WO2024084827A1 - 情報処理装置、情報処理方法、およびプログラム - Google Patents

情報処理装置、情報処理方法、およびプログラム Download PDF

Info

Publication number
WO2024084827A1
WO2024084827A1 PCT/JP2023/031384 JP2023031384W WO2024084827A1 WO 2024084827 A1 WO2024084827 A1 WO 2024084827A1 JP 2023031384 W JP2023031384 W JP 2023031384W WO 2024084827 A1 WO2024084827 A1 WO 2024084827A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
learning
inference model
information processing
processing device
Prior art date
Application number
PCT/JP2023/031384
Other languages
English (en)
French (fr)
Inventor
元脩 神保
斌 楊
信也 丸山
秀穂 五味
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024084827A1 publication Critical patent/WO2024084827A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This disclosure relates to an information processing device, an information processing method, and a program.
  • Patent Document 1 discloses a technique that uses a federated learning method in training a machine learning model for processing medical data.
  • an information processing device includes a learning unit that learns an inference model by federated learning, and an acquisition unit that acquires, from a plurality of terminals, privacy protection data, which is data that has been subjected to privacy protection processing on local data obtained by each of the plurality of terminals, wherein the learning unit learns the inference model based on the privacy protection data and distributes to the plurality of terminals information related to the inference model, including hyperparameters of the inference model that are set based on the results of the learning, and the acquisition unit acquires from the plurality of terminals update information for the inference model obtained by each of the plurality of terminals learning the inference model using the distributed hyperparameters, using the local data as learning data, and the learning unit updates the inference model using the update information.
  • the present disclosure also provides an information processing method executed by a computer, including: a processor learning an inference model by federated learning; acquiring from a plurality of terminals privacy protection data, which is data obtained by performing privacy protection processing on local data obtained by each of the plurality of terminals; learning the inference model based on the privacy protection data; distributing to the plurality of terminals information related to the inference model, including hyperparameters of the inference model that are set based on the results of the learning; acquiring from the plurality of terminals update information for the inference model obtained by each of the plurality of terminals learning the inference model using the distributed hyperparameters with the local data as learning data; and updating the inference model using the update information.
  • a program for making a computer function as an information processing device that includes a learning unit that learns an inference model by federated learning, and an acquisition unit that acquires from a plurality of terminals privacy protection data, which is data that has been subjected to privacy protection processing on local data obtained by each of the plurality of terminals, the learning unit learns the inference model based on the privacy protection data, and distributes to the plurality of terminals information related to the inference model including hyperparameters of the inference model that are set based on the results of the learning, the acquisition unit acquires from the plurality of terminals update information for the inference model obtained by each of the plurality of terminals learning the inference model using the distributed hyperparameters with the local data as learning data, and the learning unit updates the inference model using the update information.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of an information processing system according to an embodiment of the present disclosure.
  • 2 is a block diagram showing a configuration example of a terminal 10 according to the present embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of an information processing device 20 according to the present embodiment.
  • FIG. FIG. 2 is a sequence diagram for explaining a first operation example of the information processing system according to the present embodiment.
  • FIG. 5 is a sequence diagram illustrating the flow of processing in a subroutine of S101 in the sequence diagram shown in FIG. 4.
  • 11 is a diagram for explaining an example of a process for generating privacy protection data by a data processing unit 130.
  • FIG. 5 is a sequence diagram illustrating the flow of processing in a subroutine of S107 in the sequence diagram shown in FIG. 4.
  • FIG. 5 is a sequence diagram illustrating the flow of processing in a subroutine of S109 in the sequence diagram shown in FIG. 4.
  • FIG. 11 is a sequence diagram for explaining a second operation example of the information processing system according to the embodiment.
  • 10 is a sequence diagram for explaining the flow of subroutine processes of S131 and S105 in the sequence diagram shown in FIG. 9.
  • 11 is a diagram for explaining another example of the process of generating privacy protection data by the data processing unit 130.
  • FIG. FIG. 11 is a sequence diagram for explaining a third operation example of the information processing system according to the embodiment.
