WO2024085100A1 - Solid particle dispersed oily preparation - Google Patents

Solid particle dispersed oily preparation Download PDF

Info

Publication number
WO2024085100A1
WO2024085100A1 PCT/JP2023/037321 JP2023037321W WO2024085100A1 WO 2024085100 A1 WO2024085100 A1 WO 2024085100A1 JP 2023037321 W JP2023037321 W JP 2023037321W WO 2024085100 A1 WO2024085100 A1 WO 2024085100A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
solid particle
ophthalmic
surfactant
formulation
Prior art date
Application number
PCT/JP2023/037321
Other languages
French (fr)
Japanese (ja)
Inventor
桃子 北岡
航平 石濱
Original Assignee
NOVIGO Pharma株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOVIGO Pharma株式会社 filed Critical NOVIGO Pharma株式会社
Publication of WO2024085100A1 publication Critical patent/WO2024085100A1/en

Links

Images

Definitions

  • the present disclosure relates to solid particle dispersion oil-based formulations.
  • Formulations for treating ophthalmic diseases are being developed.
  • US2021/145736A, US2017/273901A, US2013/164285A, US2012/258163A, and US2016/0235674A disclose methods for intravitreal administration of drugs.
  • WO2021/049529A, EP3950071A, US2019/117777A, JP2018-70535A, EP2298282A, and US2010/298447A disclose dispersions of particles having a core-shell structure as formulations for transdermal administration.
  • the present disclosure relates to a solid particle dispersion oil formulation.
  • the solid particle dispersion oil formulation includes (i) a solid complex including particles containing a pharma- ceutically acceptable target substance or target molecule (e.g., a nucleic acid or a biopharmaceutical) and a pharma- ceutically acceptable surfactant, and (ii) a pharma- ceutically acceptable oil base.
  • a pharma- ceutically acceptable target substance or target molecule e.g., a nucleic acid or a biopharmaceutical
  • a pharma- ceutically acceptable surfactant e.g., a pharma- ceutically acceptable surfactant
  • a pharma- ceutically acceptable oil base e.g., a pharma- ceutically acceptable oil base.
  • the particles are typically coated with the surfactant.
  • the target substance or target molecule may be water-soluble.
  • the present disclosure also provides a solid particle disper
  • the present disclosure further provides a solid particle dispersion oil formulation for ophthalmic or intraocular administration.
  • an ophthalmic formulation is provided, the formulation including (i) a solid complex including particles containing a pharma- ceutically acceptable target substance or target molecule and a pharma- ceutically acceptable surfactant, and (ii) a pharma- ceutically acceptable oil base.
  • an ophthalmic formulation comprising: (i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant; and (ii) a pharma-ceutically acceptable oil base.
  • An ophthalmic preparation comprising: (i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant; (ii) a pharma- ceutically acceptable oil base; the particles are coated with the surfactant, The solid complex is dispersed in the oil base.
  • Ophthalmic preparations (2) The ophthalmic preparation according to (1) above, which is formulated as an eye drop. (3) The ophthalmic preparation according to (1) above, which is for intravitreal administration or is formulated for intravitreal administration.
  • the average hydrodynamic particle size is 80 nm to 200 nm.
  • the oily base is silicone oil.
  • FIG. 1 shows a schematic diagram of a test system simulating the intravitreal environment.
  • FIG. 2A shows the release profile of antibody molecules from a formulation of the present disclosure in a test system simulating the intravitreal environment.
  • FIG. 2B shows particle formation and particle size distribution of the particles formed for a formulation of the present disclosure that includes an antibody as a substance or molecule of interest.
  • FIG. 3A shows the release behavior of a protein molecule (eg, lysozyme) from a formulation of the present disclosure in a test system simulating the intravitreal environment.
  • FIG. 3B shows particle formation and the size distribution of the formed particles in a formulation of the present disclosure that includes a protein molecule (lysozyme) as a target substance or molecule.
  • FIG. 1 shows a schematic diagram of a test system simulating the intravitreal environment.
  • FIG. 2A shows the release profile of antibody molecules from a formulation of the present disclosure in a test system simulating the intravitreal environment.
  • FIG. 4A shows the release profile of an anti-VEGF antibody from a formulation of the present disclosure in a test system simulating the intravitreal environment.
  • FIG. 4B shows the transfer of anti-VEGF antibody from a formulation of the present disclosure to the retina and choroid following ocular administration to rabbits.
  • FIG. 54 shows the vitreous accumulation of anti-VEGF antibodies from a formulation of the present disclosure administered intravitreally to rabbits.
  • FIG. 4D shows the translocation of anti-VEGF antibody from a formulation of the present disclosure to the retina and choroid following intravitreal administration in rabbits.
  • FIG. 5 shows the release profile of aflibercept from a formulation of the present disclosure in a test system simulating the intravitreal environment.
  • FIG. 6 is a histological section (hematoxylin and eosin stained) of the eye of a mouse to which a formulation of the present disclosure was administered intravitreally.
  • a "subject” refers to a mammal, including a human, and preferably a human.
  • mammals include, but are not limited to, humans, chimpanzees, and other primates; dogs, cats, rabbits, horses, sheep, goats, cows, pigs, rats (including nude rats), mice (including nude mice and skid mice), guinea pigs, and other livestock animals, pets, and laboratory animals.
  • a "solid composite” is a composite made of solids.
  • a solid composite may contain water, but is a composite containing solid components.
  • a solid composite may be water-free or have a low water content, for example, a water content of 1% by weight or less, 0.9% by weight or less, 0.8% by weight or less, 0.7% by weight or less, 0.6% by weight or less, 0.5% by weight or less, 0.4% by weight or less, 0.3% by weight or less, 0.2% by weight or less, or 0.1% by weight or less, as measured by a known method (e.g., Karl Fischer method).
  • a solid composite containing hydrophilic molecules and a surfactant may have a core-shell structure, in which the core contains hydrophilic molecules and the shell contains a surfactant, and the surfactant may have a hydrophilic portion facing the core and a hydrophobic portion facing the outer surface of the solid composite.
  • the surfactant preferably covers the surface of the hydrophilic drug and turns the particle surface hydrophobic.
  • a "solid particle-dispersed oil preparation” is a preparation that includes a plurality of solid particles and an oil base, and the solid particles are dispersed in the oil base.
  • the solid particles include a target substance or target molecule (e.g., a nucleic acid or a biopharmaceutical) and a surfactant.
  • the solid particles also contain no water or only a limited amount of water.
  • the particle size is typically less than 1 ⁇ m.
  • the solid particles can be stably dispersed in the oil base.
  • the “solid particle” is also referred to as a "solid complex.”
  • the target substance or target molecule may be hydrophilic, and in this case, the solid particle-dispersed oil preparation is a preparation in which a hydrophilic target substance or target molecule is dispersed in an oil base using a surfactant.
  • the target substance or target molecule may be, for example, a biomolecule.
  • the target substance or target molecule may be, for example, a pharmaceutical active ingredient.
  • the target substance or target molecule may be, for example, a therapeutic drug for an ophthalmic disease.
  • the solid particle dispersion oil preparation preferably does not contain aggregates formed by aggregation of multiple particles (particularly 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more).
  • a biopharmaceutical is a pharmaceutical product that contains an active pharmaceutical ingredient produced by cells.
  • a "surfactant” is a molecule that has a relatively hydrophilic portion and a relatively hydrophobic portion in the molecule.
  • Surfactants are broadly classified into ionic surfactants and nonionic surfactants.
  • Ionic surfactants include cationic surfactants and anionic surfactants.
  • an ionic surfactant may have either a cation or an anion and a hydrophobic portion.
  • a cationic surfactant may contain a cationic portion and a fatty chain (e.g., a long fatty chain) such as an alkyl, alkenyl, or alkynyl.
  • An anionic surfactant may contain an anionic portion and a fatty acid such as a long chain fatty acid, an unsaturated fatty acid (e.g., monovalent or divalent), or a long chain unsaturated fatty acid (e.g., monovalent or divalent).
  • a fatty acid such as a long chain fatty acid, an unsaturated fatty acid (e.g., monovalent or divalent), or a long chain unsaturated fatty acid (e.g., monovalent or divalent).
  • "Long chain” is a term given to compounds that have 14 to 22 carbon atoms.
  • the fatty chain may be a fatty chain with 8 to 22 carbon atoms, i.e., a C 8 to C 22 fatty chain such as a C 8 to C 22 alkyl, C 8 to C 22 alkenyl, or C 8 to C 22 alkynyl.
  • the fatty chain may be a long fatty chain.
  • Saturated means that the fatty chain has no double or triple bonds
  • unsaturated means that the fatty chain has at least one double or triple bond.
  • the fatty chain having a double bond may be a cis type or a trans type, and the cis type is preferred from the viewpoint of biocompatibility.
  • a nonionic surfactant is a surfactant that does not have an ionic group in the molecule, and has a nonionic hydrophilic portion and a hydrophobic portion.
  • the hydrophobic portion may include a fatty chain such as an alkyl, alkenyl, or alkynyl (e.g., a long fatty chain).
  • an ester compound made from unsaturated fatty acids such as erucic acid and oleic acid is preferred.
  • lipophilic nonionic surfactants include sucrose fatty acid esters (sucrose stearate, sucrose palmitate, sucrose myristic acid, sucrose oleate, sucrose laurate, sucrose erucate, sucrose mixed fatty acid esters) with a high degree of esterification (i.e., a high ratio of di-, tri-, and polyester to monoester), polyglycerol condensed ricinoleate, decaglycerol ester, glycerol fatty acid ester, polyglycerol fatty acid ester, polyoxyethylene glycerol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene castor oil/hydrogenated castor oil.
  • the nonionic surfactant is preferably sucrose laurate.
  • Surfactants include, for example, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene castor oil, polyoxyethylene (160) polyoxypropylene (30) glycol, polyoxyethylene (200) polyoxypropylene (70) glycol, polysorbate 80, macrogol 4000, macrogol 6000, aluminum monostearate, polyethylene glycol monostearate, glyceryl monostearate, nonoxynol-9, octoxynol-40, polyethylene glycol (PEG)/polypropylene glycol (PPG)-4/30 copolymer, poloxamer 188, poloxamer 407, polyoxyl 15 hydroxystearate, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polyoxyl 40 stearate, and polysorbate 20.
  • polyoxyl 40 stearate polyoxyethylene hydrogenated castor oil 60, polyoxyethylene castor oil, polyoxyethylene (160) polyoxypropylene (30) glycol, polyoxy
  • a suitable example of a surfactant used to prepare the complex is a lipophilic (hydrophobic) nonionic surfactant with an HLB (Hydrophile-Lipophile Balance) value of 10 or less.
  • the HLB of the nonionic surfactant is preferably 8 or less, more preferably 5 or less, and particularly preferably 3 or less.
  • antibody refers to an immunoglobulin.
  • the antibody may be of various isotypes, e.g., IgG.
  • the antibody may preferably be a monoclonal antibody.
  • the antibody may be a human chimeric antibody, a humanized antibody, or a human antibody.
  • a human chimeric antibody may be produced by replacing the constant region of a non-human antibody with the constant region of a human antibody.
  • a humanized antibody may be produced by replacing the six CDRs of a human antibody with the six corresponding CDRs of a non-human antibody.
  • a human antibody may be produced using an animal (e.g., a mouse) in which at least the heavy chain variable region of an immunoglobulin has been replaced with the corresponding region of a human locus.
  • a human antibody can be obtained by replacing the constant region with the amino acid sequence of a human antibody.
  • the antibody may preferably be a humanized antibody.
  • the antibody may preferably be a human antibody.
  • An antibody has a signal peptide when produced intracellularly, but the signal peptide is removed when secreted extracellularly. Therefore, when administered as a pharmaceutical, the antibody does not require a signal peptide.
  • CDR refers to a complementarity determining region present in the heavy and light chain variable regions of an antibody. There are three CDRs in each of the heavy and light chain variable regions, and they are called CDR1, CDR2, and CDR3 from the N-terminus.
  • the CDRs can be determined, for example, based on the numbering scheme of Kabat et al. (Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, 5th ed., 1991, Bethesda: US Dept. of Health and Human Services, PHS, NIH.).
  • antigen-binding fragment of antibody means a fragment of an antibody that maintains binding to an antigen.
  • antigen-binding fragments include Fab, Fab', F(ab') 2 , Fv, scFv (single chain Fv), diabody, and sc(Fv) 2 (single chain (Fv) 2 ).
  • Fab can be obtained by digesting an antibody with papain.
  • F(ab') 2 can be obtained by digesting an antibody with pepsin, and Fab' can be obtained by further reducing this.
  • Antigen-binding fragments of other antibodies can also be prepared by methods well known to those skilled in the art. Such antigen-binding fragments of antibodies can be used in the present invention.
  • pharmaceutical acceptable means that when administered to a subject as a medicine, it does not cause unacceptable toxicity.
  • intraocular administration refers to invasive administration to the eyeball other than eye drops.
  • intraocular administration include intravitreal administration, subconjunctival administration, suprachoroidal administration, and subretinal administration.
  • a solid particle dispersion oil formulation comprising: (i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant; (ii) a pharma- ceutically acceptable oily base.
  • the solid particle dispersion oil formulation of the present disclosure may be free of water or have a low water content, for example, the water content may be 1% by mass or less, 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, 0.6% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3% by mass or less, 0.2% by mass or less, or 0.1% by mass or less, as measured by known methods.
  • the target substance or target molecule is hydrophilic.
  • the target substance or target molecule can be a physiologically active substance, for example, a biomolecule.
  • the biomolecule is a molecule found in a living organism or an analog thereof, for example, a protein, a peptide, an antibody or an antigen-binding fragment thereof, a nucleic acid, or other biomolecule.
  • the biomolecule may or may not be chemically modified.
  • Ophthalmic solutions are the most widely used non-invasive drug administration form for treating anterior ocular diseases due to their non-invasiveness and convenience.
  • anterior ocular diseases include glaucoma, allergic conjunctivitis, anterior uveitis, and cataracts.
  • hydrophilic active ingredient in eye drops so long as it is a medicinal ingredient that is administered to the eye.
  • the antibody may be, but is not limited to, an antibody that has benefits for absorption through the skin or intraocular (intravitreal) administration.
  • the antibody include, for example, anti-VEGF antibodies (e.g., ranibizumab, bevacizumab, aflibercept, or brolucizumab).
  • Anti-VEGF antibodies have been confirmed to be effective against age-related macular degeneration, diabetic retinopathy (diabetic macular edema), retinal vein occlusion, pathological myopia (choroidal neovascularization), and the like.
  • the antibody or antigen-binding fragment thereof does not lose its antigen-binding ability in a solid complex or in a solid particle-dispersed oil formulation, and exhibits antigen-specific binding after administration.
  • the protein or peptide does not lose its antigen-binding ability in a solid complex or in a solid particle-dispersed oil formulation, and exerts at least a part of its function after administration. Examples of the protein or peptide include lysozyme, insulin, albumin, ovalbumin, neutrophin 4, and the like.
  • the nucleic acid includes one or more selected from the group consisting of DNA, RNA, and modified nucleic acid.
  • the nucleic acid may be a single-stranded or double-stranded nucleic acid.
  • the nucleic acid may be an antisense oligo.
  • the RNA may include artificial RNA for gene silencing, such as siRNA and shRNA, non-coding RNA, such as microRNA (miRNA), aptamers, and natural RNA, such as mRNA.
  • the nucleic acid or RNA may include aptamers (e.g., anti-VEGF aptamers). These RNAs may be modified to be stabilized in vivo.
  • Modified nucleic acids include, for example, nucleic acids modified with fluorescent dyes, biotinylated nucleic acids, and nucleic acids into which cholesteryl groups have been introduced.
  • bases may be modified with 2'-O-methyl, 2'-fluoro, or 2'-methoxyethyl (MOE), and the phosphodiester bonds in the nucleic acid backbone may be replaced with phosphorothioate bonds.
