WO2024085118A1 - 情報処理装置、情報処理方法及びプログラム - Google Patents
情報処理装置、情報処理方法及びプログラム Download PDFInfo
- Publication number
- WO2024085118A1 WO2024085118A1 PCT/JP2023/037437 JP2023037437W WO2024085118A1 WO 2024085118 A1 WO2024085118 A1 WO 2024085118A1 JP 2023037437 W JP2023037437 W JP 2023037437W WO 2024085118 A1 WO2024085118 A1 WO 2024085118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- animal
- information processing
- frequency components
- quasi
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 48
- 238000003672 processing method Methods 0.000 title claims description 14
- 241001465754 Metazoa Species 0.000 claims abstract description 66
- 230000004071 biological effect Effects 0.000 claims abstract description 56
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 230000001133 acceleration Effects 0.000 claims description 99
- 230000005021 gait Effects 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 21
- 230000008602 contraction Effects 0.000 claims description 18
- 238000004904 shortening Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K29/00—Other apparatus for animal husbandry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Definitions
- This disclosure relates to an information processing device, an information processing method, and a program.
- Patent Document 1 discloses a method of decomposing the waveform of a quasi-periodic signal obtained from an electrocardiogram into multiple frequency components by wavelet transform, and storing the phase information of each frequency component in a storage device.
- the present disclosure aims to provide an information processing device, an information processing method, and a program that can further reduce the processing load of decomposing a quasi-periodic signal into multiple frequency components.
- An information processing device includes: An information processing device for classifying a pattern of an animal's biological activity, comprising: a calculation circuit that receives a biological signal that is a detection result of biological activity of the animal detected by a sensor having a plurality of detection channels or a sensor unit including a plurality of sensors;
- the arithmetic circuit includes: Detecting a quasi-periodic signal from the detection result; stretching or contracting the quasi-periodic signal in a time direction to generate a stretched or contracted signal having a predetermined period; Decomposing the stretched signal into a plurality of frequency components; acquiring time-series phase information of the plurality of frequency components; The pattern of the biological activity is classified based on the phase information of the time series.
- An information processing method for classifying a pattern of an animal's biological activity, the information processing method comprising: A calculation circuit receives a biological signal, which is a detection result of the biological activity of the animal, detected by a sensor having a plurality of detection channels or a sensor unit including a plurality of sensors, and detects a quasi-periodic signal from the detection result of the biological activity; a step of the arithmetic circuit stretching or shortening the quasi-periodic signal so that a period of the quasi-periodic signal after stretching or shortening becomes a predetermined value to generate a stretched or shortened signal; The calculation circuit decomposes the stretched signal into a plurality of frequency components; The arithmetic circuit acquires time-series phase information of the plurality of frequency components; The calculation circuit classifies the pattern of the biological activity based on the phase information of the time series.
- a program according to one aspect of the present disclosure causes an arithmetic circuit to execute the above information processing method.
- the information processing device, information processing method, and program disclosed herein can further reduce the processing load of decomposing a quasi-periodic signal into multiple frequency components.
- FIG. 1 is a block diagram showing an example configuration of a gait classification device according to an embodiment of the present disclosure.
- 2 is a schematic diagram illustrating the position and direction in which the acceleration sensor unit in FIG. 1 is attached; 2 is a flowchart showing an example of a gait classification method executed by the gait classification device of FIG. 1 .
- FIG. 13 is an exemplary schematic diagram for explaining an overview of a resizing process.
- FIG. 13 is an exemplary schematic diagram for explaining an overview of a resizing process.
- 11 is a graph illustrating an example of a process for detecting a period of a quasi-periodic signal.
- 11 is a graph illustrating an example of a process for detecting a period of a quasi-periodic signal.
- 11A and 11B are diagrams for explaining the effect of expanding and contracting a quasi-periodic signal so that the period of the expanded or contracted signal becomes a predetermined value.
- 11A and 11B are diagrams for explaining the effect of expanding and contracting a quasi-periodic signal so that the period of the expanded or contracted signal becomes a predetermined value.
- 11A and 11B are diagrams for explaining the effect of expanding and contracting a quasi-periodic signal so that the period of the expanded or contracted signal becomes a predetermined value.
- 11A and 11B are diagrams for explaining the effect of expanding and contracting a quasi-periodic signal so that the period of the expanded or contracted signal becomes a predetermined value.
- FIG. 6 is a graph illustrating a number of frequency components obtained by performing a wavelet transform on the warped signal Sz of FIG. 5;
- FIG. 13 is a schematic diagram showing an example of a phase analysis process.
- FIG. 2 illustrates an example of a topological object.
- 1 is a schematic diagram illustrating raw signal waveforms corresponding to walk, trot and run gaits, and phase objects obtained by analyzing each raw signal waveform according to the present embodiment.
- FIG. FIG. 1 is a schematic diagram showing a topological object corresponding to a walk and a color map that visualizes the characteristics of the topological object.
- FIG. 13 is a schematic diagram showing a phase object corresponding to a trot and a color map visualizing the characteristics of the phase object.
- FIG. 1 is a schematic diagram showing a phase object corresponding to a run and a color map that visualizes the characteristics of the phase object.
- FIG. 10 is a confusion matrix showing the relationship between correct categories of a plurality of acceleration data and prediction results of gait classification by the gait classification device 100 according to the present embodiment.
- 1 is a schematic diagram illustrating raw signal waveforms of pulse wave data measured under three mutually different conditions, and phase objects obtained by analyzing each raw signal waveform.
- Patent Document 1 discloses a method of decomposing the waveform of a quasi-periodic signal obtained from an electrocardiogram into multiple frequency components by wavelet transform.
- the wavelet transform is realized, for example, by inputting the results of biological activity detected by a sensor into a filter bank.
- the characteristics of the filters of each frequency band constituting the filter bank depend on multiple parameters such as Nd, kp , Ni, and wp (see Figures 1 to 5 of Patent Document 1 and their explanations).
- the characteristics of a conventional filter bank must be determined in advance according to the fundamental frequency of the quasi-periodic signal input to the filter bank.
- the frequency of signals representing the biological activities of animals, such as walking, heartbeat, and breathing is not constant.
- a number of parameters is required that is the number of parameters in one frequency band multiplied by the number of frequency bands.
- an animal's walking state is detected using sensors such as an acceleration sensor, but in order to understand the characteristics of the animal's walking, it is often necessary to detect forward/backward, left/right, and up/down movements. Therefore, there is room to more accurately estimate an animal's walking state by detecting acceleration in multiple directions, rather than detecting acceleration in only one axial direction.
- Patent Document 1 discloses technology that makes it possible to detect abnormalities in the measurement results of a certain channel of an electrocardiogram, but does not disclose technology for classifying patterns of biological activity such as gait (or gait pattern), heart rate, breathing, etc.
- gait or gait pattern
- the inventors discovered that technology that classifies patterns of biological activity such as gait, heart rate, breathing, etc. using the detection results of biological activity obtained by multiple sensors or a sensor with multiple channels is useful for understanding information such as an animal's health condition and amount of movement, and came up with such a classification technology.
- FIG. 1 is a block diagram showing an example configuration of a gait classification device 100 according to an embodiment of the present disclosure.
- the gait classification device 100 is an example of an information processing device of the present disclosure.
- the gait classification device 100 classifies the gait of an animal that walks on four legs, such as a dog. For example, the gait classification device 100 classifies the gait of a dog into a walk (walk), a trot (trot), and a gallop or run (gallop or run).
- the gait classification device 100 includes an input/output unit 11, an arithmetic circuit 12, a storage device 13, and a communication unit 14.
- the input/output unit 11 is an interface circuit that connects the gait classification device 100 to an external device, such as the acceleration sensor unit 2, in order to receive information from the external device or to output information to the external device.
- the input/output unit 11 may be a communication circuit that performs data communication according to an existing wired communication standard or wireless communication standard.
- the arithmetic circuit 12 performs information processing to realize the functions of the gait classification device 100. Such information processing is realized, for example, by the arithmetic circuit 12 executing a program stored in the storage device 13.
- the arithmetic circuit 12 is composed of circuits such as a CPU, MPU, FPGA, etc.
- the arithmetic circuit 12 may be realized by such a single circuit, or may be realized by multiple circuits. Furthermore, functions may be omitted, replaced, or added to the components of the arithmetic circuit 12 as appropriate depending on the embodiment.
- the storage device 13 stores various data including programs and trained models necessary to realize the functions of the gait classification device 100.
- the storage device 13 is realized, for example, by a semiconductor storage device such as a flash memory or a solid state drive (SSD), a magnetic storage device such as a hard disk drive (HDD), or other recording media, either alone or in combination.
- the storage device 13 may also include a temporary storage device such as an SRAM or a DRAM.
- the acceleration sensor unit 2 is a sensor capable of detecting a first plurality of acceleration components.
- the first plurality of acceleration components are, for example, n acceleration components.
- n is an integer equal to or greater than 2.
- the acceleration sensor unit 2 is an acceleration sensor having three channels corresponding to each of the three axial directions.
