low to high, the difference in the angle of the main ray is not large and stable optical performance can be achieved.
  • CRA chief ray angle
  • FIG. 14 it is a graph showing the peripheral light ratio or relative illumination according to the image height in the optical system according to the first embodiment, and is 70% or more from the center of the image sensor to the end of the diagonal, for example, 75% or more of the surroundings. It can be seen that the light intensity ratio appears. In other words, it can be seen that there is almost no difference in ambient illuminance (Zoom positions 1, 2, 3) depending on room temperature, low temperature, and high temperature up to 4.5 mm or more from the optical axis.
  • Figures 8 to 10 are graphs showing diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 1, and are graphs showing luminance ratio (modulation) according to spatial frequency. . 8 to 10, in the first embodiment of the present invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
  • Figures 11 and 12 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 1.
  • 11 to 13 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right.
  • the X-axis may represent focal length (mm) and distortion (%)
  • the Y-axis may represent the height of the image.
  • the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm
  • the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. .
  • the optical system 1000 according to the first embodiment can be used in most cases. You can see that the measured values in the area are adjacent to the Y axis. That is, the optical system 1000 according to the first embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees
  • the room temperature is in the range of 22 degrees ⁇ 5 degrees or 18 to 27 degrees
  • the high temperature is 85 degrees or higher, for example, in the range of 85 to 105 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 11 to 13 is less than 10%, for example, 5% or less, or is almost unchanged.
  • Table 1 compares changes in optical properties such as EFL, BFL, F number (F#), TTL, and angle of view (FO)V at room temperature, low temperature, and high temperature in the optical system according to the first embodiment of the present invention.
  • the rate of change in optical properties at low temperatures is 5% or less, for example, 3% or less
  • the rate of change in optical properties at low temperatures is 5% or less, for example, 3% or less.
  • the change in optical properties according to the temperature change from low to high temperature for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV) is less than 10%, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, it is designed to enable temperature compensation for the plastic lenses, thereby preventing a decrease in the reliability of optical characteristics.
  • the optical system of the first embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • Table 2 shows the items of the above-described equations in the optical system 1000 of the first embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1000.
  • mm ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the first surface (S1) to the fourteenth surface (S14), Focal distance of each of the first to seventh lenses (F1, F2, F3, F4, F5, F6, F7) (mm), sum of refractive index, sum of Abbe number, sum of thickness (mm), sum of spacing between adjacent lenses , effective diameter characteristics, sum of refractive indices of glass lenses, sum of refractive indices of plastic materials, angle of view (FOV) (Degree), edge thickness (ET), focal length of the first and second lens groups, F number, etc.
  • FOV angle of view
  • ET edge thickness
  • the optical system 1500 may include five or more lenses.
  • the optical system 1500 and a camera module having the same can be mounted inside or outside the vehicle to monitor the driver or sense external objects or lanes.
  • the material of the lenses can be glass or plastic, and the coefficient of linear expansion of glass is smaller than that of plastic. Accordingly, a glass lens is used to prevent changes in the focal imaging position due to temperature changes.
  • glass lenses are more expensive than plastic lenses, and there is a problem in that it is difficult to meet the demand for lower costs. Accordingly, the lenses in the optical system 1500 are required to be a mixture of glass lenses and plastic lenses.
  • the optical system 1500 can reduce the thickness of the plastic lens, providing lighter weight and lower cost, and the plastic lens can provide good correction for various aberrations such as spherical aberration and chromatic aberration. there is. Additionally, since plastic lenses can provide aspherical lenses, distortion in the peripheral area can be minimized.
  • the optical system 1500 may include n lenses, where the n-th lens may be the last lens adjacent to the image sensor 300, and the n-1-th lens may be the lens closest to the last lens.
  • n is an integer of 5 or more, for example, may be 5 to 8.
  • the n lenses may have a ratio of glass lenses to plastic lenses in the range of 2:3 to 2:6 or 3:4 to 3:5.
  • the optical system 1500 may include a plurality of lens groups LG1 and LG2.
  • each of the plurality of lens groups LG1 and LG2 includes at least one lens.
  • the optical system 1500 may include a first lens group LG1 and a second lens group LG2 sequentially arranged along the optical axis OA from the object side toward the image sensor 300.
  • the number of lenses for each of the first lens group (LG1) and the second lens group (LG2) may be different.
  • the number of lenses of the second lens group (LG2) may be greater than the number of lenses of the first lens group (LG1), for example, 4 times or 5 times the number of lenses of the first lens group (LG1).
  • the first lens group LG1 may include at least one lens.
  • the first lens group LG1 may have three or fewer lenses.
  • the first lens group LG1 may preferably include one lens.
  • the second lens group (LG2) may include two or more lenses.
  • the second lens group (LG2) may have 4 to 7 elements.
  • the second lens group (LG2) may preferably have 6 lenses.
  • the first lens group LG1 may include at least one lens made of glass.
  • the first lens group LG1 may provide the lens closest to the object side as a glass lens. This glass material has a small amount of expansion and contraction due to changes in external temperature, and its surface is less likely to be scratched, preventing surface damage.
  • the lens material of the second lens group LG2 may be a mixture of at least one lens made of glass and at least one lens made of plastic.
  • at least one plastic lens may be placed closer to the sensor than a glass lens.
  • the second lens group LG2 may include two or more lenses made of glass, for example, 2 to 4 lenses made of glass.
  • the second lens group LG2 may include, for example, 2 to 6 lenses.
  • the second lens group LG2 may have one or more lenses made of plastic.
  • the second lens group LG2 may include two or more plastic lenses, for example, two to four plastic lenses.
  • At least one lens closest to the object in the optical system 1500 may be made of glass.
  • Three or more lenses closest to the object, for example, three to five lenses, may be made of glass. Since glass lenses have a smaller rate of change in contraction and expansion due to temperature changes than plastic lenses, glass lenses can be placed in an area adjacent to the outside of the lens barrel.
  • At least one lens closest to the image sensor 300 within the optical system 1500 may be made of plastic.
  • at least two lenses closest to the image sensor 300 may be made of plastic, and preferably, at least two lenses adjacent to the image sensor 300 may be made of plastic. That is, since the n-th and n-1-th lenses in the optical system 1500 are disposed as plastic lenses, various aberrations of light on the incident side of the image sensor 300 can be corrected.
  • lenses made of plastic may be continuously arranged, and lenses made of glass may be arranged continuously.
  • lenses made of plastic may be placed between lenses made of glass.
  • lenses made of glass may be placed between lenses made of plastic.
  • Each lens 201-207 may have an object side and a sensor side.
  • the number of lenses with an aspherical sensor side and an aspherical object side may be greater than the number of plastic lenses.
  • the number of lenses with a spherical sensor side and a spherical object side may be smaller than a lens with aspherical surfaces on both sides. Since the optical system 1500 includes more aspherical lenses than spherical lenses, various aberrations can be corrected.
  • the lens with the highest refractive index may be located in the first lens group LG1 or adjacent to the object.
  • the maximum refractive index may be 1.8 or more.
  • the color dispersion of incident light can be increased by a lens with the highest refractive index, and the center thickness can be thinner than the edge thickness. Additionally, since the lens with the maximum refractive index is disposed on the object side, it is easy to change the radius of curvature of the second and subsequent lenses and the center thickness can be increased.
  • a lens having the maximum effective diameter may be placed at the center of the object side and the sensor side. As you move from the object side to the sensor side, the effective diameter of the lens can increase and then decrease. As you move from the object side to the sensor side, the effective diameter of the lens may become smaller, then larger, and then smaller again. Through this, since the light incident on the optical system 1500 moves away from the optical axis and then converges towards the optical axis, the optical system 1500 can form a stable optical path.
  • the effective diameter may be the diameter of the effective area where effective light is incident on each lens.
  • the effective diameter is the length in the direction (X, Y) perpendicular to the optical axis, and is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • “Diameter of the lens surface” may mean “effective diameter of the lens.”
  • the “diameter of the lens” may be the diameter of the entire lens including the flange portion of the lens in addition to the effective area of the lens.
  • the flange of the lens is not shown in FIGS. 15 and 16, the flange may be a part that protrudes from the side of the lens in a direction perpendicular to the optical axis in order to couple the lens to the barrel. The flange may not allow effective light to enter.
  • spacers may be additionally disposed between the flanges of different lenses.
  • Each of the lenses 201-207 may include an effective area and an unactive area.
  • the effective area may be an area through which light incident on each of the lenses passes. In other words, the effective area can be defined as an effective area or effective diameter in which the incident light is refracted to realize optical characteristics.
  • the unactive area may be placed around the active area.
  • the non-effective area may be an area where effective light is not incident from the plurality of lenses. In other words, the non-effective area may be an area unrelated to optical characteristics. Additionally, the end of the non-effective area may be an area fixed to a lens barrel or the like that accommodates the lens.
  • the total top length (TTL) within the optical system 1500 may be greater than 2 times, for example, greater than 4 times and less than or equal to 12 times Imgh.
  • Total track length (TTL) is the distance on the optical axis (OA) from the center of the object side of the first lens to the image surface of the image sensor 300.
  • Imgh is the distance from the optical axis (OA) to the diagonal end of the image sensor 300 or 1/2 of the maximum diagonal length.
  • the effective focal length (EFL) is 10 mm or more and the angle of view (FOV) is less than 45 degrees, so that it can be provided as a standard optical system in a vehicle camera module.
  • the optical system and camera module according to the embodiment may be applied to a camera for an Advanced Driving Assistance System (ADAS) installed inside or outside a vehicle.
  • ADAS Advanced Driving Assistance System
  • the optical system 1500 may have a TTL/Imgh condition of 5 or more and 7.5 or more, for example, 6 or more and 7.5 or less.
  • the optical system 1500 sets the TTL/Imgh value to 5 or more and 7.5 times or less, thereby providing a lens optical system for a vehicle.
  • the total number of lenses in the first and second lens groups (LG1, LG2) is 8 or less. Accordingly, the optical system 1500 can provide an image without exaggeration or distortion for the image being formed.
  • the effective diameter of at least one plastic lens within the optical system 1500 may be smaller than the length of the image sensor 300.
  • the effective diameter is the diameter or length of the effective area where light is incident.
  • the length of the image sensor 300 is the maximum length of the diagonal in the direction perpendicular to the optical axis OA.
  • the number of lenses with an effective diameter larger than the length of the image sensor 300 is 50% or more or 60%, and the number of lenses with an effective diameter smaller than the length of the image sensor 300 is less than 50% or 40%. It may be less than
  • the optical system 1500 may include at least one bonded lens 245 therein.
  • the bonded lens 245 includes at least two lenses having different refractive powers bonded together, and the gap between the two lenses may be less than 0.01 mm.
  • the bonded lens 245 may be a lens in which two lenses with different focal lengths are bonded together.
  • the joint of the two lenses can be bonded with adhesive.
  • the effective diameter of at least one or all lenses disposed on the object side based on the bonded lens 245 may be larger than the length of the image sensor 300.
  • the effective diameter of at least one lens disposed on the sensor side with respect to the bonded lens 245 may be smaller than the length of the image sensor 300.
  • the object-side lens 203 may be longer than the length of the image sensor 300
  • the sensor-side lens 204 may be longer than the length of the image sensor 300.
  • the lenses between the bonded lens 245 and the first lens 201 may be made of glass or plastic. Lenses disposed between the bonded lens 245 and the image sensor 300 may be made of plastic. The lenses between the bonded lens 245 and the first lens 201 may be lenses with spherical surfaces on both sides or aspherical lenses on both sides. The lenses disposed between the bonded lens 245 and the image sensor 300 may be aspherical lenses on both sides. The two sides are the object side and the sensor side. Accordingly, by disposing aspherical lenses between the bonded lens 245 and the image sensor 300, optical performance can be improved by correcting curvature aberration and chromatic aberration.
  • the first lens group LG1 and the second lens group LG2 may have a set interval.
  • the optical axis spacing between the first lens group (LG1) and the second lens group (LG2) on the optical axis (OA) is the sensor side of the lens closest to the sensor among the lenses in the first lens group (LG1) and the second lens group ( Among the lenses in LG2), it may be the optical axis spacing between the object side of the lens closest to the object side.
  • the optical axis interval between the first lens group (LG1) and the second lens group (LG2) may be less than 1 times the optical axis distance of the first lens group (LG1), for example, 0.1 of the optical axis distance of the first lens group (LG1). It may range from 2x to 1x.
  • the optical axis distance between the first lens group (LG1) and the second lens group (LG2) may be 0.2 times or less than the optical axis distance of the second lens group (LG2), for example, in the range of 0.01 to 0.2 times.
  • the optical axis distance of the second lens group LG2 is the optical axis distance between the object side of the lens closest to the object side of the second lens group LG2 and the sensor side of the lens closest to the image sensor 300.
  • the sensor side of the object-side lens may be concave and the object-side of the sensor-side lens may be concave. That is, the sensor side closest to the sensor side in the first lens group LG1 may be concave, and the object side closest to the object side in the second lens group LG2 may be concave.
  • the first lens group (LG1) diffuses the light incident through the object side
  • the second lens group (LG2) refracts the light diffused through the first lens group (LG1) into the area of the image sensor 300. I can do it for you.
  • the first lens group LG1 may have negative (-) refractive power
  • the second lens group LG2 may have positive (+) refractive power.
  • the focal distance of the first lens group LG1 may be greater than the focal distance of the second lens group LG2, for example, 5 times or more, for example, in the range of 5 to 15 times.
  • the effective focal length (EFL) of the optical system 1500 may be smaller than the absolute value of the focal length of the first lens group LG1.
  • the effective focal length (EFL) of the optical system 1500 may be smaller than the absolute value of the focal distance of the first lens group (LG1) and greater than the absolute value of the focal distance of the second lens group (LG2).
  • the number of lenses with positive (+) refractive power within the optical system 1500 may be equal to or greater than the number of lenses with negative (-) refractive power.
  • the number of lenses with positive refractive power may be 50% or more than the total number of lenses.
  • the average refractive index of lenses with positive (+) refractive power may be greater than the average of lenses with negative (-) refractive power. Accordingly, the dispersion value of lenses with negative (-) refractive power may be greater than that of lenses with positive (+) refractive power.
  • the lens unit 200 may be a mixture of glass-made lenses and plastic-made lenses.
  • the number of lenses made of plastic may be 60% or more, 40% to 85%, or 60% to 80% of the total number of lenses. Accordingly, if more plastic lenses are placed within the camera module, the weight of the camera module can be reduced, and the plastic material makes it easy to polish and process, has strong external impact, and is highly price competitive and easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance.
  • Embodiments of the invention can reduce the weight of the camera module by further mixing plastic lenses in the optical system 1500, provide lower manufacturing costs, and suppress deterioration of optical properties due to temperature changes.
  • plastic lenses can replace glass lenses, and polishing and processing of lens surfaces such as aspherical surfaces or free-form surfaces can be easy.
  • the lens unit 200 may include lenses of a first material and lenses of a second material arranged along the optical axis OA.
  • the first material may be glass, and the second material may be plastic.
  • Lenses of the first material may be disposed between lenses of the second material.
  • Lenses of the second material may be disposed between lenses of the first material.
  • the lens unit 200 may include a lens of a first material having an aspherical surface along the optical axis OA, lenses of a first material having a spherical surface, and lenses of a second material having an aspherical surface.
  • the first material may be glass, and the second material may be plastic.
  • a lens made of a first material having a spherical surface may be disposed between lenses made of a second material having an aspherical surface.
  • the lens of the second material may be disposed between the lens of the first material having an aspherical surface and the lens of the first material having a spherical surface.
  • the effective diameter of the lens closest to the object within the lens unit 200 may be larger than the effective diameter of the lens closest to the image sensor 300. Accordingly, the brightness of the optical system can be controlled.
  • the effective diameter may be the average effective diameter of the object side and the sensor side of each lens.
  • the lens unit 200 includes a first lens 201, a second lens 202, a third lens 203, a fourth lens 204, and a fifth lens aligned along the optical axis from the object side toward the sensor side. (205), it may include a sixth lens (206) and a seventh lens (207).
  • the focal length of the lens closest to the object may be greater than the focal length of the plastic lens.
  • the plastic lens may be at least one lens disposed on the sensor side of the bonded lens or at least one lens adjacent to the image sensor.
  • the lens unit 200 may be placed in a camera module having an inner barrel on one side or the entire inner surface of the lens barrel.
  • the lens unit 200 may be disposed in a camera module having a plurality of inner barrels around different lenses of the lens barrel.
  • the lens unit 200 may be disposed in a camera module having a first inner barrel in contact with an outer surface of at least one lens of the lens barrel and a second inner barrel in contact with an outer surface of at least one lens.
  • the lens unit 200 may be disposed in a camera module having a plurality of inner barrels each disposed between the outer side of at least one or two lenses and the lens barrel.
  • the lens unit 200 may be disposed in a camera module in which a plurality of inner barrels have a material different from that of the lens barrel.
  • the lenses constituting the lens unit 200 at least some of the lenses made of glass may be placed in the lens barrel, and at least some of the lenses made of plastic may be placed in the inner barrel disposed within the lens barrel.
  • the optical system 1500 can maintain resolution according to temperature changes.
  • the lens unit 200 is disposed in a camera module having a heterogeneous barrel to minimize decentering of a lens, such as a plastic lens, that expands according to temperature changes.
  • the lens barrel on which the lens unit 200 is disposed has a plurality of inner barrels within the lens barrel, thereby maintaining the resolution of the optical system and suppressing deformation of the lenses due to temperature changes. Accordingly, the effective diameter of at least some of the glass lenses included in the lens unit 200 may be smaller than the effective diameter of at least some of the plastic lenses.
  • the average effective diameter of plastic lenses is PLca_Aver, and if the average effective diameter of glass lenses is GLca_Aver, the condition of PLca_Aver ⁇ GLca_Aver can be satisfied. Additionally, the condition of 1 ⁇ GLca_Aver / PLca_Aver ⁇ 1.5 can be satisfied. Additionally, the relationship between the length of the image sensor 300 and the average effective diameter (PLca_Aver) of the plastic lens may satisfy the condition of 1 ⁇ PLca_Aver/(Imgh*2) ⁇ 1.5.
  • the relationship between the average effective age of the glass material and the length of the image sensor 300 may satisfy the condition of 1.1 ⁇ GLca_Aver/(Imgh*2) ⁇ 1.5.
  • the difference between the maximum length of the image sensor 300 and the effective diameter of the plastic lens may be arranged to be small. Accordingly, by placing a plastic lens with a small effective diameter adjacent to the image sensor 300, the plastic lenses can disperse color from the center of the image sensor 300 to the periphery.
  • the average effective diameter of the glass materials may be 10 mm or more, for example, in the range of 10 mm to 15 mm.
  • the average effective diameter of the plastic material may be 8 mm or more, for example, in the range of 8 mm to 12 mm.
  • the lens with the minimum effective diameter may be made of plastic, and the lens with the maximum effective diameter may be made of glass. Within the lens unit 200, the minimum effective diameter may be in the range of 7 mm to 10 mm, and the maximum effective diameter may be in the range of 11 mm to 15 mm.
  • Plastic lenses are designed to have a smaller effective diameter than glass lenses and are placed so as not to contact the lens barrel, thereby minimizing changes in optical performance due to temperature changes. Additionally, the optical system 1500 can control incident light to improve resolution and chromatic aberration control characteristics, and can improve vignetting characteristics of the optical system 1500.
  • the optical system 1500 or camera module may include an image sensor 300.
  • the image sensor 300 can detect light and convert it into an electrical signal.
  • the image sensor 300 can detect light that sequentially passes through the lens unit 200.
  • the image sensor 300 may include an element that can detect incident light, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the length of the image sensor 300 is the maximum length in the diagonal direction orthogonal to the optical axis (OA), is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1), and is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1). It may be larger than the effective diameter of the lens closest to the sensor.
  • the number of lenses having an effective diameter larger than the length of the image sensor 300 may be 4 to 6, and the number of lenses having an effective diameter smaller than the length of the image sensor 300 may be 1 to 3.
  • the optical system 1500 or camera module may include a filter 500.
  • the filter 500 may be disposed between the second lens group LG2 and the image sensor 300.
  • the filter 500 may be disposed between the image sensor 300 and a lens of the lens unit 200 closest to the sensor.
  • the filter 500 may be disposed between the nth lens and the image sensor 300.
  • the cover glass 400 is disposed between the filter 500 and the image sensor 300, protects the upper part of the image sensor 192, and can prevent the reliability of the image sensor 192 from deteriorating. Cover glass 400 may be removed.
  • the cover glass 400 may be a protective glass.
  • the filter 500 may include an infrared filter or an infrared cut-off filter.
  • the filter 500 may pass light in a set wavelength band and filter light in a different wavelength band.
  • radiant heat emitted from external light can be blocked from being transmitted to the image sensor 300. Additionally, the filter 500 can transmit visible light and reflect infrared rays.
  • the optical system 1500 may include an aperture (Stop).
  • the aperture can control the amount of light incident on the optical system 1500.
  • the effective diameter of the lens surface tends to increase from the object side to the aperture.
  • the effective diameter of the lens surfaces tends to decrease as it moves from the aperture to the sensor.
  • the fact that the effective diameter of the lens planes tends to increase or decrease does not mean only when the effective diameter of the lens planes increases or decreases. For example, this includes cases where the effective diameter of the lens surfaces increases and then decreases as it moves from the aperture to the sensor side.
  • the aperture may be placed at a set position.
  • the aperture may be disposed around the object side or sensor side of the lens closest to the object side among the lenses of the second lens group LG2.
  • the aperture may be disposed around the object side or sensor side of the object side lens of the first lens group LG1.
  • at least one lens selected from among the plurality of lenses may function as an aperture.
  • the object side or the sensor side of one lens selected from among the lenses of the optical system 1500 may function as an aperture to adjust the amount of light.
  • the sum of the refractive indices of the lenses of the lens unit 200 may be 8 or more, for example, in the range of 8 to 15, and the average refractive index may be in the range of 1.58 to 1.7.
  • the sum of the Abbe numbers of each lens may be 270 or more, for example, in the range of 280 to 350, and the average of the Abbe numbers may be 50 or less, for example, in the range of 35 to 47.
  • the sum of the central thicknesses of all lenses may be 20 mm or more, for example, in the range of 25 mm to 30 mm, and the average of the central thicknesses may be in the range of 3.5 mm to 4.0 mm.
  • the sum of the center spacings between the lenses at the optical axis (OA) may be greater than 3 mm, for example in the range of 4 mm to 6 mm, and less than the sum of the center thicknesses of the lenses. Additionally, the average effective diameter of each lens surface (S1-S14) of the lens unit 200 may be 8 mm or more, for example, in the range of 8 mm to 15 mm.
  • the angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees.
  • the F number of the optical system or camera module may be 2.4 or less, for example, in the range of 1.4 to 2.4 or 1.5 to 1.8.
  • the maximum angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees.
  • the horizontal field of view (FOV_H) of the vehicle optical system in the Y-axis direction may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees.
  • the vertical angle of view is provided at a smaller angle than the horizontal angle of view, and may be 20 degrees or less, for example, in the range of 10 to 20 degrees.
  • the sensor length in the horizontal direction (Y) may be 8.064 mm ⁇ 0.5 mm
  • the sensor height in the vertical direction (X) may be 4.54 mm ⁇ 0.5 mm.
  • the horizontal angle of view (FOV_H) is the angle of view based on the horizontal length of the sensor. Accordingly, it is possible to suppress changes in the focus imaging position due to temperature changes, and it is possible to provide a vehicle camera in which various aberrations are well corrected.
  • the first lens 201 can be made of glass even though it is designed using both a plastic lens and a glass lens. This has the advantage that glass material is more resistant to scratches than plastic material and is not sensitive to external temperature.
  • the first lens 201 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
  • the angle of view may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees.
  • This horizontal angle of view may be a preset angle for an advanced driver assistance system (ADAS).
  • ADAS advanced driver assistance system
  • the optical system 1500 according to the second embodiment may further include a reflective member for changing the path of light.
  • the reflection member may be implemented as a prism that reflects incident light from the first lens group LG1 in the direction of the lenses.
  • FIG. 15 is a side cross-sectional view of an optical system and a camera module having the same according to a second embodiment
  • FIG. 16 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses according to FIG. 15,
  • FIG. 17 is a side cross-sectional view of FIG. 15.
  • This is a table showing the lens characteristics of the optical system of
  • Figure 18 is a table showing the aspheric coefficients of the lenses in the optical system of Figure 15
  • Figure 19 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of Figure 15.
  • 20 is a table showing the Sag values of the lens surfaces of the third to sixth lenses in the optical system of FIG. 15, and FIG.
  • FIG. 21 is a table showing the CRA (Chief Ray Angle) at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of FIG. 15.
  • CRA Choef Ray Angle
  • Figures 22 to 24 are graphs showing data on the diffraction MTF (Modulation Transfer Function) at room temperature, low temperature, and high temperature of the optical system of Figure 15, and Figures 25 to 27 are graphs showing data for the optical system of Figure 15.
  • This is a graph showing data on aberration characteristics at room temperature, low temperature, and high temperature
  • Figure 28 is a graph showing relative illuminance according to the height of the image sensor according to the second embodiment.
  • the optical system 1500 includes a lens unit 200, and the lens unit 200 may include first to seventh lenses 201 to 207.
  • the first to seventh lenses 201 to 207 may be sequentially arranged along the optical axis OA of the optical system 1500.
  • Light corresponding to object information may pass through the first to seventh lenses 201 to 207 and the filter 500 and enter the image sensor 300.
  • the first lens 201 is the lens closest to the object in the first lens group LG1.
  • the seventh lens 207 is the closest lens to the image sensor 207 in the second lens group LG2 or the lens unit 200.
  • the first lens 201 may be the first lens group (LG1), and the second to seventh lenses (202, 203, 204, 205, 206, 207) may be the second lens group (LG2).
  • the aperture may be disposed either around the object side or sensor side of the first lens 201, or around the object side or sensor side of the second lens 202.
  • the aperture (Stop) may be disposed around the object side of the second lens 202.
  • the first lens 201 may be placed closest to the object.
  • the first lens 201 may be placed furthest from the sensor side.
  • the first lens 201 may have negative refractive power at the optical axis (OA).
  • the first lens 201 may include a plastic material or a glass material, for example, a glass material.
  • the first lens 201 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and can protect the entrance side of the optical system 1500.
  • the object-side first surface S1 of the first lens 201 may be convex, and the sensor-side second surface S2 may be concave.
  • the first lens 201 may have a meniscus shape that is convex toward the object.
  • the first lens 201 is made of glass and may have an aspherical surface.
  • the aspheric coefficients of the first and second surfaces (S1 and S2) can be provided as L1S1 and L1S2 in FIG. 18.
  • This first lens 201 can be manufactured as a lens with an aspherical surface by injection molding a glass material.
  • the first lens 201 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
  • the effective radius r11 of the first lens 201 may be larger than the effective radius of the plastic lenses.
  • at least one of the object side and the sensor side of the first lens 201 may have a free curved surface, that is, a non-rotationally symmetric curved surface.
  • the effective diameter of the sensor side of the second lens 202 can be designed to be smaller than the effective diameter of the object side.
  • the first surface S1 of the first lens 201 may be provided without a critical point from the optical axis OA to the end of the effective area, that is, the edge.
  • the second surface S2 of the first lens 201 may be provided without a critical point.
  • the refractive index (n1) of the first lens 201 may satisfy the condition of n1>1.8 or n1>1.82. Since the refractive index (n1) of the first lens 201 is the largest in the lens unit 200, the radii of curvature of the first and second lenses 201 and 202 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 201 is smaller than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 201 and 202, and in this case, lens manufacturing is required. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
  • the second lens 202 may be disposed second on the object side.
  • the second lens 202 may be placed sixth on the sensor side.
  • the second lens 202 may be disposed between the first lens 201 and the third lens 203.
  • the second lens 202 may have positive (+) refractive power at the optical axis (OA).
  • the second lens 202 may include plastic or glass.
  • the second lens 202 may be made of glass.
  • the object-side third surface S3 of the second lens 202 may be concave, and the sensor-side fourth surface S4 may be convex.
  • the second lens 202 may have a meniscus shape that is convex toward the sensor.
  • the second lens 202 is made of glass and may be spherical. At least one or both of the third surface S3 and the fourth surface S4 may be spherical.
  • the aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 202.
  • Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 25 to 36 degrees.
  • FOV_H horizontal angle of view
  • the third lens 203 may be arranged third from the object side.
  • the third lens 203 may be placed fifth on the sensor side.
  • the third lens 203 may be disposed between the second lens 202 and the fourth lens 204.
  • the third lens 203 may have positive (+) refractive power at the optical axis (OA).
  • the third lens 203 may include plastic or glass.
  • the third lens 203 may be made of glass.
  • the object-side fifth surface S5 of the third lens 203 may be convex, and the sensor-side sixth surface S6 may be convex.
  • the third lens 203 may have a shape in which both sides are convex at the optical axis (OA).
  • the third lens 203 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the TTL and number of lenses of the optical system can be minimized and light can be effectively refracted.
  • can be satisfied. If this condition is satisfied, the light can be efficiently refracted by the fifth surface S5, thereby guiding the effective diameters of the fourth to seventh lenses 204 to 207 to not increase, and reducing the TTL. there is. If the condition L3R1 ⁇ L3R2 there is.
  • the absolute values of the radii of curvature on both sides of the third lens 203 may be the same.
  • L3R1
  • the object side and the sensor side each have a convex shape with the same curvature, so the same optical characteristics can be obtained no matter which direction one or the other side of the third lens 203 is placed. , This can facilitate the assembly of the lens.
  • the fourth lens 204 may be placed fourth on the object side.
  • the fourth lens 204 may be placed fourth on the sensor side.
  • the fourth lens 204 may be disposed between the third lens 203 and the fifth lens 205.
  • the fourth lens 204 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fourth lens 204 may have positive (+) refractive power.
  • the fourth lens 204 may have a positive (+) refractive power that is different from that of the fifth lens 205.
  • the fourth lens 204 may include plastic or glass.
  • the fourth lens 204 may be made of plastic.
  • the fourth lens 204 may be made of the same material as the fifth lens 205.
  • the object-side seventh surface S7 of the fourth lens 204 may be convex, and the sensor-side eighth surface S8 may be concave.
  • the fourth lens 204 may have a meniscus shape that is convex toward the object.
  • the fourth lens 204 is made of plastic and may have an aspherical surface. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical.
  • the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fifth lens 205 may be placed fifth on the object side.
  • the fifth lens 205 may be placed third on the sensor side.
  • the fifth lens 205 may be disposed between the fourth lens 204 and the sixth lens 206.
  • the fifth lens 205 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fifth lens 205 may have negative (-) refractive power.
  • the fifth lens 205 may have a negative (-) refractive power that is different from the refractive power of the fourth lens 204.
  • the fifth lens 205 may include plastic or glass.
  • the fifth lens 205 may be made of plastic.
  • the fifth lens 205 may be made of the same material as the fourth lens 204.
  • the object-side ninth surface S9 of the fifth lens 205 may be convex, and the sensor-side tenth surface S10 may be concave.
  • the fifth lens 205 may have a meniscus shape that is convex from the optical axis OA toward the object.
  • the fifth lens 205 is made of plastic and may have an aspherical surface.
  • At least one of the ninth surface (S9) and the tenth surface (S10) may be an aspherical surface.
  • At least one or both of the 9th and 10th surfaces S9 and S10 of the fifth lens 205 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 204 and the fifth lens 205 may be joined.
  • the bonding surface between the fourth lens 204 and the fifth lens 205 can be defined as the eighth surface S8.
  • the eighth surface S7 may be the same as the ninth surface of the fifth lens 205.
  • the object side of the bonded lens 245 may be convex, and the sensor side may be concave.
  • the gap between the fourth and fifth lenses 204 and 205 may be less than 0.01 mm, and may be bonded with adhesive.
  • the gap between the fourth and fifth lenses 204 and 205 may be less than 0.01 mm from the optical axis OA to the end of the effective area.
  • the fourth and fifth lenses 204 and 205 may have opposite refractive powers.
  • the combined refractive power of the fourth and fifth lenses 204 and 205 may have positive (+) refractive power.
  • the value of the radius of curvature of the bonding surface S8 of the bonded lens 245 may be greater than 30.
  • the value of the radius of curvature of the bonding surface S8 of the bonded lens 245 may be greater than 50.
  • the bonding surface S8 of the bonding lens 245 may be formed in a gentle shape. Through this, the adhesion process of the fourth lens 204 and the fifth lens 205 forming the bonded lens 245 is advantageous, and adhesion retention can be increased.
  • the product of the refractive power of the object-side fourth lens 204 of the bonded lens 245 and the refractive power of the sensor-side fifth lens 205 may be less than 0.
  • the product of the focal length of the object-side fourth lens 205 of the bonded lens 245 and the focal length of the sensor-side fifth lens 205 may be less than 0. Accordingly, the aberration characteristics of the optical system can be improved. If the refractive powers of the two lenses of the bonded lens 245 are the same, there is a limit to improving aberration.
  • the composite refractive power of the bonded lens 245 may have positive refractive power, and based on the bonded lens 245, the fourth lens 204 on the object side and the fifth lens 205 on the sensor side may have positive refractive power. Accordingly, the fourth lens 204, the bonded lens 245, and the fifth lens 205 can refract some of the incident light in the optical axis direction and mutually correct chromatic aberration.
  • the focal length of the fourth lens 204 disposed on the object side with respect to the bonded lens 245 may be smaller than the focal length of the fifth lens 205 disposed on the sensor side.
  • the power of the fourth lens 204 disposed on the object side with respect to the bonded lens 245 may be greater than the power of the fifth lens 205 disposed on the sensor side.
  • the effective diameter of the fourth lens 204 may be larger than the diagonal length of the image sensor 300.
  • the effective diameter of the fourth lens 204 is the average of the effective diameters of the seventh surface S7 and the eighth surface S8, and may be larger than the diagonal length of the image sensor 300.
  • the effective diameter of the fifth lens 205 may be smaller than the effective diameter of the fourth lens 204 and larger than the diagonal length of the image sensor 300.
  • the effective diameter of the 7th surface (S7) of the fourth lens 204 is CA_L4S1 and the effective diameter of the 8th surface (S8) is CA_L4S2, the effective diameter of the 7th and 8th surfaces (S7, S8) is 1 ⁇ CA_L4S1/CA_L4S2 The condition of ⁇ 1.5 can be satisfied. If the effective diameter of the 9th surface (S9) of the fifth lens 205 is CA_L5S1 and the effective diameter of the 10th surface (S10) is CA_L5S2, the effective diameters of the 9th and 10th surfaces meet the condition of 1 ⁇ CA_L5S1/CA_L5S2 ⁇ 1.5. You can be satisfied.
  • the bonded lens 245 may be bonded to plastic lenses having different refractive indices.
  • the object side and the sensor side of the bonded lens 245 may have an aspherical surface, and the bonded surface may have a spherical surface.
  • the weight of the optical system can be reduced, and the plastic material allows for easy polishing and processing, strong external impact, and high price competitiveness, making it easy to secure materials.
  • various aberrations can be corrected using plastic lenses, preventing degradation of optical performance. Lenses disposed on the sensor side rather than the bonded lens 245 can compensate for spherical aberration when aspherical lenses or plastic lenses are used.
  • the lenses disposed on the sensor side rather than the bonded lens 245 are plastic lenses and have a smaller effective diameter, they can be set to effectively guide light traveling to the image sensor 300 through the plastic lens. Since the position of the bonded lens 245 is located in any two consecutive lenses among the third to sixth lenses in the middle or behind the middle within the lens unit 200, chromatic aberration correction can be more efficient.
  • the sixth lens 206 may be placed sixth on the object side.
  • the sixth lens 206 may be placed second on the sensor side.
  • the sixth lens 206 may be disposed between the fifth lens 205 and the seventh lens 207.
  • the sixth lens 206 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the sixth lens 206 may have positive (+) refractive power.
  • the sixth lens 206 may include plastic or glass.
  • the sixth lens 206 may be made of plastic.
  • the object-side 11th surface S11 of the sixth lens 206 may be convex, and the sensor-side 12th surface S12 may be concave.
  • the sixth lens 206 may have a meniscus shape that is convex from the optical axis OA toward the object.
  • the sixth lens 206 may have a convex shape on both sides.
  • At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical.
  • the aspherical coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as L1 and L2 of L6 in FIG. 18.
  • the 11th surface S11 of the sixth lens 206 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 may be provided without at least one critical point from the optical axis OA to the end of the effective area.
  • the seventh lens 207 may be placed closest to the sensor side.
  • the seventh lens 207 may be placed furthest from the object.
  • the seventh lens 207 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the seventh lens 207 may have negative refractive power.
  • the seventh lens 207 may include plastic or glass.
  • the seventh lens 207 may be made of plastic.
  • the object-side 13th surface S13 of the seventh lens 207 may be convex, and the sensor-side 14th surface S14 may be concave.
  • the seventh lens 207 may have a meniscus shape convex toward the object.
  • At least one of the 13th surface (S13) and the 14th surface (S14) may be an aspherical surface.
  • both the 13th surface S13 and the 14th surface S14 may be aspherical surfaces.
  • the aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S1 and S2 of L7 in FIG. 18.
  • the 13th surface S13 of the seventh lens 207 may have a critical point from the optical axis OA to the end of the effective area.
  • the 13th surface S13 may be located at more than 50% of the effective radius r71 from the optical axis OA, or may be located in the range of 52% to 70%, or 53% to 60%.
  • the 14th surface S14 has a critical point, it may be located at more than 70% of the effective radius r72 from the optical axis OA, or within a range of 70% to 90% or 75% to 85%.
  • the seventh lens 207 may be a plastic lens closest to the image sensor 300. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 300, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 300, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 206 and 207 adjacent to the image sensor 300 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
  • the sixth lens 206 and the seventh lens 207 are arranged to be spaced apart, but may include features of a bonded lens.
  • the sixth lens 206 and the seventh lens 207 may have opposite refractive powers.
  • the product of the refractive power of the sixth lens 206 and the refractive power of the seventh lens 207 may be less than 0.
  • the product of the focal length of the sixth lens 206 and the focal length of the seventh lens 207 may be less than 0. Accordingly, the aberration characteristics of the optical system can be improved. If the refractive powers of two lenses that have the characteristics of a bonded lens are the same, there is a limit to improving aberrations.
  • the sixth lens 206 and the seventh lens 207 may be made of the same material.
  • the sixth lens 206 and the seventh lens 207 may be made of plastic material.
  • the sixth lens 206 and the seventh lens 207 may be made of the same material as the bonded lens 245.
  • At least one or both of the 13th surface S13 and the 14th surface S14 of the seventh lens 207 may have a critical point.
  • the 13th surface S13 of the seventh lens 207 may have a first critical point P1 from the optical axis OA to the end of the effective area.
  • the first critical point P1 of the 13th surface S13 may be located at 55% or more of the effective radius from the optical axis OA, or may be located at 55% to 75% of the effective radius, or 60% to 70% of the effective radius.
  • the first critical point of the 13th surface S13 may be located at a distance of 2 mm or more from the optical axis OA, for example, in the range of 2.1 mm to 2.5 mm or 2.2 mm to 2.3 mm.
  • the 13th side S13 may be provided without a critical point.
  • the 13th surface (S13) having this first critical point (P1) can refract incident light to the center and periphery and improve aberration.
  • the first and second critical points (P1, P2) are the optical axis (OA) and the sign of the slope value with respect to the direction perpendicular to the optical axis (OA) is changed from positive (+) to negative (-) or from negative (-) to positive (+). ), which may mean a point where the slope value is 0.
  • the first and second critical points (P1, P2) may be points where the slope value of the tangent line passing through the lens surface increases and then decreases, or decreases and then increases.
  • the 14th surface S14 of the seventh lens 207 may have at least one second critical point P2 from the optical axis OA to the end of the effective area.
  • the second critical point (P2) of the 14th surface (S14) may be located at a distance of 60% or more of the effective radius (r72) from the optical axis (OA), or may be located in the range of 60% to 80% or 65% to 75% of the effective radius (r72). there is.
  • the second critical point P2 of the 14th surface S14 may be located at a distance of 2.9 mm or more from the optical axis OA, for example, in the range of 2.9 mm to 3.9 mm or 3.1 mm to 3.7 mm. Accordingly, the second critical point P2 is disposed closer to the edge than the first critical point P1, so that the seventh lens 207 can refract the incident light to the periphery of the image sensor 300.
  • the average effective radius of the 13th and 14th surfaces (S13, S14) of the seventh lens 207 is arranged to be smaller than Imgh, which is 1/2 of the diagonal length of the image sensor 300, which has a second critical point (P2). Light can be refracted to the periphery of the image sensor 300 by the fourteenth surface S14.
  • the center thickness of the first to seventh lenses 201 to 207 is indicated by CT1 to CT7
  • the edge thickness, which is the end of the effective area of each lens, is indicated by ET1 to ET7
  • the thickness between the two adjacent lenses is indicated by CT1 to CT7.
  • the center gap is indicated by CG1 ⁇ CG6, and the edge gap between the edges of each lens is indicated by EG1 ⁇ EG6.
  • the center thickness of the bonded lens 245 is expressed as CT45
  • the edge thickness is expressed as ET45.
  • back focal length (BFL) is the optical axis distance from the image sensor 300 to the center of the last lens.
  • TTL is the optical axis distance from the center of the first surface S1 of the first lens 201 to the upper surface of the image sensor 300.
  • FIG. 17 is an example of lens data of the optical system of the second embodiment of FIG. 15.
  • the radius of curvature at the optical axis (OA) of the first to seventh lenses (201, 202, 203, 204, 205, 206, 207) the thickness of the lens, the center distance between the lenses, d-line You can set the size of the refractive index, Abbe's Number, and clear aperture (CA).
  • the lens surfaces of the first, fourth, fifth, sixth, and seventh lenses (201, 204, 205, 206, and 207) among the lenses of the lens unit 200 in the second embodiment may include an aspherical surface with a 30th order aspheric coefficient.
  • the first, fourth, fifth, sixth, and seventh lenses (201, 204, 205, 206, and 207) may include lens surfaces having a 30th order aspherical coefficient.
  • an aspheric surface with a 30th order aspheric coefficient (a value other than “0”) can particularly significantly change the shape of the aspherical surface in the peripheral area, so the optical performance of the peripheral area of the field of view (FOV) can be well corrected.
  • the thickness (T1-T7) of the first to seventh lenses (201, 202, 203, 204, 205, 206, 207) and the gap (G1-G6) between two adjacent lenses can be set.
  • the thickness of each lens (T1-T7) can be expressed at intervals of 0.1 mm or 0.2 mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1 mm or 0.2 mm or more. It can be displayed every time.
  • the radius of curvature of the 12th surface S12 of the sixth lens 206 at the optical axis OA is the largest among the lenses, and 5
  • the radius of curvature of the tenth surface (S10) of the lens 205 may be the smallest among the lenses.
  • the difference between the maximum radius of curvature and the minimum radius of curvature may be 10 times or more, for example in the range of 10 to 15 times.
  • the central thickness (CT2) of the second lens 202 is the largest among the lenses
  • CT5 of the fifth lens 205 is the smallest among the lenses.
  • the difference between the maximum and minimum center thickness of the lens may be in the range of 1.5 mm or more and 2.5 mm or less.
  • the center spacing (CG1) between the first lens 201 and the second lens 202 is the maximum, and the center spacing between the third and fourth lenses 203 and 204 ( CG3) may be minimal.
  • the minimum center spacing excludes the bonding surface of the bonding lens 245.
  • the difference between the maximum center spacing and the minimum center spacing among the spaced apart lenses may be 1.2 mm or more, for example, in the range of 1.3 mm to 1.8 mm.
  • the camera uses plastic lenses with a thin thickness without increasing the center spacing compared to the center thickness of each lens.
  • the thickness of the module may not be increased.
  • a lens having the maximum effective diameter may be disposed between the first lens 201 closest to the object and the seventh lens 207 closest to the image sensor 300.
  • the lens having the maximum effective diameter may be a glass lens.
  • a lens having the maximum effective diameter may be disposed between the first lens 201 and the bonded lens 245.
  • the lens having the maximum effective diameter may be the third lens 203.
  • the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • the lens surface having the maximum effective diameter may be the sixth surface S6 of the third lens 203 or the object side of the bonded lens 245.
  • the lens having the minimum effective diameter may be any one of plastic lenses, for example, the seventh lens 207 adjacent to the image sensor 300.
  • the effective diameter of the seventh lens 207 may be the minimum within the lens unit 200.
  • the lens surface having the minimum effective diameter may be the 13th surface (S13) of the 7th lens 207.
  • the effective diameter of each of the first to fourth lenses (201-204) adjacent to the object side may be larger than the effective diameter of the fifth, sixth, and seventh lenses (205, 206, and 207) adjacent to the sensor side.
  • the effective diameter of the first to fourth lenses 201-204 may be larger than the diagonal length of the image sensor 300.
  • the average effective diameter of the seventh lens 207 may be smaller than the diagonal length of the image sensor 300. Accordingly, light incident through a plurality of lenses aligned along the optical axis can be guided to the image sensor 300.
  • the refractive index of the first lens 201 is the highest among the lenses and may be greater than 1.8, for example, greater than 1.82.
  • Either or both of the second lens 202 and the sixth lens 206 may have the lowest refractive index among the lenses. For example, it may be less than 1.6, such as less than 1.55.
  • the difference between the maximum and minimum refractive indices may be 0.2 or more.
  • the Abbe number of the third lens 203 is the largest among the lenses and may be 60 or more.
  • the Abbe number of the fifth lens 205 and the seventh lens 207 is the minimum among the lenses and may be 25 or less.
  • the difference between the maximum refractive index and the minimum Abbe number may be 40 or more.
  • the focal lengths F1, F5, and F7 of the first, fifth, and seventh lenses 201, 205, and 207 may have a negative (-) sign.
  • the first, fifth, and seventh lenses 201, 205, and 207 may have negative refractive power.
  • the focal lengths F3, F4, F5, and F6 of the third, fourth, fifth, and sixth lenses 203, 204, 205, and 206 may have a positive (+) sign.
  • the third, fourth, fifth, and sixth lenses (203, 204, 205, and 206) may have positive refractive power.
  • Second, third, and fourth lenses 202, 203, and 204 with positive (+) refractive power may be disposed on the sensor side of the first lens 201 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
  • sixth lens 206 and seventh lens 207 which are adjacent lenses, can satisfy the following conditions.
  • the sixth lens 206 has positive refractive power and the seventh lens 207 has negative refractive power, so according to conditions 1 and 2, the refractive index of the sixth lens is greater than that of the seventh lens. It is smaller than the refractive index, and the dispersion value of the sixth lens is greater than the dispersion value of the seventh lens.
  • Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses.
  • the 6th lens 206 and the 7th lens 207 which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 60, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
  • Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes.
  • the bonded lens 245, the sixth lens 206, and the seventh lens 207 are used to correct chromatic aberration occurring in the plastic lens.
  • the chromatic aberration occurring in the plastic lens can be compensated for by the bonded lens, the fourth lens 204 and the fifth lens 205, satisfying a refractive index difference of 0.1 to 0.15 and an Abbe number difference of 20 to 60. .
  • the difference in refractive index is rounded to the third decimal place, and the Abbe number difference is rounded to the first decimal place to compare values.
  • the focal length of the second lens 202 is the largest among the lenses and may be 55 or more or 200 or more.
  • the second lens 202 made of glass may have the largest focal length and the smallest refractive power.
  • the lens with the next largest focal length after the second lens 202 may be the sixth lens 206 made of plastic.
  • the focal length of the fifth lens 205 is the minimum among the lenses, and the absolute value of the focal length of the fifth lens 205 may be 15 or less or 10 or less.
  • the fifth lens 205 which is made of plastic, may have the smallest focal length and the highest refractive power. Since lenses made of plastic material with low refractive power are disposed on the sensor side of the fifth lens 205, the refractive power of the fifth lens 205 can be increased.
  • the lens with the minimum focal length may be the third lens 203.
  • the difference between the maximum and minimum focus distances may be 50 or more or 80 or more. Accordingly, it is possible to have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in the field of view range set in the optical system, and good optical performance in the periphery of the field of view.
  • the critical point is the point at which the trend of the sag value changes. In other words, it is the point where the sag value increases and then decreases, or the point where the sag value decreases and then increases. Referring to FIG. 20, it can be seen that the object side of the seventh lens 207 has a critical point between a point 1.8 mm apart and a point 2.2 mm apart in the direction perpendicular to the optical axis.
  • the sag value of the object side of the 7th lens (207) increases to a point 2.0 mm away in the direction perpendicular to the optical axis, and then decreases as it goes from a point 2.0 mm away from the point 4.1 mm away in the direction perpendicular to the optical axis. I'm doing it.
  • the sensor side of the seventh lens 207 has a critical point between a point 2.8 mm apart and a point 3.2 mm apart in the direction perpendicular to the optical axis.
  • the sag value increases to a point 2.9 mm apart in the direction perpendicular to the optical axis, and then decreases as it goes from a point 2.9 mm apart to a point 4.6 mm apart in the direction perpendicular to the optical axis. I'm doing it. If a critical point exists on the sensor side of the seventh lens 207, that is, the sensor side of the last lens, that is, the lens side closest to the sensor, the TTL can be reduced, making it easy to miniaturize and lighten the optical system.
  • the thickness T1 of the first lens 201 may have a difference between the maximum thickness and the minimum thickness of 1 times or more, for example, 1 to 1.2 times, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum.
  • the thickness T2 of the second lens 202 may have a maximum thickness ranging from 1 to 1.2 times the minimum thickness.
  • the second lens 202 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2).
  • the thickness T3 of the third lens 203 may be maximum at the center and minimum at the edges, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness.
  • the thickness T4 of the fourth lens 204 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.6 to 2.2 times the minimum thickness.
  • the thickness T5 of the fifth lens 205 may be minimum at the center and maximum at the edge, with the maximum thickness being in the range of 1.2 to 1.5 times the minimum thickness.
  • the thickness T6 of the sixth lens 206 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1 to 1.2 times the minimum thickness.
  • the thickness T7 of the seventh lens 207 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.2 times the minimum thickness.
  • the center thickness (CT45) of the bonded lens 245 may be greater than the edge thickness (ET45).
  • the center thickness (CT45) of the bonded lens 245 is the distance from the center of the object-side seventh surface (S7) of the fourth lens 204 to the center of the tenth surface (S10) of the fifth lens 205, and the edge
  • the thickness ET45 is the distance from the end of the effective area of the seventh surface S7 to the tenth surface S10 in the optical axis direction.
  • the maximum thickness of the bonded lens 245 is at the center, and the minimum thickness is at the edge, and the maximum thickness may be in the range of 1 to 1.2 times the minimum thickness.
  • the first interval G1 between the first and second lenses 201 and 202 may be maximum at the center and minimum at the edges.
  • the second gap G2 between the second and third lenses 202 and 203 may be maximum at the edge and minimum at the center.
  • the third gap G3 between the third and fourth lenses 203 and 204 may be maximum at the edge and minimum at the center.
  • the fifth gap G5 between the fifth and sixth lenses 205 and 206 may be maximum at the center and minimum at the edges.
  • the sixth gap G6 between the sixth and seventh lenses 206 and 207 may be maximum at the center and minimum at the edges.
  • the chief ray angle (CRA) in the optical system and camera module of FIG. 15 is 10 degrees or more in the 1-field, which is the end of the diagonal length of the image sensor, for example, in the range of 10 to 35 degrees or 10 degrees. It may range from degrees to 25 degrees. Additionally, the angle difference of the main ray from low temperature (-40 degrees) to high temperature (95 degrees) may be less than 1 degree. Accordingly, even if the temperature changes from low to high, the difference in the angle of the main ray is not large and stable optical performance can be achieved.
  • CRA chief ray angle
  • the peripheral light ratio is 70% or more, for example, 75% or more from the center of the image sensor to the end of the diagonal. You can see that it appears. In other words, it can be seen that there is almost no difference in ambient illuminance (Zoom positions 1, 2, 3) depending on room temperature, low temperature, and high temperature up to 4.5 mm or more from the optical axis.
  • Figures 22 to 24 are graphs showing diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 15, and are graphs showing luminance ratio (modulation) according to spatial frequency. . 22 to 24, in the second embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
  • Figures 25 to 27 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 15.
  • 25 to 27 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right.
  • the X-axis may represent focal length (mm) and distortion (%)
  • the Y-axis may represent the height of the image.
  • the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm
  • the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. .
  • the optical system 1500 according to the embodiment has an aberration correction function in most areas. You can see that the measured values are adjacent to the Y axis. That is, the optical system 1500 according to the second embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees
  • the room temperature is in the range of 22 degrees ⁇ 5 degrees or 18 to 27 degrees
  • the high temperature is 85 degrees or higher, for example, in the range of 85 to 205 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 25 to 27 is less than 10%, for example, 5% or less, or is almost unchanged.
  • Table 3 compares changes in optical properties such as EFL, BFL, F number (F#), TTL, and angle of view (FO)V at room temperature, low temperature, and high temperature in the optical system according to the second embodiment, and low temperature based on room temperature. It can be seen that the change rate of the optical properties is 5% or less, for example, 3% or less, and the change rate of the optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
  • the change in optical properties according to the temperature change from low to high temperature for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
  • the optical system of the second embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • Table 4 shows the items of the above-described equations in the optical system 1500 of the second embodiment, including TTL (Total track length) (mm), BFL (Back focal length), and effective focal length (F) of the optical system 1500.
  • mm ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the first surface (S1) to the fourteenth surface (S14), Focal distance of each of the first to seventh lenses (F1, F2, F3, F4, F5, F6, F7) (mm), sum of refractive index, sum of Abbe number, sum of thickness (mm), sum of spacing between adjacent lenses , effective diameter characteristics, sum of refractive indices of glass lenses, sum of refractive indices of plastic materials, angle of view (FOV) (Degree), edge thickness (ET), focal length of the first and second lens groups, F number, etc.
  • FOV angle of view
  • ET edge thickness
  • the optical systems 1000 and 1500 according to the first and second embodiments disclosed above may satisfy at least one or two of the equations described below. Accordingly, the optical systems 1000 and 1500 according to the embodiment may have improved optical characteristics. For example, if the optical systems 1000 and 1500 satisfy at least one mathematical equation, the optical systems 1000 and 1500 can effectively control aberration characteristics such as chromatic aberration and distortion aberration, as well as the center of the field of view (FOV). Good optical performance can be achieved even in the peripheral area. Additionally, the optical systems 1000 and 1500 may have improved resolution.
  • the meaning of the thickness of the lens at the optical axis (OA) and the distance between the adjacent lenses at the optical axis (OA) described in the equations may refer to the embodiment disclosed above.
  • Equation 1 CT1 is the center thickness of the first lens (101, 201), and ET1 is the edge thickness of the first lens (101, 201).
  • CT1 is the center thickness of the first lens (101, 201)
  • ET1 is the edge thickness of the first lens (101, 201).
  • CT1 is the central thickness of the first lens (101, 201), and CA_L1S1 is the effective diameter (CA_L1S1) of the object side (S1) of the first lens (101, 201).
  • CA_L1S1 is the effective diameter of the object side (S1) of the first lens (101, 201).
  • Po1 means the sign of the refractive power of the first lens (101, 201).
  • the optical system can be set to have a shorter effective focal length compared to TTL. If Equation 3 is satisfied, the light incident from the object side to the first lens 101 and 201 can be spread in a direction away from the optical axis. The entire optical system can have a stable structure that spreads and collects light.
  • Equation 3-1 F6 is the focal length of the sixth lens (106, 206), and F7 is the focal length of the seventh lens (107, 207).
  • the product of the focal lengths of the plastic lenses can be arranged by mixing negative (-) and positive (+) refractive powers to compensate for each other.
  • Equation 4 n1 is the refractive index at the d-line of the first lens (101, 201). Equation 4 sets the refractive index of the first lens high, so that factors affecting the reduction of third-order aberration (Seidel aberration) of the optical system can be adjusted, and aberrations that may occur as the TTL becomes somewhat longer can be reduced. Equation 4 may preferably satisfy 1.75 ⁇ n1 ⁇ 2.1 in the first and second embodiments. If it is designed lower than the lower limit of Equation 4, it may not be effective in reducing aberrations, and the power of the first lens may be weakened so that light cannot be collected efficiently, which may deteriorate the performance of the optical system.
  • the refractive index of the first lens (101, 201) is designed to be lower than the lower limit of Equation 4, in order to increase the refractive power of the first and second lenses (101, 201, 102, 202), the radius of curvature of the first and second lenses (101, 201, 102, 202) must be increased. In this case, lens production becomes more difficult, the lens defect rate increases, and yield may decrease.
  • Equation 4-1 Aver(n1:n7) is the average of the refractive index values in the d-line of the first to seventh lenses (101 to 107 and 201 to 207).
  • the optical systems 1000 and 1500 can set resolution and suppress the influence on TTL.
  • FOV_H represents the horizontal angle of view
  • the range of the vehicle optical system can be set.
  • Equation 5 preferably satisfies 28 ⁇ FOV_H ⁇ 31 or satisfies the range of 29.9 degrees ⁇ 3 degrees in the first and second embodiments, and the sensor length in the horizontal direction at this time is based on 8.064 mm ⁇ 0.5 mm.
  • the rate of change of the effective focal distance and the change rate of the angle of view can be set to 5% or less, for example, 0 to 5%.
  • the rate of change of the effective focal distance and the change rate of the angle of view can be set to 5% or less, for example, 0 to 5%.
  • even if two or more plastic lenses, for example, three or more pieces, are mixed and used in the optical systems 1000 and 1500, degradation of optical characteristics can be prevented through temperature compensation of the plastic lenses.
  • L3R1 is the radius of curvature of the object side of the third lens (103, 203)
  • L3R2 is the radius of curvature of the sensor side of the third lens (103, 203).
  • the third lenses 103 and 203 may have convex shapes on both sides. Since the third lens (103, 203) has a convex shape on both sides, light can be refracted so that the effective diameter of the fourth to seventh lenses (104, 204, 105, 205, 106, 206, 107, 207) disposed on the sensor side of the third lens (103, 203) is not increased, and the number of lenses is can reduce.
  • the object side and the sensor side each have a convex shape with the same curvature, so no matter which direction one or the other side of the third lens 103 is placed, the same It may have optical properties, which may facilitate assembly of the lens.
  • L7S2_max_sag to Sensor means the straight line distance from the maximum Sag value of the seventh lens 107, 207 to the image sensor 300. If this is satisfied, the TTL can be reduced and conditions for manufacturing the camera module can be set. Additionally, L7S2_max_sag to Sensor can set a space where the filter 500 and cover glass 400 located between the image sensor 300 and the seventh lens 107 and 207 can be placed. If the range of Equation 7 is smaller than the lower limit, the space for placing circuit structures such as filters and image sensors becomes limited, making the process of assembling circuit structures such as filters and image sensors into the optical system difficult. If the range of Equation 7 is larger than the upper limit, the process of assembling circuit structures such as filters and image sensors into the optical system is easy, but the TTL becomes longer, making miniaturization of the optical system difficult.
  • Equation 7 can set the minimum distance between the image sensor 300 and the last lens, and preferably satisfies 1 ⁇ L7S2_max_sag to Sensor ⁇ BFL. Additionally, if there is no point (P2) where the last lens protrudes further toward the image sensor than the center of the sensor side, the value of Equation 7 may be equal to the back focal length (BFL). BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. In detail, if 2.5 ⁇ L7S2_max_sag to Sensor ⁇ 3.0 is satisfied, it is easier to manufacture and reduce TTL.
  • CT1 is the central thickness of the first lens (101, 201), and CT7 is the central thickness of the seventh lens (107, 207). If Equation 8 is satisfied, the aberration characteristics can be improved and the influence on the reduction of the optical system can be set. Equation 8 may preferably satisfy 1 ⁇ CT1 / CT7 ⁇ 2 in the first and second embodiments. Equation 8 sets the object-side lens and sensor-side lens of the optical system to a glass lens and a plastic lens, and can limit the difference in center thickness between them. Accordingly, chromatic aberration of the optical system can be improved, good optical performance can be achieved at a set viewing angle, and TTL (total track length) can be controlled.
  • CT45 is the central thickness of the fourth and fifth lenses (104, 204, 105, and 205), for example, the central thickness of the bonded lens (145), and CT6 is the central thickness of the sixth lens (106, 206). If the optical system satisfies Equation 9, the aberration characteristics can be improved by setting the thickness of the bonded lens 145 and the sixth lenses 106 and 206 adjacent to it. Equation 9 may preferably satisfy 1 ⁇ CT45 / CT6 ⁇ 3 or 1.5 ⁇ CT45 / CT6 ⁇ 2.5 in the first and second embodiments. CT45 may be larger than the central thickness (CT1 - CT7) of each of the first to seventh lenses. Here, the condition CT45 > ET45 can be satisfied.
  • CT45 is the central thickness of the fourth and fifth lenses (104, 204, 105, and 205), for example, the central thickness of the bonded lens (145), and ET45 is the central thickness of the fourth lens (104, 204) at the end of the effective area on the object side of the fifth lens (104, 204). (105,205) is the optical axis distance to the end of the effective area on the sensor side. If the optical system satisfies Equation 10, the aberration characteristics can be improved by setting the center thickness and edge thickness of the bonded lens. Equation 10 may preferably satisfy 0.5 ⁇ CT45 / ET45 ⁇ 0.5 in the first and second embodiments. ET45 may be greater than the edge thickness (ET1 - ET7) of each of the first to seventh lenses.
  • CA_L1S1 refers to the effective diameter of the first surface (S1) of the first lens (101, 201), and CA_L4S1 refers to the effective diameter of the seventh surface (S7) of the fourth lens (104, 204).
  • the optical systems 1000 and 1500 can control incident light and set factors affecting aberration.
  • Equation 11 may preferably satisfy 1 ⁇ CA_L1S1 / CA_L4S1 ⁇ 1.5 in the first embodiment.
  • Equation 11 may preferably satisfy 1 ⁇ CA_L1S1 / CA_L4S1 ⁇ 1.2 in the second embodiment.
  • CA_L5S2 means the effective diameter of the 10th surface (S10) of the fifth lens (105, 205), and CA_L7S2 means the effective diameter of the 14th surface (S14) of the seventh lens (107, 207).
  • the optical systems 1000 and 1500 can control the incident light path and set factors for performance change according to CRA and temperature.
  • Equation 12 may satisfy 0.5 ⁇ CA_L7S2 / CA_L5S2 ⁇ 1.5 in the first embodiment.
  • Equation 12 can satisfy 0.5 ⁇ CA_L7S2 / CA_L5S2 ⁇ 1 in the second embodiment.
  • CA_L1S2 means the effective diameter of the second surface (S2) of the first lens (101, 201), and CA_L2S1 means the effective diameter of the third surface (S3) of the second lens (102, 202).
  • the optical system (1000, 1500) can control the light traveling to the first lens group (LG1) and the second lens group (LG2) and set factors that affect reduction of lens sensitivity.
  • Equation 15 may preferably satisfy 1 ⁇ CA_L1S2 / CA_L2S1 ⁇ 1.5 in the first embodiment.