  • Artificial nucleic acids include nucleic acids in which the oxygen atom at the 2' position is crosslinked with the carbon atom at the 4' position.
  • LNA locked nucleic acid
  • ENA in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via ethylene
  • BNACOC in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via -CH 2 OCH 2 -
  • bridged nucleic acid (BNA) such as BNANC, in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via -NR-CH 2 - (where R is a methyl or hydrogen atom);
  • cMOE in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via -CH 2 (OCH 3 ) - ; )-bridged cEt; AmNA in which the 2'- and 4'-carbon
  • surfactant can be used without particular restrictions as long as it is medicamentally acceptable.
  • surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and bile salts.
  • Nonionic surfactants include polyglycerol condensed ricinoleate, decaglycerol ester, glycerol fatty acid ester, polyglycerol fatty acid ester, polyoxyethylene glycerol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, sucrose fatty acid ester (sucrose stearate, sucrose palmitate, sucrose myristate, sucrose oleate, sucrose laurate, sucrose erucate, sucrose mixed fatty acid ester), etc. One of these may be selected for use, or a mixture of two or more may be used.
  • ester compounds made from unsaturated fatty acids such as erucic acid and oleic acid are preferred, and more preferred are sucrose erucic acid ester, sucrose oleic acid ester, and sucrose mixed fatty acid ester.
  • one or more surfactants selected from the group consisting of glycerin fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene castor oil, and hydrogenated castor oil can be used.
  • the HLB value indicates the degree of hydrophilicity and hydrophobicity of a surfactant.
  • a smaller HLB value means a higher hydrophobicity.
  • the surfactant is not particularly limited, but it is preferable to use one with high hydrophobicity, with an HLB value of 10 or less. This is because it can easily dissolve or disperse the antigen-containing complex in the oil phase.
  • surfactants having an HLB value of 10 or less, 8 or less, 6 or less, 5 or less, 4 or less, or 3 or less may be preferably used. In the present disclosure, the smaller the HLB value, the more preferable.
  • a water-soluble target substance or molecule When a water-soluble target substance or molecule is mixed with a surfactant in an oil phase (preferably a volatile oil phase), particles having a core-shell structure are formed, the core containing the water-soluble target substance or molecule and the shell containing the surfactant.
  • the particles are dispersed in the oil phase.
  • the oil phase used here is a volatile oil phase (e.g., cyclohexane)
  • it is easy to subsequently evaporate the solvent and by removing the solvent by drying (e.g., freeze-drying)
  • the core-shell particles containing the water-soluble target substance or molecule and the shell containing the surfactant can be obtained as solid particles (also called "solid composites").
  • solid particles also called "solid composites"
  • the solid particles may have an average hydrodynamic particle size of 50 nm to 200 nm as determined by dynamic light scattering. In some embodiments, the average hydrodynamic particle size may be 100 to 160 nm. In some embodiments, the average hydrodynamic particle size may be 80 to 120 nm.
  • the oil base may be any oil that is acceptable for use in pharmaceutical preparations administered to the eye (i.e., ophthalmic preparations such as eye drops or preparations for intravitreal administration).
  • the oil base may be preferably an oil that is liquid at room temperature (25°C).
  • the oil base may be either natural or synthetic.
  • the oil base may be, for example, vegetable oils such as soybean oil, cottonseed oil, rapeseed oil, sesame oil, corn oil, peanut oil, safflower oil, sunflower oil, olive oil, castor oil, rapeseed oil, perilla oil, fennel oil, lanolin, lanolin oil, lanolin alcohol, refined lanolin, mineral oil, cacao oil, cinnamon oil, peppermint oil, eucalyptus oil, and bergamot oil, or animal oils such as beef tallow, lard, and fish oil.
  • vegetable oils such as soybean oil, cottonseed oil, rapeseed oil, sesame oil, corn oil, peanut oil, safflower oil, sunflower oil, olive oil, castor oil, rapeseed oil, perilla oil, fennel oil, lanolin, lanolin oil, lanolin alcohol, refined lanolin, mineral oil, cacao oil, cinnamon oil, peppermint oil, eucalyptus oil, and bergamot oil
  • the oil base may be a neutral lipid such as glyceride, triolein, trilinolein, tripalmitin, tristearin, trimyristin, triarachidonin, or a synthetic lipid.
  • the oil base may be a sterol derivative such as cholesteryl oleate, cholesteryl linoleate, cholesteryl myristate, cholesteryl palmidate, or cholesteryl arachidate, or a long-chain fatty acid ester such as isopropyl myristate, octyldodecyl myristate, cetyl myristate, ethyl oleate, ethyl linoleate, isopropyl linoleate, isopropyl palmitate, or butyl stearate.
  • the oil phase may be a carboxylic acid ester such as ethyl lactate, cetyl lactate, triethyl citrate, diisopropyl adipate, diethyl sebacate, diisopropyl sebacate, or cetyl 2-ethylhexanoate, or a hydrocarbon such as petrolatum, white petrolatum, liquid paraffin, squalane, or vegetable squalane, or a silicone oil.
  • the oil-based base material may be used alone or in a mixture of two or more.
  • Preferred oil-based base materials include squalane oil, castor oil, sesame oil, white petrolatum, and liquid paraffin, and more preferred oil-based base materials include castor oil, isopropyl myristate, and silicone oil.
  • the oil base is castor oil
  • the surfactant can be any one or more surfactants selected from the group consisting of glyceryl dioleate, polyoxyethylene hydrogenated castor oil 10, sorbitan sesquioleate, and sucrose laurate.
  • the solid particle-dispersed oil-based formulation is formulated as an ophthalmic formulation (e.g., eye drops or intraocular formulation).
  • an ophthalmic formulation e.g., eye drops or intraocular formulation
  • a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant
  • a pharma- ceutically acceptable oil base is provided.
  • the ophthalmic formulation is an eye drop.
  • the ophthalmic formulation is an intravitreal formulation.
  • the solid particle dispersion oil formulation can release the target substance or target molecule in a sustained manner.
  • the solid particle dispersion oil formulation can release the target substance or target molecule in the eye of a living body (e.g., in the vitreous body) for at least 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours (2 days), 3 days, 4 days, 5 days, 6 days, 7 days (1 week), or 2 weeks.
  • the solid particle dispersion oil formulation of the present disclosure can release the target substance or target molecule in the ocular irrigation solution for at least 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours (2 days), 3 days, 4 days, 5 days, 6 days, 7 days (1 week), or 2 weeks.
  • the solid particle dispersion oil formulation releases the target substance or target molecule only at or below the sustained release standard value.
  • the sustained release standard value is a standard time in which the target substance or target molecule contained in the formulation is released at 50% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less.
  • the sustained release standard time can be, for example, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours (2 days), 3 days, 4 days, 5 days, 6 days, 7 days (1 week), or 2 weeks.
  • the sustained release preferably occurs after administration to the vitreous of the subject.
  • the solid particle dispersion oil formulation of the present disclosure can deliver the target substance or molecule to one or more of the anterior ocular tissues selected from the group consisting of the cornea, conjunctiva, aqueous humor, iris, ciliary body, and lens, and the posterior ocular tissues selected from the group consisting of the sclera, choroid, retinal pigment epithelium, neural retina, optic nerve, vitreous membrane, and vitreous humor.
  • the solid particle dispersion oil formulation of the present disclosure can deliver the target substance or molecule to one or more of the above tissues over an extended period of time.
  • the eye drops of the present disclosure are dispersed in an oily base and are less likely to be excreted by tears than hydrophilic substances.
  • the eye drops of the present disclosure may also pass through the corneal epithelium, which exhibits hydrophobic properties, and may be suitable for the penetration of drugs into ocular tissues and posterior ocular tissues.
  • the eye drops of the present disclosure may have tissue permeability.
  • the formulation for intravitreal administration of the present disclosure is dispersed in an oily base and is less likely to be diffused or excreted by vitreous humor than hydrophilic substances. It is believed that the form of the solid particle-dispersed oily formulation may inhibit the active ingredient from diffusing prematurely into body fluids, allowing the active ingredient to be released gradually.
  • a method of treating an ophthalmic disease in a subject includes administering to the subject a therapeutic agent for ophthalmic disease of the present disclosure.
  • the therapeutic agent for ophthalmic disease may be a solid particle dispersion oily formulation containing the therapeutic agent for ophthalmic disease as a drug.
  • the administration may be by eye drops or intraocular administration, preferably intravitreal administration.
  • the amount administered may be a therapeutically effective amount.
  • the present disclosure provides a method for administering a therapeutic drug for ophthalmic disease to a subject, the therapeutic drug for ophthalmic disease being a solid particle dispersion oil formulation containing the therapeutic drug for ophthalmic disease as a drug.
  • a solid particle dispersion oil formulation for use in the method of the present disclosure.
  • a solid particle dispersion oil formulation or a target substance or target molecule in the manufacture of a medicament for use in the method of the present disclosure.
  • Example 1 Preparation of eye drop preparation and intravitreal preparation
  • a preparation in which solid particles formed by coating a drug with a surfactant are dispersed in oil was applied to the eye.
  • Drugs used included those from a variety of pharmaceutical modalities, including proteins, antibodies, and nucleic acids.
  • An experimental system was constructed to examine the application of solid particle dispersion oil preparations as ophthalmic preparations. Specifically, a stationary jacketed Franz diffusion cell for membrane permeation tests (manufactured by Cosmedy) was divided into the top and bottom by a polycarbonate membrane (pore size: 0.1 ⁇ m, manufactured by Merck), the solid particle dispersion oil preparation was added to the top, and the bottom was filled with ocular irrigation fluid (Opeguard) MA ocular irrigation fluid, manufactured by Senju Pharmaceutical Co., Ltd.). The temperature was maintained at 36°C, which is the eyeball surface temperature. When the obtained solid particle dispersion oil preparation was added to the top, the transfer of the drug to the ocular irrigation fluid in the bottom was confirmed.
  • ocular irrigation fluid Opeguard
  • Antibody A human total IgG antibody was used as the antibody.
  • An aqueous solution containing 1 mg/mL IgG and 0.3 mg mannitol was mixed with a cyclohexane solution containing 25 mg/mL surfactant, and the mixture was stirred for 2 minutes at 26,000 rpm using a homogenizer.
  • the surfactant one selected from glyceryl dioleate (DGMO), sorbitan sesquioleate (SO), polyoxyethylene hydrogenated castor oil 10 (HCO), and sucrose laurate (L195) was used.
  • DGMO glyceryl dioleate
  • SO sorbitan sesquioleate
  • HCO polyoxyethylene hydrogenated castor oil 10
  • sucrose laurate L195
  • the obtained solid particles were dispersed in 1 mL castor oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a solid particle dispersion oil formulation containing an IgG antibody.
  • the particle size distribution of the solid particles in the obtained solid particle dispersion oil formulation was measured using a Zetasizer (Zetasizer Nano ZS, manufactured by Marvern). The particle size distribution results were as shown in FIG. 2B.
  • the average hydrodynamic particle size was about 110 to 170 nm.
  • the average hydrodynamic particle size of particles with HCO as the surfactant was 120 ⁇ 9 nm, with a PDI of 0.564 to 0.787
  • the average hydrodynamic particle size of particles with DGMO as the surfactant was 114 ⁇ 7 nm, with a PDI of 0.307 to 0.399
  • the average hydrodynamic particle size of particles with SO as the surfactant was 122 ⁇ 12 nm, with a PDI of 0.345 to 0.693
  • the average hydrodynamic particle size of particles with L195 as the surfactant was 163 ⁇ 8 nm, with a PDI of 0.604 to 0.816.
  • the obtained solid particles were dispersed in 1 mL castor oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a solid particle dispersion oil formulation containing lysozyme as an active ingredient.
  • the particle size distribution of the solid particles in the obtained solid particle dispersion oil formulation was measured with a Zetasizer (Zetasizer Nano ZS, manufactured by Marvern). The particle size distribution results are shown in FIG. 3B.
  • Anti-VEGF antibody A commercially available mouse-derived anti-VEGF antibody (Recombinant Mouse VEGF 164 ) was used as the antibody. 100 ⁇ g of a commercially available antibody lyophilized with trehalose and PBS was dissolved in 500 ⁇ L of Milli-Q water. 50 ⁇ L of an aqueous antibody solution was mixed with 2 mL of a cyclohexane solution containing 4 mg/mL surfactant, and stirred for 2 minutes at 26,000 rpm with a homogenizer. The resulting emulsion was lyophilized for 24 hours to remove the solvent, and solid particles in which the drug was coated with the surfactant were obtained.
  • the resulting solid particles were dispersed in 50 ⁇ L of castor oil to obtain a solid particle-dispersed oil formulation containing an anti-VEGF antibody as an active ingredient.
  • the particle size distribution of the solid particles in the resulting solid particle-dispersed oil formulation was measured with a Zetasizer (Zetasizer Nano ZS, manufactured by Marvern). The particle size distribution results were as shown in FIG. 4A.
  • the kinetics of the drug after administration was confirmed using rabbits.
  • the obtained solid particle dispersion oil formulation was administered by eye drop or intravitreally to rabbits so that the antibody amount was 0.4 ⁇ g per single eye.
  • the aqueous humor, vitreous body, and retina/choroid of the rabbits were collected 24 hours, 72 hours, and 120 hours after administration, and the amount of antibody contained in each was measured.
  • Figure 4B after the obtained solid particle dispersion oil formulation was administered by eye drop, some of the anti-VEGF antibodies were detected in the retina/choroid up to 120 hours after administration.
  • Figures 4C and 4D after the obtained solid particle dispersion oil formulation was administered intravitreally, most of the antibodies migrated to the retina/choroid and maintained their concentration for a long period of time.
  • the antibody used was aflibercept, an anti-VEGF antibody.
  • Aflibercept was purified. Specifically, the product additives of Eylea (registered trademark) intravitreal injection solution were removed using PD-10 (Cytiva) according to the manufacturer's manual, and then mannitol was added to the obtained antibody to a final concentration of 0.1%, and Milli-Q water was added to the obtained antibody to an antibody concentration of 1 mg/mL to obtain an antibody aqueous solution. The antibody aqueous solution was mixed with a cyclohexane solution containing 25 mg/mL surfactant, and stirred at 26,000 rpm for 2 minutes using a homogenizer.
  • the obtained emulsion was freeze-dried for 24 hours to remove the solvent, and solid particles in which the drug was coated with the surfactant were obtained.
  • the obtained solid particles were dispersed in 1 mL of isopropyl myristate (manufactured by Tokyo Chemical Industry Co., Ltd.) to obtain a solid particle dispersion oil formulation containing an anti-VEGF antibody as an active ingredient.
  • Example 2 Toxicity Test Mice were used in the test. Mice (Balb/cJJcl, 10 weeks old, female) were intravitreally injected with 100 ⁇ L of solid particle dispersion oil formulation (see STAR Protocols 1, 100094, September 18, 2020), and the eyeballs were collected after 2 weeks and tissue sections were observed under a microscope. The tissue sections were 20 ⁇ m thick and were subjected to hematoxylin-eosin staining. The toxicity of any of the oil bases, castor oil, isopropyl myristate, or silicone oil (KF96), was evaluated.
  • KF96 silicone oil
  • the solid particle-dispersed oil formulation was administered by eye drop and intravitreal administration.
  • the solid particle-dispersed oil formulation was excellent in long-term sustained release performance of the drug when administered by eye drop and intravitreal administration.
  • the solid particle-dispersed oil formulation also had advantages such as high delivery and/or accumulation of the drug to the retina/choroid. It is suggested that the preparation in which solid particles are dispersed in oil (solid particle-dispersed oil formulation) has high tissue permeability and is effective not only in intravitreal administration but also in various intraocular administrations.