- the acceleration sensor unit 2 may be a unit having a first acceleration sensor that detects acceleration in the x direction, a second acceleration sensor that detects acceleration in the y direction, and a third acceleration sensor that detects acceleration in the z direction.
- FIG. 2 is a schematic diagram illustrating the position and direction in which the acceleration sensor unit 2 in FIG. 1 is attached.
- the acceleration sensor unit 2 is attached to a collar, harness, or other attachment worn by the dog.
- the direction in which the dog moves forward is defined as the forward direction, and the acceleration sensor unit 2 is attached to the dog's attachment so that it can detect acceleration in the mutually orthogonal left-right direction (x direction), front-back direction (y direction), and vertical direction (z direction).
- the positive direction of each axis is illustrated in FIG. 2.
- FIG. 3 is a flowchart showing an example of a gait classification method executed by the gait classification device 100.
- the arithmetic circuit 12 acquires acceleration data in the x, y and z directions from the acceleration sensor unit 2 (S1).
- the arithmetic circuit 12 may acquire the acceleration data in real time from the acceleration sensor unit 2.
- the storage device 13 may store the acceleration data measured by the acceleration sensor unit 2, and the arithmetic circuit 12 may read out the acceleration data stored in the storage device 13.
- the arithmetic circuit 12 analyzes the acceleration data acquired in step S1 to detect a quasi-periodic signal (S2).
- the waveform indicating the biosignal generated by biological activity, such as the acceleration acquired in step S1 is usually not a waveform in which a completely identical waveform is repeated at regular time intervals. Therefore, in this specification, such a biosignal is called a quasi-periodic signal. If a quasi-periodic signal is not detected in step S2, the arithmetic circuit 12 ends the processing of FIG. 3 or returns to step S1.
- filtering may be performed to remove noise contained in the acceleration data.
- noise may be caused by, for example, external disturbances, animal movements, etc.
- the filtering is performed, for example, by an Infinite Impulse Response (IIR) bandpass filter.
- IIR Infinite Impulse Response
- FIR Finite Impulse Response
- the arithmetic circuit 12 obtains a stretched signal by stretching the quasi-periodic signal detected in step S2 in the time direction (S3).
- the arithmetic circuit 12 stretches or shrinks the quasi-periodic signal so that the period of the stretched or shrinked signal becomes a predetermined value.
- Fig. 4 is a graph showing the acceleration data (a x , a y , a z ) in the x, y, and z directions acquired from the acceleration sensor unit 2 in step S1.
- Fig. 4 also shows periods T0 x , T0 y , and T0 z of the accelerations a x , a y , and a z , which are quasi-periodic signals.
- the periods of these quasi-periodic signals are detected in step S2 or S3 , for example, by the arithmetic circuit 12.
- Fig. 5 is a graph showing the expansion/contraction signals ( Sx , Sy, Sz) obtained by expanding/contracting the acceleration data (ax, ay, az ) of Fig . 4 in step S3.
- the periods of the expansion/contraction signals Sx , Sy , Sz are T1x , T1y , T1z , respectively.
- T1x is equal to a predetermined value Tx
- T1y is equal to a predetermined value Ty
- T1z is equal to a predetermined value Tz .
- Tx , Ty , Tz may be different values from each other or may be equal values.
- step S3 the arithmetic circuit 12 expands or contracts the quasi-periodic signal so that the periods T1x , T1y , and T1z of the expanded or contracted signal become the predetermined values Tx , Ty , and Tz .
- the arithmetic circuit 12 can obtain the expanded or contracted signal Sz with a period Tz by resampling the original signal at a sampling rate Tz / T0z times.
- FIG. 6A and 6B are graphs for explaining an example of a process for detecting the period of a quasi-periodic signal.
- Fig. 6A shows a waveform of acceleration data obtained by the acceleration sensor unit 2 attached to a dog performing a walk.
- Fig. 6B shows a waveform of acceleration data obtained by the acceleration sensor unit 2 attached to a dog performing a trot.
- the acceleration a x in the x direction is shown by a solid line
- the acceleration a y in the y direction is shown by a dashed line
- the acceleration a z in the z direction is shown by a dotted line.
- the dynamic threshold is, for example, the midpoint between a local maximum value of the acceleration a 1 z in the z direction and its adjacent minimum value.
- the arithmetic circuit 12 determines the time between adjacent dynamic thresholds as the period of the acceleration a 1 z in the z direction. The same applies to the x and y directions.
- FIG. 7A to 7D are diagrams for explaining the effect of expanding or contracting a quasi-periodic signal (original signal) in the time direction so that the period of the expanded or contracted signal becomes a predetermined value.
- FIG. 7A is a graph showing acceleration data in the x, y and z directions acquired from the acceleration sensor unit 2 in step S1 under measurement condition 1.
- FIG. 7B is a graph showing an expanded or contracted signal obtained by expanding or contracting the original signal of FIG. 7A in step S3.
- FIG. 7C is a graph showing acceleration data (a x , a y , a z ) in the x, y and z directions acquired from the acceleration sensor unit 2 in step S1 under measurement condition 2.
- FIG. 7D is a graph showing an expanded or contracted signal obtained by expanding or contracting the original signal of FIG. 7C in step S3.
- the original signal under measurement condition 1 in FIG. 7A and the original signal under measurement condition 2 in FIG. 7C have different periods, but the periods of the stretched and contracted signals in FIG. 7B and FIG. 7D after stretching are the same. Therefore, by performing the stretching process in step S3 on the quasi-periodic signal, the gait classification device 100 can perform the wavelet transform or phase analysis in step S4 using the same parameters, even if the quasi-periodic signal was obtained under different conditions. This can further reduce the processing load of decomposing the quasi-periodic signal into multiple frequency components.
- the arithmetic circuit 12 performs a wavelet transform on the stretched signal obtained in step S3 (S4).
- the arithmetic circuit 12 decomposes the stretched signal into multiple (m (m ⁇ 2)) frequency components.
- the wavelet transform is realized, for example, by inputting the stretched signal to a filter bank.
- the filter bank has a configuration similar to that of the filter bank described in Patent Document 1, for example.
- Fig. 8 is a graph illustrating a plurality of frequency components obtained by performing a wavelet transform on the stretched signal Sz of Fig. 5.
- m 5
- the stretched signals Sx and Sy can be decomposed into a plurality of frequency components by performing a wavelet transform on them.
- step S4 the arithmetic circuit 12 performs phase analysis on the multiple frequency components of the expansion/contraction signal obtained in step S4 (S5).
- phase section A is the phase section from the point where the waveform crosses the zero cross point in the positive direction of the amplitude to the positive peak point (local maximum point or local maximum point) of the waveform.
- Phase section B is the phase section from the end point of phase section A to the point where the waveform crosses the zero cross point in the negative direction.
- Phase section C is the phase section from the end point of phase section B to the negative peak point (local minimum point or local minimum point) of the waveform.
- Phase section D is the phase section from the end point of phase section C to the point where the waveform crosses the zero cross point in the positive direction of the amplitude.
- the waveform is an approximately sine curve as shown in FIG. 9, the end point of phase section D coincides with the start point of phase section A in the expansion/contraction signal of the next period.
- phase information including the positions of these phase segments A to D, such as the start and end times of each phase segment, and the labels (A to D) attached to each phase segment, is an example of phase information disclosed herein.
- a phase object is, for example, information obtained by arranging phase information of frequency components of a plurality of expansion/contraction signals in a time series.
- a process example in which the arithmetic circuit 12 creates a phase object from two frequency components QP x,1 and QP x,2 of the expansion/contraction signal in the x direction and two frequency components QP y,1 and QP y,2 of the expansion/contraction signal in the y direction will be described.
- step S6 the arithmetic circuit 12 selects at least two frequency components from a total of 3m frequency components obtained by decomposing each of the three expansion/contraction signals corresponding to the three directions x, y, and z into m frequency components. This selection process is performed so that the selected frequency components include frequency components corresponding to at least two of the three directions x, y, and z. In addition, in this selection process, the arithmetic circuit 12 selects the at least two frequency components by extracting components that are well representative of the characteristics from, for example, the 3m frequency components.
- step S6 after the selection process, the arithmetic circuit 12 obtains phase information in time series for at least two selected frequency components to create a phase object.
- Fig. 10 illustrates an example of a phase object obtained from frequency components QP x,1 and QP x,2 in the x direction and frequency components QP y,1 and QP y,2 in the y direction.
- the phase divisions of the frequency components QP x,1 , QP x,2 , QP y,1 , and QP y,2 between the times when at least one of these frequency components changes are determined as phase objects.
- the arithmetic circuit 12 stores the phase divisions of these frequency components in the storage device 13 every time at least one of the frequency components QP x,1 , QP x,2 , QP y,1 , and QP y, 2 changes.
- the time-series phase information of the frequency components generated in this manner becomes the phase object.
- phase section A is shown in the darkest gray (75% gray)
- phase section B is shown in medium gray (50% gray)
- phase section C is shown in medium gray (25% gray)
- phase section D is shown in white.