  • FIG. 13 is a sequence diagram for explaining the flow of processes in the subroutines of S141 and S103 in the sequence diagram shown in FIG. 12.
  • FIG. 11 is a diagram for explaining aggregation of privacy protection data in a third operation example of the information processing system according to the present embodiment.
  • FIG. 13 is a conceptual diagram for explaining detection of an abnormal value in a third operation example of the present embodiment.
  • FIG. 13 is another conceptual diagram for explaining the detection of an abnormal value in the third operation example of the present embodiment.
  • FIG. 11 is a diagram for explaining generation of privacy protection data in a modified example of the present embodiment.
  • FIG. 11 is a sequence diagram for explaining an example of operation of a modified example of the information processing system according to the present embodiment.
  • 20 is a sequence diagram illustrating the flow of subroutine processes of S151 and S155 in the sequence diagram shown in FIG. 18.
  • FIG. 9 is a block diagram showing a hardware configuration 90 according to an embodiment of the present disclosure.
  • multiple components having substantially the same functional configuration may be distinguished by adding different numbers or letters after the same reference numeral. However, if there is no particular need to distinguish between multiple components having substantially the same functional configuration, each of the multiple components will be given only the same reference numeral.
  • Inference models make it possible to perform various inferences with high accuracy based on unknown data. For this reason, the creation and use of inference models is widely used in a variety of fields.
  • Federated Learning there is a method called Federated Learning that can protect the privacy of data when learning using data collected from multiple devices.
  • a server issues instructions to each of multiple devices to learn a machine learning model, and the model is learned using data acquired by each of the multiple terminals.
  • the learning results are collected on the server side, and the model held on the server side is updated based on the learning results.
  • an inference model can be trained without exposing the data held by multiple devices and actually used for training to external devices.
  • building a machine learning system can be broadly divided into three stages: preparing training data, optimizing the model (learning), and operating the model (inference).
  • learning instructions using each setting value are sent from the server to multiple terminals.
  • Each of the multiple terminals uses the received hyperparameter setting values to learn using data acquired at the multiple terminals as learning data.
  • the server aggregates the learning results from the multiple terminals and updates the model parameters based on the aggregated results.
  • the server redistributes the updated model parameters to the multiple terminals. The above process is repeated until learning converges.
  • the above series of processes is repeated, and when learning using one trial pattern of hyperparameter setting values converges, the above series of processes is similarly repeated for the trial patterns of the remaining hyperparameter setting values.
  • the more trial patterns are tried as the setting values of the hyperparameters the more optimal the hyperparameters can be set.
  • an increase in the number of trial patterns for the hyperparameters has the disadvantage of increasing the time and processing load required for learning to select the hyperparameters.
  • the inference accuracy of a machine learning model is greatly affected by the quality of the training data. For this reason, it is desirable to detect and correct outliers in the data and invalid data, such as incorrect values entered by malicious users, during the preparation stage of the training data.
  • the tendency of the data acquired by the terminal may change due to factors such as changes in the social environment.
  • a discrepancy may occur between the training data at the time the model was trained and the data acquired in the inference stage. In such a case, it is desirable to retrain the model.
  • the information processing device 20 includes a communication unit 250 that acquires privacy protection data, which is data that has been subjected to privacy protection processing on local data, based on data that is actually used for learning and is acquired by each of the multiple terminals 10 (hereinafter, local data).
  • the communication unit 250 is an example of an acquisition unit of the information processing device 20.
  • the information processing device 20 includes a learning unit 230 that learns an inference model based on the collected privacy-preserving data. Furthermore, the learning unit 230 distributes the inference model, which includes information on hyperparameters set based on the results of the learning, to the terminal 10.
  • the learning unit 230 of the information processing device 20 updates the inference model using model update information obtained by each of the multiple terminals learning the distributed inference model using local data as learning data.
  • the information processing device 20 performs learning based on privacy-protected data, which is data that has been subjected to privacy protection processing on local data, which is data actually used for learning.