Abstract

The present disclosure relates to a solid particle dispersed oily preparation. The present disclosure also provides a solid particle dispersed oily preparation suited to eyedrops or intraocular administration. The solid particle dispersed oil preparation contains (i) solid complexes that contain a pharmaceutically acceptable surfactant and particles containing a pharmaceutically acceptable target substance or target molecule and (ii) a pharmaceutically acceptable oily base. The particles in the solid particle dispersed oily preparation are typically covered with the surfactant. Also, the target substance or target molecule in the solid particle dispersed oily preparation can be water-soluble.

Description

固体粒子分散油性製剤Solid particle dispersion oil-based preparation
 本開示は、固体粒子分散油性製剤に関する。 The present disclosure relates to solid particle dispersion oil-based formulations.
 眼科疾患を治療するための製剤の開発が行われている。US2021/145736A、US2017/273901A、US2013/164285A、US2012/258163A、およびUS2016/0235674Aでは、薬物を硝子体内投与する方法が開示されている。 Formulations for treating ophthalmic diseases are being developed. US2021/145736A, US2017/273901A, US2013/164285A, US2012/258163A, and US2016/0235674A disclose methods for intravitreal administration of drugs.
 WO2021/049529A、EP3950071A、US2019/117777A、JP2018-70535A、EP2298282A、およびUS2010/298447Aでは、経皮投与する製剤としてコア-シェル構造を有する粒子の分散液が開示されている。 WO2021/049529A, EP3950071A, US2019/117777A, JP2018-70535A, EP2298282A, and US2010/298447A disclose dispersions of particles having a core-shell structure as formulations for transdermal administration.
 本開示は、固体粒子分散油性製剤に関する。固体粒子分散油性製剤は、(i) 医薬的に許容可能な目的物質または目的分子(例えば、核酸またはバイオ医薬)を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、(ii) 医薬的に許容可能な油状基剤とを含む。固体粒子分散油性製剤においては、前記粒子は、典型的には、前記界面活性剤により被覆されている。また、固体粒子分散油性製剤においては、目的物質または目的分子は、水溶性であり得る。本開示はまた、点眼または眼内投与に適した固体粒子分散油性製剤を提供する。本開示はさらに、点眼または眼内投与用の固体粒子分散油性製剤を提供する。本開示のある態様では、眼科用製剤であって、(i) 医薬的に許容可能な目的物質または目的分子を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、(ii) 医薬的に許容可能な油状基剤とを含む、製剤が提供される。 The present disclosure relates to a solid particle dispersion oil formulation. The solid particle dispersion oil formulation includes (i) a solid complex including particles containing a pharma- ceutically acceptable target substance or target molecule (e.g., a nucleic acid or a biopharmaceutical) and a pharma- ceutically acceptable surfactant, and (ii) a pharma- ceutically acceptable oil base. In the solid particle dispersion oil formulation, the particles are typically coated with the surfactant. In the solid particle dispersion oil formulation, the target substance or target molecule may be water-soluble. The present disclosure also provides a solid particle dispersion oil formulation suitable for ophthalmic or intraocular administration. The present disclosure further provides a solid particle dispersion oil formulation for ophthalmic or intraocular administration. In one aspect of the present disclosure, an ophthalmic formulation is provided, the formulation including (i) a solid complex including particles containing a pharma- ceutically acceptable target substance or target molecule and a pharma- ceutically acceptable surfactant, and (ii) a pharma- ceutically acceptable oil base.
 本開示によれば、眼科用製剤であって、(i) 医薬的に許容可能な目的物質または目的分子を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、(ii) 医薬的に許容可能な油状基剤とを含む、製剤が提供される。 In accordance with the present disclosure, there is provided an ophthalmic formulation comprising: (i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant; and (ii) a pharma-ceutically acceptable oil base.
 本開示によれば、例えば、以下の発明が提供される。
(1)眼科用製剤であって、
(i) 医薬的に許容可能な目的物質または目的分子を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、
(ii) 医薬的に許容可能な油状基剤と
を含み、
 前記粒子は前記界面活性剤により被覆されており、
 前記固体複合体は前記油状基剤に分散している、
眼科用製剤。
(2)点眼剤として製剤化されている、上記(1)に記載の眼科用製剤。
(3)硝子体内投与用の、または硝子体内投与用に製剤化されている、上記(1)に記載の眼科用製剤。
(4)前記目的物質または目的分子が、水溶性である、上記(1)~(3)のいずれかに記載の眼科用製剤。
(5)前記目的物質または目的分子が、対象への投与後に眼科用製剤から徐放される、上記(1)~(4)のいずれかに記載の眼科用製剤。
(6)前記目的物質または目的分子が、対象の硝子体への投与後に眼科用製剤から少なくとも24時間にわたって徐放される、上記(1)~(4)のいずれかに記載の眼科用製剤。
(7)前記目的物質または目的分子が、対象の硝子体への投与後に眼科用製剤から24時間にわたってその50%以下が徐放される、上記(1)~(3)のいずれかに記載の眼科用製剤。
(8)目的物質または目的分子が、タンパク質、核酸、および抗体からなる群から選択される分子である、上記(1)~(7)のいずれかに記載の眼科用製剤。
(9)流体力学粒径の平均が80nm~200nmである、上記(1)~(8)のいずれかに記載の眼科用製剤。
(10)油性基剤が、シリコーンオイルである、上記(1)~(9)のいずれかに記載の眼科用製剤。
According to the present disclosure, for example, the following inventions are provided.
(1) An ophthalmic preparation comprising:
(i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant;
(ii) a pharma- ceutically acceptable oil base;
the particles are coated with the surfactant,
The solid complex is dispersed in the oil base.
Ophthalmic preparations.
(2) The ophthalmic preparation according to (1) above, which is formulated as an eye drop.
(3) The ophthalmic preparation according to (1) above, which is for intravitreal administration or is formulated for intravitreal administration.
(4) The ophthalmic preparation according to any one of (1) to (3) above, wherein the target substance or target molecule is water-soluble.
(5) The ophthalmic preparation according to any one of (1) to (4) above, wherein the target substance or molecule is sustained-released from the ophthalmic preparation after administration to a subject.
(6) The ophthalmic preparation according to any one of (1) to (4) above, wherein the target substance or molecule is sustained released from the ophthalmic preparation for at least 24 hours after administration to the vitreous of the subject.
(7) The ophthalmic preparation according to any one of (1) to (3) above, wherein the target substance or molecule is sustained-released from the ophthalmic preparation at 50% or less over 24 hours after administration to the vitreous of a subject.
(8) The ophthalmic preparation according to any one of (1) to (7) above, wherein the target substance or target molecule is a molecule selected from the group consisting of a protein, a nucleic acid, and an antibody.
(9) The ophthalmic preparation according to any one of (1) to (8) above, wherein the average hydrodynamic particle size is 80 nm to 200 nm.
(10) The ophthalmic preparation according to any one of (1) to (9) above, wherein the oily base is silicone oil.
図1は、硝子体内環境を模擬した試験系の概略図を示す。FIG. 1 shows a schematic diagram of a test system simulating the intravitreal environment. 図2Aは、硝子体内環境を模擬した試験系における本開示の製剤からの抗体分子の放出挙動を示す。FIG. 2A shows the release profile of antibody molecules from a formulation of the present disclosure in a test system simulating the intravitreal environment. 図2Bは、目的物質または目的分子として抗体を含む本開示の製剤の粒子形成と形成された粒子の粒径分布を示す。FIG. 2B shows particle formation and particle size distribution of the particles formed for a formulation of the present disclosure that includes an antibody as a substance or molecule of interest. 図3Aは、硝子体内環境を模擬した試験系における本開示の製剤からのタンパク質分子(例としてリゾチーム)の放出挙動を示す。FIG. 3A shows the release behavior of a protein molecule (eg, lysozyme) from a formulation of the present disclosure in a test system simulating the intravitreal environment. 図3Bは、目的物質または目的分子としてタンパク質分子(リゾチーム)を含む本開示の製剤における粒子形成と形成された粒子の粒径分布を示す。FIG. 3B shows particle formation and the size distribution of the formed particles in a formulation of the present disclosure that includes a protein molecule (lysozyme) as a target substance or molecule. 図4Aは、硝子体内環境を模擬した試験系における本開示の製剤からの抗VEGF抗体の放出挙動を示す。FIG. 4A shows the release profile of an anti-VEGF antibody from a formulation of the present disclosure in a test system simulating the intravitreal environment. 図4Bは、ウサギに点眼投与した本開示の製剤からの抗VEGF抗体の網膜および脈絡膜への移行性を示す。FIG. 4B shows the transfer of anti-VEGF antibody from a formulation of the present disclosure to the retina and choroid following ocular administration to rabbits. 図54は、ウサギに硝子体内投与した本開示の製剤からの抗VEGF抗体の硝子体への蓄積性を示す。FIG. 54 shows the vitreous accumulation of anti-VEGF antibodies from a formulation of the present disclosure administered intravitreally to rabbits. 図4Dは、ウサギに硝子体内投与した本開示の製剤からの抗VEGF抗体の網膜および脈絡膜への移行性を示す。FIG. 4D shows the translocation of anti-VEGF antibody from a formulation of the present disclosure to the retina and choroid following intravitreal administration in rabbits. 図5は、硝子体内環境を模擬した試験系における本開示の製剤からのアフリベルセプトの放出挙動を示す。FIG. 5 shows the release profile of aflibercept from a formulation of the present disclosure in a test system simulating the intravitreal environment. 図6は、本開示の製剤を硝子体内投与したマウスの眼球の組織切片(ヘマトキシリン・エオシン染色)である。FIG. 6 is a histological section (hematoxylin and eosin stained) of the eye of a mouse to which a formulation of the present disclosure was administered intravitreally.
 本発明に係る実施の形態について図面を参照して説明する。なお、本発明は下記の実施の形態及び図面によって限定されるものではない。なお、下記の実施の形態において、“有する”、“含む”又は“含有する”といった表現は、“からなる”又は“から構成される”という意味も包含する。単数形は、単数または複数であることを意味する。 The following describes an embodiment of the present invention with reference to the drawings. Note that the present invention is not limited to the following embodiment and drawings. Note that in the following embodiment, the expressions "have", "include" and "contain" also include the meaning of "consisting of" or "consisting of". The singular form means singular or plural.
 本明細書では、「対象」は、ヒトを含む哺乳動物であり、好ましくはヒトである。哺乳類動物としては、例えば、ヒト、チンパンジー及びその他の霊長類;イヌ、ネコ、ウサギ、ウマ、ヒツジ、ヤギ、ウシ、ブタ、ラット(ヌードラットも包含する)、マウス(ヌードマウス及びスキッドマウスも包含する)、モルモット等の家畜動物、愛玩動物及び実験用動物等が挙げられ、これらに限定されない。 In this specification, a "subject" refers to a mammal, including a human, and preferably a human. Examples of mammals include, but are not limited to, humans, chimpanzees, and other primates; dogs, cats, rabbits, horses, sheep, goats, cows, pigs, rats (including nude rats), mice (including nude mice and skid mice), guinea pigs, and other livestock animals, pets, and laboratory animals.
 本明細書では、「固体複合体」とは、固形分からなる複合体である。固体複合体は、水を含んでいてもよいが、固形成分を含む複合体である。固体複合体は、水を含まないか、または、低い含水率を有しててもよく、例えば、公知の方法による測定(例えば、カールフィシャー法による測定)で、含水率が1質量%以下、0.9質量%以下、0.8質量%以下、0.7質量%以下、0.6質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下、または0.1質量%以下であり得る。親水性分子と界面活性剤とを含む固体複合体は、コア-シェル構造を有することができ、コアは親水性分子を含み、シェルは界面活性剤を含み、界面活性剤は、親水性部分をコアに向け、疎水性部分を固体複合体の外表面に向け得る。このようにすることで、界面活性剤は親水性薬剤の表面を覆い、粒子表面を疎水性に変えることが好ましい。 As used herein, a "solid composite" is a composite made of solids. A solid composite may contain water, but is a composite containing solid components. A solid composite may be water-free or have a low water content, for example, a water content of 1% by weight or less, 0.9% by weight or less, 0.8% by weight or less, 0.7% by weight or less, 0.6% by weight or less, 0.5% by weight or less, 0.4% by weight or less, 0.3% by weight or less, 0.2% by weight or less, or 0.1% by weight or less, as measured by a known method (e.g., Karl Fischer method). A solid composite containing hydrophilic molecules and a surfactant may have a core-shell structure, in which the core contains hydrophilic molecules and the shell contains a surfactant, and the surfactant may have a hydrophilic portion facing the core and a hydrophobic portion facing the outer surface of the solid composite. In this way, the surfactant preferably covers the surface of the hydrophilic drug and turns the particle surface hydrophobic.