  • Equation 15 may preferably satisfy 0.5 ⁇ CA_L1S2 / CA_L2S1 ⁇ 1.2 in the second embodiment.
  • CA_L4S1 refers to the effective diameter of the seventh surface (S7) of the fourth lens (104, 204), and CA_L5S2 refers to the effective diameter of the tenth surface (S10) of the fifth lens (105, 205). If the optical systems 1000 and 1500 satisfy Equation 14, the size of the bonded lens can be set. Equation 14 may preferably satisfy 0.8 ⁇ CA_L4S1 / CA_L5S2 ⁇ 1.5 in the first embodiment. Equation 14 may preferably satisfy 1 ⁇ CA_L4S1 / CA_L5S2 ⁇ 1.5 in the second embodiment.
  • L3R1 is the radius of curvature of the object side of the third lens (103, 203)
  • CA_L3S1 means the effective diameter of the fifth surface (S5) of the object side of the third lens (103, 203).
  • the sixth surface (S6) which has a problem affecting the aberrations of the fourth to seventh lenses (104, 204 to 107, 207).
  • the range 2 ⁇ L3R1 / (CA_L3S1/2) ⁇ 4 can be satisfied.
  • the range 3 ⁇ L3R1 / (CA_L3S1/2) ⁇ 4 can be satisfied.
  • the curvature radius of the sixth surface (S6) can be designed to be large while reducing the aberration occurring in the fifth surface (S5), making it easy to manufacture the third lenses (103, 203). Aberrations occurring in the optical system can be reduced and manufacturing of the third lenses 103 and 203 can be made easier to increase yield.
  • CA_L4, CA_L5, CA_L6, and CA_L7 are the effective diameters (average effective diameters) of the fourth to seventh lenses 104,204-107,207, and Imgh is 1/2 of the diagonal length of the image sensor 300. am. Accordingly, an optical path can be set from the fourth lens 104 and 204 to the area of the image sensor 300 according to the effective diameter of the seventh lens 107 and 207.
  • the fourth and fifth lenses (104, 204, 105, 205) and the seventh lenses (107, 207) are plastic lenses and have an aspherical surface
  • the sixth lens (106, 206) is a glass lens and has a spherical surface, so that aberrations between the lenses can be mutually compensated.
  • CA_GL_AVER represents the average effective diameter of glass lenses
  • CA_PL_AVER represents the average effective diameter of plastic lenses.
  • nGL > nPL can be satisfied.
  • nGL is the number of glass lenses
  • nPL is the number of plastic lenses.
  • Equation 17 GL_CA1_AVER is the average effective diameter of the object sides of the glass lenses, for example, the average effective diameter of the object sides of the first, second, third, and sixth lenses (101, 201, 102, 202, 103, 203, 106, 206).
  • PL_CA1_AVER is the average of the effective diameters of the object sides of the plastic lenses, for example, the average of the effective diameters of the object sides of the 4th, 5th, and 7th lenses (104, 204, 105, 205, 107, and 207). Since the effective diameter size of the plastic lens is designed to be relatively small compared to the glass lens, Equation 17 can be satisfied. Equation 17 may preferably satisfy 1.3 ⁇ GL_CA1_AVER/PL_CA1_AVER ⁇ 1.8 in the first and second embodiments.
  • Equation 18 CG1 is the center spacing between the first and second lenses (101, 201, 102, 202), CG3 is the center spacing between the third and fourth lenses (103, 203, 104, 204), and CG5 is the center spacing between the 5th and 6th lenses (105, 205, 106, 206). It can be. If Equation 18 is satisfied, the center spacing between relatively thick glass lenses can be reduced, thereby reducing TTL and improving optical performance in the peripheral area of the field of view (FOV).
  • FOV field of view
  • Equation 19 is the center spacing or optical axis distance between the 6th and 7th lenses (106, 206, 107, and 207).
  • CT7 center thickness
  • Equation 19 may preferably satisfy 1.1 ⁇ CT7/CG6 ⁇ 1.5 in the first embodiment.
  • Equation 19 can preferably satisfy 2 ⁇ CT7/CG6 ⁇ 2.5 in the second embodiment.
  • Equation 20-1 F5 is the focal length of the fifth lens 105, and F6 is the focal length of the sixth lens 106.
  • the relationship between the focal lengths of the fifth lens 105 and the sixth lens 106 can be established.
  • the absolute value of the focal length of the sixth lens 106 disposed on the sensor side with respect to the bonded lens 145 is formed to be the largest, and the fifth lens disposed on the sensor side of the bonded lens 145
  • the absolute value of the focal length of the lens 105 is set to be the smallest. Through this, incident efficiency can be increased and the refractive power of the optical system can be adjusted to guide the image sensor 300.
  • Equation 20-1 is preferably expressed as 6 ⁇
  • CT45 is the central thickness of the bonded lens 245.
  • CT1 is the central thickness of the first lens (101, 201), and CT2 is the central thickness of the second lens (102, 202).
  • CT1 is the central thickness of the first lens (101, 201)
  • CT2 is the central thickness of the second lens (102, 202).
  • CT1 is the central thickness of the first lens (101, 201)
  • CT2 is the central thickness of the second lens (102, 202).
  • CT1 is the central thickness of the first lens
  • CT2 is the central thickness of the second lens (102, 202).
  • CT1 is the central thickness of the first lens
  • CT2 is the central thickness of the second lens
  • Equation 22 L7R1 is the radius of curvature of the 13th surface (S13) of the seventh lens (107, 207), and CT7 is the central thickness of the seventh lens (107, 207).
  • the radius of curvature (L7R1) of the object side of the seventh lens (107, 207) and the central thickness of the seventh lens (107, 207) are set to control the refractive power of the seventh lens (107, 207). Accordingly, good optical performance can be achieved in the center and periphery of the angle of view.
  • Equation 22 can satisfy 180 ⁇ L7R1 / CT7 ⁇ 200 in the first embodiment.
  • Equation 22 can preferably satisfy 5 ⁇ L7R1 / CT7 ⁇ 10 in the second embodiment.
  • CT_Max is the maximum central thickness among the lenses
  • CG_Max is the maximum spacing between adjacent lenses. If Equation 23 is satisfied, the optical system can have good optical performance at the focal distance at the set angle of view and can reduce TTL. Equation 23 may preferably satisfy 0.1 ⁇ CT_Max / CG_Max ⁇ 0.5 in the first embodiment. Equation 23 may preferably satisfy 2 ⁇ CT_Max / CG_Max ⁇ 4 in the second embodiment.
  • Equation 24 ⁇ CT is the sum of the central thicknesses of the lenses, and ⁇ CG is the sum of the spacing between adjacent lenses. If Equation 24 is satisfied, the optical system can have good optical performance at the focal length at the set angle of view and can reduce TTL. Equation 24 may preferably satisfy 1 ⁇ ⁇ CT / ⁇ CG ⁇ 1.5 in the first embodiment. Equation 24 may preferably satisfy 5 ⁇ ⁇ CT / ⁇ CG ⁇ 7 in the second embodiment.
  • ⁇ Index means the sum of the refractive indices at the d-line of each of the plurality of lenses. If Equation 25 is satisfied, TTL can be controlled in the optical system (1000, 1500) where plastic lenses and glass lenses are mixed, and improved resolution can be achieved. Additionally, when the number of lenses made of glass is greater than the number of lenses made of plastic, or if the number of lenses made of glass with a relatively thick thickness is greater, the sum of TTL and refractive index can be set. Equation 25 can preferably be satisfied as 10 ⁇ Index ⁇ 15 in the first and second embodiments.
  • Equation 26 ⁇ Abb means the sum of Abbe's numbers of each of the plurality of lenses.
  • the optical systems 1000 and 1500 can have improved aberration characteristics and resolution.
  • Optical characteristics can be controlled by using Equation 26 to set the sum of the Abbe numbers and refractive indices of the lenses.
  • Equation 26 may preferably satisfy 20 ⁇ ⁇ Abb / ⁇ Index ⁇ 30 in the first and second embodiments.
  • Equation 27 ⁇ CT is the sum of the center thicknesses of the lenses, and ⁇ ET is the end of the effective area of the lenses, that is, the sum of the edge thicknesses. If Equation 27 is satisfied, the optical system can have good optical performance at the focal distance at the set angle of view and can reduce TTL. Equation 27 may preferably satisfy 1 ⁇ ⁇ CT / ⁇ ET ⁇ 1.5 in the first and second embodiments.
  • CA_L3S1 is the effective diameter of the object-side fifth surface S5 of the third lens 102 and 202
  • CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses. If Equation 28 is satisfied, the optical system can control incident light, maintain optical performance, and provide a slimmer module. Equation 28 may preferably satisfy 1.5 ⁇ CA_L2S1 / CA_min ⁇ 2 in the first embodiment. Equation 28 may preferably satisfy 1 ⁇ CA_L2S1 / CA_min ⁇ 1.5 in the second embodiment.
  • Equation 29 CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses. If Equation 29 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. Equation 29 may preferably satisfy 1 ⁇ CA_max / CA_min ⁇ 2.5 in the first embodiment. Equation 29 may preferably satisfy 1 ⁇ CA_max / CA_min ⁇ 2 in the second embodiment.
  • Equation 30 CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 30 is satisfied, the optical system can maintain optical performance and set a size for a slim and compact structure. Equation 30 may preferably satisfy 1 ⁇ CA_max / CA_Aver ⁇ 1.5 in the first and second embodiments.
  • Equation 31 CA_Min represents the minimum effective diameter of the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 31 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. Equation 31 may preferably satisfy 0.5 ⁇ CA_min / CA_Aver ⁇ 0.8 in the first and second embodiments.
  • Equation 32 CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and Imgh represents the length in the diagonal direction from the optical axis of the image sensor 300. If Equation 32 is satisfied, the optical system can maintain good optical performance and set a size for a slim and compact structure. Equation 32 may preferably satisfy 1 ⁇ CA_max / (2*ImgH) ⁇ 2 in the first and second embodiments.
  • Equation 33 TD is the optical axis distance from the center of the object side of the first lens (101, 201) to the center of the sensor side of the last lens, and CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses. If Equation 33 is satisfied, the total optical axis distance and maximum effective diameter of the lenses can be set, and the size for good optical performance can be set. Equation 33 may preferably satisfy 2 ⁇ TD / CA_max ⁇ 3 in the first and second embodiments.
  • Equation 34 F is the effective focal length of the optical system, and L1R1 is the radius of curvature of the object side of the first lens (101, 201). If Equation 34 is satisfied, the influence on incident light and TTL can be adjusted. Equation 34 may preferably satisfy 0.5 ⁇ F / L1R1 ⁇ 1 in the first and second embodiments.
  • Max_th is the thickness of the thickest area of the lens
  • Min_th is the thickness of the thinnest area of the lens.
  • Max_th, the thickest thickness of the lens may be the center thickness (CT) of the lens
  • Min_th, the thinnest thickness of the lens may be the edge thickness (ET) of the lens, but the opposite case is also possible.
  • Max_th, the thickest thickness of the lens may be the edge thickness (ET) of the lens
  • Min_th the thinnest thickness of the lens
  • Edge thickness (ET) refers to the thickness at the end of the effective diameter.
  • Max_PL_th is the thickness value of the thickest area of the plastic lens
  • Min_PL_th is the thickness value of the thinnest area of the plastic lens
  • Max_PL_th may be the center thickness (CT) of the plastic lens
  • Min_PL_th may be the edge thickness (ET) of the plastic lens.
  • Edge thickness (ET) refers to the thickness at the end of the effective diameter.
  • Max_PL_th may be the edge thickness (ET) of the plastic lens
  • Min_PL_th may be the center thickness (CT) of the plastic lens.
  • Edge thickness (ET) refers to the thickness at the end of the effective diameter.
  • the plastic lens shrinks and expands as the temperature changes from -40 degrees to 105,205 degrees. During this process, the rate of change in the shape of the lens increases significantly, which may deteriorate the performance of the optical system.
  • the conditions of 1.0 ⁇ Max_PL_th/Min_PL_th ⁇ 1.8 and 1.0 ⁇ Max_PL_th/Min_PL_th ⁇ 1.5 may be satisfied.
  • Equation 36 EPD means the size (mm) of the entrance pupil of the optical system (1000, 1500), and L1R1 means the radius of curvature of the first surface (S1) of the first lens (101, 201).
  • EPD means the size (mm) of the entrance pupil of the optical system (1000, 1500)
  • L1R1 means the radius of curvature of the first surface (S1) of the first lens (101, 201).
  • Po4 is the refractive power value of the fourth lens (104, 204)
  • Po5 is the refractive power value of the fifth lens (105, 205). That is, the fourth and fifth lenses 104, 204, 105, and 205 have opposite refractive powers, so aberrations can be improved and light can be effectively guided to the image sensor. In the case of Po4 * Po5 > 0, the effect of improving chromatic aberration in the bonded lens is not significant.
  • Equation 38 v4 is the Abbe number of the fourth lens (104,204), and V5 is the Abbe number of the fifth lens (105,205). If Equation 38 is satisfied, the difference in Abbe number between at least two lenses forming the bonded lens can be maintained above a certain value, and chromatic aberration can be improved. Equation 38 may preferably satisfy 30 ⁇ v4-v5 ⁇ 35 in the first and second embodiments. If the bonded lens is less than the lower limit of Equation 38, there may be little improvement in the aberration characteristics of the optical system. Accordingly, if the difference in Abbe number between the object-side lens and the sensor-side lens in the bonded lens is 30 or more and 35 or less, aberration characteristics can be improved.
  • Equation 39 F is the effective focal length of the optical system, and F1 is the focal length of the first lenses 101 and 201. If Equation 39 is satisfied, the TTL applied to the vehicle optical system can be set. Equation 39 is preferably expressed as 1 ⁇
  • F_LG1 is the focal length of the first lens group (LG1)
  • F_LG2 is the focal length of the second lens group (F_LG2).
  • the focal length of the first lens group may have a negative value
  • the focal distance of the second lens group may have a positive value.
  • the optical systems 1000 and 1500 can improve aberration characteristics such as chromatic aberration and distortion aberration.
  • Equation 40 is preferably in the first embodiment, 5 ⁇
  • Equation 40 is preferably in the second embodiment, 8 ⁇
  • Equation 41 nGL represents the number of glass lenses, and nPL represents the number of plastic lenses.
  • Equation 41 by arranging the number of glass lenses to be more than 1 and less than 2 times the number of plastic lenses, the thickness of the optical system can be reduced and more diverse refractive power can be provided through the aspherical surface.
  • Equation 41 may preferably satisfy 1 ⁇ nGL /nPL ⁇ 1.5 in the first embodiment.
  • Equation 41 can preferably satisfy 0.1 ⁇ nGL /nPL ⁇ 1 in the second embodiment.
  • CA_L1 is the average effective diameter of the object side and the sensor side of the first lens (101, 201)
  • CA_L3 is the average effective diameter of the object side and the sensor side of the third lens (103, 203)
  • CA_L7 is the average effective diameter of the seventh lens (107, 207). This is the average effective diameter of the object side and the sensor side. If Equation 42 is satisfied, the first and second lens groups can be set, and the aberration can be improved through the first lens of the second lens group (LG2).
  • CA_L1 can have the maximum effective diameter in the optical system.
  • Equation 43 ⁇ PL_CT is the sum of the center thicknesses of the plastic lens(s), and ⁇ GL_CT is the sum of the center thicknesses of the glass lenses. If Equation 43 is satisfied, the entire TTL can be controlled by setting the relationship between the thickness of the plastic lens and the thickness of the glass lens compared to TTL. Equation 43 may preferably satisfy 0.3 ⁇ ⁇ PL_CT/ ⁇ GL_CT ⁇ 0.8 in the first embodiment. Equation 43 may preferably satisfy 0.5 ⁇ ⁇ PL_CT/ ⁇ GL_CT ⁇ 1 in the second embodiment.
  • Equation 44 ⁇ PL_Index is the sum of the refractive index thicknesses in the d-line of the plastic lens(s), and ⁇ GL_Index is the sum of the refractive indices in the d-line of the glass lenses. If Equation 44 is satisfied, the overall resolution can be controlled by setting the refractive index relationship between the plastic lens and the glass lens. Equation 44 may preferably satisfy 0.5 ⁇ ⁇ PL_Index / ⁇ GL_Index ⁇ 1 in the first embodiment. Equation 44 may preferably satisfy 1 ⁇ ⁇ PL_Index / ⁇ GL_Index ⁇ 1.5 in the second embodiment.
  • total track length means the distance (mm) from the center of the first surface (S1) of the first lens (101, 201) to the upper surface of the image sensor (300) on the optical axis (OA).
  • TTL total track length
  • Equation 45 may preferably satisfy the condition of 30 ⁇ TTL ⁇ 40 or TD ⁇ TTL in the first and second embodiments.
  • Equation 46 can set the diagonal size (2*ImgH) of the image sensor 300 and provide an optical system having a sensor size for a vehicle. Equation 46 may preferably satisfy 4 ⁇ ImgH ⁇ 6 in the first and second embodiments.
  • Equation 47 BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. If Equation 47 is satisfied, the installation space for the filter 500 and the cover glass 400 can be secured, the assembling of the components is improved through the gap between the image sensor 300 and the last lens, and the coupling reliability is improved. can do. Equation 47 may preferably satisfy 1.5 ⁇ BFL ⁇ 3 in the first and second embodiments. If the BFL is less than the range of Equation 47, some of the light traveling to the image sensor may not be transmitted to the image sensor, which may cause resolution deterioration. If the BFL exceeds the range of Equation 47, stray light may enter and the aberration characteristics of the optical system may deteriorate.
  • Equation 48 can set the overall focal length (F) to suit the vehicle optical system. Equation 48 may preferably satisfy 5 ⁇ F ⁇ 20 in the first and second embodiments.
  • FOV Field of view
  • Degree the angle of view of the optical system (1000, 1500)
  • FOV may preferably satisfy 20 ⁇ FOV ⁇ 40.
  • CA_max refers to the largest effective diameter (mm) among the object side and sensor side of the plurality of lenses
  • TTL Total track length
  • S1 the first surface of the first lens (101, 201). It means the distance (mm) from the optical axis (OA) to the upper surface of the sensor 300.
  • Equation 50 establishes the relationship between the total optical axis length of the optical system and the maximum effective diameter, thereby providing an improved optical system for vehicles. Equation 50 may preferably satisfy 1.5 ⁇ TTL / CA_max ⁇ 3 in the first and second embodiments.
  • TTL Total track length
  • OA optical axis
  • ImgH the image This refers to the diagonal size of the sensor 300.
  • the optical systems 1000 and 1500 can have a TTL for application to the vehicle image sensor 300, thereby providing improved image quality.
  • Equation 51 may preferably satisfy 4 ⁇ TTL / ImgH ⁇ 10 in the first and second embodiments.
  • Equation 52 BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens, and ImgH is the diagonal size of the image sensor 300. If Equation 52 is satisfied, the optical systems 1000 and 1500 can secure the back focal length (BFL) to apply the size of the vehicle image sensor 300, and the distance between the last lens and the image sensor 300 can be adjusted to It can be set and have good optical characteristics in the center and periphery of the field of view (FOV). Equation 52 may preferably satisfy 0.2 ⁇ BFL / ImgH ⁇ 0.8 in the first and second embodiments.
  • TTL Total track length
  • BFL the distance (mm) from the image sensor 300. It means the optical axis distance from the sensor 300 to the center of the sensor side of the last lens. If Equation 53 is satisfied, the optical systems 1000 and 1500 can secure BFL. Equation 53 may preferably satisfy 10 ⁇ TTL / BFL ⁇ 15 in the first and second embodiments.
  • TTL Total track length
  • F the optical system is the effective focal length of
  • an optical system for a driver assistance system can be provided.
  • Equation 54 may preferably satisfy 1.5 ⁇ TTL/F ⁇ 2.8 or 2 ⁇ TTL/F ⁇ 2.8 in the first and second embodiments.
  • the optical system (1000, 1500) can have an appropriate focal distance in the set TTL range, and maintain the appropriate focal distance even when the temperature changes from low to high temperature. It provides an optical system that can form images.
  • Equation 54 If it is less than the lower limit of Equation 54, it is necessary to increase the refractive power of the lenses, making correction of spherical aberration or distortion aberration difficult, and if it is more than the upper limit of Equation 54, the effective diameter or TTL of the lenses becomes longer, making it difficult to capture images. A problem may arise where the lens system becomes larger.
  • Equation 55 F is the effective focal length of the optical system, and BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. If Equation 55 is satisfied, the optical systems 1000 and 1500 can have a set angle of view and an appropriate focal distance, and an optical system for a vehicle can be provided. Additionally, the optical systems 1000 and 1500 can minimize the gap between the last lens and the image sensor 300 and thus have good optical characteristics at the periphery of the field of view (FOV). Equation 55 may preferably satisfy 3 ⁇ F / BFL ⁇ 6 in the first and second embodiments.
  • Equation 56 F is the effective focal length of the optical system, and ImgH is the diagonal size of the image sensor 300. These optical systems 1000 and 1500 may have improved aberration characteristics in the size of the vehicle image sensor 300. Equation 56 may preferably satisfy 2 ⁇ F / ImgH ⁇ 4 in the first and second embodiments.
  • Equation 57 F is the effective focal length of the optical system, and EPD is the entrance pupil size. Accordingly, the overall brightness of the optical system can be controlled. Equation 57 can preferably set 1 ⁇ F / EPD ⁇ 2 in the first and second embodiments.
  • Equation 58 TD is the optical axis distance of the lenses of the optical system 1000 and 1500, and BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. Accordingly, the overall size can be controlled while maintaining the resolution of the optical system. Equation 58 may preferably satisfy 0 ⁇ BFL/TD ⁇ 0.1 in the first and second embodiments. If the condition value of BFL/TD is more than 0.1, BFL is designed to be larger than TD, so the size of the entire optical system becomes large, making it difficult to miniaturize the optical system, and the distance between the seventh lens (107, 207) and the image sensor is long. As a result, the amount of unnecessary light may increase between the seventh lens (107, 207) and the image sensor, and there is a problem of lowering resolution, such as lowering aberration characteristics.
  • Equation 59 can establish the relationship between the entrance pupil size (EPD), the length of half the maximum diagonal length of the image sensor (Imgh), and the angle of view. Accordingly, the overall size and brightness of the optical system can be controlled. Equation 59 may preferably satisfy 0 ⁇ EPD/Imgh/FOV ⁇ 0.1 in the first and second embodiments.
  • Equation 60 can establish the relationship between the angle of view of the optical system and the F number (F#). Equation 60 may preferably satisfy 10 ⁇ FOV / F # ⁇ 25 in the first and second embodiments. Here, F# can be set to 1.6 or less to provide a bright image.
  • Equation 61 CG1 means the optical axis spacing between the first lens 101 and the second lens 102
  • TTL Total track length
  • S1 vertex of the first surface of the first lens to the image sensor ( 300) means the distance (mm) from the optical axis (OA) to the upper surface.
  • the gap between the first lens 101 and the second lens 102 may be the largest. If the optical system 1000 satisfies Equation 61 and the gap between the first lens 101 and the second lens 102 is increased, the radius of curvature of the first lens 101 is increased, making it easy to manufacture the lens, and reducing chromatic aberration. It has the effect of correcting .
  • Equation 61 may preferably satisfy 0.3 ⁇ CG1 / TTL ⁇ 0.5 in the first embodiment.
  • Equation 62 F2 is the focal length of the second lens 202, and F5 is the focal length of the fifth lens 205.
  • the relationship between the focal lengths of the second lens 202 and the fifth lens 205 can be established.
  • the absolute value of the focal length of the second lens 202, which is made of glass, is the largest, and the absolute value of the focal distance of the fifth lens, 205, which is made of plastic, is the smallest, thereby increasing the incident efficiency. It can be guided to the image sensor 300 by increasing and adjusting the refractive power between the lenses made of glass and plastic.
  • Equation 62 is preferably in the second embodiment, 5 ⁇
  • Equation 63 F2 is the focal length of the second lens 202, and F3 is the focal length of the third lens 203.
  • the absolute value of the focal length of the second lens 202 made of glass within the optical system 1500 is the largest, and the focus of the third lens 203 made of glass within the optical system 1500 in addition to the bonded lens 245
  • the absolute value of the distance is set to the smallest to increase incident efficiency, and the refractive power between the glass and plastic lenses can be adjusted to guide them to the image sensor 300.
  • Equation 63 is preferably in the second embodiment, 2 ⁇
  • Equation 64 can set the relationship between the Sag value and the effective diameter (CA) of the first to fourth surfaces (S1, S2, S3, S4) of the first and second lenses (101, 201, 102, and 202), and if this is satisfied, the refractive power of the lenses can improve.
  • Equation 64 states that if the condition of n1 > 1.7 is further satisfied, the first and second lenses (101, 201, 102, 202) emit light with sufficient power even without drastically designing the radius of curvature within the effective diameter. It is possible to collect them.
  • Z is Sag and can mean the distance in the optical axis direction from any position on the aspherical surface to the vertex of the aspherical surface.
  • Y may mean the distance from any location on the aspherical surface to the optical axis in a direction perpendicular to the optical axis.
  • c may refer to the curvature of the lens, and K may refer to the Conic constant.
  • A, B, C, D, E, and F may mean aspheric constants.
  • the optical systems 1000 and 1500 according to the first and second embodiments may satisfy at least one or two of Equations 1 to 64.
  • the optical systems 1000 and 1500 may have improved optical characteristics.
  • the optical systems 1000 and 1500 satisfy at least one or two of Equations 1 to 64, the optical systems 1000 and 1500 have improved resolution and can improve aberration and distortion characteristics.
  • the optical systems 1000 and 1500 can secure the back focal length (BFL) for applying the automotive image sensor 300, compensate for the decrease in optical characteristics due to temperature changes, and the last lens and image sensor ( 300) can be minimized, allowing good optical performance in the center and periphery of the field of view (FOV).
  • BFL back focal length
  • Table 5 shows the result values for Equations 1 to 64 described above in the optical systems 1000 and 1500 of the embodiment. Referring to Table 5, it can be seen that the optical systems 1000 and 1500 satisfy at least one, two, or three of Equations 1 to 64. In detail, it can be seen that the optical systems 1000 and 1500 according to the embodiment satisfy all of Equations 1 to 64. Accordingly, the optical systems 1000 and 1500 can have good optical performance in the center and periphery of the field of view (FOV) and can have excellent optical characteristics.
  • FOV field of view
  • Embodiment 1 Second embodiment One 0.5 ⁇ CT1 / ET1 ⁇ 1 0.881 0.9500 2 0.1 ⁇ CT1/CA_L1S1 ⁇ 0.5 0.201 0.3808 3 Po1 ⁇ 0 -0.0128 -0.0194 4 1.7 ⁇ n1 ⁇ 2.2 1.7727 1.8877 5 27 ⁇ FOV_H ⁇ 33 29.98 29.95 6 (First embodiment) L3R1>0, L3S2 ⁇ 0 (Second embodiment) L3R1 > 0, L3R2 ⁇ 0,
  • Figure 29 is an example of a top view of a vehicle to which a camera module or optical system is applied according to an embodiment of the invention.
  • the vehicle camera system includes an image generator 11, a first information generator 12, and a second information generator 21, 22, 23, 24, 25, and 26. ) and a control unit 14.
  • the image generator 11 may include at least one camera module 31 disposed in the host vehicle, and can generate a front image of the host vehicle or an image inside the vehicle by filming the front of the host vehicle and/or the driver. there is.
  • the image generator 11 may use the camera module 31 to capture not only the front of the vehicle but also the surroundings of the vehicle in one or more directions to generate an image surrounding the vehicle.
  • the front image and peripheral image may be digital images and may include color images, black-and-white images, and infrared images. Additionally, the front image and surrounding image may include still images and moving images.
  • the image generator 11 provides the driver image, front image, and surrounding image to the control unit 14.
  • the first information generator 12 may include at least one radar or/and camera disposed in the host vehicle, and generates first detection information by detecting the front of the host vehicle. Specifically, the first information generator 12 is disposed in the host vehicle and generates first detection information by detecting the location and speed of vehicles located in front of the host vehicle and the presence and location of pedestrians.
  • the first information generation unit 12 provides first detection information to the control unit 14.
  • the second information generators 21, 22, 23, 24, 25, and 26 are based on the front image generated by the image generator 11 and the first sensed information generated by the first information generator 12, Each side of the vehicle is sensed to generate second sensing information.
  • the second information generators 21, 22, 23, 24, 25, and 26 may include at least one radar or/and camera disposed on the host vehicle, and may include positions of vehicles located on the sides of the host vehicle. and speed can be detected or video taken.
  • the second information generation units 21, 22, 23, 24, 25, and 26 may be disposed at both front corners, side mirrors, and the rear center and rear corners of the vehicle, respectively.
  • At least one information generator of these vehicle camera systems may include an optical system described in the above-described embodiment and a camera module having the same, and may use information acquired through the front, rear, each side, or corner area of the vehicle. It can be provided to the user or processed to protect vehicles and objects from autonomous driving or ambient safety.
  • the optical system of the camera module can be mounted in multiple numbers in a vehicle to improve safety regulations, strengthen autonomous driving functions, and increase convenience. Additionally, the optical system of the camera module is used in vehicles as a control component for lane keeping assistance systems (LKAS), lane departure warning systems (LDWS), and driver monitoring systems (DMS). These automotive camera modules can provide stable optical performance despite changes in ambient temperature and provide price-competitive modules to ensure the reliability of automotive components.
  • LKAS lane keeping assistance systems
  • LDWS lane departure warning systems
  • DMS driver monitoring systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical system according to an embodiment of the present invention includes a first lens to a seventh lens arranged along the optical axis, wherein the first lens has a negative (-) refractive power, the composite refractive power of the second lens to the seventh lens is a positive (+) refractive power, the second lens among the first lens to the seventh lens has a smallest effective diameter, and the effective diameter of the first lens is the greatest.

Description

광학계 및 카메라 모듈Optics and camera modules
본 발명은 향상된 광학 성능을 위한 광학계 및 이를 포함하는 카메라 모듈에 대한 것이다.The present invention relates to an optical system for improved optical performance and a camera module including the same.
ADAS(Advanced Driving Assistance System)란 운전자를 운전을 보조하기 위한 첨단 운전자 보조 시스템으로서, 전방의 상황을 센싱하고, 센싱된 결과에 기초하여 상황을 판단하고, 상황 판단에 기초하여 차량의 거동을 제어하는 것으로 구성된다. 예를 들어, ADAS 센서 장치는 전방의 차량을 감지하고, 차선을 인식한다. 이후 목표 차 선이나 목표 속도 및 전방의 타겟이 판단되면, 차량의 ESC(Electrical Stability Control), EMS(Engine Management System), MDPS(Motor Driven Power Steering) 등이 제어된다. 대표적으로, ADAS는 자동 주차 시스템, 저속 시내 주행 보조 시스템, 사각 지대 경고 시스템 등으로 구현될 수 있다.ADAS (Advanced Driving Assistance System) is an advanced driver assistance system to assist the driver in driving. It senses the situation ahead, judges the situation based on the sensed results, and controls the vehicle's behavior based on the situation judgment. It consists of For example, ADAS sensor devices detect vehicles in front and recognize lanes. Afterwards, when the target lane, target speed, and target ahead are determined, the vehicle's ESC (Electrical Stability Control), EMS (Engine Management System), and MDPS (Motor Driven Power Steering) are controlled. Typically, ADAS can be implemented as an automatic parking system, a low-speed city driving assistance system, and a blind spot warning system.
ADAS에서 전방의 상황을 감지하기 위한 센서 장치는 GPS 센서, 레이저 스캐너, 전방 레이더, Lidar 등이 있으며, 가장 대표적인 것은 차량의 전방, 후방 및 측방을 촬영하기 위한 카메라이다. Sensor devices for detecting the situation ahead in ADAS include GPS sensors, laser scanners, front radar, and Lidar, and the most representative ones are cameras for photographing the front, rear, and sides of the vehicle.
이러한 카메라는 차량의 외부 또는 내부에 배치되어 상기 차량의 주변 상황을 감지할 수 있다. 또한, 상기 카메라는 차량의 내부에 배치되어 운전자 및 동승자의 상황을 감지할 수 있다. 예를 들어, 상기 카메라는 운전자와 인접한 위치에서 상기 운전자를 촬영할 수 있고, 운전자의 건강 상태, 졸음 여부, 음주 여부 등을 감지할 수 있다. 또한, 상기 카메라는 동승자와 인접한 위치에서 상기 동승자를 촬영하며 동승자의 수면 여부, 건강 상태 등을 감지할 수 있고, 운전자에게 동승자에 대한 정보를 제공할 수 있다.These cameras can be placed outside or inside a vehicle to detect the surrounding conditions of the vehicle. Additionally, the camera may be placed inside the vehicle to detect the situation of the driver and passengers. For example, the camera can photograph the driver from a location adjacent to the driver and detect the driver's health status, drowsiness, drinking, etc. In addition, the camera can photograph the passenger at a location adjacent to the passenger, detect whether the passenger is sleeping, state of health, etc., and provide information about the passenger to the driver.
특히, 카메라에서 상(image)을 얻기 위해 가장 중요한 요소는 상(image)을 결상하는 촬상 렌즈이다. 최근 고화질, 고해상도 등 고성능에 대한 관심이 높아지고 있으며, 이를 구현하기 위해 복수의 렌즈를 포함하는 광학계에 대한 연구가 진행되고 있다. 그러나, 상기 카메라가 차량의 외부 또는 내부에서 가혹한 환경, 예컨대 고온, 저온, 수분, 고습 등에 노출될 경우 광학계의 특성이 변화하는 문제가 있다. 이 경우, 상기 카메라는 우수한 광학적 특성, 수차 특성을 균일하게 도출하기 어려운 문제점이 있다.In particular, the most important element in obtaining an image from a camera is the imaging lens that forms the image. Recently, interest in high performance, such as high image quality and high resolution, is increasing, and research is being conducted on optical systems that include multiple lenses to realize this. However, there is a problem that the characteristics of the optical system change when the camera is exposed to harsh environments, such as high temperature, low temperature, moisture, high humidity, etc., outside or inside the vehicle. In this case, the camera has a problem in that it is difficult to uniformly derive excellent optical and aberration characteristics.
따라서, 상술한 문제를 해결할 수 있는 새로운 광학계 및 카메라가 요구된다.Therefore, a new optical system and camera that can solve the above-mentioned problems are required.
실시예는 광학 특성이 향상된 광학계 및 카메라 모듈을 제공하고자 한다.The embodiment seeks to provide an optical system and camera module with improved optical characteristics.
실시예는 저온 내지 고온의 환경에서 우수한 광학 성능을 가지는 광학계 및 카메라 모듈을 제공하고자 한다.The embodiment seeks to provide an optical system and a camera module with excellent optical performance in low to high temperature environments.
실시예는 다양한 온도 범위에서 광학적 특성이 변화하는 것을 방지 또는 최소화할 수 있는 광학계 및 카메라 모듈을 제공하고자 한다.Embodiments seek to provide an optical system and a camera module that can prevent or minimize changes in optical properties in various temperature ranges.
상기 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 광학계는 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, 상기 제1렌즈는 음(-)의 굴절력을 갖고, 상기 제2렌즈 내지 상기 제7렌즈의 합성 굴절력은 양(+)의 굴절력을 갖고, 상기 제1렌즈 내지 상기 제7렌즈 중 상기 제2렌즈의 유효경이 가장 작고, 상기 제1렌즈의 유효경이 가장 클 수 있다.In order to solve the above technical problem, the optical system according to an embodiment of the present invention includes first to seventh lenses disposed along the optical axis, the first lens has a negative refractive power, and the second lens The composite refractive power of the lens to the seventh lens may have a positive refractive power, the effective diameter of the second lens may be the smallest among the first to the seventh lenses, and the effective diameter of the first lens may be the largest. .
상기 제4렌즈, 상기 제5렌즈 및 상기 제7렌즈는 플라스틱 재질이고, 상기 제1렌즈 내지 상기 제3렌즈 및 제6렌즈 중 적어도 하나는 유리 재질일 수 있다.The fourth lens, the fifth lens, and the seventh lens may be made of plastic, and at least one of the first to third lenses and the sixth lens may be made of glass.
상기 제6렌즈 및 상기 제7렌즈의 유효경은 상기 제5렌즈의 유효경보다 작을 수 있다.The effective diameter of the sixth lens and the seventh lens may be smaller than the effective diameter of the fifth lens.
상기 제2렌즈는 물체측면은 평면을 가질 수 있다.The second lens may have a flat object side.
상기 제1렌즈 내지 상기 제7렌즈 중 초점 거리의 절대값이 가장 작은 렌즈는 상기 제3렌즈 내지 상기 제5렌즈 중 하나일 수 있다.Among the first to seventh lenses, the lens with the smallest absolute value of focal length may be one of the third to fifth lenses.
상기 제3렌즈 내지 상기 제5렌즈의 초점 거리의 절대값은 아래의 조건식을 만족할 수 있다. <조건식> |F3| ≥ |F4| ≥ |F5| (상기 조건식에서 F3은 상기 제3렌즈의 초점 거리, F4는 상기 제4렌즈의 초점 거리, F5는 상기 제5렌즈의 초점 거리이다.)The absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. <Conditional expression> |F3| ≥ |F4| ≥ |F5| (In the above conditional expression, F3 is the focal length of the third lens, F4 is the focal length of the fourth lens, and F5 is the focal length of the fifth lens.)
상기 기술적 과제를 해결하기 위하여, 본 발명의 다른 실시예에 따른 광학계는 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, 상기 제1렌즈는 음(-)의 굴절력을 갖고, 상기 제2렌즈 내지 상기 제7렌즈의 합성 굴절력은 양(+)의 굴절력을 갖고, 상기 제1렌즈의 유효경은 상기 제3렌즈의 유효경보다 클 수 있다.In order to solve the above technical problem, an optical system according to another embodiment of the present invention includes first to seventh lenses disposed along an optical axis, the first lens has a negative refractive power, and the second lens has a negative refractive power. The combined refractive power of the second to seventh lenses may have positive refractive power, and the effective diameter of the first lens may be larger than the effective diameter of the third lens.
상기 광학계는 양(+)의 굴절력을 갖는 렌즈와 음(-)의 굴절력을 갖는 렌즈가 접합되는 접합 렌즈를 포함하고, 상기 접합 렌즈는 상기 제3 내지 상기 제5렌즈 중 연속하게 배치되는 2개의 렌즈로 이루어질 수 있다.The optical system includes a bonded lens in which a lens with positive (+) refractive power and a lens with negative (-) refractive power are bonded, and the bonded lens includes two consecutively arranged lenses among the third to fifth lenses. It can be done with a lens.
상기 접합 렌즈는 플라스틱 재질이고, 상기 제1렌즈 내지 상기 제3렌즈 및 제6렌즈 중 적어도 하나는 유리 재질일 수 있다.The bonded lens may be made of plastic, and at least one of the first to third lenses and the sixth lens may be made of glass.
상기 제1렌즈 내지 상기 제7렌즈 중 상기 제5렌즈의 초점 거리의 절대값이 가장 작고, 상기 제6렌즈의 초점 거리의 절대값이 가장 클 수 있다.Among the first to seventh lenses, the absolute value of the focal distance of the fifth lens may be the smallest, and the absolute value of the focal distance of the sixth lens may be the largest.
상기 접합 렌즈의 물체측에 상기 접합 렌즈와 가장 인접하게 배치되는 렌즈 및 상기 접합 렌즈의 센서측에 상기 접합 렌즈와 가장 인접하게 배치되는 렌즈 중 적어도 하나는 양면이 볼록한 형상을 가질 수 있다.At least one of the lens disposed closest to the bonded lens on the object side of the bonded lens and the lens disposed closest to the bonded lens on the sensor side of the bonded lens may have a shape in which both sides are convex.
상기 접합 렌즈의 센서측면의 곡률반경의 절대값은 상기 접합 렌즈의 물체측면의 곡률반경의 절대값보다 작을 수 있다.The absolute value of the radius of curvature of the sensor side of the bonded lens may be smaller than the absolute value of the radius of curvature of the object side of the bonded lens.
상기 기술적 과제를 해결하기 위하여, 본 발명의 다른 실시예에 따른 광학계는 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, 상기 제1 내지 제7렌즈 중 상기 제6렌즈의 초점 거리의 절대값이 가장 크고, 상기 제5렌즈의 초점 거리의 절대값이 가장 작고, 아래의 조건식을 만족할 수 있다. <조건식> 0.2 < CG1 / TTL < 0.6 (상기 조건식에서 CG1은 상기 광축에서 상기 제1렌즈와 상기 제2렌즈 사이의 거리이고, TTL은 상기 광축에서 상기 제1렌즈의 물체측면으로부터 상기 이미지 센서까지의 거리이다.)In order to solve the above technical problem, an optical system according to another embodiment of the present invention includes first to seventh lenses disposed along an optical axis, and a focal length of the sixth lens among the first to seventh lenses. The absolute value is the largest, the absolute value of the focal length of the fifth lens is the smallest, and the conditional expression below can be satisfied. <Conditional expression> 0.2 < CG1 / TTL < 0.6 (In the above conditional expression, CG1 is the distance between the first lens and the second lens on the optical axis, and TTL is the distance from the object side of the first lens to the image sensor on the optical axis. is the distance.)
상기 제6렌즈와 상기 제5렌즈의 초점 거리의 절대값의 비율은 5배보다 크고 10배보다 작을 수 있다.The ratio of the absolute values of the focal lengths of the sixth lens and the fifth lens may be greater than 5 times and less than 10 times.
상기 제3렌즈 내지 상기 제5렌즈의 초점 거리의 절대값은 아래의 조건식을 만족할 수 있다. <조건식> |F3| ≥ |F4| ≥ |F5| (상기 조건식에서 F3은 상기 제3렌즈의 초점 거리, F4는 상기 제4렌즈의 초점 거리, F5는 상기 제5렌즈의 초점 거리이다.)The absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. <Conditional expression> |F3| ≥ |F4| ≥ |F5| (In the above conditional expression, F3 is the focal length of the third lens, F4 is the focal length of the fourth lens, and F5 is the focal length of the fifth lens.)
상기 광축에서 상기 제7렌즈는 상기 제1 내지 제7렌즈 중에서 두께가 가장 작고, 상기 광축에서 상기 제4렌즈는 상기 제1 내지 제7렌즈 중에서 두께가 가장 클 수 있다.In the optical axis, the seventh lens may have the smallest thickness among the first to seventh lenses, and in the optical axis, the fourth lens may have the greatest thickness among the first to seventh lenses.
상기 광축에서 상기 제2렌즈의 두께는 상기 제3렌즈 및 상기 제4렌즈의 두께보다 작을 수 있다.The thickness of the second lens at the optical axis may be smaller than the thickness of the third lens and the fourth lens.
상기 제1렌즈는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. The first lens may have a meniscus shape convex toward the object.
상기 제3렌즈는 양면이 볼록한 형상을 가질 수 있다.The third lens may have a convex shape on both sides.
상기 제1렌즈, 상기 제5렌즈 및 상기 제7렌즈는 음(-)의 굴절력을 갖고, 상기 제2렌즈, 상기 제3렌즈, 상기 제4렌즈 및 제6렌즈는 양(+)의 굴절력을 가질 수 있다. The first lens, the fifth lens, and the seventh lens have negative (-) refractive power, and the second lens, the third lens, the fourth lens, and the sixth lens have positive (+) refractive power. You can have it.
상기 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 광학계는 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, 상기 제1렌즈는 음(-)의 굴절력을 갖고, 상기 제2렌즈 내지 상기 제7렌즈의 합성 굴절력은 양(+)의 굴절력을 갖고, 상기 제1렌즈 내지 상기 제3렌즈 중 상기 제2렌즈의 유효경이 가장 작고, 상기 광축에서 상기 제2렌즈의 두께는 상기 제1렌즈의 두께보다 크다.In order to solve the above technical problem, the optical system according to an embodiment of the present invention includes first to seventh lenses disposed along the optical axis, the first lens has a negative refractive power, and the second lens The composite refractive power of the lens to the seventh lens has a positive refractive power, the effective diameter of the second lens is the smallest among the first to third lenses, and the thickness of the second lens at the optical axis is the It is larger than the thickness of the first lens.
상기 제4렌즈 내지 제7렌즈는 플라스틱 재질이고, 상기 제1렌즈 내지 3렌즈 중 적어도 하나는 유리 재질일 수 있다.The fourth to seventh lenses may be made of plastic, and at least one of the first to third lenses may be made of glass.
상기 제6렌즈 및 상기 제7렌즈의 유효경은 상기 제5렌즈의 유효경보다 작고, 상기 제1렌즈 내지 상기 제7렌즈 중 상기 제3렌즈의 유효경이 가장 클 수 있다.The effective diameter of the sixth lens and the seventh lens may be smaller than that of the fifth lens, and the effective diameter of the third lens may be the largest among the first to seventh lenses.
상기 제2렌즈는 센서측으로 볼록한 메니스커스 형상을 가질 수 있다.The second lens may have a meniscus shape convex toward the sensor.
상기 제1렌즈 내지 상기 제7렌즈 중 초점 거리의 절대값이 가장 작은 렌즈는 상기 제3렌즈 내지 상기 제5렌즈 중 하나일 수 있다.Among the first to seventh lenses, the lens with the smallest absolute value of focal length may be one of the third to fifth lenses.
상기 제3렌즈 내지 상기 제5렌즈의 초점 거리의 절대값은 아래의 조건식을 만족할 수 있다. <조건식> |F4| ≥ |F3| ≥ |F5| (상기 조건식에서 F3은 상기 제3렌즈의 초점 거리, F4는 상기 제4렌즈의 초점 거리, F5는 상기 제5렌즈의 초점 거리이다.) The absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. <Conditional expression> |F4| ≥ |F3| ≥ |F5| (In the above conditional expression, F3 is the focal length of the third lens, F4 is the focal length of the fourth lens, and F5 is the focal length of the fifth lens.)
상기 기술적 과제를 해결하기 위하여, 본 발명의 다른 실시예에 따른 광학계는 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, 상기 제1렌즈는 음(-)의 굴절력을 갖고, 상기 제6렌즈 및 상기 제7렌즈의 유효경은 상기 제5렌즈의 유효경보다 작고, 상기 광축에서 상기 제2렌즈의 두께는 상기 제1렌즈의 두께보다 클 수 있다.In order to solve the above technical problem, an optical system according to another embodiment of the present invention includes first to seventh lenses disposed along an optical axis, the first lens has a negative refractive power, and the second lens has a negative refractive power. The effective diameter of the sixth lens and the seventh lens may be smaller than the effective diameter of the fifth lens, and the thickness of the second lens at the optical axis may be greater than the thickness of the first lens.
상기 제1렌즈는 유리 재질이고, 상기 제4렌즈 및 상기 제5렌즈는 플라스틱 재질일 수 있다.The first lens may be made of glass, and the fourth and fifth lenses may be made of plastic.
상기 광학계는 양(+)의 굴절력을 갖는 렌즈와 음(-)의 굴절력을 갖는 렌즈가 접합되는 접합 렌즈를 포함하고, 상기 접합 렌즈의 물체측에 상기 접합 렌즈와 가장 인접하게 배치되는 렌즈 및 상기 접합 렌즈의 센서측에 상기 접합 렌즈와 가장 인접하게 배치되는 렌즈 중 적어도 하나는 양면이 볼록한 형상을 가질 수 있다.The optical system includes a bonded lens in which a lens with positive (+) refractive power and a lens with negative (-) refractive power are bonded, a lens disposed closest to the bonded lens on an object side of the bonded lens, and At least one of the lenses disposed closest to the bonded lens on the sensor side of the bonded lens may have a shape in which both sides are convex.
상기 접합 렌즈의 센서측면의 곡률반경의 절대값은 상기 접합 렌즈의 물체측면의 곡률반경의 절대값보다 작을 수 있다.The absolute value of the radius of curvature of the sensor side of the bonded lens may be smaller than the absolute value of the radius of curvature of the object side of the bonded lens.
상기 접합 렌즈의 물체측면은 볼록한 형상을 갖고, 상기 접합 렌즈의 센서측면은 오목한 형상을 가질 수 있다.The object side of the bonded lens may have a convex shape, and the sensor side of the bonded lens may have a concave shape.
상기 접합 렌즈는 상기 제3렌즈 내지 상기 제5렌즈 중 연속하게 배치되는 2개의 렌즈로 이루어질 수 있다.The bonded lens may be composed of two lenses, one of the third lens to the fifth lens, arranged consecutively.
상기 기술적 과제를 해결하기 위하여, 본 발명의 또다른 실시예에 따른 광학계는 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, 상기 제1 내지 제7렌즈 중 상기 제2렌즈의 초점 거리의 절대값이 가장 크고, 상기 제5렌즈의 초점 거리의 절대값이 가장 작고, 상기 제2렌즈와 상기 제5렌즈의 초점 거리의 절대값의 비율은 5배보다 크고 10배보다 작을 수 있다.In order to solve the above technical problem, an optical system according to another embodiment of the present invention includes first to seventh lenses disposed along an optical axis, and the focal length of the second lens among the first to seventh lenses is The absolute value of may be the largest, the absolute value of the focal length of the fifth lens may be the smallest, and the ratio of the absolute values of the focal distances of the second lens and the fifth lens may be greater than 5 times and less than 10 times.
상기 제2렌즈와 상기 제3렌즈의 초점 거리의 절대값의 비율은 2배보다 크고 10배보다 작을 수 있다.The ratio of the absolute values of the focal lengths of the second lens and the third lens may be greater than 2 times and less than 10 times.
상기 제3렌즈 내지 상기 제5렌즈의 초점 거리의 절대값은 아래의 조건식을 만족할 수 있다. <조건식> |F4| ≥ |F3| ≥ |F5| (상기 조건식에서 F3은 상기 제3렌즈의 초점 거리, F4는 상기 제4렌즈의 초점 거리, F5는 상기 제5렌즈의 초점 거리이다.)The absolute values of the focal lengths of the third to fifth lenses may satisfy the following conditional expression. <Conditional expression> |F4| ≥ |F3| ≥ |F5| (In the above conditional expression, F3 is the focal length of the third lens, F4 is the focal length of the fourth lens, and F5 is the focal length of the fifth lens.)
상기 광축에서 상기 제5렌즈는 상기 제1 내지 제7렌즈 중에서 두께가 가장 작고, 상기 광축에서 상기 제2렌즈는 상기 제1 내지 제7렌즈 중에서 두께가 가장 클 수 있다.In the optical axis, the fifth lens may have the smallest thickness among the first to seventh lenses, and in the optical axis, the second lens may have the greatest thickness among the first to seventh lenses.
상기 광축에서 상기 제2렌즈의 두께는 상기 제3렌즈 및 상기 제4렌즈의 두께보다 클 수 있다.The thickness of the second lens at the optical axis may be greater than the thickness of the third lens and the fourth lens.
상기 제1렌즈 내지 상기 제7렌즈 중 상기 제6렌즈의 센서측면의 곡률 반경의 절대값이 가장 크고, 상기 제5렌즈의 센서측면의 곡률 반경의 절대값이 가장 작을 수 있다.Among the first to seventh lenses, the absolute value of the radius of curvature of the sensor side of the sixth lens may be the largest, and the absolute value of the radius of curvature of the sensor side of the fifth lens may be the smallest.
상기 제3렌즈는 양면이 볼록한 형상을 가질 수 있다.The third lens may have a convex shape on both sides.
상기 제3렌즈의 물체측면의 곡률반경의 절대값과 상기 제3렌즈의 센서측면의 곡률반경의 절대값은 동일할 수 있다.The absolute value of the radius of curvature of the object side of the third lens may be the same as the absolute value of the radius of curvature of the sensor side of the third lens.
실시예에 따른 광학계 및 카메라 모듈은 향상된 광학 특성을 가질 수 있다. 자세하게, 실시예에 따른 광학계에서 복수의 렌즈들은 설정된 두께, 굴절력 및 인접한 렌즈와의 간격을 가질 수 있다. 이에 따라, 실시예에 따른 광학계 및 카메라 모듈은 설정된 화각 범위에서 향상된 MTF 특성, 수차 제어 특성, 해상도 특성 등을 가질 수 있고, 화각의 주변부에서 양호한 광학 성능을 가질 수 있다.The optical system and camera module according to the embodiment may have improved optical characteristics. In detail, in the optical system according to the embodiment, a plurality of lenses may have a set thickness, refractive power, and distance from adjacent lenses. Accordingly, the optical system and camera module according to the embodiment may have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in a set angle of view range, and may have good optical performance in the peripheral area of the angle of view.
또한, 실시예에 따른 광학계 및 카메라 모듈은 저온 내지 고온의 온도 범위(-40℃~105℃)에서 양호한 광학 성능을 가질 수 있다. 자세하게, 상기 광학계에 포함된 복수의 렌즈들은 설정된 재질, 굴절력, 및 굴절률을 가질 수 있다. 이에 따라, 온도 변화에 따른 각 렌즈의 굴절률이 변화되고, 이로 인해 각 렌즈의 초점 거리가 변화할 경우, 플라스틱 렌즈와 유리 렌즈에 의해 상호 보상할 수 있다. 즉, 상기 광학계는 저온 내지 고온의 온도 범위에서 굴절력에 대한 배분을 효과적으로 수행할 수 있고, 저온 내지 고온의 온도 범위에서 광학 특성이 변화하는 것을 방지 또는 최소화할 수 있다. 따라서, 실시예에 따른 광학계 및 카메라 모듈은 다양한 온도 범위에서 향상된 광학 특성을 유지할 수 있다.Additionally, the optical system and camera module according to the embodiment may have good optical performance in a low to high temperature range (-40°C to 105°C). In detail, a plurality of lenses included in the optical system may have set materials, refractive powers, and refractive indices. Accordingly, when the refractive index of each lens changes due to temperature change and the focal length of each lens changes due to this, mutual compensation can be made by the plastic lens and the glass lens. That is, the optical system can effectively distribute refractive power in a temperature range from low to high temperatures, and prevent or minimize changes in optical properties in the temperature range from low to high temperatures. Therefore, the optical system and camera module according to the embodiment can maintain improved optical properties in various temperature ranges.
또한, 실시예에 따른 광학계 및 카메라 모듈은 플라스틱 렌즈와 유리 렌즈의 혼합을 통해 설정된 화각을 만족하며 우수한 광학 특성을 구현할 수 있다. 이로 인해 상기 광학계는 보다 슬림한 차량용 카메라 모듈을 제공할 있다. 따라서, 상기 광학계 및 카메라 모듈은 다양한 어플리케이션 및 장치 등에 제공될 수 있고, 가혹한 온도 환경, 예를 들어 차량의 외부에 노출되거나 또는 여름철 고온의 차량 내부에서도 우수한 광학 특성을 가질 수 있다.Additionally, the optical system and camera module according to the embodiment can satisfy the angle of view set through a mixture of a plastic lens and a glass lens and implement excellent optical characteristics. Because of this, the optical system can provide a slimmer vehicle camera module. Accordingly, the optical system and camera module can be provided for various applications and devices, and can have excellent optical properties even in harsh temperature environments, for example, when exposed to the exterior of a vehicle or inside a vehicle at high temperatures in the summer.
도 1은 제1실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이다.1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment.
도 2는 도 1의 따른 n번째 및 n-1번째 렌즈의 관계를 설명하기 위한 측 단면도이다.FIG. 2 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses of FIG. 1.
도 3은 도 1의 광학계의 렌즈 특성을 나타낸 표이다.Figure 3 is a table showing the lens characteristics of the optical system of Figure 1.
도 4는 도 1의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이다.FIG. 4 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 1.
도 5는 도 1의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이다.Figure 5 is a table showing the thickness of each lens and the spacing between adjacent lenses in the optical system of Figure 1.
도 6은 도 1의 광학계에서 제3 내지 제6 렌즈의 렌즈 면들의 Sag 값을 나타낸 표이다.FIG. 6 is a table showing Sag values of lens surfaces of the third to sixth lenses in the optical system of FIG. 1.
도 7은 도 1의 광학계에서 이미지 센서의 위치에 따른 상온, 저온 및 고온에서의 CRA(Chief Ray Angle) 데이터를 나타낸 표이다. FIG. 7 is a table showing CRA (Chief Ray Angle) data at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of FIG. 1.
도 8은 도 1의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이다.FIG. 8 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 1 at room temperature.
도 9는 도 1의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 9 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at low temperature.
도 10은 도 1의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 10 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at high temperature.
도 11은 도 1의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 11 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at room temperature.
도 12는 도 1의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 12 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at low temperature.
도 13은 도 1의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 13 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at high temperature.
도 14는 제1실시예에 따른 이미지 센서의 높이에 따른 상대 조도를 나타낸 그래프이다.Figure 14 is a graph showing relative illuminance according to the height of the image sensor according to the first embodiment.
도 15는 제2실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이다.Figure 15 is a side cross-sectional view of an optical system and a camera module having the same according to the second embodiment.
도 16은 도 15의 따른 n번째 및 n-1번째 렌즈의 관계를 설명하기 위한 측 단면도이다.FIG. 16 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses of FIG. 15.
도 17은 도 15의 광학계의 렌즈 특성을 나타낸 표이다.Figure 17 is a table showing the lens characteristics of the optical system of Figure 15.
도 18은 도 15의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이다.Figure 18 is a table showing the aspheric coefficients of lenses in the optical system of Figure 15.
도 19는 도 15의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이다.FIG. 19 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of FIG. 15.
도 20은 도 15의 광학계에서 제3 내지 제6 렌즈의 렌즈 면들의 Sag 값을 나타낸 표이다.FIG. 20 is a table showing Sag values of lens surfaces of the third to sixth lenses in the optical system of FIG. 15.
도 21은 도 15의 광학계에서 이미지 센서의 위치에 따른 상온, 저온 및 고온에서의 CRA(Chief Ray Angle) 데이터를 나타낸 표이다. FIG. 21 is a table showing CRA (Chief Ray Angle) data at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of FIG. 15.
도 22는 도 15의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이다.FIG. 22 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 15 at room temperature.
도 23은 도 15의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 23 is a graph showing data on the diffraction MTF of the optical system of FIG. 15 at low temperature.
도 24는 도 15의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 24 is a graph showing data on diffraction MTF at high temperature of the optical system of FIG. 15.
도 25는 도 15의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 25 is a graph showing data on aberration characteristics of the optical system of Figure 15 at room temperature.
도 26은 도 15의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 26 is a graph showing data on the aberration characteristics of the optical system of Figure 15 at low temperature.
도 27은 도 15의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 27 is a graph showing data on aberration characteristics of the optical system of FIG. 15 at high temperature.
도 28는 제2실시예에 따른 이미지 센서의 높이에 따른 상대 조도를 나타낸 그래프이다.Figure 28 is a graph showing relative illuminance according to the height of the image sensor according to the second embodiment.
도 29는 발명의 실시예에 따른 광학계를 갖는 차량의 예이다.Figure 29 is an example of a vehicle having an optical system according to an embodiment of the invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.However, the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
또한, 본 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in this embodiment have meanings that can be generally understood by those skilled in the art to which this embodiment belongs, unless specifically defined and described. The meaning of commonly used terms, such as terms defined in a dictionary, can be interpreted by considering the contextual meaning of the related technology.
또한, 본 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. Additionally, the terms used in this embodiment are for describing the embodiments and are not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In this specification, the singular may also include the plural unless specifically stated in the phrase, and when described as "at least one (or more than one) of A and B and C", it is combined with A, B, and C. It can contain one or more of all possible combinations.
또한, 본 실시예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.Additionally, in describing the components of this embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, sequence, or order of the component.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.And, when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우 뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다. Additionally, when described as being formed or disposed “on top” or “bottom” of each component, “top” or “bottom” means that the two components are directly adjacent to each other. This includes not only cases of contact, but also cases where one or more other components are formed or disposed between two components. In addition, when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
발명의 설명에 있어서, "물체측면"은 광축(OA)을 기준으로 물체측을 향하는 렌즈의 면을 의미할 수 있고, "센서측면"은 광축을 기준으로 촬상 면(이미지 센서)을 향하는 렌즈의 면을 의미할 수 있다. "물체측면"은 "물측면"일 수 있고, "센서측면"은 "상측면"일 수 있다. 렌즈의 일면이 볼록하다는 것은 광축 또는 근축 영역(Paraxial region)에서 볼록한 형상을 의미할 수 있고, 렌즈의 일면이 오목하다는 것은 광축 또는 근축 영역에서의 오목한 형상을 의미할 수 있다. 렌즈 데이터에 대한 표에 기재된 곡률 반경, 중심 두께, 렌즈 사이의 광축 간격은 광축에서의 값(단위, mm)을 의미할 수 있다. 수직 방향은 광축과 수직인 방향을 의미할 수 있고, 렌즈 또는 렌즈면의 끝단은 입사된 광이 통과하는 렌즈의 유효 영역의 끝단을 의미할 수 있다. 렌즈면의 유효경의 크기는 측정 방법 등에 따라 최대 ±0.4 mm 정도의 측정 오차를 가질 수 있다. 상기 근축 영역이라 함은 광축 근처의 매우 좁은 영역을 의미하며, 광축(OA)으로부터 광선이 떨어지는 거리가 거의 0인 영역이다. 이하, 광축이라는 의미는 각 렌즈의 중심이거나 광축 근처의 매우 좁은 영역을 포함할 수 있다.In the description of the invention, “object side” may refer to the surface of the lens facing the object side based on the optical axis (OA), and “sensor side” may refer to the surface of the lens facing the imaging surface (image sensor) based on the optical axis. It can mean side. “Object side” may be “water side”, and “sensor side” may be “upper side”. That one side of the lens is convex may mean a convex shape in the optical axis or paraxial region, and that one side of the lens is concave may mean a concave shape in the optical axis or paraxial region. The radius of curvature, center thickness, and optical axis spacing between lenses listed in the table for lens data may refer to values (unit, mm) at the optical axis. The vertical direction may mean a direction perpendicular to the optical axis, and the end of the lens or lens surface may mean the end of the effective area of the lens through which incident light passes. The size of the effective diameter of the lens surface may have a measurement error of up to ±0.4 mm depending on the measurement method. The paraxial area refers to a very narrow area near the optical axis, and is an area where the distance at which light rays fall from the optical axis (OA) is almost zero. Hereinafter, the meaning of optical axis may include the center of each lens or a very narrow area near the optical axis.
