WO2024085042A1 - Device for measuring oxygen saturation, method for measuring oxygen saturation, and program for measuring oxygen saturation - Google Patents

Device for measuring oxygen saturation, method for measuring oxygen saturation, and program for measuring oxygen saturation Download PDF

Info

Publication number
WO2024085042A1
WO2024085042A1 PCT/JP2023/036932 JP2023036932W WO2024085042A1 WO 2024085042 A1 WO2024085042 A1 WO 2024085042A1 JP 2023036932 W JP2023036932 W JP 2023036932W WO 2024085042 A1 WO2024085042 A1 WO 2024085042A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pulse wave
wave signal
intensity
oxygen saturation
Prior art date
Application number
PCT/JP2023/036932
Other languages
French (fr)
Japanese (ja)
Inventor
光明 久保
昌之 小泉
優貴 松井
和夫 山本
哲也 木口
卓 大橋
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2024085042A1 publication Critical patent/WO2024085042A1/en

Links

Definitions

  • This disclosure relates to an oxygen saturation measurement device, an oxygen saturation measurement method, and an oxygen saturation measurement program.
  • Patent document 1 JP 7-327964 A
  • multiple amplitudes of the pulse wave signal for each of the red light and infrared light are calculated from the maximum and minimum values obtained from the pulse wave signal of the received light.
  • the fluctuating component (in other words, AC) and fixed component (in other words, DC) of the pulse wave signal are calculated from the multiple calculated amplitudes, and the perfusion index (PI value) for each of the red light and infrared light is calculated from the calculated fluctuating component and fixed component.
  • the absorbance ratio is calculated by the amplitude ratio of the amplitude of the pulse wave signal of infrared received light to the amplitude of the pulse wave signal of red received light.
  • the lower the blood perfusion i.e., the weaker the light intensity of the received light pulse wave signal, the lower the signal-to-noise ratio, and the lower the accuracy of calculating the amplitude of the pulse wave signal.
  • the absorbance ratio is calculated based on the amplitude ratio, the accuracy of calculating the variable and fixed components is also low, resulting in a decrease in the accuracy of measuring oxygen saturation, or even in the event that measurement is impossible.
  • a method known as the regression method is known as a means for calculating the absorbance ratio even when the signal-to-noise ratio is low.
  • the regression method for example, a red light pulse wave signal and an infrared light pulse wave signal that correspond over time are plotted on an XY coordinate system with the received light intensity of the red light on the Y axis and the received light intensity of the infrared light on the X axis to calculate a scatter diagram of the data. Then, using a regression method such as the least squares method, the slope of the regression line found from the scatter diagram of the data is calculated as the absorbance ratio.
  • the regression method all of the waveform data of the pulse wave signal of the received light is used to calculate a linear equation that represents the true relationship between red light and infrared light.
  • the absorbance ratio is calculated from the amplitude ratio, only the maximum and minimum values of the pulse wave signal of the received light are used to calculate the amplitude. For this reason, compared to methods that calculate the amplitude ratio, the regression method is robust even for pulse wave signals with a relatively low S/N ratio, and is capable of calculating the absorbance ratio with high accuracy.
  • JP-A-7-327964 red and infrared light are projected onto biological tissue, and the intensity of each transmitted light that passes through the biological tissue is measured. The logarithms of the measured intensities of each transmitted light are plotted on the vertical and horizontal axes. A regression line is then calculated on the coordinate system using the least squares method, and oxygen saturation is measured based on the slope of the calculated regression line.
  • the least squares method only takes into account the variance in data on one of the X and Y axes. For this reason, the slope of the regression line found by the least squares method may deviate from the slope of the linear equation that represents the true relationship.
  • the regression method of JP-A-7-327964 cannot suppress the decrease in measurement accuracy because the oxygen saturation is calculated only by the least squares method for the intensity of the transmitted light of red light and infrared light.
  • the present disclosure has been made in light of the above, and provides an oxygen saturation measurement device, an oxygen saturation measurement method, and an oxygen saturation measurement program that can improve measurement accuracy.
  • the oxygen saturation measuring device includes a sensor unit having a first light-emitting element that projects red light onto the artery, a second light-emitting element that projects infrared light onto the artery, a third light-emitting element that projects reference light onto the artery, the reference light having a wavelength at which the absorption coefficients of oxyhemoglobin and deoxyhemoglobin are higher than those of red light and infrared light, and a light-receiving element that receives transmitted or reflected light corresponding to the projected red light, infrared light, and reference light as received light, and outputs a first pulse wave signal according to the intensity of the received red light, a second pulse wave signal according to the intensity of the received infrared light, and a third pulse wave signal according to the intensity of the received reference light, and a processor that is electrically connected to the light-receiving element and calculates first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave
  • the wavelength of the reference light projected onto the artery is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light. Therefore, the signal-to-noise ratio of the third pulse wave signal corresponding to the reference light is higher than those of the first pulse wave signal corresponding to red light and the second pulse wave signal corresponding to infrared light. In other words, the signal-to-noise ratio of the pulse wave signal of the received light depends on the wavelength of the light projected.
  • the accuracy of oxygen saturation measurement can be improved compared to when the absorbance ratio is calculated using only the two lights of red light and infrared light.
  • the processor is configured to continuously acquire the intensity of the first pulse wave signal, the intensity of the third pulse wave signal, and the intensity of the second pulse wave signal over time, calculate the slope of the first regression line as first information by regression analysis using the intensity of the third pulse wave signal and the intensity of the first pulse wave signal, and calculate the slope of the second regression line as second information by regression analysis using the intensity of the third pulse wave signal and the intensity of the second pulse wave signal.
  • the slope of the regression line is prevented from deviating from the slope of the linear equation that represents the true relationship, compared to when the absorbance ratio is calculated using only two types of light, red and infrared. This makes it possible to calculate oxygen saturation with greater accuracy.
  • the processor is configured to calculate the first regression line and the second regression line using only the least squares method.
  • the type of regression method used to calculate the first regression line and the second regression line is the least squares method only.
  • the calculation algorithm of principal component regression such as orthogonal distance regression
  • the overall amount of calculation is greater. This causes problems such as an increase in the calculation load, such as an increase in the power consumption of the measuring device or a longer processing time.
  • the overall amount of calculation can be reduced compared to when orthogonal distance regression or the like is used, and therefore the calculation load can be suppressed.
  • the wavelength of the reference light for the third pulse wave signal is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light, and therefore the signal-to-noise ratio of the light received from the artery is higher than that of red light and infrared light. Therefore, even if the least-squares method is not used to minimize the sum of the squares of the distance along the axis on the side on which the data of the third pulse wave signal is placed, the effect on the slope of the regression line caused by the data of the third pulse wave signal can be suppressed. Therefore, even if only the least-squares method is used as the regression method, the accuracy of calculating the slope can be improved compared to when the absorbance ratio of red light to infrared light is directly calculated using only two lights, red light and infrared light.
  • the processor continuously acquires the intensity of the first pulse wave signal, the intensity of the third pulse wave signal, and the intensity of the second pulse wave signal, calculates the average of the ratio of the intensity of the third pulse wave signal to the intensity of the first pulse wave signal as the first information, and calculates the average of the ratio of the intensity of the third pulse wave signal to the intensity of the second pulse wave signal as the second information.
  • the oxygen saturation level can be calculated with high accuracy using the first information and the second information, both of which are average values of the ratios.
  • the processor is configured to calculate a plurality of oxygen saturations and determine one of the calculated plurality of oxygen saturations as the arterial oxygen saturation based on a preset criterion.
  • the processor is configured to determine, among the data of the first pulse wave signal and the data of the third pulse wave signal output by the light receiving elements, data that satisfies a threshold value that is set in advance based on the relationship between the data of the first pulse wave signal and the data of the third pulse wave signal as an outlier not related to arterial pulsation, and calculate the first information excluding the determined outlier; or, among the data of the second pulse wave signal and the data of the third pulse wave signal output by the light receiving elements, data that satisfies a threshold value that is set in advance based on the relationship between the data of the second pulse wave signal and the data of the third pulse wave signal as an outlier not related to arterial pulsation, and calculate the second information excluding the determined outlier.
  • the above configuration can further improve the accuracy of oxygen saturation measurement.
  • the oxygen saturation measuring device in any one of the first to sixth aspects is a wearable device that can be worn by the person being measured.
  • the above configuration makes it possible to realize a wearable device that can be designed to have a long lifespan.
  • the oxygen saturation measurement method projects red light, infrared light, and reference light having a wavelength at which the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light onto an artery, receives transmitted light or reflected light corresponding to the projected red light, infrared light, and reference light, respectively, as received light, obtains a first pulse wave signal corresponding to the intensity of the received red light, a second pulse wave signal corresponding to the intensity of the received infrared light, and a third pulse wave signal corresponding to the intensity of the received reference light, calculates first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal, calculates second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal, and measures oxygen saturation in the artery by calculating oxygen saturation based on the calculated first information and second information, respectively.
  • the eighth aspect like the first aspect, it is possible to realize an oxygen saturation measurement method that can improve the accuracy of oxygen saturation measurement.
  • the oxygen saturation measurement program causes a processor to execute the following steps: projecting red light, infrared light, and reference light having a wavelength at which the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light onto an artery; receiving transmitted light or reflected light corresponding to the projected red light, infrared light, and reference light, respectively, as received light; acquiring a first pulse wave signal corresponding to the intensity of the received red light, a second pulse wave signal corresponding to the intensity of the received infrared light, and a third pulse wave signal corresponding to the intensity of the received reference light; calculating first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal; calculating second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal; and measuring the oxygen saturation of the artery by calculating the oxygen saturation based on the calculated first information and second information, respectively.
  • the ninth aspect like the first aspect, it is possible to realize an oxygen saturation measurement program that can improve the accuracy of oxygen saturation measurement.
  • the oxygen saturation measurement device, oxygen saturation measurement method, and oxygen saturation measurement program disclosed herein can improve measurement accuracy.
  • FIG. 1 is a perspective view illustrating an oxygen saturation measuring device according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view illustrating a sensor unit of the oxygen saturation measuring device according to the embodiment.
  • FIG. 2 is a block diagram showing a hardware configuration of a processor of the oxygen saturation measuring device according to the present embodiment.
  • FIG. 4 is a flowchart illustrating an oxygen saturation measuring method using the oxygen saturation measuring device according to the present embodiment.
  • FIG. 4 is a diagram illustrating the waveform of a first pulse wave signal obtained from the reflected light of red light projected onto an artery to be measured.
  • FIG. 13 is a diagram illustrating the waveform of a second pulse wave signal obtained from reflected light of infrared light projected onto an artery to be measured.
  • FIG. 1 is a perspective view illustrating an oxygen saturation measuring device according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view illustrating a sensor unit of the oxygen saturation measuring device according to the embodiment.
  • FIG. 2 is
  • 13 is a diagram illustrating the waveform of a third pulse wave signal obtained from reflected light of a reference light projected onto an artery to be measured.
  • 11 is a graph illustrating a method for determining a first regression line by using the least squares method on a scatter plot of first pulse wave signal data and third pulse wave signal data in an oxygen saturation measuring method using the oxygen saturation measuring device according to the present embodiment.
  • 13 is a graph illustrating a method for determining a second regression line by using the least squares method on a scatter plot of second pulse wave signal data and third pulse wave signal data in an oxygen saturation measuring method using the oxygen saturation measuring device according to this embodiment.
  • 11 is a graph illustrating the variability in data when a regression line is obtained by using the least squares method on a scatter plot of first pulse wave signal data and second pulse wave signal data in an oxygen saturation measurement method using an oxygen saturation measurement device according to a first comparative example.
  • 11 is a graph illustrating the variability in data when a regression line is obtained by applying the least squares method to a scatter plot of first pulse wave signal data and third pulse wave signal data in an oxygen saturation measuring method using the oxygen saturation measuring device according to this embodiment.
  • 11 is a graph illustrating absorbance ratios calculated in an example according to the present embodiment, a first comparative example, and a second comparative example.
  • 11 is a graph illustrating the processing time required to calculate the absorbance ratio for each of an example according to the present embodiment, a first comparative example, and a second comparative example.
  • 13 is a graph illustrating the overlapping state of the distribution of data related to pulse and the distribution of outliers in a scatter plot in which the AC/DC of a first pulse wave signal is used as a response variable and the AC/DC of a second pulse wave signal is used as an explanatory variable.
  • 13 is a graph illustrating the overlapping state of the distribution of data related to pulse and the distribution of outliers in a scatter plot in which the AC/DC of a first pulse wave signal is used as a response variable and the AC/DC of a third pulse wave signal is used as an explanatory variable.
  • 13 is a graph illustrating the distribution of data related to pulsation and the distribution of outliers in a scatter plot obtained when the AC/DC of the first pulse wave signal and the AC/DC of the second pulse wave signal are sorted in order of signal strength of the third pulse wave signal.
  • the oxygen saturation measuring device 10 is a portable wearable device that includes a band 12, a housing 14, a sensor unit 16, a display unit 18, and an arithmetic and control unit 20 and can be worn by a person to be measured.
  • the oxygen saturation measuring device 10 is provided with a driving power source 11.
  • the driving power source 11 may be a primary battery or a secondary battery.
  • the shape of the oxygen saturation measuring device is not limited to a wearable device that can be worn by the person being measured.
  • the oxygen saturation measuring device of this disclosure may be a portable type that can be worn or not, for example, a portable type that can be placed close to the wrist, or may be a stationary type, or may be configured in any manner.
  • the "direction E in which the forearm extends” overlaps with the direction in which the radius, ulna, and artery of the person being measured extend. Furthermore, strictly speaking, the “direction E in which the forearm extends” differs for each person being measured. In other words, the “direction E in which the forearm extends” is not uniquely determined by coordinates in three-dimensional space, but is determined individually based on the direction in which the radius, ulna, and artery extend for each person being measured.
  • the band 12 is wrapped around the wrist of the person being measured along the circumferential direction C of the wrist.
  • the band 12 may be made of any material, such as resin, fabric, metal, etc.
  • the band 12 is also provided with a clasp for adjusting the length when wrapped around the wrist and for fixing the band 12 in place.
  • the housing 14 is attached to the band 12 and contacts the surface of the back of the wrist (i.e., the back of the hand) of the person being measured.
  • the material of the housing 14 may be any material, such as resin or metal.
  • the housing 14 has a certain width along the direction E in which the forearm extends.
  • the housing 14 is provided with a sensor unit 16, a display unit 18, and a calculation control unit 20.
  • the display unit 18 is disposed on the surface of the housing 14 opposite the wrist.
  • the display unit 18 is an image display device formed of, for example, liquid crystal or the like.
  • the display unit 18 displays the results of the calculation by the calculation control unit 20 to the outside so that the result can be visually recognized by the subject.
  • the display unit 18 may be provided with a storage device for temporarily storing the measurement results.
  • the sensor unit 16 is attached to the band 12.
  • the sensor unit 16 acquires a pulse wave signal of the wrist artery and measures the oxygen saturation of the wrist artery based on the acquired pulse wave signal.
  • the sensor unit of this embodiment faces, for example, an artery included in the dorsal carpal artery network on the dorsal side of the wrist of the person being measured.
  • the dorsal carpal artery network includes branches from the radial artery and branches from the ulnar artery. Note that in the present disclosure, the artery to be measured is not limited to the artery in the wrist.
  • the sensor unit 16 has a light-emitting section 16A having a first light-emitting element LED1, a second light-emitting element LED2, and a third light-emitting element LED3, and a light-receiving section 16B having a light-receiving element PD. That is, in this embodiment, one "sensor unit” is composed of three light-emitting elements and one light-receiving element corresponding to the three light-emitting elements. Note that in this disclosure, multiple sensor units may be provided. Also, the number of light-emitting elements and the number of light-receiving elements included in one "sensor unit" can both be set arbitrarily.
  • An opening 14A is formed between the light-emitting section 16A in the housing 14 and the outside.
  • An optical device 15A that is translucent to the light emitted from the light-emitting element is disposed in the opening 14A.
  • the optical device 15A is, for example, a diffusion lens that can expand the irradiation area.
  • a diffusion agent may be disposed above the light-emitting element together with or instead of the diffusion lens.
  • an opening 14B is formed between the light receiving unit 16B in the housing 14 and the outside.
  • An optical device 15B that is translucent to light reflected from the artery in the wrist is disposed in the opening 14B.
  • the optical device 15B is, for example, a focusing lens that can collect the reflected light. Note that in this disclosure, the optical devices 15A and 15B are not essential.
  • the first light-emitting element LED1, the second light-emitting element LED2, and the third light-emitting element LED3 are all electronic components such as light-emitting diodes (LEDs). Each light-emitting element irradiates light onto the artery in the wrist.
  • the first light-emitting element LED1, the second light-emitting element LED2, and the third light-emitting element LED3 are disposed apart from each other.
  • the number of each of the first light-emitting element, the second light-emitting element, and the third light-emitting element is one or more and is arbitrary.
  • the first light-emitting element LED1 projects red light onto the artery.
  • the second light-emitting element LED2 projects infrared light onto the artery.
  • a wavelength ⁇ 1 of red light is illustrated inside the first light-emitting element LED1
  • a wavelength ⁇ 2 of infrared light is illustrated inside the second light-emitting element LED2.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are arranged so that the optical paths of the light projected by each of them are as close to the same as possible.
  • a preferred combination of wavelength bands is a red region having a wavelength band of approximately 590 nm or more and 770 nm or less, and an infrared region having a wavelength band of approximately 770 nm or more and 1000 nm or less.
  • the peak wavelength of the red light is in the range of 640 nm to 660 nm, and the peak wavelength of the infrared light is approximately 940 nm.
  • the red light and the infrared light are projected intermittently in time, for example, once during one pulsation of the artery.
  • the third light-emitting element LED3 projects a reference light.
  • the reference light has a wavelength that has a higher signal-to-noise ratio than red light and infrared light for the artery.
  • a wavelength ⁇ 3 of the reference light is illustrated inside the third light-emitting element LED3.
  • the reference light is projected continuously in time, for example, 10 or 20 times during one pulsation of the artery.
  • the reference light has a wavelength at which the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light.
  • the signal-to-noise ratio of the pulse wave signal of the received light corresponding to the reference light obtained by photoplethysmography (PPG) is higher than both the signal-to-noise ratio of red light and the signal-to-noise ratio of infrared light.
  • the reference light for example, light in a wavelength band of 430 nm or more and 590 nm or less, which has a relatively large absorption coefficient in arterial blood, is preferable. Specifically, a blue region with a wavelength band of 430 nm or more and 490 nm or less, or a green region with a wavelength band of 490 nm or more and 550 nm or less is preferable.
  • green light with a peak wavelength of 530 nm or more and 540 nm or less is particularly preferred in that it is easily absorbed by hemoglobin in the blood and easily captures changes in the volume of arterial blood vessels, thereby obtaining a pulse wave signal with a relatively high signal-to-noise ratio.
  • LED light sources in the green light wavelength band are highly available on the market and relatively inexpensive, making them advantageous as the third light-emitting element that irradiates the reference light. Note that in this disclosure, light sources in the violet and ultraviolet wavelength bands of 430 nm or less are not excluded as light sources of the reference light.
  • the reference light is not limited to green light.
  • light in any band that can be taken from the hemoglobin absorption spectrum can be used as the reference light, as long as the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light.
  • the light receiving element PD is an electronic component such as a photodiode (PD).
  • the light receiving element PD is disposed at a preset position relative to the light emitting element.
  • the number of the light receiving elements PD is one, but in the present disclosure, the number of the light receiving elements may be multiple.
  • the light receiving element PD receives reflected light corresponding to red light and outputs a first pulse wave signal according to the light intensity of the received reflected light.
  • the light receiving element PD also receives reflected light corresponding to infrared light and outputs a second pulse wave signal according to the light intensity of the received reflected light.
  • the light receiving element PD also receives reflected light corresponding to the reference light and outputs a third pulse wave signal according to the light intensity of the received reflected light.
  • two types of reflected light, red light and infrared light, received by the light receiving element are used.
  • the light receiving element is not limited to the reflected light of each of the red light, infrared light, and reference light, but may receive transmitted light corresponding to each of the lights and output a pulse wave signal according to the light intensity of the received transmitted light.
  • the oxygen saturation measuring device 10 according to the present embodiment is a reflective type in which the intensity of the pulse wave signal is measured by reflected light, but in the present disclosure, it is not limited to the reflective type, and a transmissive oxygen saturation measuring device in which the intensity of the pulse wave signal is measured by transmitted light may be configured.
  • a light-shielding section may be provided between the light-emitting element and the light-receiving element.