 本明細書では、「固体粒子分散油性製剤」とは、複数の固体粒子と油性基剤とを含み、固体粒子が油性基剤中に分散してなる製剤である。固体粒子は、目的物質または目的分子(例えば、核酸またはバイオ医薬)と界面活性剤を含む。固体粒子はまた、水分を含まないか、または水分を限定的な量でしか含まない。粒子サイズは、典型的には1μmに満たない。固体粒子分散油性製剤中では、固体粒子を安定的に油性基剤中に分散させ得る。本件明細書では、「固体粒子」を「固体複合体」とも呼ぶ。目的物質または目的分子は、親水性であり得、この場合には、固体粒子分散油性製剤は、親水性の目的物質または目的分子を界面活性剤を用いて油性基剤に分散させたものである。目的物質または目的分子は、例えば、生体分子であり得る。目的物質または目的分子は、例えば、医薬有効成分であり得る。目的物質または目的分子は、例えば、眼科疾患のための治療薬であり得る。固体粒子分散油性製剤は、好ましくは、複数(特に3以上、4以上、5以上、6以上、7以上、8以上、9以上、または10以上)の粒子が凝集してなる凝集体を含まない。バイオ医薬とは、細胞により産生される医薬有効成分を含む医薬品である。 In this specification, a "solid particle-dispersed oil preparation" is a preparation that includes a plurality of solid particles and an oil base, and the solid particles are dispersed in the oil base. The solid particles include a target substance or target molecule (e.g., a nucleic acid or a biopharmaceutical) and a surfactant. The solid particles also contain no water or only a limited amount of water. The particle size is typically less than 1 μm. In the solid particle-dispersed oil preparation, the solid particles can be stably dispersed in the oil base. In this specification, the "solid particle" is also referred to as a "solid complex." The target substance or target molecule may be hydrophilic, and in this case, the solid particle-dispersed oil preparation is a preparation in which a hydrophilic target substance or target molecule is dispersed in an oil base using a surfactant. The target substance or target molecule may be, for example, a biomolecule. The target substance or target molecule may be, for example, a pharmaceutical active ingredient. The target substance or target molecule may be, for example, a therapeutic drug for an ophthalmic disease. The solid particle dispersion oil preparation preferably does not contain aggregates formed by aggregation of multiple particles (particularly 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more). A biopharmaceutical is a pharmaceutical product that contains an active pharmaceutical ingredient produced by cells.
 本明細書では、「界面活性剤」とは、分子中に、相対的に親水性の部分と相対的に疎水性の部分を有する分子である。界面活性剤は、イオン性界面活性剤と非イオン性界面活性剤に大別される。イオン性界面活性剤としては、カチオン性界面活性剤とアニオン性界面活性剤が挙げられる。典型的には、イオン性界面活性剤は、カチオンおよびアニオンのいずれか一方と疎水性部分を有し得る。カチオン性界面活性剤は、カチオン部分とアルキル、アルケニル、またはアルキニルなどの脂肪鎖(例えば、長鎖脂肪鎖)を含んでいてもよい。アニオン性界面活性剤は、アニオン部分と長鎖脂肪酸、不飽和脂肪酸(例えば、一価または二価)または長鎖不飽和脂肪酸(例えば、一価または二価)などの脂肪酸を含んでいてよい。「長鎖」は、炭素数が14~22である化合物に付与される言葉である。脂肪鎖は、炭素数8~22の脂肪鎖、すなわち、C~C22アルキル、C~C22アルケニル、またはC~C22アルキニルなどのC~C22脂肪鎖であり得る。また、脂肪鎖は長鎖脂肪鎖であり得る。飽和とは、脂肪鎖が2重結合および3重結合を有しないことを意味し、不飽和とは、脂肪鎖が2重結合または3重結合を少なくとも1つ有することを意味する。2重結合を有する脂肪鎖としては、シス型とトランス型が挙げられるが、生体適合性の観点からシス型が好ましいとされている。非イオン性界面活性剤は、分子内にイオン性の基を有しない界面活性剤であり、非イオン性の親水性部分と疎水性部分とを有する。疎水性部分は、アルキル、アルケニル、またはアルキニルなどの脂肪鎖(例えば、長鎖脂肪鎖)を含んでいてもよい。 As used herein, a "surfactant" is a molecule that has a relatively hydrophilic portion and a relatively hydrophobic portion in the molecule. Surfactants are broadly classified into ionic surfactants and nonionic surfactants. Ionic surfactants include cationic surfactants and anionic surfactants. Typically, an ionic surfactant may have either a cation or an anion and a hydrophobic portion. A cationic surfactant may contain a cationic portion and a fatty chain (e.g., a long fatty chain) such as an alkyl, alkenyl, or alkynyl. An anionic surfactant may contain an anionic portion and a fatty acid such as a long chain fatty acid, an unsaturated fatty acid (e.g., monovalent or divalent), or a long chain unsaturated fatty acid (e.g., monovalent or divalent). "Long chain" is a term given to compounds that have 14 to 22 carbon atoms. The fatty chain may be a fatty chain with 8 to 22 carbon atoms, i.e., a C 8 to C 22 fatty chain such as a C 8 to C 22 alkyl, C 8 to C 22 alkenyl, or C 8 to C 22 alkynyl. The fatty chain may be a long fatty chain. Saturated means that the fatty chain has no double or triple bonds, and unsaturated means that the fatty chain has at least one double or triple bond. The fatty chain having a double bond may be a cis type or a trans type, and the cis type is preferred from the viewpoint of biocompatibility. A nonionic surfactant is a surfactant that does not have an ionic group in the molecule, and has a nonionic hydrophilic portion and a hydrophobic portion. The hydrophobic portion may include a fatty chain such as an alkyl, alkenyl, or alkynyl (e.g., a long fatty chain).
 非イオン性界面活性剤としては、エルカ酸やオレイン酸等の不飽和脂肪酸を原料とするエステル化合物が好ましい。親油性の非イオン性界面活性剤の例には、エステル化度の高い(すなわち、モノエステルに対して、ジ、トリ、ポリエステルの占める割合の高い)、ショ糖脂肪酸エステル(ショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖ミリスチン酸エステル、ショ糖オレイン酸エステル、ショ糖ラウリン酸エステル、ショ糖エルカ酸エステル、ショ糖混合脂肪酸エステル)、ポリグリセリン縮合リシノレイン酸エステル、デカグリセリンエステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル及びポリオキシエチレンヒマシ油・硬化ヒマシ油がある。好適には、非イオン性界面活性剤はショ糖ラウリン酸エステルである。界面活性剤は、1種単独で用いてもよく、2種以上を混合して用いてもよい。 As the nonionic surfactant, an ester compound made from unsaturated fatty acids such as erucic acid and oleic acid is preferred. Examples of lipophilic nonionic surfactants include sucrose fatty acid esters (sucrose stearate, sucrose palmitate, sucrose myristic acid, sucrose oleate, sucrose laurate, sucrose erucate, sucrose mixed fatty acid esters) with a high degree of esterification (i.e., a high ratio of di-, tri-, and polyester to monoester), polyglycerol condensed ricinoleate, decaglycerol ester, glycerol fatty acid ester, polyglycerol fatty acid ester, polyoxyethylene glycerol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene castor oil/hydrogenated castor oil. The nonionic surfactant is preferably sucrose laurate. The surfactant may be used alone or in a mixture of two or more.
 界面活性剤は、例えば、ステアリン酸ポリオキシル40、ポリオキシエチレン硬化ヒマシ油60、ポリオキシエチレンヒマシ油、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール、ポリオキシエチレン(200)ポリオキシプロピレン(70)グリコール、ポリソルベート80、マクロゴール4000、マクロゴール6000、モノステアリン酸アルミニウム、モノステアリン酸ポリエチレングリコール、モノステアリン酸グリセリル、ノノキシノール-9、オクトキシノール-40、ポリエチレングリコール(PEG)/ポリプロピレングリコール(PPG)-4/30共重合体、ポロキサマー188、ポロキサマー407、ポリオキシル15ヒドロキシステアラート、ポリオキシル35ヒマシ油、ポリオキシル40硬化ヒマシ油、ポリオキシル40ステアラート、ポリソルベート20などが挙げられる。 Surfactants include, for example, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene castor oil, polyoxyethylene (160) polyoxypropylene (30) glycol, polyoxyethylene (200) polyoxypropylene (70) glycol, polysorbate 80, macrogol 4000, macrogol 6000, aluminum monostearate, polyethylene glycol monostearate, glyceryl monostearate, nonoxynol-9, octoxynol-40, polyethylene glycol (PEG)/polypropylene glycol (PPG)-4/30 copolymer, poloxamer 188, poloxamer 407, polyoxyl 15 hydroxystearate, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polyoxyl 40 stearate, and polysorbate 20.
 複合体の調製のために用いられる界面活性剤の好適な例は、HLB(Hydrophile-Lipophile Balance)値が10以下である親油性(疎水性)の非イオン性界面活性剤である。非イオン性界面活性剤のHLBは、好ましくは8以下、より好ましくは5以下、特に好ましくは3以下である。 A suitable example of a surfactant used to prepare the complex is a lipophilic (hydrophobic) nonionic surfactant with an HLB (Hydrophile-Lipophile Balance) value of 10 or less. The HLB of the nonionic surfactant is preferably 8 or less, more preferably 5 or less, and particularly preferably 3 or less.
 本明細書では、「抗体」は、免疫グロブリンを意味する。抗体は、様々なアイソタイプの抗体であり得、例えば、IgGであり得る。抗体は、好ましくは、モノクローナル抗体であり得る。抗体は、ヒトキメラ抗体、ヒト化抗体、またはヒト抗体であり得る。ヒトキメラ抗体は、非ヒト抗体の定常領域をヒト抗体の定常領域に置き換えることにより作製され得る。ヒト化抗体は、ヒト抗体の6つのCDRを、非ヒト抗体の6つの対応するCDRで置き換えることにより作製され得る。ヒト抗体は、免疫グロブリンの少なくとも重鎖可変領域をヒトの遺伝子座の対応する領域で置き換えた動物(例えば、マウス)を用いて作製することができる。定常領域が非ヒトである場合には、定常領域をヒトの抗体のアミノ酸配列に置き換えることでヒト抗体を得ることができる。本明細書では、抗体は、好ましくはヒト化抗体であり得る。本明細書では、抗体は好ましくはヒト抗体であり得る。抗体は、細胞内で産生されるときにはシグナルペプチドを有しているが、細胞外に分泌されるときには当該シグナルペプチドは切除されている。従って、医薬として投与する場合は、抗体にはシグナルペプチドは不要である。 As used herein, "antibody" refers to an immunoglobulin. The antibody may be of various isotypes, e.g., IgG. The antibody may preferably be a monoclonal antibody. The antibody may be a human chimeric antibody, a humanized antibody, or a human antibody. A human chimeric antibody may be produced by replacing the constant region of a non-human antibody with the constant region of a human antibody. A humanized antibody may be produced by replacing the six CDRs of a human antibody with the six corresponding CDRs of a non-human antibody. A human antibody may be produced using an animal (e.g., a mouse) in which at least the heavy chain variable region of an immunoglobulin has been replaced with the corresponding region of a human locus. When the constant region is non-human, a human antibody can be obtained by replacing the constant region with the amino acid sequence of a human antibody. As used herein, the antibody may preferably be a humanized antibody. As used herein, the antibody may preferably be a human antibody. An antibody has a signal peptide when produced intracellularly, but the signal peptide is removed when secreted extracellularly. Therefore, when administered as a pharmaceutical, the antibody does not require a signal peptide.
 本明細書では、「CDR」は、抗体の重鎖可変領域および軽鎖可変領域に存在する相補性決定領域である。重鎖および軽鎖可変領域に、それぞれ3つ存在し、N末端からCDR1、CDR2、およびCDR3と呼ばれる。CDRは、例えば、Kabatらの番号付け(Kabat,E.A.et al., Sequences of Proteins of Immunological Interest,5th ed., 1991, Bethesda: US Dept. of Health and Human Services, PHS, NIH.)に基づいて決定され得る。 As used herein, "CDR" refers to a complementarity determining region present in the heavy and light chain variable regions of an antibody. There are three CDRs in each of the heavy and light chain variable regions, and they are called CDR1, CDR2, and CDR3 from the N-terminus. The CDRs can be determined, for example, based on the numbering scheme of Kabat et al. (Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, 5th ed., 1991, Bethesda: US Dept. of Health and Human Services, PHS, NIH.).
 本明細書では、「抗体の抗原結合性断片」は、抗体の断片であって、抗原への結合性を維持した断片を意味する。抗原結合性断片としては、例えば、Fab、Fab’、F(ab’)、Fv、scFv(単鎖Fv)、ダイアボディー、sc(Fv)(単鎖(Fv))が挙げられる。例えば、抗体をパパインで消化すると、Fabを得ることができる。あるいは、抗体をペプシンで消化すると、F(ab’)を得ることができ、これをさらに還元するとFab’を得ることができる。その他の抗体の抗原結合性断片も当業者に周知の方法で作製することができる。本発明ではこのような抗体の抗原結合性断片を用いることができる。 In the present specification, "antigen-binding fragment of antibody" means a fragment of an antibody that maintains binding to an antigen. Examples of antigen-binding fragments include Fab, Fab', F(ab') 2 , Fv, scFv (single chain Fv), diabody, and sc(Fv) 2 (single chain (Fv) 2 ). For example, Fab can be obtained by digesting an antibody with papain. Alternatively, F(ab') 2 can be obtained by digesting an antibody with pepsin, and Fab' can be obtained by further reducing this. Antigen-binding fragments of other antibodies can also be prepared by methods well known to those skilled in the art. Such antigen-binding fragments of antibodies can be used in the present invention.
 本明細書では、「医薬的に許容可能」とは、医薬として対象に適用した場合に、許容不能な毒性を生じないことを意味する。 As used herein, "pharmaceutical acceptable" means that when administered to a subject as a medicine, it does not cause unacceptable toxicity.
 本明細書では、「眼内投与」とは、点眼以外の眼球への侵襲的な投与である。眼内投与としては、硝子体内投与、結膜下投与、脈絡膜上投与、網膜下投与などが挙げられる。 In this specification, "intraocular administration" refers to invasive administration to the eyeball other than eye drops. Examples of intraocular administration include intravitreal administration, subconjunctival administration, suprachoroidal administration, and subretinal administration.
 本開示によれば、固体粒子分散油性製剤であって、(i) 医薬的に許容可能な目的物質または目的分子を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、
(ii) 医薬的に許容可能な油状基剤と
を含む、製剤が提供される。
According to the present disclosure, there is provided a solid particle dispersion oil formulation, comprising: (i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant;
(ii) a pharma- ceutically acceptable oily base.