- the phase objects in FIG. 11 are arranged vertically in chronological order. In other words, the time axis of the phase objects in FIG. 11 extends vertically into the paper.
- the arithmetic circuit 12 can classify the pattern of biological activity based on the characteristics of the phase information corresponding to the frequency component at T/4, 3T/4, or portions in their vicinity.
- a waveform around frequency component T/4 includes a waveform within frequency component T/4 ⁇ T/4, for example, within T/4 ⁇ T/8, within T/4 ⁇ T/10, within T/4 ⁇ T/16.
- a waveform around frequency component 3T/4 includes a waveform within frequency component 3T/4 ⁇ T/4, for example, within 3T/4 ⁇ T/8, within 3T/4 ⁇ T/10, within 3T/4 ⁇ T/16.
- the arithmetic circuit 12 classifies the gait based on the phase object created in step S6 (S7).
- Classifying a pattern of biological activity means determining which of the predetermined patterns the pattern of biological activity corresponds to.
- the arithmetic circuit 12 classifies the dog's gait as either a walk, trot, gallop, or run.
- the arithmetic circuit 12 inputs the phase object into a trained model stored in the storage device 13, for example, and causes the trained model to detect the gait classification result.
- the trained model is generated, for example, by a supervised learning method in which the arithmetic circuit 12 or another information processing device trains the model to learn the relationship between the phase object and the correct answer information.
- a model is a neural network, for example a learning model having a structure of a Convolutional Neural Network (CNN).
- CNN Convolutional Neural Network
- the model may also be a learning model such as a decision tree model that performs machine learning using a decision tree technique including a classification tree, or a support vector machine.
- Figures 12A, 12B, and 12C are schematic diagrams showing phase objects corresponding to walk, trot, and run (gallop), respectively, and color maps that visualize the characteristics of the phase objects.
- the left figures in each of Figures 12A, 12B, and 12C show the phase objects, and the right figures show the color maps.
- Grad-CAM Gradient-weighted Class Activation Mapping
- step S7 the calculation circuit 12 can classify the gait using characteristic parts of the phase object as shown in Figures 12A, 12B, and 12C.
- Figure 13 shows a confusion matrix indicating the relationship between ground truth categories of multiple acceleration data and prediction results (Prediction) of gait classification by the gait classification device 100 according to this embodiment.
- the top row of the confusion matrix in Figure 13 shows that when gait classification was performed by the gait classification device 100 on the waveform of acceleration data obtained by the acceleration sensor unit 2 attached to a dog that was walking, the number of predictions as "walk” was 31, the number of predictions as "trot” was 2, and the number of predictions as "run” was 0.
- the majority of the classification results by the gait classification device 100 are arranged on the diagonal of the confusion matrix, which indicates that the accuracy of classification by the gait classification device 100 is high.
- the gait classification device 100 classifies the patterns of biological activity of an animal.
- the gait classification device 100 includes an arithmetic circuit 12 that receives a biological signal that is a detection result of the biological activity of an animal detected by a sensor having multiple detection channels or a sensor unit including multiple sensors.
- the arithmetic circuit 12 detects a quasi-periodic signal from the detection result (S2), stretches the quasi-periodic signal in the time direction to generate a stretched signal whose period is a predetermined value (S3), performs a wavelet transform on the stretched signal to decompose the stretched signal into multiple frequency components (S4), obtains time-series phase information of the multiple frequency components (S5), and classifies the pattern of biological activity based on the time-series phase information (S6).
- This configuration makes it possible to classify the pattern of biological activity.
- the gait classification device 100 can further reduce the processing load of the arithmetic circuit 12.
- the biological activity may be the movement of an animal.
- the detection result of the biological activity may be the acceleration measured by an acceleration sensor unit 2 attached to the animal.
- the pattern of the biological activity may be the gait of the animal. With this configuration, it is possible to classify the gait of the animal to which the acceleration sensor unit 2 is attached.
- the animal may be a quadrupedal animal.
- the arithmetic circuit 12 may classify the pattern of biological activity by determining, based on the time-series phase information, which of predetermined gait patterns of a quadrupedal animal the pattern of biological activity corresponds to. With this configuration, it is possible to classify the gait of a quadrupedal animal.
- the quadrupedal animal may be, for example, a dog.
- the acceleration sensor unit 2 may be capable of measuring a first plurality (n) of acceleration components of acceleration corresponding to a plurality of directions different from each other.
- the arithmetic circuit 12 detects a first plurality of quasi-periodic signals from each of the first plurality of acceleration components measured by the acceleration sensor unit 2.
- the arithmetic circuit 12 expands/contracts each of the first plurality of quasi-periodic signals in the time direction to generate an expansion/contraction signal having a predetermined period, thereby generating the first plurality of expansion/contraction signals.
- the arithmetic circuit 12 decomposes each of the first plurality of expansion/contraction signals into a second plurality (m) of frequency components.
- the arithmetic circuit 12 acquires time-series phase information for at least one of the second plurality of frequency components corresponding to each of the first plurality of expansion/contraction signals.
- the arithmetic circuit 12 classifies a pattern of biological activity using a phase object in which phase information is arranged based on a time series.
- the arithmetic circuit 12 may classify the patterns of biological activity based on the characteristics of the phase information of the time series that corresponds to the portion of the frequency component at T/4 or 3T/4, where T is the period of one of the multiple frequency components. This configuration limits the analysis location to the above portion, thereby enabling accurate classification while reducing the computational cost, resources, or processing load of the arithmetic circuit 12.
- an example of an "animal” of the present disclosure is described as a quadrupedal animal, but the present disclosure is not limited to this.
- the "animal” of the present disclosure includes bipedal animals.
- the "animal” of the present disclosure includes humans. Therefore, the information processing device according to the present disclosure can also classify the gait of a human as a classification of the gait of an animal.
- the information processing device may classify or estimate conditions related to the heart rate based on the results obtained by expanding and decomposing the animal's pulse wave data.
- the photoelectric volume pulse wave meter is a device that detects information on the pulse wave accompanying the heartbeat by measuring the change in blood volume in the blood vessels corresponding to the change in heart rate.
- the photoelectric volume pulse wave meter includes, for example, a light source and a photodetector.
- the light source irradiates light of multiple channels with different wavelengths.
- the light source irradiates at least infrared light.
- the infrared light irradiated by the light source is transmitted through the animal's tissue and reaches the photodetector after being absorbed by hemoglobin in the blood and reflected by the tissue. Since the amount of light reaching the photodetector is proportional to the tissue blood volume, the photoelectric volume pulse wave meter can detect information on the pulse wave.
- the photoelectric volume pulse wave meter including the light source and photodetector as described above is an example of the "sensor unit" of the present disclosure.
- the graph on the right side of Figure 14 shows the original signal waveform of pulse wave data measured using three LEDs that irradiate infrared light under different conditions.
- the original signal waveform which is a quasi-periodic signal, is stretched (S3 in Figure 3), wavelet transformed (S4), and phase analyzed (S5) by the arithmetic circuit 12, and a phase object is created (S6).
- phase section A is shown in the darkest gray (75% gray)
- phase section B is shown in medium gray (50% gray)
- phase section C is shown in medium gray (25% gray)
- phase section D is shown in white.
- the arithmetic circuit 12 can classify or estimate the conditions related to the heartbeat based on the phase object. As another modification, the arithmetic circuit 12 may classify or estimate the state of blood flow obtained by various measurement methods.
- An information processing device for classifying a pattern of an animal's biological activity comprising: a calculation circuit that receives a biological signal that is a detection result of biological activity of the animal detected by a sensor having a plurality of detection channels or a sensor unit including a plurality of sensors;
- the arithmetic circuit includes: Detecting a quasi-periodic signal from the detection result; stretching or contracting the quasi-periodic signal in a time direction to generate a stretched or contracted signal having a predetermined period; Decomposing the stretched signal into a plurality of frequency components; acquiring time-series phase information of the plurality of frequency components; classifying the pattern of the biological activity based on the phase information of the time series; Information processing device.
- the biological activity is a movement of an animal
- the sensor unit is an acceleration sensor unit attached to the animal
- the detection result of the life activity is acceleration measured by the acceleration sensor unit
- the biological activity pattern is the gait of the animal. 3.
- the information processing device according to aspect 1 or 2.
- the animal is a quadrupedal animal
- the arithmetic circuit classifies the pattern of life activity by determining, based on the time-series phase information, which of predetermined gait patterns of a quadrupedal animal the pattern of life activity corresponds to;
- the information processing device according to aspect 3.