  • privacy-protected data which is data that has been subjected to privacy protection processing
  • local data which is data actually used for learning.
  • learning for trialing hyperparameters is performed based on data that is closer to local data while protecting privacy information. Therefore, it is expected that the inference accuracy of the inference model will improve.
  • each of the multiple terminals 10 learns an inference model using hyperparameters distributed from the information processing device 20. Therefore, the terminal 10 does not need to perform learning for trialing hyperparameters. Therefore, the processing load of learning on the terminal 10 side is reduced.
  • the information processing device 20 performs a compilation process of the privacy protection data. Based on the result of the compilation process, the information processing device 20 distributes trend information indicating the statistical data trends of the local data to multiple terminals 10.
  • the information processing device 20 monitors changes in the distribution trends of local data based on the results of compiling privacy-preserving data.
  • the information processing device 20 detects that the distribution trend of the local data has changed, it re-learns the inference model.
  • multiple terminals 10 can detect abnormal values contained in the learning data based on trend information that indicates the distribution trend of local data.
  • the inference model can be retrained in response to changes in trends in the local data even after the inference model has moved to the operational stage.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of an information processing system according to an embodiment of the present disclosure.
  • an information processing system includes multiple terminals 10 and an information processing device 20.
  • Each terminal 10 and information processing device 20 are connected to each other via a network 30 so that they can communicate with each other.
  • FIG. 1 illustrates an example in which the information processing system according to this embodiment includes three terminals 10, namely, terminal 10A, terminal 10B, and terminal 10C
  • the number of terminals 10 according to this embodiment is not particularly limited.
  • the information processing system according to this embodiment may include two terminals 10.
  • the information processing system according to this embodiment may include three or more terminals 10.
  • FIG. 1 illustrates an example in which the terminal 10 is realized by a smartphone
  • the terminal 10 may be realized by other information processing terminals.
  • the terminal 10 may be realized by a PC (Personal Computer), a tablet terminal, a game console, a wearable device, etc.
  • PC Personal Computer
  • FIG. 1 illustrates an example in which the terminal 10 is realized by a smartphone
  • the terminal 10 may be realized by other information processing terminals.
  • the terminal 10 may be realized by a PC (Personal Computer), a tablet terminal, a game console, a wearable device, etc.
  • PC Personal Computer
  • Terminal 10 uses the acquired local data as learning data to learn an inference model distributed from the information processing device 20.
  • the terminal 10 transmits update information of the inference model to the information processing device 20 based on the learning results.
  • the update information may be, for example, updated parameters obtained as a result of learning. Or, it may be difference information between parameters before and after the update.
  • the terminal 10 performs privacy protection processing on the acquired local data to generate privacy protection data.
  • the terminal 10 transmits the generated privacy protection data to the information processing device 20.
  • the terminal 10 may receive trend information indicating data trends of local data distributed from the information processing device 20.
  • the terminal 10 may detect fraudulent data, such as abnormal values or illegal values, from the newly acquired local data based on the trend information.
  • the terminal 10 may generate privacy protection information based on the local data excluding the detected fraudulent data.
  • the information processing device 20 of this embodiment distributes an inference model generated based on privacy protection information acquired from multiple terminals 10 to the terminals 10.
  • the information processing device 20 receives update information for the inference model from multiple terminals 10, and updates the inference model based on the update information.
  • the information processing device 20 distributes update information (updated model, hyperparameters, etc.) from the information processing device 20 relating to the updated inference model to multiple terminals 10.
  • Network 30 The network 30 mediates communication between the terminal 10 and the information processing device 20 .
  • Example of configuration of terminal 10>> Next, a configuration example of the terminal 10 according to the present embodiment will be described in detail.
  • FIG. 2 is a block diagram showing an example of the configuration of a terminal 10 according to this embodiment.
  • the terminal 10 may include an acquisition unit 110, a data processing unit 130, a learning unit 150, and a communication unit 170.
  • the acquisition unit 110 collects various types of data.
  • the data collected by the acquisition unit 110 may be used as learning data for an inference model on the terminal 10.