 本開示の固体粒子分散油性製剤は、水分を含まないか、または低い含水率を有しててもよく、例えば、公知の方法による測定で、含水率が1質量%以下、0.9質量%以下、0.8質量%以下、0.7質量%以下、0.6質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下、または0.1質量%以下であり得る。 The solid particle dispersion oil formulation of the present disclosure may be free of water or have a low water content, for example, the water content may be 1% by mass or less, 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, 0.6% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3% by mass or less, 0.2% by mass or less, or 0.1% by mass or less, as measured by known methods.
 本開示の固体粒子分散油性製剤においては、目的物質または目的分子は、親水性である。本開示の固体粒子分散油性製剤においては、目的物質または目的分子は、生理活性物質、例えば、生体分子であり得る。生体分子は、生体において見出される分子またはその類縁体であり、例えば、タンパク質、ペプチド、抗体もしくはその抗原結合性断片、核酸またはその他の生体分子であり得る。生体分子は、化学修飾を受けていてもよく、受けていなくてもよい。 In the solid particle dispersion oil formulation of the present disclosure, the target substance or target molecule is hydrophilic. In the solid particle dispersion oil formulation of the present disclosure, the target substance or target molecule can be a physiologically active substance, for example, a biomolecule. The biomolecule is a molecule found in a living organism or an analog thereof, for example, a protein, a peptide, an antibody or an antigen-binding fragment thereof, a nucleic acid, or other biomolecule. The biomolecule may or may not be chemically modified.
 点眼剤は、その非侵襲性及び利便性から前眼部疾患を処置するために最も広く用いられている非侵襲的薬物投与剤型である。前眼部疾患としては、緑内障、アレルギー性結膜炎、前部ブドウ膜炎および白内障が挙げられる。点眼剤における親水性の有効成分は、眼に投与される医薬成分であれば、特に限定されない。 Ophthalmic solutions are the most widely used non-invasive drug administration form for treating anterior ocular diseases due to their non-invasiveness and convenience. Examples of anterior ocular diseases include glaucoma, allergic conjunctivitis, anterior uveitis, and cataracts. There are no particular limitations on the hydrophilic active ingredient in eye drops, so long as it is a medicinal ingredient that is administered to the eye.
 抗体は、特に限定されないが皮膚からの吸収または眼内(硝子体内)投与について利益を有する抗体であり得る。抗体としては、例えば、抗VEGF抗体(例えば、ラニビズマブ、ベバシズマブ、アフリベルセプト、またはブロルシズマブ)が挙げられる。抗VEGF抗体は、加齢黄斑変性症、糖尿病網膜症(糖尿病黄斑浮腫)、網膜静脈閉塞症、病的近視(脈絡膜新生血管)等に対して有効性が確認されている。抗体またはその抗原結合性断片は、固体複合体中または固体粒子分散油性製剤中で、抗原結合能を失わず、投与後に抗原特異的結合を示す。タンパク質またはペプチドは、固体複合体中または固体粒子分散油性製剤中で、抗原結合能を失わず、投与後にその機能の少なくとも一部を発揮する。タンパク質またはペプチドとしては、リゾチーム、インスリン、アルブミン、オボアルブミン、ニュートトロフィン4などが挙げられる。核酸は、DNAおよびRNA並びに修飾核酸からなる群から選択される1以上を含む。核酸は、一本鎖核酸または二本鎖核酸であり得る。核酸は、アンチセンスオリゴであり得る。RNAとしては、siRNAおよびshRNAなどの遺伝子サイレンシングのための人工的なRNA、マイクロRNA(miRNA)、アプタマーなどのノンコーディングRNA、およびmRNAなどの天然のRNAが挙げられる。核酸またはRNAとしては、アプタマー(例えば、抗VEGFアプタマー)が挙げられる。これらのRNAは、生体内で安定化するように修飾されうる。 The antibody may be, but is not limited to, an antibody that has benefits for absorption through the skin or intraocular (intravitreal) administration. Examples of the antibody include, for example, anti-VEGF antibodies (e.g., ranibizumab, bevacizumab, aflibercept, or brolucizumab). Anti-VEGF antibodies have been confirmed to be effective against age-related macular degeneration, diabetic retinopathy (diabetic macular edema), retinal vein occlusion, pathological myopia (choroidal neovascularization), and the like. The antibody or antigen-binding fragment thereof does not lose its antigen-binding ability in a solid complex or in a solid particle-dispersed oil formulation, and exhibits antigen-specific binding after administration. The protein or peptide does not lose its antigen-binding ability in a solid complex or in a solid particle-dispersed oil formulation, and exerts at least a part of its function after administration. Examples of the protein or peptide include lysozyme, insulin, albumin, ovalbumin, neutrophin 4, and the like. The nucleic acid includes one or more selected from the group consisting of DNA, RNA, and modified nucleic acid. The nucleic acid may be a single-stranded or double-stranded nucleic acid. The nucleic acid may be an antisense oligo. The RNA may include artificial RNA for gene silencing, such as siRNA and shRNA, non-coding RNA, such as microRNA (miRNA), aptamers, and natural RNA, such as mRNA. The nucleic acid or RNA may include aptamers (e.g., anti-VEGF aptamers). These RNAs may be modified to be stabilized in vivo.
 修飾核酸としては、例えば、蛍光色素修飾された核酸、ビオチン化された核酸、コレステリル基を導入した核酸が挙げられる。RNAは安定性を高めるために、塩基に対して2’-O-メチル修飾または、2’-フルオロ修飾若しくは2’-メトキシエチル(MOE)修飾をすることがあり、核酸バックボーンのホスホジエステル結合をホスホロチオエート結合に置き換えることもある。人工核酸としては、2’位の酸素原子と4’位の炭素原子が架橋された核酸が挙げられる。このような人工核酸としては、例えば、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋された架橋型DNAであるlocked nucleic acid(LNA)、2’位の酸素原子と4’位の炭素原子がエチレンを介して架橋されたENA、2’位の酸素原子と4’位の炭素原子が-CHOCH-を介して架橋されたBNACOC、2’位の酸素原子と4’位の炭素原子が-NR-CH-{ここで、Rは、メチルまたは水素原子である}を介して架橋されたBNANCなどの架橋型核酸(BNA)、2’位の酸素原子と4’位の炭素原子が-CH(OCH)-を介して架橋されたcMOE、2’位の酸素原子と4’位の炭素原子が-CH(CH)-を介して架橋されたcEt、2’位と4’位の炭素原子がアミドを介して架橋されたAmNA、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋され、6’位にシクロプロパンが形成されたscpBNA、およびデオキシリボースまたはリボースの代わりにN-(2-アミノエチル)グリシンがアミド結合したポリマーが主鎖となったペプチド核酸(PNA)などが挙げられる。 Modified nucleic acids include, for example, nucleic acids modified with fluorescent dyes, biotinylated nucleic acids, and nucleic acids into which cholesteryl groups have been introduced. In order to enhance the stability of RNA, bases may be modified with 2'-O-methyl, 2'-fluoro, or 2'-methoxyethyl (MOE), and the phosphodiester bonds in the nucleic acid backbone may be replaced with phosphorothioate bonds. Artificial nucleic acids include nucleic acids in which the oxygen atom at the 2' position is crosslinked with the carbon atom at the 4' position. Examples of such artificial nucleic acids include locked nucleic acid (LNA), which is a bridged DNA in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via methylene; ENA, in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via ethylene; BNACOC, in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via -CH 2 OCH 2 -; bridged nucleic acid (BNA), such as BNANC, in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via -NR-CH 2 - (where R is a methyl or hydrogen atom); cMOE, in which the oxygen atom at the 2' position and the carbon atom at the 4' position are bridged via -CH 2 (OCH 3 ) - ; )-bridged cEt; AmNA in which the 2'- and 4'-carbon atoms are bridged via an amide; scpBNA in which the 2'-position oxygen atom and the 4'-position carbon atom are bridged via a methylene and a cyclopropane is formed at the 6'-position; and peptide nucleic acid (PNA) in which the main chain of the polymer is formed by amide-bonding N-(2-aminoethyl)glycine instead of deoxyribose or ribose.
 界面活性剤は、医薬的に許容可能なものであれば特に制限無く用いることができる。界面活性剤としては、非イオン性界面活性剤、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、胆汁酸塩が挙げられる。  Any surfactant can be used without particular restrictions as long as it is medicamentally acceptable. Examples of surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and bile salts.
 非イオン性界面活性剤としては、ポリグリセリン縮合リシノレイン酸エステル、デカグリセリンエステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレンヒマシ油・硬化ヒマシ油、ショ糖脂肪酸エステル(ショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖ミリスチン酸エステル、ショ糖オレイン酸エステル、ショ糖ラウリン酸エステル、ショ糖エルカ酸エステル、ショ糖混合脂肪酸エステル)等が挙げられる。これらから1種を選択して用いるか、或いは2種以上の混合物を用いてもよい。 Nonionic surfactants include polyglycerol condensed ricinoleate, decaglycerol ester, glycerol fatty acid ester, polyglycerol fatty acid ester, polyoxyethylene glycerol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, sucrose fatty acid ester (sucrose stearate, sucrose palmitate, sucrose myristate, sucrose oleate, sucrose laurate, sucrose erucate, sucrose mixed fatty acid ester), etc. One of these may be selected for use, or a mixture of two or more may be used.
 これら非イオン性界面活性剤としては、エルカ酸やオレイン酸などの不飽和脂肪酸を原料とするエステル化合物が好適であり、より好ましくは、ショ糖エルカ酸エステル、ショ糖オレイン酸エステル、ショ糖混合脂肪酸エステルが挙げられる。または、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレンヒマシ油および硬化ヒマシ油よりなる群から選択される1種または2種以上を用いることができる。 As these nonionic surfactants, ester compounds made from unsaturated fatty acids such as erucic acid and oleic acid are preferred, and more preferred are sucrose erucic acid ester, sucrose oleic acid ester, and sucrose mixed fatty acid ester. Alternatively, one or more surfactants selected from the group consisting of glycerin fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene castor oil, and hydrogenated castor oil can be used.
 HLB価は、界面活性剤の親水性および疎水性の度合いを示す。HLB価が小さいほど疎水性が高いことを意味する。本開示では、界面活性剤としては、特に限定されないが、HLB価10以下という疎水性の高いものを用いるのが好ましい。抗原含有複合体の油相への溶解または分散を容易にできるからである。本開示では、10以下、8以下、6以下、5以下、4以下、または3以下のHLB価を有する界面活性剤が好ましく用いられ得る。本開示では、HLB価は小さいほど好ましい。 The HLB value indicates the degree of hydrophilicity and hydrophobicity of a surfactant. A smaller HLB value means a higher hydrophobicity. In the present disclosure, the surfactant is not particularly limited, but it is preferable to use one with high hydrophobicity, with an HLB value of 10 or less. This is because it can easily dissolve or disperse the antigen-containing complex in the oil phase. In the present disclosure, surfactants having an HLB value of 10 or less, 8 or less, 6 or less, 5 or less, 4 or less, or 3 or less may be preferably used. In the present disclosure, the smaller the HLB value, the more preferable.
 水溶性の目的物質または目的分子を油相中(好ましくは揮発性の油相中)で界面活性剤と混合すると、コアに水溶性の目的物質または目的分子を含み、シェルに界面活性剤を含む、コア-シェル構造を有する粒子が形成される。当該粒子は、油相中に分散している。ここで用いる油相が揮発性の油相(例えば、シクロヘキサン)である場合、その後、溶媒を蒸発させることが容易であり、乾燥(例えば、凍結乾燥)により溶媒を除去することで、コアに水溶性の目的物質または目的分子を含み、シェルに界面活性剤を含む、コア-シェル構造を有する粒子を固体粒子(「固体複合体」ともいう)として得ることができる。
当該固体粒子を油状基材に分散させることにより、固体粒子分散油性製剤を得ることができるのである。
When a water-soluble target substance or molecule is mixed with a surfactant in an oil phase (preferably a volatile oil phase), particles having a core-shell structure are formed, the core containing the water-soluble target substance or molecule and the shell containing the surfactant. The particles are dispersed in the oil phase. If the oil phase used here is a volatile oil phase (e.g., cyclohexane), it is easy to subsequently evaporate the solvent, and by removing the solvent by drying (e.g., freeze-drying), the core-shell particles containing the water-soluble target substance or molecule and the shell containing the surfactant can be obtained as solid particles (also called "solid composites").
By dispersing the solid particles in an oily base, a solid particle-dispersed oil-based preparation can be obtained.
 本開示では、固体粒子は、動的光散乱法により決定される流体力学粒径の平均が50nm~200nmであり得る。流体力学粒径の平均は、ある態様では、100~160nmであり得る。流体力学粒径の平均は、ある態様では、80~120nmであり得る。 In the present disclosure, the solid particles may have an average hydrodynamic particle size of 50 nm to 200 nm as determined by dynamic light scattering. In some embodiments, the average hydrodynamic particle size may be 100 to 160 nm. In some embodiments, the average hydrodynamic particle size may be 80 to 120 nm.