- the sensor unit is an acceleration sensor unit attached to the animal; the detection result of the life activity is acceleration measured by the acceleration sensor unit; the acceleration sensor unit is capable of measuring a first plurality of acceleration components of the acceleration corresponding to a plurality of directions different from each other,
- the arithmetic circuit includes: In the process of detecting the quasi-periodic signal, a first plurality of quasi-periodic signals are detected from the first plurality of acceleration components measured by the acceleration sensor unit, respectively; In the process of generating the expanded/contracted signal, the first plurality of expanded/contracted signals are generated by expanding/contracting each of the first plurality of quasi-periodic signals in a time direction to generate expanded/contracted signals each having a predetermined period; In the process of decomposing the stretched signal into a plurality of frequency components, each of the first plurality of stretched signals is decomposed into a second plurality of frequency components; In the process of acquiring time-series phase information of the plurality of frequency components, time-series phase information of at least
- ⁇ Aspect 7> In the process of classifying the pattern of the life activity, when a period of one frequency component among the plurality of frequency components is T, the arithmetic circuit classifies the pattern of the life activity based on a feature of phase information of the time series corresponding to a portion of the frequency component at T/4 or 3T/4.
- the information processing device according to any one of aspects 1 to 6.
- An information processing method for classifying a pattern of an animal's biological activity comprising: A calculation circuit receives a biological signal, which is a detection result of the biological activity of the animal, detected by a sensor having a plurality of detection channels or a sensor unit including a plurality of sensors, and detects a quasi-periodic signal from the detection result of the biological activity; a step of the arithmetic circuit stretching or shortening the quasi-periodic signal so that a period of the quasi-periodic signal after stretching or shortening becomes a predetermined value to generate a stretched or shortened signal; The calculation circuit decomposes the stretched signal into a plurality of frequency components; The arithmetic circuit acquires time-series phase information of the plurality of frequency components; The arithmetic circuit classifies the pattern of the biological activity based on the phase information of the time series; An information processing method comprising:
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Dentistry (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Physiology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
情報処理装置は、動物の生体活動のパターンを分類する。情報処理装置は、複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された動物の生体活動の検出結果である生体信号を受け取る演算回路を備える。演算回路は、検出結果から準周期信号を検出し、準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し、伸縮信号を複数の周波数成分に分解し、複数の周波数成分の時系列の位相情報を取得し、時系列の位相情報に基づいて、生体活動のパターンを分類する。
Description
本開示は、情報処理装置、情報処理方法及びプログラムに関する。
周期的な波形、又は準周期的な特徴を有する準周期信号を解析する技術が知られている。ここで、準周期的とは、例えば、信号波形の周期が正確には一定ではなくばらつきを有することを意味する。例えば、特許文献1は、心電図により得られた準周期信号の波形をウェーブレット変換により複数の周波数成分に分解し、各周波数成分の位相情報を記憶装置に格納する方法を開示している。
しかしながら、生体活動を表す準周期信号の周波数は時間的に一定ではないため、準周期信号を複数の周波数成分に分解する処理が煩雑となり、このような処理を行う情報処理装置の計算量も増大することがある。
本開示は、準周期信号を複数の周波数成分に分解する処理の負荷をより低減することができる情報処理装置、情報処理方法及びプログラムを提供することを目的とする。
本開示の一態様に係る情報処理装置は、
動物の生体活動のパターンを分類する情報処理装置であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路を備え、
前記演算回路は、
前記検出結果から準周期信号を検出し、
前記準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得し、
前記時系列の位相情報に基づいて、前記生体活動のパターンを分類する。
動物の生体活動のパターンを分類する情報処理装置であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路を備え、
前記演算回路は、
前記検出結果から準周期信号を検出し、
前記準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得し、
前記時系列の位相情報に基づいて、前記生体活動のパターンを分類する。
本開示の一態様に係る情報処理方法は、動物の生体活動のパターンを分類する情報処理方法であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路が、生体活動の検出結果から準周期信号を検出するステップと、
前記演算回路が、伸縮後の前記準周期信号の周期が所定値となるように前記準周期信号を伸縮して伸縮信号を生成するステップと、
前記演算回路が、前記伸縮信号を複数の周波数成分に分解するステップと、
前記演算回路が、前記複数の周波数成分の時系列の位相情報を取得するステップと、
前記演算回路が、前記時系列の位相情報に基づいて、前記生体活動のパターンを分類するステップと、を含む。
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路が、生体活動の検出結果から準周期信号を検出するステップと、
前記演算回路が、伸縮後の前記準周期信号の周期が所定値となるように前記準周期信号を伸縮して伸縮信号を生成するステップと、
前記演算回路が、前記伸縮信号を複数の周波数成分に分解するステップと、
前記演算回路が、前記複数の周波数成分の時系列の位相情報を取得するステップと、
前記演算回路が、前記時系列の位相情報に基づいて、前記生体活動のパターンを分類するステップと、を含む。
本開示の一態様に係るプログラムは、上記情報処理方法を演算回路に実行させる。
本開示の情報処理装置、情報処理方法及びプログラムによれば、準周期信号を複数の周波数成分に分解する処理の負荷をより低減することができる。
(本開示に至った経緯)
人及びペット等の動物の生体活動をセンサ等により検出し、動物の生体活動を把握する技術が要求されることがある。動物の生体活動を把握することによって、例えば、動物の健康状態、運動量等の情報を把握し、ヘルスケアに活用することができる。
人及びペット等の動物の生体活動をセンサ等により検出し、動物の生体活動を把握する技術が要求されることがある。動物の生体活動を把握することによって、例えば、動物の健康状態、運動量等の情報を把握し、ヘルスケアに活用することができる。