도 1과 같이, 본 발명의 제1실시예에 따른 광학계(1000)는 5매 이상의 렌즈들을 포함할 수 있다. 광학계(1000) 및 이를 갖는 카메라 모듈은 차량 내부 또는 외부에 장착되어, 운전자 감시 또는 외부 물체나 차선을 센싱할 수 있다. 렌즈들의 재질은 유리 또는 플라스틱이 선택될 수 있으며, 선팽창 계수는 유리 재질이 플라스틱 재질보다 작다. 이에 따라 온도 변화에 따라 초점 결상 위치가 변화되는 것을 억제하기 위해 유리 렌즈를 채용하고 있다. 그러나, 유리 렌즈는 플라스틱 렌즈에 비해 고가이고, 저 비용화의 요구에 대응하기 어려운 문제가 있다. 따라서, 광학계(1000) 내의 렌즈들은 유리 렌즈와 플라스틱 렌즈가 혼합된 구성이 요구되고 있다. 이러한 플라스틱 렌즈를 채용하므로, 광학계(1000)는 플라스틱 렌즈의 두께가 줄어들 수 있어 경량화 및 저비용화를 제공할 수 있고, 플라스틱 렌즈로 인해 구면 수차, 색 수차와 같은 다양한 수차에 대해 양호한 보정이 가능할 수 있다. 또한 플라스틱 렌즈들은 비구면 렌즈를 제공할 수 있으므로, 주변부의 왜곡 부분을 최소화시켜 줄 수 있다.As shown in FIG. 1, the optical system 1000 according to the first embodiment of the present invention may include five or more lenses. The optical system 1000 and a camera module having the same can be mounted inside or outside the vehicle to monitor the driver or sense external objects or lanes. The material of the lenses can be glass or plastic, and the coefficient of linear expansion of glass is smaller than that of plastic. Accordingly, a glass lens is used to prevent changes in the focal imaging position due to temperature changes. However, glass lenses are more expensive than plastic lenses, and there is a problem in that it is difficult to meet the demand for lower costs. Accordingly, the lenses in the optical system 1000 are required to be a mixture of glass lenses and plastic lenses. By employing such a plastic lens, the optical system 1000 can reduce the thickness of the plastic lens, providing lighter weight and lower cost, and the plastic lens can provide good correction for various aberrations such as spherical aberration and chromatic aberration. there is. Additionally, since plastic lenses can provide aspherical lenses, distortion in the peripheral area can be minimized.
광학계(1000)는 n개의 렌즈를 포함할 수 있으며, n 번째 렌즈는 이미지 센서(300)에 인접한 마지막 렌즈이며, n-1번째 렌즈는 마지막 렌즈에 가장 인접한 렌즈일 수 있다. n은 5 이상의 정수이며, 예컨대 5 내지 8일 수 있다. n개의 렌즈는 플라스틱 재질의 렌즈와 유리 재질의 렌즈의 비율이 2:3 ~ 2:6 범위 또는 3:4 ~ 3:5 범위일 수 있다.The optical system 1000 may include n lenses, where the n-th lens may be the last lens adjacent to the image sensor 300, and the n-1-th lens may be the lens closest to the last lens. n is an integer of 5 or more, for example, may be 5 to 8. The n lenses may have a ratio of plastic lenses to glass lenses in the range of 2:3 to 2:6 or 3:4 to 3:5.
광학계(1000)는 복수의 렌즈군(LG1,LG2)을 포함할 수 있다. 자세하게, 복수의 렌즈군(LG1,LG2) 각각은 적어도 하나의 렌즈를 포함한다. 예를 들어, 광학계(1000)는 물체측으로부터 이미지 센서(300)를 향해 광축(OA)을 따라 순차적으로 배치되는 제1렌즈군(LG1) 및 제2렌즈군(LG2)을 포함할 수 있다.The optical system 1000 may include a plurality of lens groups LG1 and LG2. In detail, each of the plurality of lens groups LG1 and LG2 includes at least one lens. For example, the optical system 1000 may include a first lens group LG1 and a second lens group LG2 sequentially arranged along the optical axis OA from the object side toward the image sensor 300.
제1렌즈군(LG1) 및 제2렌즈군(LG2) 각각의 렌즈 매수는 서로 다를 수 있다. 제2렌즈군(LG2)의 렌즈 매수는 제1렌즈군(LG1)의 렌즈 매수보다 더 많을 수 있으며, 예컨대 제1렌즈군(LG1)의 렌즈 매수의 4배 초과 또는 5배 초과일 수 있다. 제1렌즈군(LG1)은 적어도 하나의 렌즈를 포함할 수 있다. 제1렌즈군(LG1)은 3매 이하의 렌즈를 가질 수 있다. 제1렌즈군(LG1)은 바람직하게, 1매의 렌즈일 수 있다. 제2렌즈군(LG2)은 2매 이상의 렌즈를 포함할 수 있다. 제2렌즈군(LG2)은 4매 내지 7매일 수 있다. 제2렌즈군(LG2)은 바람직하게, 6매의 렌즈일 수 있다. The number of lenses for each of the first lens group (LG1) and the second lens group (LG2) may be different. The number of lenses of the second lens group (LG2) may be greater than the number of lenses of the first lens group (LG1), for example, 4 times or 5 times the number of lenses of the first lens group (LG1). The first lens group LG1 may include at least one lens. The first lens group LG1 may have three or fewer lenses. The first lens group LG1 may preferably include one lens. The second lens group (LG2) may include two or more lenses. The second lens group (LG2) may have 4 to 7 elements. The second lens group (LG2) may preferably have 6 lenses.
제1렌즈군(LG1)은 적어도 하나의 유리 재질의 렌즈를 포함할 수 있다. 제1렌즈군(LG1)은 물체측에 가장 인접한 렌즈를 유리 재질의 렌즈로 제공할 수 있다. 이러한 유리 재질은 외부 온도 변화에 따른 팽창과 수축 변화량이 적고, 표면이 잘 긁히지 않아 표면 손상을 방지할 수 있다.The first lens group LG1 may include at least one lens made of glass. The first lens group LG1 may provide the lens closest to the object side as a glass lens. This glass material has a small amount of expansion and contraction due to changes in external temperature, and its surface is less likely to be scratched, preventing surface damage.
제2렌즈군(LG2)의 렌즈 재질은 적어도 하나의 유리 재질의 렌즈와 적어도 하나의 플라스틱 재질의 렌즈가 혼합될 수 있다. 제2렌즈군(LG2)에서 적어도 하나의 플라스틱 재질의 렌즈는 유리 재질의 렌즈보다 센서측에 배치될 수 있다. 제2렌즈군(LG2)는 2매 이상의 유리 재질의 렌즈를 포함할 수 있으며, 예컨대 2매 내지 4매의 유리 재질의 렌즈를 포함할 수 있다. 제2렌즈군(LG2)은, 예컨대 2매 내지 6매의 렌즈일 수 있다. 다른 예로서, 제2렌즈군(LG2)은 1매 이상의 플라스틱 재질의 렌즈를 가질 수 있다. 제2렌즈군(LG2)은 2매 이상의 플라스틱 재질의 렌즈 예컨대, 2매 내지 4매의 플라스틱 렌즈를 포함할 수 있다. The lens material of the second lens group LG2 may be a mixture of at least one lens made of glass and at least one lens made of plastic. In the second lens group LG2, at least one plastic lens may be placed closer to the sensor than a glass lens. The second lens group LG2 may include two or more lenses made of glass, for example, 2 to 4 lenses made of glass. The second lens group LG2 may include, for example, 2 to 6 lenses. As another example, the second lens group LG2 may have one or more lenses made of plastic. The second lens group LG2 may include two or more plastic lenses, for example, two to four plastic lenses.
광학계(1000) 내에서 물체에 가장 가까운 적어도 1매의 렌즈는 유리 재질일 수 있다. 물체에 가장 가까운 3매 이상의 렌즈 예컨대, 3매 내지 5매의 렌즈는 유리 재질일 수 있다. 유리 재질의 렌즈들이 온도 변화에 따른 수축과 팽창의 변화율이 플라스틱 재질보다 작으므로, 렌즈 배럴 내에서 외부에 인접한 영역에 유리 재질의 렌즈들을 배치할 수 있다. At least one lens closest to the object in the optical system 1000 may be made of glass. Three or more lenses closest to the object, for example, three to five lenses, may be made of glass. Since glass lenses have a smaller rate of change in contraction and expansion due to temperature changes than plastic lenses, glass lenses can be placed in an area adjacent to the outside of the lens barrel.
광학계(1000) 내에서 이미지 센서(300)에 가장 가까운 적어도 하나의 렌즈는 플라스틱 재질일 수 있다. 예컨대, 이미지 센서(300)에 가장 가까운 적어도 2매의 렌즈는 플라스틱 재질일 수 있으며, 바람직하게 이미지 센서(300)에 인접한 적어도 2매의 렌즈는 플라스틱 재질일 수 있다. 즉, 광학계(1000)에서 n번째 및 n-1번째 렌즈들은 플라스틱 렌즈로 배치되므로, 이미지 센서(300)의 입사측 광들에 대해 다양한 수차를 보정할 수 있다.At least one lens closest to the image sensor 300 in the optical system 1000 may be made of plastic. For example, at least two lenses closest to the image sensor 300 may be made of plastic, and preferably, at least two lenses adjacent to the image sensor 300 may be made of plastic. That is, since the n-th and n-1-th lenses in the optical system 1000 are disposed as plastic lenses, various aberrations of light on the incident side of the image sensor 300 can be corrected.
광학계(1000) 내에서 플라스틱 재질의 렌즈끼리 연속적으로 배치될 수 있고, 유리 재질의 렌즈끼리 연속적으로 배치될 수 있다. 광학계(1000) 내에서 플라스틱 재질의 렌즈는 유리 재질의 렌즈 사이에 배치될 수 있다. 광학계(1000) 내에서 유리 재질의 렌즈는 플라스틱 재질의 렌즈 사이에 배치될 수 있다. Within the optical system 1000, lenses made of plastic may be continuously arranged, and lenses made of glass may be arranged continuously. Within the optical system 1000, lenses made of plastic may be placed between lenses made of glass. Within the optical system 1000, lenses made of glass may be placed between lenses made of plastic.
각 렌즈(101-107)는 물체측면과 센서측면을 가질 수 있다. 광학계는 비구면의 센서측면과 비 구면의 물체측면을 갖는 렌즈 매수는 플라스틱 렌즈 매수보다 많을 수 있다. 광학계는 구면의 센서측면과 구면의 물체측면을 갖는 렌즈 매수는 양면이 비구면인 렌즈보다 작을 수 있다. 광학계(1000)는 비구면의 렌즈를 구면의 렌즈보다 더 많게 구비하므로, 다양한 수차를 보정할 수 있다.Each lens 101-107 may have an object side and a sensor side. In an optical system, the number of lenses with an aspherical sensor side and an aspherical object side may be greater than the number of plastic lenses. In an optical system, the number of lenses with a spherical sensor side and a spherical object side may be smaller than a lens with aspherical surfaces on both sides. Since the optical system 1000 includes more aspherical lenses than spherical lenses, various aberrations can be corrected.
광학계(1000)의 렌즈들 중에서 최대 굴절률을 갖는 렌즈는 제1렌즈군(LG1) 또는 물체에 인접하게 위치할 수 있다. 최대 굴절률은 1.7 이상일 수 있다. 최대 굴절률을 갖는 렌즈에 의해 입사되는 광의 색 분산을 증가시켜 줄 수 있고, 중심 두께가 에지 두께보다 얇아질 수 있다. 또한 최대 굴절률을 갖는 렌즈가 물체측에 배치되므로, 두 번째 이후의 렌즈의 곡률 반경의 변경이 용이하고 중심 두께를 증가시켜 줄 수 있다. Among the lenses of the optical system 1000, the lens with the highest refractive index may be located in the first lens group LG1 or adjacent to the object. The maximum refractive index may be 1.7 or more. The color dispersion of incident light can be increased by a lens with the highest refractive index, and the center thickness can be thinner than the edge thickness. Additionally, since the lens with the maximum refractive index is disposed on the object side, it is easy to change the radius of curvature of the second and subsequent lenses and the center thickness can be increased.
광학계(1000) 내에서 최대 유효경을 갖는 렌즈는 물체측에 가장 가깝게 배치될 수 있다. 광학계(1000) 내에서 최대 유효경을 갖는 렌즈는 물체측과 센서측의 중심 부분에 배치될 수 있다. 물체측에서 센서측으로 갈수록 렌즈의 유효경은 커지다가 작아질 수 있다. 물체측에서 센서측으로 갈수록 렌즈의 유효경은 작아졌다가 커지고, 다시 작아질 수 있다. 이를 통해, 광학계(1000)로 입사되는 광은 광축에서 멀어졌다가 다시 광축으로 모이는 구조이므로, 광학계(1000)는 안정적인 광경로를 형성할 수 있다.The lens with the maximum effective diameter within the optical system 1000 may be placed closest to the object side. Within the optical system 1000, a lens having the maximum effective diameter may be placed at the center of the object side and the sensor side. As you move from the object side to the sensor side, the effective diameter of the lens can increase and then decrease. As you move from the object side to the sensor side, the effective diameter of the lens may become smaller, then larger, and then smaller again. Through this, since the light incident on the optical system 1000 moves away from the optical axis and then converges towards the optical axis, the optical system 1000 can form a stable optical path.
유효경은 각 렌즈에서 유효한 광들이 입사되는 유효 영역의 직경일 수 있다. 유효경은 광축과 직교하는 방향(X,Y)의 길이이며, 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. "렌즈면의 직경"은 "렌즈의 유효경"을 의미할 수 있다. "렌즈의 직경"은 렌즈의 유효 영역 이외에 렌즈의 플랜지 부분을 포함하는 렌즈 전체의 직경일 수 있다. 도 1 및 도 2에는 렌즈의 플랜지가 도시되어 있지는 않으나, 플랜지는 렌즈가 배럴에 결합되기 위하여 렌즈의 측면으로부터 광축에 수직 방향으로 돌출 형성되는 부분일 수 있다. 플랜지는 유효한 광이 입사되지 않을 수 있다. 렌즈가 배럴에 결합되기 위해서 서로 다른 렌즈의 플랜지 사이에는 스페이서가 추가로 배치될 수 있다. The effective diameter may be the diameter of the effective area where effective light is incident on each lens. The effective diameter is the length in the direction (X, Y) perpendicular to the optical axis, and is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. “Diameter of the lens surface” may mean “effective diameter of the lens.” The “diameter of the lens” may be the diameter of the entire lens including the flange portion of the lens in addition to the effective area of the lens. Although the flange of the lens is not shown in FIGS. 1 and 2, the flange may be a part that protrudes from the side of the lens in a direction perpendicular to the optical axis in order to couple the lens to the barrel. The flange may not allow effective light to enter. In order for the lens to be coupled to the barrel, spacers may be additionally disposed between the flanges of different lenses.
렌즈들(101-107) 각각은 유효 영역 및 비유효 영역을 포함할 수 있다. 유효 영역은 렌즈들 각각에 입사된 광이 통과하는 영역일 수 있다. 즉, 유효 영역은 입사된 광이 굴절되어 광학 특성을 구현하는 유효한 영역 또는 유효경으로 정의될 수 있다. 비유효 영역은 유효 영역의 둘레에 배치될 수 있다. 비유효 영역은 복수의 렌즈들에서 유효한 광이 입사되지 않는 영역일 수 있다. 즉, 비유효 영역은 광학 특성과 무관한 영역일 수 있다. 또한, 비유효 영역의 단부는 렌즈를 수용하는 렌즈 배럴 등에 고정되는 영역일 수 있다.Each of the lenses 101-107 may include an effective area and an unactive area. The effective area may be an area through which light incident on each of the lenses passes. In other words, the effective area can be defined as an effective area or effective diameter in which the incident light is refracted to realize optical characteristics. The unactive area may be placed around the active area. The non-effective area may be an area where effective light is not incident from the plurality of lenses. In other words, the non-effective area may be an area unrelated to optical characteristics. Additionally, the end of the non-effective area may be an area fixed to a lens barrel or the like that accommodates the lens.
광학계(1000) 내에서 TTL(Total top length)는 Imgh 보다 2배 초과 예컨대, 4배 초과 및 12배 이하일 수 있다. TTL(Total track length )은 첫 번째 렌즈의 물체측면의 중심으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리이다. Imgh는 광축(OA)에서 이미지 센서(300)의 대각선 끝단까지의 거리 또는 최대 대각 길이의 1/2이다. 광학계(1000) 내에서 유효 초점 거리(EFL)는 10 mm 이상 및 화각(FOV)은 45도 미만으로 제공하여, 차량용 카메라 모듈에서 표준 광학계로 제공할 수 있다. 예컨대, 실시예에 따른 광학계 및 카메라 모듈은 차량 실내 또는 실외에 구비되는 ADAS(Advanced Driving Assistance System)용 카메라에 적용될 수 있다.The total top length (TTL) within the optical system 1000 may be greater than 2 times, for example, greater than 4 times and less than or equal to 12 times Imgh. Total track length (TTL) is the distance on the optical axis (OA) from the center of the object side of the first lens to the image surface of the image sensor 300. Imgh is the distance from the optical axis (OA) to the diagonal end of the image sensor 300 or 1/2 of the maximum diagonal length. Within the optical system 1000, an effective focal length (EFL) of 10 mm or more and an angle of view (FOV) of less than 45 degrees can be provided as a standard optical system in a vehicle camera module. For example, the optical system and camera module according to the embodiment may be applied to a camera for an Advanced Driving Assistance System (ADAS) installed inside or outside a vehicle.
광학계(1000)는 TTL/Imgh의 조건이 5 이상 및 7.5 이상일 수 있으며, 예컨대 6 이상 및 7 이하일 수 있다. 광학계(1000)가 TTL/Imgh의 값이 5 이상 및 7.5배 이하로 설정해 줌으로써, 차량용 렌즈 광학계를 제공할 수 있다. 제1,2렌즈군(LG1,LG2)의 총 렌즈 매수는 8매 이하이다. 이에 따라, 광학계(1000)는 결상되는 이미지에 대해 과장이나 왜곡이 없는 화상을 제공할 수 있다.The optical system 1000 may have a TTL/Imgh condition of 5 or more and 7.5 or more, for example, 6 or more and 7 or less. The optical system 1000 sets the TTL/Imgh value to 5 or more and 7.5 or less, thereby providing a lens optical system for a vehicle. The total number of lenses in the first and second lens groups (LG1, LG2) is 8 or less. Accordingly, the optical system 1000 can provide an image without exaggeration or distortion for the image being formed.
광학계(1000) 내에서 적어도 하나의 플라스틱 렌즈의 유효경은 이미지 센서(300)의 길이보다 작을 수 있다. 유효경은 광이 입사되는 유효 영역의 직경 또는 길이이다. 이미지 센서(300)의 길이는 광축(OA)에 직교하는 방향의 대각선의 최대 길이이다. 광학계(1000) 내에서 이미지 센서(300)의 길이 보다 큰 유효경을 갖는 렌즈 매수는 50% 이상 또는 60% 이상이며, 이미지 센서(300)의 길이보다 작은 유효경을 갖는 렌즈는 50% 미만 또는 40% 미만일 수 있다. The effective diameter of at least one plastic lens within the optical system 1000 may be smaller than the length of the image sensor 300. The effective diameter is the diameter or length of the effective area where light is incident. The length of the image sensor 300 is the maximum length of the diagonal line in the direction perpendicular to the optical axis OA. In the optical system 1000, the number of lenses with an effective diameter larger than the length of the image sensor 300 is 50% or more or 60%, and the number of lenses with an effective diameter smaller than the length of the image sensor 300 is less than 50% or 40%. It may be less than
광학계(1000)는 내부에 적어도 하나의 접합 렌즈(145)를 포함할 수 있다. 접합 렌즈(145)는 서로 다른 굴절력을 갖는 적어도 두 렌즈가 접합되며, 두 렌즈 사이의 간격은 0.01 mm 미만일 수 있다. 접합 렌즈(145)는 초점 거리가 다른 두 렌즈가 접합된 렌즈일 수 있다. 두 렌즈의 접합은 접착제로 접착될 수 있다. 접합 렌즈(145)를 기준으로 물체측에 배치된 적어도 한 렌즈 또는 모든 렌즈들의 유효경은 이미지 센서(300)의 길이보다 클 수 있다. 접합 렌즈(145)를 기준으로 센서측에 배치된 적어도 한 렌즈들의 유효경은 이미지 센서(300)의 길이보다 작을 수 있다. 또한 접합 렌즈(145) 중 물체측 렌즈(104)는 이미지 센서(300)의 길이보다 클 수 있으며, 센서측 렌즈(105)는 이미지 센서(300)의 길이보다 클 수 있다. The optical system 1000 may include at least one bonded lens 145 therein. The bonded lens 145 includes at least two lenses having different refractive powers bonded together, and the gap between the two lenses may be less than 0.01 mm. The bonded lens 145 may be a lens in which two lenses with different focal lengths are bonded together. The joint of the two lenses can be bonded with adhesive. The effective diameter of at least one or all lenses disposed on the object side based on the bonded lens 145 may be larger than the length of the image sensor 300. The effective diameter of at least one lens disposed on the sensor side with respect to the bonded lens 145 may be smaller than the length of the image sensor 300. Additionally, among the bonded lenses 145, the object-side lens 104 may be longer than the length of the image sensor 300, and the sensor-side lens 105 may be longer than the length of the image sensor 300.
접합 렌즈(145)와 첫 번째 렌즈(101) 사이의 렌즈들은 유리 재질 또는 플라스틱 재질일 수 있다. 접합 렌즈(145)와 이미지 센서(300) 사이에 배치된 렌즈들은 플라스틱 재질일 수 있다. 접합 렌즈(145)와 첫 번째 렌즈(101) 사이의 렌즈들은 양면이 구면인 렌즈 또는 양면이 비구면인 렌즈일 수 있다. 접합 렌즈(145)와 이미지 센서(300) 사이에 배치된 렌즈들은 양면이 비구면 렌즈일 수 있다. 양면은 물체측면과 센서측면이다. 따라서, 비구면 렌즈들을 접합 렌즈(145)와 이미지 센서(300) 사이에 배치됨으로써, 만곡 수차 및 색 수차를 보정하여 광학 성능을 개선시켜 줄 수 있다.The lenses between the bonded lens 145 and the first lens 101 may be made of glass or plastic. Lenses disposed between the bonded lens 145 and the image sensor 300 may be made of plastic. The lenses between the bonded lens 145 and the first lens 101 may be lenses with spherical surfaces on both sides or aspherical lenses on both sides. The lenses disposed between the bonded lens 145 and the image sensor 300 may be aspherical lenses on both sides. The two sides are the object side and the sensor side. Therefore, by disposing aspherical lenses between the bonded lens 145 and the image sensor 300, optical performance can be improved by correcting curvature aberration and chromatic aberration.
광축(OA)에서 제1렌즈군(LG1) 및 제2렌즈군(LG2)은 설정된 간격을 가질 수 있다. 광축(OA)에서 제1렌즈군(LG1) 및 제2렌즈군(LG2) 사이의 광축 간격은 제1렌즈군(LG1) 내의 렌즈 중에서 센서측에 가장 가까운 렌즈의 센서측면과 제2렌즈군(LG2) 내의 렌즈 중에서 물체측에 가장 가까운 렌즈의 물체측면 사이의 광축 간격일 수 있다. 제1렌즈군(LG1) 및 제2렌즈군(LG2) 사이의 광축 간격은 제1렌즈군(LG1)의 광축 거리의 3배 이상 5배 이하일 수 있으며, 예컨대 제1렌즈군(LG1)의 광축 거리의 4배 내지 5배 범위일 수 있다. On the optical axis OA, the first lens group LG1 and the second lens group LG2 may have a set interval. The optical axis spacing between the first lens group (LG1) and the second lens group (LG2) on the optical axis (OA) is the sensor side of the lens closest to the sensor among the lenses in the first lens group (LG1) and the second lens group ( Among the lenses in LG2), it may be the optical axis spacing between the object side of the lens closest to the object side. The optical axis spacing between the first lens group (LG1) and the second lens group (LG2) may be 3 to 5 times the optical axis distance of the first lens group (LG1), for example, the optical axis distance of the first lens group (LG1) It may range from 4 to 5 times the distance.
제1렌즈군(LG1) 및 제2렌즈군(LG2) 사이의 광축 거리는 제2렌즈군(LG2)의 광축 거리의 2배 이하일 수 있으며, 예컨대 1.8배 내지 1.2배 범위일 수 있다. 제2렌즈군(LG2)의 광축 거리는 제2렌즈군(LG2)의 물체측에 가장 가까운 렌즈의 물체측면과 이미지 센서(300)에 가장 가까운 렌즈의 센서측면 사이의 광축 거리이다. The optical axis distance between the first lens group (LG1) and the second lens group (LG2) may be less than twice the optical axis distance of the second lens group (LG2), for example, in the range of 1.8 to 1.2 times. The optical axis distance of the second lens group LG2 is the optical axis distance between the object side of the lens closest to the object side of the second lens group LG2 and the sensor side of the lens closest to the image sensor 300.
여기서, 제1렌즈군(LG1)와 제2렌즈군(LG2)의 렌즈 면들 중에서 서로 마주하는 두 면 예컨대, 물체측 렌즈의 센서측면은 오목하고 센서측 렌즈의 물체측면은 평면일 수 있다. 즉, 제1렌즈군(LG1)에서 센서측에 가장 가까운 센서측면은 오목하며, 제2렌즈군(LG2)에서 물체측에 가장 가까운 물체측면은 평면일 수 있다. 제1렌즈군(LG1)은 물체측을 통해 입사된 광들을 확산시켜 주며, 제2렌즈군(LG2)은 제1렌즈군(LG1)을 통해 확산된 광을 이미지 센서(300)의 영역으로 굴절시켜 줄 수 있다. Here, among the lens surfaces of the first lens group (LG1) and the second lens group (LG2), two surfaces that face each other, for example, the sensor side of the object-side lens may be concave and the object-side of the sensor-side lens may be flat. That is, the sensor side closest to the sensor side in the first lens group LG1 may be concave, and the object side closest to the object side in the second lens group LG2 may be flat. The first lens group (LG1) diffuses the light incident through the object side, and the second lens group (LG2) refracts the light diffused through the first lens group (LG1) into the area of the image sensor 300. I can do it for you.
제1렌즈군(LG1)는 음(-)의 굴절력을 갖고, 제2렌즈군(LG2)은 양(+)의 굴절력을 가질 수 있다. 제1렌즈군(LG1)의 렌즈들 중에서 물체측에 가장 가까운 렌즈는 음(-)의 굴절력을 갖고, 제2렌즈군(LG2)의 렌즈들 중에서 센서측에 가장 가까운 렌즈는 음(-)의 굴절력을 가질 수 있다. 초점 거리를 절대 값으로 나타낼 때, 제1렌즈군(LG1)의 초점 거리는 제2렌즈군(LG2)의 초점 거리보다 클 수 있으며, 예컨대 5배 이상 예컨대, 5배 내지 10배 범위일 수 있다. 광학계(1000)의 유효 초점 거리(EFL)는 제1렌즈군(LG1)의 초점 거리의 절대 값보다 작을 수 있다. 광학계(1000)의 유효 초점 거리(EFL)는 제1렌즈군(LG1)의 초점 거리의 절대 값보다 작고 제2렌즈군(LG2)의 초점 거리의 절대 값보다 클 수 있다.The first lens group LG1 may have negative (-) refractive power, and the second lens group LG2 may have positive (+) refractive power. Among the lenses of the first lens group (LG1), the lens closest to the object side has negative (-) refractive power, and among the lenses of the second lens group (LG2), the lens closest to the sensor side has negative (-) refractive power. Can have refractive power. When expressing the focal length as an absolute value, the focal distance of the first lens group LG1 may be greater than the focal distance of the second lens group LG2, for example, 5 times or more, for example, in the range of 5 to 10 times. The effective focal length (EFL) of the optical system 1000 may be smaller than the absolute value of the focal length of the first lens group LG1. The effective focal length (EFL) of the optical system 1000 may be smaller than the absolute value of the focal distance of the first lens group (LG1) and greater than the absolute value of the focal distance of the second lens group (LG2).
광학계(1000) 내에서 양(+)의 굴절력을 갖는 렌즈 매수는 음(-)의 굴절력을 갖는 렌즈 매수와 같거나 많을 수 있다. 음(-)의 굴절력을 갖는 렌즈 매수는 전체 렌즈 매수에 비해 50% 이상일 수 있다. 양(+)의 굴절력을 갖는 렌즈들의 굴절률 평균은 음(-)의 굴절력을 갖는 렌즈들의 평균 보다 클 수 있다. 이에 따라 음(-)의 굴절력을 갖는 렌즈들의 분산 값은 양(+)의 굴절력을 갖는 렌즈들의 분산 값보다 작을 수 있다. The number of lenses with positive (+) refractive power within the optical system 1000 may be equal to or greater than the number of lenses with negative (-) refractive power. The number of lenses with negative (-) refractive power may be more than 50% of the total number of lenses. The average refractive index of lenses with positive (+) refractive power may be greater than the average of lenses with negative (-) refractive power. Accordingly, the dispersion value of lenses with negative (-) refractive power may be smaller than the dispersion value of lenses with positive (+) refractive power.
렌즈부(100)는 유리 재질의 렌즈와 플라스틱 재질의 렌즈들이 혼합될 수 있다. 플라스틱 재질의 렌즈들의 매수는 전체 렌즈 매수에 비해 60% 이하일 수 있으며, 30% 내지 60% 범위 또는 30% 내지 50% 범위일 수 있다. 이에 따라 카메라 모듈 내에 플라스틱 렌즈가 더 배치될 경우, 카메라 모듈의 무게를 줄여줄 수 있고, 플라스틱 재질에 의해 연마, 가공이 쉽고, 외부 충격이 강하고 또한 가격 경쟁력이 높고 재료 확보가 용이할 수 있다. 또한 플라스틱 렌즈에 의해 각종 수차를 보정할 수 있어, 광학 성능 저하를 방지할 수 있다.The lens unit 100 may be a mixture of glass lenses and plastic lenses. The number of lenses made of plastic may be 60% or less, 30% to 60%, or 30% to 50% of the total number of lenses. Accordingly, if more plastic lenses are placed within the camera module, the weight of the camera module can be reduced, and the plastic material makes it easy to polish and process, has strong external impact, and is highly price competitive and easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance.
발명의 제1실시예는 광학계(1000) 내에 플라스틱 렌즈를 더 혼합해 줌으로써, 카메라 모듈의 무게를 줄여줄 수 있고, 제조 원가를 보다 저렴하게 제공할 수 있고, 온도 변화에 따른 광학 특성의 저하를 억제할 수 있으며, 다양한 종류의 플라스틱 렌즈가 유리 렌즈를 대체할 수 있으며, 비구면 또는 자유 곡면과 같은 렌즈 면의 연마 및 가공이 용이할 수 있다. The first embodiment of the invention can reduce the weight of the camera module by mixing more plastic lenses in the optical system 1000, provide a cheaper manufacturing cost, and prevent deterioration of optical properties due to temperature changes. Various types of plastic lenses can replace glass lenses, and polishing and processing of lens surfaces such as aspherical surfaces or free-form surfaces can be easy.
렌즈부(100)는 광축(OA)을 따라 배치된 제1재질의 렌즈들과, 제2재질의 렌즈들을 포함할 수 있다. 제1재질은 유리 재질이며, 제2재질은 플라스틱 재질일 수 있다. 제1재질의 렌즈는 제2재질의 렌즈들 사이에 배치될 수 있다. 제2재질의 렌즈는 제1재질의 렌즈들 사이에 배치될 수 있다. The lens unit 100 may include lenses of a first material and lenses of a second material arranged along the optical axis OA. The first material may be glass, and the second material may be plastic. Lenses of the first material may be disposed between lenses of the second material. Lenses of the second material may be disposed between lenses of the first material.
렌즈부(100)는 광축(OA)을 따라 비구면을 갖는 제1재질의 렌즈와, 구면을 갖는 제1재질의 렌즈들과, 비구면을 갖는 제2재질의 렌즈들 포함할 수 있다. 제1재질은 유리 재질이며, 제2재질은 플라스틱 재질일 수 있다. 구면을 갖는 제1재질의 렌즈는 비구면을 갖는 제2재질의 렌즈들 사이에 배치될 수 있다. 제2재질의 렌즈는 비구면을 갖는 제1재질의 렌즈와 구면을 갖는 제1재질의 렌즈 사이에 배치될 수 있다. The lens unit 100 may include a lens of a first material having an aspherical surface along the optical axis OA, lenses of a first material having a spherical surface, and lenses of a second material having an aspherical surface. The first material may be glass, and the second material may be plastic. A lens made of a first material having a spherical surface may be disposed between lenses made of a second material having an aspherical surface. The lens of the second material may be disposed between the lens of the first material having an aspherical surface and the lens of the first material having a spherical surface.
렌즈부(100) 내에서 물체측에 가장 가까운 렌즈의 유효경은 이미지 센서(300)에 가장 가까운 렌즈의 유효경 보다 클 수 있다. 이에 따라 광학계의 밝기를 제어할 수 있다. 유효경은 각 렌즈의 물체측면과 센서측면의 평균 유효 직경일 수 있다. 각 렌즈들의 유효경 크기를 제어함으로써, 광학계(1000)는 입사하는 광을 제어하여 해상력, 온도 변화에 따른 광학 특성 저하를 보상할 수 있으며, 색수차 제어 특성을 개선시킬 수 있고, 광학계(1000)의 비네팅(vignetting) 특성을 개선할 수 있다. The effective diameter of the lens closest to the object within the lens unit 100 may be larger than the effective diameter of the lens closest to the image sensor 300. Accordingly, the brightness of the optical system can be controlled. The effective diameter may be the average effective diameter of the object side and the sensor side of each lens. By controlling the effective diameter size of each lens, the optical system 1000 can control the incident light to compensate for deterioration in resolution and optical characteristics due to temperature changes, improve chromatic aberration control characteristics, and vignetting of the optical system 1000. (vignetting) characteristics can be improved.
렌즈부(100)는 광축을 따라 물체측에서 센서측을 향해 정렬된, 제1렌즈(101), 제2렌즈(102), 제3렌즈(103), 제4렌즈(104), 제5렌즈(105), 제6렌즈(106) 및 제7렌즈(107)를 포함할 수 있다. The lens unit 100 includes a first lens 101, a second lens 102, a third lens 103, a fourth lens 104, and a fifth lens aligned along the optical axis from the object side toward the sensor side. (105), it may include a sixth lens (106) and a seventh lens (107).
렌즈부(100) 내에서, 플라스틱 렌즈는 접합 렌즈이거나, 이미지 센서에 인접한 적어도 한 렌즈일 수 있다. 제6렌즈(106)의 초점 거리(F6)는 광학계 내에서 가장 클 수 있으며, 제2렌즈군(LG2)의 초점 거리(절대 값)보다 클 수 있다. 즉, |FLG2| < F6의 조건을 만족할 수 있다.Within the lens unit 100, the plastic lens may be a bonded lens or at least one lens adjacent to the image sensor. The focal length (F6) of the sixth lens 106 may be the largest in the optical system and may be larger than the focal length (absolute value) of the second lens group (LG2). In other words, the condition |FLG2| < F6 can be satisfied.
렌즈부(100) 내에서 플라스틱 렌즈들의 평균 유효경보다 큰 렌즈들은 3매 이상 예컨대, 4매 이상일 수 있다. 플라스틱 재질의 렌즈들의 평균 유효경은 PLca_Aver이며, 유리 재질의 렌즈들의 평균 유효경은 GLca_Aver 인 경우, PLca_Aver < GLca_Aver의 조건을 만족할 수 있다. 또한 1 < GLca_Aver / PLca_Aver < 1.5의 조건을 만족할 수 있다. 또한 이미지 센서(300)의 길이와 플라스틱 렌즈의 평균 유효경(PLca_Aver)의 관계는 1 ≤ PLca_Aver/(Imgh*2) < 1.5의 조건을 만족할 수 있다. 또한 유리 재질의 평균 유효경과 이미지 센서(300)의 길이 사이의 관계는 1.1 < GLca_Aver/(Imgh*2) < 1.5의 조건을 만족할 수 있다. 이미지 센서(300)의 최대 길이와 플라스틱 재질의 렌즈의 유효경 차이는 크지 않게 배치될 수 있다. 이에 따라 유효경이 작은 플라스틱 재질의 렌즈를 이미지 센서(300)에 인접하게 배치함으로써, 플라스틱 렌즈들이 이미지 센서(300)의 중심부에서 주변부까지 색을 분산시켜 줄 수 있다.There may be three or more lenses larger than the average effective diameter of the plastic lenses in the lens unit 100, for example, four or more lenses. The average effective diameter of plastic lenses is PLca_Aver, and if the average effective diameter of glass lenses is GLca_Aver, the condition of PLca_Aver < GLca_Aver can be satisfied. Additionally, the condition of 1 < GLca_Aver / PLca_Aver < 1.5 can be satisfied. Additionally, the relationship between the length of the image sensor 300 and the average effective diameter (PLca_Aver) of the plastic lens may satisfy the condition of 1 ≤ PLca_Aver/(Imgh*2) < 1.5. Additionally, the relationship between the average effective age of the glass material and the length of the image sensor 300 may satisfy the condition of 1.1 < GLca_Aver/(Imgh*2) < 1.5. The difference between the maximum length of the image sensor 300 and the effective diameter of the plastic lens may be arranged to be small. Accordingly, by placing a plastic lens with a small effective diameter adjacent to the image sensor 300, the plastic lenses can disperse color from the center of the image sensor 300 to the periphery.
유리 재질들의 평균 유효경은 10mm 이상 예컨대, 10mm 내지 15mm 범위일 수 있다. 플라스틱 재질의 평균 유효경은 8 mm 이상 예컨대, 8mm 내지 12mm 범위일 수 있다. 최소 유효경을 갖는 렌즈는 플라스틱 재질이며, 최대 유효경을 갖는 렌즈는 유리 재질일 수 있다. 렌즈부(100) 내에서 최소 유효경은 7mm 내지 10mm 범위이고, 최대 유효경은 11mm 내지 18mm 범위일 수 있다. 플라스틱 재질의 렌즈는 유리 재질의 렌즈보다 유효경이 작게 설계되어 렌즈 배럴에 맞닿지 않게 배치되고, 이를 통해 온도 변화에 따른 광학 성능 변화를 최소화할 수 있다. 또한, 광학계(1000)는 입사하는 광을 제어하여 해상력, 색수차 제어 특성을 개선시킬 수 있고, 광학계(1000)의 비네팅(vignetting) 특성을 개선할 수 있다. The average effective diameter of the glass materials may be 10 mm or more, for example, in the range of 10 mm to 15 mm. The average effective diameter of the plastic material may be 8 mm or more, for example, in the range of 8 mm to 12 mm. The lens with the minimum effective diameter may be made of plastic, and the lens with the maximum effective diameter may be made of glass. The minimum effective diameter within the lens unit 100 may be in the range of 7 mm to 10 mm, and the maximum effective diameter may be in the range of 11 mm to 18 mm. Plastic lenses are designed to have a smaller effective diameter than glass lenses and are placed so as not to contact the lens barrel, thereby minimizing changes in optical performance due to temperature changes. Additionally, the optical system 1000 can control incident light to improve resolution and chromatic aberration control characteristics, and can improve vignetting characteristics of the optical system 1000.
광학계(1000) 또는 카메라 모듈은 이미지 센서(300)를 포함할 수 있다. 이미지 센서(300)는 광을 감지하고 전기적 신호로 변환할 수 있다. 이미지 센서(300)는 렌즈부(100)을 순차적으로 통과한 광을 감지할 수 있다. 이미지 센서(300)는 CCD(Charge Coupled Device) 또는 CMOS(Complementary Metal Oxide Semiconductor) 등 입사되는 광을 감지할 수 있는 소자를 포함할 수 있다.The optical system 1000 or camera module may include an image sensor 300. The image sensor 300 can detect light and convert it into an electrical signal. The image sensor 300 can detect light that sequentially passes through the lens unit 100. The image sensor 300 may include an element that can detect incident light, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
여기서, 이미지 센서(300)의 길이는 광축(OA)에 직교하는 대각선 방향의 최대 길이이며, 제1렌즈군(LG1) 내에서 물체에 가장 가까운 렌즈의 유효경 보다 작고, 제2렌즈군(LG2) 내에서 센서에 가장 가까운 렌즈의 유효경 보다 클 수 있다. 여기서, 이미지 센서(300)의 길이보다 큰 유효경을 갖는 렌즈 매수는 4매 내지 6매이며, 이미지 센서(300)의 길이보다 작은 유효경을 갖는 렌즈 매수는 1매 내지 3매일 수 있다.Here, the length of the image sensor 300 is the maximum length in the diagonal direction orthogonal to the optical axis (OA), is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1), and is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1). It may be larger than the effective diameter of the lens closest to the sensor. Here, the number of lenses having an effective diameter larger than the length of the image sensor 300 may be 4 to 6, and the number of lenses having an effective diameter smaller than the length of the image sensor 300 may be 1 to 3.
광학계(1000) 또는 카메라 모듈은 필터(500)를 포함할 수 있다. 필터(500)는 제2렌즈군(LG2)과 이미지 센서(300) 사이에 배치될 수 있다. 필터(500)는 렌즈부(100)의 렌즈들 중 센서측에 가장 가까운 렌즈와 이미지 센서(300) 사이에 배치될 수 있다. 예를 들어, 필터(500)는 n번째 렌즈와 이미지 센서(300) 사이에 배치될 수 있다. The optical system 1000 or camera module may include a filter 500. The filter 500 may be disposed between the second lens group LG2 and the image sensor 300. The filter 500 may be disposed between the image sensor 300 and a lens of the lens unit 100 closest to the sensor. For example, the filter 500 may be disposed between the nth lens and the image sensor 300.
커버 글라스(400)는 필터(500)와 이미지 센서(300) 사이에 배치되며, 이미지 센서(192)의 상부를 보호하며 이미지 센서(192)의 신뢰성 저하를 방지할 수 있다. 커버 글라스(400)는 제거될 수 있다. 커버 글라스(400)는 보호 글라스일 수 있다.The cover glass 400 is disposed between the filter 500 and the image sensor 300, protects the upper part of the image sensor 192, and can prevent the reliability of the image sensor 192 from deteriorating. Cover glass 400 may be removed. The cover glass 400 may be a protective glass.
필터(500)는 적외선 필터 또는 적외선 컷 오프 필터(IR cut-off)를 포함할 수 있다. 필터(500)는 설정된 파장 대역의 광을 통과시키고, 이와 다른 파장 대역의 광을 필터링할 수 있다. 필터(500)가 적외선 필터를 포함할 경우 외부 광으로부터 방출되는 복사열이 이미지 센서(300)에 전달되는 것을 차단할 수 있다. 또한, 필터(500)는 가시광선을 투과할 수 있고 적외선을 반사할 수 있다.The filter 500 may include an infrared filter or an infrared cut-off filter. The filter 500 may pass light in a set wavelength band and filter light in a different wavelength band. When the filter 500 includes an infrared filter, radiant heat emitted from external light can be blocked from being transmitted to the image sensor 300. Additionally, the filter 500 can transmit visible light and reflect infrared rays.
제1실시예에 따른 광학계(1000)는 조리개(Stop)를 포함할 수 있다. 조리개는 광학계(1000)에 입사되는 광량을 조절할 수 있다. 물체와 조리개 사이에 배치되는 렌즈들에 있어서, 물체측에서 조리개로 갈수록 렌즈 면의 유효경이 증가하는 경향이 있다. 조리개와 센서 사이에 배치되는 렌즈 면들에 있어서, 조리개에서 센서측으로 갈수록 렌즈 면들의 유효경이 감소하는 경향이 있다. 렌즈 면들의 유효경이 증가하거나 감소하는 경향이 있다는 의미는 렌즈 면들의 유효경이 증가하거나 감소하는 경우만 의미하지는 않는다. 예컨대, 조리개에서 센서측으로 가면서 렌즈 면들의 유효경이 증가하다가 감소하는 경우도 포함한다.The optical system 1000 according to the first embodiment may include an aperture (Stop). The aperture can control the amount of light incident on the optical system 1000. For lenses disposed between an object and an aperture, the effective diameter of the lens surface tends to increase from the object side to the aperture. For lens surfaces disposed between the aperture and the sensor, the effective diameter of the lens surfaces tends to decrease as it moves from the aperture to the sensor. The fact that the effective diameter of the lens planes tends to increase or decrease does not mean only when the effective diameter of the lens planes increases or decreases. For example, this includes cases where the effective diameter of the lens surfaces increases and then decreases as it moves from the aperture to the sensor side.
조리개는 설정된 위치에 배치될 수 있다. 예를 들어, 조리개는 제2렌즈군(LG2)의 렌즈들 중 물체측에 가장 가까운 렌즈의 물체측면 또는 센서측면의 둘레에 배치될 수 있다. 이와 다르게, 조리개는 제1렌즈군(LG1)의 물체측 렌즈의 물체측면 또는 센서측면의 둘레에 배치될 수 있다. 이와 다르게, 복수의 렌즈들 중 선택되는 적어도 하나의 렌즈는 조리개 역할을 수행할 수 있다. 자세하게, 광학계(1000)의 렌즈들 중 선택되는 하나의 렌즈의 물체측면 또는 센서측면은 광량을 조절하는 조리개 역할을 수행할 수 있다.The aperture may be placed at a set position. For example, the aperture may be disposed around the object side or sensor side of the lens closest to the object side among the lenses of the second lens group LG2. Alternatively, the aperture may be disposed around the object side or sensor side of the object side lens of the first lens group LG1. Alternatively, at least one lens selected from among the plurality of lenses may function as an aperture. In detail, the object side or the sensor side of one lens selected from among the lenses of the optical system 1000 may function as an aperture to control the amount of light.
제1실시예의 광학계(1000)에서 렌즈부(100)의 렌즈들의 굴절률 합은 8 이상 예컨대, 8 내지 15 범위이며, 굴절률 평균은 1.58 내지 1.7 범위일 수 있다. 렌즈들 각각의 아베수 합은 300 이상 예컨대, 310 내지 350 범위이며, 아베수의 평균은 50 이하 예컨대, 35 내지 47 범위일 수 있다. 전체 렌즈의 중심 두께 합은 18mm 이상 예컨대, 20mm 내지 25mm 범위이며 중심 두께들의 평균은 2.8mm 내지 3.5mm 범위일 수 있다. 광축(OA)에서의 렌즈들 사이의 중심 간격들의 합은 10 mm 이상 예컨대, 10mm 내지 18mm 범위이고 렌즈의 중심 두께 합보다 작을 수 있다. 또한 렌즈부(100)의 각 렌즈 면(S1-S14)들의 유효경의 평균 값은 8mm 이상 예컨대, 8mm 내지 15mm 범위로 제공할 수 있다. In the optical system 1000 of the first embodiment, the sum of the refractive indices of the lenses of the lens unit 100 may be 8 or more, for example, in the range of 8 to 15, and the average refractive index may be in the range of 1.58 to 1.7. The sum of the Abbe numbers of each lens may be 300 or more, for example, in the range of 310 to 350, and the average of the Abbe numbers may be 50 or less, for example, in the range of 35 to 47. The sum of the central thicknesses of all lenses may be 18 mm or more, for example, in the range of 20 mm to 25 mm, and the average of the central thicknesses may be in the range of 2.8 mm to 3.5 mm. The sum of the center spacings between the lenses at the optical axis (OA) may be greater than 10 mm, for example in the range of 10 mm to 18 mm, and may be less than the sum of the center thicknesses of the lenses. In addition, the average value of the effective diameter of each lens surface (S1-S14) of the lens unit 100 may be 8 mm or more, for example, in the range of 8 mm to 15 mm.
발명의 제1실시예에 따른 광학계에서 화각(대각선)은 50도 이하 예컨대, 20도 내지 50도의 범위일 수 있다. 광학계 또는 카메라 모듈의 F 넘버는 2.4 이하, 예컨대, 1.4 내지 2.4의 범위 또는 1.5 내지 1.8 범위일 수 있다. 발명의 실시예에 따른 광학계에서 최대 화각(대각선)은 50도 이하 예컨대, 20도 내지 50도의 범위일 수 있다. 차량용 광학계는 Y축 방향의 수평 화각(FOV_H)는 20도 초과 및 40도 미만일 수 있으며, 예컨대 25도 내지 35도 범위일 수 있다. 또한 수직 화각은 수평 화각보다 작은 각도로 제공되며, 20도 이하 예컨대, 10도 내지 20도 범위일 수 있다. 이때의 수평 방향(Y)의 센서 길이는 8.064mm±0.5mm일 수 있으며, 수직 방향(X)의 센서 높이는 4.54mm±0.5mm일 수 있다. 수평 화각(FOV_H)은 센서의 수평 길이를 기준으로 한 화각이다. 이에 따라 온도 변화에 따라 초점 결상 위치가 변화하는 것을 억제할 수 있고, 다양한 수차가 양호하게 보정되는 차량용 카메라로 제공할 수 있다. In the optical system according to the first embodiment of the invention, the angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees. The F number of the optical system or camera module may be 2.4 or less, for example, in the range of 1.4 to 2.4 or 1.5 to 1.8. In the optical system according to an embodiment of the invention, the maximum angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees. The horizontal field of view (FOV_H) of the vehicle optical system in the Y-axis direction may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees. Additionally, the vertical angle of view is provided at a smaller angle than the horizontal angle of view, and may be 20 degrees or less, for example, in the range of 10 to 20 degrees. At this time, the sensor length in the horizontal direction (Y) may be 8.064 mm ± 0.5 mm, and the sensor height in the vertical direction (X) may be 4.54 mm ± 0.5 mm. Horizontal angle of view (FOV_H) is the angle of view based on the horizontal length of the sensor. Accordingly, it is possible to suppress changes in the focus imaging position due to temperature changes, and it is possible to provide a vehicle camera in which various aberrations are well corrected.
제1실시예는 차량카메라에 적용되는 광학계이므로, 플라스틱 렌즈와 유리 렌즈를 함께 사용하여 설계함에도 제1렌즈(101)는 유리 재질로 제공할 수 있다. 이는 유리 재질이 플라스틱 재질 대비 스크래치에 강하고 외부 온도에 민감하지 않은 장점을 갖고 있다. 제1렌즈(101)는 비구면을 갖고 유리 재질로 이루어지는 글래스 몰드(Glass Mold) 렌즈일 수 있다. 글래스 몰드(Glass Mold) 렌즈는 비구면 모양이 될 금형 내부에 광학 유리 잉곳을 넣고 가열 및 압축 과정을 통해 제작될 수 있다. Since the first embodiment is an optical system applied to a vehicle camera, the first lens 101 can be made of glass even though it is designed using both a plastic lens and a glass lens. This has the advantage that glass material is more resistant to scratches than plastic material and is not sensitive to external temperature. The first lens 101 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
차량 내부에 배치되거나 이물질에 의한 스크래치를 보다 효과적으로 방지하기 위해 유리 렌즈를 제1렌즈(101)로 사용하고, 외부 구조물과 비 접촉되도록 제1렌즈(101)의 물체측면은 완만한 곡면 형상을 가질 수 있다. 이를 통해, 외부 구조물과 접촉으로 스크래치 발생을 최소화할 수 있다. 차량 운행 시 운전자 감시, 차량의 전방/후방 촬영, 또는 차선 감지 및 차량 주변의 돌발 물질 감지를 위해 화각은 20도 초과 및 40도 미만일 수 있으며, 예컨대 25도 내지 35도 범위일 수 있다. 이러한 수평 화각은 첨단운전자 지원시스템(ADAD)용으로 미리 설정된 각도일 수 있다. In order to more effectively prevent scratches placed inside the vehicle or caused by foreign substances, a glass lens is used as the first lens 101, and the object side of the first lens 101 has a gently curved shape to avoid contact with external structures. You can. Through this, the occurrence of scratches due to contact with external structures can be minimized. For driver monitoring when driving a vehicle, photographing the front/rear of the vehicle, or detecting lanes and unexpected objects around the vehicle, the angle of view may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees. This horizontal angle of view may be a preset angle for an advanced driver assistance system (ADAD).
제1실시예에 따른 광학계(1000)는 광의 경로를 변경하기 위한 반사 부재를 더 포함할 수 있다. 반사부재는 제1렌즈군(LG1)의 입사 광을 렌즈들 방향으로 반사하는 프리즘으로 구현될 수 있다. 이하, 실시예에 따른 광학계를 상세하게 설명하기로 한다. The optical system 1000 according to the first embodiment may further include a reflection member for changing the path of light. The reflection member may be implemented as a prism that reflects incident light from the first lens group LG1 in the direction of the lenses. Hereinafter, the optical system according to the embodiment will be described in detail.
발명의 제1실시예에 따른 광학계에 대해 설명하기로 한다.The optical system according to the first embodiment of the invention will be described.
도 1은 제1실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이며, 도 2는 도 1의 따른 n번째 및 n-1번째 렌즈의 관계를 설명하기 위한 측 단면도이고, 도 3은 도 1의 광학계의 렌즈 특성을 나타낸 표이며, 도 4는 도 1의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이고, 도 5는 도 1의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이며, 도 6은 도 1의 광학계에서 제3내지 제6렌즈의 렌즈 면들의 Sag 값을 나타낸 표이며, 도 7은 도 1의 광학계에서 이미지 센서의 위치에 따른 상온, 저온 및 고온에서의 CRA(Chief Ray Angle) 데이터를 나타낸 표이고, 도 8 내지 도 10은 도 1의 광학계의 상온, 저온 및 고온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이며, 도 11 내지 도 13는 도 1의 광학계의 상온, 저온 및 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이며, 도 14는 제1실시예에 따른 이미지 센서의 높이에 따른 상대 조도를 나타낸 그래프이다.FIG. 1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment, FIG. 2 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses according to FIG. 1, and FIG. 3 is a side cross-sectional view of FIG. 1. is a table showing the lens characteristics of the optical system of , Figure 4 is a table showing the aspheric coefficients of the lenses in the optical system of Figure 1, Figure 5 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of Figure 1, 6 is a table showing the Sag values of the lens surfaces of the third to sixth lenses in the optical system of Figure 1, and Figure 7 is a table showing the Chief Ray Angle (CRA) at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of Figure 1. ) is a table showing data, and Figures 8 to 10 are graphs showing data on the diffraction MTF (Modulation Transfer Function) at room temperature, low temperature, and high temperature of the optical system of Figure 1, and Figures 11 to 13 are graphs showing data of the optical system of Figure 1 This is a graph showing data on aberration characteristics at room temperature, low temperature, and high temperature, and FIG. 14 is a graph showing relative illuminance according to the height of the image sensor according to the first embodiment.
도 1 내지 도 4를 참조하면, 광학계(1000)는 렌즈부(100)를 포함하며, 렌즈부(100)는 제1렌즈(101) 내지 제7렌즈(107)를 포함할 수 있다. 제1내지 제7렌즈들(101~107)은 광학계(1000)의 광축(OA)을 따라 순차적으로 배치될 수 있다. 물체의 정보에 해당하는 광은 제1렌즈(101) 내지 제7렌즈(107), 및 필터(500)를 통과하여 이미지 센서(300)에 입사될 수 있다.Referring to FIGS. 1 to 4 , the optical system 1000 includes a lens unit 100, and the lens unit 100 may include first to seventh lenses 101 to 107. The first to seventh lenses 101 to 107 may be sequentially arranged along the optical axis OA of the optical system 1000. Light corresponding to information on the object may pass through the first to seventh lenses 101 to 107 and the filter 500 and be incident on the image sensor 300.
제1렌즈(101)는 제1렌즈군(LG1)에서 물체측에 가장 가까운 렌즈이다. 제7렌즈(107)는 제2렌즈군(LG2) 또는 렌즈부(100) 내에서 이미지 센서(107)에 가장 가까운 렌즈이다. 제1렌즈(101)는 제1렌즈군(LG1)일 수 있으며, 제2내지 제7렌즈(102,103,104,105,106,107)는 제2렌즈군(LG2)일 수 있다. 제1렌즈(101)의 물체측 또는 센서측면의 둘레, 또는 제2렌즈(102)의 물체측면 또는 센서측면의 둘레 중 어느 하나에 조리개가 배치될 수 있다. 예컨대, 조리개(Stop)는 제2렌즈(102)의 물체측면의 둘레에 배치될 수 있다.The first lens 101 is the lens closest to the object in the first lens group LG1. The seventh lens 107 is the closest lens to the image sensor 107 in the second lens group LG2 or the lens unit 100. The first lens 101 may be the first lens group (LG1), and the second to seventh lenses (102, 103, 104, 105, 106, and 107) may be the second lens group (LG2). The aperture may be disposed either around the object side or sensor side of the first lens 101, or around the object side or sensor side of the second lens 102. For example, the aperture (Stop) may be disposed around the object side of the second lens 102.
제1렌즈(101)는 물체측에 가장 가깝게 배치될 수 있다. 제1렌즈(101)는 센서 측에서 가장 멀리 배치될 수 있다. 제1렌즈(101)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제1렌즈(101)는 플라스틱 재질 또는 유리(glass) 재질을 포함할 수 있으며, 예컨대 유리 재질일 수 있다. 유리 재질의 제1렌즈(101)는 주변 환경에 따른 온도 변화에 따른 중심 위치와 곡률 반경 등의 변화를 줄여줄 수 있으며, 광학계(1000)의 입사측 면을 보호할 수 있다. The first lens 101 may be placed closest to the object. The first lens 101 may be placed furthest from the sensor side. The first lens 101 may have negative refractive power at the optical axis OA. The first lens 101 may include a plastic material or a glass material, for example, a glass material. The first lens 101 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and can protect the entrance side of the optical system 1000.
광축을 기준으로 제1렌즈(101)의 물체측 제1면(S1)은 볼록하며, 센서측 제2면(S2)은 오목할 수 있다. 제1렌즈(101)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제1렌즈(101)는 유리 재질이며, 비구면을 가질 수 있다. 제1,2면(S1,S2)의 비구면 계수는 도 4의 L1S1,L1S2로 제공될 수 있다. 이러한 제1렌즈(101)는 유리 재질을 사출 성형하여 비구면을 갖는 렌즈로 제조될 수 있다. 제1렌즈(101)는 비구면을 갖고 유리 재질로 이루어지는 글래스 몰드(Glass Mold) 렌즈일 수 있다. 글래스 몰드(Glass Mold) 렌즈는 비구면 모양이 될 금형 내부에 광학 유리 잉곳을 넣고 가열 및 압축 과정을 통해 제작될 수 있다. Based on the optical axis, the object-side first surface S1 of the first lens 101 may be convex, and the sensor-side second surface S2 may be concave. The first lens 101 may have a meniscus shape that is convex toward the object. The first lens 101 is made of glass and may have an aspherical surface. The aspherical coefficients of the first and second surfaces (S1 and S2) can be provided as L1S1 and L1S2 in FIG. 4. This first lens 101 can be manufactured as a lens with an aspherical surface by injection molding a glass material. The first lens 101 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
제1렌즈(101)의 유효 반경(r11)는 플라스틱 렌즈들의 유효 반경보다 클 수 있다. 이와 다르게, 제1렌즈(101)의 물체측면과 센서측면 중 적어도 하나는 자유 곡면 즉, 비회전 대칭 곡면을 가질 수 있다.The effective radius r11 of the first lens 101 may be larger than the effective radius of the plastic lenses. Alternatively, at least one of the object side and the sensor side of the first lens 101 may have a free curved surface, that is, a non-rotationally symmetric curved surface.
제1렌즈(101)의 렌즈 면의 형상에 의해 제2렌즈(102)의 센서측면의 유효경을 물체측면의 유효경보다 작게 설계할 수 있다. 제1렌즈(101)의 제1면(S1)은 광축(OA)에서 유효 영역의 끝단 즉, 에지까지 임계점(Critical point) 없이 제공될 수 있다. 제1렌즈(101)의 제2면(S2)은 임계점 없이 제공될 수 있다.Depending on the shape of the lens surface of the first lens 101, the effective diameter of the sensor side of the second lens 102 can be designed to be smaller than the effective diameter of the object side. The first surface S1 of the first lens 101 may be provided without a critical point from the optical axis OA to the end of the effective area, that is, the edge. The second surface S2 of the first lens 101 may be provided without a critical point.
제1렌즈(101)의 굴절률(n1)은 n1> 1.7 또는 n1> 1.72의 조건을 만족할 수 있다. 제1렌즈(101)의 굴절률(n1)이 렌즈부(100) 내에서 가장 크므로, 제1,2렌즈(101,102)의 곡률 반경의 커질 수 있으며, 렌즈 제작이 용이할 수 있다. 제1렌즈(101)의 굴절률(n1)이 조건보다 작은 경우, 제1,2 렌즈(101,102)의 굴절력을 증가시켜 주기 위해 렌즈 면을 급격하게 오목하거나 볼록하게 형성해야 하며, 이 경우 렌즈 제작이 용이하지 않고 렌즈 불량률도 높아지고 수율 저하의 원인이 될 수 있다.The refractive index (n1) of the first lens 101 may satisfy the condition of n1>1.7 or n1>1.72. Since the refractive index (n1) of the first lens 101 is the largest in the lens unit 100, the radius of curvature of the first and second lenses 101 and 102 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 101 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 101 and 102. In this case, the lens manufacturing process is It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
제2렌즈(102)는 물체 측에서 2번째로 배치될 수 있다. 제2렌즈(102)는 센서 측에서 6번째로 배치될 수 있다. 제2렌즈(102)는 제1렌즈(101)과 제3렌즈(103) 사이에 배치될 수 있다. 제2렌즈(102)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제2렌즈(102)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제2렌즈(102)는 유리 재질로 제공될 수 있다.The second lens 102 may be disposed second on the object side. The second lens 102 may be placed sixth on the sensor side. The second lens 102 may be disposed between the first lens 101 and the third lens 103. The second lens 102 may have negative refractive power at the optical axis (OA). The second lens 102 may include plastic or glass. For example, the second lens 102 may be made of glass.
광축(OA)을 기준으로 제2렌즈(102)의 물체측 제3면(S3)은 평면일 수 있고, 센서측 제4면(S4)은 볼록할 수 있다. 제2렌즈(102)의 물체측 제3면(S3)은 완만한 곡면을 가질 수 있다. 유리 재질로 렌즈 제작시 곡면을 형성하기 어려운 문제가 있으나, 제2렌즈(102)의 물체측 제3면(S3)은 평판으로 형성되므로 제작이 용이할 수 있다. 제2렌즈(102)는 유리 재질이며, 구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side third surface S3 of the second lens 102 may be flat, and the sensor-side fourth surface S4 may be convex. The object-side third surface S3 of the second lens 102 may have a gently curved surface. There is a problem in forming a curved surface when manufacturing a lens made of glass, but the object-side third surface S3 of the second lens 102 is formed as a flat plate, so manufacturing can be easy. The second lens 102 is made of glass and may have a spherical surface. At least one or both of the third surface S3 and the fourth surface S4 may be spherical. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
조리개(Stop)는 제2렌즈(102)의 물체측 제3면(S3)의 둘레에 배치될 수 있다. 조리개의 센서측에 배치된 제2내지 제7렌즈(102-107)의 복합 초점 거리는 양(+)의 값을 가질 수 있으며, 화각 범위 내에서 TTL을 줄여줄 수 있고, 광학계의 소형화가 가능하다. 이에 따라 광학계의 중량별 수율(yield by weight)의 저하를 방지하고 생산 효율의 향상을 도모할 수 있다. 또한, 수평 화각(FOV_H)을 25도 내지 36도에서 TTL을 줄여서 광학계를 소형화할 수 있다. The aperture stop may be disposed around the third surface S3 on the object side of the second lens 102. The composite focal length of the second to seventh lenses (102-107) disposed on the sensor side of the aperture can have a positive value, can reduce TTL within the angle of view range, and enable miniaturization of the optical system. . Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 25 to 36 degrees.