  • the light-shielding section prevents the light-receiving element from directly receiving light from the light-emitting element.
  • the principle of measuring oxygen saturation when the absorbance ratio is calculated using only two lights, red light and infrared light will be described.
  • the change in the intensity of each of the first pulse wave signal of red light and the second pulse wave signal of infrared light is monitored over time.
  • the data of the first pulse wave signal and the data of the second pulse wave signal corresponding to each other over time are plotted on the XY coordinate axis to calculate a scatter diagram of the data.
  • the data value of the second pulse wave signal can be placed on the X axis as an explanatory variable
  • the data value of the first pulse wave signal can be placed on the Y axis as a response variable.
  • a regression line is obtained by performing a regression process on the data included in the scatter plot.
  • the slope of the obtained regression line corresponds to the ratio of the absorbance of red light (AC/DC) to the absorbance of infrared light (AC/DC), i.e., the absorbance ratio ⁇ .
  • the absorbance of each light (AC/DC) is the ratio of the variable component AC to the fixed component DC of the pulse wave signal.
  • the calculated absorbance ratio ⁇ can then be used in the following formula (1) to calculate oxygen saturation.
  • Oxygen saturation [%] a ⁇ ⁇ + b ... formula (1)
  • the coefficients a and b in the formula (1) can be determined by experiment.
  • the calculation and control unit 20 is provided in the housing 14.
  • the processor is electrically connected to the first light-emitting element, the second light-emitting element, the third light-emitting element, and the light-receiving element PD.
  • Pulse wave signal data of reflected light corresponding to the light emitted from each light-emitting element is input over time from the light-receiving element PD to the calculation and control unit 20.
  • the calculation and control unit 20 Based on the pulse wave signal obtained from the reflected light, the calculation and control unit 20 measures the oxygen saturation of the artery irradiated with light by a method using the ratio of PI values, for example.
  • the calculation control unit 20 has a CPU (Central Processing Unit: processor) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, a storage 24, a user interface 25, and a communication interface 26.
  • CPU Central Processing Unit: processor
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 24 a storage 24, a user interface 25, and a communication interface 26.
  • Each component is connected to each other so as to be able to communicate with each other via a bus 27.
  • the CPU 21 is a central processing unit that executes various programs and controls each part. That is, the CPU 21 reads a program from the ROM 22 or the storage 24, and executes the program using the RAM 23 as a working area. The CPU 21 controls each of the above components and performs various calculation processes according to the program recorded in the ROM 22 or the storage 24.
  • the CPU 21 is the processor of the present disclosure.
  • the ROM 22 or the storage 24 stores an oxygen saturation measurement program.
  • the oxygen saturation measurement program is a calculation program for measuring oxygen saturation.
  • the ROM 22 stores various programs and data.
  • the RAM 23 temporarily stores programs or data as a working area.
  • the storage 24 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including the operating system and various data.
  • the user interface 25 is an interface that is used when the subject wearing the oxygen saturation measuring device 10, which is a wearable device, uses the calculation control unit 20.
  • the user interface 25 may include, for example, at least one of a liquid crystal display equipped with a touch panel that allows the subject to perform touch operations, a voice input receiving unit that receives voice input from the subject, and a button that can be pressed by the subject.
  • the display unit of this embodiment is an example of the user interface 25.
  • the communication interface 26 is an interface that allows the calculation control unit 20 to communicate with other devices, and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark).
  • the oxygen saturation measurement device 10 When executing the oxygen saturation measurement program, the oxygen saturation measurement device 10 realizes various functions using the above hardware resources.
  • the oxygen saturation measurement device 10 has a pulse wave signal acquisition unit, a regression line calculation unit, an absorbance ratio calculation unit, and an oxygen saturation measurement unit as functional configurations realized by the oxygen saturation measurement device 10.
  • Each functional configuration is realized by the CPU 21 reading and executing the oxygen saturation measurement program stored in the ROM 22 or storage 24.
  • the pulse wave signal acquisition unit of the processor 21 projects red light onto the artery using the first light-emitting element LED1.
  • the processor 21 also projects infrared light onto the artery using the second light-emitting element LED2.
  • the processor 21 also projects reference light onto the artery using the third light-emitting element LED3, the reference light having a wavelength that provides a higher signal-to-noise ratio for light reflected from the artery than the red light and infrared light.
  • the processor 21 receives reflected light corresponding to the projected red light using the light receiving element PD.
  • the processor 21 also receives reflected light corresponding to the projected infrared light.
  • the processor 21 also receives reflected light corresponding to the projected reference light.
  • the processor 21 continuously acquires a first pulse wave signal PS1 corresponding to the light intensity of the received reflected light from the light receiving element PD.
  • the processor 21 also continuously acquires a second pulse wave signal PS2 corresponding to the light intensity of the received reflected light from the light receiving element PD.
  • the processor 21 also continuously acquires a third pulse wave signal PS3 corresponding to the light intensity of the received reflected light from the light receiving element PD.
  • FIG. 5A shows an example of the waveform of the acquired first pulse wave signal PS1
  • FIG. 5B shows an example of the waveform of the acquired second pulse wave signal PS2
  • FIG. 5C shows an example of the waveform of the acquired third pulse wave signal PS3.
  • step S4 of Fig. 4 the regression line calculation section of processor 21 calculates a first regression line based on the data of first pulse wave signal PS1 and the data of third pulse wave signal PS3.
  • step S5 of Fig. 4 processor 21 calculates a second regression line based on the data of second pulse wave signal PS2 and the data of third pulse wave signal PS3.
  • the processor 21 arranges the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3 on the coordinate axes.
  • the data of the first pulse wave signal PS1 of red light is arranged on the Y axis
  • the data of the third pulse wave signal PS3 of the reference light is arranged on the X axis.
  • the processor 21 then performs a least squares method on each arranged data, minimizing the sum of squares of the distance along the Y axis on the side on which the data of the first pulse wave signal PS1 is arranged.
  • the first regression line is calculated by performing the least squares method as a regression analysis.
  • the data of the first pulse wave signal PS1 of red light may be placed on the X-axis
  • the data of the third pulse wave signal PS3 of the reference light may be placed on the Y-axis.
  • the first regression line is calculated by performing the least squares method that minimizes the sum of the squares of the distance along the X-axis on the side where the data of the first pulse wave signal PS1 is placed.
  • the processor 21 also arranges the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3 on the coordinate axes, as shown in FIG. 7.
  • the data of the second pulse wave signal PS2 of infrared light is arranged on the Y axis
  • the data of the third pulse wave signal PS3 of the reference light is arranged on the X axis.
  • the processor 21 then performs a least squares method on each arranged data, minimizing the sum of squares of the distance along the Y axis on the side on which the data of the second pulse wave signal PS2 is arranged.
  • the least squares method is performed as a regression analysis, and a second regression line is calculated.
  • the data of the second pulse wave signal PS2 of infrared light may be placed on the X-axis, and the data of the third pulse wave signal PS3 of the reference light may be placed on the Y-axis.
  • the second regression line is calculated by performing the least squares method that minimizes the sum of the squares of the distance along the X-axis on the side where the data of the second pulse wave signal PS2 is placed.
  • the least squares method uses the least squares method that minimizes the sum of the squares of the distances along one axis, so the regression line found using the least squares method is likely to be biased toward the other axis than the line that represents the true relationship.
  • Figure 8 shows an example where the slope of the solid regression line found using the least squares method to minimize the sum of the squares of the distances along the Y axis is more inclined toward the X axis than the slope of the dashed line of the equation for the line that represents the true relationship.
  • data on the pulse wave signal of the received light of the reference light with a high S/N ratio is plotted on the X-axis.
  • the variability in the pulse wave signal of the received light on the X-axis is significantly suppressed compared to the variability in the pulse wave signal of the received light on the Y-axis.
  • FIG. 9 illustrates an example in which the regression line, obtained by using the least squares method to minimize the sum of the squares of the distances along the axes, is nearly identical to the line representing the true relationship.
  • the overall shape of the scatter plot representing the data distribution is a dotted parallelogram. For this reason, the variation in the data distribution formed on either side of the regression line in FIG. 9 is nearly symmetrical above and below along the Y-axis. In other words, in this embodiment, deviation from the line representing the true relationship due to variation on the X-axis is unlikely to occur.
  • the slope of the regression line is unlikely to deviate from the slope of the linear equation that represents the true relationship.
  • the regression method for finding the regression line is not limited to the least squares method. In this disclosure, any regression method can be used, such as standard principal axis regression or Deming regression.
  • the slope of the first regression line in this embodiment corresponds to the "first information" of the present disclosure.
  • the first information in this embodiment is information about the received light of red light, set based on information about the received light of the reference light.
  • the slope of the second regression line in this embodiment corresponds to the "second information" of the present disclosure.
  • the second information in this embodiment is information about the received light of infrared light, set based on information about the received light of the reference light.
  • the ratio of the second information to the first information is used as the ratio between the first information and the second information, but in this disclosure, the ratio of the first information to the second information may be used.
  • the first information and the second information are not limited to a regression line, i.e., a slope derived from a relational equation.
  • the first information and the second information may be, for example, a numerical value other than a slope, a set of numerical values, or a numerical value derived from a relational equation other than a regression line.
  • Equation of regression line the elements used in calculating the regression line are set as follows: S red : Red light absorbance (AC/DC) S ir : Infrared light absorbance (AC/DC) S green : absorbance of green light ⁇ 1: ratio of absorbance of red light to absorbance of green light ⁇ 2: ratio of absorbance of infrared light to absorbance of green light b1: intercept of first regression line b2: intercept of second regression line
  • the absorbance ratio calculation section of the processor 21 calculates the absorbance ratio of the first pulse wave signal PS1 to the second pulse wave signal PS2 based on the calculated slopes of the first and second regression lines. In other words, the absorbance ratio is found by solving the simultaneous equations of the first and second regression lines.
  • the data of the third pulse wave signal PS3 of the reference light is included in the measurement calculation process to suppress the variation in the values of the red light absorbance and the infrared light absorbance.
  • the oxygen saturation measurement unit of the processor 21 calculates the oxygen saturation of the artery based on the calculated absorbance ratio.
  • the calculated oxygen saturation is displayed on the display unit 18 as a measurement value.
  • a triangular wave signal for analysis was generated by simulating a pulse wave signal.
  • the generated triangular wave signal contained random noise in the entire wavelength range, so-called white noise.
  • the S/N ratios of the triangular wave signals were eight patterns: 2, 4, 8, 16, 32, 64, 128, and 256. Then, for each of the eight S/N ratio patterns, the calculation methods of the example, the first comparative example, and the second comparative example were performed to calculate the absorbance ratio ⁇ .
  • the absorbance ratio ⁇ was calculated using only two lights, red light and infrared light.
  • the least squares method was used on the scatter plot of the data of the first pulse wave signal of red light and the data of the second pulse wave signal of infrared light.
  • orthogonal distance regression was used on the scatter plot of the data of the first pulse wave signal of red light and the data of the second pulse wave signal of infrared light.
  • the absorbance ratio ⁇ calculated in the embodiment was close to the true value for all eight S/N ratio patterns, as in the second comparative example of orthogonal distance regression.
  • the absorbance ratio ⁇ in the embodiment was close to the true value, as in orthogonal distance regression, even for patterns with relatively low S/N ratios such as 2 or 4.
  • the first analysis example showed that the embodiment can achieve the same level of measurement accuracy as orthogonal distance regression.
  • the processing time required to calculate the absorbance ratio of each of the example according to the present embodiment, the first comparative example, and the second comparative example was compared.
  • the CPU used in the second analysis example was an Intel Xeon (number of cores: 8, frequency: 2.20 GHz).
  • the other analysis conditions in the second analysis example were the same as those in the first analysis example.
  • the amount of repeated calculations is greater than in the least squares method, and therefore the processing time is longer.
  • the processing time required to calculate the absorbance ratio in the example was close to the true value for all eight patterns of S/N ratios, and was shorter than the second comparative example of orthogonal distance regression.
  • the processing time in the example was less than half that of the second comparative example, even for patterns with relatively low S/N ratios such as 2, 4, or 6.
  • the second analysis example shows that the example can achieve a processing time shorter than that of orthogonal distance regression.
  • the processor 21 can calculate multiple oxygen saturations based on the multiple calculation means installed.
  • the processor 21 is configured to determine one oxygen saturation from the multiple calculated oxygen saturations as the arterial oxygen saturation based on a preset criterion.
  • the processor 21 can calculate different oxygen saturations by performing oxygen saturation measurement processes in parallel using oxygen saturation calculation means such as a method of calculation based on the maximum and/or minimum values of the pulse wave or a regression method.
  • oxygen saturation calculation means such as a method of calculation based on the maximum and/or minimum values of the pulse wave or a regression method.
  • one value can be determined so as to exclude, for example, an oxygen saturation that is considered to have been calculated with a larger number of outliers.
  • the magnitude relationship of the outliers is used as a criterion.
  • a single value may be determined so as to exclude oxygen saturations that are considered to be less accurate based on criteria such as the signal-to-noise ratio of the measured pulse wave signal or the magnitude of baseline fluctuation.
  • a single value may be determined by selecting multiple oxygen saturations that are considered to be more accurate and finding the average or median value.
  • Other criteria may include, for example, a certain range set according to actual values obtained in past measurements of the subject, and in the present disclosure, criteria can be set as appropriate.
  • the processor 21 is configured to calculate a first regression line by excluding outliers not related to arterial pulsation from the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3 output by the light receiving element PD.
  • the processor 21 also calculates a second regression line by excluding outliers not related to arterial pulsation from the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3 output by the light receiving element PD.
  • the processor 21 determines, from among the multiple data output by the light receiving element PD, data that satisfies a preset threshold as an outlier.
  • the threshold set in the calculation of the first regression line is set based on the relationship between the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3.
  • the threshold set in the calculation of the second regression line is set based on the relationship between the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3.
  • the process of calculating the regression line excluding outliers is illustrated as being executed in both the calculation of the first regression line and the calculation of the second regression line, but in the present disclosure, it is sufficient that the process is executed in the calculation of at least one of the regression lines.
  • a first threshold value and a second threshold value can be set.
  • the threshold value for detecting an outlier is not limited to the first threshold value and the second threshold value, and can be set arbitrarily.
  • the pulse wave signal includes a fluctuating component (AC) and a fixed component (DC) that does not fluctuate.
  • Data on the ratio of the fluctuating component to the fixed component (AC/DC) is calculated from each of the first pulse wave signal of red light and the second pulse wave signal of infrared light.
  • the correlation between the AC/DC data of the first pulse wave signal and the AC/DC data of the third pulse wave signal is relatively high. This makes it easier to separate the distribution of data related to pulsation from the distribution of outliers due to disturbances.
  • a preset index that indicates a relative distance from the distribution of data is set as the first threshold.
  • the first threshold For example, by setting data that is further from the reference value than the set first threshold as data that is not related to heartbeats, outliers can be easily detected.
  • the dotted ellipse illustrates an example of a Mahalanobis distance that includes approximately 95% of all data. In this embodiment, for example, data that does not fall within the range of the ellipse in FIG. 13 can be excluded as an outlier.
  • a second threshold value is set to the difference between the predetermined expected rank and the actual rank. For example, by setting data whose actual rank deviates from the expected rank by more than the set second threshold value as data that is not related to heartbeats, outliers can be easily detected.
  • a first regression line is calculated based on the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3, and a second regression line is calculated based on the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3.
  • the third pulse wave signal PS3 is a pulse wave signal corresponding to reference light having a wavelength at which the signal-to-noise ratio of light received from an artery is higher than that of red light and infrared light.
  • the absorbance ratio of the first pulse wave signal PS1 to the second pulse wave signal PS2 is calculated based on the slope of the first regression line and the slope of the second regression line, and the arterial oxygen saturation is measured based on the calculated absorbance ratio.
  • the wavelength of the reference light projected onto the artery is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light. Therefore, the signal-to-noise ratio of the third pulse wave signal PS3 corresponding to the reference light is higher than those of red light and infrared light. In other words, the signal-to-noise ratio of the pulse wave signal of the received light depends on the wavelength of the projected light.
  • a reference light is included as a third light other than the two lights of red light and infrared light.
  • the inclusion of the reference light prevents the slope of the regression line from deviating from the slope of the linear equation that represents the true relationship, compared to when the absorbance ratio is calculated using only the two lights of red light and infrared light. Therefore, the measurement accuracy of the oxygen saturation can be improved, compared to when the absorbance ratio is calculated using only the two lights of red light and infrared light.
  • the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3 are arranged on the coordinate axes.
  • the first regression line is calculated by performing the least squares method on each arranged data, which minimizes the sum of the squares of the distance along the axis on the side on which the data of the first pulse wave signal PS1 is arranged.
  • the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3 are arranged on the coordinate axes.
  • the second regression line is calculated by performing the least squares method on each arranged data, which minimizes the sum of the squares of the distances along the axis on the side on which the data of the second pulse wave signal PS2 is arranged.
  • the only type of regression method used to calculate the first regression line and the second regression line is the least squares method.
  • the calculation algorithm for principal component regression such as orthogonal distance regression
  • the least squares method is more complicated than the least squares method, and therefore the overall amount of calculation is greater.
  • This causes problems such as an increase in the calculation load, such as an increase in the power consumption of the measuring device or a longer processing time.
  • the overall amount of calculation can be reduced compared to when orthogonal distance regression or the like is used, and therefore the calculation load can be suppressed.
  • the first and second regression lines are first calculated by using the data of the third pulse wave signal PS3, and then the first and second regression lines are indirectly calculated using the slopes of the first and second regression lines.
  • the wavelength of the reference light of the third pulse wave signal PS3 is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light, and therefore the signal-to-noise ratio of the light received from the artery is higher than that of red light and infrared light.
  • the accuracy of the slope calculation can be improved compared to when the absorbance ratio of red light to infrared light is directly calculated using only two types of light, red light and infrared light. As a result, it is possible to improve the measurement accuracy of oxygen saturation while reducing the calculation load.
  • one of the multiple calculated oxygen saturations is determined as the arterial oxygen saturation based on a preset criterion.
  • outliers that are not related to arterial pulsation are removed in the calculation of the first regression line and the second regression line, so the accuracy of measuring oxygen saturation can be further improved.
  • this embodiment makes it possible to realize a wearable device that can have a longer lifespan by reducing the computational load.
  • the first information may be an average value of the ratio between the intensity of the third pulse wave signal and the intensity of the first pulse wave signal.
  • the second information may be an average value of the ratio between the intensity of the third pulse wave signal and the intensity of the second pulse wave signal.
  • the oxygen saturation level may be accurately calculated based on the ratio between the first information and the second information, both of which are average values of ratios. The oxygen saturation level can be accurately calculated using the first information and the second information, both of which are average values of ratios.
  • the signal-to-noise ratio of the third pulse wave signal of the reference light is relatively higher than that of red light or infrared light, it can be used to control the emission timing of red light or infrared light.
  • the emission timing can be synchronized with the timing at which the maximum and minimum values of the pulse wave are obtained, or the emission timing can be limited to within a certain period depending on the timing at which the maximum and minimum values are obtained.
  • the signal-to-noise ratio of the amplitude values of each of the first red light pulse wave signal and the second infrared light pulse wave signal can be improved. This makes it possible to selectively collect only data with a high signal-to-noise ratio of the amplitude values, thereby further improving the measurement accuracy.
  • the oxygen saturation measurement process executed by the CPU 21 by reading the software (program) in the above embodiment may be executed by various processors other than the CPU.
  • processors in this case include a PLD (Programmable Logic Device) such as an FPGA (Field-Programmable Gate Array) whose circuit configuration can be changed after manufacture, and a dedicated electrical circuit such as an ASIC (Application Specific Integrated Circuit) that is a processor having a circuit configuration designed specifically to execute a specific process.
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the oxygen saturation measurement process may be executed by one of these various processors, or by a combination of two or more processors of the same or different types (e.g., multiple FPGAs, or a combination of a CPU and an FPGA, etc.). More specifically, the hardware structure of these various processors is an electric circuit that combines circuit elements such as semiconductor elements.
  • the oxygen saturation measurement program is described as being pre-stored (installed) in the ROM 22 or storage 24, but this is not limiting.
  • the program may be provided in a form recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or a USB (Universal Serial Bus) memory.
  • the program may also be downloaded from an external device via a network.