 本開示では、油状基剤としては、眼に投与される医薬用製剤(すなわち、点眼剤または硝子体内投与用製剤などの眼科用製剤)において許容されるものを用いることができる。本開示では、油状基剤としては、常温(25℃)で液状の油を好ましく用いることができる。本開示では、油状基剤としては、天然物および合成物のいずれも用いることができる。本開示では、油状基剤としては、油相は、大豆油、綿実油、菜種油、ゴマ油、コーン油、落花生油、サフラワー油、サンフラワー油、オリーブ油、ヒマシ油、ナタネ油、シソ油、ウイキョウ油、ラノリン、ラノリン油、ラノリンアルコール、精製ラノリン、ミネラルオイル、カカオ油、ケイヒ油、ハッカ油、ユーカリ油、およびベルガモット油等の植物性油が挙げられ、牛脂、豚油および魚油等の動物性油であってもよい。また、油状基剤は、グリセリド、トリオレイン、トリリノレイン、トリパルミチン、トリステアリン、トリミリスチン、トリアラキドニン等の中性脂質、または合成脂質であってもよい。また油状基剤は、コレステリルオレエート、コレステリルリノレート、コレステリルミリステート、コレステリルパルミデートおよびコレスレリルアラキデート等のステロール誘導体であってもよく、ミリスチン酸イソプロピル、ミリスチン酸オクチルドデシル、ミリスチン酸セチル、オレイン酸エチル、リノール酸エチル、リノール酸イソプロピル、パルミチン酸イソプロピルおよびステアリン酸ブチル等の長鎖脂肪酸エステルであってもよい。また、油相は、乳酸エチル、乳酸セチル、クエン酸トリエチル、アジピン酸ジイソプロピル、セバシン酸ジエチル、セバシン酸ジイソプロピルおよび2-エチルヘキサン酸セチル等のカルボン酸エステルであってもよいし、ワセリン、白色ワセリン、流動パラフィン、スクワランおよび植物性スクワラン等の炭化水素類であってもよく、シリコーンオイルであってもよい。油性基材は、1種単独で用いてもよく、2種以上を混合して用いてもよい。好ましい油状基剤としては、スクワランオイル、ヒマシ油、ゴマ油、白色ワセリン、流動パラフィンが挙げられ、より好ましい油状基剤としては、ヒマシ油、ミリスチン酸イソプロピル、およびシリコーンオイルを挙げることができる。 In the present disclosure, the oil base may be any oil that is acceptable for use in pharmaceutical preparations administered to the eye (i.e., ophthalmic preparations such as eye drops or preparations for intravitreal administration). In the present disclosure, the oil base may be preferably an oil that is liquid at room temperature (25°C). In the present disclosure, the oil base may be either natural or synthetic. In the present disclosure, the oil base may be, for example, vegetable oils such as soybean oil, cottonseed oil, rapeseed oil, sesame oil, corn oil, peanut oil, safflower oil, sunflower oil, olive oil, castor oil, rapeseed oil, perilla oil, fennel oil, lanolin, lanolin oil, lanolin alcohol, refined lanolin, mineral oil, cacao oil, cinnamon oil, peppermint oil, eucalyptus oil, and bergamot oil, or animal oils such as beef tallow, lard, and fish oil. The oil base may be a neutral lipid such as glyceride, triolein, trilinolein, tripalmitin, tristearin, trimyristin, triarachidonin, or a synthetic lipid. The oil base may be a sterol derivative such as cholesteryl oleate, cholesteryl linoleate, cholesteryl myristate, cholesteryl palmidate, or cholesteryl arachidate, or a long-chain fatty acid ester such as isopropyl myristate, octyldodecyl myristate, cetyl myristate, ethyl oleate, ethyl linoleate, isopropyl linoleate, isopropyl palmitate, or butyl stearate. The oil phase may be a carboxylic acid ester such as ethyl lactate, cetyl lactate, triethyl citrate, diisopropyl adipate, diethyl sebacate, diisopropyl sebacate, or cetyl 2-ethylhexanoate, or a hydrocarbon such as petrolatum, white petrolatum, liquid paraffin, squalane, or vegetable squalane, or a silicone oil. The oil-based base material may be used alone or in a mixture of two or more. Preferred oil-based base materials include squalane oil, castor oil, sesame oil, white petrolatum, and liquid paraffin, and more preferred oil-based base materials include castor oil, isopropyl myristate, and silicone oil.
 ある態様では、油性基剤はヒマシ油であり、界面活性剤は、ジオレイン酸グリセリル、ポリオキシエチレン硬化ヒマシ油10、セスキオレイン酸ソルビタン、およびショ糖ラウリン酸からなる群から選択されるいずれか1以上の界面活性剤であり得る。 In one embodiment, the oil base is castor oil, and the surfactant can be any one or more surfactants selected from the group consisting of glyceryl dioleate, polyoxyethylene hydrogenated castor oil 10, sorbitan sesquioleate, and sucrose laurate.
 本開示によれば、固体粒子分散油性製剤は、眼科製剤(例えば点眼剤または眼内投与製剤)として製剤化されている。したがって、本開示によれば、眼科用製剤(例えば点眼剤または眼内投与製剤)であって、
(i) 医薬的に許容可能な目的物質または目的分子を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、
(ii) 医薬的に許容可能な油状基剤と
を含む、眼科製剤(例えば点眼剤または眼内投与製剤)が提供される。ある好ましい態様では、眼科用製剤は、点眼剤である。ある好ましい態様では、眼科製剤は、硝子体内投与製剤である。
According to the present disclosure, the solid particle-dispersed oil-based formulation is formulated as an ophthalmic formulation (e.g., eye drops or intraocular formulation). Thus, according to the present disclosure, an ophthalmic formulation (e.g., eye drops or intraocular formulation) is provided,
(i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or molecule and a pharma-ceutically acceptable surfactant;
(ii) A pharma- ceutically acceptable oil base is provided. In a preferred embodiment, the ophthalmic formulation is an eye drop. In a preferred embodiment, the ophthalmic formulation is an intravitreal formulation.
 本開示によれば、固体粒子分散油性製剤は、前記目的物質または目的分子を徐放することができる。本開示のある態様では、固体粒子分散油性製剤は、生体の眼部(例えば、硝子体内)において前記目的物質または目的分子を少なくとも1時間、2時間、3時間、4時間、5時間、6時間、9時間、12時間、18時間、24時間(2日)、3日、4日、5日、6日、7日(1週間)、または2週間にわたり徐放することができる。本開示の固体粒子分散油性製剤は、前記目的物質または目的分子を眼灌流液中に少なくとも1時間、2時間、3時間、4時間、5時間、6時間、9時間、12時間、18時間、24時間(2日)、3日、4日、5日、6日、7日(1週間)、または2週間にわたり徐放することができる。本開示によれば、固体粒子分散油性製剤は、前記目的物質または目的分子の徐放基準値以下しか、徐放しない。徐放基準値は、製剤に含まれる前記目的物質または目的分子の50%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、または5%以下しか徐放基準時間では徐放しない。徐放基準時間は、例えば、1時間、2時間、3時間、4時間、5時間、6時間、9時間、12時間、18時間、24時間(2日)、3日、4日、5日、6日、7日(1週間)、または2週間であり得る。徐放は、好ましくは、対象の硝子体への投与後に生じる。 According to the present disclosure, the solid particle dispersion oil formulation can release the target substance or target molecule in a sustained manner. In one embodiment of the present disclosure, the solid particle dispersion oil formulation can release the target substance or target molecule in the eye of a living body (e.g., in the vitreous body) for at least 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours (2 days), 3 days, 4 days, 5 days, 6 days, 7 days (1 week), or 2 weeks. The solid particle dispersion oil formulation of the present disclosure can release the target substance or target molecule in the ocular irrigation solution for at least 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours (2 days), 3 days, 4 days, 5 days, 6 days, 7 days (1 week), or 2 weeks. According to the present disclosure, the solid particle dispersion oil formulation releases the target substance or target molecule only at or below the sustained release standard value. The sustained release standard value is a standard time in which the target substance or target molecule contained in the formulation is released at 50% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less. The sustained release standard time can be, for example, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours (2 days), 3 days, 4 days, 5 days, 6 days, 7 days (1 week), or 2 weeks. The sustained release preferably occurs after administration to the vitreous of the subject.
 本開示の固体粒子分散油性製剤は、前記目的物質または目的分子を、角膜、結膜、房水、虹彩、毛様体および水晶体からなる群から選択される前眼部組織、ならびに強膜、脈絡膜、網膜色素上皮、神経網膜、視神経、硝子体膜および硝子体液からなる群から選択される後眼部組織の1以上に送達し得る。本開示の固体粒子分散油性製剤は、長期間にわたって、上記組織の1以上に前記目的物質または目的分子を送達し得るのである。 The solid particle dispersion oil formulation of the present disclosure can deliver the target substance or molecule to one or more of the anterior ocular tissues selected from the group consisting of the cornea, conjunctiva, aqueous humor, iris, ciliary body, and lens, and the posterior ocular tissues selected from the group consisting of the sclera, choroid, retinal pigment epithelium, neural retina, optic nerve, vitreous membrane, and vitreous humor. The solid particle dispersion oil formulation of the present disclosure can deliver the target substance or molecule to one or more of the above tissues over an extended period of time.
 本開示の点眼剤は、油状基剤に分散しており、親水性物質よりも涙液により排出されにくい。本開示の点眼剤はまた、疎水的な性質を示す角膜上皮を通過し、眼部組織や後眼部組織への薬物の浸透に適し得る。さらには、本開示の点眼剤は組織浸透性を有し得る。本開示の硝子体内投与用製剤は、油状基剤に分散しており、親水性物質よりも硝子体液により拡散または排出されにくい。固体粒子分散油性製剤の形態により、有効成分が体液中に早期に拡散することを抑制し、有効成分を徐放し得ると考えられる。 The eye drops of the present disclosure are dispersed in an oily base and are less likely to be excreted by tears than hydrophilic substances. The eye drops of the present disclosure may also pass through the corneal epithelium, which exhibits hydrophobic properties, and may be suitable for the penetration of drugs into ocular tissues and posterior ocular tissues. Furthermore, the eye drops of the present disclosure may have tissue permeability. The formulation for intravitreal administration of the present disclosure is dispersed in an oily base and is less likely to be diffused or excreted by vitreous humor than hydrophilic substances. It is believed that the form of the solid particle-dispersed oily formulation may inhibit the active ingredient from diffusing prematurely into body fluids, allowing the active ingredient to be released gradually.
 本開示によれば、対象において眼科疾患を処置する方法が提供される。この方法は、前記対象に本開示の眼科疾患治療薬を投与することを含む。眼科疾患治療薬は、当該眼科疾患治療薬を薬剤として含む固体粒子分散油性製剤であり得る。投与は、点眼または眼内投与、好ましくは、硝子体内投与であり得る。投与量は、治療上の有効量であり得る。 According to the present disclosure, there is provided a method of treating an ophthalmic disease in a subject. The method includes administering to the subject a therapeutic agent for ophthalmic disease of the present disclosure. The therapeutic agent for ophthalmic disease may be a solid particle dispersion oily formulation containing the therapeutic agent for ophthalmic disease as a drug. The administration may be by eye drops or intraocular administration, preferably intravitreal administration. The amount administered may be a therapeutically effective amount.
 本開示によれば、対象に眼科疾患治療薬を投与する方法であって、眼科疾患治療薬は、当該眼科疾患治療薬を薬剤として含む固体粒子分散油性製剤である方法が提供される。 The present disclosure provides a method for administering a therapeutic drug for ophthalmic disease to a subject, the therapeutic drug for ophthalmic disease being a solid particle dispersion oil formulation containing the therapeutic drug for ophthalmic disease as a drug.
 本開示によれば、本開示の方法において用いるための固体粒子分散油性製剤が提供される。本開示によれば、本開示の方法において用いるための医薬の製造における固体粒子分散油性製剤または目的物質もしくは目的分子の使用が提供される。 According to the present disclosure, there is provided a solid particle dispersion oil formulation for use in the method of the present disclosure. According to the present disclosure, there is provided the use of a solid particle dispersion oil formulation or a target substance or target molecule in the manufacture of a medicament for use in the method of the present disclosure.
実施例1:点眼製剤および硝子体内投与製剤の作製
 本実施例では、薬剤を界面活性剤により被覆してなる固体粒子を油中に分散させた製剤(固体粒子分散油性製剤)を眼に適用した。
Example 1: Preparation of eye drop preparation and intravitreal preparation In this example, a preparation in which solid particles formed by coating a drug with a surfactant are dispersed in oil (solid particle-dispersed oil-based preparation) was applied to the eye.
 薬剤としては、タンパク質、抗体、および核酸などの様々な医薬モダリティに係るものを用いた。 Drugs used included those from a variety of pharmaceutical modalities, including proteins, antibodies, and nucleic acids.
 眼科製剤としての固体粒子分散油性製剤の適用を検討するための実験系を構築した。具体的には、膜透過試験用ジャケット付き静置型フランツ拡散セル(コスメディ社製)の上下をポリカーボネート膜(孔径:0.1μm、Merck社製)により分断し、上部に固体粒子分散油性製剤を添加し、下部を眼灌流液(オペガード)MA眼灌流液、千寿製薬社製)で満たした。温度は、眼球表面温度である36℃に維持した。上部に得られた固体粒子分散油性製剤を添加したときに、下部の眼灌流液への薬物の移行を確認した。 An experimental system was constructed to examine the application of solid particle dispersion oil preparations as ophthalmic preparations. Specifically, a stationary jacketed Franz diffusion cell for membrane permeation tests (manufactured by Cosmedy) was divided into the top and bottom by a polycarbonate membrane (pore size: 0.1 μm, manufactured by Merck), the solid particle dispersion oil preparation was added to the top, and the bottom was filled with ocular irrigation fluid (Opeguard) MA ocular irrigation fluid, manufactured by Senju Pharmaceutical Co., Ltd.). The temperature was maintained at 36°C, which is the eyeball surface temperature. When the obtained solid particle dispersion oil preparation was added to the top, the transfer of the drug to the ocular irrigation fluid in the bottom was confirmed.
(1)抗体
 抗体としては、ヒト全IgG抗体を用いた。1mg/mL IgGと0.3mgマンニトールを含む水溶液と、25mg/mL界面活性剤を含むシクロヘキサン溶液とを混合し、ホモジナイザーにより26,000rpmで2分間にわたり攪拌した。界面活性剤としては、ジオレイン酸グリセリル(DGMO)、セスキオレイン酸ソルビタン(SO)、ポリオキシエチレン硬化ヒマシ油10(HCO)、およびショ糖ラウリン酸(L195)から選択される1種類を用いた。得られたエマルジョンを24時間にわたって凍結乾燥して、溶媒を除去し、薬剤を界面活性剤により被覆してなる固体粒子を得た。得られた固体粒子を1mLヒマシ油(富士フイルム和光純薬社製)に分散させ、IgG抗体を含む固体粒子分散油性製剤を得た。得られた固体粒子分散油性製剤中の固体粒子の粒径分布をゼータサイザー(ゼータサイザーナノZS、Marvern社製)で測定した。粒径分布の結果は、図2Bに示される通りであった。また、流体力学粒径の平均は、110~170nm程度であった。具体的には、界面活性剤がHCOである粒子の流体力学粒径の平均は120±9nmであり、PDIが0.564~0.787であり、界面活性剤がDGMOである粒子の流体力学粒径の平均は114±7nmであり、PDIが0.307~0.399であり、界面活性剤がSOである粒子の流体力学粒径の平均は122±12nmであり、PDIが0.345~0.693であり、界面活性剤がL195である粒子の流体力学粒径の平均は163±8nmであり、PDIが0.604~0.816であった。