  • the acquisition unit 110 may be equipped with various sensors for collecting sensor information that can be used as one element of the learning data for the inference model on the terminal 10.
  • the acquisition unit 110 may acquire information such as the communication speed or bandwidth related to wireless communication between the communication unit 170 and another device.
  • the acquisition unit 110 may acquire various data, such as sound data, character data, or image data, to be used as learning data, from an external device, such as an external storage device.
  • the image data may be, for example, a medical image.
  • the data collected by the acquisition unit 110 and used as learning data for the inference model on the terminal 10 is referred to as local data.
  • the data processing unit 130 has a function of generating privacy protection data based on the local data acquired by the acquisition unit 110 .
  • Privacy protection processing refers to processing that makes it difficult to identify and restore confidential elements, such as privacy information, contained in the local data.
  • the privacy protection data generated by the data processing unit 130 can be in several data formats.
  • the privacy-preserving data generated by the data processing unit 130 may be data obtained by performing a data conversion process on the local data that satisfies differential privacy.
  • the data conversion process may be a process of assigning a random number of a predetermined strength to each of the elements included in the local data.
  • a Laplace mechanism or a Gaussian mechanism may be used as a data conversion process that satisfies differential privacy.
  • the privacy protection data may be data generated by performing a data conversion process on the local data by the data processing unit 130 to reduce the dimension of the data.
  • the data processing unit 130 may use an auto-encoder algorithm to reduce the dimension of the local data.
  • the privacy protection data generated by the data processing unit 130 may be data generated by performing an anonymization process on local data.
  • statistics of local data may be calculated by the data processing unit 130.
  • the privacy-preserving data may be statistical data generated by performing a data conversion process that satisfies differential privacy on the statistics of the local data calculated by the data processing unit 130.
  • the privacy protection data may be data generated by the data processing unit 130 performing encryption processing on the calculated statistics of the local data that meets the requirements for secure computation.
  • the data processing unit 130 may obtain trend information of data across multiple terminals 10 from the information processing device 20.
  • the data processing unit 130 may detect abnormal values contained in the local data newly acquired by the acquisition unit 110 based on the trend information.
  • the data processing unit 130 may perform a process of correcting or excluding data that is considered to be an abnormal value from the local data.
  • the data processing unit 130 may generate privacy protection data based on the local data from which the data that is considered to be an abnormal value has been corrected or excluded.
  • the learning unit 150 learns an inference model distributed from the information processing device 20 using the local data acquired by the acquisition unit 110 as learning data.
  • the learning unit 150 outputs update information for the inference model based on the results of the above learning.
  • the update information may be, for example, difference information for the parameters of the inference model before and after learning.
  • the communication unit 170 communicates with the information processing device 20 via the network 30 .
  • the communication unit 170 transmits the privacy protection data generated by the data processing unit 130 to the information processing device 20.
  • the communication unit 170 also transmits update information for the inference model output as a result of learning by the learning unit 150 to the information processing device 20.
  • the communication unit 170 also receives the inference model and update information about the inference model from the information processing device 20.
  • the terminal 10 may further include, for example, an input unit that accepts information input by a user, a display unit that displays various types of information, etc.
  • the configuration of the terminal 10 according to this embodiment can be flexibly modified according to the specifications and operation.
  • FIG. 3 is a block diagram showing an example of the configuration of an information processing device 20 according to this embodiment.
  • the information processing device 20 may include a generation unit 210, a learning unit 230, and a communication unit 250.
  • the generation unit 210 performs a compilation process of the privacy protection data acquired from the terminal 10 .
  • the generation unit 210 may use a secret calculation technique to perform the aggregation process on the privacy protection data in its encrypted state, without decrypting the privacy protection data.
  • the generation unit 210 also estimates the distribution of local data based on the results of the privacy protection data aggregation process.
  • the generating unit 210 may generate synthetic data based on the distribution of the estimated local data.
  • synthetic data refers to data that is pseudo-sampled based on the distribution of the estimated local data.