제3렌즈(103)는 물체 측에서 3번째로 배치될 수 있다. 제3렌즈(103)은 센서 측에서 5번째로 배치될 수 있다. 제3렌즈(103)은 제2렌즈(102)와 제4렌즈(104) 사이에 배치될 수 있다. 제3렌즈(103)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제3렌즈(103)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제3렌즈(103)는 유리 재질로 제공될 수 있다.The third lens 103 may be arranged third from the object side. The third lens 103 may be placed fifth on the sensor side. The third lens 103 may be disposed between the second lens 102 and the fourth lens 104. The third lens 103 may have positive (+) refractive power at the optical axis (OA). The third lens 103 may include plastic or glass. For example, the third lens 103 may be made of glass.
광축을 기준으로 제3렌즈(103)의 물체측 제5면(S5)은 볼록하고, 센서측 제6면(S6)은 볼록할 수 있다. 제3렌즈(103)는 광축(OA)에서 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(103)의 양면이 볼록하게 제공되므로, 광학계의 TTL 및 렌즈 매수를 최소화시켜 줄 수 있고 광을 효과적으로 굴절시켜 줄 수 있다. 제3렌즈(103)는 유리 재질이며, 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side fifth surface S5 of the third lens 103 may be convex, and the sensor-side sixth surface S6 may be convex. The third lens 103 may have a shape in which both sides are convex at the optical axis (OA). Since both sides of the third lens 103 are convex, the TTL and number of lenses of the optical system can be minimized and light can be effectively refracted. The third lens 103 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(104)는 물체 측에서 4번째로 배치될 수 있다. 제4렌즈(104)는 센서 측에서 4번째로 배치될 수 있다. 제4렌즈(104)은 제3렌즈(103)와 제5렌즈(105) 사이에 배치될 수 있다. 제4렌즈(104)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제4렌즈(104)는 양(+)의 굴절력을 가질 수 있다. 제4렌즈(104)는 제5렌즈(105)의 굴절력과 다른 양(+)의 굴절력을 가질 수 있다. 제4렌즈(104)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제4렌즈(104)는 플라스틱 재질로 제공될 수 있다. 제4렌즈(104)는 제5렌즈(105)와 동일한 재질로 제공될 수 있다. The fourth lens 104 may be placed fourth on the object side. The fourth lens 104 may be placed fourth on the sensor side. The fourth lens 104 may be disposed between the third lens 103 and the fifth lens 105. The fourth lens 104 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fourth lens 104 may have positive (+) refractive power. The fourth lens 104 may have a positive (+) refractive power that is different from that of the fifth lens 105. The fourth lens 104 may include plastic or glass. For example, the fourth lens 104 may be made of plastic. The fourth lens 104 may be made of the same material as the fifth lens 105.
광축을 기준으로 제4렌즈(104)의 물체측 제7면(S7)은 볼록하며, 센서측 제8면(S8)은 오목할 수 있다. 제4렌즈(104)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제4렌즈(104)는 플라스틱 재질이며, 비구면을 가질 수 있다. 제7면(S7) 및 제8 면(S8) 중 적어도 하나 또는 모두는 구면일 수 있다. 예컨대, 물체측 제7면(S7)은 비구면일 수 있고, 센서측 제8면(S8)은 구면일 수 있다. 제7면(S7)의 비구면 계수는 도 4의 L4의 S1과 같이 제공될 수 있다. 제7면(S7) 및 제8 면(S8)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side seventh surface S7 of the fourth lens 104 may be convex, and the sensor-side eighth surface S8 may be concave. The fourth lens 104 may have a meniscus shape that is convex toward the object. The fourth lens 104 is made of plastic and may have an aspherical surface. At least one or both of the seventh surface (S7) and the eighth surface (S8) may be spherical. For example, the object-side seventh surface S7 may be aspherical, and the sensor-side eighth surface S8 may be spherical. The aspherical coefficient of the seventh surface S7 may be provided as S1 of L4 in FIG. 4. The seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
제5렌즈(105)는 물체 측에서 5번째로 배치될 수 있다. 제5렌즈(105)는 센서 측에서 3번째로 배치될 수 있다. 제5렌즈(105)은 제4렌즈(104)와 제6렌즈(106) 사이에 배치될 수 있다. 제5렌즈(105)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(105)는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(105)는 제4렌즈(104)의 굴절력과 다른 음(-)의 굴절력을 가질 수 있다. 제5렌즈(105)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제5렌즈(105)는 플라스틱 재질로 제공될 수 있다. 제5렌즈(105)는 제4렌즈(104)와 동일한 재질로 제공될 수 있다. The fifth lens 105 may be placed fifth on the object side. The fifth lens 105 may be placed third on the sensor side. The fifth lens 105 may be disposed between the fourth lens 104 and the sixth lens 106. The fifth lens 105 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fifth lens 105 may have negative (-) refractive power. The fifth lens 105 may have a negative (-) refractive power that is different from the refractive power of the fourth lens 104. The fifth lens 105 may include plastic or glass. For example, the fifth lens 105 may be made of plastic. The fifth lens 105 may be made of the same material as the fourth lens 104.
광축(OA)을 기준으로 제5렌즈(105)는 물체측 제9면(S9)은 볼록하고, 센서측 제10면(S10)은 오목할 수 있다. 제5렌즈(105)는 광축(OA)에서 물체측이 볼록한 메니스커스 형상을 가질 수 있다. 제5렌즈(105)는 플라스틱 재질이며 비구면을 가질 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나의 면은 비구면일 수 있다. 예를 들어, 제5렌즈(105)의 물체측 제9면(S9)는 구면이고, 제5렌즈(105)의 센서측 제10면(S10)은 비구면일 수 있다. 제10면(S10)의 비구면 계수는 도 4의 L5의 S2와 같이 제공될 수 있다. 제5렌즈(105)의 제9,10 면(S9,S10) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side ninth surface S9 of the fifth lens 105 may be convex, and the sensor-side tenth surface S10 may be concave. The fifth lens 105 may have a meniscus shape in which the object side is convex at the optical axis OA. The fifth lens 105 is made of plastic and may have an aspherical surface. At least one of the ninth surface (S9) and the tenth surface (S10) may be an aspherical surface. For example, the object-side ninth surface S9 of the fifth lens 105 may be a spherical surface, and the sensor-side tenth surface S10 of the fifth lens 105 may be an aspherical surface. The aspheric coefficient of the tenth surface (S10) may be provided as S2 of L5 in FIG. 4. At least one or both of the 9th and 10th surfaces S9 and S10 of the fifth lens 105 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(104)와 제5렌즈(105)는 접합될 수 있다. 제4렌즈(104)와 제5렌즈(105) 사이의 접합 면은 제8면(S8)으로 정의할 수 있다. 제8면(S7)은 제5렌즈(105)의 제9면과 같은 면일 수 있다. 접합 렌즈(145)의 물체측면은 볼록하며, 센서측면은 오목할 수 있다. 제4,5렌즈(104,105) 사이의 간격은 0.01mm 미만일 수 있으며, 접착제로 접착될 수 있다. 제4,5렌즈(104,105) 사이의 간격은 광축(OA)에서 유효 영역의 끝단까지 0.01mm 미만일 수 있다. 제4,5렌즈(104,105)는 서로 반대되는 굴절력을 가질 수 있다. 접합렌즈(145)의 접합면(S8)은 구면일 수 있고, 접합렌즈(145)의 비접합면(S7,S10)은 비구면일 수 있다. The fourth lens 104 and the fifth lens 105 may be bonded. The bonding surface between the fourth lens 104 and the fifth lens 105 can be defined as the eighth surface S8. The eighth surface S7 may be the same as the ninth surface of the fifth lens 105. The object side of the bonded lens 145 may be convex, and the sensor side may be concave. The gap between the fourth and fifth lenses 104 and 105 may be less than 0.01 mm, and may be bonded with adhesive. The gap between the fourth and fifth lenses 104 and 105 may be less than 0.01 mm from the optical axis OA to the end of the effective area. The fourth and fifth lenses 104 and 105 may have opposite refractive powers. The bonding surface S8 of the bonded lens 145 may be spherical, and the non-bonded surfaces S7 and S10 of the bonded lens 145 may be aspherical.
접합렌즈(145)의 접합면(S8)의 곡률반경의 값은 30보다 클 수 있다. 예컨대, 접합렌즈(145)의 접합면(S8)의 곡률반경의 값은 50보다 클 수 있다. 접합렌즈(145)의 접합면(S8)은 완만한 형상으로 형성될 수 있다. 이를 통해, 접합렌즈(145)를 이루는 제4렌즈(104)와 제5렌즈(105)의 접착 공정이 유리하고, 접착 유지력을 높일 수 있다. The value of the radius of curvature of the bonding surface S8 of the bonded lens 145 may be greater than 30. For example, the value of the radius of curvature of the bonding surface S8 of the bonded lens 145 may be greater than 50. The bonding surface S8 of the bonded lens 145 may be formed in a gentle shape. Through this, the adhesion process of the fourth lens 104 and the fifth lens 105 forming the bonded lens 145 is advantageous, and adhesion retention can be increased.
접합 렌즈(145)의 물체측 제4렌즈(104)의 굴절력과 센서측 제5렌즈(105)의 굴절력의 곱은 0보다 작을 수 있다. 접합 렌즈(145)의 물체측 제4렌즈(104)의 초점 거리와 센서측 제5렌즈(105)의 초점 거리의 곱은 0보다 작을 수 있다. 이에 따라 광학계의 수차 특성을 개선시켜 줄 수 있다. 만약, 접합 렌즈(145)의 두 렌즈의 굴절력이 서로 같을 경우, 수차 개선에 한계가 있다. The product of the refractive power of the object-side fourth lens 104 of the bonded lens 145 and the refractive power of the sensor-side fifth lens 105 may be less than 0. The product of the focal length of the object-side fourth lens 104 of the bonded lens 145 and the focal length of the sensor-side fifth lens 105 may be less than 0. Accordingly, the aberration characteristics of the optical system can be improved. If the refractive powers of the two lenses of the bonded lens 145 are the same, there is a limit to improving the aberration.
접합 렌즈(145)를 기준으로 물체측 제3렌즈(103)와 센서측 제6렌즈(106)는 양의 굴절력을 가질 수 있다. 이에 따라 제3렌즈(103), 접합 렌즈(145) 및 제6렌즈(106)는 입사되는 일부 광을 광축 방향으로 굴절시켜 줄 수 있으며, 색 수차를 상호 보정할 수 있다. 접합 렌즈(145)를 기준으로 물체측에 배치되는 제3렌즈(103)의 초점 거리는 센서측에 배치되는 제6렌즈(106)의 초점 거리보다 작을 수 있다. 접합 렌즈(145)를 기준으로 물체측에 배치되는 제3렌즈(103)의 파워는 센서측에 배치되는 제6렌즈(106)의 파워보다 클 수 있다.Based on the bonded lens 145, the object-side third lens 103 and the sensor-side sixth lens 106 may have positive refractive power. Accordingly, the third lens 103, the bonded lens 145, and the sixth lens 106 can refract some of the incident light in the optical axis direction and mutually correct chromatic aberration. The focal length of the third lens 103 disposed on the object side with respect to the bonded lens 145 may be smaller than the focal length of the sixth lens 106 disposed on the sensor side. The power of the third lens 103 disposed on the object side with respect to the bonded lens 145 may be greater than the power of the sixth lens 106 disposed on the sensor side.
제4렌즈(104)의 유효경은 이미지 센서(300)의 대각 길이보다 클 수 있다. 제4렌즈(104)의 유효경은 제7면(S7)과 제8면(S8)의 유효경 평균이며, 이미지 센서(300)의 대각 길이보다 클 수 있다. 제5렌즈(105)의 유효경은 제4렌즈(104)의 유효경보다는 작고 이미지 센서(300)의 대각 길이보다 클 수 있다. The effective diameter of the fourth lens 104 may be larger than the diagonal length of the image sensor 300. The effective diameter of the fourth lens 104 is the average of the effective diameters of the seventh surface S7 and the eighth surface S8, and may be larger than the diagonal length of the image sensor 300. The effective diameter of the fifth lens 105 may be smaller than the effective diameter of the fourth lens 104 and larger than the diagonal length of the image sensor 300.
제4렌즈(104)의 제7면(S7)의 유효경은 CA_L4S1이며, 제8면(S8)의 유효경은 CA_L4S2인 경우, 제7,8 면(S7,S8)의 유효경은 1 < CA_L4S1/CA_L4S2 < 1.5의 조건을 만족할 수 있다. 제5렌즈(105)의 제9면(S9)의 유효경은 CA_L5S1이며, 제10면(S10)의 유효경은 CA_L5S2인 경우, 제9,10면의 유효경은 1 < CA_L5S1/CA_L5S2 < 1.5의 조건을 만족할 수 있다.If the effective diameter of the 7th surface (S7) of the fourth lens 104 is CA_L4S1 and the effective diameter of the 8th surface (S8) is CA_L4S2, the effective diameter of the 7th and 8th surfaces (S7, S8) is 1 < CA_L4S1/CA_L4S2 The condition of < 1.5 can be satisfied. If the effective diameter of the 9th surface (S9) of the fifth lens 105 is CA_L5S1 and the effective diameter of the 10th surface (S10) is CA_L5S2, the effective diameters of the 9th and 10th surfaces meet the condition of 1 < CA_L5S1/CA_L5S2 < 1.5. You can be satisfied.
접합 렌즈(145)는 서로 다른 굴절률을 갖는 플라스틱 렌즈들로 접합되고, 비구면의 굴절 면을 가지게 되고, 접합 렌즈(145)보다 센서측에 배치된 렌즈들이 구면 렌즈 또는 유리 렌즈들이 채용할 경우, 비구면 수차를 보상할 수 있다. 접합 렌즈(145)의 위치는 렌즈부(100) 내에서 중간 또는 중간 보다 뒤인 제3렌즈 내지 제6렌즈 중 연속된 어느 두 렌즈에 위치하므로, 색 수차 보정이 보다 효율적일 수 있다.The bonded lens 145 is made by bonding plastic lenses with different refractive indices and has an aspherical refractive surface. When the lenses disposed on the sensor side rather than the bonded lens 145 are spherical lenses or glass lenses, they are aspherical. Aberrations can be compensated for. Since the position of the bonded lens 145 is located in any two consecutive lenses among the third to sixth lenses in the middle or behind the middle within the lens unit 100, chromatic aberration correction can be more efficient.
제6렌즈(106)은 물체 측에서 6번째로 배치될 수 있다. 제6렌즈(106)은 센서 측에서 2번째로 배치될 수 있다. 제6렌즈(106)은 제5렌즈(105)와 제7렌즈(107) 사이에 배치될 수 있다. 제6렌즈(106)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제6렌즈(106)는 양(+)의 굴절력을 가질 수 있다. 제6렌즈(106)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제6렌즈(106)는 유리 재질로 제공될 수 있다. The sixth lens 106 may be placed sixth on the object side. The sixth lens 106 may be placed second on the sensor side. The sixth lens 106 may be disposed between the fifth lens 105 and the seventh lens 107. The sixth lens 106 may have positive (+) or negative (-) refractive power at the optical axis (OA). The sixth lens 106 may have positive (+) refractive power. The sixth lens 106 may include plastic or glass. For example, the sixth lens 106 may be made of glass.
광축(OA)을 기준으로 제6렌즈(106)는 물체측 제11면(S11)은 볼록하고, 센서측 제12면(S12)은 오목한 형상일 수 있다. 제6렌즈(106)은 광축(OA)에서 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제11면(S11) 및 제12 면(S12) 중 적어도 하나 또는 모두는 구면일 수 있다. 예를 들어, 제11면(S11) 및 제12면(S12)은 모두 구면일 수 있다.Based on the optical axis OA, the object-side 11th surface S11 of the sixth lens 106 may be convex and the sensor-side 12th surface S12 may be concave. The sixth lens 106 may have a meniscus shape that is convex from the optical axis OA toward the object. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be spherical. For example, both the 11th surface (S11) and the 12th surface (S12) may be spherical.
제6렌즈(106)의 제11면(S11)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제12면(S12)은 광축(OA)에서 유효 영역의 끝단까지 적어도 하나의 임계점 없이 제공될 수 있다. The 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area. The twelfth surface S12 may be provided without at least one critical point from the optical axis OA to the end of the effective area.
제7렌즈(107)는 센서 측에 가장 가깝게 배치될 수 있다. 제7렌즈(107)는 물체 측에서 가장 멀리 배치될 수 있다. 제7렌즈(107)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(107)는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(107)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제7렌즈(107)는 플라스틱 재질일 수 있다. The seventh lens 107 may be placed closest to the sensor side. The seventh lens 107 may be placed furthest from the object. The seventh lens 107 may have positive (+) or negative (-) refractive power at the optical axis (OA). The seventh lens 107 may have negative (-) refractive power. The seventh lens 107 may include plastic or glass. For example, the seventh lens 107 may be made of plastic.
광축에서 제7렌즈(107)의 물체측 제13면(S13)은 볼록하고, 센서측 제14면(S14)은 오목할 수 있다. 제7렌즈(107)는 물체측으로 볼록한 메니스커스 형상일 수 있다. 제13면(S13) 및 제14면(S14) 중 적어도 하나의 면은 비구면일 수 있다. 예를 들어, 제13면(S13) 및 제14면(S14)은 모두 비구면일 수 있다. 제13,14 면(S13,S14)의 비구면 계수는 도 4의 L7의 S1,S2와 같이 제공될 수 있다. On the optical axis, the object-side 13th surface S13 of the seventh lens 107 may be convex, and the sensor-side 14th surface S14 may be concave. The seventh lens 107 may have a meniscus shape convex toward the object. At least one of the 13th surface (S13) and the 14th surface (S14) may be an aspherical surface. For example, both the 13th surface S13 and the 14th surface S14 may be aspherical surfaces. The aspheric coefficients of the 13th and 14th surfaces (S13 and S14) may be provided as S1 and S2 of L7 in FIG. 4.
제7렌즈(107)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 가질 수 있다. 제13면(S13)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r71)의 50% 이상에 위치하거나, 52% 내지 70% 범위 또는 53% 내지 60% 범위에 위치할 수 있다. 제14면(S14)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r72)의 70% 이상에 위치하거나, 70% 내지 90% 범위 또는 75% 내지 85% 범위에 위치할 수 있다.The 13th surface S13 of the seventh lens 107 may have a critical point from the optical axis OA to the end of the effective area. When the 13th surface S13 has a critical point, it may be located at more than 50% of the effective radius r71 from the optical axis OA, or may be located in the range of 52% to 70%, or 53% to 60%. When the 14th surface S14 has a critical point, it may be located at more than 70% of the effective radius r72 from the optical axis OA, or within a range of 70% to 90% or 75% to 85%.
제7렌즈(107)는 이미지 센서(300)에 가장 인접한 플라스틱 렌즈일 수 있다. 또한 플라스틱 렌즈를 이미지 센서(300)에 인접하게 1매 이상 배치함으로써, 비구면을 갖는 렌즈 면에 의해 구면 수차와 색 수차 등의 수차를 개선할 수 있고, 해상도에 영향을 제어할 수 있다. 또한 이미지 센서(300)에 인접한 렌즈로 플라스틱 렌즈를 배치함으로써, 유리 재질의 렌즈 대비 조립 공차에 둔감할 수 있다. 즉, 조립 공차에 둔감하다는 의미는 조립 시 설계 대비 약간의 차이가 있게 조립되더라도 광학 성능에 크게 영향을 주지 않을 수 있다. 또한 이미지 센서(300)에 인접한 1매의 렌즈(107)를 플라스틱 재질로 제공해 줌으로써, 비구면을 갖는 렌즈 면에 의해 광학 성능을 개선시켜 줄 수 있으며, 예컨대 수차 특성 개선 및 해상도 저하를 방지할 수 있다.The seventh lens 107 may be a plastic lens closest to the image sensor 300. Additionally, by disposing one or more plastic lenses adjacent to the image sensor 300, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 300, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing one lens 107 adjacent to the image sensor 300 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
제7렌즈(107)의 제13면(S13) 및 제14면(S14) 중 적어도 하나 또는 모두는 임계점을 가질 수 있다. 제7렌즈(107)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 제1임계점(P1)을 가질 수 있다. 제13면(S13)의 제1임계점(P1)은 광축(OA)에서 유효 반경의 55% 이상에 위치하거나, 55% 내지 75% 범위 또는 60% 내지 70% 범위에 위치할 수 있다. 제13면(S13)의 제1임계점은 광축(OA)에서 2 mm 이상의 거리 예컨대, 2.1 mm 내지 2.5 mm 범위 또는 2.2mm 내지 2.3mm의 거리에 위치할 수 있다. 다른 예로서, 제13면(S13)은 임계점 없이 제공될 수 있다. 이러한 제1임계점(P1)을 갖는 제13면(S13)은 입사 광을 중심부 및 주변부까지 굴절시켜 줄 수 있고, 수차를 개선시켜 줄 수 있다. 제1,2 임계점(P1,P2)은 광축(OA) 및 광축(OA)의 수직인 방향에 대한 기울기 값의 부호가 양(+)에서 음(-)으로 또는 음(-)에서 양(+)으로 변하는 지점으로, 기울기 값이 0인 지점을 의미할 수 있다. 또한 제1,2 임계점(P1,P2)은 렌즈 면을 지나는 접선의 기울기 값이 커지다고 작아지는 지점 또는 작아지다가 커지는 지점일 수 있다.At least one or both of the 13th surface S13 and the 14th surface S14 of the seventh lens 107 may have a critical point. The 13th surface S13 of the seventh lens 107 may have a first critical point P1 from the optical axis OA to the end of the effective area. The first critical point P1 of the 13th surface S13 may be located at 55% or more of the effective radius from the optical axis OA, or may be located at 55% to 75% of the effective radius, or 60% to 70% of the effective radius. The first critical point of the 13th surface S13 may be located at a distance of 2 mm or more from the optical axis OA, for example, in the range of 2.1 mm to 2.5 mm or 2.2 mm to 2.3 mm. As another example, the 13th side S13 may be provided without a critical point. The 13th surface (S13) having this first critical point (P1) can refract incident light to the center and periphery and improve aberration. The first and second critical points (P1, P2) are the optical axis (OA) and the sign of the slope value with respect to the direction perpendicular to the optical axis (OA) is changed from positive (+) to negative (-) or from negative (-) to positive (+). ), which may mean a point where the slope value is 0. Additionally, the first and second critical points (P1, P2) may be points where the slope value of the tangent line passing through the lens surface increases and then decreases, or decreases and then increases.
제7렌즈(107)의 제14면(S14)은 광축(OA)에서 유효 영역의 끝단까지 적어도 하나의 제2임계점(P2)을 가질 수 있다. 제14면(S14)의 제2임계점(P2)은 광축(OA)에서 유효 반경(r72)의 60% 이상의 거리에 위치하거나, 60% 내지 80% 범위 또는 65% 내지 75% 범위에 위치할 수 있다. 제14면(S14)의 제2임계점(P2)은 광축(OA)에서 2.9 mm 이상의 거리 예컨대, 2.9 mm 내지 3.9 mm 범위 또는 3.1mm 내지 3.7mm 거리에 위치할 수 있다. 이에 따라 제2임계점(P2)는 제1임계점(P1)보다 더 에지에 가깝게 배치됨으로써, 제7렌즈(107)는 입사되는 광을 이미지 센서(300)의 주변부까지 굴절시켜 줄 수 있다.The 14th surface S14 of the seventh lens 107 may have at least one second critical point P2 from the optical axis OA to the end of the effective area. The second critical point (P2) of the 14th surface (S14) may be located at a distance of 60% or more of the effective radius (r72) from the optical axis (OA), or may be located in the range of 60% to 80% or 65% to 75% of the effective radius (r72). there is. The second critical point P2 of the 14th surface S14 may be located at a distance of 2.9 mm or more from the optical axis OA, for example, in the range of 2.9 mm to 3.9 mm or 3.1 mm to 3.7 mm. Accordingly, the second critical point P2 is disposed closer to the edge than the first critical point P1, so that the seventh lens 107 can refract the incident light to the periphery of the image sensor 300.
제7렌즈(107)의 제13, 14 면(S13,S14)의 평균 유효 반경이 이미지 센서(300)의 대각 길이의 1/2인 Imgh 보다 작게 배치되며, 이는 제2임계점(P2)을 갖는 제14면(S14)에 의해 이미지 센서(300)의 주변부까지 광을 굴절시켜 줄 수 있다.The average effective radius of the 13th and 14th surfaces (S13, S14) of the seventh lens 107 is arranged to be smaller than Imgh, which is 1/2 of the diagonal length of the image sensor 300, which has a second critical point (P2). Light can be refracted to the periphery of the image sensor 300 by the fourteenth surface S14.
도 2 및 도 6과 같이, Sag41은 제4렌즈(104)의 제7면(S7)의 중심에서 광축(OA)과 직교하는 방향(X,Y)에서의 렌즈 면까지의 높이를 나타내며, Sag41의 최대 값은 제7면(S5)의 에지에서의 높이일 수 있다.As shown in Figures 2 and 6, Sag41 represents the height from the center of the seventh surface (S7) of the fourth lens 104 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), Sag41 The maximum value of may be the height at the edge of the seventh surface S5.
Sag42은 제4렌즈(104)의 제8면(S8)의 중심에서 광축(OA)과 직교하는 방향(X,Y)에서의 렌즈 면까지의 높이를 나타내며, Sag42의 최대 값은 제8면(S8)의 에지에서의 높이일 수 있다. Sag52은 제5렌즈(105)의 제9면(S9)의 중심에서 광축(OA)과 직교하는 방향(X,Y)에서의 렌즈 면까지의 높이를 나타내며, Sag52의 최대 값은 제9면(S9)의 에지에서의 높이일 수 있다.Sag42 represents the height from the center of the eighth surface (S8) of the fourth lens 104 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), and the maximum value of Sag42 is the eighth surface ( It may be the height at the edge of S8). Sag52 represents the height from the center of the ninth surface (S9) of the fifth lens 105 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), and the maximum value of Sag52 is on the ninth surface ( It may be the height at the edge of S9).
Sag61은 제6렌즈(106)의 제11면(S11)의 중심에서 광축(OA)과 직교하는 방향(X,Y)에서의 렌즈 면까지의 높이를 나타내며, Sag61의 최대 값은 제11면(S11)의 에지에서의 높이일 수 있다. Sag62는 제6렌즈(106)의 제12면(S12)의 중심에서 광축(OA)과 직교하는 방향(X,Y)에서의 렌즈 면까지의 높이이며, 최대 Sag 값은 에지에서의 높이이다.Sag61 represents the height from the center of the 11th surface (S11) of the sixth lens 106 to the lens surface in the direction (X, Y) perpendicular to the optical axis (OA), and the maximum value of Sag61 is the 11th surface ( It may be the height at the edge of S11). Sag62 is the height from the center of the twelfth surface S12 of the sixth lens 106 to the lens surface in the direction (X, Y) perpendicular to the optical axis OA, and the maximum Sag value is the height at the edge.
최대 Sag 값들은 다음을 만족할 수 있다. The maximum Sag values can satisfy:
Max_Sag51 < Max_Sag52 < Max_Sag41의 조건을 만족할 수 있다. The condition Max_Sag51 < Max_Sag52 < Max_Sag41 can be satisfied.
Max_Sag52와 Max_Sag61 사이의 차이는 1 이하일 수 있다. 이러한 인접한 유리 재질의 렌즈와 플라스틱 렌즈 사이의 Sag 값을 설정해 줌으로써, 유리 재질의 렌즈와 플라스틱 렌즈 사이의 광 손실을 줄여줄 수 있다.The difference between Max_Sag52 and Max_Sag61 can be less than 1. By setting the Sag value between adjacent glass lenses and plastic lenses, light loss between the glass lenses and plastic lenses can be reduced.
도 6에서 Sag 값이 양의 값이면, 렌즈 면은 광축(OA)에 직교하는 직선을 기준으로 센서측에 위치하며, 음의 값이면, 렌즈 면은 광축(OA)에 직교하는 직선을 기준으로 물체측에 위치하게 된다. 또한 각 렌즈의 물체측면과 센서측면을 비교하면, 제7렌즈(107)의 물체측면과 센서측면은 Sag 값의 최대와 최소의 차이가 가장 작은 면들일 수 있다. 이는 제7렌즈(107)의 물체측면과 센서측 사이의 거리가 일정하고, 곡률 반경의 평균이 다른 렌즈들의 곡률 반경의 평균보다 더 클 수 있다.In Figure 6, if the Sag value is a positive value, the lens surface is located on the sensor side based on a straight line perpendicular to the optical axis (OA), and if it is a negative value, the lens surface is located on the sensor side based on a straight line perpendicular to the optical axis (OA). It is located on the object side. Additionally, when comparing the object side and the sensor side of each lens, the object side and the sensor side of the seventh lens 107 may be the sides with the smallest difference between the maximum and minimum Sag values. This means that the distance between the object side and the sensor side of the seventh lens 107 is constant, and the average radius of curvature may be larger than the average radius of curvature of the other lenses.
도 1 및 도 2와 같이, 제1내지 제7렌즈(101~107)의 중심 두께는 CT1~CT7으로 나타내며, 각 렌즈의 유효 영역의 끝단인 에지 두께는 ET1~ET7으로 나타내며, 인접한 두 렌즈 사이의 중심 간격(Center gap)은 CG1~CG6으로 나타내며, 각 렌즈의 에지들 사이의 에지 간격은 EG1~EG6으로 나타낸다. 여기서, 접합 렌즈(145)의 중심 두께는 CT34이며, 에지 두께는 ET45로 나타낸다.1 and 2, the center thickness of the first to seventh lenses 101 to 107 is indicated by CT1 to CT7, and the edge thickness, which is the end of the effective area of each lens, is indicated by ET1 to ET7, and the thickness between the two adjacent lenses is indicated by CT1 to CT7. The center gap is indicated by CG1~CG6, and the edge gap between the edges of each lens is indicated by EG1~EG6. Here, the center thickness of the bonded lens 145 is expressed as CT34, and the edge thickness is expressed as ET45.
도 2를 참조하면, BFL(Back focal length)은 이미지 센서(300)에서 마지막 렌즈의 중심까지의 광축 거리이다. 도 1에서 TTL은 제1렌즈(101)의 제1면(S1)의 중심에서 이미지 센서(300)의 상면까지의 광축 거리이다. Referring to FIG. 2, back focal length (BFL) is the optical axis distance from the image sensor 300 to the center of the last lens. In FIG. 1, TTL is the optical axis distance from the center of the first surface S1 of the first lens 101 to the upper surface of the image sensor 300.
도 3은 도 1의 실시예의 광학계의 렌즈 데이터의 예이다. 도 3과 같이, 제1내지 제7렌즈들(101,102,103,104,105,106,107)의 광축(OA)에서의 곡률 반경(Radius of Curvature), 렌즈의 두께(Thickness), 렌즈들 사이의 중심 간격(distance), d-line에서의 굴절률(Refractive index), 아베수(Abbe's Number) 및 유효경(Clear aperture; CA)의 크기를 설정할 수 있다. FIG. 3 is an example of lens data of the optical system of the embodiment of FIG. 1. As shown in Figure 3, the radius of curvature at the optical axis (OA) of the first to seventh lenses (101, 102, 103, 104, 105, 106, 107), the thickness of the lens, the center distance between the lenses, d-line You can set the size of the refractive index, Abbe's Number, and clear aperture (CA).
도 4와 같이, 실시예에 렌즈부(100)의 렌즈들 중 제1,2,6,7 렌즈(101,102,106,107)의 렌즈면은 30차 비구면 계수를 가진 비구면을 포함할 수 있다. 예를 들어, 제1,2,6,7 렌즈(101,102,106,107)는 30차 비구면 계수를 가지는 렌즈면을 포함할 수 있다. 상기와 같이 30차 비구면 계수를 가진 비구면은("0"이 아닌 수치) 주변부의 비구면 형상을 특히 크게 변화시킬 수 있기 때문에 화각(FOV)의 주변부의 광학 성능을 양호하게 보정할 수 있다.As shown in FIG. 4 , in the embodiment, the lens surfaces of the first, second, sixth, and seventh lenses (101, 102, 106, and 107) among the lenses of the lens unit 100 may include an aspherical surface with a 30th order aspheric coefficient. For example, the first, second, sixth, and seventh lenses 101, 102, 106, and 107 may include a lens surface having a 30th order aspherical coefficient. As described above, an aspheric surface with a 30th order aspheric coefficient (a value other than “0”) can particularly significantly change the shape of the aspherical surface in the peripheral area, so the optical performance of the peripheral area of the field of view (FOV) can be well corrected.
도 5와 같이, 제1내지 제7렌즈(101,102,103,104,105,106,107)의 두께(T1-T7), 인접한 두 렌즈 사이의 간격(G1-G6)을 설정할 수 있다. 도 5와 같이, Y축 방향으로 각 렌즈의 두께(T1-T7)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있으며, 각 렌즈 간의 간격(G1-G6)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있다.As shown in Figure 5, the thickness (T1-T7) of the first to seventh lenses (101, 102, 103, 104, 105, 106, and 107) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 5, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
도 3 및 도 5를 참조하면, 제2렌즈(102)의 물체측 제3면(S3)은 평면으로 곡률반경의 값은 무한대를 가질 수 있다. 각 렌즈의 곡률 반경의 절대 값으로 비교하면, 곡률을 가지는 렌즈 면 중에서 광축(OA)에서 제7렌즈(107)의 물체측 제13면(S13)의 곡률 반경이 최대이며, 제5렌즈(105)의 센서측 제10면(S10)의 곡률 반경은 렌즈들 중에서 최소일 수 있다. 곡률을 가지는 렌즈 면 중에서 최대 곡률 반경과 최소 곡률 반경의 차이는 50배 이상 예컨대, 52 배 내지 58배 범위일 수 있다. Referring to FIGS. 3 and 5 , the object-side third surface S3 of the second lens 102 is flat and the radius of curvature may be infinite. Comparing the absolute value of the radius of curvature of each lens, among the lens surfaces having curvature, the radius of curvature of the object-side 13th surface (S13) of the seventh lens (107) at the optical axis (OA) is the largest, and the radius of curvature of the object-side 13th surface (S13) of the seventh lens (107) is the largest. The radius of curvature of the tenth surface (S10) on the sensor side of ) may be the smallest among the lenses. Among the lens surfaces having curvature, the difference between the maximum radius of curvature and the minimum radius of curvature may be 50 times or more, for example, in the range of 52 to 58 times.
광축을 기준으로 렌즈의 중심 두께를 설명하면, 제4렌즈(104)의 중심 두께(CT4)는 렌즈들 중에서 최대이며, 제7렌즈(107)의 중심 두께(CT7)는 렌즈들 중에서 최소이다. 렌즈 중 최대 중심 두께와 최소 중심 두께의 차이는 1.5 mm 이상 2.5 mm 이하의 범위 일 수 있다. When explaining the central thickness of the lens based on the optical axis, the central thickness (CT4) of the fourth lens 104 is the largest among the lenses, and the central thickness (CT7) of the seventh lens 107 is the smallest among the lenses. The difference between the maximum and minimum center thickness of the lens may be in the range of 1.5 mm or more and 2.5 mm or less.
렌즈들 사이의 중심 간격(CG)를 설명하면, 제1렌즈(101) 및 제2렌즈(102) 사이의 중심 간격(CG1)은 최대이며, 제2,3 렌즈(102,103) 사이의 중심 간격은 최소일 수 있다. 여기서, 최소 중심 간격은 접합 렌즈(145)의 접합 면은 제외한다. 이격되는 렌즈 간격 중 최대 중심 간격과 최소 중심 간격의 차이는 10 mm 이상 예컨대, 10 mm 내지 15 mm 범위일 수 있다. Describing the center spacing (CG) between the lenses, the center spacing (CG1) between the first lens 101 and the second lens 102 is the maximum, and the center spacing between the second and third lenses 102 and 103 is the maximum. It can be minimal. Here, the minimum center spacing excludes the bonding surface of the bonding lens 145. The difference between the maximum center spacing and the minimum center spacing among the spaced apart lenses may be 10 mm or more, for example, in the range of 10 mm to 15 mm.
유효경에 대해 설명하면, 최대 유효경을 갖는 렌즈는 물체에 가장 가까운 제1렌즈(101)과 이미지 센서(300)에 가장 가까운 제7렌즈(107) 사이에 배치될 수 있다. 최대 유효경을 갖는 렌즈는 유리 재질의 렌즈일 수 있다. 최대 유효경을 갖는 렌즈는 물체측에 가장 가깝게 배치될 수 있다. 최대 유효경을 갖는 렌즈는 제1렌즈(101)일 수 있다. 여기서, 유효경은 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. 최대 유효경을 갖는 렌즈 면은 제1렌즈(101)의 물체측 제1면(S1)일 수 있다.Regarding the effective diameter, a lens with the maximum effective diameter may be disposed between the first lens 101 closest to the object and the seventh lens 107 closest to the image sensor 300. The lens having the maximum effective diameter may be a glass lens. The lens with the maximum effective diameter can be placed closest to the object side. The lens having the maximum effective diameter may be the first lens 101. Here, the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. The lens surface having the maximum effective diameter may be the object-side first surface S1 of the first lens 101.
최소 유효경을 갖는 렌즈는 플라스틱 렌즈들 중 어느 하나일 수 있으며, 예컨대 이미지 센서(300)에 가장 가깝게 배치될 수 있다. 최소 유효경을 갖는 렌즈는 제7렌즈(107)일 수 있다. 최소 유효경을 갖는 렌즈 면은 제7렌즈(107)의 제13면(S13)일 수 있다.The lens with the minimum effective diameter may be any one of plastic lenses and, for example, may be placed closest to the image sensor 300. The lens with the minimum effective diameter may be the seventh lens 107. The lens surface having the minimum effective diameter may be the 13th surface (S13) of the 7th lens 107.
물체측에 인접한 제1내지 제4렌즈(101-104) 각각의 유효경은 센서측에 인접한 제5,6,7 렌즈(105,106,107)의 유효경보다 클 수 있다. 제1 내지 제4렌즈(101-104)의 유효경은 이미지 센서(300)의 대각 길이보다 클 수 있다. 제6렌즈(106) 및 제7렌즈(107)의 평균 유효경은 이미지 센서(300)의 대각 길이보다 작을 수 있다. 이에 따라 광축에 따라 정렬된 복수의 렌즈를 통해 입사된 광을 이미지 센서(300)로 가이드할 수 있다.The effective diameter of each of the first to fourth lenses (101-104) adjacent to the object side may be larger than the effective diameter of the fifth, sixth, and seventh lenses (105, 106, and 107) adjacent to the sensor side. The effective diameters of the first to fourth lenses 101 - 104 may be larger than the diagonal length of the image sensor 300 . The average effective diameter of the sixth lens 106 and the seventh lens 107 may be smaller than the diagonal length of the image sensor 300. Accordingly, light incident through a plurality of lenses aligned along the optical axis can be guided to the image sensor 300.
굴절률을 설명하면, 제1렌즈(101)의 굴절률은 렌즈들 중에서 최대이며, 1.7 초과, 예컨대, 1.72 초과일 수 있다. 제4렌즈(104)의 굴절률은 렌즈들 중에서 최소이며, 1.6 미만, 예컨대, 1.55 미만일 수 있다. 최대 굴절률과 최소 굴절률 차이는 0.2 이상일 수 있다. 물체에 가장 가까운 유리 재질 고 굴절률 렌즈로 제공하고, 유리 재질의 렌즈에 인접한 렌즈와 접합렌즈 중 어느 하나의 렌즈를 플라스틱 재질의 저 굴절률 렌즈로 제공해 줌으로써, 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(300)로 가이드할 수 있다. When explaining the refractive index, the refractive index of the first lens 101 is the highest among lenses and may be greater than 1.7, for example, greater than 1.72. The refractive index of the fourth lens 104 is the smallest among the lenses and may be less than 1.6, for example, less than 1.55. The difference between the maximum and minimum refractive indices may be 0.2 or more. By providing a high refractive index lens made of glass closest to the object, and providing a low refractive index lens made of plastic as either the lens adjacent to the glass lens or the bonded lens, the incident efficiency is increased, and the lens made of glass and plastic is provided as a low refractive index lens. It is possible to guide the image sensor 300 by adjusting the refractive power between the lenses.
아베수를 비교하면, 제2렌즈(102) 및 제3렌즈(103)의 아베수는 렌즈들 중 최대이며, 60이상일 수 있다. 제5렌즈(105) 및 제7렌즈(107)의 아베수는 렌즈들 중 최소이며, 25 이하일 수 있다. 최대 굴절률과 최소 아베수 차이는 40 이상일 수 있다. 접합렌즈(145)에 인접한 제2렌즈(102) 및 제3렌즈(103)의 아베수를 가장 크게 하고, 이미지 센서(300)에 인접한 제5렌즈(105) 및 제7렌즈(107)의 아베수를 가장 작게 제공해 줌으로써, 유리 재질의 렌즈들 사이로 진행되는 광의 색 분산을 조절하고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 색 분산을 증가하여 이미지 센서(300)로 가이드할 수 있다. Comparing the Abbe numbers, the Abbe numbers of the second lens 102 and the third lens 103 are the largest among the lenses and may be 60 or more. The Abbe number of the fifth lens 105 and the seventh lens 107 is the minimum among the lenses and may be 25 or less. The difference between the maximum refractive index and the minimum Abbe number may be 40 or more. The Abbe number of the second lens 102 and the third lens 103 adjacent to the bonded lens 145 is the largest, and the Abbe number of the fifth lens 105 and the seventh lens 107 adjacent to the image sensor 300 is set to the largest. By providing the smallest number, the color dispersion of light traveling between glass lenses can be adjusted, and the color dispersion between glass and plastic lenses can be increased to guide it to the image sensor 300.
제1,5,7렌즈(101,105,107)의 초점 거리(F1,F5,F7)는 음(-)의 부호를 가질 수 있다. 제1,5,7렌즈(101,105,107)는 음(-)의 굴절력을 가질 수 있다. 제2,3,4,6렌즈(102,103,104,106)의 초점 거리(F2,F3,F4,F6)는 양(+)의 부호를 가질 수 있다. 제2,3,4,6렌즈(102,103,104,106)의 양(+)의 굴절력을 가질 수 있다. 음(-)의 굴절력을 갖는 제1렌즈(101)의 센서 측에는 양(+)의 굴절력을 갖는 제2,3,4렌즈(102,103,104)가 배치될 수 있다. 이를 통해, 물체 측에서 입사된 광은 광축 방향에서 멀어지다가 다시 광축 방향으로 모일 수 있어, 안정적인 광 경로를 형성할 수 있다. The focal lengths F1, F5, and F7 of the first, fifth, and seventh lenses 101, 105, and 107 may have a negative (-) sign. The first, fifth, and seventh lenses (101, 105, and 107) may have negative refractive power. The focal lengths F2, F3, F4, and F6 of the second, third, fourth, and sixth lenses 102, 103, 104, and 106 may have a positive (+) sign. The second, third, fourth, and sixth lenses (102, 103, 104, and 106) may have positive (+) refractive power. Second, third, and fourth lenses 102, 103, and 104 with positive (+) refractive power may be disposed on the sensor side of the first lens 101 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
또한 인접하여 배치되는 렌즈인 제1렌즈(101)와 제2렌즈(102)는 하기 조건을 만족할 수 있다.Additionally, the first lens 101 and the second lens 102, which are lenses disposed adjacently, may satisfy the following conditions.
조건 1: 양의 굴절력을 가진 렌즈의 굴절률 < 음의 굴절력을 가진 렌즈의 굴절률 Condition 1: Refractive index of a lens with positive refractive power < Refractive index of a lens with negative refractive power
조건 2: 양의 굴절력을 가진 렌즈의 분산값 > 음의 굴절력을 가진 렌즈의 분산값Condition 2: Dispersion value of a lens with positive refractive power > Dispersion value of a lens with negative refractive power
여기서, 유리 렌즈들 중에서 제2렌즈(102)는 양의 굴절력을 갖고, 제1렌즈(101)는 음의 굴절력을 가짐에 따라, 조건 1,2 에 의하면 제2렌즈의 굴절률이 제1렌즈의 굴절률보다 작고, 제2렌즈의 분산값이 제1렌즈의 분산값보다 크다. 유리 렌즈에서 발생되는 색수차는 유리 렌즈로 보정할 수 있다. 또한, 연속해서 배치되는 유리 렌즈인 제1렌즈(101)와 제2렌즈(102)가 굴절률 차이 0.1 이상 0.16 이하, 아베수 차이 20 이상 60 이하를 만족시킴으로써 유리 렌즈에서 발생하는 색 수차를 유리 렌즈로 보상할 수 있다. Here, among the glass lenses, the second lens 102 has positive refractive power and the first lens 101 has negative refractive power, so according to conditions 1 and 2, the refractive index of the second lens is greater than that of the first lens. It is smaller than the refractive index, and the dispersion value of the second lens is greater than the dispersion value of the first lens. Chromatic aberration occurring in glass lenses can be corrected with glass lenses. In addition, the first lens 101 and the second lens 102, which are glass lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.16 and the Abbe number difference of 20 to 60, thereby reducing chromatic aberration occurring in the glass lens. It can be compensated with
광학계는 색 수차가 발생하며 접합 렌즈를 사용하거나 연속하게 배치된 두 렌즈를 사용하여 색수차를 보정한다. 저온에서 고온까지의 온도가 변화함에 따라 렌즈가 수축 및 팽창을 반복한다. 같은 소재의 렌즈들은 온도 변화에 따른 렌즈 특성 변화량이 동일하므로, 온도가 변화하더라도 같은 소재의 렌즈끼리 색 수차를 보정하는 것이 효과적이다. Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes.
따라서 본 발명의 제1실시예에서는 제1렌즈(101) 및 제2렌즈(102)로 유리 소재의 렌즈에서 발생하는 색수차를 보정하고, 제4렌즈(104) 및 제5렌즈(105)를 사용하여 플라스틱 렌즈에서 발생하는 색 수차를 보정한다.Therefore, in the first embodiment of the present invention, the first lens 101 and the second lens 102 are used to correct the chromatic aberration occurring in the glass lens, and the fourth lens 104 and the fifth lens 105 are used. This corrects chromatic aberration occurring in plastic lenses.
접합되는 렌즈인 제4렌즈(104)와 제5렌즈(105)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 60 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. 굴절률 차이는 소수점 셋째 자리에서 반올림하고, 아베수 차이는 소수점 첫째 자리에서 반올림하여 값을 비교한다. The chromatic aberration occurring in the plastic lens can be compensated for by the bonded lens, the fourth lens 104 and the fifth lens 105, satisfying a refractive index difference of 0.1 to 0.15 and an Abbe number difference of 20 to 60. . The difference in refractive index is rounded to the third decimal place, and the Abbe number difference is rounded to the first decimal place to compare values.
또한 플라스틱 렌즈들의 물체측에 아베수가 상대적으로 높은 유리 렌즈들을 배치함으로써, 유리 렌즈들에 의해 색 분산을 감소시켜 주고, 플라스틱 렌즈들에 의해 색 분산을 증가시켜 줄 수 있다.Additionally, by disposing glass lenses with relatively high Abbe numbers on the object side of the plastic lenses, chromatic dispersion can be reduced by the glass lenses and chromatic dispersion can be increased by the plastic lenses.
초점 거리를 절대 값으로 비교하면, 제6렌즈(106)의 초점 거리는 렌즈들 중에서 최대이며, 80 이상 또는 100 이상일 수 있다. 제6렌즈(106)는 초점 거리가 가장 크고, 굴절력은 가장 작을 수 있다. 제5렌즈(105)의 초점 거리는 렌즈들 중에서 최소이고, 20 이하 또는 15 이하일 수 있다. 접합 렌즈(145)를 제외한 렌즈들 중에서, 최소 초점 거리를 갖는 렌즈는 제3렌즈(103)일 수 있다. 제3렌즈(103)은 30 이하 또는 25 이하일 수 있다. 최대 초점 거리와 최소 초점 거리의 차이는 50 이상 또는 80 이상일 수 있다. 이에 따라 광학계에서 설정된 화각 범위에서 향상된 MTF 특성, 수차 제어 특성, 해상도 특성 등을 가질 수 있고, 화각의 주변부에서 양호한 광학 성능을 가질 수 있다.Comparing the focal length as an absolute value, the focal length of the sixth lens 106 is the largest among the lenses and may be 80 or more or 100 or more. The sixth lens 106 may have the largest focal length and the smallest refractive power. The focal length of the fifth lens 105 is the smallest among the lenses and may be 20 or less or 15 or less. Among the lenses excluding the bonded lens 145, the lens with the minimum focal length may be the third lens 103. The third lens 103 may be 30 or less or 25 or less. The difference between the maximum and minimum focus distances may be 50 or more or 80 or more. Accordingly, it is possible to have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in the field of view range set in the optical system, and good optical performance in the periphery of the field of view.
제7렌즈(107) 센서측면에는 임계점(Critical point) 존재한다. 임계점(Critical point)은 sag 값의 경향이 바뀌는 지점이다. 즉 sag 값이 증가하다 감소하는 지점 혹은 sag 값이 감소하다가 증가하는 지점이다. 도 6을 참조하면 제7렌즈(107) 센서측면은 광축과 수직인 방향으로 1.8mm 이격된 지점에서 2.0mm 이격된 지점 사이에 임계점(Critical point)이 존재하는 것을 알 수 있다. 제7렌즈(107) 센서측면은 sag 값이 광축과 수직인 방향으로 1.9mm 이격된 지점까지 증가하다가, 광축과 수직인 방향으로 1.9mm 이격된 지점에서 4.6mm 이격된 지점으로 가면서 sag 값이 감소하고 있다. 제7렌즈(107) 센서측면 즉, 마지막 렌즈의 센서측면 즉, 센서와 가장 가까운 렌즈면에 임계점(Critical point)이 존재하면 TTL을 줄일 수 있어서 광학계의 소형화 및 경량화에 용이하다.There is a critical point on the sensor side of the seventh lens (107). The critical point is the point at which the trend of the sag value changes. In other words, it is the point where the sag value increases and then decreases, or the point where the sag value decreases and then increases. Referring to FIG. 6, it can be seen that the sensor side of the seventh lens 107 has a critical point between a point 1.8 mm apart and a point 2.0 mm apart in the direction perpendicular to the optical axis. On the sensor side of the seventh lens (107), the sag value increases to a point 1.9 mm apart in the direction perpendicular to the optical axis, and then decreases as it goes from a point 1.9 mm apart to a point 4.6 mm apart in the direction perpendicular to the optical axis. I'm doing it. If a critical point exists on the sensor side of the seventh lens (107), that is, the sensor side of the last lens, that is, the lens side closest to the sensor, the TTL can be reduced, making it easy to miniaturize and lighten the optical system.
제1렌즈(101)의 두께(T1)는 최대 두께와 최소 두께의 차이가 1배 이상 예컨대, 1배 내지 1.2배 범위일 수 있으며, 중심 두께(CT1)가 최소이고, 에지 두께(ET1)가 최대일 수 있다. 제2렌즈(102)의 두께(T2)는 최대 두께가 최소 두께의 1배 내지 1.3배 범위일 수 있다. 제2렌즈(102)는 중심 두께(CT2)가 최대이며, 에지 두께(ET2)는 최소일 수 있다. 제3렌즈(103)의 두께(T3)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.5배 내지 2배 범위이다. 제4렌즈(104)의 두께(T4)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.8배 내지 2.2 배 범위이다. 제5렌즈(105)의 두께(T5)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제6렌즈(106)의 두께(T6)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.0배 내지 1.3배 범위이다. 제7렌즈(107)의 두께(T7)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.2배 범위이다. The thickness T1 of the first lens 101 may have a difference between the maximum thickness and the minimum thickness of 1 times or more, for example, 1 to 1.2 times, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum. The thickness T2 of the second lens 102 may have a maximum thickness ranging from 1 to 1.3 times the minimum thickness. The second lens 102 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2). The thickness T3 of the third lens 103 may be maximum at the center and minimum at the edge, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness. The thickness T4 of the fourth lens 104 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.8 to 2.2 times the minimum thickness. The thickness T5 of the fifth lens 105 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness. The thickness T6 of the sixth lens 106 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.0 to 1.3 times the minimum thickness. The thickness T7 of the seventh lens 107 may be minimum at the center and maximum at the edge, with the maximum thickness being in the range of 1 to 1.2 times the minimum thickness.
접합 렌즈(145)의 중심 두께(CT45)는 에지 두께(ET45)보다 클 수 있다. 접합 렌즈(145)의 중심 두께(CT45)는 제4렌즈(104)의 물체측 제7면(S7)의 중심에서 제5렌즈(105) 제10면(S10)의 중심까지의 거리이며, 에지 두께(ET45)는 제7면(S7)의 유효영역의 끝단에서 광축 방향으로 제10면(S10)까지의 거리이다. 접합 렌즈(145)의 최대 두께는 중심부이며, 최소 두께는 에지부이며, 최대 두께는 최소 두께의 1배 내지 1.2배 범위일 수 있다. The center thickness (CT45) of the bonded lens 145 may be greater than the edge thickness (ET45). The center thickness (CT45) of the bonded lens 145 is the distance from the center of the object-side seventh surface (S7) of the fourth lens 104 to the center of the tenth surface (S10) of the fifth lens 105, and the edge The thickness ET45 is the distance from the end of the effective area of the seventh surface S7 to the tenth surface S10 in the optical axis direction. The maximum thickness of the bonded lens 145 is at the center, the minimum thickness is at the edge, and the maximum thickness may be in the range of 1 to 1.2 times the minimum thickness.
렌즈들 사이의 간격(G1-G6) 중에서 제1,2 렌즈(101,102) 사이의 제1간격(G1)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제2,3 렌즈(102,103) 사이의 제2간격(G2)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제3,4 렌즈(103,104) 사이의 제3간격(G3)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제5,6 렌즈(105,106) 사이의 제5간격(G5)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제6,7 렌즈(106,107) 사이의 제6간격(G6)은 중심부가 최대이고 에지부가 최소일 수 있다. Among the intervals G1-G6 between the lenses, the first interval G1 between the first and second lenses 101 and 102 may be maximum at the center and minimum at the edges. The second gap G2 between the second and third lenses 102 and 103 may be maximum at the edge and minimum at the center. The third gap G3 between the third and fourth lenses 103 and 104 may be maximum at the edge and minimum at the center. The fifth gap G5 between the fifth and sixth lenses 105 and 106 may be maximum at the center and minimum at the edges. The sixth gap G6 between the sixth and seventh lenses 106 and 107 may be maximum at the center and minimum at the edges.
도 7과 같이, 도 1의 광학계 및 카메라 모듈에서 주 광선의 각도(CRA: Chief ray angle)는 이미지 센서의 대각 길이의 끝단인 1- 필드에서 10도 이상 예컨대, 10도 내지 35도의 범위 또는 10도 내지 25도 범위일 수 있다. 또한 저온(-40도)에서 고온(95도)까지의 주 광선의 각도 차이가 1도 이하일 수 있다. 이에 따라 온도가 저온에서 고온까지 변화하더라도, 주 광선의 각도 차이는 크지 않고 안정적인 광학 성능을 가질 수 있다.As shown in FIG. 7, the chief ray angle (CRA) in the optical system and camera module of FIG. 1 is 10 degrees or more in the 1-field, which is the end of the diagonal length of the image sensor, for example, in the range of 10 to 35 degrees or 10 degrees. It may range from degrees to 25 degrees. Additionally, the angle difference of the main ray from low temperature (-40 degrees) to high temperature (95 degrees) may be less than 1 degree. Accordingly, even if the temperature changes from low to high, the difference in the angle of the main ray is not large and stable optical performance can be achieved.
도 14와 같이 제1실시예에 따른 광학계에서 상고(image height)에 따른 주변광량비 또는 주변조도(Relative illumination)를 나타낸 그래프로서, 이미지 센서의 중심에서 대각선 끝까지 70% 이상 예컨대, 75% 이상의 주변 광량비가 나타남을 알 수 있다. 즉, 상온, 저온 및 고온의 온도에 따른 주변 조도(Zoom position 1, 2, 3)의 차이는 광축에서 4.5mm 이상까지 거의 차이가 없음을 알 수 있다. As shown in FIG. 14, it is a graph showing the peripheral light ratio or relative illumination according to the image height in the optical system according to the first embodiment, and is 70% or more from the center of the image sensor to the end of the diagonal, for example, 75% or more of the surroundings. It can be seen that the light intensity ratio appears. In other words, it can be seen that there is almost no difference in ambient illuminance (Zoom positions 1, 2, 3) depending on room temperature, low temperature, and high temperature up to 4.5 mm or more from the optical axis.
도 8 내지 도 10는 도 1의 광학계에서 상온, 저온 및 고온에서의 회절(Diffraction) MTF(Modulation transfer function)를 나타낸 그래프로서, 공간 주파수(spatial frequency)에 따른 휘도 비(modulation)를 나타낸 그래프이다. 도 8 내지 도 10와 같이, 발명의 본 발명의 제1실시예에서 상온을 기준으로 저온 또는 고온과의 MTF의 편차는 10% 미만 즉, 7% 이하일 수 있다. Figures 8 to 10 are graphs showing diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 1, and are graphs showing luminance ratio (modulation) according to spatial frequency. . 8 to 10, in the first embodiment of the present invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
도 11 내지 12는 도 1의 광학계에서 상온, 저온 및 고온에서의 수차 특성을 나타낸 그래프다. 도 11 내지 도 13의 수차 그래프에서 좌측에서 우측 방향으로 구면 수차(Longitudinal Spherical Aberration), 비점 수차(Astigmatic Field Curves), 왜곡 수차(Distortion)를 측정한 그래프이다. 도 11 내지 도 13에서 X축은 초점 거리(mm) 및 왜곡도(%)를 나타낼 수 있고, Y축은 이미지의 높이(height)를 의미할 수 있다. 또한, 구면 수차에 대한 그래프는 약 435nm, 약 486nm, 약 546nm, 약 587nm, 약 656nm 파장 대역의 광에 대한 그래프이며, 비점 수차 및 왜곡 수차에 대한 그래프는 약 546nm 파장 대역의 광에 대한 그래프이다. 도 11 내지 도 13의 수차도에서는 상온, 저온 및 고온에서의 각 곡선들이 Y축에 근접할 수록 수차 보정 기능이 좋은 것으로 해석할 수 있는데, 제1실시예에 따른 광학계(1000)는 거의 대부분의 영역에서 측정 값들이 Y축에 인접한 것을 알 수 있다. 즉, 제1실시예에 따른 광학계(1000)는 향상된 해상력을 가지며 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 여기서, 저온은 -20도 이하의 예컨대, -20 내지 -40도 범위이며, 상온은 22도±5도 범위 또는 18도 내지 27도 범위이며, 고온은 85도 이상 예컨대, 85도 내지 105도의 범위일 수 있다. 이에 따라 도 11 내지 도 13의 저온에서 고온까지 휘도 비(modulation)의 저하가 10% 미만 예컨대, 5% 이하이거나, 거의 변경되지 않음을 알 수 있다. Figures 11 and 12 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 1. 11 to 13 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right. 11 to 13, the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image. In addition, the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm, and the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. . In the aberration diagrams of FIGS. 11 to 13, it can be interpreted that the closer each curve at room temperature, low temperature, and high temperature is to the Y axis, the better the aberration correction function is. The optical system 1000 according to the first embodiment can be used in most cases. You can see that the measured values in the area are adjacent to the Y axis. That is, the optical system 1000 according to the first embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV). Here, the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees, the room temperature is in the range of 22 degrees ± 5 degrees or 18 to 27 degrees, and the high temperature is 85 degrees or higher, for example, in the range of 85 to 105 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 11 to 13 is less than 10%, for example, 5% or less, or is almost unchanged.
표 1은 본 발명의 제1실시예에 따른 광학계에서 상온, 저온 및 고온에서의 EFL, BFL, F넘버(F#), TTL 및 화각(FO)V와 같은 광학 특성의 변화를 비교하였으며, 상온을 기준으로 저온의 광학 특성의 변화율 5% 이하 예컨대, 3%이하로 나타남을 알 수 있으며, 상온을 기준으로 저온의 광학 특성의 변화율이 5% 이하 예컨대, 3% 이하로 나타남을 알 수 있다.Table 1 compares changes in optical properties such as EFL, BFL, F number (F#), TTL, and angle of view (FO)V at room temperature, low temperature, and high temperature in the optical system according to the first embodiment of the present invention. As a standard, it can be seen that the rate of change in optical properties at low temperatures is 5% or less, for example, 3% or less, and based on room temperature, it can be seen that the rate of change in optical properties at low temperatures is 5% or less, for example, 3% or less.
상온room temperature 저온low temperature 고온High temperature 저온/상온Low temperature/room temperature 고온/상온High temperature/room temperature
EFL(F)EFL(F) 15.299615.2996 15.2793 15.2793 15.3256 15.3256 99.86%99.86% 100.16%100.16%
BFLBFL 2.50002.5000 2.4971 2.4971 2.5035 2.5035 99.88%99.88% 100.14%100.14%
F#F# 1.60001.6000 1.5975 1.5975 1.6031 1.6031 99.84%99.84% 100.19%100.19%
TTLTTL 39.907339.9073 39.8426 39.8426 39.9834 39.9834 99.83%99.83% 100.19%100.19%
FOVFOV 34.191334.1913 34.2176 34.2176 34.1588 34.1588 100.07%100.07% 99.90%99.90%
따라서, 표 1과 같이, 저온에서 고온까지의 온도 변화에 따른 광학 특성의 변화 예컨대, 유효초점거리(EFL)의 변화율, TTL, BFL, F 넘버, 화각(FOV)의 변화율이 10% 이하 즉, 5% 이하 예컨대, 0 ~ 5% 범위임을 알 수 있다. 이는 적어도 한 매 또는 두 매 이상의 플라스틱 렌즈를 사용하더라도, 플라스틱 렌즈에 대한 온도보상이 가능하게 설계하여, 광학 특성의 신뢰성 저하를 방지할 수 있다. Therefore, as shown in Table 1, the change in optical properties according to the temperature change from low to high temperature, for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV) is less than 10%, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, it is designed to enable temperature compensation for the plastic lenses, thereby preventing a decrease in the reliability of optical characteristics.
상기에 개시된 제1실시예의 광학계는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다.The optical system of the first embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
표 2는 제1실시예의 광학계(1000)에서 상술한 수학식들의 항목에 대한 것으로, 광학계(1000)의 TTL(Total track length)(mm), BFL(Back focal length), 유효초점 거리(F)(mm), ImgH(mm), 유효경(CA)(mm), 두께(mm), TTL(mm), 제1면(S1)에서 제14면(S14)까지의 광축 거리인 TD(mm), 제1내지 제7렌즈들 각각의 초점 거리(F1,F2,F3,F4,F5,F6,F7)(mm), 굴절률 합, 아베수 합, 두께 합(mm), 인접한 렌즈들 사이의 간격 합, 유효경 특성, 유리 렌즈의 굴절률 합, 플라스틱 재질의 굴절률 합, 화각(FOV)(Degree), 에지 두께(ET), 제1,2 렌즈군의 초점 거리, F 넘버 등에 대한 것이다. Table 2 shows the items of the above-described equations in the optical system 1000 of the first embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1000. (mm), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the first surface (S1) to the fourteenth surface (S14), Focal distance of each of the first to seventh lenses (F1, F2, F3, F4, F5, F6, F7) (mm), sum of refractive index, sum of Abbe number, sum of thickness (mm), sum of spacing between adjacent lenses , effective diameter characteristics, sum of refractive indices of glass lenses, sum of refractive indices of plastic materials, angle of view (FOV) (Degree), edge thickness (ET), focal length of the first and second lens groups, F number, etc.