(1) Antibody A human total IgG antibody was used as the antibody. An aqueous solution containing 1 mg/mL IgG and 0.3 mg mannitol was mixed with a cyclohexane solution containing 25 mg/mL surfactant, and the mixture was stirred for 2 minutes at 26,000 rpm using a homogenizer. As the surfactant, one selected from glyceryl dioleate (DGMO), sorbitan sesquioleate (SO), polyoxyethylene hydrogenated castor oil 10 (HCO), and sucrose laurate (L195) was used. The obtained emulsion was freeze-dried for 24 hours to remove the solvent, and solid particles in which the drug was coated with the surfactant were obtained. The obtained solid particles were dispersed in 1 mL castor oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a solid particle dispersion oil formulation containing an IgG antibody. The particle size distribution of the solid particles in the obtained solid particle dispersion oil formulation was measured using a Zetasizer (Zetasizer Nano ZS, manufactured by Marvern). The particle size distribution results were as shown in FIG. 2B. The average hydrodynamic particle size was about 110 to 170 nm. Specifically, the average hydrodynamic particle size of particles with HCO as the surfactant was 120±9 nm, with a PDI of 0.564 to 0.787, the average hydrodynamic particle size of particles with DGMO as the surfactant was 114±7 nm, with a PDI of 0.307 to 0.399, the average hydrodynamic particle size of particles with SO as the surfactant was 122±12 nm, with a PDI of 0.345 to 0.693, and the average hydrodynamic particle size of particles with L195 as the surfactant was 163±8 nm, with a PDI of 0.604 to 0.816.
 上記実験系により、上部に得られた固体粒子分散油性製剤を添加したときに、IgGの下部の眼灌流液への薬物の移行を確認した。結果は、図2Aに示される通りであった。図2Aに示されるように、IgGは、いずれの界面活性剤を用いた粒子についても、ゆっくりと時間を掛けて下部の眼灌流液に移行した。 In the above experimental system, the transfer of the drug, IgG, to the ocular irrigation fluid at the bottom was confirmed when the solid particle dispersion oil preparation obtained was added to the top. The results are shown in Figure 2A. As shown in Figure 2A, IgG transferred slowly over time to the ocular irrigation fluid at the bottom for particles using either surfactant.
(2)タンパク質
 タンパク質としては、Cy5標識したリゾチーム塩酸塩を用いた。1mg Cy5-リゾチーム塩酸塩を1mL蒸留水に溶解させて、1mg/mLリゾチーム水溶液を得た。1mg/mLリゾチーム水溶液と、25mg/mL界面活性剤(ショ糖エルカ酸エステル(ER-290)またはショ糖ラウリン酸(L195))を含むシクロヘキサン溶液とを混合し、ホモジナイザーにより26,000rpmで2分間にわたり攪拌した。得られたエマルジョンを24時間にわたって凍結乾燥して、溶媒を除去し、薬剤を界面活性剤により被覆してなる固体粒子を得た。得られた固体粒子を1mLヒマシ油(富士フイルム和光純薬社製)に分散させ、リゾチームを有効成分として含む固体粒子分散油性製剤を得た。得られた固体粒子分散油性製剤中の固体粒子の粒径分布をゼータサイザー(ゼータサイザーナノZS、Marvern社製)で測定した。粒径分布の結果は、図3Bに示される通りであった。
(2) Protein Cy5-labeled lysozyme hydrochloride was used as the protein. 1 mg Cy5-lysozyme hydrochloride was dissolved in 1 mL distilled water to obtain a 1 mg/mL lysozyme aqueous solution. A 1 mg/mL lysozyme aqueous solution was mixed with a cyclohexane solution containing 25 mg/mL surfactant (sucrose erucate (ER-290) or sucrose laurate (L195)) and stirred for 2 minutes at 26,000 rpm with a homogenizer. The resulting emulsion was freeze-dried for 24 hours to remove the solvent and obtain solid particles in which the drug was coated with the surfactant. The obtained solid particles were dispersed in 1 mL castor oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a solid particle dispersion oil formulation containing lysozyme as an active ingredient. The particle size distribution of the solid particles in the obtained solid particle dispersion oil formulation was measured with a Zetasizer (Zetasizer Nano ZS, manufactured by Marvern). The particle size distribution results are shown in FIG. 3B.
 上記実験系により、上部に得られた固体粒子分散油性製剤を添加したときに、リゾチームの下部の眼灌流液への薬物の移行を確認した。結果は、図3Aに示される通りであった。図3Aに示されるように、リゾチーム(LYZ)は、いずれの界面活性剤を用いた粒子についても、ゆっくりと時間を掛けて下部の眼灌流液に移行した。 Using the above experimental system, we confirmed that lysozyme migrated to the ocular irrigation fluid at the bottom when the solid particle dispersion oil preparation obtained at the top was added. The results were as shown in Figure 3A. As shown in Figure 3A, lysozyme (LYZ) migrated slowly over time into the ocular irrigation fluid at the bottom for particles using either surfactant.
(3)抗VEGF抗体
 抗体として、市販のマウス由来抗VEGF抗体(Recombinant Mouse VEGF164)を用いた。トレハロースおよびPBSと共に凍結乾燥された市販の抗体100 μgをMilli-Q水 500 μLに溶解させた。抗体水溶液50μLと4mg/mL界面活性剤を含むシクロヘキサン溶液2mLとを混合し、ホモジナイザーにより26,000rpmで2分間にわたり攪拌した。得られたエマルジョンを24時間にわたって凍結乾燥して、溶媒を除去し、薬剤を界面活性剤により被覆してなる固体粒子を得た。得られた固体粒子を50μLヒマシ油に分散させ、抗VEGF抗体を有効成分として含む固体粒子分散油性製剤を得た。得られた固体粒子分散油性製剤中の固体粒子の粒径分布をゼータサイザー(ゼータサイザーナノZS、Marvern社製)で測定した。粒径分布の結果は、図4Aに示される通りであった。
(3) Anti-VEGF antibody A commercially available mouse-derived anti-VEGF antibody (Recombinant Mouse VEGF 164 ) was used as the antibody. 100 μg of a commercially available antibody lyophilized with trehalose and PBS was dissolved in 500 μL of Milli-Q water. 50 μL of an aqueous antibody solution was mixed with 2 mL of a cyclohexane solution containing 4 mg/mL surfactant, and stirred for 2 minutes at 26,000 rpm with a homogenizer. The resulting emulsion was lyophilized for 24 hours to remove the solvent, and solid particles in which the drug was coated with the surfactant were obtained. The resulting solid particles were dispersed in 50 μL of castor oil to obtain a solid particle-dispersed oil formulation containing an anti-VEGF antibody as an active ingredient. The particle size distribution of the solid particles in the resulting solid particle-dispersed oil formulation was measured with a Zetasizer (Zetasizer Nano ZS, manufactured by Marvern). The particle size distribution results were as shown in FIG. 4A.
 薬物の投与後の動態は、ウサギを用いて確認した。ウサギの単眼に対して抗体量で0.4μgとなるように、得られた固体粒子分散油性製剤を点眼投与、または硝子体内投与した。投与24時間後、72時間後、および120時間後にウサギの眼房水、硝子体、および網膜/脈絡膜を採取し、それぞれに含まれる抗体量を測定した。図4Bに示されるように、得られた固体粒子分散油性製剤を点眼投与した後で、抗VEGF抗体の一部が網膜/脈絡膜において投与120時間後までに渡って検出された。また、図4Cおよび4Dに示されるように、得られた固体粒子分散油性製剤を硝子体内投与した後で、多くの抗体は網膜/脈絡膜に移行し、長期にわたって濃度を維持した。 The kinetics of the drug after administration was confirmed using rabbits. The obtained solid particle dispersion oil formulation was administered by eye drop or intravitreally to rabbits so that the antibody amount was 0.4 μg per single eye. The aqueous humor, vitreous body, and retina/choroid of the rabbits were collected 24 hours, 72 hours, and 120 hours after administration, and the amount of antibody contained in each was measured. As shown in Figure 4B, after the obtained solid particle dispersion oil formulation was administered by eye drop, some of the anti-VEGF antibodies were detected in the retina/choroid up to 120 hours after administration. In addition, as shown in Figures 4C and 4D, after the obtained solid particle dispersion oil formulation was administered intravitreally, most of the antibodies migrated to the retina/choroid and maintained their concentration for a long period of time.
 抗体として、抗VEGF抗体であるアフリベルセプトを用いた。アフリベルセプトを精製した。具体的には、アイリーア(登録商標)硝子体内注射液の製品添加物をPD-10(Cytiva)を用いて製造者マニュアルにしたがって除去して、その後、得られた抗体に最終濃度0.1%となるようにマンニトールを添加し、1mg/mLの抗体濃度となるようにミリQ水を添加して抗体水溶液を得た。抗体水溶液と25mg/mL界面活性剤を含むシクロヘキサン溶液とを混合し、ホモジナイザーにより26,000rpmで2分間にわたり攪拌した。得られたエマルジョンを24時間にわたって凍結乾燥して、溶媒を除去し、薬剤を界面活性剤により被覆してなる固体粒子を得た。得られた固体粒子を1mLミリスチン酸イソプロピル(東京化成工業社製)に分散させ、抗VEGF抗体を有効成分として含む固体粒子分散油性製剤を得た。 The antibody used was aflibercept, an anti-VEGF antibody. Aflibercept was purified. Specifically, the product additives of Eylea (registered trademark) intravitreal injection solution were removed using PD-10 (Cytiva) according to the manufacturer's manual, and then mannitol was added to the obtained antibody to a final concentration of 0.1%, and Milli-Q water was added to the obtained antibody to an antibody concentration of 1 mg/mL to obtain an antibody aqueous solution. The antibody aqueous solution was mixed with a cyclohexane solution containing 25 mg/mL surfactant, and stirred at 26,000 rpm for 2 minutes using a homogenizer. The obtained emulsion was freeze-dried for 24 hours to remove the solvent, and solid particles in which the drug was coated with the surfactant were obtained. The obtained solid particles were dispersed in 1 mL of isopropyl myristate (manufactured by Tokyo Chemical Industry Co., Ltd.) to obtain a solid particle dispersion oil formulation containing an anti-VEGF antibody as an active ingredient.
 上記実験系においてオペガードMA5mLの上部に得られた固体粒子分散油性製剤0.2mLを添加したときに、IgGの下部の眼灌流液への薬物の移行を確認した。この実験では、固体粒子は、ヒマシ油に分散された。結果は、図5に示される通りであった。図5に示されるように、抗VEGF抗体は、いずれの界面活性剤を用いた固体粒子分散油性製剤からもゆっくりと下部の眼灌流液に移行した。これに対して、アフリベルセプトは早期に消失した。ELISAにより、固体粒子分散油性製剤から放出された抗体が、VEGFへの結合能を有していることが確認された。 In the above experimental system, when 0.2 mL of the obtained solid particle dispersion oil preparation was added to the top of 5 mL of Opeguard MA, the migration of the drug into the lower ocular irrigation fluid of IgG was confirmed. In this experiment, the solid particles were dispersed in castor oil. The results were as shown in Figure 5. As shown in Figure 5, the anti-VEGF antibody slowly migrated to the lower ocular irrigation fluid from the solid particle dispersion oil preparations using both surfactants. In contrast, aflibercept disappeared quickly. ELISA confirmed that the antibody released from the solid particle dispersion oil preparation had the ability to bind to VEGF.
実施例2:毒性試験
 試験にはマウスを用いた。マウス(Balb/cJJcl、10週齢、メス)に100μLの固体粒子分散油性製剤を硝子体内注射し(STAR Protocols 1, 100094, September 18, 2020参照)、2週間後に眼球を回収して組織切片を顕微鏡にて観察した。組織切片は、20μm厚であり、ヘマトキシリン・エオシン染色に供したものである。ヒマシ油、ミリスチン酸イソプロピル、またはシリコーンオイル(KF96)のいずれかの油性基剤の毒性を評価した。
Example 2: Toxicity Test Mice were used in the test. Mice (Balb/cJJcl, 10 weeks old, female) were intravitreally injected with 100 μL of solid particle dispersion oil formulation (see STAR Protocols 1, 100094, September 18, 2020), and the eyeballs were collected after 2 weeks and tissue sections were observed under a microscope. The tissue sections were 20 μm thick and were subjected to hematoxylin-eosin staining. The toxicity of any of the oil bases, castor oil, isopropyl myristate, or silicone oil (KF96), was evaluated.
 結果は、図6および表1に示される通りであった。いずれの油相に対しても眼球では強い毒性は観察されなかった。 The results are shown in Figure 6 and Table 1. No significant toxicity was observed in the eye for any of the oil phases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 皮膚に薬剤(特に水溶性薬剤)を透過させる工夫として、薬剤を界面活性剤により被覆してなる固体粒子を油中に分散させた製剤(固体粒子分散油性製剤)が開発されている(WO2006/025583A)。皮膚は高い疎水性を有し、親水性薬剤は、そのままでは皮膚を透過することができない。これに対して、水性製剤を界面活性剤で被覆して固体粒子に成形し、油相に分散させることで、水性製剤は皮膚を透過し、血液にまで到達した。 As a way to allow drugs (especially water-soluble drugs) to penetrate the skin, preparations have been developed in which solid particles of the drug coated with a surfactant are dispersed in oil (solid particle-dispersed oil preparations) (WO2006/025583A). The skin is highly hydrophobic, and hydrophilic drugs cannot penetrate the skin as is. In contrast, by coating an aqueous preparation with a surfactant, forming it into solid particles, and dispersing them in the oil phase, the aqueous preparation can penetrate the skin and reach the blood.
 本開示では、固体粒子分散油性製剤が点眼および硝子体内投与された。固体粒子分散油性製剤は、点眼および硝子体内投与において、薬物の長期徐放性能に優れていた。固体粒子分散油性製剤はまた、薬物の網膜/脈絡膜への送達および/または蓄積性の高さなどにおいて利点を有した。固体粒子を油中に分散させた製剤(固体粒子分散油性製剤)は、組織浸透性が高く、硝子体内投与に限らず様々な眼内投与において有効であることが示唆される。