  • the generating unit 210 may also generate trend information indicating the estimated results of the statistical data trends of the local data based on the results of the aggregation process of the privacy protection data.
  • the trend information may be generated by the generation unit 210 periodically collecting privacy protection data from multiple terminals 10 and calculating the difference in the results of the aggregation process of the privacy protection data for each fixed period of time.
  • the data set of privacy protection data collected from the terminal 10 and stored in the information processing device 20 may itself be used as trend information.
  • the generation unit 210 may cause the communication unit 250 to distribute the trend information to each of the multiple terminals 10.
  • the generation unit 210 may monitor changes in the distribution trends of local data based on the results of the privacy protection data aggregation process.
  • the learning unit 230 learns an inference model through associative learning.
  • the inference model may be a Convolutional Neural Network (CNN).
  • CNN Convolutional Neural Network
  • the information processing device 20 may use the inference model to perform image recognition of a medical image acquired by the terminal 10, and diagnose a disease inferred from the medical image based on the recognition result.
  • the inference model may be a Long Short-Term Memory (LSTM) model capable of handling time series data.
  • the information processing device 20 may use the inference model to predict the quality of wireless communication based on wireless communication quality information, such as communication speed, acquired by the terminal 10.
  • wireless communication quality information such as communication speed
  • the learning unit 230 performs learning to select hyperparameters for the inference model using the privacy-protected data acquired from the terminal 10 or synthetic data generated based on the privacy-protected data as learning data.
  • the learning unit 230 may learn the inference model according to the trial patterns of combinations of candidate values of hyperparameters determined by the administrator of the inference model, so that all trial patterns are covered.
  • the hyperparameters of the inference model may be set by an administrator of the inference model based on the results of learning by the learning unit 230.
  • the initial parameters of the inference model may be obtained based on the results of learning for hyperparameter trials by the learning unit 230.
  • the learning unit 230 distributes the above inference model, including the set hyperparameter information, to multiple terminals 10.
  • the learning unit 230 updates the inference model based on update information for the inference model acquired from the terminal 10.
  • the learning unit 230 may use a federated learning technique to re-learn the inference model when the generating unit 210 detects that the distribution trend of the local data has changed.
  • the communication unit 250 communicates with a plurality of terminals 10 via the network 30.
  • the communication unit 250 is an example of an acquisition unit of the information processing device 20.
  • the communication unit 250 transmits, for example, the inference model including the hyperparameter information set based on the results of learning by the learning unit 230, and update information for the inference model from the information processing device 20 to the terminal 10.
  • the communication unit 250 also receives update information for the inference model from multiple terminals 10.
  • the information processing device 20 may further include, for example, an input unit that accepts information input by a user, a display unit that displays various types of information, etc.
  • the configuration of the information processing device 20 according to this embodiment can be flexibly modified according to the specifications and operation.
  • first operation example an example will be described in which privacy-preserving data generated by the data processing unit 130 of the terminal 10 is data generated by performing a data conversion process that satisfies differential privacy and/or a process that reduces the dimension of the data on local data.
  • FIG. 4 is a sequence diagram for explaining a first operation example of the information processing system according to this embodiment.
  • the sequence diagram shown in FIG. 4 shows an overview of the processing flow in the first operation example.
  • the information processing device 20 aggregates privacy protection data from each of the multiple terminals 10 (S101).
  • the information processing device 20 learns the hyperparameters and an inference model according to the trial pattern for initial parameter search based on the aggregated privacy-preserving data (S107).
  • the information processing device 20 and the multiple terminals 10 learn the inference model through federated learning (S109).
  • the multiple terminals 10 perform inference using the inference model that has been learned on each terminal 10 (S111).
  • the information processing device 20 and the terminal 10 monitor changes in the data distribution trend of the local data (S113).
  • the information processing device 20 and the terminal 10 re-learn the model through associative learning (S115).
  • FIG. 5 is a sequence diagram for explaining the flow of processing in the subroutine of S101 in the sequence diagram shown in FIG.