항목item value 항목item value
FF 15.299615.2996 ET1ET1 3.77233.7723
F1F1 -78.2177-78.2177 ET2ET2 2.00062.0006
F2F2 55.921055.9210 ET3ET3 1.99891.9989
F3F3 24.758224.7582 ET4ET4 2.00742.0074
F4F4 21.682721.6827 ET5ET5 3.53713.5371
F5F5 -12.9047-12.9047 ET6ET6 3.48093.4809
F6F6 105.8840105.8840 ET7ET7 2.09992.0999
F7F7 -83.1631-83.1631 F-numberF-number 1.6001.600
F_LG1F_LG1 -78.2177-78.2177 FOVFOV 34.191334.1913
F_LG2F_LG2 13.173213.1732 EPDE.P.D. 9.56229.5622
ΣIndexΣIndex 11.654611.6546 BFLBFL 2.71352.7135
ΣAbbeΣAbbe 323.8362323.8362 TDTD 37.193837.1938
ΣCTΣCT 21.03121.031 ImgHImgH 4.6304.630
ΣCGΣCG 16.16216.162 SDSD 20.715720.7157
CA_maxCA_max 16.51016.510 TTLTTL 39.907339.9073
CA_minCA_min 7.5947.594 GLca_AverGLca_Aver 11.38411.384
CA_AverCA_Aver 11.14511.145 PLca_AverPLca_Aver 10.96710.967
CT_maxCT_max 3.8933.893 이미지 센서image sensor 3840*21603840*2160
CT_minCT_min 2.0002.000 CT_AverCT_Aver 3.2313.231
도 15과 같이, 본 발명의 제2실시예에 따른 광학계(1500)는 5매 이상의 렌즈들을 포함할 수 있다. 광학계(1500) 및 이를 갖는 카메라 모듈은 차량 내부 또는 외부에 장착되어, 운전자 감시 또는 외부 물체나 차선을 센싱할 수 있다. 렌즈들의 재질은 유리 또는 플라스틱이 선택될 수 있으며, 선팽창 계수는 유리 재질이 플라스틱 재질보다 작다. 이에 따라 온도 변화에 따라 초점 결상 위치가 변화되는 것을 억제하기 위해 유리 렌즈를 채용하고 있다. 그러나, 유리 렌즈는 플라스틱 렌즈에 비해 고가이고, 저 비용화의 요구에 대응하기 어려운 문제가 있다. 따라서, 광학계(1500) 내의 렌즈들은 유리 렌즈와 플라스틱 렌즈가 혼합된 구성이 요구되고 있다. 이러한 플라스틱 렌즈를 채용하므로, 광학계(1500)는 플라스틱 렌즈의 두께가 줄어들 수 있어 경량화 및 저비용화를 제공할 수 있고, 플라스틱 렌즈로 인해 구면 수차, 색 수차와 같은 다양한 수차에 대해 양호한 보정이 가능할 수 있다. 또한 플라스틱 렌즈들은 비구면 렌즈를 제공할 수 있으므로, 주변부의 왜곡 부분을 최소화시켜 줄 수 있다.As shown in Figure 15, the optical system 1500 according to the second embodiment of the present invention may include five or more lenses. The optical system 1500 and a camera module having the same can be mounted inside or outside the vehicle to monitor the driver or sense external objects or lanes. The material of the lenses can be glass or plastic, and the coefficient of linear expansion of glass is smaller than that of plastic. Accordingly, a glass lens is used to prevent changes in the focal imaging position due to temperature changes. However, glass lenses are more expensive than plastic lenses, and there is a problem in that it is difficult to meet the demand for lower costs. Accordingly, the lenses in the optical system 1500 are required to be a mixture of glass lenses and plastic lenses. By employing such a plastic lens, the optical system 1500 can reduce the thickness of the plastic lens, providing lighter weight and lower cost, and the plastic lens can provide good correction for various aberrations such as spherical aberration and chromatic aberration. there is. Additionally, since plastic lenses can provide aspherical lenses, distortion in the peripheral area can be minimized.
광학계(1500)는 n개의 렌즈를 포함할 수 있으며, n 번째 렌즈는 이미지 센서(300)에 인접한 마지막 렌즈이며, n-1번째 렌즈는 마지막 렌즈에 가장 인접한 렌즈일 수 있다. n은 5 이상의 정수이며, 예컨대 5 내지 8일 수 있다. n개의 렌즈는 유리 재질의 렌즈와 플라스틱 재질의 렌즈의 비율이 2:3 ~ 2:6 범위 또는 3:4 ~ 3:5 범위일 수 있다.The optical system 1500 may include n lenses, where the n-th lens may be the last lens adjacent to the image sensor 300, and the n-1-th lens may be the lens closest to the last lens. n is an integer of 5 or more, for example, may be 5 to 8. The n lenses may have a ratio of glass lenses to plastic lenses in the range of 2:3 to 2:6 or 3:4 to 3:5.
광학계(1500)는 복수의 렌즈군(LG1,LG2)을 포함할 수 있다. 자세하게, 복수의 렌즈 군(LG1,LG2) 각각은 적어도 하나의 렌즈를 포함한다. 예를 들어, 광학계(1500)는 물체측으로부터 이미지 센서(300)를 향해 광축(OA)을 따라 순차적으로 배치되는 제1렌즈군(LG1) 및 제2렌즈군(LG2)을 포함할 수 있다.The optical system 1500 may include a plurality of lens groups LG1 and LG2. In detail, each of the plurality of lens groups LG1 and LG2 includes at least one lens. For example, the optical system 1500 may include a first lens group LG1 and a second lens group LG2 sequentially arranged along the optical axis OA from the object side toward the image sensor 300.
제1렌즈군(LG1) 및 제2렌즈군(LG2) 각각의 렌즈 매수는 서로 다를 수 있다. 제2렌즈군(LG2)의 렌즈 매수는 제1렌즈군(LG1)의 렌즈 매수보다 더 많을 수 있으며, 예컨대 제1렌즈군(LG1)의 렌즈 매수의 4배 초과 또는 5배 초과일 수 있다. 제1렌즈군(LG1)은 적어도 하나의 렌즈를 포함할 수 있다. 제1렌즈군(LG1)은 3매 이하의 렌즈를 가질 수 있다. 제1렌즈군(LG1)은 바람직하게, 1매의 렌즈일 수 있다. 제2렌즈군(LG2)은 2매 이상의 렌즈를 포함할 수 있다. 제2렌즈군(LG2)은 4매 내지 7매일 수 있다. 제2렌즈군(LG2)은 바람직하게, 6매의 렌즈일 수 있다. The number of lenses for each of the first lens group (LG1) and the second lens group (LG2) may be different. The number of lenses of the second lens group (LG2) may be greater than the number of lenses of the first lens group (LG1), for example, 4 times or 5 times the number of lenses of the first lens group (LG1). The first lens group LG1 may include at least one lens. The first lens group LG1 may have three or fewer lenses. The first lens group LG1 may preferably include one lens. The second lens group (LG2) may include two or more lenses. The second lens group (LG2) may have 4 to 7 elements. The second lens group (LG2) may preferably have 6 lenses.
제1렌즈군(LG1)은 적어도 하나의 유리 재질의 렌즈를 포함할 수 있다. 제1렌즈군(LG1)은 물체측에 가장 인접한 렌즈를 유리 재질의 렌즈로 제공할 수 있다. 이러한 유리 재질은 외부 온도 변화에 따른 팽창과 수축 변화량이 적고, 표면이 잘 긁히지 않아 표면 손상을 방지할 수 있다.The first lens group LG1 may include at least one lens made of glass. The first lens group LG1 may provide the lens closest to the object side as a glass lens. This glass material has a small amount of expansion and contraction due to changes in external temperature, and its surface is less likely to be scratched, preventing surface damage.
제2렌즈군(LG2)의 렌즈 재질은 적어도 하나의 유리 재질의 렌즈와 적어도 하나의 플라스틱 재질의 렌즈가 혼합될 수 있다. 제2렌즈군(LG2)에서 적어도 하나의 플라스틱 재질의 렌즈는 유리 재질의 렌즈보다 센서측에 배치될 수 있다. 제2렌즈군(LG2)는 2매 이상의 유리 재질의 렌즈를 포함할 수 있으며, 예컨대 2매 내지 4매의 유리 재질의 렌즈를 포함할 수 있다. 제2렌즈군(LG2)은, 예컨대 2매 내지 6매의 렌즈일 수 있다. 다른 예로서, 제2렌즈군(LG2)은 1매 이상의 플라스틱 재질의 렌즈를 가질 수 있다. 제2렌즈군(LG2)은 2매 이상의 플라스틱 재질의 렌즈 예컨대, 2매 내지 4매의 플라스틱 렌즈를 포함할 수 있다. The lens material of the second lens group LG2 may be a mixture of at least one lens made of glass and at least one lens made of plastic. In the second lens group LG2, at least one plastic lens may be placed closer to the sensor than a glass lens. The second lens group LG2 may include two or more lenses made of glass, for example, 2 to 4 lenses made of glass. The second lens group LG2 may include, for example, 2 to 6 lenses. As another example, the second lens group LG2 may have one or more lenses made of plastic. The second lens group LG2 may include two or more plastic lenses, for example, two to four plastic lenses.
광학계(1500) 내에서 물체에 가장 가까운 적어도 1매의 렌즈는 유리 재질일 수 있다. 물체에 가장 가까운 3매 이상의 렌즈 예컨대, 3매 내지 5매의 렌즈는 유리 재질일 수 있다. 유리 재질의 렌즈들이 온도 변화에 따른 수축과 팽창의 변화율이 플라스틱 재질보다 작으므로, 렌즈 배럴 내에서 외부에 인접한 영역에 유리 재질의 렌즈들을 배치할 수 있다. At least one lens closest to the object in the optical system 1500 may be made of glass. Three or more lenses closest to the object, for example, three to five lenses, may be made of glass. Since glass lenses have a smaller rate of change in contraction and expansion due to temperature changes than plastic lenses, glass lenses can be placed in an area adjacent to the outside of the lens barrel.
광학계(1500) 내에서 이미지 센서(300)에 가장 가까운 적어도 하나의 렌즈는 플라스틱 재질일 수 있다. 예컨대, 이미지 센서(300)에 가장 가까운 적어도 2매의 렌즈는 플라스틱 재질일 수 있으며, 바람직하게 이미지 센서(300)에 인접한 적어도 2매의 렌즈는 플라스틱 재질일 수 있다. 즉, 광학계(1500)에서 n번째 및 n-1번째 렌즈들은 플라스틱 렌즈로 배치되므로, 이미지 센서(300)의 입사측 광들에 대해 다양한 수차를 보정할 수 있다.At least one lens closest to the image sensor 300 within the optical system 1500 may be made of plastic. For example, at least two lenses closest to the image sensor 300 may be made of plastic, and preferably, at least two lenses adjacent to the image sensor 300 may be made of plastic. That is, since the n-th and n-1-th lenses in the optical system 1500 are disposed as plastic lenses, various aberrations of light on the incident side of the image sensor 300 can be corrected.
광학계(1500) 내에서 플라스틱 재질의 렌즈끼리 연속적으로 배치될 수 있고, 유리 재질의 렌즈끼리 연속적으로 배치될 수 있다. 광학계(1500) 내에서 플라스틱 재질의 렌즈는 유리 재질의 렌즈 사이에 배치될 수 있다. 광학계(1500) 내에서 유리 재질의 렌즈는 플라스틱 재질의 렌즈 사이에 배치될 수 있다. Within the optical system 1500, lenses made of plastic may be continuously arranged, and lenses made of glass may be arranged continuously. Within the optical system 1500, lenses made of plastic may be placed between lenses made of glass. Within the optical system 1500, lenses made of glass may be placed between lenses made of plastic.
각 렌즈(201-207)는 물체측면과 센서측면을 가질 수 있다. 광학계는 비구면의 센서측면과 비 구면의 물체측면을 갖는 렌즈 매수는 플라스틱 렌즈 매수보다 많을 수 있다. 광학계는 구면의 센서측면과 구면의 물체측면을 갖는 렌즈 매수는 양면이 비구면인 렌즈보다 작을 수 있다. 광학계(1500)는 비구면의 렌즈를 구면의 렌즈보다 더 많게 구비하므로, 다양한 수차를 보정할 수 있다.Each lens 201-207 may have an object side and a sensor side. In an optical system, the number of lenses with an aspherical sensor side and an aspherical object side may be greater than the number of plastic lenses. In an optical system, the number of lenses with a spherical sensor side and a spherical object side may be smaller than a lens with aspherical surfaces on both sides. Since the optical system 1500 includes more aspherical lenses than spherical lenses, various aberrations can be corrected.
광학계(1500)의 렌즈들 중에서 최대 굴절률을 갖는 렌즈는 제1렌즈군(LG1) 또는 물체에 인접하게 위치할 수 있다. 최대 굴절률은 1.8 이상일 수 있다. 최대 굴절률을 갖는 렌즈에 의해 입사되는 광의 색 분산을 증가시켜 줄 수 있고, 중심 두께가 에지 두께보다 얇아질 수 있다. 또한 최대 굴절률을 갖는 렌즈가 물체측에 배치되므로, 두 번째 이후의 렌즈의 곡률 반경의 변경이 용이하고 중심 두께를 증가시켜 줄 수 있다. Among the lenses of the optical system 1500, the lens with the highest refractive index may be located in the first lens group LG1 or adjacent to the object. The maximum refractive index may be 1.8 or more. The color dispersion of incident light can be increased by a lens with the highest refractive index, and the center thickness can be thinner than the edge thickness. Additionally, since the lens with the maximum refractive index is disposed on the object side, it is easy to change the radius of curvature of the second and subsequent lenses and the center thickness can be increased.
광학계(1500) 내에서 최대 유효경을 갖는 렌즈는 물체측과 센서측의 중심 부분에 배치될 수 있다. 물체측에서 센서측으로 갈수록 렌즈의 유효경은 커지다가 작아질 수 있다. 물체측에서 센서측으로 갈수록 렌즈의 유효경은 작아졌다가 커지고, 다시 작아질 수 있다. 이를 통해, 광학계(1500)로 입사되는 광은 광축에서 멀어졌다가 다시 광축으로 모이는 구조이므로, 광학계(1500)는 안정적인 광경로를 형성할 수 있다. Within the optical system 1500, a lens having the maximum effective diameter may be placed at the center of the object side and the sensor side. As you move from the object side to the sensor side, the effective diameter of the lens can increase and then decrease. As you move from the object side to the sensor side, the effective diameter of the lens may become smaller, then larger, and then smaller again. Through this, since the light incident on the optical system 1500 moves away from the optical axis and then converges towards the optical axis, the optical system 1500 can form a stable optical path.
유효경은 각 렌즈에서 유효한 광들이 입사되는 유효 영역의 직경일 수 있다. 유효경은 광축과 직교하는 방향(X,Y)의 길이이며, 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. "렌즈면의 직경"은 "렌즈의 유효경"을 의미할 수 있다. "렌즈의 직경"은 렌즈의 유효 영역 이외에 렌즈의 플랜지 부분을 포함하는 렌즈 전체의 직경일 수 있다. 도 15 및 도 16에는 렌즈의 플랜지가 도시되어 있지는 않으나, 플랜지는 렌즈가 배럴에 결합되기 위하여 렌즈의 측면으로부터 광축에 수직 방향으로 돌출 형성되는 부분일 수 있다. 플랜지는 유효한 광이 입사되지 않을 수 있다. 렌즈가 배럴에 결합되기 위해서 서로 다른 렌즈의 플랜지 사이에는 스페이서가 추가로 배치될 수 있다. The effective diameter may be the diameter of the effective area where effective light is incident on each lens. The effective diameter is the length in the direction (X, Y) perpendicular to the optical axis, and is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. “Diameter of the lens surface” may mean “effective diameter of the lens.” The “diameter of the lens” may be the diameter of the entire lens including the flange portion of the lens in addition to the effective area of the lens. Although the flange of the lens is not shown in FIGS. 15 and 16, the flange may be a part that protrudes from the side of the lens in a direction perpendicular to the optical axis in order to couple the lens to the barrel. The flange may not allow effective light to enter. In order for the lens to be coupled to the barrel, spacers may be additionally disposed between the flanges of different lenses.
렌즈들(201-207) 각각은 유효 영역 및 비유효 영역을 포함할 수 있다. 유효 영역은 렌즈들 각각에 입사된 광이 통과하는 영역일 수 있다. 즉, 유효 영역은 입사된 광이 굴절되어 광학 특성을 구현하는 유효한 영역 또는 유효경으로 정의될 수 있다. 비유효 영역은 유효 영역의 둘레에 배치될 수 있다. 비유효 영역은 복수의 렌즈들에서 유효한 광이 입사되지 않는 영역일 수 있다. 즉, 비유효 영역은 광학 특성과 무관한 영역일 수 있다. 또한, 비유효 영역의 단부는 렌즈를 수용하는 렌즈 배럴 등에 고정되는 영역일 수 있다.Each of the lenses 201-207 may include an effective area and an unactive area. The effective area may be an area through which light incident on each of the lenses passes. In other words, the effective area can be defined as an effective area or effective diameter in which the incident light is refracted to realize optical characteristics. The unactive area may be placed around the active area. The non-effective area may be an area where effective light is not incident from the plurality of lenses. In other words, the non-effective area may be an area unrelated to optical characteristics. Additionally, the end of the non-effective area may be an area fixed to a lens barrel or the like that accommodates the lens.
광학계(1500) 내에서 TTL(Total top length)는 Imgh 보다 2배 초과 예컨대, 4배 초과 및 12배 이하일 수 있다. TTL(Total track length )은 첫 번째 렌즈의 물체측면의 중심으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리이다. Imgh는 광축(OA)에서 이미지 센서(300)의 대각선 끝단까지의 거리 또는 최대 대각 길이의 1/2이다. 광학계(1500) 내에서 유효 초점 거리(EFL)는 10 mm 이상 및 화각(FOV)은 45도 미만으로 제공하여, 차량용 카메라 모듈에서 표준 광학계로 제공할 수 있다. 예컨대, 실시예에 따른 광학계 및 카메라 모듈은 차량 실내 또는 실외에 구비되는 ADAS(Advanced Driving Assistance System)용 카메라에 적용될 수 있다.The total top length (TTL) within the optical system 1500 may be greater than 2 times, for example, greater than 4 times and less than or equal to 12 times Imgh. Total track length (TTL) is the distance on the optical axis (OA) from the center of the object side of the first lens to the image surface of the image sensor 300. Imgh is the distance from the optical axis (OA) to the diagonal end of the image sensor 300 or 1/2 of the maximum diagonal length. Within the optical system 1500, the effective focal length (EFL) is 10 mm or more and the angle of view (FOV) is less than 45 degrees, so that it can be provided as a standard optical system in a vehicle camera module. For example, the optical system and camera module according to the embodiment may be applied to a camera for an Advanced Driving Assistance System (ADAS) installed inside or outside a vehicle.
광학계(1500)는 TTL/Imgh의 조건이 5 이상 및 7.5 이상일 수 있으며, 예컨대 6 이상 및 7.5이하일 수 있다. 광학계(1500)가 TTL/Imgh의 값이 5 이상 및 7.5배 이하로 설정해 줌으로써, 차량용 렌즈 광학계를 제공할 수 있다. 제1,2렌즈군(LG1,LG2)의 총 렌즈 매수는 8매 이하이다. 이에 따라, 광학계(1500)는 결상되는 이미지에 대해 과장이나 왜곡이 없는 화상을 제공할 수 있다.The optical system 1500 may have a TTL/Imgh condition of 5 or more and 7.5 or more, for example, 6 or more and 7.5 or less. The optical system 1500 sets the TTL/Imgh value to 5 or more and 7.5 times or less, thereby providing a lens optical system for a vehicle. The total number of lenses in the first and second lens groups (LG1, LG2) is 8 or less. Accordingly, the optical system 1500 can provide an image without exaggeration or distortion for the image being formed.
광학계(1500) 내에서 적어도 하나의 플라스틱 렌즈의 유효경은 이미지 센서(300)의 길이보다 작을 수 있다. 유효경은 광이 입사되는 유효 영역의 직경 또는 길이이다. 이미지 센서(300)의 길이는 광축(OA)에 직교하는 방향의 대각선의 최대 길이이다. 광학계(1500) 내에서 이미지 센서(300)의 길이 보다 큰 유효경을 갖는 렌즈 매수는 50% 이상 또는 60% 이상이며, 이미지 센서(300)의 길이보다 작은 유효경을 갖는 렌즈는 50% 미만 또는 40% 미만일 수 있다. The effective diameter of at least one plastic lens within the optical system 1500 may be smaller than the length of the image sensor 300. The effective diameter is the diameter or length of the effective area where light is incident. The length of the image sensor 300 is the maximum length of the diagonal in the direction perpendicular to the optical axis OA. In the optical system 1500, the number of lenses with an effective diameter larger than the length of the image sensor 300 is 50% or more or 60%, and the number of lenses with an effective diameter smaller than the length of the image sensor 300 is less than 50% or 40%. It may be less than
광학계(1500)는 내부에 적어도 하나의 접합 렌즈(245)를 포함할 수 있다. 접합 렌즈(245)는 서로 다른 굴절력을 갖는 적어도 두 렌즈가 접합되며, 두 렌즈 사이의 간격은 0.01 mm 미만일 수 있다. 접합 렌즈(245)는 초점 거리가 다른 두 렌즈가 접합된 렌즈일 수 있다. 두 렌즈의 접합은 접착제로 접착될 수 있다. 접합 렌즈(245)를 기준으로 물체측에 배치된 적어도 한 렌즈 또는 모든 렌즈들의 유효경은 이미지 센서(300)의 길이보다 클 수 있다. 접합 렌즈(245)를 기준으로 센서측에 배치된 적어도 한 렌즈들의 유효경은 이미지 센서(300)의 길이보다 작을 수 있다. 또한 접합 렌즈(245) 중 물체측 렌즈(203)는 이미지 센서(300)의 길이보다 클 수 있으며, 센서측 렌즈(204)는 이미지 센서(300)의 길이보다 클 수 있다. The optical system 1500 may include at least one bonded lens 245 therein. The bonded lens 245 includes at least two lenses having different refractive powers bonded together, and the gap between the two lenses may be less than 0.01 mm. The bonded lens 245 may be a lens in which two lenses with different focal lengths are bonded together. The joint of the two lenses can be bonded with adhesive. The effective diameter of at least one or all lenses disposed on the object side based on the bonded lens 245 may be larger than the length of the image sensor 300. The effective diameter of at least one lens disposed on the sensor side with respect to the bonded lens 245 may be smaller than the length of the image sensor 300. Additionally, among the bonded lenses 245, the object-side lens 203 may be longer than the length of the image sensor 300, and the sensor-side lens 204 may be longer than the length of the image sensor 300.
접합 렌즈(245)와 첫 번째 렌즈(201) 사이의 렌즈들은 유리 재질 또는 플라스틱 재질일 수 있다. 접합 렌즈(245)와 이미지 센서(300) 사이에 배치된 렌즈들은 플라스틱 재질일 수 있다. 접합 렌즈(245)와 첫 번째 렌즈(201) 사이의 렌즈들은 양면이 구면인 렌즈 또는 양면이 비구면인 렌즈일 수 있다. 접합 렌즈(245)와 이미지 센서(300) 사이에 배치된 렌즈들은 양면이 비구면 렌즈일 수 있다. 양면은 물체측면과 센서측면이다. 따라서, 비구면 렌즈들을 접합 렌즈(245)와 이미지 센서(300) 사이에 배치됨으로써, 만곡 수차 및 색 수차를 보정하여 광학 성능을 개선시켜 줄 수 있다.The lenses between the bonded lens 245 and the first lens 201 may be made of glass or plastic. Lenses disposed between the bonded lens 245 and the image sensor 300 may be made of plastic. The lenses between the bonded lens 245 and the first lens 201 may be lenses with spherical surfaces on both sides or aspherical lenses on both sides. The lenses disposed between the bonded lens 245 and the image sensor 300 may be aspherical lenses on both sides. The two sides are the object side and the sensor side. Accordingly, by disposing aspherical lenses between the bonded lens 245 and the image sensor 300, optical performance can be improved by correcting curvature aberration and chromatic aberration.
광축(OA)에서 제1렌즈군(LG1) 및 제2렌즈군(LG2)은 설정된 간격을 가질 수 있다. 광축(OA)에서 제1렌즈군(LG1) 및 제2렌즈군(LG2) 사이의 광축 간격은 제1렌즈군(LG1) 내의 렌즈 중에서 센서측에 가장 가까운 렌즈의 센서측면과 제2렌즈군(LG2) 내의 렌즈 중에서 물체측에 가장 가까운 렌즈의 물체측면 사이의 광축 간격일 수 있다. 제1렌즈군(LG1) 및 제2렌즈군(LG2) 사이의 광축 간격은 제1렌즈군(LG1)의 광축 거리의 1배 이하일 수 있으며, 예컨대 제1렌즈군(LG1)의 광축 거리의 0.1배 내지 1배 범위일 수 있다. On the optical axis OA, the first lens group LG1 and the second lens group LG2 may have a set interval. The optical axis spacing between the first lens group (LG1) and the second lens group (LG2) on the optical axis (OA) is the sensor side of the lens closest to the sensor among the lenses in the first lens group (LG1) and the second lens group ( Among the lenses in LG2), it may be the optical axis spacing between the object side of the lens closest to the object side. The optical axis interval between the first lens group (LG1) and the second lens group (LG2) may be less than 1 times the optical axis distance of the first lens group (LG1), for example, 0.1 of the optical axis distance of the first lens group (LG1). It may range from 2x to 1x.
제1렌즈군(LG1) 및 제2렌즈군(LG2) 사이의 광축 거리는 제2렌즈군(LG2)의 광축 거리의 0.2배 이하일 수 있으며, 예컨대 0.01배 내지 0.2배 범위일 수 있다. 제2렌즈군(LG2)의 광축 거리는 제2렌즈군(LG2)의 물체측에 가장 가까운 렌즈의 물체측면과 이미지 센서(300)에 가장 가까운 렌즈의 센서측면 사이의 광축 거리이다. The optical axis distance between the first lens group (LG1) and the second lens group (LG2) may be 0.2 times or less than the optical axis distance of the second lens group (LG2), for example, in the range of 0.01 to 0.2 times. The optical axis distance of the second lens group LG2 is the optical axis distance between the object side of the lens closest to the object side of the second lens group LG2 and the sensor side of the lens closest to the image sensor 300.
여기서, 제1렌즈군(LG1)와 제2렌즈군(LG2)의 렌즈 면들 중에서 서로 마주하는 두 면 예컨대, 물체측 렌즈의 센서측면은 오목하고 센서측 렌즈의 물체측면은 오목할 수 있다. 즉, 제1렌즈군(LG1)에서 센서측에 가장 가까운 센서측면은 오목하며, 제2렌즈군(LG2)에서 물체측에 가장 가까운 물체측면은 오목할 수 있다. 제1렌즈군(LG1)은 물체측을 통해 입사된 광들을 확산시켜 주며, 제2렌즈군(LG2)은 제1렌즈군(LG1)을 통해 확산된 광을 이미지 센서(300)의 영역으로 굴절시켜 줄 수 있다. Here, among the lens surfaces of the first lens group (LG1) and the second lens group (LG2), two surfaces that face each other, for example, the sensor side of the object-side lens may be concave and the object-side of the sensor-side lens may be concave. That is, the sensor side closest to the sensor side in the first lens group LG1 may be concave, and the object side closest to the object side in the second lens group LG2 may be concave. The first lens group (LG1) diffuses the light incident through the object side, and the second lens group (LG2) refracts the light diffused through the first lens group (LG1) into the area of the image sensor 300. I can do it for you.
제1렌즈군(LG1)는 음(-)의 굴절력을 갖고, 제2렌즈군(LG2)은 양(+)의 굴절력을 가질 수 있다. 제1렌즈군(LG1)의 렌즈들 중에서 물체측에 가장 가까운 렌즈는 음(-)의 굴절력을 갖고, 제2렌즈군(LG2)의 렌즈들 중에서 센서측에 가장 가까운 렌즈는 음(-)의 굴절력을 가질 수 있다. 초점 거리를 절대 값으로 나타낼 때, 제1렌즈군(LG1)의 초점 거리는 제2렌즈군(LG2)의 초점 거리보다 클 수 있으며, 예컨대 5배 이상 예컨대, 5배 내지 15배 범위일 수 있다. 광학계(1500)의 유효 초점 거리(EFL)는 제1렌즈군(LG1)의 초점 거리의 절대 값보다 작을 수 있다. 광학계(1500)의 유효 초점 거리(EFL)는 제1렌즈군(LG1)의 초점 거리의 절대 값보다 작고 제2렌즈군(LG2)의 초점 거리의 절대 값보다 클 수 있다.The first lens group LG1 may have negative (-) refractive power, and the second lens group LG2 may have positive (+) refractive power. Among the lenses of the first lens group (LG1), the lens closest to the object side has negative (-) refractive power, and among the lenses of the second lens group (LG2), the lens closest to the sensor side has negative (-) refractive power. Can have refractive power. When expressing the focal length as an absolute value, the focal distance of the first lens group LG1 may be greater than the focal distance of the second lens group LG2, for example, 5 times or more, for example, in the range of 5 to 15 times. The effective focal length (EFL) of the optical system 1500 may be smaller than the absolute value of the focal length of the first lens group LG1. The effective focal length (EFL) of the optical system 1500 may be smaller than the absolute value of the focal distance of the first lens group (LG1) and greater than the absolute value of the focal distance of the second lens group (LG2).
광학계(1500) 내에서 양(+)의 굴절력을 갖는 렌즈 매수는 음(-)의 굴절력을 갖는 렌즈 매수와 같거나 많을 수 있다. 양(+)의 굴절력을 갖는 렌즈 매수는 전체 렌즈 매수에 비해 50% 이상일 수 있다. 양(+)의 굴절력을 갖는 렌즈들의 굴절률 평균은 음(-)의 굴절력을 갖는 렌즈들의 평균 보다 클 수 있다. 이에 따라 음(-)의 굴절력를 갖는 렌즈들의 분산 값은 양(+)의 굴절력을 갖는 렌즈들의 분산 값보다 클 수 있다. The number of lenses with positive (+) refractive power within the optical system 1500 may be equal to or greater than the number of lenses with negative (-) refractive power. The number of lenses with positive refractive power may be 50% or more than the total number of lenses. The average refractive index of lenses with positive (+) refractive power may be greater than the average of lenses with negative (-) refractive power. Accordingly, the dispersion value of lenses with negative (-) refractive power may be greater than that of lenses with positive (+) refractive power.
렌즈부(200)는 유리 재질의 렌즈와 플라스틱 재질의 렌즈들이 혼합될 수 있다. 플라스틱 재질의 렌즈들의 매수는 전체 렌즈 매수에 비해 60% 이상일 수 있으며, 40% 내지 85% 범위 또는 60% 내지 80% 범위일 수 있다. 이에 따라 카메라 모듈 내에 플라스틱 렌즈가 더 배치될 경우, 카메라 모듈의 무게를 줄여줄 수 있고, 플라스틱 재질에 의해 연마, 가공이 쉽고, 외부 충격이 강하고 또한 가격 경쟁력이 높고 재료 확보가 용이할 수 있다. 또한 플라스틱 렌즈에 의해 각종 수차를 보정할 수 있어, 광학 성능 저하를 방지할 수 있다.The lens unit 200 may be a mixture of glass-made lenses and plastic-made lenses. The number of lenses made of plastic may be 60% or more, 40% to 85%, or 60% to 80% of the total number of lenses. Accordingly, if more plastic lenses are placed within the camera module, the weight of the camera module can be reduced, and the plastic material makes it easy to polish and process, has strong external impact, and is highly price competitive and easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance.
발명의 실시예는 광학계(1500) 내에 플라스틱 렌즈를 더 혼합해 줌으로써, 카메라 모듈의 무게를 줄여줄 수 있고, 제조 원가를 보다 저렴하게 제공할 수 있고, 온도 변화에 따른 광학 특성의 저하를 억제할 수 있으며, 다양한 종류의 플라스틱 렌즈가 유리 렌즈를 대체할 수 있으며, 비구면 또는 자유 곡면과 같은 렌즈 면의 연마 및 가공이 용이할 수 있다. Embodiments of the invention can reduce the weight of the camera module by further mixing plastic lenses in the optical system 1500, provide lower manufacturing costs, and suppress deterioration of optical properties due to temperature changes. Various types of plastic lenses can replace glass lenses, and polishing and processing of lens surfaces such as aspherical surfaces or free-form surfaces can be easy.
렌즈부(200)는 광축(OA)을 따라 배치된 제1재질의 렌즈들과, 제2재질의 렌즈들을 포함할 수 있다. 제1재질은 유리 재질이며, 제2재질은 플라스틱 재질일 수 있다. 제1재질의 렌즈는 제2재질의 렌즈들 사이에 배치될 수 있다. 제2재질의 렌즈는 제1재질의 렌즈들 사이에 배치될 수 있다. The lens unit 200 may include lenses of a first material and lenses of a second material arranged along the optical axis OA. The first material may be glass, and the second material may be plastic. Lenses of the first material may be disposed between lenses of the second material. Lenses of the second material may be disposed between lenses of the first material.
렌즈부(200)는 광축(OA)을 따라 비구면을 갖는 제1재질의 렌즈와, 구면을 갖는 제1재질의 렌즈들과, 비구면을 갖는 제2재질의 렌즈들 포함할 수 있다. 제1재질은 유리 재질이며, 제2재질은 플라스틱 재질일 수 있다. 구면을 갖는 제1재질의 렌즈는 비구면을 갖는 제2재질의 렌즈들 사이에 배치될 수 있다. 제2재질의 렌즈는 비구면을 갖는 제1재질의 렌즈와 구면을 갖는 제1재질의 렌즈 사이에 배치될 수 있다. The lens unit 200 may include a lens of a first material having an aspherical surface along the optical axis OA, lenses of a first material having a spherical surface, and lenses of a second material having an aspherical surface. The first material may be glass, and the second material may be plastic. A lens made of a first material having a spherical surface may be disposed between lenses made of a second material having an aspherical surface. The lens of the second material may be disposed between the lens of the first material having an aspherical surface and the lens of the first material having a spherical surface.
렌즈부(200) 내에서 물체측에 가장 가까운 렌즈의 유효경은 이미지 센서(300)에 가장 가까운 렌즈의 유효경 보다 클 수 있다. 이에 따라 광학계의 밝기를 제어할 수 있다. 유효경은 각 렌즈의 물체측면과 센서측면의 평균 유효 직경일 수 있다. 각 렌즈들의 유효경 크기를 제어함으로써, 광학계(1500)는 입사하는 광을 제어하여 해상력, 온도 변화에 따른 광학 특성 저하를 보상할 수 있으며, 색수차 제어 특성을 개선시킬 수 있고, 광학계(1500)의 비네팅(vignetting) 특성을 개선할 수 있다. The effective diameter of the lens closest to the object within the lens unit 200 may be larger than the effective diameter of the lens closest to the image sensor 300. Accordingly, the brightness of the optical system can be controlled. The effective diameter may be the average effective diameter of the object side and the sensor side of each lens. By controlling the effective diameter size of each lens, the optical system 1500 can control the incident light to compensate for deterioration in resolution and optical characteristics due to temperature changes, improve chromatic aberration control characteristics, and vignetting of the optical system 1500. (vignetting) characteristics can be improved.
렌즈부(200)는 광축을 따라 물체측에서 센서측을 향해 정렬된, 제1렌즈(201), 제2렌즈(202), 제3렌즈(203), 제4렌즈(204), 제5렌즈(205), 제6렌즈(206) 및 제7렌즈(207)를 포함할 수 있다. The lens unit 200 includes a first lens 201, a second lens 202, a third lens 203, a fourth lens 204, and a fifth lens aligned along the optical axis from the object side toward the sensor side. (205), it may include a sixth lens (206) and a seventh lens (207).
렌즈부(200) 내에서, 초점 거리를 절대값으로 할 때, 물체에 가장 인접한 렌즈의 초점 거리는 플라스틱 렌즈의 초점 거리보다 클 수 있다. 여기서, 플라스틱 렌즈는 접합 렌즈의 센서측에 배치된 적어도 한 렌즈이거나, 이미지 센서에 인접한 적어도 한 렌즈일 수 있다. Within the lens unit 200, when the focal length is taken as an absolute value, the focal length of the lens closest to the object may be greater than the focal length of the plastic lens. Here, the plastic lens may be at least one lens disposed on the sensor side of the bonded lens or at least one lens adjacent to the image sensor.
렌즈부(200)는 렌즈 배럴의 내면 일측 또는 전체에 이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부(200)는 렌즈 배럴의 서로 다른 렌즈들의 둘레에 복수의 이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부(200)는 렌즈 배럴의 적어도 한 렌즈의 외면에 접촉된 제1이너 배럴과 적어도 한 렌즈의 외면에 접촉된 제2이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부(200)는 적어도 하나 또는 2개 이상의 렌즈의 외측과 렌즈 배럴 사이에 각각 배치된 복수의 이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부(200)는 복수의 이너 배럴이 렌즈 배럴의 재질과 다른 재질을 갖는 카메라 모듈에 배치될 수 있다. The lens unit 200 may be placed in a camera module having an inner barrel on one side or the entire inner surface of the lens barrel. The lens unit 200 may be disposed in a camera module having a plurality of inner barrels around different lenses of the lens barrel. The lens unit 200 may be disposed in a camera module having a first inner barrel in contact with an outer surface of at least one lens of the lens barrel and a second inner barrel in contact with an outer surface of at least one lens. The lens unit 200 may be disposed in a camera module having a plurality of inner barrels each disposed between the outer side of at least one or two lenses and the lens barrel. The lens unit 200 may be disposed in a camera module in which a plurality of inner barrels have a material different from that of the lens barrel.
렌즈부(200)를 구성하는 렌즈 중 유리 재질의 렌즈 중 적어도 일부는 렌즈 배럴에 배치될 수 있고, 플라스틱 재질의 렌즈 중 적어도 일부는 렌즈 배럴 내에 배치된 이너 배럴에 배치될 수 있다. 이를 통해, 광학계(1500)는 온도 변화에 따른 해상력을 유지할 수 있다. 렌즈부(200)는 이종 배럴을 갖는 카메라 모듈에 배치되어 온도 변화에 따라 팽창되는 렌즈 예컨대, 플라스틱 렌즈의 디센터를 최소화할 수 있다. 렌즈부(200)가 배치되는 렌즈 배럴은 렌즈 배럴 내에 복수의 이너 배럴을 구비함으로써, 온도 변화에 따른 광학계의 해상력을 유지하고 렌즈들의 변형을 억제할 수 있다. 따라서, 렌즈부(200)에 포함되는 유리 재질 렌즈 중 적어도 일부의 유효경은 플라스틱 재질 렌즈 중 적어도 일부의 유효경보다 작을 수 있다.Among the lenses constituting the lens unit 200, at least some of the lenses made of glass may be placed in the lens barrel, and at least some of the lenses made of plastic may be placed in the inner barrel disposed within the lens barrel. Through this, the optical system 1500 can maintain resolution according to temperature changes. The lens unit 200 is disposed in a camera module having a heterogeneous barrel to minimize decentering of a lens, such as a plastic lens, that expands according to temperature changes. The lens barrel on which the lens unit 200 is disposed has a plurality of inner barrels within the lens barrel, thereby maintaining the resolution of the optical system and suppressing deformation of the lenses due to temperature changes. Accordingly, the effective diameter of at least some of the glass lenses included in the lens unit 200 may be smaller than the effective diameter of at least some of the plastic lenses.
렌즈부(200) 내에서 플라스틱 렌즈들의 평균 유효경보다 큰 렌즈들은 1매 이상 예컨대, 2매 이상일 수 있다. 플라스틱 재질의 렌즈들의 평균 유효경은 PLca_Aver이며, 유리 재질의 렌즈들의 평균 유효경은 GLca_Aver 인 경우, PLca_Aver < GLca_Aver의 조건을 만족할 수 있다. 또한 1 < GLca_Aver / PLca_Aver < 1.5의 조건을 만족할 수 있다. 또한 이미지 센서(300)의 길이와 플라스틱 렌즈의 평균 유효경(PLca_Aver)의 관계는 1 ≤ PLca_Aver/(Imgh*2) < 1.5의 조건을 만족할 수 있다. 또한 유리 재질의 평균 유효경과 이미지 센서(300)의 길이 사이의 관계는 1.1 < GLca_Aver/(Imgh*2) < 1.5의 조건을 만족할 수 있다. 이미지 센서(300)의 최대 길이와 플라스틱 재질의 렌즈의 유효경 차이는 크지 않게 배치될 수 있다. 이에 따라 유효경이 작은 플라스틱 재질의 렌즈를 이미지 센서(300)에 인접하게 배치함으로써, 플라스틱 렌즈들이 이미지 센서(300)의 중심부에서 주변부까지 색을 분산시켜 줄 수 있다.There may be one or more lenses larger than the average effective diameter of the plastic lenses in the lens unit 200, for example, two or more lenses. The average effective diameter of plastic lenses is PLca_Aver, and if the average effective diameter of glass lenses is GLca_Aver, the condition of PLca_Aver < GLca_Aver can be satisfied. Additionally, the condition of 1 < GLca_Aver / PLca_Aver < 1.5 can be satisfied. Additionally, the relationship between the length of the image sensor 300 and the average effective diameter (PLca_Aver) of the plastic lens may satisfy the condition of 1 ≤ PLca_Aver/(Imgh*2) < 1.5. Additionally, the relationship between the average effective age of the glass material and the length of the image sensor 300 may satisfy the condition of 1.1 < GLca_Aver/(Imgh*2) < 1.5. The difference between the maximum length of the image sensor 300 and the effective diameter of the plastic lens may be arranged to be small. Accordingly, by placing a plastic lens with a small effective diameter adjacent to the image sensor 300, the plastic lenses can disperse color from the center of the image sensor 300 to the periphery.
유리 재질들의 평균 유효경은 10mm 이상 예컨대, 10mm 내지 15mm 범위일 수 있다. 플라스틱 재질의 평균 유효경은 8 mm 이상 예컨대, 8mm 내지 12mm 범위일 수 있다. 최소 유효경을 갖는 렌즈는 플라스틱 재질이며, 최대 유효경을 갖는 렌즈는 유리 재질일 수 있다. 렌즈부(200) 내에서 최소 유효경은 7mm 내지 10mm 범위이고, 최대 유효경은 11mm 내지 15mm 범위일 수 있다. 플라스틱 재질의 렌즈는 유리 재질의 렌즈보다 유효경이 작게 설계되어 렌즈 배럴에 맞닿지 않게 배치되고, 이를 통해 온도 변화에 따른 광학 성능 변화를 최소화할 수 있다. 또한, 광학계(1500)는 입사하는 광을 제어하여 해상력, 색수차 제어 특성을 개선시킬 수 있고, 광학계(1500)의 비네팅(vignetting) 특성을 개선할 수 있다. The average effective diameter of the glass materials may be 10 mm or more, for example, in the range of 10 mm to 15 mm. The average effective diameter of the plastic material may be 8 mm or more, for example, in the range of 8 mm to 12 mm. The lens with the minimum effective diameter may be made of plastic, and the lens with the maximum effective diameter may be made of glass. Within the lens unit 200, the minimum effective diameter may be in the range of 7 mm to 10 mm, and the maximum effective diameter may be in the range of 11 mm to 15 mm. Plastic lenses are designed to have a smaller effective diameter than glass lenses and are placed so as not to contact the lens barrel, thereby minimizing changes in optical performance due to temperature changes. Additionally, the optical system 1500 can control incident light to improve resolution and chromatic aberration control characteristics, and can improve vignetting characteristics of the optical system 1500.
광학계(1500) 또는 카메라 모듈은 이미지 센서(300)를 포함할 수 있다. 이미지 센서(300)는 광을 감지하고 전기적 신호로 변환할 수 있다. 이미지 센서(300)는 렌즈부(200)을 순차적으로 통과한 광을 감지할 수 있다. 이미지 센서(300)는 CCD(Charge Coupled Device) 또는 CMOS(Complementary Metal Oxide Semiconductor) 등 입사되는 광을 감지할 수 있는 소자를 포함할 수 있다.The optical system 1500 or camera module may include an image sensor 300. The image sensor 300 can detect light and convert it into an electrical signal. The image sensor 300 can detect light that sequentially passes through the lens unit 200. The image sensor 300 may include an element that can detect incident light, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
여기서, 이미지 센서(300)의 길이는 광축(OA)에 직교하는 대각선 방향의 최대 길이이며, 제1렌즈군(LG1) 내에서 물체에 가장 가까운 렌즈의 유효경 보다 작고, 제2렌즈군(LG2) 내에서 센서에 가장 가까운 렌즈의 유효경 보다 클 수 있다. 여기서, 이미지 센서(300)의 길이보다 큰 유효경을 갖는 렌즈 매수는 4매 내지 6매이며, 이미지 센서(300)의 길이보다 작은 유효경을 갖는 렌즈 매수는 1매 내지 3매일 수 있다.Here, the length of the image sensor 300 is the maximum length in the diagonal direction orthogonal to the optical axis (OA), is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1), and is smaller than the effective diameter of the lens closest to the object in the first lens group (LG1). It may be larger than the effective diameter of the lens closest to the sensor. Here, the number of lenses having an effective diameter larger than the length of the image sensor 300 may be 4 to 6, and the number of lenses having an effective diameter smaller than the length of the image sensor 300 may be 1 to 3.
광학계(1500) 또는 카메라 모듈은 필터(500)를 포함할 수 있다. 필터(500)는 제2렌즈군(LG2)과 이미지 센서(300) 사이에 배치될 수 있다. 필터(500)는 렌즈부(200)의 렌즈들 중 센서측에 가장 가까운 렌즈와 이미지 센서(300) 사이에 배치될 수 있다. 예를 들어, 필터(500)는 n번째 렌즈와 이미지 센서(300) 사이에 배치될 수 있다. The optical system 1500 or camera module may include a filter 500. The filter 500 may be disposed between the second lens group LG2 and the image sensor 300. The filter 500 may be disposed between the image sensor 300 and a lens of the lens unit 200 closest to the sensor. For example, the filter 500 may be disposed between the nth lens and the image sensor 300.
커버 글라스(400)는 필터(500)와 이미지 센서(300) 사이에 배치되며, 이미지 센서(192)의 상부를 보호하며 이미지 센서(192)의 신뢰성 저하를 방지할 수 있다. 커버 글라스(400)는 제거될 수 있다. 커버 글라스(400)는 보호 글라스일 수 있다.The cover glass 400 is disposed between the filter 500 and the image sensor 300, protects the upper part of the image sensor 192, and can prevent the reliability of the image sensor 192 from deteriorating. Cover glass 400 may be removed. The cover glass 400 may be a protective glass.
필터(500)는 적외선 필터 또는 적외선 컷 오프 필터(IR cut-off)를 포함할 수 있다. 필터(500)는 설정된 파장 대역의 광을 통과시키고, 이와 다른 파장 대역의 광을 필터링할 수 있다. 필터(500)가 적외선 필터를 포함할 경우 외부 광으로부터 방출되는 복사열이 이미지 센서(300)에 전달되는 것을 차단할 수 있다. 또한, 필터(500)는 가시광선을 투과할 수 있고 적외선을 반사할 수 있다.The filter 500 may include an infrared filter or an infrared cut-off filter. The filter 500 may pass light in a set wavelength band and filter light in a different wavelength band. When the filter 500 includes an infrared filter, radiant heat emitted from external light can be blocked from being transmitted to the image sensor 300. Additionally, the filter 500 can transmit visible light and reflect infrared rays.
실시예에 따른 광학계(1500)는 조리개(Stop)를 포함할 수 있다. 조리개는 광학계(1500)에 입사되는 광량을 조절할 수 있다. 물체와 조리개 사이에 배치되는 렌즈들에 있어서, 물체측에서 조리개로 갈수록 렌즈 면의 유효경이 증가하는 경향이 있다. 조리개와 센서 사이에 배치되는 렌즈 면들에 있어서, 조리개에서 센서측으로 갈수록 렌즈 면들의 유효경이 감소하는 경향이 있다. 렌즈 면들의 유효경이 증가하거나 감소하는 경향이 있다는 의미는 렌즈 면들의 유효경이 증가하거나 감소하는 경우만 의미하지는 않는다. 예컨대, 조리개에서 센서측으로 가면서 렌즈 면들의 유효경이 증가하다가 감소하는 경우도 포함한다.The optical system 1500 according to the embodiment may include an aperture (Stop). The aperture can control the amount of light incident on the optical system 1500. For lenses disposed between an object and an aperture, the effective diameter of the lens surface tends to increase from the object side to the aperture. For lens surfaces disposed between the aperture and the sensor, the effective diameter of the lens surfaces tends to decrease as it moves from the aperture to the sensor. The fact that the effective diameter of the lens planes tends to increase or decrease does not mean only when the effective diameter of the lens planes increases or decreases. For example, this includes cases where the effective diameter of the lens surfaces increases and then decreases as it moves from the aperture to the sensor side.
조리개는 설정된 위치에 배치될 수 있다. 예를 들어, 조리개는 제2렌즈군(LG2)의 렌즈들 중 물체측에 가장 가까운 렌즈의 물체측면 또는 센서측면의 둘레에 배치될 수 있다. 이와 다르게, 조리개는 제1렌즈군(LG1)의 물체측 렌즈의 물체측면 또는 센서측면의 둘레에 배치될 수 있다. 이와 다르게, 복수의 렌즈들 중 선택되는 적어도 하나의 렌즈는 조리개 역할을 수행할 수 있다. 자세하게, 광학계(1500)의 렌즈들 중 선택되는 하나의 렌즈의 물체측면 또는 센서측면은 광량을 조절하는 조리개 역할을 수행할 수 있다.The aperture may be placed at a set position. For example, the aperture may be disposed around the object side or sensor side of the lens closest to the object side among the lenses of the second lens group LG2. Alternatively, the aperture may be disposed around the object side or sensor side of the object side lens of the first lens group LG1. Alternatively, at least one lens selected from among the plurality of lenses may function as an aperture. In detail, the object side or the sensor side of one lens selected from among the lenses of the optical system 1500 may function as an aperture to adjust the amount of light.
실시예의 광학계(1500)에서 렌즈부(200)의 렌즈들의 굴절률 합은 8 이상 예컨대, 8 내지 15 범위이며, 굴절률 평균은 1.58 내지 1.7 범위일 수 있다. 렌즈들 각각의 아베수 합은 270 이상 예컨대, 280 내지 350 범위이며, 아베수의 평균은 50 이하 예컨대, 35 내지 47 범위일 수 있다. 전체 렌즈의 중심 두께 합은 20mm 이상 예컨대, 25mm 내지 30mm 범위이며 중심 두께들의 평균은 3.5mm 내지 4.0mm 범위일 수 있다. 광축(OA)에서의 렌즈들 사이의 중심 간격들의 합은 3 mm 이상 예컨대, 4mm 내지 6mm 범위이고 렌즈의 중심 두께 합보다 작을 수 있다. 또한 렌즈부(200)의 각 렌즈 면(S1-S14)들의 유효경의 평균 값은 8mm 이상 예컨대, 8mm 내지 15mm 범위로 제공할 수 있다. In the optical system 1500 of the embodiment, the sum of the refractive indices of the lenses of the lens unit 200 may be 8 or more, for example, in the range of 8 to 15, and the average refractive index may be in the range of 1.58 to 1.7. The sum of the Abbe numbers of each lens may be 270 or more, for example, in the range of 280 to 350, and the average of the Abbe numbers may be 50 or less, for example, in the range of 35 to 47. The sum of the central thicknesses of all lenses may be 20 mm or more, for example, in the range of 25 mm to 30 mm, and the average of the central thicknesses may be in the range of 3.5 mm to 4.0 mm. The sum of the center spacings between the lenses at the optical axis (OA) may be greater than 3 mm, for example in the range of 4 mm to 6 mm, and less than the sum of the center thicknesses of the lenses. Additionally, the average effective diameter of each lens surface (S1-S14) of the lens unit 200 may be 8 mm or more, for example, in the range of 8 mm to 15 mm.
발명의 제2실시예에 따른 광학계에서 화각(대각선)은 50도 이하 예컨대, 20도 내지 50도의 범위일 수 있다. 광학계 또는 카메라 모듈의 F 넘버는 2.4 이하, 예컨대, 1.4 내지 2.4의 범위 또는 1.5 내지 1.8 범위일 수 있다. 발명의 실시예에 따른 광학계에서 최대 화각(대각선)은 50도 이하 예컨대, 20도 내지 50도의 범위일 수 있다. 차량용 광학계는 Y축 방향의 수평 화각(FOV_H)는 20도 초과 및 40도 미만일 수 있으며, 예컨대 25도 내지 35도 범위일 수 있다. 또한 수직 화각은 수평 화각보다 작은 각도로 제공되며, 20도 이하 예컨대, 10도 내지 20도 범위일 수 있다. 이때의 수평 방향(Y)의 센서 길이는 8.064mm±0.5mm일 수 있으며, 수직 방향(X)의 센서 높이는 4.54mm±0.5mm일 수 있다. 수평 화각(FOV_H)은 센서의 수평 길이를 기준으로 한 화각이다. 이에 따라 온도 변화에 따라 초점 결상 위치가 변화하는 것을 억제할 수 있고, 다양한 수차가 양호하게 보정되는 차량용 카메라로 제공할 수 있다. In the optical system according to the second embodiment of the invention, the angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees. The F number of the optical system or camera module may be 2.4 or less, for example, in the range of 1.4 to 2.4 or 1.5 to 1.8. In the optical system according to an embodiment of the invention, the maximum angle of view (diagonal) may be 50 degrees or less, for example, in the range of 20 to 50 degrees. The horizontal field of view (FOV_H) of the vehicle optical system in the Y-axis direction may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees. Additionally, the vertical angle of view is provided at a smaller angle than the horizontal angle of view, and may be 20 degrees or less, for example, in the range of 10 to 20 degrees. At this time, the sensor length in the horizontal direction (Y) may be 8.064 mm ± 0.5 mm, and the sensor height in the vertical direction (X) may be 4.54 mm ± 0.5 mm. The horizontal angle of view (FOV_H) is the angle of view based on the horizontal length of the sensor. Accordingly, it is possible to suppress changes in the focus imaging position due to temperature changes, and it is possible to provide a vehicle camera in which various aberrations are well corrected.
제2실시예는 차량카메라에 적용되는 광학계이므로, 플라스틱 렌즈와 유리 렌즈를 함께 사용하여 설계함에도 제1렌즈(201)는 유리 재질로 제공할 수 있다. 이는 유리 재질이 플라스틱 재질 대비 스크래치에 강하고 외부 온도에 민감하지 않은 장점을 갖고 있다. 제1렌즈(201)는 비구면을 갖고 유리 재질로 이루어지는 글래스 몰드(Glass Mold) 렌즈일 수 있다. 글래스 몰드(Glass Mold) 렌즈는 비구면 모양이 될 금형 내부에 광학 유리 잉곳을 넣고 가열 및 압축 과정을 통해 제작될 수 있다. Since the second embodiment is an optical system applied to a vehicle camera, the first lens 201 can be made of glass even though it is designed using both a plastic lens and a glass lens. This has the advantage that glass material is more resistant to scratches than plastic material and is not sensitive to external temperature. The first lens 201 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
차량 내부에 배치되거나 이물질에 의한 스크래치를 보다 효과적으로 방지하기 위해 유리 렌즈를 제1렌즈(201)로 사용하고, 외부 구조물과 비 접촉되도록 제1렌즈(201)의 물체측면은 완만한 곡면 형상을 가질 수 있다. 이를 통해, 외부 구조물과 접촉으로 스크래치 발생을 최소화할 수 있다. 차량 운행 시 운전자 감시, 차량의 전방/후방 촬영, 또는 차선 감지 및 차량 주변의 돌발 물질 감지를 위해 화각은 20도 초과 및 40도 미만일 수 있으며, 예컨대 25도 내지 35도 범위일 수 있다. 이러한 수평 화각은 첨단운전자 지원시스템(ADAS)용으로 미리 설정된 각도일 수 있다. In order to more effectively prevent scratches placed inside the vehicle or caused by foreign substances, a glass lens is used as the first lens 201, and the object side of the first lens 201 has a gently curved shape to avoid contact with external structures. You can. Through this, the occurrence of scratches due to contact with external structures can be minimized. For driver monitoring when driving a vehicle, photographing the front/rear of the vehicle, or detecting lanes and unexpected objects around the vehicle, the angle of view may be greater than 20 degrees and less than 40 degrees, for example, in the range of 25 degrees to 35 degrees. This horizontal angle of view may be a preset angle for an advanced driver assistance system (ADAS).
제2실시예에 따른 광학계(1500)는 광의 경로를 변경하기 위한 반사 부재를 더 포함할 수 있다. 반사부재는 제1렌즈군(LG1)의 입사 광을 렌즈들 방향으로 반사하는 프리즘으로 구현될 수 있다. 이하, 실시예에 따른 광학계를 상세하게 설명하기로 한다. The optical system 1500 according to the second embodiment may further include a reflective member for changing the path of light. The reflection member may be implemented as a prism that reflects incident light from the first lens group LG1 in the direction of the lenses. Hereinafter, the optical system according to the embodiment will be described in detail.
발명의 제2실시예에 따른 광학계에 대해 설명하기로 한다.The optical system according to the second embodiment of the invention will be described.
도 15는 제2실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이며, 도 16은 도 15의 따른 n번째 및 n-1번째 렌즈의 관계를 설명하기 위한 측 단면도이고, 도 17은 도 15의 광학계의 렌즈 특성을 나타낸 표이며, 도 18는 도 15의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이고, 도 19는 도 15의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이며, 도 20은 도 15의 광학계에서 제3내지 제6렌즈의 렌즈 면들의 Sag 값을 나타낸 표이며, 도 21은 도 15의 광학계에서 이미지 센서의 위치에 따른 상온, 저온 및 고온에서의 CRA(Chief Ray Angle) 데이터를 나타낸 표이고, 도 22 내지 도 24은 도 15의 광학계의 상온, 저온 및 고온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이며, 도 25 내지 도 27는 도 15의 광학계의 상온, 저온 및 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이며, 도 28는 제2실시예에 따른 이미지 센서의 높이에 따른 상대 조도를 나타낸 그래프이다.FIG. 15 is a side cross-sectional view of an optical system and a camera module having the same according to a second embodiment, FIG. 16 is a side cross-sectional view for explaining the relationship between the nth and n-1th lenses according to FIG. 15, and FIG. 17 is a side cross-sectional view of FIG. 15. This is a table showing the lens characteristics of the optical system of , and Figure 18 is a table showing the aspheric coefficients of the lenses in the optical system of Figure 15, and Figure 19 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of Figure 15. 20 is a table showing the Sag values of the lens surfaces of the third to sixth lenses in the optical system of FIG. 15, and FIG. 21 is a table showing the CRA (Chief Ray Angle) at room temperature, low temperature, and high temperature according to the position of the image sensor in the optical system of FIG. 15. ) is a table showing data, and Figures 22 to 24 are graphs showing data on the diffraction MTF (Modulation Transfer Function) at room temperature, low temperature, and high temperature of the optical system of Figure 15, and Figures 25 to 27 are graphs showing data for the optical system of Figure 15. This is a graph showing data on aberration characteristics at room temperature, low temperature, and high temperature, and Figure 28 is a graph showing relative illuminance according to the height of the image sensor according to the second embodiment.
도 15 내지 도 18를 참조하면, 광학계(1500)는 렌즈부(200)를 포함하며, 렌즈부(200)는 제1렌즈(201) 내지 제7렌즈(207)를 포함할 수 있다. 제1내지 제7렌즈들(201~207)은 광학계(1500)의 광축(OA)을 따라 순차적으로 배치될 수 있다. 물체의 정보에 해당하는 광은 제1렌즈(201) 내지 제7렌즈(207), 및 필터(500)를 통과하여 이미지 센서(300)에 입사될 수 있다.Referring to FIGS. 15 to 18 , the optical system 1500 includes a lens unit 200, and the lens unit 200 may include first to seventh lenses 201 to 207. The first to seventh lenses 201 to 207 may be sequentially arranged along the optical axis OA of the optical system 1500. Light corresponding to object information may pass through the first to seventh lenses 201 to 207 and the filter 500 and enter the image sensor 300.
제1렌즈(201)는 제1렌즈군(LG1)에서 물체측에 가장 가까운 렌즈이다. 제7렌즈(207)는 제2렌즈군(LG2) 또는 렌즈부(200) 내에서 이미지 센서(207)에 가장 가까운 렌즈이다. 제1렌즈(201)는 제1렌즈군(LG1)일 수 있으며, 제2내지 제7렌즈(202,203,204,205,206,207)는 제2렌즈군(LG2)일 수 있다. 제1렌즈(201)의 물체측 또는 센서측면의 둘레, 또는 제2렌즈(202)의 물체측면 또는 센서측면의 둘레 중 어느 하나에 조리개가 배치될 수 있다. 예컨대, 조리개(Stop)는 제2렌즈(202)의 물체측면의 둘레에 배치될 수 있다.The first lens 201 is the lens closest to the object in the first lens group LG1. The seventh lens 207 is the closest lens to the image sensor 207 in the second lens group LG2 or the lens unit 200. The first lens 201 may be the first lens group (LG1), and the second to seventh lenses (202, 203, 204, 205, 206, 207) may be the second lens group (LG2). The aperture may be disposed either around the object side or sensor side of the first lens 201, or around the object side or sensor side of the second lens 202. For example, the aperture (Stop) may be disposed around the object side of the second lens 202.
제1렌즈(201)는 물체측에 가장 가깝게 배치될 수 있다. 제1렌즈(201)는 센서 측에서 가장 멀리 배치될 수 있다. 제1렌즈(201)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제1렌즈(201)는 플라스틱 재질 또는 유리(glass) 재질을 포함할 수 있으며, 예컨대 유리 재질일 수 있다. 유리 재질의 제1렌즈(201)는 주변 환경에 따른 온도 변화에 따른 중심 위치와 곡률 반경 등의 변화를 줄여줄 수 있으며, 광학계(1500)의 입사측 면을 보호할 수 있다. The first lens 201 may be placed closest to the object. The first lens 201 may be placed furthest from the sensor side. The first lens 201 may have negative refractive power at the optical axis (OA). The first lens 201 may include a plastic material or a glass material, for example, a glass material. The first lens 201 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and can protect the entrance side of the optical system 1500.