Abstract

This device for measuring oxygen saturation measures arterial oxygen saturation by: projecting, onto an artery, red light, infrared light, and a reference light having a wavelength for which the absorption coefficient for oxidized hemoglobin and the absorption coefficient for reduced hemoglobin are higher than those for the red light and infrared light; receiving, as received light, transmitted light or reflected light corresponding to each of the projected red light, infrared light, and reference light; acquiring a first pulse wave signal in accordance with the light intensity of the received light for the red light, a second pulse wave signal in accordance with the light intensity of the received light for the infrared light, and a third pulse wave signal in accordance with the light intensity of the received light for the reference light; and calculating first information based on the strength of the first pulse wave signal and the strength of the third pulse wave signal, calculating second information based on the strength of the second pulse wave signal and the strength of the third pulse wave signal, and calculating an oxygen saturation based on the ratio between the respectively calculated first information and second information.

Description

酸素飽和度測定装置、酸素飽和度測定方法及び酸素飽和度測定プログラムOxygen saturation measurement device, oxygen saturation measurement method, and oxygen saturation measurement program
 本開示は、酸素飽和度測定装置、酸素飽和度測定方法及び酸素飽和度測定プログラムに関する。 This disclosure relates to an oxygen saturation measurement device, an oxygen saturation measurement method, and an oxygen saturation measurement program.
 従来、動脈血中の酸素飽和度(SpO)を測定する方法の一例として特開平7-327964号公報のように、吸光分光法を用いた測定方法が知られている。具体的には、互いに異なる波長を有する赤色光と赤外光とが動脈血に対して投光されると共に、それぞれの光に対応する透過光又は反射光が、受光素子によって受光される。なお、以下、説明の便宜のため、透過光及び反射光のように受光素子によって受光される光をまとめて「受光光」と称する。 Conventionally, as one example of a method for measuring oxygen saturation ( SpO2 ) in arterial blood, a measurement method using absorption spectroscopy is known, as disclosed in Japanese Patent Laid-Open Publication No. 7-327964. Specifically, red light and infrared light having different wavelengths are projected onto arterial blood, and transmitted light or reflected light corresponding to each light is received by a light receiving element. For ease of explanation, the light received by the light receiving element, such as transmitted light and reflected light, will be collectively referred to as "received light" below.
  特許文献1:特開平7-327964号公報 Patent document 1: JP 7-327964 A
 吸光分光法では、受光光の脈波信号から取得される最大値と最小値とから、赤色光と赤外光とのそれぞれについて脈波信号の振幅が複数算出される。算出された複数の振幅から脈波信号の変動成分(換言すると、AC)と固定成分(換言すると、DC)とが算出されると共に、算出された変動成分と固定成分とによって、赤色光と赤外光とのそれぞれの灌流指標(PI値)が算出される。 In absorption spectroscopy, multiple amplitudes of the pulse wave signal for each of the red light and infrared light are calculated from the maximum and minimum values obtained from the pulse wave signal of the received light. The fluctuating component (in other words, AC) and fixed component (in other words, DC) of the pulse wave signal are calculated from the multiple calculated amplitudes, and the perfusion index (PI value) for each of the red light and infrared light is calculated from the calculated fluctuating component and fixed component.
 そして、赤外光のPI値に対する赤色光のPI値の比(すなわち、吸光度比)を、予め設定された酸素飽和度算出用の計算式に導入することによって、測定値としての酸素飽和度を算出できる。すなわち、吸光度比は、赤色光の受光光の脈波信号の振幅に対する、赤外光の受光光の脈波信号の振幅の振幅比によって算出される。 Then, by introducing the ratio of the PI value of red light to the PI value of infrared light (i.e., the absorbance ratio) into a preset formula for calculating oxygen saturation, the measured oxygen saturation value can be calculated. In other words, the absorbance ratio is calculated by the amplitude ratio of the amplitude of the pulse wave signal of infrared received light to the amplitude of the pulse wave signal of red received light.
 しかし、血流が比較的低灌流である、すなわち受光光の脈波信号の光強度が微弱であるほどSN比が低くなるため、脈波信号の振幅の算出精度が低くなる。このため、吸光度比が振幅比によって算出される場合、変動成分と固定成分との算出精度も低くなり、結果、酸素飽和度の測定精度が低下する、或いは、測定自体が不可能となり得る。 However, the lower the blood perfusion, i.e., the weaker the light intensity of the received light pulse wave signal, the lower the signal-to-noise ratio, and the lower the accuracy of calculating the amplitude of the pulse wave signal. For this reason, when the absorbance ratio is calculated based on the amplitude ratio, the accuracy of calculating the variable and fixed components is also low, resulting in a decrease in the accuracy of measuring oxygen saturation, or even in the event that measurement is impossible.
 SN比が低い場合であっても吸光度比を算出する手段として、回帰法と呼ばれる算出手段が知られている。回帰法では例えば、それぞれ経時的に対応する赤色光の脈波信号と赤外光の脈波信号とが、赤色光の受光強度がY軸に、及び赤外光の受光強度がX軸にそれぞれ取られたXY座標にプロットされることによって、データの散布図が算出される。そして、最小二乗法等の回帰手段によって、データの散布図から求められた回帰直線の傾きが、吸光度比として算出される。 A method known as the regression method is known as a means for calculating the absorbance ratio even when the signal-to-noise ratio is low. In the regression method, for example, a red light pulse wave signal and an infrared light pulse wave signal that correspond over time are plotted on an XY coordinate system with the received light intensity of the red light on the Y axis and the received light intensity of the infrared light on the X axis to calculate a scatter diagram of the data. Then, using a regression method such as the least squares method, the slope of the regression line found from the scatter diagram of the data is calculated as the absorbance ratio.
 回帰法では、受光光の脈波信号の波形データのすべてが、赤色光と赤外光との真の関係を表す直線の方程式を算出するために利用される。一方、吸光度比が振幅比によって算出される場合、受光光の脈波信号の最大値と最小値とのみが、振幅を算出するために利用される。このため、回帰法は、振幅比を算出する方法と比べ、SN比が比較的低い脈波信号に対しても堅牢、いわゆるロバストであって、かつ、吸光度比を精度よく算出することが可能とされている。 In the regression method, all of the waveform data of the pulse wave signal of the received light is used to calculate a linear equation that represents the true relationship between red light and infrared light. On the other hand, when the absorbance ratio is calculated from the amplitude ratio, only the maximum and minimum values of the pulse wave signal of the received light are used to calculate the amplitude. For this reason, compared to methods that calculate the amplitude ratio, the regression method is robust even for pulse wave signals with a relatively low S/N ratio, and is capable of calculating the absorbance ratio with high accuracy.
 特開平7-327964号公報に開示された回帰法では、赤色光と赤外光とが生体組織に対して投光されると共に、生体組織を透過したそれぞれの透過光の強度が測定される。また、測定されたそれぞれの透過光の強度の対数が、縦軸と横軸とに配置される。そして、座標上において、最小二乗法によって回帰直線が算出されると共に、算出された回帰直線の傾きに基づいて酸素飽和度が測定される。 In the regression method disclosed in JP-A-7-327964, red and infrared light are projected onto biological tissue, and the intensity of each transmitted light that passes through the biological tissue is measured. The logarithms of the measured intensities of each transmitted light are plotted on the vertical and horizontal axes. A regression line is then calculated on the coordinate system using the least squares method, and oxygen saturation is measured based on the slope of the calculated regression line.
 最小二乗法では、X軸又はY軸のうち一方の軸の側のデータのばらつきしか考慮されない。このため、最小二乗法によって求められた回帰直線の傾きは、真の関係を表す直線の方程式の傾きから乖離することがある。特に、酸素飽和度の測定では、それぞれの軸に配置された変数である、赤色光に対応する受光光の脈波信号と赤外光に対応する受光光の脈波信号とのSN比が比較的低い場合、測定精度の低下が、より顕著になる。この点、特開平7-327964号公報の回帰法では、酸素飽和度が、赤色光と赤外光とのそれぞれの透過光の強度に対する最小二乗法によって算出されるだけであるため、測定精度の低下を抑制できない。 The least squares method only takes into account the variance in data on one of the X and Y axes. For this reason, the slope of the regression line found by the least squares method may deviate from the slope of the linear equation that represents the true relationship. In particular, in measuring oxygen saturation, if the signal-to-noise ratio of the pulse wave signal of the received light corresponding to red light and the pulse wave signal of the received light corresponding to infrared light, which are variables arranged on each axis, is relatively low, the decrease in measurement accuracy becomes more noticeable. In this regard, the regression method of JP-A-7-327964 cannot suppress the decrease in measurement accuracy because the oxygen saturation is calculated only by the least squares method for the intensity of the transmitted light of red light and infrared light.
 本開示は、上記に着目して為されたものであって、測定精度を向上できる酸素飽和度測定装置、酸素飽和度測定方法及び酸素飽和度測定プログラムを提供する。 The present disclosure has been made in light of the above, and provides an oxygen saturation measurement device, an oxygen saturation measurement method, and an oxygen saturation measurement program that can improve measurement accuracy.
 本開示の第1の態様に係る酸素飽和度測定装置は、動脈に対して赤色光を投光する第一発光素子と、動脈に対して赤外光を投光する第二発光素子と、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する参照光を動脈に対して投光する第三発光素子と、投光された赤色光と赤外光と参照光とのそれぞれに対応する透過光又は反射光を受光光として受光し、赤色光の受光光の光強度に応じた第一脈波信号と、赤外光の受光光の光強度に応じた第二脈波信号と、参照光の受光光の光強度に応じた第三脈波信号とを出力する受光素子と、を有するセンサユニットと、受光素子に電気的に接続され、第一脈波信号の強度と第三脈波信号の強度とに基づいて第一情報を算出し、第二脈波信号の強度と第三脈波信号の強度とに基づいて第二情報を算出し、それぞれ算出された第一情報と第二情報との比に基づいて酸素飽和度を算出することによって動脈の酸素飽和度を測定する、プロセッサと、を備える。 The oxygen saturation measuring device according to the first aspect of the present disclosure includes a sensor unit having a first light-emitting element that projects red light onto the artery, a second light-emitting element that projects infrared light onto the artery, a third light-emitting element that projects reference light onto the artery, the reference light having a wavelength at which the absorption coefficients of oxyhemoglobin and deoxyhemoglobin are higher than those of red light and infrared light, and a light-receiving element that receives transmitted or reflected light corresponding to the projected red light, infrared light, and reference light as received light, and outputs a first pulse wave signal according to the intensity of the received red light, a second pulse wave signal according to the intensity of the received infrared light, and a third pulse wave signal according to the intensity of the received reference light, and a processor that is electrically connected to the light-receiving element and calculates first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal, calculates second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal, and measures the oxygen saturation of the artery by calculating the oxygen saturation based on the ratio between the calculated first information and the second information.
 上記の構成によれば、動脈に対して投光される参照光の波長は、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長である。このため、参照光に対応する第三脈波信号のSN比は、赤色光に対応する第一脈波信号及び赤外光に対応する第二脈波信号よりも高くなる。すなわち、受光光の脈波信号のSN比は、投光される光の波長に依存する。酸素飽和度の算出アルゴリズムの中に、赤色光と赤外光との2つの光以外の第3の光としての参照光が介在することによって、赤色光と赤外光との2つの光のみを用いて吸光度比が算出される場合に比べ、酸素飽和度の測定精度を向上できる。  With the above configuration, the wavelength of the reference light projected onto the artery is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light. Therefore, the signal-to-noise ratio of the third pulse wave signal corresponding to the reference light is higher than those of the first pulse wave signal corresponding to red light and the second pulse wave signal corresponding to infrared light. In other words, the signal-to-noise ratio of the pulse wave signal of the received light depends on the wavelength of the light projected. By including reference light as a third light other than the two lights of red light and infrared light in the oxygen saturation calculation algorithm, the accuracy of oxygen saturation measurement can be improved compared to when the absorbance ratio is calculated using only the two lights of red light and infrared light.
 また、第2の態様では、第1の態様において、プロセッサは、第一脈波信号の強度と第三脈波信号の強度と第二脈波信号の強度とを時間的に連続して取得し、第三脈波信号の強度と第一脈波信号の強度とを用いた回帰分析によって第一回帰直線の傾きを第一情報として算出し、第三脈波信号の強度と第二脈波信号の強度とを用いた回帰分析によって第二回帰直線の傾きを第二情報として算出する、ように構成される。 In the second aspect, as in the first aspect, the processor is configured to continuously acquire the intensity of the first pulse wave signal, the intensity of the third pulse wave signal, and the intensity of the second pulse wave signal over time, calculate the slope of the first regression line as first information by regression analysis using the intensity of the third pulse wave signal and the intensity of the first pulse wave signal, and calculate the slope of the second regression line as second information by regression analysis using the intensity of the third pulse wave signal and the intensity of the second pulse wave signal.
 上記の構成によれば、赤色光と赤外光との2つの光のみを用いて吸光度比が算出される場合に比べ、回帰直線の傾きが真の関係を表す直線の方程式の傾きから乖離することが抑制される。このため、酸素飽和度をより精度よく算出できる。  With the above configuration, the slope of the regression line is prevented from deviating from the slope of the linear equation that represents the true relationship, compared to when the absorbance ratio is calculated using only two types of light, red and infrared. This makes it possible to calculate oxygen saturation with greater accuracy.
 また、第3の態様では、第2の態様において、プロセッサは、最小二乗法のみによって第一回帰直線と第二回帰直線とを算出するように構成される。 In a third aspect, in the second aspect, the processor is configured to calculate the first regression line and the second regression line using only the least squares method.
 上記の構成によれば、第一回帰直線と第二回帰直線との算出のために使用される回帰手段の種類は、最小二乗法のみである。ここで、例えば直交距離回帰のような主成分回帰の算出アルゴリズムは、最小二乗法に比べて複雑であるため、全体の計算量が多くなる。このため、例えば測定装置の消費電力が大きくなったり処理時間が長くなったりするといった、計算負荷が大きくなるという問題が生じる。このため、最小二乗法のみが用いられる本開示では、直交距離回帰等が用いられる場合と比べて、全体の計算量を低減できるので、計算負荷を抑制できる。 According to the above configuration, the type of regression method used to calculate the first regression line and the second regression line is the least squares method only. Here, the calculation algorithm of principal component regression, such as orthogonal distance regression, is more complicated than the least squares method, and therefore the overall amount of calculation is greater. This causes problems such as an increase in the calculation load, such as an increase in the power consumption of the measuring device or a longer processing time. For this reason, in the present disclosure, in which only the least squares method is used, the overall amount of calculation can be reduced compared to when orthogonal distance regression or the like is used, and therefore the calculation load can be suppressed.
 また、第三脈波信号の参照光の波長は、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長であるため、赤色光及び赤外光よりも動脈からの受光光のSN比が高い。このため、第三脈波信号のデータが配置された側の軸に沿った距離の二乗和が最小になる最小二乗法が行われなくても、第三脈波信号のデータに起因する回帰直線の傾きへの影響を抑制できる。このため、回帰法として最小二乗法のみが用いられても、赤色光と赤外光との吸光度比を赤色光と赤外光との2つの光のみを用いて直接的に算出する場合に比べ、傾きの算出精度を向上できる。 In addition, the wavelength of the reference light for the third pulse wave signal is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light, and therefore the signal-to-noise ratio of the light received from the artery is higher than that of red light and infrared light. Therefore, even if the least-squares method is not used to minimize the sum of the squares of the distance along the axis on the side on which the data of the third pulse wave signal is placed, the effect on the slope of the regression line caused by the data of the third pulse wave signal can be suppressed. Therefore, even if only the least-squares method is used as the regression method, the accuracy of calculating the slope can be improved compared to when the absorbance ratio of red light to infrared light is directly calculated using only two lights, red light and infrared light.