従来技術(特許文献1参照)は、心電図により得られた準周期信号の波形をウェーブレット変換により複数の周波数成分に分解する方法を開示している。ウェーブレット変換は、例えば、センサによる生体活動の検出結果をフィルタバンクに入力することにより実現される。フィルタバンクを構成する各周波数帯域のフィルタの特性は、例えばNd、kp、Ni、wp等の複数のパラメータに依存する(特許文献1の図1~5とこれらの説明箇所を参照)。
従来のフィルタバンクの特性は、フィルタバンクに入力される準周期信号の基本周波数に応じて予め決めておく必要がある。しかし、歩行、心拍、呼吸等の動物の生体活動を表す信号の周波数は一定ではない。信号の周波数が変化してもウェーブレット変換を実行できるようにするためには、フィルタバンクの特性を決定するパラメータを、信号の周波数の変化に応じて随時変更できるようにしておく必要がある。したがって、ウェーブレット変換が煩雑となり、このような処理を行う情報処理装置の計算量も増大することがある。例えば、フィルタバンクの特性を決定するためには、1周波数帯域におけるパラメータ数に周波数帯域の数を乗じた数のパラメータが必要となる。
また、動物の生体活動を把握する技術の一例である歩行解析においては、加速度センサ等のセンサにより動物の歩行状態を検出するが、歩行の特徴を把握するためには前後、左右、上下の動きを検出することが必要であることが多い。したがって、ある1軸方向の加速度のみを検出するよりも、複数の方向の加速度を検出することにより、動物の歩行状態をより正確に推定する余地がある。
そこで、複数の加速度センサから構成される加速度センサユニット又は複数チャンネルを有する加速度センサによって複数方向の加速度を検出することが考えられる。この場合においても、複数方向の加速度信号を個別に解析するだけではなく、包括的又は総合的に解析することにより、動物の歩行状態をより正確に推定する余地がある。従来技術は1つの信号を個別に解析するが、発明者は、鋭意研究の結果、複数方向の加速度信号の相互の時間的な関係性を考慮し、複数方向の加速度信号を個別にではなく包括的に解析する技術を想到するに至った。
さらに、特許文献1は、ある1チャンネルの心電図の計測結果における異常を検知することを可能にする技術を開示するが、歩様(又は歩容)、心拍、呼吸等の生体活動のパターンを分類する技術を開示していない。発明者は、鋭意研究の結果、複数センサ又は複数チャンネルを有するセンサによって得られた生体活動の検出結果を用いて歩様、心拍、呼吸等の生体活動のパターンを分類する技術が動物の健康状態、運動量等の情報の把握に有用であることを見出し、このような分類技術を想到するに至った。
(実施形態)
以下、添付の図面を参照して本開示に係る情報処理装置の実施形態を説明する。なお、以下の実施形態において、同一又は同様の構成要素については同一の符号を付している。添付の図面では、説明の理解を容易なものとするため、各構成要素の形状、寸法、位置関係等は、誇張されることがある。
以下、添付の図面を参照して本開示に係る情報処理装置の実施形態を説明する。なお、以下の実施形態において、同一又は同様の構成要素については同一の符号を付している。添付の図面では、説明の理解を容易なものとするため、各構成要素の形状、寸法、位置関係等は、誇張されることがある。
図1は、本開示の一実施形態に係る歩様分類装置100の構成例を示すブロック図である。歩様分類装置100は、本開示の情報処理装置の一例である。歩様分類装置100は、四足歩行を行う動物、例えば犬の歩様を分類する。例えば、歩様分類装置100は、犬の歩様が、ウォーク(Walk、常歩)、トロット(Trot、速歩)、及びギャロップ又はラン(Gallop又はRun、襲歩)のいずれであるかを分類する。
歩様分類装置100は、入出力部11と、演算回路12と、記憶装置13と、通信部14とを備える。
入出力部11は、加速度センサユニット2等の外部装置からの情報を受け付けるため、又は外部装置に情報を出力するために、歩様分類装置100と外部装置とを接続するインタフェース回路である。入出力部11は、既存の有線通信規格又は無線通信規格に従ってデータ通信を行う通信回路であってもよい。
演算回路12は、情報処理を実行して歩様分類装置100の機能を実現する。このような情報処理は、例えば、演算回路12が記憶装置13に格納されたプログラムを実行することにより実現される。演算回路12は、例えば、CPU、MPU、FPGA等の回路で構成される。演算回路12は、このような回路単体で実現されてもよいし、複数の回路により実現されてもよい。また、演算回路12の構成要素に関して、実施形態に応じて、適宜、機能の省略、置換及び追加が行われてもよい。
記憶装置13は、歩様分類装置100の機能を実現するために必要なプログラム及び学習済みモデルを含む種々のデータを記憶する。記憶装置13は、例えば、フラッシュメモリ、ソリッド・ステート・ドライブ(SSD)等の半導体記憶装置、ハードディスクドライブ(HDD)等の磁気記憶装置、その他の記録媒体単独で又はそれらを組み合わせて実現される。記憶装置13は、SRAM、DRAM等の一時的な記憶装置を含んでもよい。
加速度センサユニット2は、第1の複数の加速度成分を検出可能なセンサである。第1の複数の加速度成分は、例えばn個の加速度成分である。ここで、nは、2以上の整数である。例えば、加速度センサユニット2は、互いに直交する3軸方向(xyz方向)の加速度をそれぞれ検出可能なセンサである(n=3)。加速度センサユニット2は、3軸方向のそれぞれに対応する3つのチャンネルを有する加速度センサである。あるいは、加速度センサユニット2は、x方向の加速度を検出する第1の加速度センサと、y方向の加速度を検出する第2の加速度センサと、z方向の加速度を検出する第3の加速度センサと、を有するユニットであってもよい。
図2は、図1の加速度センサユニット2が取り付けられる位置及び方向を例示する模式図である。加速度センサユニット2は、例えば犬が装着している首輪、ハーネス等の装着具に取り付けられる。犬が前進する方向を前方向として、加速度センサユニット2は、例えば、互いに直交する左右方向(x方向)、前後方向(y方向)、及び鉛直方向(z方向)の加速度を検出できるように犬の装着具に取り付けられる。各軸の正方向は、図2に例示している。
図3は、歩様分類装置100によって実行される歩様分類方法の一例を示すフローチャートである。まず、演算回路12は、加速度センサユニット2からxyz方向の各加速度データを取得する(S1)。演算回路12は、加速度センサユニット2からリアルタイムで加速度データを取得してもよい。あるいは、記憶装置13が加速度センサユニット2によって測定された加速度データを記憶し、演算回路12は、記憶装置13に記憶された加速度データを読み出してもよい。
次に、演算回路12は、ステップS1で取得した加速度データを解析して準周期信号を検出する(S2)。ステップS1で取得された加速度などの生体活動に伴い生じる生体信号を示す波形は、通常、完全に同一形状の波形が一定の時間間隔で繰り返されるような波形とはならない。そこで、本明細書では、このような生体信号を準周期信号と呼ぶ。ステップS2で準周期信号が検出されなかった場合、演算回路12は、図3の処理を終了するか、又はステップS1に戻る。
ステップS1とS2との間、又はステップS2において、加速度データに含まれるノイズを除去するためのフィルタリングが実行されてもよい。このようなノイズは、例えば外乱、動物の体動等により生じる。フィルタリングは、例えば無限インパルス応答(Infinite Impulse Response、IIR)によるバンドパスフィルタによって実行される。フィルタリングは、有限インパルス応答(Finite Impulse Response、FIR)型フィルタ等の他のバンドパスフィルタによって実行されてもよい。
次に、演算回路12は、ステップS2で検出された準周期信号を時間方向に伸縮した伸縮信号を得る(S3)。ステップS3では、演算回路12は、伸縮信号の周期が所定値となるように準周期信号を伸縮する。
図4及び図5は、ステップS3の伸縮処理の概要を説明するための例示的な模式図である。図4は、ステップS1で加速度センサユニット2から取得されたxyz方向の各加速度データ(ax,ay,az)を示すグラフである。図4には、準周期信号である加速度ax、ay、azのそれぞれの周期T0x、T0y、T0zを示している。これらの準周期信号の周期は、例えば演算回路12によってステップS2又はS3で検出される。
図5は、ステップS3において図4の加速度データ(ax,ay,az)をそれぞれ伸縮することにより得られた伸縮信号(Sx,Sy,Sz)を示すグラフである。伸縮信号Sx、Sy、Szの周期は、それぞれT1x、T1y、T1zである。T1xは、予め設定された所定値Txに等しく、T1yは、予め設定された所定値Tyに等しく、T1zは、予め設定された所定値Tzに等しい。Tx、Ty、Tzは、互いに異なる値であってもよいし、等しい値であってもよい。
このように、ステップS3では、演算回路12は、伸縮信号の周期T1x、T1y、T1zが所定値Tx、Ty、Tzとなるように準周期信号を伸縮する。例えば、z方向について原信号である準周期信号azの周期はT0zであるので、演算回路12は、原信号をサンプルレートのTz/T0z倍でリサンプリングすることにより、周期がTzである伸縮信号Szを得ることができる。
図6A及び図6Bは、準周期信号の周期を検出する処理の一例を説明するためのグラフである。図6Aは、ウォークを行っている犬に取り付けられた加速度センサユニット2によって得られた加速度データの波形を示している。図6Bは、トロットを行っている犬に取り付けられた加速度センサユニット2によって得られた加速度データの波形を示している。図6A及び図6Bのグラフでは、x方向の加速度axを実線で、y方向の加速度ayを破線で、z方向の加速度azを点線で示している。
図6A及び図6Bに示した丸印(〇印)は、z方向の加速度azが動的閾値を負の方向に通過したポイントを表す。この動的閾値は、例えば、z方向の加速度azの局所的な最大値とこれに隣接する最小値との中間点である。例えば、演算回路12は、隣接する動的閾値間の時間をz方向の加速度azの周期として決定する。x方向及びy方向についても同様である。
図7A~7Dは、伸縮信号の周期が所定値となるように準周期信号(原信号)を時間方向に伸縮することによる効果を説明するための図である。図7Aは、測定条件1において、ステップS1で加速度センサユニット2から取得されたxyz方向の各加速度データを示すグラフである。図7Bは、ステップS3において図7Aの原信号を伸縮することにより得られた伸縮信号を示すグラフである。図7Cは、測定条件2において、ステップS1で加速度センサユニット2から取得されたxyz方向の各加速度データ(ax,ay,az)を示すグラフである。図7Dは、ステップS3において図7Cの原信号を伸縮することにより得られた伸縮信号を示すグラフである。
図7Aの測定条件1の原信号と、図7Cの測定条件2の原信号とでは周期が異なるが、伸縮後の図7B及び図7Dの伸縮信号の周期は同一である。したがって、歩様分類装置100は、準周期信号に対してステップS3の伸縮処理を行うことにより、準周期信号が異なる条件で得られた場合であっても、同一のパラメータを用いてステップS4のウェーブレット変換又は位相解析を行うことができる。これにより、準周期信号を複数の周波数成分に分解する処理の負荷をより低減することができる。