  • the data processing unit 130 of each of the multiple terminals 10 performs privacy protection processing on local data by a method such as data conversion processing that satisfies differential privacy or dimensionality reduction processing (S201).
  • FIG. 6 is a diagram for explaining an example of the process of generating privacy protection data by the data processing unit 130.
  • the local data LD1 shown in FIG. 6 is an example of local data collected by the acquisition unit 110 of the terminal 10A.
  • the post-conversion processing data DA1 shown in FIG. 6 is an example of privacy protection data generated by the data processing unit 130 performing the above-described data conversion processing based on the local data LD1.
  • Privacy protection data is similarly generated based on local data in each of the other terminals 10 other than terminal 10A.
  • the communication unit 170 of the terminal 10 transmits the data that has been subjected to the privacy protection process to the information processing device 20 as privacy protection data (S203).
  • the information processing device 20 collects privacy protection data from the terminal 10 and performs a compilation process of the privacy protection data.
  • the post-conversion process data DA2 shown in FIG. 6 shows an example of a data set of privacy protection data collected by the information processing device 20.
  • model N1 shown in FIG. 6 indicates an inference model that the information processing device 20 learns. As shown in FIG. 6, the information processing device 20 can learn the model N1 based on the post-conversion processing data DA2.
  • the information processing device 20 can aggregate statistics of privacy protection data across multiple terminals 10 based on the converted data DA2.
  • the statistics S1 shown in FIG. 6 shows an example of the aggregated statistics of privacy protection data.
  • the privacy protection information is data that has been subjected to privacy protection processing, such as data conversion processing that satisfies differential privacy, for local data. Therefore, the information processing device 20 can estimate the statistics of the original data, that is, the local data, based on the statistics S1, which are the results of the aggregation processing of the privacy protection information.
  • the information processing device 20 may detect a change in the data trend acquired by the terminal 10 based on the statistic S1.
  • the statistic S2 shows an example of trend information indicating a change in the data trend detected by the terminal 10.
  • FIG. 7 is a sequence diagram for explaining the flow of processing in the subroutine of S107 in the sequence diagram shown in FIG.
  • the information processing device 20 performs learning according to a trial pattern for selecting hyperparameters of an inference model based on the privacy protection data received from the terminal 10.
  • one combination of hyperparameters is selected from the trial patterns of candidate values of hyperparameters determined by the administrator of the inference model (S205).
  • the learning unit 230 sets the initial parameters of the inference model to learn the inference model using the selected hyperparameters (S207).
  • the learning unit 230 uses the selected hyperparameters and initial parameters to train the inference model using the privacy-preserving data as learning data (S209).
  • the information processing device 20 may repeat the processes of S205 to S209 until all trial patterns of the hyperparameters have been covered.
  • the inference model administrator sets the hyperparameters of the inference model based on the results of the learning.
  • the learning unit 230 sets the initial parameters of the inference model according to the set hyperparameters (S211).
  • the terminal 10 may evaluate the selected hyperparameters and initial parameters based on the results of the learning.
  • hyperparameters of the inference model may be set based on the evaluation results by the terminal 10.
  • FIG. 8 is a sequence diagram illustrating the flow of the subroutine process of S109 in the sequence diagram shown in FIG.
  • the learning unit 230 of the information processing device 20 causes the communication unit 250 to transmit an instruction to learn the inference model to the terminal 10 together with information on the hyperparameters and initial parameters set in S107 shown in FIG. 4 (S213).
  • Each of the multiple terminals 10 uses the local data as training data to train the inference model (S215).
  • Each of the multiple terminals 10 transmits update information for the inference model to the information processing device 20 based on the results of the learning (S217).
  • the learning unit 230 of the information processing device 20 aggregates the update information received from the multiple terminals 10 and updates the inference model held by the information processing device 20 (S219).
  • the privacy protection data is statistics of local data generated by each of the multiple terminals 10.
  • the information processing device 20 estimates the distribution of the local data based on the statistics of the local data.
  • the information processing device 20 can learn an inference model using synthetic data generated based on the estimated distribution of the local data as learning data.