 また、第4の態様では、第1~第3のいずれかの態様において、プロセッサは、第一脈波信号の強度と第三脈波信号の強度と第二脈波信号の強度とを時間的に連続して取得し、第三脈波信号の強度と第一脈波信号の強度との比の平均値を第一情報として算出し、第三脈波信号の強度と第二脈波信号の強度との比の平均値を第二情報として算出する。 In a fourth aspect, in any of the first to third aspects, the processor continuously acquires the intensity of the first pulse wave signal, the intensity of the third pulse wave signal, and the intensity of the second pulse wave signal, calculates the average of the ratio of the intensity of the third pulse wave signal to the intensity of the first pulse wave signal as the first information, and calculates the average of the ratio of the intensity of the third pulse wave signal to the intensity of the second pulse wave signal as the second information.
 上記の構成によれば、いずれも比の平均値である第一情報と第二情報とを用いて酸素飽和度を精度よく算出できる。 With the above configuration, the oxygen saturation level can be calculated with high accuracy using the first information and the second information, both of which are average values of the ratios.
 また、第5の態様では、第1~第4のいずれかの態様において、プロセッサは、複数の酸素飽和度を算出し、算出された複数の酸素飽和度の中から1つの酸素飽和度を、予め設定された基準に基づき動脈の酸素飽和度として決定する、ように構成される。 In a fifth aspect, in any of the first to fourth aspects, the processor is configured to calculate a plurality of oxygen saturations and determine one of the calculated plurality of oxygen saturations as the arterial oxygen saturation based on a preset criterion.
 上記の構成によれば、例えば特性の異なる算出方法が複数搭載されることで、酸素飽和度測定におけるロバスト性を向上できると共に酸素飽和度の測定精度をより向上できる。 With the above configuration, for example, by incorporating multiple calculation methods with different characteristics, it is possible to improve the robustness of oxygen saturation measurement and further improve the measurement accuracy of oxygen saturation.
 また、第6の態様では、第1~第5のいずれかの態様において、プロセッサは、受光素子によってそれぞれ出力された第一脈波信号のデータと第三脈波信号のデータとのうち、第一脈波信号のデータと第三脈波信号のデータとの間の関係性に基づいて予め設定された閾値を満たすデータを動脈の拍動に関連しない外れ値として決定し、決定された外れ値を除いて第一情報を算出する、又は、受光素子によってそれぞれ出力された第二脈波信号のデータと第三脈波信号のデータとのうち、第二脈波信号のデータと第三脈波信号のデータとの間の関係性に基づいて予め設定された閾値を満たすデータを動脈の拍動に関連しない外れ値として決定し、決定された外れ値を除いて第二情報を算出する、ように構成される。 In a sixth aspect, in any of the first to fifth aspects, the processor is configured to determine, among the data of the first pulse wave signal and the data of the third pulse wave signal output by the light receiving elements, data that satisfies a threshold value that is set in advance based on the relationship between the data of the first pulse wave signal and the data of the third pulse wave signal as an outlier not related to arterial pulsation, and calculate the first information excluding the determined outlier; or, among the data of the second pulse wave signal and the data of the third pulse wave signal output by the light receiving elements, data that satisfies a threshold value that is set in advance based on the relationship between the data of the second pulse wave signal and the data of the third pulse wave signal as an outlier not related to arterial pulsation, and calculate the second information excluding the determined outlier.
 上記の構成によれば、酸素飽和度の測定精度を一層向上できる。 The above configuration can further improve the accuracy of oxygen saturation measurement.
 また、第7の態様では、第1~第6のいずれかの態様における酸素飽和度測定装置が、被測定者が装着可能なウェアラブルデバイスである。 In a seventh aspect, the oxygen saturation measuring device in any one of the first to sixth aspects is a wearable device that can be worn by the person being measured.
 上記の構成によれば、長寿命化を図ることが可能なウェアラブルデバイスを実現できる。 The above configuration makes it possible to realize a wearable device that can be designed to have a long lifespan.
 本開示の第8の態様に係る酸素飽和度測定方法は、動脈に対して、赤色光と、赤外光と、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する参照光を投光し、投光された赤色光と赤外光と参照光とのそれぞれに対応する透過光又は反射光を受光光として受光し、赤色光の受光光の光強度に応じた第一脈波信号と、赤外光の受光光の光強度に応じた第二脈波信号と、参照光の受光光の光強度に応じた第三脈波信号と、を取得し、第一脈波信号の強度と第三脈波信号の強度とに基づいて第一情報を算出し、第二脈波信号の強度と第三脈波信号の強度とに基づいて第二情報を算出し、それぞれ算出された第一情報と第二情報とに基づいて酸素飽和度を算出することによって動脈の酸素飽和度を測定する。 The oxygen saturation measurement method according to the eighth aspect of the present disclosure projects red light, infrared light, and reference light having a wavelength at which the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light onto an artery, receives transmitted light or reflected light corresponding to the projected red light, infrared light, and reference light, respectively, as received light, obtains a first pulse wave signal corresponding to the intensity of the received red light, a second pulse wave signal corresponding to the intensity of the received infrared light, and a third pulse wave signal corresponding to the intensity of the received reference light, calculates first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal, calculates second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal, and measures oxygen saturation in the artery by calculating oxygen saturation based on the calculated first information and second information, respectively.
 第8の態様によれば、第1の態様と同様に、酸素飽和度の測定精度を向上できる酸素飽和度測定方法を実現できる。 According to the eighth aspect, like the first aspect, it is possible to realize an oxygen saturation measurement method that can improve the accuracy of oxygen saturation measurement.
 本開示の第9の態様に係る酸素飽和度測定プログラムは、動脈に対して、赤色光と、赤外光と、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する参照光を投光する処理と、投光された赤色光と赤外光と参照光とのそれぞれに対応する透過光又は反射光を受光光として受光する処理と、赤色光の受光光の光強度に応じた第一脈波信号と、赤外光の受光光の光強度に応じた第二脈波信号と、参照光の受光光の光強度に応じた第三脈波信号と、を取得する処理と、第一脈波信号の強度と第三脈波信号の強度とに基づいて第一情報を算出する処理と、第二脈波信号の強度と第三脈波信号の強度とに基づいて第二情報を算出する処理と、それぞれ算出された第一情報と第二情報とに基づいて酸素飽和度を算出することによって動脈の酸素飽和度を測定する処理と、をプロセッサに実行させる。 The oxygen saturation measurement program according to the ninth aspect of the present disclosure causes a processor to execute the following steps: projecting red light, infrared light, and reference light having a wavelength at which the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light onto an artery; receiving transmitted light or reflected light corresponding to the projected red light, infrared light, and reference light, respectively, as received light; acquiring a first pulse wave signal corresponding to the intensity of the received red light, a second pulse wave signal corresponding to the intensity of the received infrared light, and a third pulse wave signal corresponding to the intensity of the received reference light; calculating first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal; calculating second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal; and measuring the oxygen saturation of the artery by calculating the oxygen saturation based on the calculated first information and second information, respectively.
 第9の態様によれば、第1の態様と同様に、酸素飽和度の測定精度を向上できる酸素飽和度測定プログラムを実現できる。 According to the ninth aspect, like the first aspect, it is possible to realize an oxygen saturation measurement program that can improve the accuracy of oxygen saturation measurement.
 本開示に係る酸素飽和度測定装置、酸素飽和度測定方法及び酸素飽和度測定プログラムによれば、測定精度を向上できる。 The oxygen saturation measurement device, oxygen saturation measurement method, and oxygen saturation measurement program disclosed herein can improve measurement accuracy.
本開示の実施形態に係る酸素飽和度測定装置を説明する斜視図である。FIG. 1 is a perspective view illustrating an oxygen saturation measuring device according to an embodiment of the present disclosure. 本実施形態に係る酸素飽和度測定装置のセンサユニットを説明する断面図である。2 is a cross-sectional view illustrating a sensor unit of the oxygen saturation measuring device according to the embodiment. FIG. 本実施形態に係る酸素飽和度測定装置のプロセッサのハードウェア構成を示すブロック図である。2 is a block diagram showing a hardware configuration of a processor of the oxygen saturation measuring device according to the present embodiment. FIG. 本実施形態に係る酸素飽和度測定装置を用いた酸素飽和度測定方法を説明するフローチャートである。4 is a flowchart illustrating an oxygen saturation measuring method using the oxygen saturation measuring device according to the present embodiment. 測定対象の動脈に投光された赤色光の反射光から得られた第一脈波信号の波形を説明する図である。FIG. 4 is a diagram illustrating the waveform of a first pulse wave signal obtained from the reflected light of red light projected onto an artery to be measured. 測定対象の動脈に投光された赤外光の反射光から得られた第二脈波信号の波形を説明する図である。FIG. 13 is a diagram illustrating the waveform of a second pulse wave signal obtained from reflected light of infrared light projected onto an artery to be measured. 測定対象の動脈に投光された参照光の反射光から得られた第三脈波信号の波形を説明する図である。FIG. 13 is a diagram illustrating the waveform of a third pulse wave signal obtained from reflected light of a reference light projected onto an artery to be measured. 本実施形態に係る酸素飽和度測定装置を用いた酸素飽和度測定方法において、第一脈波信号のデータと第三脈波信号のデータとの散布図に対して最小二乗法を用いて第一回帰直線を求める方法を説明するグラフである。11 is a graph illustrating a method for determining a first regression line by using the least squares method on a scatter plot of first pulse wave signal data and third pulse wave signal data in an oxygen saturation measuring method using the oxygen saturation measuring device according to the present embodiment. 本実施形態に係る酸素飽和度測定装置を用いた酸素飽和度測定方法において、第二脈波信号のデータと第三脈波信号のデータとの散布図に対して最小二乗法を用いて第二回帰直線を求める方法を説明するグラフである。13 is a graph illustrating a method for determining a second regression line by using the least squares method on a scatter plot of second pulse wave signal data and third pulse wave signal data in an oxygen saturation measuring method using the oxygen saturation measuring device according to this embodiment. 第1比較例に係る酸素飽和度測定装置を用いた酸素飽和度測定方法において、第一脈波信号のデータと第二脈波信号のデータとの散布図に対して最小二乗法を用いて回帰直線を求める場合のデータのばらつきを説明するグラフである。11 is a graph illustrating the variability in data when a regression line is obtained by using the least squares method on a scatter plot of first pulse wave signal data and second pulse wave signal data in an oxygen saturation measurement method using an oxygen saturation measurement device according to a first comparative example. 本実施形態に係る酸素飽和度測定装置を用いた酸素飽和度測定方法において、第一脈波信号のデータと第三脈波信号のデータとの散布図に対して最小二乗法を用いて回帰直線を求める場合のデータのばらつきを説明するグラフである。11 is a graph illustrating the variability in data when a regression line is obtained by applying the least squares method to a scatter plot of first pulse wave signal data and third pulse wave signal data in an oxygen saturation measuring method using the oxygen saturation measuring device according to this embodiment. 本実施形態に係る実施例、第1比較例及び第2比較例のそれぞれにおいて算出された吸光度比を説明するグラフである。11 is a graph illustrating absorbance ratios calculated in an example according to the present embodiment, a first comparative example, and a second comparative example. 本実施形態に係る実施例、第1比較例及び第2比較例のそれぞれの吸光度比の算出にかかった処理時間を説明するグラフである。11 is a graph illustrating the processing time required to calculate the absorbance ratio for each of an example according to the present embodiment, a first comparative example, and a second comparative example. 第一脈波信号のAC/DCを目的変数とすると共に、第二脈波信号のAC/DCを説明変数とした散布図において、拍動に関連したデータの分布と外れ値の分布との重なりの状態を説明するグラフである。13 is a graph illustrating the overlapping state of the distribution of data related to pulse and the distribution of outliers in a scatter plot in which the AC/DC of a first pulse wave signal is used as a response variable and the AC/DC of a second pulse wave signal is used as an explanatory variable. 第一脈波信号のAC/DCを目的変数とすると共に、第三脈波信号のAC/DCを説明変数とした散布図において、拍動に関連したデータの分布と外れ値の分布との重なりの状態を説明するグラフである。13 is a graph illustrating the overlapping state of the distribution of data related to pulse and the distribution of outliers in a scatter plot in which the AC/DC of a first pulse wave signal is used as a response variable and the AC/DC of a third pulse wave signal is used as an explanatory variable. 第一脈波信号のAC/DCと第二脈波信号のAC/DCとを第三脈波信号の信号強度順で並び替えた場合の散布図において、拍動に関連したデータの分布と外れ値の分布とを説明するグラフである。13 is a graph illustrating the distribution of data related to pulsation and the distribution of outliers in a scatter plot obtained when the AC/DC of the first pulse wave signal and the AC/DC of the second pulse wave signal are sorted in order of signal strength of the third pulse wave signal.
 以下に本実施形態を説明する。以下の図面の記載において、同一の部分及び類似の部分には、同一の符号又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、明細書中に特段の断りが無い限り、本開示の各構成要素の個数は、1つに限定されず、複数存在してもよい。 The present embodiment will be described below. In the following description of the drawings, identical and similar parts are given the same or similar symbols. However, the drawings are schematic, and the relationship between thickness and planar dimensions, the thickness ratio of each device and each component, etc. differ from the actual ones. Therefore, specific thicknesses and dimensions should be determined with reference to the following description. Furthermore, there are parts with different dimensional relationships and ratios between the drawings. Furthermore, unless otherwise specified in the specification, the number of each component of the present disclosure is not limited to one, and there may be more than one.
<酸素飽和度測定装置>
 本実施形態に係る酸素飽和度測定装置10の構造を、図1~図3を参照して説明する。図1に示すように、本実施形態に係る酸素飽和度測定装置10は、バンド12と、筐体14と、センサユニット16と、表示部18と、演算制御部20と、を備える、被測定者が装着可能な携帯型のウェアラブルデバイスである。
<Oxygen saturation measuring device>
The structure of an oxygen saturation measuring device 10 according to this embodiment will be described with reference to Figures 1 to 3. As shown in Figure 1, the oxygen saturation measuring device 10 according to this embodiment is a portable wearable device that includes a band 12, a housing 14, a sensor unit 16, a display unit 18, and an arithmetic and control unit 20 and can be worn by a person to be measured.
 また、本実施形態に係る酸素飽和度測定装置10には、駆動電源11が設けられる。駆動電源11は、1次電池であってもよいし、或いは2次電池であってもよい。なお、本開示では、酸素飽和度測定装置の形状は、被測定者が装着可能なウェアラブルデバイスに限定されない。本開示の酸素飽和度測定装置は、装着の有無を問わない携帯型、例えば、手首に近接可能な携帯型であってもよいし、或いは据置型等、任意に構成されてよい。 Furthermore, the oxygen saturation measuring device 10 according to this embodiment is provided with a driving power source 11. The driving power source 11 may be a primary battery or a secondary battery. Note that in this disclosure, the shape of the oxygen saturation measuring device is not limited to a wearable device that can be worn by the person being measured. The oxygen saturation measuring device of this disclosure may be a portable type that can be worn or not, for example, a portable type that can be placed close to the wrist, or may be a stationary type, or may be configured in any manner.
 なお、本明細書では「前腕の延びる方向E」は、被測定者の橈骨の延びる方向、尺骨の延びる方向及び動脈の延びる方向のいずれの方向とも重なる。また「前腕の延びる方向E」は、厳密には被測定者毎に異なる。すなわち「前腕の延びる方向E」は、3次元空間内で座標によって一義的に決定されるものではなく、被測定者毎の橈骨の延びる方向、尺骨の延びる方向及び動脈の延びる方向に基づいて個別に決定される。 In this specification, the "direction E in which the forearm extends" overlaps with the direction in which the radius, ulna, and artery of the person being measured extend. Furthermore, strictly speaking, the "direction E in which the forearm extends" differs for each person being measured. In other words, the "direction E in which the forearm extends" is not uniquely determined by coordinates in three-dimensional space, but is determined individually based on the direction in which the radius, ulna, and artery extend for each person being measured.