図3に戻り、ステップS3の後、演算回路12は、ステップS3で得られた伸縮信号対してウェーブレット変換を実行する(S4)。これにより、演算回路12は、伸縮信号を複数(m個(m≧2))の周波数成分に分解する。ウェーブレット変換は、例えば、伸縮信号をフィルタバンクに入力することにより実現される。フィルタバンクは、例えば特許文献1に記載のフィルタバンクと同様の構成を有する。
図8は、図5の伸縮信号Szに対してウェーブレット変換を実行することによって得られた複数の周波数成分を例示するグラフである。図8ではm=5であるが、mの値はこれに限定されない。伸縮信号Sx及びSyについても同様にウェーブレット変換を実行して複数の周波数成分に分解することができる。
図3に戻り、ステップS4の後、演算回路12は、ステップS4で得られた伸縮信号の複数の周波数成分に対して位相解析を実行する(S5)。
図9は、ステップS5の位相解析処理の一例を示す模式図である。演算回路12は、例えば、図9に示すように、伸縮信号の周波数成分を表す波形を4つの位相区分A、B、C、Dに分類する。位相区分Aは、波形がゼロクロス点を振幅の正方向に横切る点から、波形の正のピーク点(局所的な最大点又は極大点)までの位相区分である。位相区分Bは、位相区分Aの終点から、波形がゼロクロス点を負方向に横切る点までの位相区分である。位相区分Cは、位相区分Bの終点から、波形の負のピーク点(局所的な最小点又は極小点)までの位相区分である。位相区分Dは、位相区分Cの終点から、波形がゼロクロス点を振幅の正方向に横切る点までの位相区分である。波形が図9に示したような略sinカーブである場合、位相区分Dの終点は、次の周期の伸縮信号における位相区分Aの始点と一致する。
これらの位相区分A~Dの位置、例えば各位相区分の開始時刻と終了時刻と、各位相区分に付されたラベル(A~D)とを含む情報は、本開示の位相情報の一例である。
図3に戻り、ステップS5の後、演算回路12は、位相解析結果を用いて位相オブジェクトを作成する(S6)。位相オブジェクトとは、例えば、複数の伸縮信号の周波数成分の位相情報を時系列に並べることより得られる情報である。図10を用いて、x方向に関する伸縮信号の2つの周波数成分QPx,1及びQPx,2と、y方向に関する伸縮信号の2つの周波数成分QPy,1及びQPy,2とから、演算回路12が位相オブジェクトを作成する処理例について説明する。
ステップS6において、演算回路12は、xyzの3方向に対応する3つの伸縮信号のそれぞれをm個の周波数成分に分解して得られた計3m個の周波数成分の中から、少なくとも2つの周波数成分を選択する。この選択処理は、選択された周波数成分が、xyzの3方向のうちの少なくとも2つの方向に対応する周波数成分を含むように行われる。また、この選択処理において、演算回路12は、例えば3m個の周波数成分の中から、特徴をよく表す成分を抽出することによって上記少なくとも2つの周波数成分を選択する。
ステップS6において、上記選択処理の後、演算回路12は、選択した少なくとも2つの周波数成分について、位相情報を時系列で取得して位相オブジェクトを作成する。図10は、x方向に関する周波数成分QPx,1及びQPx,2と、y方向に関する周波数成分QPy,1及びQPy,2とから得られる位相オブジェクトを例示する。
図10では、周波数成分QPx,1、QPx,2、QPy,1、及びQPy,2のうち少なくとも1つが変化する時刻間におけるこれらの周波数成分の位相区分が、位相オブジェクトとして決定されている。演算回路12は、周波数成分QPx,1、QPx,2、QPy,1、及びQPy,2のうち少なくとも1つが変化する度にこれらの周波数成分の位相区分を記憶装置13に格納する。このようにして生成された周波数成分の時系列の位相情報が位相オブジェクトとなる。
図11は、ウォーク、トロット及びランの歩様に対応する原信号波形と、本実施形態に従って各原信号波形を解析することによって得られた位相オブジェクトとを例示する模式図である。図11の原信号波形は、図3のステップS1によって得られた加速度データを示す波形である。図11では、位相オブジェクトにおいて、位相区分Aを最も濃い灰色(75%灰色)で示し、位相区分Bを中間濃度の灰色(50%灰色)で示し、位相区分Cを中間濃度の灰色(25%灰色)で示し、位相区分Dを白色で示している。位相オブジェクトが時系列に横方向に並んだ図10と異なり、図11の位相オブジェクトは、時系列に縦方向に並んでいる。すなわち、図11の位相オブジェクトの時間軸は紙面に向かって縦方向に延びている。
図11の例では、x方向の加速度に対応する周波数成分の周期をTとしたとき、周波数成分のT/4又は3T/4付近の波形に対応する位相オブジェクトに特徴が現れている。したがって、演算回路12は、周波数成分のT/4、3T/4、又はこれらの付近における部分に対応する位相情報の特徴に基づいて、生体活動のパターンを分類することができる。
ここで、周波数成分のT/4付近の波形は、周波数成分のT/4±T/4内に含まれる波形、例えば、T/4±T/8内、T/4±T/10内、T/4±T/16内に含まれる波形を含む。同様に、周波数成分の3T/4付近の波形は、周波数成分の3T/4±T/4内に含まれる波形、例えば、3T/4±T/8内、3T/4±T/10内、3T/4±T/16内に含まれる波形を含む。
図3に戻り、ステップS6の後、演算回路12は、ステップS6で作成された位相オブジェクトに基づいて、歩様を分類する(S7)。生体活動のパターン(例えば歩様)を分類するとは、生体活動のパターンが予め定められたパターンのどれに対応するかを決定することをいう。本実施形態では、演算回路12は、犬の歩様が、ウォーク、トロット、ギャロップ、及びランのいずれであるかを分類する。
ステップS7では、演算回路12は、例えば、記憶装置13に格納された学習済みモデルに位相オブジェクトを入力し、学習済みモデルに歩様の分類結果を検出させる。学習済みモデルは、例えば、演算回路12又は他の情報処理装置により、位相オブジェクトと正解情報との関係をモデルに学習させる教師あり学習方法によって生成される。このようなモデルの一例は、ニューラルネットワーク、例えば畳み込みニューラルネットワーク(Convolutional Neural Network、CNN)の構造を有する学習用モデルである。モデルは、分類木を含む決定木の手法により機械学習を行う決定木モデル、サポートベクターマシーン等の学習用モデルであってもよい。
図12A、12B及び12Cは、それぞれ、ウォーク、トロット、ラン(ギャロップ)に対応する位相オブジェクトと、位相オブジェクトの特徴を可視化したカラーマップとを示す模式図である。図12A、12B及び12Cのそれぞれの左側の図は位相オブジェクトを示し、右側の図はカラーマップを示している。
これらのカラーマップは、例えば、位相オブジェクトにGrad-CAM(Gradient-weighted Class Activation Mapping)を適用することにより得られる。Grad-CAMは、CNNの畳み込み層に介在して、入力された画像中の特徴的な領域を強調してカラーマップを生成する技術である。図12A、12B及び12Cのカラーマップでは、Grad-CAMに入力された位相オブジェクトの特徴的な部分が、明るい(白い)色で示されている。カラーマップでは、特徴が弱い部分は黒色で示され、特徴が強くなるに連れて白くなっている。
ステップS7では、演算回路12は、図12A、12B及び12Cに示されているような位相オブジェクトの特徴的な部分を用いて、歩様を分類することができる。
図13は、複数の加速度データの正解カテゴリ(Ground Truth)と、本実施形態に係る歩様分類装置100による歩様分類の予測結果(Prediction)との関係を示す混同行列を示している。図13の混同行列の最上段は、例えば、ウォークを行っている犬に取り付けられた加速度センサユニット2によって得られた加速度データの波形に対して歩様分類装置100による歩様分類を実行したところ、「ウォーク」と予測した件数が31であり、「トロット」と予測した件数が2であり、「ラン」と予測した件数が0であったことを示している。
図13に示すように、歩様分類装置100による分類結果の大多数が混同行列の対角線上に並んでおり、歩様分類装置100による分類の精度が高いことがわかる。
以上のように、本実施形態に係る歩様分類装置100は、動物の生体活動のパターンを分類する。歩様分類装置100は、複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された動物の生体活動の検出結果である生体信号を受け取る演算回路12を備える。演算回路12は、検出結果から準周期信号を検出し(S2)、準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し(S3)、伸縮信号に対してウェーブレット変換を実行することによって、伸縮信号を複数の周波数成分に分解し(S4)、複数の周波数成分の時系列の位相情報を取得し(S5)、時系列の位相情報に基づいて、生体活動のパターンを分類する(S6)。この構成により、生体活動のパターンを分類することができる。さらに、歩様分類装置100は、演算回路12の処理負荷をより低減することができる。
本実施形態で例示したように、生体活動は、動物が移動する動きであってもよい。生体活動の検出結果は、動物に取り付けられた加速度センサユニット2によって測定された加速度であってもよい。生体活動のパターンは、動物の歩様であってもよい。この構成により、加速度センサユニット2が取り付けられた動物の歩様を分類することができる。
本実施形態で例示したように、上記動物は、四足歩行の動物であってもよい。演算回路12は、時系列の位相情報に基づいて、生体活動のパターンが、予め定められた四足歩行の動物の歩様のパターンのいずれに対応するかを決定することによって、生体活動のパターンを分類してもよい。この構成により、四足歩行の動物の歩様を分類することができる。四足歩行の動物は、例えば犬であってもよい。
本実施形態で例示したように、加速度センサユニット2は、互いに異なる複数の方向にそれぞれ対応する加速度の第1の複数(n個)の加速度成分を測定可能であってもよい。演算回路12は、準周期信号を検出する処理において、加速度センサユニット2によって測定された第1の複数の加速度成分のそれぞれから第1の複数の準周期信号を検出する。演算回路12は、伸縮信号を生成する処理において、第1の複数の準周期信号のそれぞれを時間方向に伸縮して、それぞれの周期が所定値である伸縮信号を生成することによって第1の複数の伸縮信号を生成する。演算回路12は、伸縮信号を複数の周波数成分に分解する処理において、第1の複数の伸縮信号のそれぞれを第2の複数(m個)の周波数成分に分解する。演算回路12は、複数の周波数成分の時系列の位相情報を取得する処理において、第1の複数の伸縮信号のそれぞれに対応する第2の複数の周波数成分の少なくとも1つについての時系列の位相情報を取得する。演算回路12は、生体活動のパターンを分類する処理において、位相情報を時系列に基づいて配置した位相オブジェクトを用いて生体活動のパターンを分類する。
複数の加速度成分の解析結果を用いて分類を行うことにより、生体活動のパターンをより正確に分類することができる。例えば、動物の前後、左右、上下の動きの検出結果を用いて分類を行うことにより、動物の歩様を正確に推定することができる。
演算回路12は、生体活動のパターンを分類する処理において、複数の周波数成分のうちの1つ周波数成分の周期をTとしたとき、時系列の位相情報のうち、周波数成分のT/4又は3T/4における部分に対応する位相情報の特徴に基づいて、生体活動のパターンを分類してもよい。この構成は、解析箇所を上記部分に限定することにより、計算コスト、リソース、又は演算回路12の処理負荷を抑えながら、精度良く分類を行うことができる。