광축을 기준으로 제1렌즈(201)의 물체측 제1면(S1)은 볼록하며, 센서측 제2면(S2)은 오목할 수 있다. 제1렌즈(201)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제1렌즈(201)는 유리 재질이며, 비구면을 가질 수 있다. 제1,2면(S1,S2)의 비구면 계수는 도 18의 L1S1,L1S2로 제공될 수 있다. 이러한 제1렌즈(201)는 유리 재질을 사출 성형하여 비구면을 갖는 렌즈로 제조될 수 있다. 제1렌즈(201)는 비구면을 갖고 유리 재질로 이루어지는 글래스 몰드(Glass Mold) 렌즈일 수 있다. 글래스 몰드(Glass Mold) 렌즈는 비구면 모양이 될 금형 내부에 광학 유리 잉곳을 넣고 가열 및 압축 과정을 통해 제작될 수 있다. Based on the optical axis, the object-side first surface S1 of the first lens 201 may be convex, and the sensor-side second surface S2 may be concave. The first lens 201 may have a meniscus shape that is convex toward the object. The first lens 201 is made of glass and may have an aspherical surface. The aspheric coefficients of the first and second surfaces (S1 and S2) can be provided as L1S1 and L1S2 in FIG. 18. This first lens 201 can be manufactured as a lens with an aspherical surface by injection molding a glass material. The first lens 201 may be a glass mold lens that has an aspherical surface and is made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
제1렌즈(201)의 유효 반경(r11)는 플라스틱 렌즈들의 유효 반경보다 클 수 있다. 이와 다르게, 제1렌즈(201)의 물체측면과 센서측면 중 적어도 하나는 자유 곡면 즉, 비회전 대칭 곡면을 가질 수 있다.The effective radius r11 of the first lens 201 may be larger than the effective radius of the plastic lenses. Alternatively, at least one of the object side and the sensor side of the first lens 201 may have a free curved surface, that is, a non-rotationally symmetric curved surface.
제1면(S1)이 볼록하고 제2면(S2)은 오목하므로, 입사되는 광을 광축(OA)과 멀어지는 방향으로 굴절시켜 줄 수 있으며, 제1,2렌즈(201,202) 사이의 간격을 줄여줄 수 있다. 또한 제1렌즈(201)의 렌즈 면의 형상에 의해 제2렌즈(202)의 센서측면의 유효경을 물체측면의 유효경보다 작게 설계할 수 있다. 제1렌즈(201)의 제1면(S1)은 광축(OA)에서 유효 영역의 끝단 즉, 에지까지 임계점(Critical point) 없이 제공될 수 있다. 제1렌즈(201)의 제2면(S2)은 임계점 없이 제공될 수 있다.Since the first surface (S1) is convex and the second surface (S2) is concave, incident light can be refracted in a direction away from the optical axis (OA), and the gap between the first and second lenses (201 and 202) can be reduced. I can give it. Additionally, depending on the shape of the lens surface of the first lens 201, the effective diameter of the sensor side of the second lens 202 can be designed to be smaller than the effective diameter of the object side. The first surface S1 of the first lens 201 may be provided without a critical point from the optical axis OA to the end of the effective area, that is, the edge. The second surface S2 of the first lens 201 may be provided without a critical point.
제1렌즈(201)의 굴절률(n1)은 n1> 1.8 또는 n1> 1.82의 조건을 만족할 수 있다. 제1렌즈(201)의 굴절률(n1)이 렌즈부(200) 내에서 가장 크므로, 제1,2렌즈(201,202)의 곡률 반경의 커질 수 있으며, 렌즈 제작이 용이할 수 있다. 제1렌즈(201)의 굴절률(n1)이 조건보다 작은 경우, 제1,2 렌즈(201,202)의 굴절력을 증가시켜 주기 위해 렌즈 면을 급격하게 오목하거나 볼록하게 형성해야 하며, 이 경우 렌즈 제작이 용이하지 않고 렌즈 불량률도 높아지고 수율 저하의 원인이 될 수 있다.The refractive index (n1) of the first lens 201 may satisfy the condition of n1>1.8 or n1>1.82. Since the refractive index (n1) of the first lens 201 is the largest in the lens unit 200, the radii of curvature of the first and second lenses 201 and 202 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 201 is smaller than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 201 and 202, and in this case, lens manufacturing is required. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
제2렌즈(202)는 물체 측에서 2번째로 배치될 수 있다. 제2렌즈(202)는 센서 측에서 6번째로 배치될 수 있다. 제2렌즈(202)는 제1렌즈(201)과 제3렌즈(203) 사이에 배치될 수 있다. 제2렌즈(202)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제2렌즈(202)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제2렌즈(202)는 유리 재질로 제공될 수 있다.The second lens 202 may be disposed second on the object side. The second lens 202 may be placed sixth on the sensor side. The second lens 202 may be disposed between the first lens 201 and the third lens 203. The second lens 202 may have positive (+) refractive power at the optical axis (OA). The second lens 202 may include plastic or glass. For example, the second lens 202 may be made of glass.
광축(OA)을 기준으로 제2렌즈(202)의 물체측 제3면(S3)은 오목하며, 센서측 제4면(S4)은 볼록할 수 있다. 제2렌즈(202)는 센서측으로 볼록한 메니스커스 형상을 가질 수 있다. 제2렌즈(202)는 유리 재질이며, 구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 구면일 수 있다. Based on the optical axis OA, the object-side third surface S3 of the second lens 202 may be concave, and the sensor-side fourth surface S4 may be convex. The second lens 202 may have a meniscus shape that is convex toward the sensor. The second lens 202 is made of glass and may be spherical. At least one or both of the third surface S3 and the fourth surface S4 may be spherical.
조리개(Stop)는 제2렌즈(202)의 센서측 제4면(S4)의 둘레에 배치될 수 있다. 조리개는 화각 범위 내에서 TTL을 줄여줄 수 있고, 광학계의 소형화가 가능하다. 이에 따라 광학계의 중량별 수율(yield by weight)의 저하를 방지하고 생산 효율의 향상을 도모할 수 있다. 또한, 수평 화각(FOV_H)을 25도 내지 36도에서 TTL을 줄여서 광학계를 소형화할 수 있다.The aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 202. Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 25 to 36 degrees.
제3렌즈(203)는 물체 측에서 3번째로 배치될 수 있다. 제3렌즈(203)은 센서 측에서 5번째로 배치될 수 있다. 제3렌즈(203)은 제2렌즈(202)와 제4렌즈(204) 사이에 배치될 수 있다. 제3렌즈(203)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제3렌즈(203)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제3렌즈(203)는 유리 재질로 제공될 수 있다.The third lens 203 may be arranged third from the object side. The third lens 203 may be placed fifth on the sensor side. The third lens 203 may be disposed between the second lens 202 and the fourth lens 204. The third lens 203 may have positive (+) refractive power at the optical axis (OA). The third lens 203 may include plastic or glass. For example, the third lens 203 may be made of glass.
광축을 기준으로 제3렌즈(203)의 물체측 제5면(S5)은 볼록하고, 센서측 제6면(S6)은 볼록할 수 있다. 제3렌즈(203)는 광축(OA)에서 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(203)는 유리 재질이며, 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side fifth surface S5 of the third lens 203 may be convex, and the sensor-side sixth surface S6 may be convex. The third lens 203 may have a shape in which both sides are convex at the optical axis (OA). The third lens 203 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
제3렌즈(203)의 양면이 볼록하게 제공되므로, 광학계의 TTL 및 렌즈 매수를 최소화시켜 줄 수 있고 광을 효과적으로 굴절시켜 줄 수 있다. 또한 제3렌즈(203)의 제5면(S5)의 곡률 반경이 L3R1이고, 제6면(S6)의 곡률 반경이 L3R2인 경우, L3R1 > |L3R2|의 조건을 만족할 수 있다. 이 조건을 만족할 경우, 제5면(S5)에 의해 광을 효율적으로 굴절시켜 주어, 제4내지 제7렌즈(204~207)의 유효경이 증가되지 않도록 가이드할 수 있고, TTL을 축소시켜 줄 수 있다. 만약, L3R1 <|L3R2|의 조건인 경우, 제3렌즈(203)의 물체측면에서 수차가 많이 발생하고 센서측면에서 광의 굴절 효율이 저하될 수 있고, 후방 렌즈들의 유효경이 증가되고 TTL도 커질 수 있다. 제3렌즈(203)의 양면의 곡률 반경의 절대값은 동일할 수 있다. L3R1 = |L3R2|의 조건을 만족하는 경우, 물체측면과 센서측면은 각각 동일한 곡률로 볼록한 형상을 가지므로 제3렌즈(203)의 일면 또는 타면을 어느 방향으로 배치하더라도 동일한 광학적 특성을 가질 수 있고, 이를 통해 렌즈의 조립이 용이해질 수 있다.Since both sides of the third lens 203 are convex, the TTL and number of lenses of the optical system can be minimized and light can be effectively refracted. Additionally, when the radius of curvature of the fifth surface S5 of the third lens 203 is L3R1 and the radius of curvature of the sixth surface S6 is L3R2, the condition L3R1 > |L3R2 | can be satisfied. If this condition is satisfied, the light can be efficiently refracted by the fifth surface S5, thereby guiding the effective diameters of the fourth to seventh lenses 204 to 207 to not increase, and reducing the TTL. there is. If the condition L3R1 < L3R2 there is. The absolute values of the radii of curvature on both sides of the third lens 203 may be the same. When the condition L3R1 = |L3R2| is satisfied, the object side and the sensor side each have a convex shape with the same curvature, so the same optical characteristics can be obtained no matter which direction one or the other side of the third lens 203 is placed. , This can facilitate the assembly of the lens.
제4렌즈(204)는 물체 측에서 4번째로 배치될 수 있다. 제4렌즈(204)는 센서 측에서 4번째로 배치될 수 있다. 제4렌즈(204)은 제3렌즈(203)와 제5렌즈(205) 사이에 배치될 수 있다. 제4렌즈(204)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제4렌즈(204)는 양(+)의 굴절력을 가질 수 있다. 제4렌즈(204)는 제5렌즈(205)의 굴절력과 다른 양(+)의 굴절력을 가질 수 있다. 제4렌즈(204)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제4렌즈(204)는 플라스틱 재질로 제공될 수 있다. 제4렌즈(204)는 제5렌즈(205)와 동일한 재질로 제공될 수 있다. The fourth lens 204 may be placed fourth on the object side. The fourth lens 204 may be placed fourth on the sensor side. The fourth lens 204 may be disposed between the third lens 203 and the fifth lens 205. The fourth lens 204 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fourth lens 204 may have positive (+) refractive power. The fourth lens 204 may have a positive (+) refractive power that is different from that of the fifth lens 205. The fourth lens 204 may include plastic or glass. For example, the fourth lens 204 may be made of plastic. The fourth lens 204 may be made of the same material as the fifth lens 205.
광축을 기준으로 제4렌즈(204)의 물체측 제7면(S7)은 볼록하며, 센서측 제8면(S8)은 오목할 수 있다. 제4렌즈(204)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제4렌즈(204)는 플라스틱 재질이며, 비구면을 가질 수 있다. 제7면(S7) 및 제8 면(S8) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제7면(S7) 및 제8 면(S8)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side seventh surface S7 of the fourth lens 204 may be convex, and the sensor-side eighth surface S8 may be concave. The fourth lens 204 may have a meniscus shape that is convex toward the object. The fourth lens 204 is made of plastic and may have an aspherical surface. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical. The seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
제5렌즈(205)는 물체 측에서 5번째로 배치될 수 있다. 제5렌즈(205)는 센서 측에서 3번째로 배치될 수 있다. 제5렌즈(205)은 제4렌즈(204)와 제6렌즈(206) 사이에 배치될 수 있다. 제5렌즈(205)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(205)는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(205)는 제4렌즈(204)의 굴절력과 다른 음(-)의 굴절력을 가질 수 있다. 제5렌즈(205)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제5렌즈(205)는 플라스틱 재질로 제공될 수 있다. 제5렌즈(205)는 제4렌즈(204)와 동일한 재질로 제공될 수 있다. The fifth lens 205 may be placed fifth on the object side. The fifth lens 205 may be placed third on the sensor side. The fifth lens 205 may be disposed between the fourth lens 204 and the sixth lens 206. The fifth lens 205 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fifth lens 205 may have negative (-) refractive power. The fifth lens 205 may have a negative (-) refractive power that is different from the refractive power of the fourth lens 204. The fifth lens 205 may include plastic or glass. For example, the fifth lens 205 may be made of plastic. The fifth lens 205 may be made of the same material as the fourth lens 204.
광축(OA)을 기준으로 제5렌즈(205)는 물체측 제9면(S9)은 볼록하고, 센서측 제10면(S10)은 오목할 수 있다. 제5렌즈(205)는 광축(OA)에서 물체 측으로 볼록한 메니스커스 형상을 가질 수 있다. 제5렌즈(205)는 플라스틱 재질이며 비구면을 가질 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나의 면은 비구면일 수 있다. 제5렌즈(205)의 제9,10 면(S9,S10) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side ninth surface S9 of the fifth lens 205 may be convex, and the sensor-side tenth surface S10 may be concave. The fifth lens 205 may have a meniscus shape that is convex from the optical axis OA toward the object. The fifth lens 205 is made of plastic and may have an aspherical surface. At least one of the ninth surface (S9) and the tenth surface (S10) may be an aspherical surface. At least one or both of the 9th and 10th surfaces S9 and S10 of the fifth lens 205 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(204)와 제5렌즈(205)는 접합될 수 있다. 제4렌즈(204)와 제5렌즈(205) 사이의 접합 면은 제8면(S8)으로 정의할 수 있다. 제8면(S7)은 제5렌즈(205)의 제9면과 같은 면일 수 있다. 접합 렌즈(245)의 물체측면은 볼록하며, 센서측면은 오목할 수 있다. 제4,5렌즈(204,205) 사이의 간격은 0.01mm 미만일 수 있으며, 접착제로 접착될 수 있다. 제4,5렌즈(204,205) 사이의 간격은 광축(OA)에서 유효 영역의 끝단까지 0.01mm 미만일 수 있다. 제4,5렌즈(204,205)는 서로 반대되는 굴절력을 가질 수 있다. 제4,5렌즈(204,205)의 복합 굴절력은 양(+)의 굴절력을 가질 수 있다. The fourth lens 204 and the fifth lens 205 may be joined. The bonding surface between the fourth lens 204 and the fifth lens 205 can be defined as the eighth surface S8. The eighth surface S7 may be the same as the ninth surface of the fifth lens 205. The object side of the bonded lens 245 may be convex, and the sensor side may be concave. The gap between the fourth and fifth lenses 204 and 205 may be less than 0.01 mm, and may be bonded with adhesive. The gap between the fourth and fifth lenses 204 and 205 may be less than 0.01 mm from the optical axis OA to the end of the effective area. The fourth and fifth lenses 204 and 205 may have opposite refractive powers. The combined refractive power of the fourth and fifth lenses 204 and 205 may have positive (+) refractive power.
접합 렌즈(245)의 접합면(S8)의 곡률반경의 값은 30보다 클 수 있다. 예컨대, 접합 렌즈(245)의 접합면(S8)의 곡률반경의 값은 50보다 클 수 있다. 접합 렌즈(245)의 접합면(S8)은 완만한 형상으로 형성될 수 있다. 이를 통해, 접합 렌즈(245)를 이루는 제4렌즈(204)와 제5렌즈(205)의 접착 공정이 유리하고, 접착 유지력을 높일 수 있다. The value of the radius of curvature of the bonding surface S8 of the bonded lens 245 may be greater than 30. For example, the value of the radius of curvature of the bonding surface S8 of the bonded lens 245 may be greater than 50. The bonding surface S8 of the bonding lens 245 may be formed in a gentle shape. Through this, the adhesion process of the fourth lens 204 and the fifth lens 205 forming the bonded lens 245 is advantageous, and adhesion retention can be increased.
접합 렌즈(245)의 물체측 제4렌즈(204)의 굴절력과 센서측 제5렌즈(205)의 굴절력의 곱은 0보다 작을 수 있다. 접합 렌즈(245)의 물체측 제4렌즈(205)의 초점 거리와 센서측 제5렌즈(205)의 초점 거리의 곱은 0보다 작을 수 있다. 이에 따라 광학계의 수차 특성을 개선시켜 줄 수 있다. 만약, 접합 렌즈(245)의 두 렌즈의 굴절력이 서로 같을 경우, 수차 개선에 한계가 있다. The product of the refractive power of the object-side fourth lens 204 of the bonded lens 245 and the refractive power of the sensor-side fifth lens 205 may be less than 0. The product of the focal length of the object-side fourth lens 205 of the bonded lens 245 and the focal length of the sensor-side fifth lens 205 may be less than 0. Accordingly, the aberration characteristics of the optical system can be improved. If the refractive powers of the two lenses of the bonded lens 245 are the same, there is a limit to improving aberration.
접합 렌즈(245)의 복합 굴절력은 양의 굴절력을 갖고, 접합 렌즈(245)를 기준으로 물체측 제4렌즈(204)와 센서측 제5렌즈(205)는 양의 굴절력을 가질 수 있다. 이에 따라 제4렌즈(204), 접합 렌즈(245) 및 제5렌즈(205)는 입사되는 일부 광을 광축 방향으로 굴절시켜 줄 수 있으며, 색 수차를 상호 보정할 수 있다. 접합 렌즈(245)를 기준으로 물체측에 배치되는 제4렌즈(204)의 초점 거리는 센서측에 배치되는 제5렌즈(205)의 초점 거리보다 작을 수 있다. 접합 렌즈(245)를 기준으로 물체측에 배치되는 제4렌즈(204)의 파워는 센서측에 배치되는 제5렌즈(205)의 파워보다 클 수 있다.The composite refractive power of the bonded lens 245 may have positive refractive power, and based on the bonded lens 245, the fourth lens 204 on the object side and the fifth lens 205 on the sensor side may have positive refractive power. Accordingly, the fourth lens 204, the bonded lens 245, and the fifth lens 205 can refract some of the incident light in the optical axis direction and mutually correct chromatic aberration. The focal length of the fourth lens 204 disposed on the object side with respect to the bonded lens 245 may be smaller than the focal length of the fifth lens 205 disposed on the sensor side. The power of the fourth lens 204 disposed on the object side with respect to the bonded lens 245 may be greater than the power of the fifth lens 205 disposed on the sensor side.
제4렌즈(204)의 유효경은 이미지 센서(300)의 대각 길이보다 클 수 있다. 제4렌즈(204)의 유효경은 제7면(S7)과 제8면(S8)의 유효경 평균이며, 이미지 센서(300)의 대각 길이보다 클 수 있다. 제5렌즈(205)의 유효경은 제4렌즈(204)의 유효경보다는 작고 이미지 센서(300)의 대각 길이보다 클 수 있다. The effective diameter of the fourth lens 204 may be larger than the diagonal length of the image sensor 300. The effective diameter of the fourth lens 204 is the average of the effective diameters of the seventh surface S7 and the eighth surface S8, and may be larger than the diagonal length of the image sensor 300. The effective diameter of the fifth lens 205 may be smaller than the effective diameter of the fourth lens 204 and larger than the diagonal length of the image sensor 300.
제4렌즈(204)의 제7면(S7)의 유효경은 CA_L4S1이며, 제8면(S8)의 유효경은 CA_L4S2인 경우, 제7,8 면(S7,S8)의 유효경은 1 < CA_L4S1/CA_L4S2 < 1.5의 조건을 만족할 수 있다. 제5렌즈(205)의 제9면(S9)의 유효경은 CA_L5S1이며, 제10면(S10)의 유효경은 CA_L5S2인 경우, 제9,10면의 유효경은 1 < CA_L5S1/CA_L5S2 < 1.5의 조건을 만족할 수 있다.If the effective diameter of the 7th surface (S7) of the fourth lens 204 is CA_L4S1 and the effective diameter of the 8th surface (S8) is CA_L4S2, the effective diameter of the 7th and 8th surfaces (S7, S8) is 1 < CA_L4S1/CA_L4S2 The condition of < 1.5 can be satisfied. If the effective diameter of the 9th surface (S9) of the fifth lens 205 is CA_L5S1 and the effective diameter of the 10th surface (S10) is CA_L5S2, the effective diameters of the 9th and 10th surfaces meet the condition of 1 < CA_L5S1/CA_L5S2 < 1.5. You can be satisfied.
접합 렌즈(245)는 서로 다른 굴절률을 갖는 플라스틱 렌즈들로 접합될 수 있다. 접합렌즈(245)의 물체측면과 센서측면은 비구면을 가지고, 접합면은 구면을 가질 수 있다. 광학계에 포함되는 플라스틱 재질의 렌즈를 증가시킴으로써 광학계의 무게를 감소시킬 수 있고, 플라스틱 재질에 의해 연마, 가공이 쉽고, 외부 충격이 강하고 또한 가격 경쟁력이 높고 재료 확보가 용이할 수 있다. 또한, 플라스틱 렌즈에 의해 각종 수차를 보정할 수 있어, 광학 성능 저하를 방지할 수 있다. 접합 렌즈(245)보다 센서측에 배치된 렌즈들은 비구면 렌즈 또는 플라스틱 렌즈들이 채용할 경우, 구면 수차를 보상할 수 있다. 또한 접합 렌즈(245)보다 센서측에 배치된 렌즈들이 플라스틱 렌즈이고 유효경이 작은 렌즈들로 배치하므로, 플라스틱 렌즈를 통해 이미지 센서(300)로 진행하는 광을 효과적으로 가이드하도록 설정할 수 있다. 접합 렌즈(245)의 위치는 렌즈부(200) 내에서 중간 또는 중간 보다 뒤인 제3렌즈 내지 제6렌즈 중 연속된 어느 두 렌즈에 위치하므로, 색 수차 보정이 보다 효율적일 수 있다.The bonded lens 245 may be bonded to plastic lenses having different refractive indices. The object side and the sensor side of the bonded lens 245 may have an aspherical surface, and the bonded surface may have a spherical surface. By increasing the number of plastic lenses included in the optical system, the weight of the optical system can be reduced, and the plastic material allows for easy polishing and processing, strong external impact, and high price competitiveness, making it easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance. Lenses disposed on the sensor side rather than the bonded lens 245 can compensate for spherical aberration when aspherical lenses or plastic lenses are used. In addition, since the lenses disposed on the sensor side rather than the bonded lens 245 are plastic lenses and have a smaller effective diameter, they can be set to effectively guide light traveling to the image sensor 300 through the plastic lens. Since the position of the bonded lens 245 is located in any two consecutive lenses among the third to sixth lenses in the middle or behind the middle within the lens unit 200, chromatic aberration correction can be more efficient.
제6렌즈(206)은 물체 측에서 6번째로 배치될 수 있다. 제6렌즈(206)은 센서 측에서 2번째로 배치될 수 있다. 제6렌즈(206)은 제5렌즈(205)와 제7렌즈(207) 사이에 배치될 수 있다. 제6렌즈(206)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제6렌즈(206)는 양(+)의 굴절력을 가질 수 있다. 제6렌즈(206)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제6렌즈(206)는 플라스틱 재질로 제공될 수 있다. The sixth lens 206 may be placed sixth on the object side. The sixth lens 206 may be placed second on the sensor side. The sixth lens 206 may be disposed between the fifth lens 205 and the seventh lens 207. The sixth lens 206 may have positive (+) or negative (-) refractive power at the optical axis (OA). The sixth lens 206 may have positive (+) refractive power. The sixth lens 206 may include plastic or glass. For example, the sixth lens 206 may be made of plastic.
광축(OA)을 기준으로 제6렌즈(206)는 물체측 제11면(S11)은 볼록하고, 센서측 제12면(S12)은 오목한 형상일 수 있다. 제6렌즈(206)은 광축(OA)에서 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 이와 다르게, 제6렌즈(206)는 양면이 볼록한 형상을 가질 수 있다. 제11면(S11) 및 제12 면(S12) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제11,12 면(S11,S12)의 비구면 계수는 도 18의 L6의 L1 및 L2로 제공될 수 있다. Based on the optical axis OA, the object-side 11th surface S11 of the sixth lens 206 may be convex, and the sensor-side 12th surface S12 may be concave. The sixth lens 206 may have a meniscus shape that is convex from the optical axis OA toward the object. Alternatively, the sixth lens 206 may have a convex shape on both sides. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical. The aspherical coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as L1 and L2 of L6 in FIG. 18.
제6렌즈(206)의 제11면(S11)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제12면(S12)은 광축(OA)에서 유효 영역의 끝단까지 적어도 하나의 임계점 없이 제공될 수 있다. The 11th surface S11 of the sixth lens 206 may be provided without a critical point from the optical axis OA to the end of the effective area. The twelfth surface S12 may be provided without at least one critical point from the optical axis OA to the end of the effective area.
제7렌즈(207)는 센서 측에 가장 가깝게 배치될 수 있다. 제7렌즈(207)는 물체 측에서 가장 멀리 배치될 수 있다. 제7렌즈(207)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(207)는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(207)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제7렌즈(207)는 플라스틱 재질일 수 있다. The seventh lens 207 may be placed closest to the sensor side. The seventh lens 207 may be placed furthest from the object. The seventh lens 207 may have positive (+) or negative (-) refractive power at the optical axis (OA). The seventh lens 207 may have negative refractive power. The seventh lens 207 may include plastic or glass. For example, the seventh lens 207 may be made of plastic.
광축에서 제7렌즈(207)의 물체측 제13면(S13)은 볼록하고, 센서측 제14면(S14)은 오목할 수 있다. 제7렌즈(207)는 물체측으로 볼록한 메니스커스 형상일 수 있다. 제13면(S13) 및 제14면(S14) 중 적어도 하나의 면은 비구면일 수 있다. 예를 들어, 제13면(S13) 및 제14면(S14)은 모두 비구면일 수 있다. 제13,14 면(S13,S14)의 비구면 계수는 도 18의 L7의 S1,S2와 같이 제공될 수 있다. On the optical axis, the object-side 13th surface S13 of the seventh lens 207 may be convex, and the sensor-side 14th surface S14 may be concave. The seventh lens 207 may have a meniscus shape convex toward the object. At least one of the 13th surface (S13) and the 14th surface (S14) may be an aspherical surface. For example, both the 13th surface S13 and the 14th surface S14 may be aspherical surfaces. The aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S1 and S2 of L7 in FIG. 18.
제7렌즈(207)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 가질 수 있다. 제13면(S13)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r71)의 50% 이상에 위치하거나, 52% 내지 70% 범위 또는 53% 내지 60% 범위에 위치할 수 있다. 제14면(S14)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r72)의 70% 이상에 위치하거나, 70% 내지 90% 범위 또는 75% 내지 85% 범위에 위치할 수 있다.The 13th surface S13 of the seventh lens 207 may have a critical point from the optical axis OA to the end of the effective area. When the 13th surface S13 has a critical point, it may be located at more than 50% of the effective radius r71 from the optical axis OA, or may be located in the range of 52% to 70%, or 53% to 60%. When the 14th surface S14 has a critical point, it may be located at more than 70% of the effective radius r72 from the optical axis OA, or within a range of 70% to 90% or 75% to 85%.
제7렌즈(207)는 이미지 센서(300)에 가장 인접한 플라스틱 렌즈일 수 있다. 또한 플라스틱 렌즈를 이미지 센서(300)에 인접하게 2매 이상 배치함으로써, 비구면을 갖는 렌즈 면에 의해 구면 수차와 색 수차 등의 수차를 개선할 수 있고, 해상도에 영향을 제어할 수 있다. 또한 이미지 센서(300)에 인접한 렌즈로 플라스틱 렌즈를 배치함으로써, 유리 재질의 렌즈 대비 조립 공차에 둔감할 수 있다. 즉, 조립 공차에 둔감하다는 의미는 조립 시 설계 대비 약간의 차이가 있게 조립되더라도 광학 성능에 크게 영향을 주지 않을 수 있다. 또한 이미지 센서(300)에 인접한 2매의 렌즈(206,207)를 플라스틱 재질로 제공해 줌으로써, 비구면을 갖는 렌즈 면에 의해 광학 성능을 개선시켜 줄 수 있으며, 예컨대 수차 특성 개선 및 해상도 저하를 방지할 수 있다.The seventh lens 207 may be a plastic lens closest to the image sensor 300. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 300, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 300, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 206 and 207 adjacent to the image sensor 300 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
제6렌즈(206)과 제7렌즈(207)는 이격되어 배치되나 접합 렌즈의 특징을 포함할 수 있다. 제6렌즈(206)과 제7렌즈(207)는 서로 반대되는 굴절력을 가질 수 있다. 제6렌즈(206)의 굴절력과 제7렌즈(207)의 굴절력의 곱은 0보다 작을 수 있다. 제6렌즈(206)의 초점 거리와 제7렌즈(207)의 초점 거리의 곱은 0보다 작을 수 있다. 이에 따라 광학계의 수차 특성을 개선시켜줄 수 있다. 만약, 접합 렌즈의 특징을 갖는 두 렌즈의 굴절력이 서로 같을 경우 수차 개선에 한계가 있다.The sixth lens 206 and the seventh lens 207 are arranged to be spaced apart, but may include features of a bonded lens. The sixth lens 206 and the seventh lens 207 may have opposite refractive powers. The product of the refractive power of the sixth lens 206 and the refractive power of the seventh lens 207 may be less than 0. The product of the focal length of the sixth lens 206 and the focal length of the seventh lens 207 may be less than 0. Accordingly, the aberration characteristics of the optical system can be improved. If the refractive powers of two lenses that have the characteristics of a bonded lens are the same, there is a limit to improving aberrations.
제6렌즈(206)과 제7렌즈(207)는 동일 재질로 이루어질 수 있다. 제6렌즈(206)과 제7렌즈(207)는 플라스틱 재질로 이루어질 수 있다. 제6렌즈(206)과 제7렌즈(207)는 접합 렌즈(245)와 동일한 재질로 이루어질 수 있다. The sixth lens 206 and the seventh lens 207 may be made of the same material. The sixth lens 206 and the seventh lens 207 may be made of plastic material. The sixth lens 206 and the seventh lens 207 may be made of the same material as the bonded lens 245.
제7렌즈(207)의 제13면(S13) 및 제14면(S14) 중 적어도 하나 또는 모두는 임계점을 가질 수 있다. 제7렌즈(207)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 제1임계점(P1)을 가질 수 있다. 제13면(S13)의 제1임계점(P1)은 광축(OA)에서 유효 반경의 55% 이상에 위치하거나, 55% 내지 75% 범위 또는 60% 내지 70% 범위에 위치할 수 있다. 제13면(S13)의 제1임계점은 광축(OA)에서 2 mm 이상의 거리 예컨대, 2.1 mm 내지 2.5 mm 범위 또는 2.2mm 내지 2.3mm의 거리에 위치할 수 있다. 다른 예로서, 제13면(S13)은 임계점 없이 제공될 수 있다. 이러한 제1임계점(P1)을 갖는 제13면(S13)은 입사 광을 중심부 및 주변부까지 굴절시켜 줄 수 있고, 수차를 개선시켜 줄 수 있다. 제1,2 임계점(P1,P2)은 광축(OA) 및 광축(OA)의 수직인 방향에 대한 기울기 값의 부호가 양(+)에서 음(-)으로 또는 음(-)에서 양(+)으로 변하는 지점으로, 기울기 값이 0인 지점을 의미할 수 있다. 또한 제1,2 임계점(P1,P2)은 렌즈 면을 지나는 접선의 기울기 값이 커지다고 작아지는 지점 또는 작아지다가 커지는 지점일 수 있다.At least one or both of the 13th surface S13 and the 14th surface S14 of the seventh lens 207 may have a critical point. The 13th surface S13 of the seventh lens 207 may have a first critical point P1 from the optical axis OA to the end of the effective area. The first critical point P1 of the 13th surface S13 may be located at 55% or more of the effective radius from the optical axis OA, or may be located at 55% to 75% of the effective radius, or 60% to 70% of the effective radius. The first critical point of the 13th surface S13 may be located at a distance of 2 mm or more from the optical axis OA, for example, in the range of 2.1 mm to 2.5 mm or 2.2 mm to 2.3 mm. As another example, the 13th side S13 may be provided without a critical point. The 13th surface (S13) having this first critical point (P1) can refract incident light to the center and periphery and improve aberration. The first and second critical points (P1, P2) are the optical axis (OA) and the sign of the slope value with respect to the direction perpendicular to the optical axis (OA) is changed from positive (+) to negative (-) or from negative (-) to positive (+). ), which may mean a point where the slope value is 0. Additionally, the first and second critical points (P1, P2) may be points where the slope value of the tangent line passing through the lens surface increases and then decreases, or decreases and then increases.
제7렌즈(207)의 제14면(S14)은 광축(OA)에서 유효 영역의 끝단까지 적어도 하나의 제2임계점(P2)을 가질 수 있다. 제14면(S14)의 제2임계점(P2)은 광축(OA)에서 유효 반경(r72)의 60% 이상의 거리에 위치하거나, 60% 내지 80% 범위 또는 65% 내지 75% 범위에 위치할 수 있다. 제14면(S14)의 제2임계점(P2)은 광축(OA)에서 2.9 mm 이상의 거리 예컨대, 2.9 mm 내지 3.9 mm 범위 또는 3.1mm 내지 3.7mm 거리에 위치할 수 있다. 이에 따라 제2임계점(P2)는 제1임계점(P1)보다 더 에지에 가깝게 배치됨으로써, 제7렌즈(207)는 입사되는 광을 이미지 센서(300)의 주변부까지 굴절시켜 줄 수 있다.The 14th surface S14 of the seventh lens 207 may have at least one second critical point P2 from the optical axis OA to the end of the effective area. The second critical point (P2) of the 14th surface (S14) may be located at a distance of 60% or more of the effective radius (r72) from the optical axis (OA), or may be located in the range of 60% to 80% or 65% to 75% of the effective radius (r72). there is. The second critical point P2 of the 14th surface S14 may be located at a distance of 2.9 mm or more from the optical axis OA, for example, in the range of 2.9 mm to 3.9 mm or 3.1 mm to 3.7 mm. Accordingly, the second critical point P2 is disposed closer to the edge than the first critical point P1, so that the seventh lens 207 can refract the incident light to the periphery of the image sensor 300.
제7렌즈(207)의 제13, 14 면(S13,S14)의 평균 유효 반경이 이미지 센서(300)의 대각 길이의 1/2인 Imgh 보다 작게 배치되며, 이는 제2임계점(P2)을 갖는 제14면(S14)에 의해 이미지 센서(300)의 주변부까지 광을 굴절시켜 줄 수 있다.The average effective radius of the 13th and 14th surfaces (S13, S14) of the seventh lens 207 is arranged to be smaller than Imgh, which is 1/2 of the diagonal length of the image sensor 300, which has a second critical point (P2). Light can be refracted to the periphery of the image sensor 300 by the fourteenth surface S14.
도 15 및 도 16과 같이, 제1내지 제7렌즈(201~207)의 중심 두께는 CT1~CT7으로 나타내며, 각 렌즈의 유효 영역의 끝단인 에지 두께는 ET1~ET7으로 나타내며, 인접한 두 렌즈 사이의 중심 간격(Center gap)은 CG1~CG6으로 나타내며, 각 렌즈의 에지들 사이의 에지 간격은 EG1~EG6으로 나타낸다. 여기서, 접합 렌즈(245)의 중심 두께는 CT45이며, 에지 두께는 ET45로 나타낸다.15 and 16, the center thickness of the first to seventh lenses 201 to 207 is indicated by CT1 to CT7, and the edge thickness, which is the end of the effective area of each lens, is indicated by ET1 to ET7, and the thickness between the two adjacent lenses is indicated by CT1 to CT7. The center gap is indicated by CG1~CG6, and the edge gap between the edges of each lens is indicated by EG1~EG6. Here, the center thickness of the bonded lens 245 is expressed as CT45, and the edge thickness is expressed as ET45.
도 16을 참조하면, BFL(Back focal length)은 이미지 센서(300)에서 마지막 렌즈의 중심까지의 광축 거리이다. 도 15에서 TTL은 제1렌즈(201)의 제1면(S1)의 중심에서 이미지 센서(300)의 상면까지의 광축 거리이다. Referring to FIG. 16, back focal length (BFL) is the optical axis distance from the image sensor 300 to the center of the last lens. In FIG. 15 , TTL is the optical axis distance from the center of the first surface S1 of the first lens 201 to the upper surface of the image sensor 300.
도 17은 도 15의 제2실시예의 광학계의 렌즈 데이터의 예이다. 도 17과 같이, 제1내지 제7렌즈들(201,202,203,204,205,206,207)의 광축(OA)에서의 곡률 반경(Radius of Curvature), 렌즈의 두께(Thickness), 렌즈들 사이의 중심 간격(distance), d-line에서의 굴절률(Refractive index), 아베수(Abbe's Number) 및 유효경(Clear aperture; CA)의 크기를 설정할 수 있다. FIG. 17 is an example of lens data of the optical system of the second embodiment of FIG. 15. As shown in Figure 17, the radius of curvature at the optical axis (OA) of the first to seventh lenses (201, 202, 203, 204, 205, 206, 207), the thickness of the lens, the center distance between the lenses, d-line You can set the size of the refractive index, Abbe's Number, and clear aperture (CA).
도 18와 같이, 제2실시예에 렌즈부(200)의 렌즈들 중 제1,4,5,6,7 렌즈(201,204,205,206,207)의 렌즈면은 30차 비구면 계수를 가진 비구면을 포함할 수 있다. 예를 들어, 제1,4,5,6,7 렌즈(201,204,205,206,207)는 30차 비구면 계수를 가지는 렌즈면을 포함할 수 있다. 상기와 같이 30차 비구면 계수를 가진 비구면은("0"이 아닌 수치) 주변부의 비구면 형상을 특히 크게 변화시킬 수 있기 때문에 화각(FOV)의 주변부의 광학 성능을 양호하게 보정할 수 있다.As shown in FIG. 18, the lens surfaces of the first, fourth, fifth, sixth, and seventh lenses (201, 204, 205, 206, and 207) among the lenses of the lens unit 200 in the second embodiment may include an aspherical surface with a 30th order aspheric coefficient. For example, the first, fourth, fifth, sixth, and seventh lenses (201, 204, 205, 206, and 207) may include lens surfaces having a 30th order aspherical coefficient. As described above, an aspheric surface with a 30th order aspheric coefficient (a value other than “0”) can particularly significantly change the shape of the aspherical surface in the peripheral area, so the optical performance of the peripheral area of the field of view (FOV) can be well corrected.
도 19와 같이, 제1 내지 제7렌즈(201,202,203,204,205,206,207)의 두께(T1-T7), 인접한 두 렌즈 사이의 간격(G1-G6)을 설정할 수 있다. 도 19와 같이, Y축 방향으로 각 렌즈의 두께(T1-T7)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있으며, 각 렌즈 간의 간격(G1-G6)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있다.As shown in Figure 19, the thickness (T1-T7) of the first to seventh lenses (201, 202, 203, 204, 205, 206, 207) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 19, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1 mm or 0.2 mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1 mm or 0.2 mm or more. It can be displayed every time.
도 17 및 도 19를 참조하면, 각 렌즈의 곡률 반경의 절대 값으로 비교하면, 광축(OA)에서 제6렌즈(206)의 제12면(S12)의 곡률 반경은 렌즈들 중에서 최대이며, 제5렌즈(205)의 제10면(S10)의 곡률 반경은 렌즈들 중에서 최소일 수 있다. 최대 곡률 반경과 최소 곡률 반경의 차이는 10배 이상 예컨대, 10 배 내지 15배 범위일 수 있다. Referring to FIGS. 17 and 19, when comparing the absolute values of the radii of curvature of each lens, the radius of curvature of the 12th surface S12 of the sixth lens 206 at the optical axis OA is the largest among the lenses, and 5 The radius of curvature of the tenth surface (S10) of the lens 205 may be the smallest among the lenses. The difference between the maximum radius of curvature and the minimum radius of curvature may be 10 times or more, for example in the range of 10 to 15 times.
광축을 기준으로 렌즈의 중심 두께를 설명하면, 제2렌즈(202)의 중심 두께(CT2)는 렌즈들 중에서 최대이며, 제5렌즈(205)의 중심 두께(CT5)는 렌즈들 중에서 최소이다. 렌즈 중 최대 중심 두께와 최소 중심 두께의 차이는 1.5 mm 이상 2.5 mm 이하의 범위 일 수 있다. When explaining the central thickness of the lens based on the optical axis, the central thickness (CT2) of the second lens 202 is the largest among the lenses, and the central thickness (CT5) of the fifth lens 205 is the smallest among the lenses. The difference between the maximum and minimum center thickness of the lens may be in the range of 1.5 mm or more and 2.5 mm or less.
렌즈들 사이의 중심 간격(CG)를 설명하면, 제1렌즈(201) 및 제2렌즈(202) 사이의 중심 간격(CG1)은 최대이며, 제3,4렌즈(203,204) 사이의 중심 간격(CG3)은 최소일 수 있다. 여기서, 최소 중심 간격은 접합 렌즈(245)의 접합 면은 제외한다. 이격되는 렌즈 간격 중 최대 중심 간격과 최소 중심 간격의 차이는 1.2 mm 이상 예컨대, 1.3 mm 내지 1.8 mm 범위일 수 있다. 또한 렌즈들 사이의 최대 중심 간격을 최대 중심 두께의 70% 이하 예컨대, 30% 내지 70% 범위로 제공해 줌으로써, 각 렌즈들의 중심 두께에 비해 중심 간격을 증가하지 않고 얇은 두께를 갖는 플라스틱 렌즈를 적용한 카메라 모듈의 두께를 증가시키지 않을 수 있다. Describing the center spacing (CG) between the lenses, the center spacing (CG1) between the first lens 201 and the second lens 202 is the maximum, and the center spacing between the third and fourth lenses 203 and 204 ( CG3) may be minimal. Here, the minimum center spacing excludes the bonding surface of the bonding lens 245. The difference between the maximum center spacing and the minimum center spacing among the spaced apart lenses may be 1.2 mm or more, for example, in the range of 1.3 mm to 1.8 mm. In addition, by providing the maximum center spacing between lenses to be less than 70% of the maximum center thickness, for example, in the range of 30% to 70%, the camera uses plastic lenses with a thin thickness without increasing the center spacing compared to the center thickness of each lens. The thickness of the module may not be increased.
유효경에 대해 설명하면, 최대 유효경을 갖는 렌즈는 물체에 가장 가까운 제1렌즈(201)과 이미지 센서(300)에 가장 가까운 제7렌즈(207) 사이에 배치될 수 있다. 최대 유효경을 갖는 렌즈는 유리 재질의 렌즈일 수 있다. 최대 유효경을 갖는 렌즈는 제1렌즈(201)과 접합 렌즈(245) 사이에 배치될 수 있다. 최대 유효경을 갖는 렌즈는 제3렌즈(203)일 수 있다. 여기서, 유효경은 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. 최대 유효경을 갖는 렌즈 면은 제3렌즈(203)의 제6면(S6)이거나 접합 렌즈(245)의 물체측면일 수 있다.Regarding the effective diameter, a lens having the maximum effective diameter may be disposed between the first lens 201 closest to the object and the seventh lens 207 closest to the image sensor 300. The lens having the maximum effective diameter may be a glass lens. A lens having the maximum effective diameter may be disposed between the first lens 201 and the bonded lens 245. The lens having the maximum effective diameter may be the third lens 203. Here, the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. The lens surface having the maximum effective diameter may be the sixth surface S6 of the third lens 203 or the object side of the bonded lens 245.
최소 유효경을 갖는 렌즈는 플라스틱 렌즈들 중 어느 하나일 수 있으며, 예컨대 이미지 센서(300)에 인접한 제7렌즈(207)일 수 있다. 예컨대, 제7렌즈(207)의 유효경은 렌즈부(200) 내에서 최소일 수 있다. 최소 유효경을 갖는 렌즈 면은 제7렌즈(207)의 제13면(S13)일 수 있다. The lens having the minimum effective diameter may be any one of plastic lenses, for example, the seventh lens 207 adjacent to the image sensor 300. For example, the effective diameter of the seventh lens 207 may be the minimum within the lens unit 200. The lens surface having the minimum effective diameter may be the 13th surface (S13) of the 7th lens 207.
물체측에 인접한 제1내지 제4렌즈(201-204) 각각의 유효경은 센서측에 인접한 제5,6,7 렌즈(205,206,207)의 유효경보다 클 수 있다. 제1 내지 제4렌즈(201-204)의 유효경은 이미지 센서(300)의 대각 길이보다 클 수 있다. 제7렌즈(207)의 평균 유효경은 이미지 센서(300)의 대각 길이보다 작을 수 있다. 이에 따라 광축에 따라 정렬된 복수의 렌즈를 통해 입사된 광을 이미지 센서(300)로 가이드할 수 있다.The effective diameter of each of the first to fourth lenses (201-204) adjacent to the object side may be larger than the effective diameter of the fifth, sixth, and seventh lenses (205, 206, and 207) adjacent to the sensor side. The effective diameter of the first to fourth lenses 201-204 may be larger than the diagonal length of the image sensor 300. The average effective diameter of the seventh lens 207 may be smaller than the diagonal length of the image sensor 300. Accordingly, light incident through a plurality of lenses aligned along the optical axis can be guided to the image sensor 300.
굴절률을 설명하면, 제1렌즈(201)의 굴절률은 렌즈들 중에서 최대이며, 1.8초과, 예컨대, 1.82 초과일 수 있다. 제2렌즈(202) 및 제6렌즈(206) 중 어느 하나 또는 모두는 렌즈들 중에서 최소의 굴절률을 가질 수 있다. 예컨대, 1.6 미만, 예컨대 1.55 미만일 수 있다. 최대 굴절률과 최소 굴절률 차이는 0.2 이상일 수 있다. 물체에 가장 가까운 유리 재질 고 굴절률 렌즈로 제공하고, 유리 재질의 렌즈에 인접한 렌즈와 이미지 센서(300)에 인접한 렌즈를 플라스틱 재질의 저 굴절률 렌즈로 제공해 줌으로써, 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(300)로 가이드할 수 있다. Describing the refractive index, the refractive index of the first lens 201 is the highest among the lenses and may be greater than 1.8, for example, greater than 1.82. Either or both of the second lens 202 and the sixth lens 206 may have the lowest refractive index among the lenses. For example, it may be less than 1.6, such as less than 1.55. The difference between the maximum and minimum refractive indices may be 0.2 or more. By providing a high refractive index lens made of glass closest to the object, and providing a low refractive index lens made of plastic for the lens adjacent to the glass lens and the lens adjacent to the image sensor 300, incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 300 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 300 by adjusting the refractive power between the lenses.
아베수를 비교하면, 제3렌즈(203)의 아베수는 렌즈들 중 최대이며, 60이상일 수 있다. 제5렌즈(205) 및 제7렌즈(207)의 아베수는 렌즈들 중 최소이며, 25 이하일 수 있다. 최대 굴절률과 최소 아베수 차이는 40 이상일 수 있다. 접합 렌즈(245)에 인접한 제3렌즈(203)의 아베수를 가장 크게 하고, 이미지 센서(300)에 인접한 저 굴절률을 갖는 제7렌즈(207)의 아베수를 가장 작게 제공해 줌으로써, 유리 재질의 렌즈들 사이로 진행되는 광의 색 분산을 조절하고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 색 분산을 증가하여 이미지 센서(300)로 가이드할 수 있다. Comparing the Abbe number, the Abbe number of the third lens 203 is the largest among the lenses and may be 60 or more. The Abbe number of the fifth lens 205 and the seventh lens 207 is the minimum among the lenses and may be 25 or less. The difference between the maximum refractive index and the minimum Abbe number may be 40 or more. By providing the largest Abbe number of the third lens 203 adjacent to the bonded lens 245 and the smallest Abbe number of the seventh lens 207 with a low refractive index adjacent to the image sensor 300, the glass material It is possible to adjust the color dispersion of light traveling between lenses and guide it to the image sensor 300 by increasing the color dispersion between lenses made of glass and plastic.
제1,5,7렌즈(201,205,207)의 초점 거리(F1,F5,F7)는 음(-)의 부호를 가질 수 있다. 제1,5,7렌즈(201,205,207)는 음(-)의 굴절력을 가질 수 있다. 제3,4,5,6렌즈(203,204,205,206)의 초점 거리(F3,F4,F5,F6)는 양(+)의 부호를 가질 수 있다. 제3,4,5,6렌즈(203,204,205,206)의 양(+)의 굴절력을 가질 수 있다. 음(-)의 굴절력을 갖는 제1렌즈(201)의 센서 측에는 양(+)의 굴절력을 갖는 제2,3,4렌즈(202,203,204)가 배치될 수 있다. 이를 통해, 물체 측에서 입사된 광은 광축 방향에서 멀어지다가 다시 광축 방향으로 모일 수 있어, 안정적인 광 경로를 형성할 수 있다. The focal lengths F1, F5, and F7 of the first, fifth, and seventh lenses 201, 205, and 207 may have a negative (-) sign. The first, fifth, and seventh lenses 201, 205, and 207 may have negative refractive power. The focal lengths F3, F4, F5, and F6 of the third, fourth, fifth, and sixth lenses 203, 204, 205, and 206 may have a positive (+) sign. The third, fourth, fifth, and sixth lenses (203, 204, 205, and 206) may have positive refractive power. Second, third, and fourth lenses 202, 203, and 204 with positive (+) refractive power may be disposed on the sensor side of the first lens 201 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
또한 인접하여 배치되는 렌즈인 제6렌즈(206)와 제7렌즈(207)는 하기 조건을 만족할 수 있다.Additionally, the sixth lens 206 and seventh lens 207, which are adjacent lenses, can satisfy the following conditions.
조건 1: 양의 굴절력을 가진 렌즈의 굴절률 < 음의 굴절력을 가진 렌즈의 굴절률 Condition 1: Refractive index of a lens with positive refractive power < Refractive index of a lens with negative refractive power
조건 2: 양의 굴절력을 가진 렌즈의 분산값 > 음의 굴절력을 가진 렌즈의 분산값Condition 2: Dispersion value of a lens with positive refractive power > Dispersion value of a lens with negative refractive power
여기서, 플라스틱 렌즈들 중에서 제6렌즈(206)는 양의 굴절력을 갖고, 제7렌즈(207)는 음의 굴절력을 가짐에 따라, 조건 1,2 에 의하면 제6렌즈의 굴절률이 제7렌즈의 굴절률보다 작고, 제6렌즈의 분산값이 제7렌즈의 분산값보다 크다. 플라스틱 렌즈에서 발생되는 색수차는 플라스틱 렌즈로 보정할 수 있다. 또한, 연속해서 배치되는 플라스틱 렌즈인 제6렌즈(206)와 제7렌즈(207)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 60 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. Here, among the plastic lenses, the sixth lens 206 has positive refractive power and the seventh lens 207 has negative refractive power, so according to conditions 1 and 2, the refractive index of the sixth lens is greater than that of the seventh lens. It is smaller than the refractive index, and the dispersion value of the sixth lens is greater than the dispersion value of the seventh lens. Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses. In addition, the 6th lens 206 and the 7th lens 207, which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 60, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
광학계는 색 수차가 발생하며 접합 렌즈를 사용하거나 연속하게 배치된 두 렌즈를 사용하여 색수차를 보정한다. 저온에서 고온까지의 온도가 변화함에 따라 렌즈가 수축 및 팽창을 반복한다. 같은 소재의 렌즈들은 온도 변화에 따른 렌즈 특성 변화량이 동일하므로, 온도가 변화하더라도 같은 소재의 렌즈끼리 색 수차를 보정하는 것이 효과적이다. Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes.
따라서 본 발명의 제2실시예에서는 접합렌즈(245)와 제6렌즈(206) 및 제7렌즈(207)를 사용하여 플라스틱 렌즈에서 발생하는 색 수차를 보정한다.Therefore, in the second embodiment of the present invention, the bonded lens 245, the sixth lens 206, and the seventh lens 207 are used to correct chromatic aberration occurring in the plastic lens.
접합되는 렌즈인 제4렌즈(204)와 제5렌즈(205)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 60 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. 굴절률 차이는 소수점 셋째 자리에서 반올림하고, 아베수 차이는 소수점 첫째 자리에서 반올림하여 값을 비교한다. The chromatic aberration occurring in the plastic lens can be compensated for by the bonded lens, the fourth lens 204 and the fifth lens 205, satisfying a refractive index difference of 0.1 to 0.15 and an Abbe number difference of 20 to 60. . The difference in refractive index is rounded to the third decimal place, and the Abbe number difference is rounded to the first decimal place to compare values.
초점 거리를 절대 값으로 비교하면, 제2렌즈(202)의 초점 거리는 렌즈들 중에서 최대이며, 55 이상 또는 200 이상일 수 있다. 렌즈들 중에서 유리 재질인 제2렌즈(202)는 초점 거리가 가장 크고, 굴절력은 가장 작을 수 있다. 렌즈들 중에서 제2렌즈(202) 다음으로 초점 거리가 큰 렌즈는 플라스틱 재질인 제6렌즈(206)일 수 있다. 제5렌즈(205)의 초점 거리는 렌즈들 중에서 최소이고, 제5렌즈(205)의 초점 거리의 절대값은 15 이하 또는 10 이하일 수 있다. 렌즈들 중에서 플라스틱 재질인 제5렌즈(205)는 초점 거리가 가장 작고, 굴절력은 가장 클 수 있다. 제5렌즈(205)의 센서 측에는 굴절력이 작은 플라스틱 재질로 이루어진 렌즈들이 배치되므로 제5렌즈(205)의 굴절력은 커질 수 있다.Comparing the focal lengths as absolute values, the focal length of the second lens 202 is the largest among the lenses and may be 55 or more or 200 or more. Among the lenses, the second lens 202 made of glass may have the largest focal length and the smallest refractive power. Among the lenses, the lens with the next largest focal length after the second lens 202 may be the sixth lens 206 made of plastic. The focal length of the fifth lens 205 is the minimum among the lenses, and the absolute value of the focal length of the fifth lens 205 may be 15 or less or 10 or less. Among the lenses, the fifth lens 205, which is made of plastic, may have the smallest focal length and the highest refractive power. Since lenses made of plastic material with low refractive power are disposed on the sensor side of the fifth lens 205, the refractive power of the fifth lens 205 can be increased.
접합 렌즈(245)를 제외한 렌즈들 중에서, 최소 초점 거리를 갖는 렌즈는 제3렌즈(203)일 수 있다. 최대 초점 거리와 최소 초점 거리의 차이는 50 이상 또는 80 이상일 수 있다. 이에 따라 광학계에서 설정된 화각 범위에서 향상된 MTF 특성, 수차 제어 특성, 해상도 특성 등을 가질 수 있고, 화각의 주변부에서 양호한 광학 성능을 가질 수 있다.Among the lenses excluding the bonded lens 245, the lens with the minimum focal length may be the third lens 203. The difference between the maximum and minimum focus distances may be 50 or more or 80 or more. Accordingly, it is possible to have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in the field of view range set in the optical system, and good optical performance in the periphery of the field of view.
제7렌즈(207) 센서측면에는 임계점(Critical point) 존재한다. 임계점(Critical point)은 sag 값의 경향이 바뀌는 지점이다. 즉 sag 값이 증가하다 감소하는 지점 혹은 sag 값이 감소하다가 증가하는 지점이다. 도 20을 참조하면 제7렌즈(207) 물체측면은 광축과 수직인 방향으로 1.8mm 이격된 지점에서 2.2mm 이격된 지점 사이에 임계점(Critical point)이 존재하는 것을 알 수 있다. 제7렌즈(207) 물체측면은 sag 값이 광축과 수직인 방향으로 2.0mm 이격된 지점까지 증가하다가, 광축과 수직인 방향으로 2.0mm 이격된 지점에서 4.1mm 이격된 지점으로 가면서 sag 값이 감소하고 있다.There is a critical point on the sensor side of the seventh lens (207). The critical point is the point at which the trend of the sag value changes. In other words, it is the point where the sag value increases and then decreases, or the point where the sag value decreases and then increases. Referring to FIG. 20, it can be seen that the object side of the seventh lens 207 has a critical point between a point 1.8 mm apart and a point 2.2 mm apart in the direction perpendicular to the optical axis. The sag value of the object side of the 7th lens (207) increases to a point 2.0 mm away in the direction perpendicular to the optical axis, and then decreases as it goes from a point 2.0 mm away from the point 4.1 mm away in the direction perpendicular to the optical axis. I'm doing it.
제7렌즈(207) 센서측면은 광축과 수직인 방향으로 2.8mm 이격된 지점에서 3.2mm 이격된 지점 사이에 임계점(Critical point)이 존재하는 것을 알 수 있다. 제7렌즈(207) 센서측면은 sag 값이 광축과 수직인 방향으로 2.9mm 이격된 지점까지 증가하다가, 광축과 수직인 방향으로 2.9mm 이격된 지점에서 4.6mm 이격된 지점으로 가면서 sag 값이 감소하고 있다. 제7렌즈(207) 센서측면 즉, 마지막 렌즈의 센서측면 즉, 센서와 가장 가까운 렌즈면에 임계점(Critical point)이 존재하면 TTL을 줄일 수 있어서 광학계의 소형화 및 경량화에 용이하다.It can be seen that the sensor side of the seventh lens 207 has a critical point between a point 2.8 mm apart and a point 3.2 mm apart in the direction perpendicular to the optical axis. On the sensor side of the seventh lens (207), the sag value increases to a point 2.9 mm apart in the direction perpendicular to the optical axis, and then decreases as it goes from a point 2.9 mm apart to a point 4.6 mm apart in the direction perpendicular to the optical axis. I'm doing it. If a critical point exists on the sensor side of the seventh lens 207, that is, the sensor side of the last lens, that is, the lens side closest to the sensor, the TTL can be reduced, making it easy to miniaturize and lighten the optical system.
제1렌즈(201)의 두께(T1)는 최대 두께와 최소 두께의 차이가 1배 이상 예컨대, 1배 내지 1.2배 범위일 수 있으며, 중심 두께(CT1)가 최소이고, 에지 두께(ET1)가 최대일 수 있다. 제2렌즈(202)의 두께(T2)는 최대 두께가 최소 두께의 1배 내지 1.2배 범위일 수 있다. 제2렌즈(202)는 중심 두께(CT2)가 최대이며, 에지 두께(ET2)는 최소일 수 있다. 제3렌즈(203)의 두께(T3)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.5배 내지 2배 범위이다. 제4렌즈(204)의 두께(T4)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.6배 내지 2.2 배 범위이다. 제5렌즈(205)의 두께(T5)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.5배 범위이다. 제6렌즈(206)의 두께(T6)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.2배 범위이다. 제7렌즈(207)의 두께(T7)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.2배 범위이다. The thickness T1 of the first lens 201 may have a difference between the maximum thickness and the minimum thickness of 1 times or more, for example, 1 to 1.2 times, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum. The thickness T2 of the second lens 202 may have a maximum thickness ranging from 1 to 1.2 times the minimum thickness. The second lens 202 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2). The thickness T3 of the third lens 203 may be maximum at the center and minimum at the edges, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness. The thickness T4 of the fourth lens 204 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.6 to 2.2 times the minimum thickness. The thickness T5 of the fifth lens 205 may be minimum at the center and maximum at the edge, with the maximum thickness being in the range of 1.2 to 1.5 times the minimum thickness. The thickness T6 of the sixth lens 206 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1 to 1.2 times the minimum thickness. The thickness T7 of the seventh lens 207 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.2 times the minimum thickness.
접합 렌즈(245)의 중심 두께(CT45)는 에지 두께(ET45)보다 클 수 있다. 접합 렌즈(245)의 중심 두께(CT45)는 제4렌즈(204)의 물체측 제7면(S7)의 중심에서 제5렌즈(205) 제10면(S10)의 중심까지의 거리이며, 에지 두께(ET45)는 제7면(S7)의 유효영역의 끝단에서 광축 방향으로 제10면(S10)까지의 거리이다. 접합 렌즈(245)의 최대 두께는 중심부이며, 최소 두께는 에지부이며, 최대 두께는 최소 두께의 1배 내지 1.2배 범위일 수 있다. The center thickness (CT45) of the bonded lens 245 may be greater than the edge thickness (ET45). The center thickness (CT45) of the bonded lens 245 is the distance from the center of the object-side seventh surface (S7) of the fourth lens 204 to the center of the tenth surface (S10) of the fifth lens 205, and the edge The thickness ET45 is the distance from the end of the effective area of the seventh surface S7 to the tenth surface S10 in the optical axis direction. The maximum thickness of the bonded lens 245 is at the center, and the minimum thickness is at the edge, and the maximum thickness may be in the range of 1 to 1.2 times the minimum thickness.
렌즈들 사이의 간격(G1-G6) 중에서 제1,2 렌즈(201,202) 사이의 제1간격(G1)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제2,3 렌즈(202,203) 사이의 제2간격(G2)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제3,4 렌즈(203,204) 사이의 제3간격(G3)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제5,6 렌즈(205,206) 사이의 제5간격(G5)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제6,7 렌즈(206,207) 사이의 제6간격(G6)은 중심부가 최대이고 에지부가 최소일 수 있다. Among the intervals G1-G6 between the lenses, the first interval G1 between the first and second lenses 201 and 202 may be maximum at the center and minimum at the edges. The second gap G2 between the second and third lenses 202 and 203 may be maximum at the edge and minimum at the center. The third gap G3 between the third and fourth lenses 203 and 204 may be maximum at the edge and minimum at the center. The fifth gap G5 between the fifth and sixth lenses 205 and 206 may be maximum at the center and minimum at the edges. The sixth gap G6 between the sixth and seventh lenses 206 and 207 may be maximum at the center and minimum at the edges.
도 21과 같이, 도 15의 광학계 및 카메라 모듈에서 주 광선의 각도(CRA: Chief ray angle)는 이미지 센서의 대각 길이의 끝단인 1- 필드에서 10도 이상 예컨대, 10도 내지 35도의 범위 또는 10도 내지 25도 범위일 수 있다. 또한 저온(-40도)에서 고온(95도)까지의 주 광선의 각도 차이가 1도 이하일 수 있다. 이에 따라 온도가 저온에서 고온까지 변화하더라도, 주 광선의 각도 차이는 크지 않고 안정적인 광학 성능을 가질 수 있다.As shown in FIG. 21, the chief ray angle (CRA) in the optical system and camera module of FIG. 15 is 10 degrees or more in the 1-field, which is the end of the diagonal length of the image sensor, for example, in the range of 10 to 35 degrees or 10 degrees. It may range from degrees to 25 degrees. Additionally, the angle difference of the main ray from low temperature (-40 degrees) to high temperature (95 degrees) may be less than 1 degree. Accordingly, even if the temperature changes from low to high, the difference in the angle of the main ray is not large and stable optical performance can be achieved.
도 28와 같이 실시예에 따른 광학계에서 상고(image height)에 따른 주변광량비 또는 주변조도(Relative illumination)를 나타낸 그래프로서, 이미지 센서의 중심에서 대각선 끝까지 70% 이상 예컨대, 75% 이상의 주변 광량비가 나타남을 알 수 있다. 즉, 상온, 저온 및 고온의 온도에 따른 주변 조도(Zoom position 1, 2, 3)의 차이는 광축에서 4.5mm 이상까지 거의 차이가 없음을 알 수 있다. 28 is a graph showing the peripheral light ratio or relative illumination according to the image height in the optical system according to the embodiment, where the peripheral light ratio is 70% or more, for example, 75% or more from the center of the image sensor to the end of the diagonal. You can see that it appears. In other words, it can be seen that there is almost no difference in ambient illuminance (Zoom positions 1, 2, 3) depending on room temperature, low temperature, and high temperature up to 4.5 mm or more from the optical axis.