(バンド)
 図1に示すように、バンド12は、手首の周方向Cに沿って、被測定者の手首に巻かれる。バンド12の素材は、例えば樹脂、布地、金属等、任意である。また、バンド12には手首に巻かれた際の長さを調節し、かつ、固定するための留め金が設けられる。
(band)
1, the band 12 is wrapped around the wrist of the person being measured along the circumferential direction C of the wrist. The band 12 may be made of any material, such as resin, fabric, metal, etc. The band 12 is also provided with a clasp for adjusting the length when wrapped around the wrist and for fixing the band 12 in place.
(筐体)
 筐体14は、バンド12に取り付けられ、被測定者の手首の甲側(すなわち、手背側)の表面に接触する。筐体14の素材は、樹脂や金属等、任意である。筐体14は、前腕の延びる方向Eに沿って一定の幅を有する。筐体14には、センサユニット16と、表示部18と、演算制御部20とが設けられる。
(Housing)
The housing 14 is attached to the band 12 and contacts the surface of the back of the wrist (i.e., the back of the hand) of the person being measured. The material of the housing 14 may be any material, such as resin or metal. The housing 14 has a certain width along the direction E in which the forearm extends. The housing 14 is provided with a sensor unit 16, a display unit 18, and a calculation control unit 20.
(表示部)
 図1に示すように、表示部18は、筐体14の手首とは反対側の表面に配置される。表示部18は、例えば液晶等によって形成される画像表示装置である。表示部18は、演算制御部20による演算結果を、被測定者が視認できるように、外部に対して表示する。表示部18には、測定結果を一時的に保存する記憶装置が設けられてもよい。
(Display)
1, the display unit 18 is disposed on the surface of the housing 14 opposite the wrist. The display unit 18 is an image display device formed of, for example, liquid crystal or the like. The display unit 18 displays the results of the calculation by the calculation control unit 20 to the outside so that the result can be visually recognized by the subject. The display unit 18 may be provided with a storage device for temporarily storing the measurement results.
(センサユニット)
 センサユニット16は、バンド12に取り付けられる。センサユニット16は、手首の動脈の脈波信号を取得すると共に、取得された脈波信号に基づいて手首の動脈の酸素飽和度を測定する。本実施形態のセンサユニットは、被測定者の手首の手背側で、例えば、背側手根動脈網に含まれる動脈に対向する。背側手根動脈網には、橈骨動脈からの枝や尺骨動脈からの枝が含まれる。なお、本開示では、測定対象の動脈は、手首の動脈に限定されない。
(Sensor unit)
The sensor unit 16 is attached to the band 12. The sensor unit 16 acquires a pulse wave signal of the wrist artery and measures the oxygen saturation of the wrist artery based on the acquired pulse wave signal. The sensor unit of this embodiment faces, for example, an artery included in the dorsal carpal artery network on the dorsal side of the wrist of the person being measured. The dorsal carpal artery network includes branches from the radial artery and branches from the ulnar artery. Note that in the present disclosure, the artery to be measured is not limited to the artery in the wrist.
 図2に示すように、センサユニット16は、第一発光素子LED1と第二発光素子LED2と第三発光素子LED3とを有する発光部16Aと、受光素子PDを有する受光部16Bと、を有する。すなわち、本実施形態では、3つの発光素子と、3つの発光素子に対応する1つの受光素子とによって、1つの「センサユニット」が構成される。なお、本開示では、複数のセンサユニットが設けられてよい。また、1つの「センサユニット」中に含まれる発光素子の個数と、受光素子の個数とは、いずれも任意に設定できる。 As shown in FIG. 2, the sensor unit 16 has a light-emitting section 16A having a first light-emitting element LED1, a second light-emitting element LED2, and a third light-emitting element LED3, and a light-receiving section 16B having a light-receiving element PD. That is, in this embodiment, one "sensor unit" is composed of three light-emitting elements and one light-receiving element corresponding to the three light-emitting elements. Note that in this disclosure, multiple sensor units may be provided. Also, the number of light-emitting elements and the number of light-receiving elements included in one "sensor unit" can both be set arbitrarily.
 筐体14における発光部16Aと外部との間には、開口部14Aが形成される。開口部14Aには、発光素子から投光される光に対する透光性を有する光学装置15Aが配置される。光学装置15Aは、例えば、照射領域を拡大可能な拡散レンズである。また、図示を省略するが、発光素子の上側に、拡散レンズと共に、又は拡散レンズの代わりに拡散剤が配置されてもよい。 An opening 14A is formed between the light-emitting section 16A in the housing 14 and the outside. An optical device 15A that is translucent to the light emitted from the light-emitting element is disposed in the opening 14A. The optical device 15A is, for example, a diffusion lens that can expand the irradiation area. Although not shown, a diffusion agent may be disposed above the light-emitting element together with or instead of the diffusion lens.
 また、筐体14における受光部16Bと外部との間には、開口部14Bが形成される。開口部14Bには、手首の動脈からの反射光に対する透光性を有する光学装置15Bが配置される。光学装置15Bは、例えば、反射光を集めることが可能な集光レンズである。なお、本開示では、光学装置15A及び光学装置15Bは、必須ではない。 In addition, an opening 14B is formed between the light receiving unit 16B in the housing 14 and the outside. An optical device 15B that is translucent to light reflected from the artery in the wrist is disposed in the opening 14B. The optical device 15B is, for example, a focusing lens that can collect the reflected light. Note that in this disclosure, the optical devices 15A and 15B are not essential.
(発光素子)
 第一発光素子LED1と第二発光素子LED2と第三発光素子LED3とは、いずれも例えば発光ダイオード(LED)等の電子部品である。それぞれの発光素子は、手首の動脈に対し光を照射する。第一発光素子LED1と第二発光素子LED2と第三発光素子LED3とは、互いに離れて配置される。なお、本開示では、第一発光素子、第二発光素子及び第三発光素子のそれぞれの個数は、1つ以上、任意である。
(Light Emitting Element)
The first light-emitting element LED1, the second light-emitting element LED2, and the third light-emitting element LED3 are all electronic components such as light-emitting diodes (LEDs). Each light-emitting element irradiates light onto the artery in the wrist. The first light-emitting element LED1, the second light-emitting element LED2, and the third light-emitting element LED3 are disposed apart from each other. In the present disclosure, the number of each of the first light-emitting element, the second light-emitting element, and the third light-emitting element is one or more and is arbitrary.
(第一発光素子及び第二発光素子)
 第一発光素子LED1は、動脈に対して赤色光を投光する。第二発光素子LED2は、動脈に対して赤外光を投光する。図2中には赤色光の波長λ1が、第一発光素子LED1の内側に例示されると共に、赤外光の波長λ2が、第二発光素子LED2の内側に例示されている。なお、第一発光素子LED1と第二発光素子LED2とは、それぞれが投光した光の光路が可能な限り同一に近づくように配置されることが、測定精度を高める観点から好ましい。
(First Light-Emitting Element and Second Light-Emitting Element)
The first light-emitting element LED1 projects red light onto the artery. The second light-emitting element LED2 projects infrared light onto the artery. In Fig. 2, a wavelength λ1 of red light is illustrated inside the first light-emitting element LED1, and a wavelength λ2 of infrared light is illustrated inside the second light-emitting element LED2. From the viewpoint of improving measurement accuracy, it is preferable that the first light-emitting element LED1 and the second light-emitting element LED2 are arranged so that the optical paths of the light projected by each of them are as close to the same as possible.
(赤色光及び赤外光)
 酸素飽和度の測定処理では、酸化ヘモグロビン及び還元ヘモグロビンの吸光係数が異なる2つの波長帯を組み合わせて用いる必要がある。波長帯の組み合わせとしては、波長帯がおおよそ590nm以上、770nm以下の範囲である赤色領域と、波長帯がおおよそ770nm以上、1000nm以下の範囲である赤外領域との組み合わせが好ましい。
(Red and infrared light)
In the measurement of oxygen saturation, it is necessary to use a combination of two wavelength bands with different absorption coefficients for oxygenated hemoglobin and reduced hemoglobin. A preferred combination of wavelength bands is a red region having a wavelength band of approximately 590 nm or more and 770 nm or less, and an infrared region having a wavelength band of approximately 770 nm or more and 1000 nm or less.
 特に、精度を高めて酸素飽和度を測定するためには、酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数との差が大きいほうが望ましい。このため、赤色光のピーク波長は、640nm以上、660nm以下の範囲内であると共に、赤外光のピーク波長は、940nm程度であることが好ましい。本実施形態では、赤色光と赤外光とは、動脈の1つの拍動の間に、例えば1回のように、時間的に間欠的に投光される。 In particular, to measure oxygen saturation with high accuracy, it is desirable for the difference between the absorption coefficient of oxyhemoglobin and the absorption coefficient of reduced hemoglobin to be large. For this reason, it is preferable that the peak wavelength of the red light is in the range of 640 nm to 660 nm, and the peak wavelength of the infrared light is approximately 940 nm. In this embodiment, the red light and the infrared light are projected intermittently in time, for example, once during one pulsation of the artery.
(第三発光素子)
 第三発光素子LED3は、参照光を投光する。参照光は、動脈に対して赤色光及び赤外光よりSN比が高い波長を有する。図2中には参照光の波長λ3が、第三発光素子LED3の内側に例示されている。本実施形態では参照光は、例えば、動脈の1つの拍動の間に10回や20回等、時間的に連続して投光される。
(Third Light-Emitting Element)
The third light-emitting element LED3 projects a reference light. The reference light has a wavelength that has a higher signal-to-noise ratio than red light and infrared light for the artery. In FIG. 2, a wavelength λ3 of the reference light is illustrated inside the third light-emitting element LED3. In this embodiment, the reference light is projected continuously in time, for example, 10 or 20 times during one pulsation of the artery.
(参照光)
 参照光は、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する。本実施形態では、光電式容積脈波記録法(PPG)で得られる参照光に対応する受光光の脈波信号のSN比は、赤色光のSN比と赤外光のSN比との両方より高い。参照光としては、例えば、動脈の血液中での吸光係数が比較的大きい、430nm以上、590nm以下の波長帯の光が好ましい。具体的には、波長帯が430nm以上、490nm以下の範囲である青色領域や、波長帯が490nm以上、550nm以下の範囲である緑色領域が好ましい。
(Reference light)
The reference light has a wavelength at which the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light. In this embodiment, the signal-to-noise ratio of the pulse wave signal of the received light corresponding to the reference light obtained by photoplethysmography (PPG) is higher than both the signal-to-noise ratio of red light and the signal-to-noise ratio of infrared light. As the reference light, for example, light in a wavelength band of 430 nm or more and 590 nm or less, which has a relatively large absorption coefficient in arterial blood, is preferable. Specifically, a blue region with a wavelength band of 430 nm or more and 490 nm or less, or a green region with a wavelength band of 490 nm or more and 550 nm or less is preferable.
 本実施形態では、特に、ピーク波長が530nm以上、540nm以下である緑色光は、血液中のヘモグロビンに吸収され易く、かつ、動脈血管の容積変化を捉え易いため、SN比が比較的高い脈波信号を得られる点で好ましい。また、緑色光の波長帯のLED光源は、市場における入手性が高いと共に、比較的低価格であるため、参照光を照射する第三発光素子として有利である。なお、本開示では、430nm以下の紫色領域及び紫外領域の波長帯の光源についても、参照光の光源として除外されない。 In this embodiment, green light with a peak wavelength of 530 nm or more and 540 nm or less is particularly preferred in that it is easily absorbed by hemoglobin in the blood and easily captures changes in the volume of arterial blood vessels, thereby obtaining a pulse wave signal with a relatively high signal-to-noise ratio. In addition, LED light sources in the green light wavelength band are highly available on the market and relatively inexpensive, making them advantageous as the third light-emitting element that irradiates the reference light. Note that in this disclosure, light sources in the violet and ultraviolet wavelength bands of 430 nm or less are not excluded as light sources of the reference light.
 なお、本開示では、参照光は、緑色光に限定ない。本開示では、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い限り、ヘモグロビン吸収スペクトルから取り得る任意の帯域の光を参照光として採用できる。 In addition, in this disclosure, the reference light is not limited to green light. In this disclosure, light in any band that can be taken from the hemoglobin absorption spectrum can be used as the reference light, as long as the absorption coefficient of oxygenated hemoglobin and the absorption coefficient of reduced hemoglobin are higher than those of red light and infrared light.
(受光素子)
 受光素子PDは、例えばフォトダイオード(PD)等の電子部品である。受光素子PDは、発光素子に対し予め設定された位置に配置される。本実施形態では、受光素子PDの個数は、1つであるが、本開示では、受光素子の個数は、複数であってもよい。
(Light receiving element)
The light receiving element PD is an electronic component such as a photodiode (PD). The light receiving element PD is disposed at a preset position relative to the light emitting element. In this embodiment, the number of the light receiving elements PD is one, but in the present disclosure, the number of the light receiving elements may be multiple.
 受光素子PDは、赤色光に対応する反射光を受光し、受光された反射光の光強度に応じた第一脈波信号を出力する。また、受光素子PDは、赤外光に対応する反射光を受光し、受光された反射光の光強度に応じた第二脈波信号を出力する。また、受光素子PDは、参照光に対応する反射光を受光し、受光された反射光の光強度に応じた第三脈波信号を出力する。具体的な酸素飽和度の測定には、受光素子が受光する赤色光と赤外光との2種類の反射光が用いられる。 The light receiving element PD receives reflected light corresponding to red light and outputs a first pulse wave signal according to the light intensity of the received reflected light. The light receiving element PD also receives reflected light corresponding to infrared light and outputs a second pulse wave signal according to the light intensity of the received reflected light. The light receiving element PD also receives reflected light corresponding to the reference light and outputs a third pulse wave signal according to the light intensity of the received reflected light. To specifically measure oxygen saturation, two types of reflected light, red light and infrared light, received by the light receiving element are used.
 なお、本開示では、受光素子は、赤色光、赤外光及び参照光のそれぞれの反射光に限定されず、それぞれの光に対応する透過光を受光し、受光された透過光の光強度に応じたそれぞれの脈波信号を出力してもよい。すなわち、本実施形態に係る酸素飽和度測定装置10は、反射光によって脈波信号の強度が測定される反射型であるが、本開示では反射型に限定されず、透過光によって脈波信号の強度が測定される透過型の酸素飽和度測定装置が構成されてもよい。 In addition, in the present disclosure, the light receiving element is not limited to the reflected light of each of the red light, infrared light, and reference light, but may receive transmitted light corresponding to each of the lights and output a pulse wave signal according to the light intensity of the received transmitted light. That is, the oxygen saturation measuring device 10 according to the present embodiment is a reflective type in which the intensity of the pulse wave signal is measured by reflected light, but in the present disclosure, it is not limited to the reflective type, and a transmissive oxygen saturation measuring device in which the intensity of the pulse wave signal is measured by transmitted light may be configured.
 また、図示を省略するが、発光素子と受光素子との間には、遮光部が設けられてもよい。遮光部によって、受光素子が発光素子からの光を直接受光することが防止される。 Although not shown in the figure, a light-shielding section may be provided between the light-emitting element and the light-receiving element. The light-shielding section prevents the light-receiving element from directly receiving light from the light-emitting element.
(酸素飽和度の測定原理)
 ここで、赤色光と赤外光との2つの光のみを用いて吸光度比が算出される場合の酸素飽和度の測定原理を説明する。具体的には、赤色光の第一脈波信号と赤外光の第二脈波信号とのそれぞれの強度の変化を経時的にモニタする。そして、第一脈波信号のデータと第二脈波信号のデータとを、それぞれ経時的に対応するデータをXY座標軸の中にプロットすることによってデータの散布図を算出する。例えば、X軸の側に説明変数として第二脈波信号のデータの値を、また、Y軸の側に目的変数として第一脈波信号のデータの値を配置できる。
(Oxygen saturation measurement principle)
Here, the principle of measuring oxygen saturation when the absorbance ratio is calculated using only two lights, red light and infrared light, will be described. Specifically, the change in the intensity of each of the first pulse wave signal of red light and the second pulse wave signal of infrared light is monitored over time. Then, the data of the first pulse wave signal and the data of the second pulse wave signal corresponding to each other over time are plotted on the XY coordinate axis to calculate a scatter diagram of the data. For example, the data value of the second pulse wave signal can be placed on the X axis as an explanatory variable, and the data value of the first pulse wave signal can be placed on the Y axis as a response variable.
 そして、散布図に含まれるデータに対して回帰処理が行われることによって、回帰直線を求める。求められた回帰直線の傾きは、赤外光の吸光度(AC/DC)に対する赤色光の吸光度(AC/DC)の比、すなわち吸光度比Φに対応する。それぞれの光の吸光度(AC/DC)は、脈波信号の固定成分DCに対する変動成分ACの比である。そして、算出された吸光度比Φを以下の式(1)に用いることによって、酸素飽和度を算出することができる。
 