(変形例)
以上、本開示の実施形態を詳細に説明したが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができる。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略する。以下の変形例は適宜組み合わせることができる。
以上、本開示の実施形態を詳細に説明したが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができる。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略する。以下の変形例は適宜組み合わせることができる。
上記の実施形態では、本開示の「動物」の一例が四足歩行の動物であることを説明したが、本開示はこれに限定されない。例えば、本開示の「動物」は、二足歩行の動物を含む。例えば、本開示の「動物」は、人を含む。したがって、本開示に係る情報処理装置は、動物の歩様の分類として、人の歩様を分類することもできる。
上記の実施形態では、動物に取り付けられた加速度センサユニット2によって検出された加速度データを伸縮及び分解して得られた結果に基づいて動物の歩様を分類する例について説明した。しかしながら、本開示に係る情報処理装置はこれに限定されない。例えば、情報処理装置は、動物の脈波データを伸縮及び分解して得られた結果に基づいて、心拍に関する条件を分類又は推定してもよい。
図14は、互いに異なる3つの条件で測定された脈波データの原信号波形と、各原信号波形を解析することによって得られた位相オブジェクトとを例示する模式図である。脈波データは、例えば、光電式容積脈波計によって測定される。光電式容積脈波計は、心拍数の変化に対応する血管の血液量の変化を測定することによって、心拍に伴う脈波の情報を検出する装置である。光電式容積脈波計は、例えば、光源と、光検出器とを備える。光源は、波長が互いに異なる複数チャンネルの光を照射する。光源は、少なくとも赤外線を照射する。光源によって照射された赤外線は、動物の組織を通って伝達され、血中ヘモグロビンによる吸収及び組織による反射を経て光検出器に到達する。光検出器に到達する光の量が組織血液量に比例するため、光電式容積脈波計は、脈波の情報を検出することができる。上記のような光源と光検出器とを備える光電式容積脈波計は、本開示の「センサユニット」の一例である。
図14の右側のグラフは、互いに異なる条件の赤外線を照射する3つのLEDを用いて測定された脈波データの原信号波形を示している。準周期信号である原信号波形は、演算回路12により伸縮(図3のS3)、ウェーブレット変換(S4)、位相解析(S5)され、位相オブジェクトが作成される(S6)。図11では、位相オブジェクトにおいて、位相区分Aを最も濃い灰色(75%灰色)で示し、位相区分Bを中間濃度の灰色(50%灰色)で示し、位相区分Cを中間濃度の灰色(25%灰色)で示し、位相区分Dを白色で示している。
本変形例では、周波数成分の周期をTとしたとき、周波数成分のT/2付近の波形に対応する位相オブジェクトに特徴が現れる。演算回路12は、位相オブジェクトに基づいて、心拍に関する条件を分類又は推定することができる。他の変形例として、演算回路12は、各種測定方法により得られた血流の状態を分類又は推定してもよい。
(本開示の態様)
以下、本開示の態様を付記する。
以下、本開示の態様を付記する。
<態様1>
動物の生体活動のパターンを分類する情報処理装置であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路を備え、
前記演算回路は、
前記検出結果から準周期信号を検出し、
前記準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得し、
前記時系列の位相情報に基づいて、前記生体活動のパターンを分類する、
情報処理装置。
動物の生体活動のパターンを分類する情報処理装置であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路を備え、
前記演算回路は、
前記検出結果から準周期信号を検出し、
前記準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得し、
前記時系列の位相情報に基づいて、前記生体活動のパターンを分類する、
情報処理装置。
<態様2>
前記演算回路は、前記伸縮信号に対してウェーブレット変換を実行することによって、前記伸縮信号を複数の周波数成分に分解する、態様1に記載の情報処理装置。
前記演算回路は、前記伸縮信号に対してウェーブレット変換を実行することによって、前記伸縮信号を複数の周波数成分に分解する、態様1に記載の情報処理装置。
<態様3>
前記生体活動は、動物が移動する動きであり、
前記センサユニットは、前記動物に取り付けられた加速度センサユニットであり、
前記生体活動の検出結果は、前記加速度センサユニットによって測定された加速度であり、
前記生体活動のパターンは、前記動物の歩様である、
態様1又は2に記載の情報処理装置。
前記生体活動は、動物が移動する動きであり、
前記センサユニットは、前記動物に取り付けられた加速度センサユニットであり、
前記生体活動の検出結果は、前記加速度センサユニットによって測定された加速度であり、
前記生体活動のパターンは、前記動物の歩様である、
態様1又は2に記載の情報処理装置。
<態様4>
前記動物は、四足歩行の動物であり、
前記演算回路は、前記時系列の位相情報に基づいて、前記生体活動のパターンが、予め定められた四足歩行の動物の歩様のパターンのいずれに対応するかを決定することによって、前記生体活動のパターンを分類する、
態様3に記載の情報処理装置。
前記動物は、四足歩行の動物であり、
前記演算回路は、前記時系列の位相情報に基づいて、前記生体活動のパターンが、予め定められた四足歩行の動物の歩様のパターンのいずれに対応するかを決定することによって、前記生体活動のパターンを分類する、
態様3に記載の情報処理装置。
<態様5>
前記動物は犬である、態様4に記載の情報処理装置。
前記動物は犬である、態様4に記載の情報処理装置。
<態様6>
前記センサユニットは、前記動物に取り付けられた加速度センサユニットであり、
前記生体活動の検出結果は、前記加速度センサユニットによって測定された加速度であり、
前記加速度センサユニットは、互いに異なる複数の方向にそれぞれ対応する前記加速度の第1の複数の加速度成分を測定可能であり、
前記演算回路は、
前記準周期信号を検出する処理において、前記加速度センサユニットによって測定された前記第1の複数の加速度成分のそれぞれから第1の複数の準周期信号を検出し、
前記伸縮信号を生成する処理において、前記第1の複数の準周期信号のそれぞれを時間方向に伸縮して、それぞれの周期が所定値である伸縮信号を生成することによって第1の複数の伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解する処理において、前記第1の複数の伸縮信号のそれぞれを第2の複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得する処理において、前記第1の複数の伸縮信号のそれぞれに対応する前記第2の複数の周波数成分の少なくとも1つについての時系列の位相情報を取得し、
前記生体活動のパターンを分類する処理において、前記位相情報を時系列に基づいて配置した位相オブジェクトを用いて前記生体活動のパターンを分類する、
態様1~5のいずれかに記載の情報処理装置。
前記センサユニットは、前記動物に取り付けられた加速度センサユニットであり、
前記生体活動の検出結果は、前記加速度センサユニットによって測定された加速度であり、
前記加速度センサユニットは、互いに異なる複数の方向にそれぞれ対応する前記加速度の第1の複数の加速度成分を測定可能であり、
前記演算回路は、
前記準周期信号を検出する処理において、前記加速度センサユニットによって測定された前記第1の複数の加速度成分のそれぞれから第1の複数の準周期信号を検出し、
前記伸縮信号を生成する処理において、前記第1の複数の準周期信号のそれぞれを時間方向に伸縮して、それぞれの周期が所定値である伸縮信号を生成することによって第1の複数の伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解する処理において、前記第1の複数の伸縮信号のそれぞれを第2の複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得する処理において、前記第1の複数の伸縮信号のそれぞれに対応する前記第2の複数の周波数成分の少なくとも1つについての時系列の位相情報を取得し、
前記生体活動のパターンを分類する処理において、前記位相情報を時系列に基づいて配置した位相オブジェクトを用いて前記生体活動のパターンを分類する、
態様1~5のいずれかに記載の情報処理装置。
<態様7>
前記演算回路は、前記生体活動のパターンを分類する処理において、前記複数の周波数成分のうちの1つ周波数成分の周期をTとしたとき、前記時系列の位相情報のうち、前記周波数成分のT/4又は3T/4における部分に対応する位相情報の特徴に基づいて、前記生体活動のパターンを分類する、
態様1~6のいずれかに記載の情報処理装置。
前記演算回路は、前記生体活動のパターンを分類する処理において、前記複数の周波数成分のうちの1つ周波数成分の周期をTとしたとき、前記時系列の位相情報のうち、前記周波数成分のT/4又は3T/4における部分に対応する位相情報の特徴に基づいて、前記生体活動のパターンを分類する、
態様1~6のいずれかに記載の情報処理装置。
<態様8>
動物の生体活動のパターンを分類する情報処理方法であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路が、生体活動の検出結果から準周期信号を検出するステップと、
前記演算回路が、伸縮後の前記準周期信号の周期が所定値となるように前記準周期信号を伸縮して伸縮信号を生成するステップと、
前記演算回路が、前記伸縮信号を複数の周波数成分に分解するステップと、
前記演算回路が、前記複数の周波数成分の時系列の位相情報を取得するステップと、
前記演算回路が、前記時系列の位相情報に基づいて、前記生体活動のパターンを分類するステップと、
を含む、情報処理方法。
動物の生体活動のパターンを分類する情報処理方法であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路が、生体活動の検出結果から準周期信号を検出するステップと、
前記演算回路が、伸縮後の前記準周期信号の周期が所定値となるように前記準周期信号を伸縮して伸縮信号を生成するステップと、
前記演算回路が、前記伸縮信号を複数の周波数成分に分解するステップと、
前記演算回路が、前記複数の周波数成分の時系列の位相情報を取得するステップと、
前記演算回路が、前記時系列の位相情報に基づいて、前記生体活動のパターンを分類するステップと、
を含む、情報処理方法。
<態様9>
態様8に記載の情報処理方法を演算回路に実行させるためのプログラム。
態様8に記載の情報処理方法を演算回路に実行させるためのプログラム。