도 22 내지 도 24는 도 15의 광학계에서 상온, 저온 및 고온에서의 회절(Diffraction) MTF(Modulation transfer function)를 나타낸 그래프로서, 공간 주파수(spatial frequency)에 따른 휘도 비(modulation)를 나타낸 그래프이다. 도 22 내지 도 24와 같이, 발명의 제2실시예에서 상온을 기준으로 저온 또는 고온과의 MTF의 편차는 10% 미만 즉, 7% 이하일 수 있다. Figures 22 to 24 are graphs showing diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 15, and are graphs showing luminance ratio (modulation) according to spatial frequency. . 22 to 24, in the second embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
도 25 내지 도 27는 도 15의 광학계에서 상온, 저온 및 고온에서의 수차 특성을 나타낸 그래프다. 도 25 내지 도 27의 수차 그래프에서 좌측에서 우측 방향으로 구면 수차(Longitudinal Spherical Aberration), 비점 수차(Astigmatic Field Curves), 왜곡 수차(Distortion)를 측정한 그래프이다. 도 25 내지 도 27에서 X축은 초점 거리(mm) 및 왜곡도(%)를 나타낼 수 있고, Y축은 이미지의 높이(height)를 의미할 수 있다. 또한, 구면 수차에 대한 그래프는 약 435nm, 약 486nm, 약 546nm, 약 587nm, 약 656nm 파장 대역의 광에 대한 그래프이며, 비점 수차 및 왜곡 수차에 대한 그래프는 약 546nm 파장 대역의 광에 대한 그래프이다. 도 25 내지 도 27의 수차도에서는 상온, 저온 및 고온에서의 각 곡선들이 Y축에 근접할 수록 수차 보정 기능이 좋은 것으로 해석할 수 있는데, 실시예에 따른 광학계(1500)는 거의 대부분의 영역에서 측정 값들이 Y축에 인접한 것을 알 수 있다. 즉, 제2실시예에 따른 광학계(1500)는 향상된 해상력을 가지며 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 여기서, 저온은 -20도 이하의 예컨대, -20 내지 -40도 범위이며, 상온은 22도±5도 범위 또는 18도 내지 27도 범위이며, 고온은 85도 이상 예컨대, 85도 내지 205도의 범위일 수 있다. 이에 따라 도 25 내지 도 27의 저온에서 고온까지 휘도 비(modulation)의 저하가 10% 미만 예컨대, 5% 이하이거나, 거의 변경되지 않음을 알 수 있다. Figures 25 to 27 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 15. 25 to 27 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right. 25 to 27, the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image. In addition, the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm, and the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. . 25 to 27, it can be interpreted that the closer the curves at room temperature, low temperature, and high temperature are to the Y-axis, the better the aberration correction function is. The optical system 1500 according to the embodiment has an aberration correction function in most areas. You can see that the measured values are adjacent to the Y axis. That is, the optical system 1500 according to the second embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV). Here, the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees, the room temperature is in the range of 22 degrees ± 5 degrees or 18 to 27 degrees, and the high temperature is 85 degrees or higher, for example, in the range of 85 to 205 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 25 to 27 is less than 10%, for example, 5% or less, or is almost unchanged.
표 3은 제2실시예에 따른 광학계에서 상온, 저온 및 고온에서의 EFL, BFL, F넘버(F#), TTL 및 화각(FO)V와 같은 광학 특성의 변화를 비교하였으며, 상온을 기준으로 저온의 광학 특성의 변화율 5% 이하 예컨대, 3%이하로 나타남을 알 수 있으며, 상온을 기준으로 저온의 광학 특성의 변화율이 5% 이하 예컨대, 3% 이하로 나타남을 알 수 있다.Table 3 compares changes in optical properties such as EFL, BFL, F number (F#), TTL, and angle of view (FO)V at room temperature, low temperature, and high temperature in the optical system according to the second embodiment, and low temperature based on room temperature. It can be seen that the change rate of the optical properties is 5% or less, for example, 3% or less, and the change rate of the optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
상온room temperature 저온low temperature 고온High temperature 저온/상온Low temperature/room temperature 고온/상온High temperature/room temperature
EFL(F)EFL(F) 15.115.1 15.038215.0382 15.175215.1752 99.59%99.59% 200.49%200.49%
BFLBFL 2.52.5 2.49712.4971 2.503462.50346 99.88%99.88% 200.13%200.13%
F#F# 1.6001.600 1.59341.5934 1.608081.60808 99.58%99.58% 200.50%200.50%
TTLTTL 33.96533.965 33.896333.8963 34.045834.0458 99.79%99.79% 200.23%200.23%
FOVFOV 33.983833.9838 34.108434.1084 33.836533.8365 200.36%200.36% 99.56%99.56%
따라서, 표 3과 같이, 저온에서 고온까지의 온도 변화에 따른 광학 특성의 변화 예컨대, 유효초점거리(EFL)의 변화율, TTL, BFL, F 넘버, 화각(FOV)의 변화율이 10% 이하 즉, 5% 이하 예컨대, 0 ~ 5% 범위임을 알 수 있다. 이는 적어도 한 매 또는 두 매 이상의 플라스틱 렌즈를 사용하더라도, 플라스틱 렌즈에 대한 온도보상이 가능하게 설계하여, 광학 특성의 신뢰성 저하를 방지할 수 있다. Therefore, as shown in Table 3, the change in optical properties according to the temperature change from low to high temperature, for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
상기에 개시된 제2실시예의 광학계는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다.The optical system of the second embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
표 4는 제2실시예의 광학계(1500)에서 상술한 수학식들의 항목에 대한 것으로, 광학계(1500)의 TTL(Total track length)(mm), BFL(Back focal length), 유효초점 거리(F)(mm), ImgH(mm), 유효경(CA)(mm), 두께(mm), TTL(mm), 제1면(S1)에서 제14면(S14)까지의 광축 거리인 TD(mm), 제1내지 제7렌즈들 각각의 초점 거리(F1,F2,F3,F4,F5,F6,F7)(mm), 굴절률 합, 아베수 합, 두께 합(mm), 인접한 렌즈들 사이의 간격 합, 유효경 특성, 유리 렌즈의 굴절률 합, 플라스틱 재질의 굴절률 합, 화각(FOV)(Degree), 에지 두께(ET), 제1,2 렌즈 군의 초점 거리, F 넘버 등에 대한 것이다. Table 4 shows the items of the above-described equations in the optical system 1500 of the second embodiment, including TTL (Total track length) (mm), BFL (Back focal length), and effective focal length (F) of the optical system 1500. (mm), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the first surface (S1) to the fourteenth surface (S14), Focal distance of each of the first to seventh lenses (F1, F2, F3, F4, F5, F6, F7) (mm), sum of refractive index, sum of Abbe number, sum of thickness (mm), sum of spacing between adjacent lenses , effective diameter characteristics, sum of refractive indices of glass lenses, sum of refractive indices of plastic materials, angle of view (FOV) (Degree), edge thickness (ET), focal length of the first and second lens groups, F number, etc.
항목item value 항목item value
FF 15.115.1 ET1ET1 5.06905.0690
F1F1 -51.4737-51.4737 ET2ET2 4.84084.8408
F2F2 89.254289.2542 ET3ET3 2.00942.0094
F3F3 18.963318.9633 ET4ET4 2.01442.0144
F4F4 21.819921.8199 ET5ET5 4.05514.0551
F5F5 -13.0662-13.0662 ET6ET6 3.09233.0923
F6F6 67.609067.6090 ET7ET7 3.50943.5094
F7F7 -63.9471-63.9471 F-numberF-number 1.6001.600
F_LG1F_LG1 -153.9345163-153.9345163 FOVFOV 33.983833.9838
F_LG2F_LG2 14.4950854614.49508546 EPDE.P.D. 9.43759.4375
ΣIndexΣIndex 11.661311.6613 BFLBFL 2.72632.7263
ΣAbbeΣAbbe 289.4202289.4202 TDTD 31.238731.2387
ΣCTΣCT 26.854326.8543 ImgHImgH 4.6304.630
ΣCGΣCG 4.38434.3843 SDSD 19.884119.8841
CA_maxCA_max 12.64512.645 TTLTTL 33.965033.9650
CA_minCA_min 8.1778.177 GLca_AverGLca_Aver 11.339611.3396
CA_AverCA_Aver 10.524810.5248 PLca_AverPLca_Aver 9.9149.914
CT_maxCT_max 4.99704.9970 이미지 센서image sensor 3840*21603840*2160
CT_minCT_min 2.93232.9323 CT_AverCT_Aver 3.8363.836
상기에 개시된 제1 및 제2실시예에 따른 광학계(1000,1500)는 이하에서 설명되는 수학식들 중 적어도 하나 또는 둘 이상을 만족할 수 있다. 이에 따라, 실시예에 따른 광학계(1000,1500)는 향상된 광학 특성을 가질 수 있다. 예를 들어, 광학계(1000,1500)가 적어도 하나의 수학식을 만족할 경우, 광학계(1000,1500)는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 또한, 광학계(1000,1500)는 향상된 해상력을 가질 수 있다. 또한, 수학식들에 기재된 렌즈의 광축(OA)에서의 두께, 인접한 렌즈들의 광축(OA)에서의 간격이 의미하는 것은 상기에 개시된 실시예를 참조할 수 있다. The optical systems 1000 and 1500 according to the first and second embodiments disclosed above may satisfy at least one or two of the equations described below. Accordingly, the optical systems 1000 and 1500 according to the embodiment may have improved optical characteristics. For example, if the optical systems 1000 and 1500 satisfy at least one mathematical equation, the optical systems 1000 and 1500 can effectively control aberration characteristics such as chromatic aberration and distortion aberration, as well as the center of the field of view (FOV). Good optical performance can be achieved even in the peripheral area. Additionally, the optical systems 1000 and 1500 may have improved resolution. In addition, the meaning of the thickness of the lens at the optical axis (OA) and the distance between the adjacent lenses at the optical axis (OA) described in the equations may refer to the embodiment disclosed above.
[수학식 1] [Equation 1]
0.5 < CT1 / ET1 < 10.5 < CT1 / ET1 < 1
수학식 1에서 CT1은 제1렌즈(101,201)의 중심 두께이고, ET1은 제1렌즈(101,201)의 에지 두께이다. 이를 통해, 광학계의 화각에 영향을 주는 요소를 설정할 수 있으며, 유효 초점 거리(EFL)에 영향을 주는 요소를 설정할 수 있다. 수학식 1은 제1 내지 제2실시예에서 바람직하게 0.6 ≤ CT1 / ET1 < 1을 만족할 수 있다.In Equation 1, CT1 is the center thickness of the first lens (101, 201), and ET1 is the edge thickness of the first lens (101, 201). Through this, it is possible to set factors that affect the angle of view of the optical system and factors that affect the effective focal length (EFL). Equation 1 may preferably satisfy 0.6 ≤ CT1 / ET1 < 1 in the first and second embodiments.
[수학식 2] [Equation 2]
0.1 < CT1/CA_L1S1 < 0.50.1 < CT1/CA_L1S1 < 0.5
수학식 2에서 CT1은 제1렌즈(101,201)의 중심 두께이고, CA_L1S1은 제1렌즈(101,201)의 물체측면(S1)의 유효경(CA_L1S1)이다. 수학식 2를 만족할 경우, 유리 재질의 사출 성형된 렌즈의 강도 및 광학적 특성 저하를 방지할 수 있다. 만약, 수학식 2의 범위보다 낮은 경우, 렌즈가 파손되거나 사출 성형이 어렵고, 범위보다 큰 경우 TTL이 증가하게 되고 광학계의 중량이 무거워질 수 있다. 수학식 2는 제1실시예에서 바람직하게, 0.15 < CT1/CA_L1S1 < 0.25를 만족할 수 있다. 수학식 2는 제2실시예에서 바람직하게, 0.2 < CT1/CA_L1S1 < 0.4를 만족할 수 있다.In Equation 2, CT1 is the central thickness of the first lens (101, 201), and CA_L1S1 is the effective diameter (CA_L1S1) of the object side (S1) of the first lens (101, 201). If Equation 2 is satisfied, it is possible to prevent deterioration of the strength and optical properties of an injection molded lens made of glass. If it is lower than the range of Equation 2, the lens may be damaged or injection molding is difficult, and if it is larger than the range, the TTL may increase and the weight of the optical system may become heavy. Equation 2 may preferably satisfy 0.15 < CT1/CA_L1S1 < 0.25 in the first embodiment. Equation 2 may preferably satisfy 0.2 < CT1/CA_L1S1 < 0.4 in the second embodiment.
[수학식 3][Equation 3]
Po1 < 0Po1 < 0
수학식 3에서 Po1는 제1렌즈(101,201)의 굴절력의 부호를 의미한다. 광학계의 성능을 위해 광학계에서 TTL 대비 짧은 유효 초점 거리를 갖기 위해 설정될 수 있다. 수학식 3을 만족하면 물체측에서 제1렌즈(101,201)로 입사하는 광을 광축에서 멀어지는 방향으로 퍼뜨릴 수 있다. 전체 광학계는 광을 퍼뜨렸다가 모으는 구조가 안정적일 수 있다. In Equation 3, Po1 means the sign of the refractive power of the first lens (101, 201). For the performance of the optical system, the optical system can be set to have a shorter effective focal length compared to TTL. If Equation 3 is satisfied, the light incident from the object side to the first lens 101 and 201 can be spread in a direction away from the optical axis. The entire optical system can have a stable structure that spreads and collects light.
[수학식 3-1][Equation 3-1]
F6*F7 < 0F6*F7 < 0
수학식 3-1에서 F6는 제6렌즈(106,206)의 초점 거리이고, F7는 제7렌즈(107,207)의 초점 거리를 의미한다. 수학식 3-1의 조건을 통해 플라스틱 렌즈들의 초점 거리의 곱은 상호 보상할 수 있도록 음(-)의 굴절력과 양(+)의 굴절력을 혼합하여 배치할 수 있다. In Equation 3-1, F6 is the focal length of the sixth lens (106, 206), and F7 is the focal length of the seventh lens (107, 207). Through the conditions of Equation 3-1, the product of the focal lengths of the plastic lenses can be arranged by mixing negative (-) and positive (+) refractive powers to compensate for each other.
[수학식 4][Equation 4]
1.7 < n1 < 2.21.7 < n1 < 2.2
수학식 4에서 n1는 제1렌즈(101,201)의 d-line에서의 굴절률이다. 수학식 4는 제1렌즈의 굴절률을 높게 설정해 주어, 광학계의 3차 수차(자이델 수차) 감소에 영향을 주는 요소를 조절할 수 있으며, TTL이 다소 길어지면서 발생할 수 있는 수차를 감소할 수 있다. 수학식 4는 제1 내지 제2실시예에서 바람직하게, 1.75 < n1 < 2.1 를 만족할 수 있다. 수학식 4의 하한치보다 낮게 설계될 경우, 수차 감소에 있어 효능이 없을 수 있고, 제1렌즈의 파워가 약해져서 빛을 효율적으로 모으지 못하여 광학계의 성능이 떨어질 수 있다. 수학식 4의 상한치보다 높게 설계될 경우, 재료를 구하기 힘들어지는 단점이 있다. 또한 제1렌즈(101,201)의 굴절률이 수학식 4의 하한치보다 낮게 설계될 경우, 제1,2렌즈(101,201,102,202)의 굴절력을 증가하기 위해, 제1,2렌즈(101,201,102,202)의 곡률 반경을 증가시켜야 하며, 이 경우 렌즈 제작이 더 어려워지고 렌즈 불량률도 높아지고 수율이 저하될 수 있다.In Equation 4, n1 is the refractive index at the d-line of the first lens (101, 201). Equation 4 sets the refractive index of the first lens high, so that factors affecting the reduction of third-order aberration (Seidel aberration) of the optical system can be adjusted, and aberrations that may occur as the TTL becomes somewhat longer can be reduced. Equation 4 may preferably satisfy 1.75 < n1 < 2.1 in the first and second embodiments. If it is designed lower than the lower limit of Equation 4, it may not be effective in reducing aberrations, and the power of the first lens may be weakened so that light cannot be collected efficiently, which may deteriorate the performance of the optical system. If it is designed higher than the upper limit of Equation 4, there is a disadvantage in that it becomes difficult to obtain materials. In addition, when the refractive index of the first lens (101, 201) is designed to be lower than the lower limit of Equation 4, in order to increase the refractive power of the first and second lenses (101, 201, 102, 202), the radius of curvature of the first and second lenses (101, 201, 102, 202) must be increased. In this case, lens production becomes more difficult, the lens defect rate increases, and yield may decrease.
[수학식 4-1][Equation 4-1]
1.6 ≤ Aver(n1:n7) ≤ 1.71.6 ≤ Aver(n1:n7) ≤ 1.7
수학식 4-1에서 Aver(n1:n7)는 제1 내지 제7렌즈(101~107,201~207)의 d-line에서의 굴절률 값들의 평균이다. 실시예에 따른 광학계(1000,1500)가 수학식 4-1을 만족할 경우, 광학계(1000,1500)는 해상력을 설정할 수 있고 TTL에 영향을 억제할 수 있다. In Equation 4-1, Aver(n1:n7) is the average of the refractive index values in the d-line of the first to seventh lenses (101 to 107 and 201 to 207). When the optical systems 1000 and 1500 according to the embodiment satisfy Equation 4-1, the optical systems 1000 and 1500 can set resolution and suppress the influence on TTL.
[수학식 5][Equation 5]
27 < FOV_H < 3327 < FOV_H < 33
수학식 5에서 FOV_H는 수평 화각을 나타내며, 차량용 광학계의 범위를 설정할 수 있다. 수학식 5는 제1 내지 제2실시예에서 바람직하게, 28 ≤ FOV_H ≤ 31를 만족하거나, 29.9도±3도 범위를 만족할 수 있으며, 이때의 수평 방향의 센서 길이는 8.064mm±0.5mm를 기준으로 한다. 또한 수학식 5를 만족할 경우, 상온 대비 고온으로 온도가 변화할 때 유효초점 거리의 변화율과 화각의 변화율은 5% 이하 예컨대, 0 내지 5%로 설정해 줄 수 있다. 또한 광학계(1000,1500) 내에 플라스틱 렌즈를 2매 이상 예컨대, 3매 이상을 혼합하여 사용하더라도, 플라스틱 렌즈의 온도 보상을 통해 광학 특성의 저하를 방지할 수 있다. In Equation 5, FOV_H represents the horizontal angle of view, and the range of the vehicle optical system can be set. Equation 5 preferably satisfies 28 ≤ FOV_H ≤ 31 or satisfies the range of 29.9 degrees ± 3 degrees in the first and second embodiments, and the sensor length in the horizontal direction at this time is based on 8.064 mm ± 0.5 mm. Do it as In addition, when Equation 5 is satisfied, when the temperature changes from room temperature to high, the rate of change of the effective focal distance and the change rate of the angle of view can be set to 5% or less, for example, 0 to 5%. In addition, even if two or more plastic lenses, for example, three or more pieces, are mixed and used in the optical systems 1000 and 1500, degradation of optical characteristics can be prevented through temperature compensation of the plastic lenses.
[수학식 6][Equation 6]
(제1실시예) L3R1 > 0, L3R2 < 0(First embodiment) L3R1 > 0, L3R2 < 0
(제2실시예) L3R1 > 0, L3R2 < 0, |L3R1|=|L3R2|(Second embodiment) L3R1 > 0, L3R2 < 0, |L3R1|=|L3R2|
수학식 6에서 L3R1는 제3렌즈(103,203)의 물체측면의 곡률 반경이고, L3R2는 제3렌즈(103,203)의 센서측면의 곡률 반경이다. 제3렌즈(103,203)는 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(103,203)가 양면이 볼록한 형상을 갖게 되므로, 제3렌즈(103,203)의 센서측면에 배치된 제4 내지 제7렌즈(104,204,105,205,106,206,107,207)의 유효경이 커지지 않도록 광을 굴절시킬 수 있고, 렌즈 매수를 줄여줄 수 있다. 제2실시예에서 |L3R1|=|L3R2|의 조건을 갖게 되므로, 물체측면과 센서측면은 각각 동일한 곡률로 볼록한 형상을 가지므로 제3렌즈(103)의 일면 또는 타면을 어느 방향으로 배치하더라도 동일한 광학적 특성을 가질 수 있고, 이를 통해 렌즈의 조립이 용이해질 수 있다.In Equation 6, L3R1 is the radius of curvature of the object side of the third lens (103, 203), and L3R2 is the radius of curvature of the sensor side of the third lens (103, 203). The third lenses 103 and 203 may have convex shapes on both sides. Since the third lens (103, 203) has a convex shape on both sides, light can be refracted so that the effective diameter of the fourth to seventh lenses (104, 204, 105, 205, 106, 206, 107, 207) disposed on the sensor side of the third lens (103, 203) is not increased, and the number of lenses is can reduce. In the second embodiment, since there is a condition of |L3R1|=|L3R2|, the object side and the sensor side each have a convex shape with the same curvature, so no matter which direction one or the other side of the third lens 103 is placed, the same It may have optical properties, which may facilitate assembly of the lens.
[수학식 7][Equation 7]
1 < L7S2_max_sag to Sensor < 31 < L7S2_max_sag to Sensor < 3
수학식 7에서 L7S2_max_sag to Sensor는 제7렌즈(107,207)의 최대 Sag 값에서 이미지 센서(300)까지의 직선 거리를 의미한다. 이를 만족할 경우, TTL을 줄여줄 수 있으며, 카메라 모듈의 제작을 위한 조건을 설정할 수 있다. 또한 L7S2_max_sag to Sensor는 이미지 센서(300)과 제7렌즈(107,207) 사이에 위치하는 필터(500)와 커버 글라스(400)를 배치할 수 있는 공간을 설정할 수 있다. 수학식 7의 범위가 하한치보다 작을 경우, 필터 및 이미지 센서 등의 회로 구조물을 배치할 공간의 제약이 커져 필터 및 이미지 센서 등 회로 구조물을 광학계에 조립하는 공정이 어려워질 수 있다. 수학식 7의 범위가 상한치보다 커질 경우, 필터 및 이미지 센서 등의 회로 구조물을 광학계에 조립하는 공정이 용이하지만, TTL이 길어져 광학계의 소형화가 힘들게 된다. In Equation 7, L7S2_max_sag to Sensor means the straight line distance from the maximum Sag value of the seventh lens 107, 207 to the image sensor 300. If this is satisfied, the TTL can be reduced and conditions for manufacturing the camera module can be set. Additionally, L7S2_max_sag to Sensor can set a space where the filter 500 and cover glass 400 located between the image sensor 300 and the seventh lens 107 and 207 can be placed. If the range of Equation 7 is smaller than the lower limit, the space for placing circuit structures such as filters and image sensors becomes limited, making the process of assembling circuit structures such as filters and image sensors into the optical system difficult. If the range of Equation 7 is larger than the upper limit, the process of assembling circuit structures such as filters and image sensors into the optical system is easy, but the TTL becomes longer, making miniaturization of the optical system difficult.
즉, 수학식 7은 이미지 센서(300)와 마지막 렌즈 간의 최소 거리를 설정할 수 있으며, 바람직하게 1 < L7S2_max_sag to Sensor ≤ BFL를 만족할 수 있다. 또한 마지막 렌즈가 센서측면의 중심보다 이미지 센서 방향으로 더 돌출되는 지점(P2)이 없는 경우, 수학식 7의 값은 BFL(Back focal length)과 같을 수 있다. BFL은 이미지 센서(300)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리이다. 자세하게 2.5 < L7S2_max_sag to Sensor < 3.0을 만족하면 제작의 편의성과 TTL 축소가 더 용이하다.That is, Equation 7 can set the minimum distance between the image sensor 300 and the last lens, and preferably satisfies 1 < L7S2_max_sag to Sensor ≤ BFL. Additionally, if there is no point (P2) where the last lens protrudes further toward the image sensor than the center of the sensor side, the value of Equation 7 may be equal to the back focal length (BFL). BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. In detail, if 2.5 < L7S2_max_sag to Sensor < 3.0 is satisfied, it is easier to manufacture and reduce TTL.
[수학식 8] [Equation 8]
1 < CT1 / CT7 < 31 < CT1 / CT7 < 3
수학식 8에서 CT1은 제1렌즈(101,201)의 중심 두께이고, CT7은 제7렌즈(107,207)의 중심 두께이다. 수학식 8를 만족할 경우, 수차 특성을 개선하며, 광학계의 축소에 대한 영향을 설정할 수 있다. 수학식 8은 제1 내지 제2실시예에서 바람직하게, 1 < CT1 / CT7 < 2를 만족할 수 있다. 수학식 8은 광학계의 물체측 렌즈와 센서측 렌즈에 대해 유리 재질의 렌즈와 플라스틱 렌즈로 설정하고, 이들의 중심 두께 차이를 한정할 수 있다. 이에 따라 광학계의 색 수차를 개선할 수 있으며, 설정된 화각에서 양호한 광학 성능을 가지며 TTL(total track length)을 제어할 수 있다. In Equation 8, CT1 is the central thickness of the first lens (101, 201), and CT7 is the central thickness of the seventh lens (107, 207). If Equation 8 is satisfied, the aberration characteristics can be improved and the influence on the reduction of the optical system can be set. Equation 8 may preferably satisfy 1 < CT1 / CT7 < 2 in the first and second embodiments. Equation 8 sets the object-side lens and sensor-side lens of the optical system to a glass lens and a plastic lens, and can limit the difference in center thickness between them. Accordingly, chromatic aberration of the optical system can be improved, good optical performance can be achieved at a set viewing angle, and TTL (total track length) can be controlled.
[수학식 9][Equation 9]
1 < CT45 / CT6 < 51 < CT45 / CT6 < 5
수학식 9에서 CT45는 제4,5렌즈(104,204,105,205)의 중심 두께이며, 예컨대 접합렌즈(145)의 중심 두께이고, CT6은 제6렌즈(106,206)의 중심 두께이다. 광학계가 수학식 9를 만족할 경우, 접합 렌즈(145)와 이에 인접한 제6렌즈(106,206)의 두께를 설정해 주어, 수차 특성을 개선시켜 줄 수 있다. 수학식 9는 제1 내지 제2실시예에서 바람직하게 1 < CT45 / CT6 < 3 또는 1.5 < CT45 / CT6 < 2.5를 만족할 수 있다. CT45는 제1내지 제7렌즈 각각의 중심 두께(CT1 - CT7)보다 클 수 있다. 여기서, CT45 > ET45의 조건을 만족할 수 있다. In Equation 9, CT45 is the central thickness of the fourth and fifth lenses (104, 204, 105, and 205), for example, the central thickness of the bonded lens (145), and CT6 is the central thickness of the sixth lens (106, 206). If the optical system satisfies Equation 9, the aberration characteristics can be improved by setting the thickness of the bonded lens 145 and the sixth lenses 106 and 206 adjacent to it. Equation 9 may preferably satisfy 1 < CT45 / CT6 < 3 or 1.5 < CT45 / CT6 < 2.5 in the first and second embodiments. CT45 may be larger than the central thickness (CT1 - CT7) of each of the first to seventh lenses. Here, the condition CT45 > ET45 can be satisfied.
[수학식 10][Equation 10]
0.5 < CT45 - ET45 < 10.5 < CT45 - ET45 < 1
수학식 10에서 CT45는 제4,5렌즈(104,204,105,205)의 중심 두께이며, 예컨대 접합렌즈(145)의 중심 두께이고, ET45는 제4렌즈(104,204)의 물체측면의 유효 영역의 끝단에서 제5렌즈(105,205)의 센서측면의 유효 영역의 끝단까지의 광축 거리이다. 광학계가 수학식 10을 만족할 경우, 접합 렌즈의 중심 두께와 에지 두께를 설정해 주어, 수차 특성을 개선시켜 줄 수 있다. 수학식 10은 제1 내지 제2실시예에서 바람직하게 0.5 ≤ CT45 / ET45 < 0.5 를 만족할 수 있다. ET45는 제1내지 제7렌즈 각각의 에지 두께(ET1 - ET7)보다 클 수 있다.In Equation 10, CT45 is the central thickness of the fourth and fifth lenses (104, 204, 105, and 205), for example, the central thickness of the bonded lens (145), and ET45 is the central thickness of the fourth lens (104, 204) at the end of the effective area on the object side of the fifth lens (104, 204). (105,205) is the optical axis distance to the end of the effective area on the sensor side. If the optical system satisfies Equation 10, the aberration characteristics can be improved by setting the center thickness and edge thickness of the bonded lens. Equation 10 may preferably satisfy 0.5 ≤ CT45 / ET45 < 0.5 in the first and second embodiments. ET45 may be greater than the edge thickness (ET1 - ET7) of each of the first to seventh lenses.
[수학식 11][Equation 11]
0 < CA_L1S1 / CA_L4S1 < 20 < CA_L1S1 / CA_L4S1 < 2
수학식 11에서 CA_L1S1은 제1렌즈(101,201)의 제1면(S1)의 유효경를 의미하고, CA_L4S1은 제4렌즈(104,204)의 제7면(S7)의 유효경을 의미한다. 수학식 11을 만족할 경우, 광학계(1000,1500)는 입사되는 광을 제어할 수 있으며 수차에 영향을 주는 요소를 설정할 수 있다. 수학식 11은 제1실시예에서 바람직하게, 1 < CA_L1S1 / CA_L4S1 < 1.5를 만족할 수 있다. 수학식 11은 제2실시예에서 바람직하게, 1 < CA_L1S1 / CA_L4S1 < 1.2를 만족할 수 있다.In Equation 11, CA_L1S1 refers to the effective diameter of the first surface (S1) of the first lens (101, 201), and CA_L4S1 refers to the effective diameter of the seventh surface (S7) of the fourth lens (104, 204). If Equation 11 is satisfied, the optical systems 1000 and 1500 can control incident light and set factors affecting aberration. Equation 11 may preferably satisfy 1 < CA_L1S1 / CA_L4S1 < 1.5 in the first embodiment. Equation 11 may preferably satisfy 1 < CA_L1S1 / CA_L4S1 < 1.2 in the second embodiment.
[수학식 12][Equation 12]
0 < CA_L7S2 / CA_L5S2 < 20 < CA_L7S2 / CA_L5S2 < 2
수학식 12에서 CA_L5S2는 제5렌즈(105,205)의 제10면(S10)의 유효경을 의미하고, CA_L7S2는 제7렌즈(107,207)의 제14면(S14)의 유효경을 의미한다. 수학식 12를 만족할 경우, 광학계(1000,1500)는 입사되는 광 경로를 제어할 수 있고, CRA 및 온도에 따른 성능변화에 대한 요소를 설정할 수 있다. 바람직하게, 수학식 12는 제1실시예에서 0.5 < CA_L7S2 / CA_L5S2 < 1.5를 만족할 수 있다. 수학식 12는 제2실시예에서 0.5 < CA_L7S2 / CA_L5S2 < 1를 만족할 수 있다.In Equation 12, CA_L5S2 means the effective diameter of the 10th surface (S10) of the fifth lens (105, 205), and CA_L7S2 means the effective diameter of the 14th surface (S14) of the seventh lens (107, 207). If Equation 12 is satisfied, the optical systems 1000 and 1500 can control the incident light path and set factors for performance change according to CRA and temperature. Preferably, Equation 12 may satisfy 0.5 < CA_L7S2 / CA_L5S2 < 1.5 in the first embodiment. Equation 12 can satisfy 0.5 < CA_L7S2 / CA_L5S2 < 1 in the second embodiment.
[수학식 13][Equation 13]
0 < CA_L1S2 / CA_L2S1 < 20 < CA_L1S2 / CA_L2S1 < 2
수학식 13에서 CA_L1S2는 제1렌즈(101,201)의 제2면(S2)의 유효경을 의미하고, CA_L2S1는 제2렌즈(102,202)의 제3면(S3)의 유효경을 의미한다. 수학식 13을 만족할 경우, 광학계(1000,1500)는 제1렌즈군(LG1)과 제2렌즈군(LG2)으로 진행하는 광을 제어할 수 있고, 렌즈 민감도 감소에 영향을 주는 요소를 설정할 수 있다. 수학식 15는 제1실시예에서 바람직하게, 1 < CA_L1S2 / CA_L2S1 < 1.5를 만족할 수 있다. 수학식 15는 제2실시예에서 바람직하게, 0.5 < CA_L1S2 / CA_L2S1 < 1.2를 만족할 수 있다.In Equation 13, CA_L1S2 means the effective diameter of the second surface (S2) of the first lens (101, 201), and CA_L2S1 means the effective diameter of the third surface (S3) of the second lens (102, 202). If Equation 13 is satisfied, the optical system (1000, 1500) can control the light traveling to the first lens group (LG1) and the second lens group (LG2) and set factors that affect reduction of lens sensitivity. there is. Equation 15 may preferably satisfy 1 < CA_L1S2 / CA_L2S1 < 1.5 in the first embodiment. Equation 15 may preferably satisfy 0.5 < CA_L1S2 / CA_L2S1 < 1.2 in the second embodiment.
[수학식 14][Equation 14]
0.5 < CA_L4S1 / CA_L5S2 < 2.50.5 < CA_L4S1 / CA_L5S2 < 2.5
수학식 14에서 CA_L4S1는 제4렌즈(104,204)의 제7면(S7)의 유효경을 의미하고, CA_L5S2는 제5렌즈(105,205)의 제10면(S10)의 유효경을 의미한다. 광학계(1000,1500)가 수학식 14을 만족할 경우, 접합 렌즈의 크기를 설정할 수 있다. 수학식 14는 제1실시예에서 바람직하게, 0.8 ≤ CA_L4S1 / CA_L5S2 < 1.5를 만족할 수 있다. 수학식 14는 제2실시예에서 바람직하게, 1 ≤ CA_L4S1 / CA_L5S2 < 1.5를 만족할 수 있다.In Equation 14, CA_L4S1 refers to the effective diameter of the seventh surface (S7) of the fourth lens (104, 204), and CA_L5S2 refers to the effective diameter of the tenth surface (S10) of the fifth lens (105, 205). If the optical systems 1000 and 1500 satisfy Equation 14, the size of the bonded lens can be set. Equation 14 may preferably satisfy 0.8 ≤ CA_L4S1 / CA_L5S2 < 1.5 in the first embodiment. Equation 14 may preferably satisfy 1 ≤ CA_L4S1 / CA_L5S2 < 1.5 in the second embodiment.
[수학식 15][Equation 15]
2 < L3R1 / (CA_L3S1/2) < 52 < L3R1 / (CA_L3S1/2) < 5
수학식 15에서 L3R1은 제3렌즈(103,203)의 물체측면의 곡률반경이고, CA_L3S1는 제3렌즈(103,203)의 물체측 제5면(S5)의 유효경을 의미한다. 양면이 볼록한 제3렌즈(103,203)가 수학식 15를 만족할 경우, 광학계(1000,1500)는 색 수차를 개선할 수 있다. 수학식 15의 하한치 값보다 작은 경우, 제5면(S5)에 의한 수차 발생이 증가하게 되고, 상한치 값보다 큰 경우 제5면(S5)의 수차 발생은 줄어들지만, 제6면(S6)의 곡률 반경이 더 작아져야 하므로, 제6면(S6)에서 수차 발생이 증가하게 되고, 제4 내지 제7렌즈(104,204~107,207)의 수차에 영향을 미치는 문제가 있다. 바람직하게, 제1실시예에서 2 < L3R1 / (CA_L3S1/2) < 4 범위를 만족할 수 있다. 바람직하게, 제2실시예에서 3 < L3R1 / (CA_L3S1/2) < 4 범위를 만족할 수 있다. 제5면(S5)에 발생하는 수차를 줄이면서 제6면(S6)의 곡률반경을 크게 설계할 수 있어서 제3렌즈(103,203) 제작에 용이하다. 광학계에 발생하는 수차는 줄이고 제3렌즈(103,203)의 제작을 더 용이하게 하여 수율을 높일 수 있다. In Equation 15, L3R1 is the radius of curvature of the object side of the third lens (103, 203), and CA_L3S1 means the effective diameter of the fifth surface (S5) of the object side of the third lens (103, 203). When the biconvex third lenses 103 and 203 satisfy Equation 15, the optical systems 1000 and 1500 can improve chromatic aberration. If it is less than the lower limit value of Equation 15, the occurrence of aberration by the fifth surface (S5) increases, and if it is larger than the upper limit value, the occurrence of aberration by the fifth surface (S5) decreases, but the occurrence of aberration by the sixth surface (S6) increases. Since the radius of curvature must be smaller, the occurrence of aberrations increases on the sixth surface (S6), which has a problem affecting the aberrations of the fourth to seventh lenses (104, 204 to 107, 207). Preferably, in the first embodiment, the range 2 < L3R1 / (CA_L3S1/2) < 4 can be satisfied. Preferably, in the second embodiment, the range 3 < L3R1 / (CA_L3S1/2) < 4 can be satisfied. The curvature radius of the sixth surface (S6) can be designed to be large while reducing the aberration occurring in the fifth surface (S5), making it easy to manufacture the third lenses (103, 203). Aberrations occurring in the optical system can be reduced and manufacturing of the third lenses 103 and 203 can be made easier to increase yield.
[수학식 15-1] CA_L4 > CA_L5 > CA_L6 > CA_L7[Equation 15-1] CA_L4 > CA_L5 > CA_L6 > CA_L7
[수학식 15-2] CA_L7S1 < (Imgh*2)[Equation 15-2] CA_L7S1 < (Imgh*2)
수학식 15-1 내지 15-2에서 CA_L4, CA_L5, CA_L6, CA_L7는 제4 내지 7 렌즈(104,204-107,207)의 유효경(평균 유효경)이며, Imgh는 이미지 센서(300)의 대각 길이의 1/2이다. 이에 따라 제4렌즈(104,204)에서 제7렌즈(107,207)의 유효경에 의해 이미지 센서(300)의 영역으로 광 경로를 설정해 줄 수 있다. 제4,5렌즈(104,204,105,205) 및 제7렌즈(107,207)는 플라스틱 렌즈로 비구면을 갖고, 제6렌즈(106,206)은 유리 렌즈로 구면을 갖고 배치되므로, 렌즈들 간의 수차를 상호 보상할 수 있다. In Equations 15-1 to 15-2, CA_L4, CA_L5, CA_L6, and CA_L7 are the effective diameters (average effective diameters) of the fourth to seventh lenses 104,204-107,207, and Imgh is 1/2 of the diagonal length of the image sensor 300. am. Accordingly, an optical path can be set from the fourth lens 104 and 204 to the area of the image sensor 300 according to the effective diameter of the seventh lens 107 and 207. The fourth and fifth lenses (104, 204, 105, 205) and the seventh lenses (107, 207) are plastic lenses and have an aspherical surface, and the sixth lens (106, 206) is a glass lens and has a spherical surface, so that aberrations between the lenses can be mutually compensated.
[수학식 16][Equation 16]
1 < CA_GL_AVER/CA_PL_AVER < 1.51 < CA_GL_AVER/CA_PL_AVER < 1.5
수학식 16에서 CA_GL_AVER는 유리 렌즈들의 평균 유효경을 나타내며, CA_PL_AVER은 플라스틱 렌즈의 평균 유효경을 나타낸다. 수학식 16에서 유리 렌즈의 유효경 크기와 플라스틱 렌즈의 유효경 크기를 설정해 주어, 입사되는 광의 경로를 효과적을 가이드할 수 있다. 수학식 16는 제1 내지 제2실시예에서 바람직하게, 1 < CA_GL_AVER/CA_PL_AVER < 1.3를 만족할 수 있다. In Equation 16, CA_GL_AVER represents the average effective diameter of glass lenses, and CA_PL_AVER represents the average effective diameter of plastic lenses. By setting the effective diameter size of the glass lens and the effective diameter size of the plastic lens in Equation 16, the path of incident light can be effectively guided. Equation 16 may preferably satisfy 1 < CA_GL_AVER/CA_PL_AVER < 1.3 in the first and second embodiments.
여기서, nGL > nPL를 만족할 수 있다. nGL은 유리 재질의 렌즈 매수이며, nPL은 플라스틱 렌즈의 매수이다. 또한 nGL - nPL = 0 or 1의 조건을 만족할 수 있다.Here, nGL > nPL can be satisfied. nGL is the number of glass lenses, and nPL is the number of plastic lenses. Additionally, the condition nGL - nPL = 0 or 1 can be satisfied.
[수학식 17][Equation 17]
1.2 ≤ GL_CA1_AVER/PL_CA1_AVER ≤ 21.2 ≤ GL_CA1_AVER/PL_CA1_AVER ≤ 2
수학식 17에서 GL_CA1_AVER는 유리 재질의 렌즈들의 물체측면들의 유효경 평균이며, 예컨대 제1,2,3,6렌즈(101,201,102,202,103,203,106,206)의 물체측면들의 유효경 평균이다. PL_CA1_AVER는 플라스틱 재질의 렌즈들의 물체측면들의 유효경 평균이며, 예컨대 제4,5,7렌즈(104,204,105,205,107,207)의 물체측면들의 유효경 평균이다. 유리 렌즈의 대비 플라스틱 렌즈의 유효경 사이즈가 상대적으로 작게 설계되므로, 수학식 17은 만족할 수 있다. 수학식 17은 제1 내지 제2실시예에서 바람직하게, 1.3 ≤ GL_CA1_AVER/PL_CA1_AVER ≤ 1.8를 만족할 수 있다.In Equation 17, GL_CA1_AVER is the average effective diameter of the object sides of the glass lenses, for example, the average effective diameter of the object sides of the first, second, third, and sixth lenses (101, 201, 102, 202, 103, 203, 106, 206). PL_CA1_AVER is the average of the effective diameters of the object sides of the plastic lenses, for example, the average of the effective diameters of the object sides of the 4th, 5th, and 7th lenses (104, 204, 105, 205, 107, and 207). Since the effective diameter size of the plastic lens is designed to be relatively small compared to the glass lens, Equation 17 can be satisfied. Equation 17 may preferably satisfy 1.3 ≤ GL_CA1_AVER/PL_CA1_AVER ≤ 1.8 in the first and second embodiments.
[수학식 18][Equation 18]
CG3 < CG5 < CG1CG3 < CG5 < CG1
수학식 18에서 CG1는 제1,2 렌즈(101,201,102,202) 사이의 중심 간격이며, CG3은 제3,4 렌즈(103,203,104,204) 사이의 중심 간격이며, CG5는 제5,6 렌즈(105,205,106,206) 사이의 중심 간격일 수 있다. 수학식 18를 만족할 경우, 상대적으로 두꺼운 두께를 갖는 유리 렌즈들 사이의 중심 간격을 줄여 주어, TTL을 줄여줄 수 있고 화각(FOV)의 주변부의 광학 성능을 개선할 수 있다. In Equation 18, CG1 is the center spacing between the first and second lenses (101, 201, 102, 202), CG3 is the center spacing between the third and fourth lenses (103, 203, 104, 204), and CG5 is the center spacing between the 5th and 6th lenses (105, 205, 106, 206). It can be. If Equation 18 is satisfied, the center spacing between relatively thick glass lenses can be reduced, thereby reducing TTL and improving optical performance in the peripheral area of the field of view (FOV).
[수학식 19][Equation 19]
1 < CT7 / CG6 < 31 < CT7 / CG6 < 3
수학식 19에서 CG6는 제6,7 렌즈(106,206,107,207) 사이의 중심 간격 또는 광축 거리이다. 수학식 19에서 제7렌즈(107,207)의 중심 두께(CT7)와 제6,7 사이의 중심 간격을 설정해 주어, 화각의 주변부에서 광학 성능을 개선시켜 줄 수 있다. 수학식 19은 제1실시예에서 바람직하게, 1.1 < CT7/CG6 < 1.5를 만족할 수 있다. 수학식 19은 제2실시예에서 바람직하게, 2 < CT7/CG6 < 2.5를 만족할 수 있다.In Equation 19, CG6 is the center spacing or optical axis distance between the 6th and 7th lenses (106, 206, 107, and 207). In Equation 19, by setting the center thickness (CT7) of the seventh lens (107, 207) and the center spacing between the sixth and seventh lenses, optical performance can be improved at the periphery of the angle of view. Equation 19 may preferably satisfy 1.1 < CT7/CG6 < 1.5 in the first embodiment. Equation 19 can preferably satisfy 2 < CT7/CG6 < 2.5 in the second embodiment.
[수학식 20-1][Equation 20-1]
5 < |F6/F5| < 105 < |F6/F5| < 10
수학식 20-1는 F5는 제5렌즈(105)의 초점 거리이고, F6은 제6렌즈(106)의 초점 거리이다. 수학식 20-1에서 제5렌즈(105) 및 제6렌즈(106)의 초점 거리의 관계를 설정해줄 수 있다. 광학계(1000) 내에서 접합렌즈(145)를 기준으로 센서측에 배치되는 제6렌즈(106)의 초점 거리의 절대값은 가장 크게 형성되고, 접합렌즈(145)의 센서측에 배치되는 제5렌즈(105)의 초점 거리의 절대값은 가장 작게 형성된다. 이를 통해, 입사 효율을 증가시키고, 광학계의 굴절력을 조절하여 이미지 센서(300)로 가이드할 수 있다. 수학식 20-1는 제1실시예에서 바람직하게, 6 < |F6/F5| < 9를 만족할 수 있다. In Equation 20-1, F5 is the focal length of the fifth lens 105, and F6 is the focal length of the sixth lens 106. In Equation 20-1, the relationship between the focal lengths of the fifth lens 105 and the sixth lens 106 can be established. Within the optical system 1000, the absolute value of the focal length of the sixth lens 106 disposed on the sensor side with respect to the bonded lens 145 is formed to be the largest, and the fifth lens disposed on the sensor side of the bonded lens 145 The absolute value of the focal length of the lens 105 is set to be the smallest. Through this, incident efficiency can be increased and the refractive power of the optical system can be adjusted to guide the image sensor 300. Equation 20-1 is preferably expressed as 6 < |F6/F5| < 9 can be satisfied.
[수학식 20-2][Equation 20-2]
2(CG5+CG6) < CT452(CG5+CG6) < CT45
수학식 20-2에서 CT45는 접합 렌즈(245)의 중심 두께이다. 접합 렌즈의 중심 두께가 제5,6 렌즈 사이의 중심 간격(CG5)과 제6,7렌즈 사이의 중심 간격(CG6)의 합의 2배보다 크게 배치됨으로써, 해상도 및 색 수차를 개선시켜 줄 수 있고, 중심 간격들을 축소시켜 줄 수 있다.In Equation 20-2, CT45 is the central thickness of the bonded lens 245. By arranging the center thickness of the bonded lens to be greater than twice the sum of the center distance between the 5th and 6th lenses (CG5) and the center distance between the 6th and 7th lenses (CG6), resolution and chromatic aberration can be improved. , the center spacing can be reduced.
[수학식 21][Equation 21]
1 < CT1/CT2 < 21 < CT1/CT2 < 2
수학식 21에서 CT1은 제1렌즈(101,201)의 중심 두께이고, CT2는 제2렌즈(102,202)의 중심 두께이다. 수학식 21에서 제1렌즈의 중심 두께(CT1)를 제2렌즈의 중심 두께(CT2)보다 두껍게 설정해 줌으로써, 수차에 영향을 주는 요소를 제어할 수 있다. 바람직하게, 제1 내지 제2실시예에서 수학식 21은 1 < CT1/CT2 < 1.5를 만족할 수 있다. In Equation 21, CT1 is the central thickness of the first lens (101, 201), and CT2 is the central thickness of the second lens (102, 202). In Equation 21, by setting the center thickness (CT1) of the first lens to be thicker than the center thickness (CT2) of the second lens, factors affecting aberration can be controlled. Preferably, in the first and second embodiments, Equation 21 may satisfy 1 < CT1/CT2 < 1.5.
[수학식 22][Equation 22]
1 < L7R1 / CT7 < 2001 < L7R1 / CT7 < 200
수학식 22에서 L7R1는 제7렌즈(107,207)의 제13면(S13)의 곡률 반경이고, CT7은 제7렌즈(107,207)의 중심 두께이다. 수학식 22에서 제7렌즈(107,207)의 물체측면의 곡률 반경(L7R1)과 제7렌즈(107,207)의 중심 두께를 설정해 주어, 제7렌즈(107,207)의 굴절력을 제어할 수 있다. 이에 따라 화각의 중심부 및 주변부에서 양호한 광학 성능을 가질 수 있다. 바람직하게, 수학식 22는 제1실시예에서 180 < L7R1 / CT7 < 200를 만족할 수 있다. 수학식 22는 바람직하게 제2실시예에서 5 < L7R1 / CT7 < 10를 만족할 수 있다.In Equation 22, L7R1 is the radius of curvature of the 13th surface (S13) of the seventh lens (107, 207), and CT7 is the central thickness of the seventh lens (107, 207). In Equation 22, the radius of curvature (L7R1) of the object side of the seventh lens (107, 207) and the central thickness of the seventh lens (107, 207) are set to control the refractive power of the seventh lens (107, 207). Accordingly, good optical performance can be achieved in the center and periphery of the angle of view. Preferably, Equation 22 can satisfy 180 < L7R1 / CT7 < 200 in the first embodiment. Equation 22 can preferably satisfy 5 < L7R1 / CT7 < 10 in the second embodiment.
[수학식 23][Equation 23]
0 < CT_Max / CG_Max < 50 < CT_Max / CG_Max < 5
수학식 23에서 CT_Max는 렌즈들 중 최대 중심 두께이고, CG_Max는 인접한 렌즈들 사이의 최대 간격이다. 수학식 23를 만족할 경우, 광학계는 설정된 화각에서 초점거리에서 양호한 광학 성능을 가질 수 있고, TTL을 축소시켜 줄 수 있다. 수학식 23은 제1실시예에서 바람직하게, 0.1 < CT_Max / CG_Max < 0.5를 만족할 수 있다. 수학식 23은 제2실시예에서 바람직하게, 2 < CT_Max / CG_Max < 4를 만족할 수 있다.In Equation 23, CT_Max is the maximum central thickness among the lenses, and CG_Max is the maximum spacing between adjacent lenses. If Equation 23 is satisfied, the optical system can have good optical performance at the focal distance at the set angle of view and can reduce TTL. Equation 23 may preferably satisfy 0.1 < CT_Max / CG_Max < 0.5 in the first embodiment. Equation 23 may preferably satisfy 2 < CT_Max / CG_Max < 4 in the second embodiment.
[수학식 24][Equation 24]
1 < ΣCT / ΣCG < 71 < ΣCT / ΣCG < 7
수학식 24에서 ΣCT는 렌즈들의 중심 두께의 합이며, ΣCG는 인접한 렌즈들 사이의 간격들의 합이다. 수학식 24을 만족할 경우, 광학계는 설정된 화각에서 초점거리에서 양호한 광학 성능을 가질 수 있고, TTL을 축소시켜 줄 수 있다. 수학식 24는 제1실시예에서 바람직하게, 1 < ΣCT / ΣCG < 1.5를 만족할 수 있다. 수학식 24는 제2실시예에서 바람직하게, 5 < ΣCT / ΣCG < 7를 만족할 수 있다.In Equation 24, ΣCT is the sum of the central thicknesses of the lenses, and ΣCG is the sum of the spacing between adjacent lenses. If Equation 24 is satisfied, the optical system can have good optical performance at the focal length at the set angle of view and can reduce TTL. Equation 24 may preferably satisfy 1 < ΣCT / ΣCG < 1.5 in the first embodiment. Equation 24 may preferably satisfy 5 < ΣCT / ΣCG < 7 in the second embodiment.
[수학식 25][Equation 25]
10 < ΣIndex < 2010 < ΣIndex < 20
수학식 25에서 ΣIndex는 복수의 렌즈 각각의 d-line에서의 굴절률들의 합을 의미한다. 수학식 25를 만족할 경우, 플라스틱 렌즈와 유리 재질의 렌즈가 혼합된 광학계(1000,1500)에서 TTL을 제어할 수 있고, 향상된 해상력을 가질 수 있다. 또한 유리 재질의 렌즈 매수가 플라스틱 재질의 렌즈 매수보다 많은 경우, 상대적으로 두꺼운 두께를 갖는 유리 재질의 렌즈 매수가 많을 경우, TTL과 굴절률의 합을 설정할 수 있다. 수학식 25는 제1 내지 제2실시예에서 바람직하게, 10 <ΣIndex< 15 만족할 수 있다.In Equation 25, ΣIndex means the sum of the refractive indices at the d-line of each of the plurality of lenses. If Equation 25 is satisfied, TTL can be controlled in the optical system (1000, 1500) where plastic lenses and glass lenses are mixed, and improved resolution can be achieved. Additionally, when the number of lenses made of glass is greater than the number of lenses made of plastic, or if the number of lenses made of glass with a relatively thick thickness is greater, the sum of TTL and refractive index can be set. Equation 25 can preferably be satisfied as 10 <ΣIndex< 15 in the first and second embodiments.
[수학식 26][Equation 26]
10 < ΣAbb / ΣIndex < 3510 < ΣAbb / ΣIndex < 35
수학식 26에서 ΣAbb는 복수의 렌즈 각각의 아베수(Abbe's number)의 합을 의미한다. 수학식 26을 만족할 경우, 광학계(1000,1500)는 향상된 수차 특성 및 해상력을 가질 수 있다. 수학식 26를 렌즈들의 아베수 합과 굴절률의 합을 설정해 주어, 광학 특성을 제어할 수 있다. 수학식 26은 제1 내지 제2실시예에서 바람직하게 20 < ΣAbb / ΣIndex < 30를 만족할 수 있다. In Equation 26, ΣAbb means the sum of Abbe's numbers of each of the plurality of lenses. When Equation 26 is satisfied, the optical systems 1000 and 1500 can have improved aberration characteristics and resolution. Optical characteristics can be controlled by using Equation 26 to set the sum of the Abbe numbers and refractive indices of the lenses. Equation 26 may preferably satisfy 20 < ΣAbb / ΣIndex < 30 in the first and second embodiments.
[수학식 27][Equation 27]
1 < ΣCT / ΣET < 21 < ΣCT / ΣET < 2
수학식 27에서 ΣCT는 렌즈들의 중심 두께의 합이며, ΣET는 렌즈들의 유효 영역의 끝단 즉, 에지 두께들의 합이다. 수학식 27을 만족할 경우, 광학계는 설정된 화각에서 초점거리에서 양호한 광학 성능을 가질 수 있고, TTL을 축소시켜 줄 수 있다. 수학식 27은 제1 내지 제2실시예에서 바람직하게, 1 < ΣCT / ΣET < 1.5를 만족할 수 있다.In Equation 27, ΣCT is the sum of the center thicknesses of the lenses, and ΣET is the end of the effective area of the lenses, that is, the sum of the edge thicknesses. If Equation 27 is satisfied, the optical system can have good optical performance at the focal distance at the set angle of view and can reduce TTL. Equation 27 may preferably satisfy 1 < ΣCT / ΣET < 1.5 in the first and second embodiments.
[수학식 28][Equation 28]
1 < CA_L3S1 / CA_min < 21 < CA_L3S1 / CA_min < 2
수학식 28에서 CA_L3S1는 제3렌즈(102,202)의 물체측 제5면(S5)의 유효경이며, CA_Min은 렌즈들의 물체측면들과 센서측면들 중 최소 유효경을 나타낸다. 수학식 28을 만족할 경우, 광학계는 입사광 제어, 광학 성능 유지하며 보다 슬림한 모듈을 제공할 수 있다. 수학식 28은 제1실시예에서 바람직하게, 1.5 < CA_L2S1 / CA_min < 2를 만족할 수 있다. 수학식 28은 제2실시예에서 바람직하게, 1 < CA_L2S1 / CA_min < 1.5를 만족할 수 있다.In Equation 28, CA_L3S1 is the effective diameter of the object-side fifth surface S5 of the third lens 102 and 202, and CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses. If Equation 28 is satisfied, the optical system can control incident light, maintain optical performance, and provide a slimmer module. Equation 28 may preferably satisfy 1.5 < CA_L2S1 / CA_min < 2 in the first embodiment. Equation 28 may preferably satisfy 1 < CA_L2S1 / CA_min < 1.5 in the second embodiment.
[수학식 29][Equation 29]
1 < CA_max / CA_min < 31 < CA_max / CA_min < 3
수학식 29에서 CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타내고, CA_Min은 렌즈들의 물체측면들과 센서측면들 중 최소 유효경을 나타낸다. 수학식 29를 만족할 경우, 광학계는 광학 성능을 유지하며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 수학식 29는 제1실시예에서 바람직하게, 1 < CA_max / CA_min < 2.5를 만족할 수 있다. 수학식 29는 제2실시예에서 바람직하게, 1 < CA_max / CA_min < 2를 만족할 수 있다.In Equation 29, CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses. If Equation 29 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. Equation 29 may preferably satisfy 1 < CA_max / CA_min < 2.5 in the first embodiment. Equation 29 may preferably satisfy 1 < CA_max / CA_min < 2 in the second embodiment.
[수학식 30][Equation 30]
1 < CA_max / CA_Aver < 31 < CA_max / CA_Aver < 3
수학식 30에서 CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타내고, CA_Aver는 렌즈들의 물체측면들과 센서측면들의 유효경의 평균을 나타낸다. 수학식 30을 만족할 경우, 광학계는 광학 성능을 유지하며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 수학식 30은 제1 내지 제2실시예에서 바람직하게, 1 < CA_max / CA_Aver < 1.5를 만족할 수 있다.In Equation 30, CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 30 is satisfied, the optical system can maintain optical performance and set a size for a slim and compact structure. Equation 30 may preferably satisfy 1 < CA_max / CA_Aver < 1.5 in the first and second embodiments.
[수학식 31][Equation 31]
0.5 < CA_min / CA_Aver < 10.5 < CA_min / CA_Aver < 1
수학식 31에서 CA_Min은 렌즈들의 물체측면들과 센서측면들 중 최소 유효경을 나타내고, CA_Aver는 렌즈들의 물체측면들과 센서측면들의 유효경의 평균을 나타낸다. 수학식 31를 만족할 경우, 광학계는 광학 성능을 유지하며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 수학식 31은 제1 내지 제2실시예에서 바람직하게, 0.5 < CA_min / CA_Aver < 0.8를 만족할 수 있다.In Equation 31, CA_Min represents the minimum effective diameter of the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 31 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. Equation 31 may preferably satisfy 0.5 < CA_min / CA_Aver < 0.8 in the first and second embodiments.
[수학식 32][Equation 32]
1 < CA_max / (2*ImgH) < 31 < CA_max / (2*ImgH) < 3
수학식 32는 CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타내고, Imgh는 이미지 센서(300)의 광축에서 대각 방향의 길이를 의미한다. 수학식 32를 만족할 경우, 광학계는 양호한 광학 성능을 유지할 수 있으며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 수학식 32는 제1 내지 제2실시예에서 바람직하게, 1 < CA_max / (2*ImgH) < 2를 만족할 수 있다. In Equation 32, CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and Imgh represents the length in the diagonal direction from the optical axis of the image sensor 300. If Equation 32 is satisfied, the optical system can maintain good optical performance and set a size for a slim and compact structure. Equation 32 may preferably satisfy 1 < CA_max / (2*ImgH) < 2 in the first and second embodiments.
[수학식 33][Equation 33]
1 < TD / CA_max < 41 < TD / CA_max < 4
수학식 33에서 TD는 제1렌즈(101,201)의 물체측면의 중심에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리이고, CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타낸다. 수학식 33을 만족할 경우, 렌즈들의 전체 광축 거리와 최대 유효경을 설정할 수 있어, 양호한 광학 성능을 위한 크기를 설정할 수 있다. 수학식 33은 제1 내지 제2실시예에서 바람직하게, 2 < TD / CA_max < 3를 만족할 수 있다. In Equation 33, TD is the optical axis distance from the center of the object side of the first lens (101, 201) to the center of the sensor side of the last lens, and CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses. If Equation 33 is satisfied, the total optical axis distance and maximum effective diameter of the lenses can be set, and the size for good optical performance can be set. Equation 33 may preferably satisfy 2 < TD / CA_max < 3 in the first and second embodiments.
[수학식 34][Equation 34]
0 < F / L1R1 < 1 0 < F / L1R1 < 1
수학식 34에서 F는 광학계의 유효 초점 거리이고, L1R1은 제1렌즈(101,201)의 물체측면의 곡률 반경이다. 수학식 34를 만족할 경우, 입사 광과 TTL에 대한 영향을 조절할 수 있다. 수학식 34는 제1 내지 제2실시예에서 바람직하게, 0.5 ≤ F / L1R1 < 1를 만족할 수 있다.In Equation 34, F is the effective focal length of the optical system, and L1R1 is the radius of curvature of the object side of the first lens (101, 201). If Equation 34 is satisfied, the influence on incident light and TTL can be adjusted. Equation 34 may preferably satisfy 0.5 ≤ F / L1R1 < 1 in the first and second embodiments.
[수학식 35][Equation 35]
1 < Max_th/Min_th < 31 < Max_th/Min_th < 3
수학식 35에서 Max_th 는 렌즈의 가장 두꺼운 영역의 두께이고, Min_th 은 렌즈의 가장 얇은 영역의 두께이다. 렌즈의 가장 두꺼운 두께인 Max_th은 렌즈의 중심 두께(CT)일 수 있고, 렌즈의 가장 얇은 두께인 Min_th은 렌즈의 에지 두께(ET)일 수 있으나, 반대 경우도 가능하다. 렌즈의 가장 두꺼운 두께인 Max_th은 렌즈의 에지 두께(ET)이고, 렌즈의 가장 얇은 두께인 Min_th은 렌즈의 중심 두께(CT)일 수 있다. 에지 두께(ET)는 유효경 끝단에서 두께를 의미한다. 수학식 35를 만족할 경우, 광학계는 유효 초점 거리에 대한 영향을 조절할 수 있다. 수학식 35는 제1실시예에서 바람직하게, 1 < MAX_th/MIN_th ≤ 2의 조건을 만족할 수 있다. 수학식 35는 제2실시예에서 바람직하게, 2 < MAX_th/MIN_th ≤ 3의 조건을 만족할 수 있다.In Equation 35, Max_th is the thickness of the thickest area of the lens, and Min_th is the thickness of the thinnest area of the lens. Max_th, the thickest thickness of the lens, may be the center thickness (CT) of the lens, and Min_th, the thinnest thickness of the lens, may be the edge thickness (ET) of the lens, but the opposite case is also possible. Max_th, the thickest thickness of the lens, may be the edge thickness (ET) of the lens, and Min_th, the thinnest thickness of the lens, may be the center thickness (CT) of the lens. Edge thickness (ET) refers to the thickness at the end of the effective diameter. If Equation 35 is satisfied, the optical system can control the effect on the effective focal length. Equation 35 may preferably satisfy the condition of 1 < MAX_th/MIN_th ≤ 2 in the first embodiment. Equation 35 may preferably satisfy the condition of 2 < MAX_th/MIN_th ≤ 3 in the second embodiment.