 酸素飽和度[%]=a×Φ+b   ・・・式(1)
 
 式(1)中の係数a,bは、実験によって求めることができる。
Then, a regression line is obtained by performing a regression process on the data included in the scatter plot. The slope of the obtained regression line corresponds to the ratio of the absorbance of red light (AC/DC) to the absorbance of infrared light (AC/DC), i.e., the absorbance ratio Φ. The absorbance of each light (AC/DC) is the ratio of the variable component AC to the fixed component DC of the pulse wave signal. The calculated absorbance ratio Φ can then be used in the following formula (1) to calculate oxygen saturation.

Oxygen saturation [%] = a × Φ + b ... formula (1)

The coefficients a and b in the formula (1) can be determined by experiment.
(演算制御部)
 本実施形態では演算制御部20は、筐体14に設けられる。プロセッサは、第一発光素子と第二発光素子と第三発光素子と受光素子PDとに電気的に接続される。演算制御部20には、それぞれの発光素子から投光された光に対応する反射光の脈波信号のデータが、受光素子PDから経時的に入力される。演算制御部20は、反射光から取得された脈波信号に基づき、光が照射された動脈の酸素飽和度をPI値の比を用いる方法等によって測定する。
(Calculation control unit)
In this embodiment, the calculation and control unit 20 is provided in the housing 14. The processor is electrically connected to the first light-emitting element, the second light-emitting element, the third light-emitting element, and the light-receiving element PD. Pulse wave signal data of reflected light corresponding to the light emitted from each light-emitting element is input over time from the light-receiving element PD to the calculation and control unit 20. Based on the pulse wave signal obtained from the reflected light, the calculation and control unit 20 measures the oxygen saturation of the artery irradiated with light by a method using the ratio of PI values, for example.
 図3に示すように、演算制御部20は、CPU(Central Processing Unit:プロセッサ)21、ROM(Read Only Memory)22、RAM(Random Access Memory)23、ストレージ24、ユーザインタフェース25及び通信インタフェース26を有する。各構成は、バス27を介して相互に通信可能に接続されている。 As shown in FIG. 3, the calculation control unit 20 has a CPU (Central Processing Unit: processor) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, a storage 24, a user interface 25, and a communication interface 26. Each component is connected to each other so as to be able to communicate with each other via a bus 27.
 CPU21は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU21は、ROM22又はストレージ24からプログラムを読み出し、RAM23を作業領域としてプログラムを実行する。CPU21は、ROM22又はストレージ24に記録されているプログラムにしたがって、上記各構成の制御及び各種の演算処理を行う。CPU21は、本開示のプロセッサである。 The CPU 21 is a central processing unit that executes various programs and controls each part. That is, the CPU 21 reads a program from the ROM 22 or the storage 24, and executes the program using the RAM 23 as a working area. The CPU 21 controls each of the above components and performs various calculation processes according to the program recorded in the ROM 22 or the storage 24. The CPU 21 is the processor of the present disclosure.
 本実施形態では、ROM22又はストレージ24には、酸素飽和度測定プログラムが格納されている。酸素飽和度測定プログラムは、酸素飽和度を測定するための演算プログラムである。 In this embodiment, the ROM 22 or the storage 24 stores an oxygen saturation measurement program. The oxygen saturation measurement program is a calculation program for measuring oxygen saturation.
 ROM22は、各種プログラム及び各種データを格納する。RAM23は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ24は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。 The ROM 22 stores various programs and data. The RAM 23 temporarily stores programs or data as a working area. The storage 24 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including the operating system and various data.
 ユーザインタフェース25は、ウェアラブルデバイスである酸素飽和度測定装置10を装着する被測定者が演算制御部20を使用する際のインタフェースである。ユーザインタフェース25は、例えば、被測定者によるタッチ操作を可能とするタッチパネルを備えた液晶ディスプレイ、被測定者による音声入力を受け付ける音声入力受付部、及び被測定者が押下可能なボタン等の少なくとも一つを含み得る。本実施形態の表示部は、ユーザインタフェース25の一例である。 The user interface 25 is an interface that is used when the subject wearing the oxygen saturation measuring device 10, which is a wearable device, uses the calculation control unit 20. The user interface 25 may include, for example, at least one of a liquid crystal display equipped with a touch panel that allows the subject to perform touch operations, a voice input receiving unit that receives voice input from the subject, and a button that can be pressed by the subject. The display unit of this embodiment is an example of the user interface 25.
 通信インタフェース26は、演算制御部20が、他の機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。 The communication interface 26 is an interface that allows the calculation control unit 20 to communicate with other devices, and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark).
 酸素飽和度測定プログラムを実行する際に、酸素飽和度測定装置10は、上記のハードウェア資源を用いて、各種の機能を実現する。酸素飽和度測定装置10が実現する機能構成として、酸素飽和度測定装置10は、脈波信号取得部、回帰直線算出部、吸光度比算出部及び酸素飽和度測定部を有する。各機能構成は、CPU21が、ROM22又はストレージ24に記憶された酸素飽和度測定プログラムを読み出し、実行することにより実現される。 When executing the oxygen saturation measurement program, the oxygen saturation measurement device 10 realizes various functions using the above hardware resources. The oxygen saturation measurement device 10 has a pulse wave signal acquisition unit, a regression line calculation unit, an absorbance ratio calculation unit, and an oxygen saturation measurement unit as functional configurations realized by the oxygen saturation measurement device 10. Each functional configuration is realized by the CPU 21 reading and executing the oxygen saturation measurement program stored in the ROM 22 or storage 24.
<酸素飽和度測定方法>
 次に、本実施形態に係る酸素飽和度測定装置10を用いた酸素飽和度測定方法の一例を、図4~図11を参照して説明する。
<Oxygen saturation measurement method>
Next, an example of an oxygen saturation measuring method using the oxygen saturation measuring device 10 according to this embodiment will be described with reference to FIGS.
(脈波信号取得処理)
 まず、図4中のステップS1に示すように、プロセッサ21の脈波信号取得部は、第一発光素子LED1を用いて、動脈に対して赤色光を投光する。また、プロセッサ21は、第二発光素子LED2を用いて、動脈に対して赤外光を投光する。また、プロセッサ21は、第三発光素子LED3を用いて、動脈に対して赤色光及び赤外光より動脈からの反射光のSN比が高い波長を有する参照光を投光する。
(Pulse wave signal acquisition process)
First, as shown in step S1 in Fig. 4, the pulse wave signal acquisition unit of the processor 21 projects red light onto the artery using the first light-emitting element LED1. The processor 21 also projects infrared light onto the artery using the second light-emitting element LED2. The processor 21 also projects reference light onto the artery using the third light-emitting element LED3, the reference light having a wavelength that provides a higher signal-to-noise ratio for light reflected from the artery than the red light and infrared light.
 次に、図4中のステップS2に示すように、プロセッサ21は、投光された赤色光に対応する反射光を、受光素子PDを用いて受光する。また、プロセッサ21は、投光された赤外光に対応する反射光を受光する。また、プロセッサ21は、投光された参照光に対応する反射光を受光する。 Next, as shown in step S2 in FIG. 4, the processor 21 receives reflected light corresponding to the projected red light using the light receiving element PD. The processor 21 also receives reflected light corresponding to the projected infrared light. The processor 21 also receives reflected light corresponding to the projected reference light.
 次に、図4中のステップS3に示すように、プロセッサ21は、受光された反射光の光強度に応じた第一脈波信号PS1を受光素子PDから時間的に連続して取得する。また、プロセッサ21は、受光された反射光の光強度に応じた第二脈波信号PS2を受光素子PDから時間的に連続して取得する。また、プロセッサ21は、受光された反射光の光強度に応じた第三脈波信号PS3を受光素子PDから時間的に連続して取得する。図5A中には取得された第一脈波信号PS1の波形が、図5B中には取得された第二脈波信号PS2の波形が、図5C中には取得された第三脈波信号PS3の波形が、それぞれ例示されている。 Next, as shown in step S3 in FIG. 4, the processor 21 continuously acquires a first pulse wave signal PS1 corresponding to the light intensity of the received reflected light from the light receiving element PD. The processor 21 also continuously acquires a second pulse wave signal PS2 corresponding to the light intensity of the received reflected light from the light receiving element PD. The processor 21 also continuously acquires a third pulse wave signal PS3 corresponding to the light intensity of the received reflected light from the light receiving element PD. FIG. 5A shows an example of the waveform of the acquired first pulse wave signal PS1, FIG. 5B shows an example of the waveform of the acquired second pulse wave signal PS2, and FIG. 5C shows an example of the waveform of the acquired third pulse wave signal PS3.
(回帰直線算出処理)
 次に、図4中のステップS4に示すように、プロセッサ21の回帰直線算出部は、第一脈波信号PS1のデータと第三脈波信号PS3のデータとに基づいて第一回帰直線を算出する。また、図4中のステップS5に示すように、プロセッサ21は、第二脈波信号PS2のデータと第三脈波信号PS3のデータとに基づいて第二回帰直線を算出する。
(Regression Line Calculation Process)
Next, as shown in step S4 of Fig. 4, the regression line calculation section of processor 21 calculates a first regression line based on the data of first pulse wave signal PS1 and the data of third pulse wave signal PS3. As shown in step S5 of Fig. 4, processor 21 calculates a second regression line based on the data of second pulse wave signal PS2 and the data of third pulse wave signal PS3.
 具体的には、プロセッサ21は、図6に示すように、第一脈波信号PS1のデータと第三脈波信号PS3のデータとを座標軸中に配置する。本実施形態では、赤色光の第一脈波信号PS1のデータがY軸に配置されると共に、参照光の第三脈波信号PS3のデータがX軸に配置される場合が例示されている。そして、プロセッサ21は、配置されたそれぞれのデータに対し、第一脈波信号PS1のデータが配置された側のY軸に沿った距離の二乗和が最小になる最小二乗法を行う。回帰分析としての最小二乗法が行われることによって、第一回帰直線が算出される。 Specifically, as shown in FIG. 6, the processor 21 arranges the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3 on the coordinate axes. In this embodiment, the data of the first pulse wave signal PS1 of red light is arranged on the Y axis, and the data of the third pulse wave signal PS3 of the reference light is arranged on the X axis. The processor 21 then performs a least squares method on each arranged data, minimizing the sum of squares of the distance along the Y axis on the side on which the data of the first pulse wave signal PS1 is arranged. The first regression line is calculated by performing the least squares method as a regression analysis.
 なお、本開示では、赤色光の第一脈波信号PS1のデータがX軸に配置されると共に、参照光の第三脈波信号PS3のデータがY軸に配置されてもよい。赤色光の第一脈波信号PS1のデータがX軸に配置される場合、第一脈波信号PS1のデータが配置された側のX軸に沿った距離の二乗和が最小になる最小二乗法が行われることによって、第一回帰直線が算出される。 In addition, in the present disclosure, the data of the first pulse wave signal PS1 of red light may be placed on the X-axis, and the data of the third pulse wave signal PS3 of the reference light may be placed on the Y-axis. When the data of the first pulse wave signal PS1 of red light is placed on the X-axis, the first regression line is calculated by performing the least squares method that minimizes the sum of the squares of the distance along the X-axis on the side where the data of the first pulse wave signal PS1 is placed.
 また、プロセッサ21は、図7に示すように、第二脈波信号PS2のデータと第三脈波信号PS3のデータとを座標軸中に配置する。本実施形態では、赤外光の第二脈波信号PS2のデータがY軸に配置されると共に、参照光の第三脈波信号PS3のデータがX軸に配置される場合が例示されている。そして、プロセッサ21は、配置されたそれぞれのデータに対し、第二脈波信号PS2のデータが配置された側のY軸に沿った距離の二乗和が最小になる最小二乗法を行う。回帰分析としての最小二乗法が行われることによって、第二回帰直線が算出される。 The processor 21 also arranges the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3 on the coordinate axes, as shown in FIG. 7. In this embodiment, the data of the second pulse wave signal PS2 of infrared light is arranged on the Y axis, and the data of the third pulse wave signal PS3 of the reference light is arranged on the X axis. The processor 21 then performs a least squares method on each arranged data, minimizing the sum of squares of the distance along the Y axis on the side on which the data of the second pulse wave signal PS2 is arranged. The least squares method is performed as a regression analysis, and a second regression line is calculated.
 なお、本開示では、赤外光の第二脈波信号PS2のデータがX軸に配置されると共に、参照光の第三脈波信号PS3のデータがY軸に配置されてもよい。赤外光の第二脈波信号PS2のデータがX軸に配置される場合、第二脈波信号PS2のデータが配置された側のX軸に沿った距離の二乗和が最小になる最小二乗法が行われることによって、第二回帰直線が算出される。 In the present disclosure, the data of the second pulse wave signal PS2 of infrared light may be placed on the X-axis, and the data of the third pulse wave signal PS3 of the reference light may be placed on the Y-axis. When the data of the second pulse wave signal PS2 of infrared light is placed on the X-axis, the second regression line is calculated by performing the least squares method that minimizes the sum of the squares of the distance along the X-axis on the side where the data of the second pulse wave signal PS2 is placed.
(最小二乗法が用いられた回帰直線の傾きについて)
 ここで、図8に示すように、最小二乗法では、X軸とY軸との両方の変数にばらつきがある場合、データの分布を表す散布図の全体形状は、点線の楕円状である。
(Regarding the slope of the regression line using the least squares method)
Here, as shown in FIG. 8, in the least squares method, when there is variation in variables on both the X-axis and the Y-axis, the overall shape of the scatter diagram representing the distribution of data is an ellipse indicated by a dotted line.
 最小二乗法では、一方の軸に沿った距離の二乗和が最小になる最小二乗法が行われるため、最小二乗法によって求められた回帰直線は、真の関係を表す直線よりも、他方の軸の側に偏り易い。図8中には、Y軸に沿った距離の二乗和が最小になるように最小二乗法が用いられた回帰直線の実線の傾きが、真の関係を表す直線の方程式の破線の傾きよりもX軸の側に傾いた場合が例示されている。 The least squares method uses the least squares method that minimizes the sum of the squares of the distances along one axis, so the regression line found using the least squares method is likely to be biased toward the other axis than the line that represents the true relationship. Figure 8 shows an example where the slope of the solid regression line found using the least squares method to minimize the sum of the squares of the distances along the Y axis is more inclined toward the X axis than the slope of the dashed line of the equation for the line that represents the true relationship.
 このため、図8中の楕円の左下側に描かれた、実線の双方向矢印の長さと破線の双方向矢印の長さとから分かるように、X軸に配置されたデータのばらつきに起因する、真の関係を表す直線からの回帰直線の偏差が大きくなる。結果、最小二乗法が用いられた回帰直線の傾きは、真の関係を表す直線の方程式の傾きから乖離し易い。 For this reason, as can be seen from the lengths of the solid and dashed double-headed arrows drawn on the lower left side of the ellipse in Figure 8, the deviation of the regression line from the straight line representing the true relationship due to the variability in the data placed on the X-axis increases. As a result, the slope of the regression line obtained using the least squares method tends to deviate from the slope of the equation of the line representing the true relationship.
 一方、図9に示すように、本実施形態では、X軸に、SN比が高い参照光の受光光の脈波信号のデータが配置される。換言すると、X軸における受光光の脈波信号のばらつきは、Y軸における受光光の脈波信号のばらつきと比べて、大きく抑制されている。 On the other hand, as shown in FIG. 9, in this embodiment, data on the pulse wave signal of the received light of the reference light with a high S/N ratio is plotted on the X-axis. In other words, the variability in the pulse wave signal of the received light on the X-axis is significantly suppressed compared to the variability in the pulse wave signal of the received light on the Y-axis.
 図9中には、軸に沿った距離の二乗和が最小になるように最小二乗法が用いられた回帰直線が、真の関係を表す直線とほぼ同じである場合が例示されている。また、データの分布を表す散布図の全体形状は、点線の平行四辺形状である。このため、図9中の回帰直線を挟んで形成されたデータの分布のばらつきは、Y軸に沿って、ほぼ上下対称である。すなわち、本実施形態では、X軸のばらつきに起因する、真の関係を表す直線からの偏差が生じ難い。 FIG. 9 illustrates an example in which the regression line, obtained by using the least squares method to minimize the sum of the squares of the distances along the axes, is nearly identical to the line representing the true relationship. The overall shape of the scatter plot representing the data distribution is a dotted parallelogram. For this reason, the variation in the data distribution formed on either side of the regression line in FIG. 9 is nearly symmetrical above and below along the Y-axis. In other words, in this embodiment, deviation from the line representing the true relationship due to variation on the X-axis is unlikely to occur.
 このため、本実施形態では、回帰直線の傾きは、真の関係を表す直線の方程式の傾きから乖離し難い。なお、本開示では、回帰直線を求める回帰手段としては、最小二乗法に限定されない。本開示では、例えば標準主軸回帰やデミング回帰等、任意の回帰手段を採用できる。 For this reason, in this embodiment, the slope of the regression line is unlikely to deviate from the slope of the linear equation that represents the true relationship. Note that in this disclosure, the regression method for finding the regression line is not limited to the least squares method. In this disclosure, any regression method can be used, such as standard principal axis regression or Deming regression.
(第一情報及び第二情報)
 本実施形態の第一回帰直線の傾きは、本開示の「第一情報」に対応する。本実施形態の第一情報は、参照光の受光光に関する情報を基準として設定された、赤色光の受光光に関する情報である。また、本実施形態の第二回帰直線の傾きは、本開示の「第二情報」に対応する。本実施形態の第二情報は、参照光の受光光に関する情報を基準として設定された、赤外光の受光光に関する情報である。
(First information and second information)
The slope of the first regression line in this embodiment corresponds to the "first information" of the present disclosure. The first information in this embodiment is information about the received light of red light, set based on information about the received light of the reference light. Moreover, the slope of the second regression line in this embodiment corresponds to the "second information" of the present disclosure. The second information in this embodiment is information about the received light of infrared light, set based on information about the received light of the reference light.
 なお、本実施形態では、第一情報と第二情報との比として、第一情報に対する第二情報の比が用いられたが、本開示では、第二情報に対する第一情報の比が用いられてもよい。また、本開示では、第一情報と第二情報とは、回帰直線すなわち関係式から導かれる傾きに限定されない。第一情報と第二情報とは、例えば、傾き以外の数値や、数値の集合であってもよいし、或いは、回帰直線以外の関係式から導かれる数値であってもよい。 In this embodiment, the ratio of the second information to the first information is used as the ratio between the first information and the second information, but in this disclosure, the ratio of the first information to the second information may be used. Furthermore, in this disclosure, the first information and the second information are not limited to a regression line, i.e., a slope derived from a relational equation. The first information and the second information may be, for example, a numerical value other than a slope, a set of numerical values, or a numerical value derived from a relational equation other than a regression line.
(回帰直線の式)
 ここで、回帰直線の算出に用いる要素を以下のように設定する。
red:赤色光の吸光度(AC/DC)
ir:赤外光の吸光度(AC/DC)
green:緑色光の吸光度
Φ1:緑色光の吸光度に対する赤色光の吸光度の比
Φ2:緑色光の吸光度に対する赤外光の吸光度の比
b1:第一回帰直線の切片
b2:第二回帰直線の切片
(Equation of regression line)
Here, the elements used in calculating the regression line are set as follows:
S red : Red light absorbance (AC/DC)
S ir : Infrared light absorbance (AC/DC)
S green : absorbance of green light Φ1: ratio of absorbance of red light to absorbance of green light Φ2: ratio of absorbance of infrared light to absorbance of green light b1: intercept of first regression line b2: intercept of second regression line
 このため、図6に示すように、第一回帰直線の式は、
 
 Sred=Φ1・Sgreen+b1
 
と設定できる。
Therefore, as shown in FIG. 6, the equation of the first regression line is

S red = Φ1 · S green + b1

It can be set as follows.
 また、図7に示すように、第二回帰直線の式は、
 
 Sir=Φ2・Sgreen+b2
 
と設定できる。
As shown in FIG. 7, the equation of the second regression line is

S ir = Φ2 · S green + b2

It can be set as follows.
(吸光度比算出処理)
 次に、図4中のステップS6に示すように、プロセッサ21の吸光度比算出部は、それぞれ算出された第一回帰直線の傾きと第二回帰直線の傾きとに基づいて、第二脈波信号PS2に対する第一脈波信号PS1の吸光度比を算出する。換言すると、第一回帰直線と第二回帰直線との連立方程式を解くことによって、吸光度比が求められる。
(Absorbance ratio calculation process)
4, the absorbance ratio calculation section of the processor 21 calculates the absorbance ratio of the first pulse wave signal PS1 to the second pulse wave signal PS2 based on the calculated slopes of the first and second regression lines. In other words, the absorbance ratio is found by solving the simultaneous equations of the first and second regression lines.
 具体的には、赤外光の吸光度Sirに対する赤色光の吸光度Sredの比を吸光度比Φとすると、以下の式が得られる。
 
 Φ=Sred/Sir=(Φ1・Sgreen+b1)/(Φ2・Sgreen+b2)
 
Specifically, when the ratio of the absorbance S red of red light to the absorbance S ir of infrared light is defined as the absorbance ratio Φ, the following equation is obtained.

Φ=S red /S ir =(Φ1·S green +b1)/(Φ2·S green +b2)
 ここで、変数同士の線形性から切片b1,b2が原点を通ることによって、b1=b2=0と見做すことができる。よって、以下の式が得られる。
 
 Φ≒(Φ1・Sgreen)/(Φ2・Sgreen)=Φ1/Φ2
 
Here, because the intercepts b1 and b2 pass through the origin due to the linearity between the variables, it can be considered that b1 = b2 = 0. Therefore, the following equation is obtained.