 
In the present disclosure, the solid particle-dispersed oil formulation was administered by eye drop and intravitreal administration. The solid particle-dispersed oil formulation was excellent in long-term sustained release performance of the drug when administered by eye drop and intravitreal administration. The solid particle-dispersed oil formulation also had advantages such as high delivery and/or accumulation of the drug to the retina/choroid. It is suggested that the preparation in which solid particles are dispersed in oil (solid particle-dispersed oil formulation) has high tissue permeability and is effective not only in intravitreal administration but also in various intraocular administrations.


Claims (10)

  1.  眼科用製剤であって、
    (i) 医薬的に許容可能な目的物質または目的分子を含む粒子と医薬的に許容可能な界面活性剤とを含む固体複合体と、
    (ii) 医薬的に許容可能な油状基剤と
    を含み、
     前記粒子は前記界面活性剤により被覆されており、
     前記固体複合体は前記油状基剤に分散している、
    眼科用製剤。
    1. An ophthalmic formulation comprising:
    (i) a solid complex comprising particles containing a pharma- ceutically acceptable target substance or target molecule and a pharma-ceutically acceptable surfactant;
    (ii) a pharma- ceutically acceptable oil base;
    the particles are coated with the surfactant,
    The solid complex is dispersed in the oil base.
    Ophthalmic preparations.
  2.  点眼剤として製剤化されている、請求項1に記載の眼科用製剤。 The ophthalmic preparation according to claim 1, which is formulated as an eye drop.
  3.  硝子体内投与用の、または硝子体内投与用に製剤化されている、請求項1に記載の眼科用製剤。 The ophthalmic preparation of claim 1, which is for intravitreal administration or is formulated for intravitreal administration.
  4.  前記目的物質または目的分子が、水溶性である、請求項1~3のいずれか一項に記載の眼科用製剤。 The ophthalmic preparation according to any one of claims 1 to 3, wherein the target substance or target molecule is water-soluble.
  5.  前記目的物質または目的分子が、対象への投与後に眼科用製剤から徐放される、請求項1~4のいずれか一項に記載の眼科用製剤。 The ophthalmic preparation according to any one of claims 1 to 4, wherein the target substance or target molecule is sustained-released from the ophthalmic preparation after administration to a subject.
  6.  前記目的物質または目的分子が、対象の硝子体への投与後に眼科用製剤から少なくとも24時間にわたって徐放される、請求項1~4のいずれか一項に記載の眼科用製剤。 The ophthalmic formulation according to any one of claims 1 to 4, wherein the target substance or molecule is released from the ophthalmic formulation for at least 24 hours after administration to the vitreous of the subject.
  7.  前記目的物質または目的分子が、対象の硝子体への投与後に眼科用製剤から24時間にわたってその50%以下が徐放される、請求項1~3のいずれか一項に記載の眼科用製剤。 The ophthalmic preparation according to any one of claims 1 to 3, wherein the target substance or molecule is released from the ophthalmic preparation at a sustained rate of 50% or less over a 24-hour period following administration to the vitreous of a subject.
  8.  目的物質または目的分子が、タンパク質、核酸、および抗体からなる群から選択される分子である、請求項1~7のいずれか一項に記載の眼科用製剤。 The ophthalmic preparation according to any one of claims 1 to 7, wherein the target substance or target molecule is a molecule selected from the group consisting of proteins, nucleic acids, and antibodies.
  9.  流体力学粒径の平均が80nm~200nmである、請求項1~8のいずれか一項に記載の眼科用製剤。 The ophthalmic preparation according to any one of claims 1 to 8, wherein the average hydrodynamic particle size is 80 nm to 200 nm.
  10.  油性基剤が、シリコーンオイルである、請求項1~9のいずれか一項に記載の眼科用製剤。 The ophthalmic preparation according to any one of claims 1 to 9, wherein the oily base is silicone oil.
PCT/JP2023/037321 2022-10-17 2023-10-16 Solid particle dispersed oily preparation WO2024085100A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166209 2022-10-17
JP2022-166209 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024085100A1 true WO2024085100A1 (en) 2024-04-25

Family

ID=90737568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037321 WO2024085100A1 (en) 2022-10-17 2023-10-16 Solid particle dispersed oily preparation

Country Status (1)

Country Link
WO (1) WO2024085100A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004552A1 (en) * 2009-07-09 2011-01-13 国立大学法人九州大学 Water-soluble drug carrier and process for production thereof
WO2020203809A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Novel method for producing lecithin s/o formulation, and formulation therefrom
WO2022196748A1 (en) * 2021-03-17 2022-09-22 国立大学法人九州大学 Transdermal absorption agent
WO2022264184A1 (en) * 2021-06-17 2022-12-22 The University Of Jordan Ophthalmic nano-dispersion composition, a method of preparation thereof, and formulation for corneal epithelial wound healing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004552A1 (en) * 2009-07-09 2011-01-13 国立大学法人九州大学 Water-soluble drug carrier and process for production thereof
WO2020203809A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Novel method for producing lecithin s/o formulation, and formulation therefrom
WO2022196748A1 (en) * 2021-03-17 2022-09-22 国立大学法人九州大学 Transdermal absorption agent
WO2022264184A1 (en) * 2021-06-17 2022-12-22 The University Of Jordan Ophthalmic nano-dispersion composition, a method of preparation thereof, and formulation for corneal epithelial wound healing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JABER MAI; JABER BAHAA; HAMED SAJA; ALKHATIB HATIM S.: "Preparation and evaluation of ascorbyl glucoside and ascorbic acid solid in oil nanodispersions for corneal epithelial wound healing", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER, NL, vol. 627, 23 September 2022 (2022-09-23), NL , XP087200549, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2022.122227 *
SRIVIDYA GORANTLA: "Nanocarriers for ocular drug delivery: current status and translational opportunity", RSC ADVANCES, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 10, no. 46, 24 July 2020 (2020-07-24), GB , pages 27835 - 27855, XP093161045, ISSN: 2046-2069, DOI: 10.1039/D0RA04971A *

Similar Documents

Publication Publication Date Title
Souto et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents
Souza et al. Topical delivery of ocular therapeutics: carrier systems and physical methods
Li et al. Nanoparticulate drug delivery to the retina
JP5284953B2 (en) Prodrug for intravitreal injection
NZ725574A (en) Compounds for treating ophthalmic diseases and disorders
UA111168C2 (en) WATER-IN-OIL TYPE EMULSION FOR TREATMENT OF DISEASES
Desai et al. Ophthalmic and otic drug administration: novel approaches and challenges
CA2809460C (en) A water-in-oil type emulsion for treating a disease of the eye
Liu et al. Highly bioactive, bevacizumab-loaded, sustained-release PLGA/PCADK microspheres for intravitreal therapy in ocular diseases
Formica et al. Triamcinolone acetonide-loaded lipid nanocapsules for ophthalmic applications
Soni et al. Design and evaluation of ophthalmic delivery formulations
JP2011522792A (en) Encapsulating bioactive agents
JP5920928B2 (en) Peptide formulation for topical ophthalmology
Eriksen et al. Multifarious biologic loaded liposomes that stimulate the mammalian target of rapamycin signaling pathway show retina neuroprotection after retina damage
Kim et al. Intraocular distribution and kinetics of intravitreally injected antibodies and nanoparticles in rabbit eyes
Chaw et al. In vivo fate of liposomes after subconjunctival ocular delivery
Pignatello et al. Nanotechnology in ophthalmic drug delivery: a survey of recent developments and patenting activity
WO2024085100A1 (en) Solid particle dispersed oily preparation
Yordanova Andonova A new direction in ophthalmic development: Nanoparticle drug delivery systems
US11779543B2 (en) Ocular drug delivery
Agarwal et al. Non-aqueous formulations in topical ocular drug delivery–a paradigm shift?
US20120058187A1 (en) Water-in-oil type emulsion for treating a disease of the eye
JP2011519893A (en) Encapsulating bioactive agents
CN109906075A (en) Liposome corticosteroid for the locally injecting in inflammation lesion or region
JP2023541372A (en) Neuroprotective methods and their use