2 加速度センサユニット
11 入出力部
12 演算回路
13 記憶装置
14 通信部
100 歩様分類装置
11 入出力部
12 演算回路
13 記憶装置
14 通信部
100 歩様分類装置
Claims (9)
- 動物の生体活動のパターンを分類する情報処理装置であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路を備え、
前記演算回路は、
前記検出結果から準周期信号を検出し、
前記準周期信号を時間方向に伸縮して、その周期が所定値である伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得し、
前記時系列の位相情報に基づいて、前記生体活動のパターンを分類する、
情報処理装置。 - 前記演算回路は、前記伸縮信号に対してウェーブレット変換を実行することによって、前記伸縮信号を複数の周波数成分に分解する、請求項1に記載の情報処理装置。
- 前記生体活動は、動物が移動する動きであり、
前記センサユニットは、前記動物に取り付けられた加速度センサユニットであり、
前記生体活動の検出結果は、前記加速度センサユニットによって測定された加速度であり、
前記生体活動のパターンは、前記動物の歩様である、
請求項1又は2に記載の情報処理装置。 - 前記動物は、四足歩行の動物であり、
前記演算回路は、前記時系列の位相情報に基づいて、前記生体活動のパターンが、予め定められた四足歩行の動物の歩様のパターンのいずれに対応するかを決定することによって、前記生体活動のパターンを分類する、
請求項3に記載の情報処理装置。 - 前記動物は犬である、請求項4に記載の情報処理装置。
- 前記センサユニットは、前記動物に取り付けられた加速度センサユニットであり、
前記生体活動の検出結果は、前記加速度センサユニットによって測定された加速度であり、
前記加速度センサユニットは、互いに異なる複数の方向にそれぞれ対応する前記加速度の第1の複数の加速度成分を測定可能であり、
前記演算回路は、
前記準周期信号を検出する処理において、前記加速度センサユニットによって測定された前記第1の複数の加速度成分のそれぞれから第1の複数の準周期信号を検出し、
前記伸縮信号を生成する処理において、前記第1の複数の準周期信号のそれぞれを時間方向に伸縮して、それぞれの周期が所定値である伸縮信号を生成することによって第1の複数の伸縮信号を生成し、
前記伸縮信号を複数の周波数成分に分解する処理において、前記第1の複数の伸縮信号のそれぞれを第2の複数の周波数成分に分解し、
前記複数の周波数成分の時系列の位相情報を取得する処理において、前記第1の複数の伸縮信号のそれぞれに対応する前記第2の複数の周波数成分の少なくとも1つについての時系列の位相情報を取得し、
前記生体活動のパターンを分類する処理において、前記位相情報を時系列に基づいて配置した位相オブジェクトを用いて前記生体活動のパターンを分類する、
請求項1~5のいずれかに記載の情報処理装置。 - 前記演算回路は、前記生体活動のパターンを分類する処理において、前記複数の周波数成分のうちの1つ周波数成分の周期をTとしたとき、前記時系列の位相情報のうち、前記周波数成分のT/4又は3T/4における部分に対応する位相情報の特徴に基づいて、前記生体活動のパターンを分類する、
請求項1~6のいずれかに記載の情報処理装置。 - 動物の生体活動のパターンを分類する情報処理方法であって、
複数の検出チャンネルを有するセンサ又は複数のセンサを含むセンサユニットによって検出された前記動物の生体活動の検出結果である生体信号を受け取る演算回路が、生体活動の検出結果から準周期信号を検出するステップと、
前記演算回路が、伸縮後の前記準周期信号の周期が所定値となるように前記準周期信号を伸縮して伸縮信号を生成するステップと、
前記演算回路が、前記伸縮信号を複数の周波数成分に分解するステップと、
前記演算回路が、前記複数の周波数成分の時系列の位相情報を取得するステップと、
前記演算回路が、前記時系列の位相情報に基づいて、前記生体活動のパターンを分類するステップと、
を含む、情報処理方法。 - 請求項8に記載の情報処理方法を演算回路に実行させるためのプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022166123 | 2022-10-17 | ||
JP2022-166123 | 2022-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024085118A1 true WO2024085118A1 (ja) | 2024-04-25 |
Family
ID=90737811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/037437 WO2024085118A1 (ja) | 2022-10-17 | 2023-10-16 | 情報処理装置、情報処理方法及びプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024085118A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7702502B2 (en) * | 2005-02-23 | 2010-04-20 | Digital Intelligence, L.L.C. | Apparatus for signal decomposition, analysis and reconstruction |
WO2020017273A1 (ja) * | 2018-07-20 | 2020-01-23 | メック株式会社 | 非ヒト動物用の音楽提供システム |
-
2023
- 2023-10-16 WO PCT/JP2023/037437 patent/WO2024085118A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7702502B2 (en) * | 2005-02-23 | 2010-04-20 | Digital Intelligence, L.L.C. | Apparatus for signal decomposition, analysis and reconstruction |
WO2020017273A1 (ja) * | 2018-07-20 | 2020-01-23 | メック株式会社 | 非ヒト動物用の音楽提供システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jebelli et al. | Mobile EEG-based workers’ stress recognition by applying deep neural network | |
US11147463B2 (en) | Method and apparatus for high accuracy photoplethysmogram based atrial fibrillation detection using wearable device | |
US11834052B2 (en) | Estimator generation apparatus, monitoring apparatus, estimator generation method, and computer-readable storage medium storing estimator generation program | |
CN110097968A (zh) | 基于静息态功能磁共振影像的婴儿脑龄预测方法、系统 | |
US10368792B2 (en) | Method for detecting deception and predicting interviewer accuracy in investigative interviewing using interviewer, interviewee and dyadic physiological and behavioral measurements | |
CN111248882B (zh) | 一种预测血压的方法和装置 | |
KR102077605B1 (ko) | 심층신경망을 이용한 자동 뇌파 잡음 제거 방법 및 장치 | |
CN116602642B (zh) | 心率监测方法、装置、设备 | |
JP4952162B2 (ja) | データ処理装置,データ処理方法及びデータ処理プログラム | |
CN111291727B (zh) | 一种光体积变化描记图法信号质量检测方法和装置 | |
US20200074376A1 (en) | Performance measurement device, performance measurement method and performance measurement program | |
Hwang et al. | Functional multiple-set canonical correlation analysis | |
CN113128585A (zh) | 一种基于多尺寸卷积核的深度神经网络实现心电异常检测分类方法 | |
WO2024085118A1 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JPWO2019046003A5 (ja) | ||
CN113197558A (zh) | 心率与呼吸率检测方法、系统及计算机存储介质 | |
JP6838259B2 (ja) | 学習用データの生成装置、判定装置及びプログラム | |
KR102112699B1 (ko) | 시계열적 신호 시각화 방법 및 이를 이용한 장치 | |
KR102344532B1 (ko) | 정신질환의 진단을 위한 설명 가능한 인공지능 시스템 및 정신질환 진단 방법 | |
JP2008188092A (ja) | データ処理方法,データ処理装置及びデータ処理プログラム | |
JP7234742B2 (ja) | 特徴量抽出方法、特徴量抽出プログラムおよび特徴量抽出装置 | |
Singh et al. | Stress detection using EEG signals: A review on current strategies and future aspects | |
Eftaxias et al. | Diffusion adaptive filtering for modelling brain responses to motor tasks | |
Byfield et al. | Equine Life Stage Classification from Photoplethysmography Data by an Explainable Echo State Network | |
Aaruni et al. | Classification of EEG signals using fractional calculus and wavelet support vector machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879761 Country of ref document: EP Kind code of ref document: A1 |