Φ≈(Φ1· Sgreen )/(Φ2· Sgreen )=Φ1/Φ2
 すなわち、本実施形態では、参照光の第三脈波信号PS3のデータは、赤色光の吸光度と赤外光の吸光度との値のばらつきを抑制するために測定用の算出過程の中に介在する。 In other words, in this embodiment, the data of the third pulse wave signal PS3 of the reference light is included in the measurement calculation process to suppress the variation in the values of the red light absorbance and the infrared light absorbance.
(酸素飽和度測定処理)
 次に、図4中のステップS7に示すように、プロセッサ21の酸素飽和度測定部は、算出された吸光度比に基づいて、動脈の酸素飽和度を算出する。算出された酸素飽和度は、測定値として表示部18に表示される。
(Oxygen saturation measurement process)
4, the oxygen saturation measurement unit of the processor 21 calculates the oxygen saturation of the artery based on the calculated absorbance ratio. The calculated oxygen saturation is displayed on the display unit 18 as a measurement value.
 次に、本実施形態に係る実施例として、シミュレーション解析を用いて行われた第1解析例と第2解析例とを、図10及び図11を参照しつつ説明する。 Next, as examples of this embodiment, a first analysis example and a second analysis example performed using simulation analysis will be described with reference to Figures 10 and 11.
(第1解析例)
 第1解析例では、本実施形態に係る実施例、第1比較例及び第2比較例のそれぞれにおいて算出された吸光度比を比較した。
(First analysis example)
In the first analytical example, the absorbance ratios calculated in the example according to this embodiment, the first comparative example, and the second comparative example were compared.
 具体的には、脈波信号を模して、解析用の三角波信号を生成した。生成された三角波信号には、全波長範囲におけるランダムなノイズ、いわゆるホワイトノイズを含ませた。三角波信号のそれぞれSN比は、図10中の横軸に示すように、2、4、8、16、32、64、128、256の8パターンである。そして、8パターンのSN比のそれぞれにおいて、実施例、第1比較例及び第2比較例のそれぞれの演算方法を行い、吸光度比Φを算出した。 Specifically, a triangular wave signal for analysis was generated by simulating a pulse wave signal. The generated triangular wave signal contained random noise in the entire wavelength range, so-called white noise. As shown on the horizontal axis in Figure 10, the S/N ratios of the triangular wave signals were eight patterns: 2, 4, 8, 16, 32, 64, 128, and 256. Then, for each of the eight S/N ratio patterns, the calculation methods of the example, the first comparative example, and the second comparative example were performed to calculate the absorbance ratio Φ.
 第1比較例及び第2比較例では、参照光は使用されず、赤色光と赤外光との2つの光のみを用いて吸光度比Φが算出された。第1比較例では、赤色光の第一脈波信号のデータと赤外光の第二脈波信号のデータの散布図に対して、最小二乗法が用いられた。また、第2比較例では、赤色光の第一脈波信号のデータと赤外光の第二脈波信号のデータの散布図に対して、直交距離回帰が用いられた。 In the first and second comparative examples, no reference light was used, and the absorbance ratio Φ was calculated using only two lights, red light and infrared light. In the first comparative example, the least squares method was used on the scatter plot of the data of the first pulse wave signal of red light and the data of the second pulse wave signal of infrared light. In the second comparative example, orthogonal distance regression was used on the scatter plot of the data of the first pulse wave signal of red light and the data of the second pulse wave signal of infrared light.
 図10に示すように、実施例において算出された吸光度比Φは、8パターンのSN比のいずれにおいても、直交距離回帰の第2比較例の場合と同様、真値に近い値であった。特に、実施例の吸光度比Φは、SN比が2又は4等の比較的低いパターンであっても、直交距離回帰と同様に、真値に近い値であった。第1解析例によって、実施例は、直交距離回帰と同程度の測定精度を実現できることが分かった。 As shown in Figure 10, the absorbance ratio Φ calculated in the embodiment was close to the true value for all eight S/N ratio patterns, as in the second comparative example of orthogonal distance regression. In particular, the absorbance ratio Φ in the embodiment was close to the true value, as in orthogonal distance regression, even for patterns with relatively low S/N ratios such as 2 or 4. The first analysis example showed that the embodiment can achieve the same level of measurement accuracy as orthogonal distance regression.
(第2解析例)
 第2解析例では、本実施形態に係る実施例、第1比較例及び第2比較例のそれぞれの吸光度比の算出にかかった処理時間を比較した。第2解析例で使用されたCPUは、Intel社製Xeon(コア数:8、周波数:2.20GHz)であった。第2解析例におけるその他の解析条件は、第1解析例の場合と同様である。
(Second analysis example)
In the second analysis example, the processing time required to calculate the absorbance ratio of each of the example according to the present embodiment, the first comparative example, and the second comparative example was compared. The CPU used in the second analysis example was an Intel Xeon (number of cores: 8, frequency: 2.20 GHz). The other analysis conditions in the second analysis example were the same as those in the first analysis example.
 図11に示すように、直交距離回帰の第2比較例では、繰り返し計算量が最小二乗法と比べ多いため、処理時間が多いことが分かる。一方、実施例において吸光度比の算出にかかった処理時間は、8パターンのSN比のいずれにおいても、真値に近い値であった。直交距離回帰の第2比較例より短かった。特に、実施例の処理時間は、SN比が2、4又は6等の比較的低いパターンであっても、第2比較例の半分以下であった。第2解析例によって、実施例は、直交距離回帰より短い処理時間を実現できることが分かった。 As shown in Figure 11, in the second comparative example of orthogonal distance regression, the amount of repeated calculations is greater than in the least squares method, and therefore the processing time is longer. On the other hand, the processing time required to calculate the absorbance ratio in the example was close to the true value for all eight patterns of S/N ratios, and was shorter than the second comparative example of orthogonal distance regression. In particular, the processing time in the example was less than half that of the second comparative example, even for patterns with relatively low S/N ratios such as 2, 4, or 6. The second analysis example shows that the example can achieve a processing time shorter than that of orthogonal distance regression.
(第1変形例)
 次に、本実施形態に係る酸素飽和度測定装置の変形例を説明する。第1変形例に係る酸素飽和度測定装置には、上記の本実施形態で説明した酸素飽和度を測定する算出手段以外にも、酸素飽和度を測定可能な異なる算出手段が搭載されている。このため、プロセッサ21は、搭載された複数の算出手段に基づき、複数の酸素飽和度を算出することが可能である。そして、第1変形例では、算出された複数の酸素飽和度の中から1つの酸素飽和度を、予め設定された基準に基づき動脈の酸素飽和度として決定するようにプロセッサ21が構成される。
(First Modification)
Next, modified examples of the oxygen saturation measuring device according to the present embodiment will be described. In the oxygen saturation measuring device according to the first modified example, in addition to the calculation means for measuring the oxygen saturation described in the present embodiment, a different calculation means capable of measuring the oxygen saturation is installed. Therefore, the processor 21 can calculate multiple oxygen saturations based on the multiple calculation means installed. In the first modified example, the processor 21 is configured to determine one oxygen saturation from the multiple calculated oxygen saturations as the arterial oxygen saturation based on a preset criterion.
 具体的には、例えば、プロセッサ21は、脈波の最大値及び/又は最小値に基づき算出する方法や回帰法などの酸素飽和度算出手段による酸素飽和度測定処理を並列的に実行することによって、それぞれ異なる酸素飽和度を算出できる。算出された複数の酸素飽和度のうち、例えば、外れ値をより多く含んで算出されたと考えられる酸素飽和度を除外するように、1つの値が決定され得る。すなわち、外れ値の大小関係が、基準として用いられる。 Specifically, for example, the processor 21 can calculate different oxygen saturations by performing oxygen saturation measurement processes in parallel using oxygen saturation calculation means such as a method of calculation based on the maximum and/or minimum values of the pulse wave or a regression method. Of the multiple calculated oxygen saturations, one value can be determined so as to exclude, for example, an oxygen saturation that is considered to have been calculated with a larger number of outliers. In other words, the magnitude relationship of the outliers is used as a criterion.
 また、算出された複数の酸素飽和度のうち、例えば、計測した脈波信号のSN比や基線変動の大きさといった基準に基づき、正確性が低いと考えられる酸素飽和度を除外するように、1つの値が決定され得る。或いは、正確性が高いと考えられる複数の酸素飽和度を選定し、平均値や中央値を求めることで、1つの値が決定されてもよい。また、他の基準としては、例えば、被測定者の過去の測定に取得された実績値に応じて設定された一定の範囲等であってもよく、本開示では基準は、適宜、設定できる。 Furthermore, from among the multiple calculated oxygen saturations, a single value may be determined so as to exclude oxygen saturations that are considered to be less accurate based on criteria such as the signal-to-noise ratio of the measured pulse wave signal or the magnitude of baseline fluctuation. Alternatively, a single value may be determined by selecting multiple oxygen saturations that are considered to be more accurate and finding the average or median value. Other criteria may include, for example, a certain range set according to actual values obtained in past measurements of the subject, and in the present disclosure, criteria can be set as appropriate.
(第2変形例)
 第2変形例に係る酸素飽和度測定装置では、プロセッサ21は、受光素子PDによってそれぞれ出力された第一脈波信号PS1のデータと第三脈波信号PS3のデータとのうち、動脈の拍動に関連しない外れ値を除いて、第一回帰直線を算出するように構成される。また、プロセッサ21は、受光素子PDによってそれぞれ出力された第二脈波信号PS2のデータと第三脈波信号PS3のデータとのうち、動脈の拍動に関連しない外れ値を除いて第二回帰直線を算出する。
(Second Modification)
In the oxygen saturation measuring device according to the second modification, the processor 21 is configured to calculate a first regression line by excluding outliers not related to arterial pulsation from the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3 output by the light receiving element PD. The processor 21 also calculates a second regression line by excluding outliers not related to arterial pulsation from the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3 output by the light receiving element PD.
 具体的には、プロセッサ21は、受光素子PDによって出力された複数のデータのうち、予め設定された閾値を満たすデータを外れ値として決定する。第一回帰直線の算出において設定される閾値は、第一脈波信号PS1のデータと第三脈波信号PS3のデータとの間の関係性に基づいて設定される。また、第二回帰直線の算出において設定される閾値は、第二脈波信号PS2のデータと第三脈波信号PS3のデータとの間の関係性に基づいて設定される。 Specifically, the processor 21 determines, from among the multiple data output by the light receiving element PD, data that satisfies a preset threshold as an outlier. The threshold set in the calculation of the first regression line is set based on the relationship between the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3. Furthermore, the threshold set in the calculation of the second regression line is set based on the relationship between the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3.
 なお、本実施形態では、外れ値を除いて回帰直線を算出する処理は、第一回帰直線の算出と第二回帰直線の算出との両方において実行される場合が例示されたが、本開示では、少なくとも一方の回帰直線の算出において実行されればよい。 In the present embodiment, the process of calculating the regression line excluding outliers is illustrated as being executed in both the calculation of the first regression line and the calculation of the second regression line, but in the present disclosure, it is sufficient that the process is executed in the calculation of at least one of the regression lines.
(閾値)
 本実施形態では、外れ値を検出するための本開示の閾値の例として、例えば第一閾値と第二閾値とを設定できる。なお、本開示では、外れ値を検出するための閾値は、第一閾値と第二閾値とに限定されず、任意に設定できる。
(Threshold)
In this embodiment, as an example of the threshold value of the present disclosure for detecting an outlier, for example, a first threshold value and a second threshold value can be set. Note that in the present disclosure, the threshold value for detecting an outlier is not limited to the first threshold value and the second threshold value, and can be set arbitrarily.
(第一閾値)
 脈波信号には、変動成分(AC)と、変動しない固定成分(DC)とが含まれる。赤色光の第一脈波信号と赤外光の第二脈波信号とのそれぞれから、固定成分に対する変動成分の比(AC/DC)のデータが算出される。
(First threshold)
The pulse wave signal includes a fluctuating component (AC) and a fixed component (DC) that does not fluctuate. Data on the ratio of the fluctuating component to the fixed component (AC/DC) is calculated from each of the first pulse wave signal of red light and the second pulse wave signal of infrared light.
 そして、第一脈波信号のAC/DCのデータを目的変数とすると共に、第二脈波信号のAC/DCのデータを説明変数としたデータの散布図では、第一脈波信号のAC/DCのデータと第二脈波信号のAC/DCのデータとの相関が比較的低い。このため、図12に示すように、拍動に関連したデータの分布と外乱による外れ値の分布とは、重なり合う領域が比較的大きくなる。結果、拍動に関連したデータの分布と外乱による外れ値の分布とは、分離し難い、すなわち、外れ値を検出し難い。 In a scatter plot of data in which the AC/DC data of the first pulse wave signal is the objective variable and the AC/DC data of the second pulse wave signal is the explanatory variable, the correlation between the AC/DC data of the first pulse wave signal and the AC/DC data of the second pulse wave signal is relatively low. For this reason, as shown in FIG. 12, the area of overlap between the distribution of data related to pulsation and the distribution of outliers due to disturbances is relatively large. As a result, it is difficult to separate the distribution of data related to pulsation and the distribution of outliers due to disturbances, i.e., it is difficult to detect outliers.
 一方、第一脈波信号のAC/DCのデータを目的変数とすると共に、参照光の第三脈波信号のAC/DCのデータを説明変数としたデータの散布図では、第一脈波信号のAC/DCのデータと第三脈波信号のAC/DCのデータとの相関が、比較的高い。このため、拍動に関連したデータの分布と外乱による外れ値の分布とが、分離し易くなる。 On the other hand, in a scatter plot of data in which the AC/DC data of the first pulse wave signal is the objective variable and the AC/DC data of the third pulse wave signal of the reference light is the explanatory variable, the correlation between the AC/DC data of the first pulse wave signal and the AC/DC data of the third pulse wave signal is relatively high. This makes it easier to separate the distribution of data related to pulsation from the distribution of outliers due to disturbances.
 具体的には例えば、マハラノビス距離のような、データの分布との相対距離を表す予め設定された指標を第一閾値として設定する。例えば、設定された第一閾値以上に基準値から離れたデータを拍動に関連しないデータと設定することによって、外れ値を容易に検出できる。図13中には、点線の楕円によって、すべてのデータのうちの約95%を含むマハラノビス距離が例示されている。本実施形態では、例えば、図13中の楕円の範囲に含まれないデータを外れ値として除外できる。 Specifically, for example, a preset index that indicates a relative distance from the distribution of data, such as the Mahalanobis distance, is set as the first threshold. For example, by setting data that is further from the reference value than the set first threshold as data that is not related to heartbeats, outliers can be easily detected. In FIG. 13, the dotted ellipse illustrates an example of a Mahalanobis distance that includes approximately 95% of all data. In this embodiment, for example, data that does not fall within the range of the ellipse in FIG. 13 can be excluded as an outlier.
(第二閾値)
 赤色光の第一脈波信号のAC/DCのデータと赤外光の第二脈波信号のAC/DCのデータとを時間的に連続して取得された参照光の第三脈波信号の信号強度順で並び替えた場合、赤色光と赤外光とが信号強度順に配置されることが、各色の線形性から期待される。
(Second Threshold)
When the AC/DC data of the first pulse wave signal of red light and the AC/DC data of the second pulse wave signal of infrared light are rearranged in order of signal strength of the third pulse wave signal of reference light acquired successively in time, it is expected from the linearity of each color that the red light and infrared light will be arranged in order of signal strength.
 しかし、図14に示すように、外乱による外れ値は、赤色光及び赤外光のような線形性を有さないため、第三脈波信号の信号強度順で並び替えても、期待順位と実際の順位との差が大きくなる。このため、予め設定された期待順位と実際の順位との差を第二閾値として設定する。例えば、設定された第二閾値以上に実際の順位が期待順位から離れたデータを拍動に関連しないデータと設定することによって、外れ値を容易に検出できる。 However, as shown in FIG. 14, outliers due to disturbances do not have the linearity of red light and infrared light, and therefore even if the third pulse wave signal is sorted in order of signal strength, the difference between the expected rank and the actual rank becomes large. For this reason, a second threshold value is set to the difference between the predetermined expected rank and the actual rank. For example, by setting data whose actual rank deviates from the expected rank by more than the set second threshold value as data that is not related to heartbeats, outliers can be easily detected.
(作用効果)
 本実施形態では、第一脈波信号PS1のデータと第三脈波信号PS3のデータとに基づいて第一回帰直線が算出されると共に、第二脈波信号PS2のデータと第三脈波信号PS3のデータとに基づいて第二回帰直線が算出される。また、第三脈波信号PS3は、赤色光及び赤外光よりも動脈からの受光光のSN比が高い波長を有する参照光に対応する脈波信号である。
(Action and Effect)
In this embodiment, a first regression line is calculated based on the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3, and a second regression line is calculated based on the data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3. The third pulse wave signal PS3 is a pulse wave signal corresponding to reference light having a wavelength at which the signal-to-noise ratio of light received from an artery is higher than that of red light and infrared light.
 そして、第一回帰直線の傾きと第二回帰直線の傾きとに基づいて、第二脈波信号PS2に対する第一脈波信号PS1の吸光度比が算出され、算出された吸光度比に基づいて動脈の酸素飽和度が測定される。 Then, the absorbance ratio of the first pulse wave signal PS1 to the second pulse wave signal PS2 is calculated based on the slope of the first regression line and the slope of the second regression line, and the arterial oxygen saturation is measured based on the calculated absorbance ratio.
 すなわち、本実施形態では、動脈に対して投光される参照光の波長は、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長である。このため、参照光に対応する第三脈波信号PS3のSN比は、赤色光及び赤外光よりも高くなる。すなわち、受光光の脈波信号のSN比は、投光される光の波長に依存する。酸素飽和度の算出アルゴリズムの中に、赤色光と赤外光との2つの光以外の第3の光としての参照光が介在する。参照光の介在によって、赤色光と赤外光との2つの光のみを用いて吸光度比が算出される場合に比べ、回帰直線の傾きが真の関係を表す直線の方程式の傾きから乖離することが抑制される。このため、赤色光と赤外光との2つの光のみを用いて吸光度比が算出される場合に比べ、酸素飽和度の測定精度を向上できる。 In other words, in this embodiment, the wavelength of the reference light projected onto the artery is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light. Therefore, the signal-to-noise ratio of the third pulse wave signal PS3 corresponding to the reference light is higher than those of red light and infrared light. In other words, the signal-to-noise ratio of the pulse wave signal of the received light depends on the wavelength of the projected light. In the oxygen saturation calculation algorithm, a reference light is included as a third light other than the two lights of red light and infrared light. The inclusion of the reference light prevents the slope of the regression line from deviating from the slope of the linear equation that represents the true relationship, compared to when the absorbance ratio is calculated using only the two lights of red light and infrared light. Therefore, the measurement accuracy of the oxygen saturation can be improved, compared to when the absorbance ratio is calculated using only the two lights of red light and infrared light.
 また、本実施形態では、第一脈波信号PS1のデータと第三脈波信号PS3のデータとが座標軸中に配置される。また、配置されたそれぞれのデータに対し、第一脈波信号PS1のデータが配置された側の軸に沿った距離の二乗和が最小になる最小二乗法が行われることによって第一回帰直線が算出される。 In this embodiment, the data of the first pulse wave signal PS1 and the data of the third pulse wave signal PS3 are arranged on the coordinate axes. The first regression line is calculated by performing the least squares method on each arranged data, which minimizes the sum of the squares of the distance along the axis on the side on which the data of the first pulse wave signal PS1 is arranged.
 また、第二脈波信号PS2のデータと第三脈波信号PS3のデータとを座標軸中に配置される。また、配置されたそれぞれのデータに対し、第二脈波信号PS2のデータが配置された側の軸に沿った距離の二乗和が最小になる最小二乗法が行われることによって第二回帰直線が算出される。すなわち、第一回帰直線と第二回帰直線との算出のために使用される回帰手段の種類は、最小二乗法のみである。 The data of the second pulse wave signal PS2 and the data of the third pulse wave signal PS3 are arranged on the coordinate axes. The second regression line is calculated by performing the least squares method on each arranged data, which minimizes the sum of the squares of the distances along the axis on the side on which the data of the second pulse wave signal PS2 is arranged. In other words, the only type of regression method used to calculate the first regression line and the second regression line is the least squares method.
 ここで、例えば直交距離回帰のような主成分回帰の算出アルゴリズムは、最小二乗法に比べて複雑であるため、全体の計算量が多くなる。このため、例えば測定装置の消費電力が大きくなったり処理時間が長くなったりするといった、計算負荷が大きくなるという問題が生じる。このため、最小二乗法のみが用いられる本実施形態では、直交距離回帰等が用いられる場合と比べて、全体の計算量を低減できるので、計算負荷を抑制できる。 Here, the calculation algorithm for principal component regression, such as orthogonal distance regression, is more complicated than the least squares method, and therefore the overall amount of calculation is greater. This causes problems such as an increase in the calculation load, such as an increase in the power consumption of the measuring device or a longer processing time. For this reason, in this embodiment, in which only the least squares method is used, the overall amount of calculation can be reduced compared to when orthogonal distance regression or the like is used, and therefore the calculation load can be suppressed.
 また、本実施形態では、第三脈波信号PS3のデータを介在させることによって第一回帰直線と第二回帰直線とをまず算出し、第一回帰直線の傾きと第二回帰直線の傾きとを用いて、間接的に算出する。介在する第三脈波信号PS3の参照光の波長は、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長であるため、赤色光及び赤外光よりも動脈からの受光光のSN比が高い。このため、第三脈波信号PS3のデータが配置された側の軸に沿った距離の二乗和が最小になる最小二乗法が行われなくても、第三脈波信号PS3のデータに起因する回帰直線の傾きへの影響を抑制できる。 In addition, in this embodiment, the first and second regression lines are first calculated by using the data of the third pulse wave signal PS3, and then the first and second regression lines are indirectly calculated using the slopes of the first and second regression lines. The wavelength of the reference light of the third pulse wave signal PS3 is a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light, and therefore the signal-to-noise ratio of the light received from the artery is higher than that of red light and infrared light. Therefore, even if the least squares method is not performed to minimize the sum of squares of the distance along the axis on the side where the data of the third pulse wave signal PS3 is placed, the effect on the slope of the regression line caused by the data of the third pulse wave signal PS3 can be suppressed.
 よって、回帰法として最小二乗法のみが用いられても、赤色光と赤外光との吸光度比を赤色光と赤外光との2つの光のみを用いて直接的に算出する場合に比べ、傾きの算出精度を向上できる。結果、酸素飽和度の測定精度の向上と計算負荷の抑制との両立を図ることができる。 Therefore, even if only the least squares method is used as the regression method, the accuracy of the slope calculation can be improved compared to when the absorbance ratio of red light to infrared light is directly calculated using only two types of light, red light and infrared light. As a result, it is possible to improve the measurement accuracy of oxygen saturation while reducing the calculation load.
 また、本実施形態では、第1変形例のように、算出された複数の酸素飽和度の中から1つの酸素飽和度が、予め設定された基準に基づき動脈の酸素飽和度として決定される。特性の異なる算出方法が複数搭載されることで、酸素飽和度測定におけるロバスト性を向上できると共に酸素飽和度の測定精度をより向上できる。 In addition, in this embodiment, as in the first modified example, one of the multiple calculated oxygen saturations is determined as the arterial oxygen saturation based on a preset criterion. By incorporating multiple calculation methods with different characteristics, it is possible to improve the robustness of the oxygen saturation measurement and further improve the measurement accuracy of the oxygen saturation.
 また、本実施形態では、第2変形例のように、第一回帰直線及び第二回帰直線の算出において、動脈の拍動に関連しない外れ値が除かれるので、酸素飽和度の測定精度を一層向上できる。 In addition, in this embodiment, as in the second modified example, outliers that are not related to arterial pulsation are removed in the calculation of the first regression line and the second regression line, so the accuracy of measuring oxygen saturation can be further improved.
 また、本実施形態では、計算負荷が抑制されることによって、長寿命化を図ることが可能なウェアラブルデバイスを実現できる。 In addition, this embodiment makes it possible to realize a wearable device that can have a longer lifespan by reducing the computational load.
<その他の実施形態>
 本開示は上記の開示された実施の形態によって説明したが、この開示の一部をなす論述及び図面は、本開示を限定するものであると理解すべきではない。
<Other embodiments>
Although the present disclosure has been described with reference to the above disclosed embodiments, the descriptions and drawings forming a part of this disclosure should not be construed as limiting the present disclosure.
 本開示では例えば、第一情報は、第三脈波信号の強度と第一脈波信号の強度との比の平均値であってもよい。また、第二情報は、第三脈波信号の強度と第二脈波信号の強度との比の平均値であってもよい。そして、いずれも比の平均値である第一情報と第二情報との比に基づいて酸素飽和度が精度よく算出されてもよい。いずれも比の平均値である第一情報と第二情報とを用いて、酸素飽和度を精度よく算出できる。 In the present disclosure, for example, the first information may be an average value of the ratio between the intensity of the third pulse wave signal and the intensity of the first pulse wave signal. Also, the second information may be an average value of the ratio between the intensity of the third pulse wave signal and the intensity of the second pulse wave signal. Then, the oxygen saturation level may be accurately calculated based on the ratio between the first information and the second information, both of which are average values of ratios. The oxygen saturation level can be accurately calculated using the first information and the second information, both of which are average values of ratios.
 また、例えば、参照光の第三脈波信号のSN比は、赤色光や赤外光よりも相対的に高いため、赤色光や赤外光の発光タイミングの制御に使用できる。具体的には例えば、脈波の最大値と最小値とが得られるタイミングに発光タイミングを同期させたり、最大値と最小値とが得られるタイミングに応じて発光タイミングを一定期間内に制限したりすることができる。脈波の最大値と最小値とが得られるタイミングに基づいて発光タイミングが選択的に制御されることによって、第一発光素子と第二発光素子とのそれぞれの発光回数を減らすことができ、結果、低消費電力化を実現することが可能である。 Furthermore, for example, since the signal-to-noise ratio of the third pulse wave signal of the reference light is relatively higher than that of red light or infrared light, it can be used to control the emission timing of red light or infrared light. Specifically, for example, the emission timing can be synchronized with the timing at which the maximum and minimum values of the pulse wave are obtained, or the emission timing can be limited to within a certain period depending on the timing at which the maximum and minimum values are obtained. By selectively controlling the emission timing based on the timing at which the maximum and minimum values of the pulse wave are obtained, the number of times each of the first and second light-emitting elements emits light can be reduced, and as a result, low power consumption can be achieved.
 また、節約された電力を赤色光と赤外光とのそれぞれの発光強度に還元すれば、赤色光の第一脈波信号と赤外光の第二脈波信号とのそれぞれの振幅値のSN比を向上できる。このため、振幅値のSN比が高いデータのみを選択的に収集することができ、結果、測定精度をより向上させることができる。 Furthermore, if the saved power is returned to the emission intensity of each of the red light and the infrared light, the signal-to-noise ratio of the amplitude values of each of the first red light pulse wave signal and the second infrared light pulse wave signal can be improved. This makes it possible to selectively collect only data with a high signal-to-noise ratio of the amplitude values, thereby further improving the measurement accuracy.
 また、例えば、本開示では、上記の実施形態で、CPU21がソフトウェア(プログラム)を読み込んで実行した酸素飽和度測定処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。 Furthermore, for example, in the present disclosure, the oxygen saturation measurement process executed by the CPU 21 by reading the software (program) in the above embodiment may be executed by various processors other than the CPU. Examples of processors in this case include a PLD (Programmable Logic Device) such as an FPGA (Field-Programmable Gate Array) whose circuit configuration can be changed after manufacture, and a dedicated electrical circuit such as an ASIC (Application Specific Integrated Circuit) that is a processor having a circuit configuration designed specifically to execute a specific process.
 また、酸素飽和度測定処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 The oxygen saturation measurement process may be executed by one of these various processors, or by a combination of two or more processors of the same or different types (e.g., multiple FPGAs, or a combination of a CPU and an FPGA, etc.). More specifically, the hardware structure of these various processors is an electric circuit that combines circuit elements such as semiconductor elements.
 また、上記各実施形態では、酸素飽和度測定プログラムがROM22又はストレージ24に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 In addition, in each of the above embodiments, the oxygen saturation measurement program is described as being pre-stored (installed) in the ROM 22 or storage 24, but this is not limiting. The program may be provided in a form recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or a USB (Universal Serial Bus) memory. The program may also be downloaded from an external device via a network.
 本開示は、上記に記載していない様々な実施の形態等を含むと共に、本開示の技術的範囲は、上記の説明から妥当な特許請求の範囲の発明特定事項によってのみ定められるものである。 This disclosure includes various embodiments not described above, and the technical scope of this disclosure is determined solely by the invention-specific matters of the claims that are appropriate from the above explanation.
 2022年10月19日に出願した日本国特許出願2022-167841号の開示は、その全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2022-167841, filed on October 19, 2022, is incorporated herein by reference in its entirety.
 また、本明細書に記載されたすべての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 In addition, all documents, patent applications, and technical standards described in this specification are incorporated by reference into this specification to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.