  • FIG. 9 is a sequence diagram for explaining a second operation example of the information processing system according to this embodiment. Note that S107, S109, S111, S113, and S115 shown in FIG. 9 are as explained above with reference to FIG. 4, and therefore redundant explanations will be omitted.
  • the information processing device 20 aggregates the statistical data of the local data generated by the terminal 10 as privacy protection data (S131).
  • the information processing device 20 generates composite data based on the aggregated privacy-preserving data (statistical data) (S105).
  • the information processing device 203 of the information processing device 20 uses the synthetic data generated in S105 as learning data to learn an inference model. Next, the processes of S107 to S115 are performed.
  • FIG. 10 is a sequence diagram for explaining the process flow of the subroutines S131 and S105 in the sequence diagram shown in FIG. 9.
  • the data processing unit 130 of the terminal 10 performs a predetermined data conversion process on the statistical data, thereby performing privacy protection processing (S302).
  • FIG. 11 is a diagram for explaining another example of the processing for generating privacy protection data by the data processing unit 130.
  • the local data LD2 shown in FIG. 11 shows an example of local data collected by the acquisition unit 110 of the terminal 10A.
  • the local data statistics LS1 shown in FIG. 11 indicate the statistics data of the local data calculated by the data processing unit 130 of the terminal 10A.
  • the statistics DB1 after conversion processing indicates an example of privacy-preserving data generated by the data processing unit 130 performing a data conversion process that satisfies differential privacy on the local data statistics LS1.
  • the data processing unit 130 of the terminal 10 causes the communication unit 170 to transmit the privacy-protected statistical data to the information processing device 20 as privacy-protected data (S303).
  • the information processing device 20 estimates a distribution of local data across the multiple terminals 10, based on the privacy-protected statistical data received from each of the multiple terminals 10.
  • the information processing device 20 generates composite data based on the estimated distribution of local data (S304).
  • the statistics S3 show an example of statistics of local data collected by the information processing device 20.
  • the information processing device 20 estimates the distribution of the local data based on the statistics S3, and generates synthetic data GD1 based on the estimated distribution.
  • the information processing device 20 may use the synthetic data GD1 as training data to train the model N1.
  • the information processing device 20 may calculate statistics S4 as trend information based on statistics S3.
  • the local data acquired by multiple terminals 10 is statistics of features extracted from input data such as images, and label information associated with each feature.
  • the feature may be a feature extracted from a medical image. Also, there may be multiple features.
  • the label information included in the local data is two types of labels, correct and incorrect, in a binary classification problem in which input data is classified as correct or incorrect.
  • FIG. 12 is a sequence diagram for explaining a third operation example of the information processing system according to this embodiment. Note that S105, S107, S109, S111, S113, and S115 shown in FIG. 12 are as explained above with reference to FIG. 4 and FIG. 9, so duplicate explanations will be omitted.
  • the information processing device 20 and the terminal 10 perform a process of aggregating statistics of the local data that has been privacy-protected as privacy protection information.
  • the information processing device 20 distributes trend information indicating the data trend of the local data estimated based on the results of the privacy protection data aggregation to each of the multiple terminals 10 (S141).
  • Each of the multiple terminals 10 detects abnormal values contained in the local data based on the distributed trend information (S103).
  • the terminal 10 learns the model in S109, it uses data obtained by removing outliers from the local data as learning data.
  • FIG. 13 is a sequence diagram for explaining the process flow of the subroutines S141 and S103 in the sequence diagram shown in FIG. 12.
  • FIG. 14 is a diagram for explaining the aggregation of privacy protection data in a third operation example of the information processing system according to this embodiment.
  • terminal 10A, terminal 10B, and terminal 10C are illustrated as an example, but as described above, the number of terminals 10 according to this embodiment is not limited to this example.
  • the information processing system according to this embodiment may include two or more terminals 10.
  • the data processing unit 130 of the terminal 10A calculates feature statistics for each correct label for features included in the acquired local data (S401).
  • the terminals 10B and 10C also calculate feature statistics for each correct label, respectively (S402, S403).