여기서, 플라스틱 렌즈의 최대 두께와 최소 두께의 비율은 하기 조건을 만족할 수 있다. Max_PL_th은 플라스틱 렌즈의 가장 두꺼운 영역의 두께값이고, Min_PL_th은 플라스틱 렌즈의 가장 얇은 영역의 두께값이다. Max_PL_th은 플라스틱 렌즈의 중심 두께(CT)일 수 있고, Min_PL_th은 플라스틱 렌즈의 에지 두께(ET)일 수 있다. 에지 두께(ET)는 유효경 끝단에서 두께를 의미한다. 반대의 경우도 가능하다. Max_PL_th은 플라스틱 렌즈의 에지 두께(ET)일 수 있고, Min_PL_th은 플라스틱 렌즈의 중심 두께(CT)일 수 있다. 에지 두께(ET)는 유효경 끝단에서 두께를 의미한다.Here, the ratio between the maximum thickness and minimum thickness of the plastic lens may satisfy the following conditions. Max_PL_th is the thickness value of the thickest area of the plastic lens, and Min_PL_th is the thickness value of the thinnest area of the plastic lens. Max_PL_th may be the center thickness (CT) of the plastic lens, and Min_PL_th may be the edge thickness (ET) of the plastic lens. Edge thickness (ET) refers to the thickness at the end of the effective diameter. The opposite case is also possible. Max_PL_th may be the edge thickness (ET) of the plastic lens, and Min_PL_th may be the center thickness (CT) of the plastic lens. Edge thickness (ET) refers to the thickness at the end of the effective diameter.
조건1: 1 < Max_PL_th/Min_PL_th< 2.5 Condition 1: 1 < Max_PL_th/Min_PL_th < 2.5
조건1의 범위 하한치보다 작은 경우, 플라스틱 렌즈의 제작이 어렵다. 즉, 고온의 수지를 주입하여 저온에서 경화시켜 제작하는 데, 두께 차이가 크면, 렌즈가 저온에서 식으면서 수축이 균일하지 않게 되어 표면의 불량률이 높을 수 있다. 또한 조건1의 범위보다 큰 경우, -40도에서 105,205도까지 온도가 바뀌면서 플라스틱 렌즈가 수축, 팽창하는 데, 이 과정에서 렌즈 형상의 변화율이 크게 나타나고, 이로 인해 광학계 성능이 저하될 수 있다.If it is smaller than the lower limit of condition 1, it is difficult to manufacture a plastic lens. In other words, it is manufactured by injecting high-temperature resin and curing it at low temperature. If the difference in thickness is large, the shrinkage may not be uniform as the lens cools at low temperature, resulting in a high surface defect rate. Additionally, if the range is larger than Condition 1, the plastic lens shrinks and expands as the temperature changes from -40 degrees to 105,205 degrees. During this process, the rate of change in the shape of the lens increases significantly, which may deteriorate the performance of the optical system.
바람직하게, 1.0 < Max_PL_th/Min_PL_th < 1.8 및 1.0 < Max_PL_th/Min_PL_th < 1.5의 조건을 만족할 수 있다.Preferably, the conditions of 1.0 < Max_PL_th/Min_PL_th < 1.8 and 1.0 < Max_PL_th/Min_PL_th < 1.5 may be satisfied.
[수학식 36][Equation 36]
0 < EPD / |L1R1| < 10 < EPD / |L1R1| < 1
수학식 36에서 EPD는 광학계(1000,1500)의 입사동(Entrance Pupil)의 크기(mm)를 의미하고, L1R1는 제1렌즈(101,201)의 제1면(S1)의 곡률 반경을 의미한다. 실시예에 따른 광학계(1000,1500)가 수학식 36를 만족할 경우, 광학계(1000,1500)는 입사광을 제어할 수 있다. 수학식 36은 제1 내지 제2실시예에서 바람직하게, 0.3 < EPD / |L1R1| ≤ 0.9의 조건을 만족할 수 있다.In Equation 36, EPD means the size (mm) of the entrance pupil of the optical system (1000, 1500), and L1R1 means the radius of curvature of the first surface (S1) of the first lens (101, 201). When the optical systems 1000 and 1500 according to the embodiment satisfy Equation 36, the optical systems 1000 and 1500 can control incident light. Equation 36 is preferably 0.3 < EPD / |L1R1| The condition of ≤ 0.9 can be satisfied.
[수학식 37][Equation 37]
Po4 * Po5 < 0 Po4 * Po5 < 0
수학식 37에서 Po4는 제4렌즈(104,204)의 굴절력 값이며, Po5는 제5렌즈(105,205)의 굴절력 값이다. 즉, 제4,5렌즈(104,204,105,205)의 굴절력은 서로 반대되는 굴절력을 갖고 있어, 수차를 개선할 수 있으며, 이미지 센서로 광을 효과적으로 가이드할 수 있다. Po4 * Po5 > 0의 조건인 경우, 접합렌즈에서의 색수차의 개선 효과가 크게 나타나지 않는다. In Equation 37, Po4 is the refractive power value of the fourth lens (104, 204), and Po5 is the refractive power value of the fifth lens (105, 205). That is, the fourth and fifth lenses 104, 204, 105, and 205 have opposite refractive powers, so aberrations can be improved and light can be effectively guided to the image sensor. In the case of Po4 * Po5 > 0, the effect of improving chromatic aberration in the bonded lens is not significant.
[수학식 38][Equation 38]
30 < v4-v5 < 4030 < v4-v5 < 40
수학식 38에서 v4는 제4렌즈(104,204)의 아베수이며, V5는 제5렌즈(105,205)의 아베수이다. 수학식 38를 만족할 경우, 접합 렌즈를 이루는 적어도 두 렌즈의 아베수 차이를 일정 값 이상으로 유지할 수 있으며, 색수차를 개선시켜 줄 수 있다. 수학식 38은 제1 내지 제2실시예에서 바람직하게, 30 ≤ v4-v5 ≤ 35를 만족할 수 있다. 접합 렌즈가 수학식 38의 하한치의 미만인 경우, 광학계의 수차 특성을 개선하는 데 미미할 수 있다. 이에 따라 접합 렌즈 내의 물체측 렌즈와 센서측 렌즈의 아베수 차이는 30 이상 35이하일 경우, 수차 특성을 향상시켜 줄 수 있다.In Equation 38, v4 is the Abbe number of the fourth lens (104,204), and V5 is the Abbe number of the fifth lens (105,205). If Equation 38 is satisfied, the difference in Abbe number between at least two lenses forming the bonded lens can be maintained above a certain value, and chromatic aberration can be improved. Equation 38 may preferably satisfy 30 ≤ v4-v5 ≤ 35 in the first and second embodiments. If the bonded lens is less than the lower limit of Equation 38, there may be little improvement in the aberration characteristics of the optical system. Accordingly, if the difference in Abbe number between the object-side lens and the sensor-side lens in the bonded lens is 30 or more and 35 or less, aberration characteristics can be improved.
[수학식 39][Equation 39]
0 < |F1| / F < 100 < |F1| / F < 10
수학식 39은 F는 광학계의 유효 초점 거리이고, F1은 제1렌즈(101,201)의 초점 거리이다. 수학식 39를 만족할 경우, 차량 광학계에 적용되는 TTL를 설정할 수 있다. 수학식 39은 제1 내지 제2실시예에서 바람직하게, 1 < |F1| / F < 7를 만족할 수 있다.In Equation 39, F is the effective focal length of the optical system, and F1 is the focal length of the first lenses 101 and 201. If Equation 39 is satisfied, the TTL applied to the vehicle optical system can be set. Equation 39 is preferably expressed as 1 < |F1| in the first and second embodiments. / F < 7 can be satisfied.
[수학식 40][Equation 40]
F_LG1/F_LG2 < 0F_LG1/F_LG2 < 0
수학식 40에서 F_LG1은 제1렌즈군(LG1)의 초점 거리이고, F_LG2는 제2렌즈군(F_LG2)의 초점 거리이다. 제1렌즈군의 초점 거리는 음의 값을 갖고, 제2렌즈군의 초점 거리는 양의 값을 가질 수 있다. 수학식 40를 만족할 경우, 광학계(1000,1500)는 색수차 및 왜곡 수차 등의 수차 특성을 개선할 수 있다. 수학식 40는 제1실시예에서 바람직하게, 5 < |F_LG1/F_LG2| < 8를 만족할 수 있다. 수학식 40는 제2실시예에서 바람직하게, 8 < |F_LG1/F_LG2| < 12를 만족할 수 있다.In Equation 40, F_LG1 is the focal length of the first lens group (LG1), and F_LG2 is the focal length of the second lens group (F_LG2). The focal length of the first lens group may have a negative value, and the focal distance of the second lens group may have a positive value. When Equation 40 is satisfied, the optical systems 1000 and 1500 can improve aberration characteristics such as chromatic aberration and distortion aberration. Equation 40 is preferably in the first embodiment, 5 < |F_LG1/F_LG2| < 8 can be satisfied. Equation 40 is preferably in the second embodiment, 8 < |F_LG1/F_LG2| < 12 can be satisfied.
[수학식 41][Equation 41]
0.1 < nGL /nPL < 20.1 < nGL /nPL < 2
수학식 41에서 nGL은 유리 재질의 렌즈 매수이고, nPL은 플라스틱 렌즈 매수를 나타낸다. 수학식 41에서 유리 재질의 렌즈 매수를 플라스틱 재질의 렌즈 매수 대비해 1배 초과 2배 미만이 되도록 배치함으로써, 광학계의 두께를 감소시켜 줄 수 있고 비구면을 통해 보다 다양한 굴절력을 제공할 수 있다. 수학식 41은 제1실시예에서 바람직하게, 1 < nGL /nPL < 1.5를 만족할 수 있다. 수학식 41은 제2실시예에서 바람직하게, 0.1 < nGL /nPL < 1를 만족할 수 있다.In Equation 41, nGL represents the number of glass lenses, and nPL represents the number of plastic lenses. In Equation 41, by arranging the number of glass lenses to be more than 1 and less than 2 times the number of plastic lenses, the thickness of the optical system can be reduced and more diverse refractive power can be provided through the aspherical surface. Equation 41 may preferably satisfy 1 < nGL /nPL < 1.5 in the first embodiment. Equation 41 can preferably satisfy 0.1 < nGL /nPL < 1 in the second embodiment.
[수학식 42][Equation 42]
CA_L7 ≤ CA_L3 < CA_L1CA_L7 ≤ CA_L3 < CA_L1
수학식 42에서 CA_L1은 제1렌즈(101,201)의 물체측면과 센서측면의 평균 유효경이고, CA_L3은 제3렌즈(103,203)의 물체측면과 센서측면의 평균 유효경이고, CA_L7은 제7렌즈(107,207)의 물체측면과 센서측면의 평균 유효경이다. 수학식 42를 만족할 경우, 제1,2렌즈군을 설정할 수 있으며, 제2렌즈군(LG2)의 첫 번째 렌즈를 통해 수차를 개선시켜 줄 수 있다. CA_L1는 광학계에서 최대 유효경을 가질 수 있다. In Equation 42, CA_L1 is the average effective diameter of the object side and the sensor side of the first lens (101, 201), CA_L3 is the average effective diameter of the object side and the sensor side of the third lens (103, 203), and CA_L7 is the average effective diameter of the seventh lens (107, 207). This is the average effective diameter of the object side and the sensor side. If Equation 42 is satisfied, the first and second lens groups can be set, and the aberration can be improved through the first lens of the second lens group (LG2). CA_L1 can have the maximum effective diameter in the optical system.
[수학식 43][Equation 43]
0 < ΣPL_CT / ΣGL_CT < 10 < ΣPL_CT / ΣGL_CT < 1
수학식 43에서 ΣPL_CT는 플라스틱 렌즈(들)의 중심 두께 합이며, ΣGL_CT는 유리 렌즈들의 중심 두께의 합이다. 수학식 43를 만족할 경우, TTL 대비 플라스틱 렌즈의 두께와 유리 렌즈의 두께 관계를 설정해 주어 전체 TTL를 제어할 수 있다. 수학식 43는 제1실시예에서 바람직하게, 0.3 < ΣPL_CT/ΣGL_CT < 0.8를 만족할 수 있다. 수학식 43는 제2실시예에서 바람직하게, 0.5 < ΣPL_CT/ΣGL_CT < 1를 만족할 수 있다.In Equation 43, ΣPL_CT is the sum of the center thicknesses of the plastic lens(s), and ΣGL_CT is the sum of the center thicknesses of the glass lenses. If Equation 43 is satisfied, the entire TTL can be controlled by setting the relationship between the thickness of the plastic lens and the thickness of the glass lens compared to TTL. Equation 43 may preferably satisfy 0.3 < ΣPL_CT/ΣGL_CT < 0.8 in the first embodiment. Equation 43 may preferably satisfy 0.5 < ΣPL_CT/ΣGL_CT < 1 in the second embodiment.
[수학식 44][Equation 44]
0 < ΣPL_Index / ΣGL_Index < 20 < ΣPL_Index / ΣGL_Index < 2
수학식 44에서 ΣPL_Index는 플라스틱 렌즈(들)의 d-line에서 굴절률 두께 합이며, ΣGL_Index는 유리 렌즈들의 d-line에서의 굴절률의 합이다. 수학식 44을 만족할 경우, 플라스틱 렌즈와 유리 렌즈의 굴절률 관계를 설정해 주어 전체 해상력을 제어할 수 있다. 수학식 44는 제1실시예에서 바람직하게, 0.5 < ΣPL_Index / ΣGL_Index < 1를 만족할 수 있다. 수학식 44는 제2실시예에서 바람직하게, 1 < ΣPL_Index / ΣGL_Index < 1.5를 만족할 수 있다.In Equation 44, ΣPL_Index is the sum of the refractive index thicknesses in the d-line of the plastic lens(s), and ΣGL_Index is the sum of the refractive indices in the d-line of the glass lenses. If Equation 44 is satisfied, the overall resolution can be controlled by setting the refractive index relationship between the plastic lens and the glass lens. Equation 44 may preferably satisfy 0.5 < ΣPL_Index / ΣGL_Index < 1 in the first embodiment. Equation 44 may preferably satisfy 1 < ΣPL_Index / ΣGL_Index < 1.5 in the second embodiment.
[수학식 45][Equation 45]
10 < TTL < 4510 < TTL < 45
수학식 45에서 TTL(Total track length)은 제1렌즈(101,201)의 제1면(S1)의 중심에서 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리(mm)를 의미한다. 수학식 45에서 TTL을 10 초과 또는 20 초과되도록 하여, 차량용 광학계를 제공할 수 있다. 수학식 45는 제1 내지 제2실시예에서 바람직하게, 30 < TTL ≤ 40를 만족하거나 TD < TTL의 조건을 만족할 수 있다. In Equation 45, total track length (TTL) means the distance (mm) from the center of the first surface (S1) of the first lens (101, 201) to the upper surface of the image sensor (300) on the optical axis (OA). By setting the TTL to exceed 10 or 20 in Equation 45, an optical system for a vehicle can be provided. Equation 45 may preferably satisfy the condition of 30 < TTL ≤ 40 or TD < TTL in the first and second embodiments.
[수학식 46][Equation 46]
2 < ImgH < 102 < ImgH < 10
수학식 46는 이미지 센서(300)의 대각 크기(2*ImgH)를 설정할 수 있으며, 차량용 센서 사이즈를 갖는 광학계를 제공할 수 있다. 수학식 46는 제1 내지 제2실시예에서 바람직하게, 4 ≤ ImgH < 6를 만족할 수 있다. Equation 46 can set the diagonal size (2*ImgH) of the image sensor 300 and provide an optical system having a sensor size for a vehicle. Equation 46 may preferably satisfy 4 ≤ ImgH < 6 in the first and second embodiments.
[수학식 47][Equation 47]
1 < BFL < 3.51 < BFL < 3.5
수학식 47에서 BFL은 이미지 센서(300)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리이다. 수학식 47을 만족할 경우, 필터(500) 및 커버 글라스(400)의 설치 공간을 확보할 수 있고 이미지 센서(300)와 마지막 렌즈 사이의 간격을 통해 구성 요소들의 조립성을 개선하며 결합 신뢰성을 개선할 수 있다. 수학식 47는 제1 내지 제2실시예에서 바람직하게, 1.5≤ BFL ≤3를 만족할 수 있다. BFL이 수학식 47의 범위 미만인 경우 이미지 센서로 진행되는 일부 광이 이미지 센서로 전달되지 못하여 해상도 저하의 원이 될 수 있다. BFL이 수학식 47의 범위를 초과하는 경우 잡광이 유입되어 광학계의 수차 특성이 저하될 수 있다.In Equation 47, BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. If Equation 47 is satisfied, the installation space for the filter 500 and the cover glass 400 can be secured, the assembling of the components is improved through the gap between the image sensor 300 and the last lens, and the coupling reliability is improved. can do. Equation 47 may preferably satisfy 1.5≤BFL≤3 in the first and second embodiments. If the BFL is less than the range of Equation 47, some of the light traveling to the image sensor may not be transmitted to the image sensor, which may cause resolution deterioration. If the BFL exceeds the range of Equation 47, stray light may enter and the aberration characteristics of the optical system may deteriorate.
[수학식 48][Equation 48]
3 < F < 403 < F < 40
수학식 48는 전체 초점 거리(F)를 차량용 광학계에 맞게 설정할 수 있다. 수학식 48는 제1 내지 제2실시예에서 바람직하게, 5 < F < 20를 만족할 수 있다.Equation 48 can set the overall focal length (F) to suit the vehicle optical system. Equation 48 may preferably satisfy 5 < F < 20 in the first and second embodiments.
[수학식 49][Equation 49]
FOV < 45FOV < 45
수학식 49에서 FOV(Field of view)는 광학계(1000,1500)의 화각(Degree)을 의미하며, 45도 미만의 차량용 광학계를 제공할 수 있다. FOV는 제1 내지 제2실시예에서 바람직하게, 20 ≤ FOV ≤ 40를 만족할 수 있다.In Equation 49, FOV (Field of view) refers to the angle of view (Degree) of the optical system (1000, 1500), and can provide a vehicle optical system with an angle of less than 45 degrees. In the first and second embodiments, the FOV may preferably satisfy 20 ≤ FOV ≤ 40.
[수학식 50][Equation 50]
1 < TTL / CA_max < 51 < TTL / CA_max < 5
수학식 50에서 CA_max는 복수의 렌즈들의 물체측면 및 센서측면 중 가장 큰 유효경(mm)를 의미하며, TTL(Total track length)은 제1렌즈(101,201)의 제1면(S1)의 정점으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리(mm)를 의미한다. 수학식 50는 광학계의 전체 광축 길이와 최대 유효경의 관계를 설정하여, 개선된 차량용 광학계를 제공할 수 있다. 수학식 50는 제1 내지 제2실시예에서 바람직하게, 1.5 < TTL / CA_max ≤ 3를 만족할 수 있다.In Equation 50, CA_max refers to the largest effective diameter (mm) among the object side and sensor side of the plurality of lenses, and TTL (Total track length) refers to the image from the vertex of the first surface (S1) of the first lens (101, 201). It means the distance (mm) from the optical axis (OA) to the upper surface of the sensor 300. Equation 50 establishes the relationship between the total optical axis length of the optical system and the maximum effective diameter, thereby providing an improved optical system for vehicles. Equation 50 may preferably satisfy 1.5 < TTL / CA_max ≤ 3 in the first and second embodiments.
[수학식 51][Equation 51]
2 < TTL / ImgH < 102 <TTL/ImgH<10
수학식 51는 TTL(Total track length)은 제1렌즈의 제1면(S1)의 정점으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리(mm)를 의미하고, ImgH는 이미지 센서(300)의 대각 크기를 의미한다. 수학식 51를 만족할 경우, 광학계(1000,1500)는 차량용 이미지 센서(300)의 적용을 위한 TTL을 가질 수 있어, 보다 개선된 화질을 제공할 수 있다. 수학식 51는 제1 내지 제2실시예에서 바람직하게, 4 < TTL / ImgH < 10를 만족할 수 있다.In Equation 51, TTL (Total track length) means the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens to the upper surface of the image sensor 300, and ImgH is the image This refers to the diagonal size of the sensor 300. When Equation 51 is satisfied, the optical systems 1000 and 1500 can have a TTL for application to the vehicle image sensor 300, thereby providing improved image quality. Equation 51 may preferably satisfy 4 < TTL / ImgH < 10 in the first and second embodiments.
[수학식 52][Equation 52]
0.1 < BFL / ImgH < 10.1 <BFL/ImgH<1
수학식 52은 BFL은 이미지 센서(300)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리이고, ImgH는 이미지 센서(300)의 대각 크기를 의미한다. 수학식 52을 만족할 경우, 광학계(1000,1500)는 차량용 이미지 센서(300)의 크기를 적용하기 위한 BFL(Back focal length)을 확보할 수 있고, 마지막 렌즈와 이미지 센서(300) 사이의 간격을 설정할 수 있고, 화각(FOV)의 중심부 및 주변부에서 양호한 광학 특성을 가질 수 있다. 수학식 52은 제1 내지 제2실시예에서 바람직하게, 0.2 < BFL / ImgH < 0.8를 만족할 수 있다.In Equation 52, BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens, and ImgH is the diagonal size of the image sensor 300. If Equation 52 is satisfied, the optical systems 1000 and 1500 can secure the back focal length (BFL) to apply the size of the vehicle image sensor 300, and the distance between the last lens and the image sensor 300 can be adjusted to It can be set and have good optical characteristics in the center and periphery of the field of view (FOV). Equation 52 may preferably satisfy 0.2 < BFL / ImgH < 0.8 in the first and second embodiments.
[수학식 53][Equation 53]
5 < TTL / BFL < 205 <TTL/BFL<20
수학식 53는 TTL(Total track length)은 제1렌즈의 제1면(S1)의 정점으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리(mm)를 의미하고, BFL은 이미지 센서(300)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리를 의미한다. 수학식 53을 만족할 경우, 광학계(1000,1500)는 BFL을 확보할 수 있다. 수학식 53는 제1 내지 제2실시예에서 바람직하게, 10 < TTL / BFL < 15를 만족할 수 있다.In Equation 53, TTL (Total track length) refers to the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens to the upper surface of the image sensor 300, and BFL refers to the distance (mm) from the image sensor 300. It means the optical axis distance from the sensor 300 to the center of the sensor side of the last lens. If Equation 53 is satisfied, the optical systems 1000 and 1500 can secure BFL. Equation 53 may preferably satisfy 10 < TTL / BFL < 15 in the first and second embodiments.
[수학식 54][Equation 54]
1 < TTL/F < 31 < TTL/F < 3
수학식 54는 TTL(Total track length)은 제1렌즈의 제1면(S1)의 정점으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리(mm)를 의미하고, F는 광학계의 유효 초점 거리이다. 이에 따라 운전자 지원시스템용 광학계를 제공할 수 있다. 수학식 54는 제1 내지 제2실시예에서 바람직하게, 1.5 ≤ TTL/F ≤ 2.8 또는 2 ≤ TTL/F ≤ 2.8를 만족할 수 있다. 실시예에 따른 광학계(1000,1500)가 수학식 54을 만족할 경우, 광학계(1000,1500)는 설정된 TTL 범위에서 적절한 초점 거리를 가질 수 있고, 저온에서 고온으로 온도가 변화함에도 적절한 초점 거리를 유지하며 결상이 될 수 있는 광학계를 제공한다. 수학식 54의 하한치 미만인 경우, 렌즈들의 굴절력을 증가시켜야 할 필요가 있어, 구면수차 또는 왜곡 수차의 보정이 어려워지며, 수학식 54의 상한치 초과인 경우, 렌즈들이 유효경이나 TTL이 길어지게 되어, 촬상 렌즈계가 대형화되는 문제가 발생될 수 있다. In Equation 54, TTL (Total track length) means the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens to the upper surface of the image sensor 300, and F is the optical system is the effective focal length of Accordingly, an optical system for a driver assistance system can be provided. Equation 54 may preferably satisfy 1.5 ≤ TTL/F ≤ 2.8 or 2 ≤ TTL/F ≤ 2.8 in the first and second embodiments. When the optical system (1000, 1500) according to the embodiment satisfies Equation 54, the optical system (1000, 1500) can have an appropriate focal distance in the set TTL range, and maintain the appropriate focal distance even when the temperature changes from low to high temperature. It provides an optical system that can form images. If it is less than the lower limit of Equation 54, it is necessary to increase the refractive power of the lenses, making correction of spherical aberration or distortion aberration difficult, and if it is more than the upper limit of Equation 54, the effective diameter or TTL of the lenses becomes longer, making it difficult to capture images. A problem may arise where the lens system becomes larger.
[수학식 55][Equation 55]
3 < F / BFL < 103 < F/BFL < 10
수학식 55은 F는 광학계의 유효 초점 거리이고, BFL은 이미지 센서(300)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리를 의미한다. 수학식 55을 만족할 경우, 광학계(1000,1500)는 설정된 화각을 가지며 적절한 초점 거리를 가질 수 있고, 차량용 광학계를 제공될 수 있다. 또한, 광학계(1000,1500)는 마지막 렌즈와 이미지 센서(300) 사이의 간격을 최소화할 수 있어 화각(FOV)의 주변부에서 양호한 광학 특성을 가질 수 있다. 수학식 55은 제1 내지 제2실시예에서 바람직하게, 3 < F / BFL < 6를 만족할 수 있다.In Equation 55, F is the effective focal length of the optical system, and BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. If Equation 55 is satisfied, the optical systems 1000 and 1500 can have a set angle of view and an appropriate focal distance, and an optical system for a vehicle can be provided. Additionally, the optical systems 1000 and 1500 can minimize the gap between the last lens and the image sensor 300 and thus have good optical characteristics at the periphery of the field of view (FOV). Equation 55 may preferably satisfy 3 < F / BFL < 6 in the first and second embodiments.
[수학식 56][Equation 56]
1 < F / ImgH < 51 < F/ImgH < 5
수학식 56은 F는 광학계의 유효 초점 거리이고, ImgH는 이미지 센서(300)의 대각 크기를 의미한다. 이러한 광학계(1000,1500)는 차량용 이미지 센서(300)의 크기에서 향상된 수차 특성을 가질 수 있다. 수학식 56은 제1 내지 제2실시예에서 바람직하게, 2 < F / ImgH < 4를 만족할 수 있다.In Equation 56, F is the effective focal length of the optical system, and ImgH is the diagonal size of the image sensor 300. These optical systems 1000 and 1500 may have improved aberration characteristics in the size of the vehicle image sensor 300. Equation 56 may preferably satisfy 2 < F / ImgH < 4 in the first and second embodiments.
[수학식 57][Equation 57]
1 < F / EPD < 51 < F/EPD < 5
수학식 57은 F는 광학계의 유효 초점 거리이고, EPD는 입사동 크기를 의미한다. 이에 따라 광학계의 전체 밝기를 제어할 수 있다. 수학식 57은 제1 내지 제2실시예에서 바람직하게, 1 < F / EPD < 2를 설정할 수 있다.In Equation 57, F is the effective focal length of the optical system, and EPD is the entrance pupil size. Accordingly, the overall brightness of the optical system can be controlled. Equation 57 can preferably set 1 < F / EPD < 2 in the first and second embodiments.
[수학식 58][Equation 58]
0 < BFL/TD < 0.30 < BFL/TD < 0.3
수학식 58는 TD는 광학계(1000,1500)의 렌즈들의 광축 거리이고, BFL은 이미지 센서(300)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리를 의미한다. 이에 따라 광학계의 해상력을 유지하며 전체 크기를 제어할 수 있다. 수학식 58는 제1 내지 제2실시예에서 바람직하게, 0 < BFL/TD < 0.1를 만족할 수 있다. BFL/TD의 조건 값이 0.1 이상이 될 경우, TD 대비 BFL이 크게 설계되므로 전체 광학계의 크기가 커지게 되고 이로 인해 광학계의 소형화가 어렵고, 제7렌즈(107,207)와 이미지 센서 사이의 거리가 길어지며, 이로 인해 제7렌즈(107,207)와 이미지 센서 사이를 통해 불필요한 광량이 증가될 수 있고 이로 인해 수차 특성이 저하되는 등 해상력이 낮아지는 문제가 있다. In Equation 58, TD is the optical axis distance of the lenses of the optical system 1000 and 1500, and BFL is the optical axis distance from the image sensor 300 to the center of the sensor side of the last lens. Accordingly, the overall size can be controlled while maintaining the resolution of the optical system. Equation 58 may preferably satisfy 0 < BFL/TD < 0.1 in the first and second embodiments. If the condition value of BFL/TD is more than 0.1, BFL is designed to be larger than TD, so the size of the entire optical system becomes large, making it difficult to miniaturize the optical system, and the distance between the seventh lens (107, 207) and the image sensor is long. As a result, the amount of unnecessary light may increase between the seventh lens (107, 207) and the image sensor, and there is a problem of lowering resolution, such as lowering aberration characteristics.
[수학식 59][Equation 59]
0 < EPD/Imgh/FOV < 0.20 < EPD/Imgh/FOV < 0.2
수학식 59은 입사동 크기(EPD), 이미지 센서의 최대 대각선 길이의 1/2의 길이(Imgh), 및 화각의 관계를 설정할 수 있다. 이에 따라 광학계의 전체 크기 및 밝기를 제어할 수 있다. 수학식 59은 제1 내지 제2실시예에서 바람직하게, 0 < EPD/Imgh/FOV < 0.1를 만족할 수 있다.Equation 59 can establish the relationship between the entrance pupil size (EPD), the length of half the maximum diagonal length of the image sensor (Imgh), and the angle of view. Accordingly, the overall size and brightness of the optical system can be controlled. Equation 59 may preferably satisfy 0 < EPD/Imgh/FOV < 0.1 in the first and second embodiments.
[수학식 60][Equation 60]
5 < FOV / F# < 305 < FOV / F# < 30
수학식 60은 광학계의 화각과 F 넘버(F#)의 관계를 설정할 수 있다. 수학식 60은 제1 내지 제2실시예에서 바람직하게, 10 < FOV / F# < 25를 만족할 수 있다. 여기서, F#는 1.6 이하으로 제공하여, 밝은 화상을 제공할 수 있다. Equation 60 can establish the relationship between the angle of view of the optical system and the F number (F#). Equation 60 may preferably satisfy 10 < FOV / F # < 25 in the first and second embodiments. Here, F# can be set to 1.6 or less to provide a bright image.
[수학식 61][Equation 61]
0.2 < CG1 / TTL < 0.60.2 < CG1 / TTL < 0.6
수학식 61은 CG1은 제1렌즈(101)와 제2렌즈(102) 사이의 광축 간격을 의미하고, TTL(Total track length)은 제1렌즈의 제1면(S1)의 정점으로부터 이미지 센서(300)의 상면까지의 광축(OA)에서의 거리(mm)를 의미한다. 광학계(1000)에서 이격되는 렌즈 사이의 간격 중 제1렌즈(101)와 제2렌즈(102) 사이의 간격이 가장 클 수 있다. 광학계(1000)가 수학식 61을 만족하여, 제1렌즈(101)와 제2렌즈(102) 사이의 간격을 증가시키면 제1렌즈(101)의 곡률반경을 크게 하여 렌즈 제작이 용이하면서도, 색수차를 보정할 수 있는 효과가 있다. 수학식 61은 제1실시예에서 바람직하게, 0.3 < CG1 / TTL < 0.5를 만족할 수 있다.In Equation 61, CG1 means the optical axis spacing between the first lens 101 and the second lens 102, and TTL (Total track length) is the distance from the vertex of the first surface (S1) of the first lens to the image sensor ( 300) means the distance (mm) from the optical axis (OA) to the upper surface. Among the gaps between lenses spaced apart in the optical system 1000, the gap between the first lens 101 and the second lens 102 may be the largest. If the optical system 1000 satisfies Equation 61 and the gap between the first lens 101 and the second lens 102 is increased, the radius of curvature of the first lens 101 is increased, making it easy to manufacture the lens, and reducing chromatic aberration. It has the effect of correcting . Equation 61 may preferably satisfy 0.3 < CG1 / TTL < 0.5 in the first embodiment.
[수학식 62][Equation 62]
5 < |F2/F5| < 105 < |F2/F5| < 10
수학식 62는 F2는 제2렌즈(202)의 초점 거리이고, F5는 제5렌즈(205)의 초점 거리이다. 수학식 62에서 제2렌즈(202) 및 제5렌즈(205)의 초점 거리의 관계를 설정해줄 수 있다. 광학계(1500) 내에서 유리 재질인 제2렌즈(202)의 초점 거리의 절대값은 가장 크게 형성되고, 플라스틱 재질인 제5렌즈(205)의 초점 거리의 절대값은 가장 작게 형성되어 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(300)로 가이드할 수 있다. 수학식 62는 제2실시예에서 바람직하게, 5 < |F2/F5| < 8를 만족할 수 있다. In Equation 62, F2 is the focal length of the second lens 202, and F5 is the focal length of the fifth lens 205. In Equation 62, the relationship between the focal lengths of the second lens 202 and the fifth lens 205 can be established. Within the optical system 1500, the absolute value of the focal length of the second lens 202, which is made of glass, is the largest, and the absolute value of the focal distance of the fifth lens, 205, which is made of plastic, is the smallest, thereby increasing the incident efficiency. It can be guided to the image sensor 300 by increasing and adjusting the refractive power between the lenses made of glass and plastic. Equation 62 is preferably in the second embodiment, 5 < |F2/F5| < 8 can be satisfied.
[수학식 63][Equation 63]
2 < |F2/F3| < 102 < |F2/F3| < 10
수학식 63에서 F2는 제2렌즈(202)의 초점 거리이고, F3는 제3렌즈(203)의 초점 거리이다. 광학계(1500) 내에서 유리 재질인 제2렌즈(202)의 초점 거리의 절대값은 가장 크게 형성되고, 접합 렌즈(245) 이외에 광학계(1500) 내에서 유리 재질인 제3렌즈(203)의 초점 거리의 절대값은 가장 작게 형성되어 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(300)로 가이드할 수 있다. 수학식 63은 제2실시예에서 바람직하게, 2 < |F2/F3| < 5를 만족할 수 있다.In Equation 63, F2 is the focal length of the second lens 202, and F3 is the focal length of the third lens 203. The absolute value of the focal length of the second lens 202 made of glass within the optical system 1500 is the largest, and the focus of the third lens 203 made of glass within the optical system 1500 in addition to the bonded lens 245 The absolute value of the distance is set to the smallest to increase incident efficiency, and the refractive power between the glass and plastic lenses can be adjusted to guide them to the image sensor 300. Equation 63 is preferably in the second embodiment, 2 < |F2/F3| < 5 can be satisfied.
[수학식 64][Equation 64]
0.05 < |Sag_i / (CA_i/2)| < 0.2 (i=S1,S2,S3,S4)0.05 < |Sag_i / (CA_i/2)| < 0.2 (i=S1,S2,S3,S4)
수학식 64는 제1,2렌즈(101,201,102,202)의 제1내지 제4면(S1,S2,S3,S4)의 Sag 값과 유효경(CA)의 관계를 설정해 줄 수 있으며, 이를 만족할 경우 렌즈들의 굴절력을 개선시켜 줄 수 있다. 여기서, 수학식 64는 n1 > 1.7의 조건을 더 만족할 경우, 제1,2렌즈(101,201,102,202)를 유효경 내에서 곡률 반경을 급격하게 설계하지 않아도 제1렌즈 및 제2렌즈가 충분한 파워를 가지고 빛을 모아주는 것이 가능하다. Equation 64 can set the relationship between the Sag value and the effective diameter (CA) of the first to fourth surfaces (S1, S2, S3, S4) of the first and second lenses (101, 201, 102, and 202), and if this is satisfied, the refractive power of the lenses can improve. Here, Equation 64 states that if the condition of n1 > 1.7 is further satisfied, the first and second lenses (101, 201, 102, 202) emit light with sufficient power even without drastically designing the radius of curvature within the effective diameter. It is possible to collect them.
[수학식 65][Equation 65]
Figure PCTKR2023013289-appb-img-000001
Figure PCTKR2023013289-appb-img-000001
수학식 65에서 Z는 Sag로 비구면 상의 임의의 위치로부터 비구면의 정점까지의 광축 방향의 거리를 의미할 수 있다. Y는 비구면 상의 임의의 위치로부터 광축까지의 광축에 수직인 방향으로의 거리를 의미할 수 있다. c는 렌즈의 곡률을 의미할 수 있고, K는 코닉 상수를 의미할 수 있다. 또한, A, B, C, D, E,F는 비구면 계수(Aspheric constant)를 의미할 수 있다.In Equation 65, Z is Sag and can mean the distance in the optical axis direction from any position on the aspherical surface to the vertex of the aspherical surface. Y may mean the distance from any location on the aspherical surface to the optical axis in a direction perpendicular to the optical axis. c may refer to the curvature of the lens, and K may refer to the Conic constant. Additionally, A, B, C, D, E, and F may mean aspheric constants.
제1 내지 제2실시예에 따른 광학계(1000,1500)는 수학식 1 내지 수학식 64 중 적어도 하나 또는 둘 이상의 수학식을 만족할 수 있다. 이 경우, 광학계(1000,1500)는 향상된 광학 특성을 가질 수 있다. 자세하게, 광학계(1000,1500)가 수학식 1 내지 수학식 64 중 적어도 하나 또는 둘 이상의 수학식을 만족할 경우 광학계(1000,1500)는 향상된 해상력을 가지며, 수차 및 왜곡 특성을 개선할 수 있다. 또한, 광학계(1000,1500)는 차량용 이미지 센서(300)를 적용하기 위한 BFL(Back focal length)을 확보할 수 있고, 온도 변화에 따른 광학 특성 저하를 보상할 수 있으며, 마지막 렌즈와 이미지 센서(300) 사이의 간격을 최소화할 수 있어 화각(FOV)의 중심부 및 주변부에서 양호한 광학 성능을 가질 수 있다. The optical systems 1000 and 1500 according to the first and second embodiments may satisfy at least one or two of Equations 1 to 64. In this case, the optical systems 1000 and 1500 may have improved optical characteristics. In detail, when the optical systems 1000 and 1500 satisfy at least one or two of Equations 1 to 64, the optical systems 1000 and 1500 have improved resolution and can improve aberration and distortion characteristics. In addition, the optical systems 1000 and 1500 can secure the back focal length (BFL) for applying the automotive image sensor 300, compensate for the decrease in optical characteristics due to temperature changes, and the last lens and image sensor ( 300) can be minimized, allowing good optical performance in the center and periphery of the field of view (FOV).
표 5는 실시예의 광학계(1000,1500)에서 상술한 수학식 1 내지 수학식 64에 대한 결과 값에 대한 것이다. 표 5를 참조하면, 광학계(1000,1500)는 수학식 1 내지 수학식 64 중 적어도 하나, 두 개 이상 또는 세 개 이상을 만족하는 것을 알 수 있다. 자세하게, 실시예에 따른 광학계(1000,1500)는 수학식 1 내지 수학식 64을 모두 만족하는 것을 알 수 있다. 이에 따라, 광학계(1000,1500)는 화각(FOV)의 중심부와 주변부에서 양호한 광학 성능을 가질 수 있고 우수한 광학 특성을 가질 수 있다. Table 5 shows the result values for Equations 1 to 64 described above in the optical systems 1000 and 1500 of the embodiment. Referring to Table 5, it can be seen that the optical systems 1000 and 1500 satisfy at least one, two, or three of Equations 1 to 64. In detail, it can be seen that the optical systems 1000 and 1500 according to the embodiment satisfy all of Equations 1 to 64. Accordingly, the optical systems 1000 and 1500 can have good optical performance in the center and periphery of the field of view (FOV) and can have excellent optical characteristics.
수학식math equation 제1실시예Embodiment 1 제2실시예Second embodiment
1One 0.5 < CT1 / ET1 < 10.5 < CT1 / ET1 < 1 0.8810.881 0.95000.9500
22 0.1 < CT1/CA_L1S1 < 0.50.1 < CT1/CA_L1S1 < 0.5 0.2010.201 0.38080.3808
33 Po1 < 0Po1 < 0 -0.0128-0.0128 -0.0194-0.0194
44 1.7 < n1 < 2.21.7 < n1 < 2.2 1.77271.7727 1.88771.8877
55 27 <FOV_H < 3327 <FOV_H<33 29.9829.98 29.9529.95
66 (제1실시예) L3R1>0, L3S2<0(제2실시예) L3R1 > 0, L3R2 < 0, |L3R1|=|L3R2|(First embodiment) L3R1>0, L3S2<0 (Second embodiment) L3R1 > 0, L3R2 < 0, |L3R1|=|L3R2| 만족Satisfaction 만족Satisfaction
77 1 < L7S2_max_sag to Sensor < 31 < L7S2_max_sag to Sensor < 3 2.72.7 2.5992.599
88 1 < CT1 / CT7 < 31 < CT1 / CT7 < 3 1.6621.662 1.499631.49963
99 1 < CT45 / CT6 < 51 < CT45 / CT6 < 5 1.6981.698 1.77371.7737
1010 0.5 < (CT45- ET45) < 10.5 < (CT45- ET45) < 1 0.6760.676 0.39830.3983
1111 0 < CA_L1S1 / CA_L4S1 < 20 < CA_L1S1 / CA_L4S1 < 2 1.34841.3484 1.0451.045
1212 0 < CA_L7S2 / CA_L5S2 < 20 < CA_L7S2 / CA_L5S2 < 2 1.0031.003 0.9610.961
1313 0 < CA_L1S2 / CA_L2S1 < 20 < CA_L1S2 / CA_L2S1 < 2 1.3341.334 1.0051.005
1414 0.5 < CA_L4S1 / CA_L5S2 < 2.50.5 < CA_L4S1 / CA_L5S2 < 2.5 1.3641.364 1.2701.270
1515 2 < L3R1/(CA_L3S1/2) < 52 < L3R1/(CA_L3S1/2) < 5 2.9092.909 3.6573.657
1616 1 < CA_GL_AVER/CA_PL_AVER < 1.51 < CA_GL_AVER/CA_PL_AVER < 1.5 1.0381.038 1.14371.1437
1717 1.2 < GL_CA1_AVER/PL_CA1_AVER < 21.2 < GL_CA1_AVER/PL_CA1_AVER < 2 1.5661.566 1.1331.133
1818 CG3 < CG5< CG1CG3 < CG5 < CG1 만족Satisfaction 만족Satisfaction
1919 1 < CT7 / CG6 < 31 < CT7 / CG6 < 3 1.20741.2074 2.22032.2203
20-120-1 5 < |F6/F5| < 105 < |F6/F5| < 10 8.2058.205 --
20-220-2 2(CG5+CG6) < CT452(CG5+CG6) < CT45 -- 만족Satisfaction
2121 1 < CT1/CT2 < 21 < CT1/CT2 < 2 1.3291.329 1.03751.0375
2222 150 < L7R1 / CT7 < 200150 < L7R1 / CT7 < 200 196.255196.255 7.44107.4410
2323 0 < CT_Max / CG_Max < 50 < CT_Max / CG_Max < 5 0.29590.2959 3.24133.2413
2424 1 < ΣCT / ΣCG < 71 < ΣCT / ΣCG < 7 1.30121.3012 6.12506.1250
2525 10 < ΣIndex <2010 < ΣIndex <20 11.654611.6546 11.661311.6613
2626 10 < ΣAbb / ΣIndex <3510 < ΣAbb / ΣIndex <35 27.78627.786 24.818924.8189
2727 1 < ΣCT / ΣET < 21 < ΣCT / ΣET < 2 1.11291.1129 1.09201.0920
2828 1 < CA_L3S1 / CA_min < 21 < CA_L3S1 / CA_min < 2 1.64991.6499 1.46111.4611
2929 1 < CA_max / CA_min < 31 < CA_max / CA_min < 3 2.1742.174 1.54641.5464
3030 1 < CA_max / CA_Aver < 31 < CA_max / CA_Aver < 3 1.4811.481 1.20141.2014
3131 0.5 < CA_min / CA_Aver < 10.5 < CA_min / CA_Aver < 1 0.6810.681 0.77690.7769
3232 1 < CA_max / (2*ImgH) < 31 < CA_max / (2*ImgH) < 3 1.7821.782 1.36551.3655
3333 1 < TD / CA_max < 41 < TD / CA_max < 4 2.25272.2527 2.47032.4703
3434 0 < F / L1R1 < 10 < F / L1R1 < 1 0.63960.6396 0.51840.5184
3535 1< Max_th/Min_th < 31< Max_th/Min_th < 3 1.94751.9475 2.52262.5226
3636 0 < EPD / |L1R1| < 10 < EPD / |L1R1| < 1 0.39970.3997 0.32400.3240
3737 Po4 * Po5 < 0Po4 * Po5 < 0 만족Satisfaction 만족Satisfaction
3838 30 < V4-V5 < 4030 < V4-V5 < 40 34.494334.4943 34.494334.4943
3939 0 < | F1| / F < 100 < | F1| / F < 10 5.11245.1124 3.40883.4088
4040 F_LG1/F_LG2 < 0F_LG1/F_LG2 < 0 -5.9376-5.9376 -10.6197-10.6197
4141 0.1 < nGL /nPL < 20.1 < nGL /nPL < 2 1.3331.333 0.750.75
4242 CA_L7 < CA_L3 < CA_L1CA_L7 < CA_L3 < CA_L1 만족Satisfaction 만족Satisfaction
4343 0 < ΣPL_CT / ΣGL_CT < 10 < ΣPL_CT / ΣGL_CT < 1 0.64170.6417 0.98490.9849
4444 0 < ΣPL_Index / ΣGL_Index < 20 < ΣPL_Index / ΣGL_Index < 2 0.71650.7165 1.21731.2173
4545 10 < TTL < 4510 < TTL < 45 39.907339.9073 33.965033.9650
4646 2 < ImgH < 102 < ImgH < 10 4.6304.630 4.6304.630
4747 1< BFL < 3.51<BFL<3.5 2.71352.7135 2.72632.7263
4848 3 < F < 403 < F < 40 15.299615.2996 15.10015.100
4949 FOV < 45FOV < 45 34.191334.1913 33.983833.9838
5050 1 < TTL / CA_max < 51 < TTL / CA_max < 5 2.4172.417 2.68592.6859
5151 2 < TTL / ImgH < 102 <TTL/ImgH<10 8.6198.619 7.33587.3358
5252 0.1 < BFL / ImgH < 10.1 <BFL/ImgH<1 0.62190.6219 0.58880.5888
5353 5 < TTL / BFL < 205 <TTL/BFL<20 14.706914.7069 12.458212.4582
5454 1 < TTL/F < 31 < TTL/F < 3 2.60832.6083 2.24932.2493
5555 3 < F / BFL < 103 < F/BFL < 10 5.63835.6383 5.53865.5386
5656 1 < F / ImgH < 51 < F/ImgH < 5 3.30443.3044 3.26133.2613
5757 1 < F / EPD < 51 < F/EPD < 5 1.6001.600 1.6001.600
5858 0 < BFL/TD < 0.30 < BFL/TD < 0.3 0.07290.0729 0.08720.0872
5959 0 < EPD/Imgh/FOV < 0.20 < EPD/Imgh/FOV < 0.2 0.06040.0604 0.05990.0599
6060 5 < FOV / F# < 305 < FOV / F# < 30 21.36921.369 21.239821.2398
6161 0.2 < CG1 / TTL < 0.60.2 < CG1 / TTL < 0.6 0.3290.329 --
6262 5 < |F2/F5| < 105 < |F2/F5| < 10 -- 6.83096.8309
6363 2 < |F2/F3| < 102 < |F2/F3| < 10 -- 4.70664.7066
6464 0.05<|Sag_i / (CA_i / 2)| < 0.2 (i=S1,S2,S3,S4)0.05<|Sag_i / (CA_i / 2)| < 0.2 (i=S1,S2,S3,S4) 만족Satisfaction 만족Satisfaction
도 29는 발명의 실시예에 따른 카메라 모듈 또는 광학계가 적용된 차량의 평면도의 예이다. 도 29를 참조하면, 발명의 실시예에 따른 차량용 카메라 시스템은, 영상 생성부(11), 제1정보 생성부(12), 제2정보 생성부(21,22,23,24,25,26) 및 제어부(14)를 포함한다. 영상 생성부(11)는 자차량에 배치되는 적어도 하나의 카메라 모듈(31)을 포함할 수 있으며, 자차량의 전방 또는/및 운전자를 촬영하여 자차량의 전방영상이나 차량 내부 영상을 생성할 수 있다. 영상 생성부(11)는 카메라 모듈(31)을 이용하여 자차량의 전방뿐만 아니라 하나 이상의 방향에 대한 자차량의 주변을 촬영하여 자차량의 주변영상을 생성할 수 있다. 여기서, 전방영상 및 주변영상은 디지털 영상일 수 있으며, 컬러 영상, 흑백 영상 및 적외선 영상 등을 포함할 수 있다. 또한 전방영상 및 주변영상은 정지영상 및 동영상을 포함할 수 있다. 영상 생성부(11)는 운전자 영상, 전방영상 및 주변영상을 제어부(14)에 제공한다. 이어서, 제1정보 생성부(12)는 자차량에 배치되는 적어도 하나의 레이더 또는/및 카메라를 포함할 수 있으며, 자차량의 전방을 감지하여 제1감지정보를 생성한다. 구체적으로, 제1정보 생성부(12)는 자차량에 배치되고, 자차량의 전방에 위치한 차량들의 위치 및 속도, 보행자의 여부 및 위치 등을 감지하여 제1감지정보를 생성한다. Figure 29 is an example of a top view of a vehicle to which a camera module or optical system is applied according to an embodiment of the invention. Referring to FIG. 29, the vehicle camera system according to an embodiment of the invention includes an image generator 11, a first information generator 12, and a second information generator 21, 22, 23, 24, 25, and 26. ) and a control unit 14. The image generator 11 may include at least one camera module 31 disposed in the host vehicle, and can generate a front image of the host vehicle or an image inside the vehicle by filming the front of the host vehicle and/or the driver. there is. The image generator 11 may use the camera module 31 to capture not only the front of the vehicle but also the surroundings of the vehicle in one or more directions to generate an image surrounding the vehicle. Here, the front image and peripheral image may be digital images and may include color images, black-and-white images, and infrared images. Additionally, the front image and surrounding image may include still images and moving images. The image generator 11 provides the driver image, front image, and surrounding image to the control unit 14. Next, the first information generator 12 may include at least one radar or/and camera disposed in the host vehicle, and generates first detection information by detecting the front of the host vehicle. Specifically, the first information generator 12 is disposed in the host vehicle and generates first detection information by detecting the location and speed of vehicles located in front of the host vehicle and the presence and location of pedestrians.
제1정보 생성부(12)에서 생성한 제1감지정보를 이용하여 자차량과 앞차와의 거리를 일정하게 유지하도록 제어할 수 있고, 운전자가 자차량의 주행 차로를 변경하고자 하는 경우나 후진 주차 시와 같이 기 설정된 특정한 경우에 차량 운행의 안정성을 높일 수 있다. 제1정보 생성부(12)는 제1감지정보를 제어부(14)에 제공한다. 제2정보 생성부(21,22,23,24,25,26)는 영상 생성부(11)에서 생성한 전방영상과 제1정보 생성부(12)에서 생성한 제 1 감지정보에 기초하여, 자차량의 각 측면을 감지하여 제2감지정보를 생성한다. 구체적으로, 제2정보 생성부(21,22,23,24,25,26)는 자차량에 배치되는 적어도 하나의 레이더 또는/및 카메라를 포함할 수 있으며, 자차량의 측면에 위치한 차량들의 위치 및 속도를 감지하거나 영상을 촬영할 수 있다. 여기서, 제2정보 생성부(21,22,23,24,25,26)는 자차량의 전방 양 코너, 사이드 미러, 및 후방 중앙 및 후방 양 코너에 각각 배치될 수 있다. Using the first detection information generated by the first information generator 12, the distance between the own vehicle and the vehicle in front can be controlled to maintain a constant distance, and when the driver wants to change the driving lane of the own vehicle or reverse parking, The stability of vehicle operation can be improved in certain preset cases, such as when driving. The first information generation unit 12 provides first detection information to the control unit 14. The second information generators 21, 22, 23, 24, 25, and 26 are based on the front image generated by the image generator 11 and the first sensed information generated by the first information generator 12, Each side of the vehicle is sensed to generate second sensing information. Specifically, the second information generators 21, 22, 23, 24, 25, and 26 may include at least one radar or/and camera disposed on the host vehicle, and may include positions of vehicles located on the sides of the host vehicle. and speed can be detected or video taken. Here, the second information generation units 21, 22, 23, 24, 25, and 26 may be disposed at both front corners, side mirrors, and the rear center and rear corners of the vehicle, respectively.
이러한 차량용 카메라 시스템 중 적어도 하나의 정보 생성부는 상기에 개시된 실시예에 기재된 광학계 및 이를 갖는 카메라 모듈을 구비할 수 있으며, 자차량의 전방, 후방, 각 측면 또는 코너 영역을 통해 획득된 정보를 이용하여 사용자에게 제공하거나 처리하여 자동 운전 또는 주변 안전으로부터 차량과 물체를 보호할 수 있다.At least one information generator of these vehicle camera systems may include an optical system described in the above-described embodiment and a camera module having the same, and may use information acquired through the front, rear, each side, or corner area of the vehicle. It can be provided to the user or processed to protect vehicles and objects from autonomous driving or ambient safety.
발명의 실시예에 따른 카메라 모듈의 광학계는 안전 규제, 자율주행 기능의 강화 및 편의성 증가를 위해 차량 내에 복수로 탑재될 수 있다. 또한 카메라 모듈의 광학계는 차선유지시스템(LKAS: Lane keeping assistance system), 차선이탈 경보시스템(LDWS), 운전자 감시 시스템(DMS: Driver monitoring system)과 같은 제어를 위한 부품으로서, 차량 내에 적용되고 있다. 이러한 차량용 카메라 모듈은 주위 온도 변화에도 안정적인 광학 성능을 구현할 수 있고 가격 경쟁력이 있는 모듈을 제공하여, 차량용 부품의 신뢰성을 확보할 수 있다.The optical system of the camera module according to an embodiment of the invention can be mounted in multiple numbers in a vehicle to improve safety regulations, strengthen autonomous driving functions, and increase convenience. Additionally, the optical system of the camera module is used in vehicles as a control component for lane keeping assistance systems (LKAS), lane departure warning systems (LDWS), and driver monitoring systems (DMS). These automotive camera modules can provide stable optical performance despite changes in ambient temperature and provide price-competitive modules to ensure the reliability of automotive components.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, etc. described in the embodiments above are included in at least one embodiment of the present invention and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, etc. illustrated in each embodiment can be combined or modified and implemented in other embodiments by a person with ordinary knowledge in the field to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, although the above description has been made focusing on the examples, this is only an example and does not limit the present invention, and those skilled in the art will understand the above examples without departing from the essential characteristics of the present embodiment. You will be able to see that various modifications and applications are possible. For example, each component specifically shown in the examples can be modified and implemented. And these variations and differences in application should be construed as being included in the scope of the present invention as defined in the appended claims.

Claims (10)

  1. 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, It includes first to seventh lenses arranged along the optical axis,
    상기 제1렌즈는 음(-)의 굴절력을 갖고, The first lens has negative refractive power,
    상기 제2렌즈 내지 상기 제7렌즈의 합성 굴절력은 양(+)의 굴절력을 갖고,The composite refractive power of the second to seventh lenses has positive (+) refractive power,
    상기 제1렌즈 내지 상기 제7렌즈 중 상기 제2렌즈의 유효경이 가장 작고, 상기 제1렌즈의 유효경이 가장 큰 광학계.An optical system wherein among the first to seventh lenses, the second lens has the smallest effective diameter and the first lens has the largest effective diameter.
  2. 제1항에 있어서,According to paragraph 1,
    상기 제4렌즈, 상기 제5렌즈 및 상기 제7렌즈는 플라스틱 재질이고, The fourth lens, the fifth lens, and the seventh lens are made of plastic,
    상기 제1렌즈 내지 상기 제3렌즈 및 제6렌즈 중 적어도 하나는 유리 재질인 광학계.An optical system in which at least one of the first to third lenses and the sixth lens is made of glass.
  3. 제1항에 있어서,According to paragraph 1,
    상기 제6렌즈 및 상기 제7렌즈의 유효경은 상기 제5렌즈의 유효경보다 작은 광학계.An optical system in which the effective diameter of the sixth lens and the seventh lens is smaller than the effective diameter of the fifth lens.
  4. 제3항에 있어서,According to paragraph 3,
    상기 제2렌즈는 물체측면은 평면을 갖는 광학계.The second lens is an optical system in which the object side has a flat surface.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,According to any one of claims 1 to 3,
    상기 제1렌즈 내지 상기 제7렌즈 중 초점 거리의 절대값이 가장 작은 렌즈는 상기 제3렌즈 내지 상기 제5렌즈 중 하나인 광학계.An optical system in which the lens having the smallest absolute value of focal length among the first to seventh lenses is one of the third to fifth lenses.
  6. 제5항에 있어서, According to clause 5,
    상기 제3렌즈 내지 상기 제5렌즈의 초점 거리의 절대값은 아래의 조건식을 만족하는 광학계.An optical system in which the absolute value of the focal length of the third to fifth lenses satisfies the following conditional expression.
    <조건식><conditional expression>
    |F3| ≥ |F4| ≥ |F5||F3| ≥ |F4| ≥ |F5|
    (상기 조건식에서 F3은 상기 제3렌즈의 초점 거리, F4는 상기 제4렌즈의 초점 거리, F5는 상기 제5렌즈의 초점 거리이다.)(In the above conditional expression, F3 is the focal length of the third lens, F4 is the focal length of the fourth lens, and F5 is the focal length of the fifth lens.)
  7. 광축을 따라 배치되는 제1렌즈 내지 제7렌즈를 포함하고, It includes first to seventh lenses arranged along the optical axis,
    상기 제1렌즈는 음(-)의 굴절력을 갖고, The first lens has negative refractive power,
    상기 제2렌즈 내지 상기 제7렌즈의 합성 굴절력은 양(+)의 굴절력을 갖고, The composite refractive power of the second to seventh lenses has positive (+) refractive power,
    상기 제1렌즈의 유효경은 상기 제3렌즈의 유효경보다 큰 광학계.An optical system in which the effective diameter of the first lens is larger than the effective diameter of the third lens.
  8. 제7항에 있어서,In clause 7,
    상기 광학계는 양(+)의 굴절력을 갖는 렌즈와 음(-)의 굴절력을 갖는 렌즈가 접합되는 접합 렌즈를 포함하고, The optical system includes a bonded lens in which a lens with positive (+) refractive power and a lens with negative (-) refractive power are joined,
    상기 접합 렌즈는 상기 제3 내지 상기 제5렌즈 중 연속하게 배치되는 2개의 렌즈로 이루어지는 광학계. The bonded lens is an optical system consisting of two lenses among the third to fifth lenses arranged in succession.
  9. 제8항에 있어서,According to clause 8,
    상기 접합 렌즈는 플라스틱 재질이고,The bonded lens is made of plastic,
    상기 제1렌즈 내지 상기 제3렌즈 및 제6렌즈 중 적어도 하나는 유리 재질인 광학계.An optical system in which at least one of the first to third lenses and the sixth lens is made of glass.
  10. 제7항 또는 제8항에 있어서,According to paragraph 7 or 8,
    상기 제1렌즈 내지 상기 제7렌즈 중 상기 제5렌즈의 초점 거리의 절대값이 가장 작고, 상기 제6렌즈의 초점 거리의 절대값이 가장 큰 광학계.An optical system in which, among the first to seventh lenses, the absolute value of the focal length of the fifth lens is the smallest, and the absolute value of the focal distance of the sixth lens is the largest.
PCT/KR2023/013289 2022-10-18 2023-09-05 Optical system and camera module WO2024085431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0134427 2022-10-18
KR1020220134427A KR20240054099A (en) 2022-10-18 2022-10-18 Optical system and camera module

Publications (1)

Publication Number Publication Date
WO2024085431A1 true WO2024085431A1 (en) 2024-04-25

Family

ID=90737816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013289 WO2024085431A1 (en) 2022-10-18 2023-09-05 Optical system and camera module

Country Status (2)

Country Link
KR (1) KR20240054099A (en)
WO (1) WO2024085431A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301262A (en) * 2005-04-20 2006-11-02 Casio Comput Co Ltd Zoom lens
US20120133802A1 (en) * 2010-05-28 2012-05-31 Olympus Medical Systems Corp. Imaging optical system and image-acquistion apparatus
US20130215523A1 (en) * 2011-10-06 2013-08-22 Olympus Medical Systems Corp. Optical System for Endoscope
US20210181468A1 (en) * 2017-11-10 2021-06-17 Maxell, Ltd. Imaging lens system and imaging device
JP2022120362A (en) * 2021-02-05 2022-08-18 株式会社タムロン Optical system and image capturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301262A (en) * 2005-04-20 2006-11-02 Casio Comput Co Ltd Zoom lens
US20120133802A1 (en) * 2010-05-28 2012-05-31 Olympus Medical Systems Corp. Imaging optical system and image-acquistion apparatus
US20130215523A1 (en) * 2011-10-06 2013-08-22 Olympus Medical Systems Corp. Optical System for Endoscope
US20210181468A1 (en) * 2017-11-10 2021-06-17 Maxell, Ltd. Imaging lens system and imaging device
JP2022120362A (en) * 2021-02-05 2022-08-18 株式会社タムロン Optical system and image capturing device

Also Published As

Publication number Publication date
KR20240054099A (en) 2024-04-25

Similar Documents

Publication Publication Date Title
WO2020145637A1 (en) Image capturing lens
WO2023239159A1 (en) Optical system and camera module comprising same
WO2024085431A1 (en) Optical system and camera module
WO2023239204A1 (en) Optical system and camera module
WO2024043757A1 (en) Optical system and camera module
WO2024049284A1 (en) Optical system and camera module
WO2024049285A1 (en) Optical system and camera module
WO2024049283A1 (en) Optical system and camera module
WO2024039153A1 (en) Optical system and camera module
WO2021157959A1 (en) Imaging lens
WO2023224417A1 (en) Optical system and camera module comprising same
WO2023163511A1 (en) Optical system and camera module
WO2023239161A1 (en) Optical system and camera module comprising same
WO2022045690A1 (en) Optical system and camera module comprising same
WO2023224448A1 (en) Optical system and camera module comprising same
WO2024063501A1 (en) Optical system and camera module
WO2023224444A1 (en) Optical system and camera module including same
WO2023106797A1 (en) Optical system and camera module comprising same
WO2024080800A1 (en) Receiving optical system, transmitting optical system, sensor system, and lidar device
WO2024106964A1 (en) Optical system and camera module
WO2023224441A1 (en) Optical system and camera module comprising same
WO2023224440A1 (en) Optical system and camera module comprising same
WO2022173223A1 (en) Optical system and camera module comprising same
WO2023085869A1 (en) Optical system and camera module comprising same
WO2023224452A1 (en) Optical system and camera module comprising same