Claims (9)

  1.  動脈に対して赤色光を投光する第一発光素子と、前記動脈に対して赤外光を投光する第二発光素子と、赤色光及び赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する参照光を前記動脈に対して投光する第三発光素子と、投光された前記赤色光と前記赤外光と前記参照光とのそれぞれに対応する透過光又は反射光を受光光として受光し、前記赤色光の受光光の光強度に応じた第一脈波信号と、前記赤外光の受光光の光強度に応じた第二脈波信号と、前記参照光の受光光の光強度に応じた第三脈波信号とを出力する受光素子と、を有するセンサユニットと、
     前記受光素子に電気的に接続され、前記第一脈波信号の強度と前記第三脈波信号の強度とに基づいて第一情報を算出し、前記第二脈波信号の強度と前記第三脈波信号の強度とに基づいて第二情報を算出し、それぞれ算出された前記第一情報と前記第二情報との比に基づいて酸素飽和度を算出することによって前記動脈の酸素飽和度を測定する、プロセッサと、
     を備える、酸素飽和度測定装置。
    a sensor unit having: a first light-emitting element which projects red light onto an artery; a second light-emitting element which projects infrared light onto the artery; a third light-emitting element which projects reference light onto the artery, the reference light having a wavelength at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of red light and infrared light; and a light-receiving element which receives transmitted light or reflected light corresponding to the projected red light, the infrared light, and the reference light, respectively, as received light, and outputs a first pulse wave signal corresponding to the light intensity of the received red light, a second pulse wave signal corresponding to the light intensity of the received infrared light, and a third pulse wave signal corresponding to the light intensity of the received reference light;
    a processor electrically connected to the light receiving element, the processor calculating first information based on the intensities of the first pulse wave signal and the third pulse wave signal, calculating second information based on the intensities of the second pulse wave signal and the third pulse wave signal, and calculating an oxygen saturation level based on a ratio between the first information and the second information calculated respectively, thereby measuring an oxygen saturation level of the artery;
    An oxygen saturation measuring device comprising:
  2.  前記プロセッサは、
     前記第一脈波信号の強度と前記第三脈波信号の強度と前記第二脈波信号の強度とを時間的に連続して取得し、
     前記第三脈波信号の強度と前記第一脈波信号の強度とを用いた回帰分析によって第一回帰直線の傾きを前記第一情報として算出し、
     前記第三脈波信号の強度と前記第二脈波信号の強度とを用いた回帰分析によって第二回帰直線の傾きを前記第二情報として算出する、
     ように構成される、請求項1に記載の酸素飽和度測定装置。
    The processor,
    acquiring the intensity of the first pulse wave signal, the intensity of the third pulse wave signal, and the intensity of the second pulse wave signal successively in time;
    calculating, as the first information, a slope of a first regression line by performing a regression analysis using the intensity of the third pulse wave signal and the intensity of the first pulse wave signal;
    calculating, as the second information, a slope of a second regression line by performing a regression analysis using the intensity of the third pulse wave signal and the intensity of the second pulse wave signal;
    The oxygen saturation measuring device according to claim 1 , configured as follows:
  3.  前記プロセッサは、
     最小二乗法のみによって前記第一回帰直線と前記第二回帰直線とを算出する、
     ように構成される、請求項2に記載の酸素飽和度測定装置。
    The processor,
    Calculating the first regression line and the second regression line only by the least squares method;
    The oxygen saturation measuring device according to claim 2 , configured as follows:
  4.  前記プロセッサは、
     前記第一脈波信号の強度と前記第三脈波信号の強度と前記第二脈波信号の強度とを時間的に連続して取得し、
     前記第三脈波信号の強度と前記第一脈波信号の強度との比の平均値を前記第一情報として算出し、
     前記第三脈波信号の強度と前記第二脈波信号の強度との比の平均値を前記第二情報として算出する、
     ように構成される、請求項1に記載の酸素飽和度測定装置。
    The processor,
    acquiring the intensity of the first pulse wave signal, the intensity of the third pulse wave signal, and the intensity of the second pulse wave signal successively in time;
    calculating an average value of a ratio of an intensity of the third pulse wave signal to an intensity of the first pulse wave signal as the first information;
    an average value of a ratio of an intensity of the third pulse wave signal to an intensity of the second pulse wave signal is calculated as the second information.
    The oxygen saturation measuring device according to claim 1 , configured as follows:
  5.  前記プロセッサは、複数の酸素飽和度を算出し、
     算出された複数の酸素飽和度の中から1つの酸素飽和度を、予め設定された基準に基づき前記動脈の酸素飽和度として決定する、
     ように構成される、請求項1~4のいずれか一項に記載の酸素飽和度測定装置。
    The processor calculates a plurality of oxygen saturation levels;
    determining one of the calculated oxygen saturations as the oxygen saturation of the artery based on a preset criterion;
    The oxygen saturation measuring device according to any one of claims 1 to 4, configured as described above.
  6.  前記プロセッサは、
     前記受光素子によってそれぞれ出力された前記第一脈波信号と前記第三脈波信号とのうち、
     前記第一脈波信号と前記第三脈波信号との間の関係性に基づいて予め設定された閾値を満たすデータを前記動脈の拍動に関連しない外れ値として決定し、
     決定された前記外れ値を除いて前記第一情報を算出する、
    又は、
     前記受光素子によってそれぞれ出力された前記第二脈波信号と前記第三脈波信号とのうち、
     前記第二脈波信号と前記第三脈波信号との間の関係性に基づいて予め設定された閾値を満たすデータを前記動脈の拍動に関連しない外れ値として決定し、
     決定された前記外れ値を除いて前記第二情報を算出する、
     ように構成される、請求項1~4のいずれか一項に記載の酸素飽和度測定装置。
    The processor,
    Among the first pulse wave signal and the third pulse wave signal outputted by the light receiving element,
    determining, as an outlier not related to the pulsation of the artery, data that satisfies a preset threshold based on a relationship between the first pulse wave signal and the third pulse wave signal;
    Calculating the first information excluding the determined outlier.
    Or,
    Among the second pulse wave signal and the third pulse wave signal outputted by the light receiving element,
    determining, as an outlier not related to the pulsation of the artery, data that satisfies a preset threshold based on a relationship between the second pulse wave signal and the third pulse wave signal;
    Calculating the second information excluding the determined outlier.
    The oxygen saturation measuring device according to any one of claims 1 to 4, configured as described above.
  7.  被測定者が装着可能なウェアラブルデバイスである、
     請求項1~4のいずれか一項に記載の酸素飽和度測定装置。
    It is a wearable device that can be worn by the person being measured.
    The oxygen saturation measuring device according to any one of claims 1 to 4.
  8.  動脈に対して、赤色光と、赤外光と、前記赤色光及び前記赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する参照光を投光し、
     投光された前記赤色光と前記赤外光と前記参照光とのそれぞれに対応する透過光又は反射光を受光光として受光し、
     前記赤色光の受光光の光強度に応じた第一脈波信号と、前記赤外光の受光光の光強度に応じた第二脈波信号と、前記参照光の受光光の光強度に応じた第三脈波信号と、を取得し、
     前記第一脈波信号の強度と前記第三脈波信号の強度とに基づいて第一情報を算出し、
     前記第二脈波信号の強度と前記第三脈波信号の強度とに基づいて第二情報を算出し、
     それぞれ算出された前記第一情報と前記第二情報との比に基づいて酸素飽和度を算出することによって前記動脈の酸素飽和度を測定する、
     酸素飽和度測定方法。
    projecting red light, infrared light, and reference light having wavelengths at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of the red light and the infrared light onto the artery;
    receiving, as received light, transmitted light or reflected light corresponding to the projected red light, the infrared light, and the reference light, respectively;
    obtaining a first pulse wave signal corresponding to the intensity of the received red light, a second pulse wave signal corresponding to the intensity of the received infrared light, and a third pulse wave signal corresponding to the intensity of the received reference light;
    calculating first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal;
    calculating second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal;
    measuring the oxygen saturation of the artery by calculating an oxygen saturation based on a ratio between the first information and the second information calculated respectively;
    Oxygen saturation measurement method.
  9.  動脈に対して、赤色光と、赤外光と、前記赤色光及び前記赤外光よりも酸化ヘモグロビンの吸収係数と還元ヘモグロビンの吸収係数とが高い波長を有する参照光を投光する処理と、
     投光された前記赤色光と前記赤外光と前記参照光とのそれぞれに対応する透過光又は反射光を受光光として受光する処理と、
     前記赤色光の受光光の光強度に応じた第一脈波信号と、前記赤外光の受光光の光強度に応じた第二脈波信号と、前記参照光の受光光の光強度に応じた第三脈波信号と、を取得する処理と、
     前記第一脈波信号の強度と前記第三脈波信号の強度とに基づいて第一情報を算出する処理と、
     前記第二脈波信号の強度と前記第三脈波信号の強度とに基づいて第二情報を算出する処理と、
     それぞれ算出された前記第一情報と前記第二情報との比に基づいて酸素飽和度を算出することによって前記動脈の酸素飽和度を測定する処理と、
     をプロセッサに実行させる、酸素飽和度測定プログラム。
    a process of projecting red light, infrared light, and reference light having wavelengths at which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are higher than those of the red light and the infrared light onto the artery;
    A process of receiving transmitted light or reflected light corresponding to the projected red light, the projected infrared light, and the projected reference light as received light;
    acquiring a first pulse wave signal corresponding to the intensity of the received red light, a second pulse wave signal corresponding to the intensity of the received infrared light, and a third pulse wave signal corresponding to the intensity of the received reference light;
    calculating first information based on the intensity of the first pulse wave signal and the intensity of the third pulse wave signal;
    calculating second information based on the intensity of the second pulse wave signal and the intensity of the third pulse wave signal;
    measuring the oxygen saturation of the artery by calculating the oxygen saturation based on a ratio between the first information and the second information calculated respectively;
    The oxygen saturation measurement program causes the processor to execute the following:
PCT/JP2023/036932 2022-10-19 2023-10-11 Device for measuring oxygen saturation, method for measuring oxygen saturation, and program for measuring oxygen saturation WO2024085042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022167841A JP2024060460A (en) 2022-10-19 2022-10-19 Oxygen saturation measurement device, oxygen saturation measurement method, and oxygen saturation measurement program
JP2022-167841 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024085042A1 true WO2024085042A1 (en) 2024-04-25

Family

ID=90737445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036932 WO2024085042A1 (en) 2022-10-19 2023-10-11 Device for measuring oxygen saturation, method for measuring oxygen saturation, and program for measuring oxygen saturation

Country Status (2)

Country Link
JP (1) JP2024060460A (en)
WO (1) WO2024085042A1 (en)

Also Published As

Publication number Publication date
JP2024060460A (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US20160066863A1 (en) METHOD AND APPARATUS FOR DETERMINING SpO2 OF A SUBJECT FROM AN OPTICAL MEASUREMENT
JP6672899B2 (en) Measuring and detecting devices
CN107666860B (en) Photoplethysmography device
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
KR102033914B1 (en) method for measuring blood glucose and wearable type apparatus for the same
US20120165629A1 (en) Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
JP6431697B2 (en) Wrist-mounted pulse oximeter
JPH0371135B2 (en)
JP2004202190A (en) Biological information measuring device
JP2004290544A (en) Blood analyzer
JP4385677B2 (en) Biological information measuring device
JP2013031502A (en) Information processing apparatus, information processing method, program, and information processing system
EP2563207A1 (en) Optical determination of blood perfusion and similar parameters
US10939855B2 (en) Photoelectric sensor module
WO2024085042A1 (en) Device for measuring oxygen saturation, method for measuring oxygen saturation, and program for measuring oxygen saturation
KR20190035234A (en) Apparatus for estimating biological component and operating method thereof
JP2019505275A (en) Apparatus and method for measuring the concentration of a compound present in blood
US20160022147A1 (en) Method and device for monitoring vital functions
CN110301903A (en) Biological information measurement equipment and method for measuring biological information
WO2024085041A1 (en) Oxygen saturation measurement device, oxygen saturation measurement method, and oxygen saturation measurement program
CN109157224B (en) Pulse blood oxygen monitoring system and method with additional reference light source calibration
JP2021180796A (en) Pulse photometer, pulse photometry system and computer program
JP6530892B2 (en) Biological information display device
US20190150839A1 (en) Material characteristic signal detection method and apparatus
CN111110217A (en) Heart rhythm detection device, operation method thereof and physiological detection device