  • Terminal 10A performs privacy protection processing on the calculated statistical data (S404).
  • Terminals 10B and 10C also perform privacy protection processing (S405, S406).
  • Local data statistics LS2, local data statistics LS3, and local data statistics LS4 shown in FIG. 14 indicate privacy-protected data, which is data in which privacy protection processing has been performed on the statistical data of the features for each correct label calculated by terminal 10A, terminal 10B, and terminal 10C, respectively.
  • each of the multiple terminals 10 transmits the privacy-protected statistical data and label information to the information processing device 20 (S407, S408, S409).
  • the generation unit 210 of the information processing device 20 performs a compilation process of the statistical data received from the multiple terminals 10 (S410).
  • the generation unit 210 calculates the data trend (distribution of features) for each correct label based on the results of the aggregation process (S411).
  • the counting result AS1 shown in FIG. 14 indicates the result of the counting process of the statistical data by the information processing device 20. Furthermore, the counting result AS2 indicates trend information, which is the trend of the data for each correct label, calculated based on the counting result AS1.
  • the generation unit 210 of the information processing device 20 distributes the calculated data trend (trend information) to each of the multiple terminals 10 (S412, S413, S414).
  • FIG. 15 is a conceptual diagram for explaining the detection of anomalies in the third operation example of this embodiment.
  • the local data statistics LS5 shown in FIG. 15 indicate the distribution of features for each correct label included in the local data newly acquired by the acquisition unit 110 of the terminal 10.
  • the points indicated by circles in the local data statistics LS5 indicate distribution points of features that have been labeled as correct. Furthermore, the distribution points indicated by Xs in the local data statistics LS5 indicate distribution points of features that have been labeled as incorrect.
  • sample point P1 indicates the distribution point of the feature that is included in the local data statistics LS5 and has been assigned the correct label.
  • Sample point P1 is a distribution point that has been assigned a correct label, but it can be seen that in the distribution of local data statistics LS5, it is distributed at a position away from the range indicated by the solid ellipse.
  • sample point P1 can be considered an abnormal value based on the distribution trend of the local data acquired by terminal 10A.
  • sample point P1 can be regarded as an abnormal value in the distribution trend of the local data when viewed across multiple terminals 10 as a whole.
  • FIG. 16 is another conceptual diagram for explaining the detection of abnormal values in the third operation example of this embodiment.
  • the distribution range AC1 and distribution range AC2 shown in FIG. 16 indicate the distribution tendency of data based on the trend information distributed from the information processing device 20 to the terminal 10A.
  • sample point P1 is not included in the distribution range of distribution range AC1. Therefore, it can be understood that sample point P1 can be considered an abnormal value even in terms of the distribution trend of local data across multiple terminals 10.
  • terminal 10A can detect abnormal values contained in the local data with a high degree of accuracy based on the distribution trend of the local data across multiple terminals 10 distributed from the information processing device 20.
  • the trend information distributed from information processing device 20 is used to detect abnormal values contained in the local data (S416, S417).
  • the information processing device 20 and the terminal 10 generate a generative model for generating synthetic data by associative learning.
  • the information processing device 20 uses the synthetic data generated by the generative model as training data to train an inference model.
  • FIG. 17 is a diagram for explaining the generation of privacy protection data in a modified example of this embodiment.
  • Local data LD3 shown in FIG. 17 indicates local data acquired by terminal 10A.
  • the generative model GN indicates a generative model generated by the associative learning of the information processing device 20 and the terminal 10.
  • the generative model GN1 is a generative model that is learned by each of the multiple terminals 10, and is a model that corresponds to the generative model GN2.
  • the generative model GN2 is a generative model that is updated by the information processing device 20 based on the learning results of each of the generative models GN1.
  • Terminal 10A uses local data LD3 as training data to train generative model GN1.
  • Generative model GN1 represents the generative model that has been trained by terminal 10A.
  • Terminal 10A transmits update information of the generative model obtained as a result of learning generative model GN1 to the information processing device 20.
  • the generative model is similarly learned on terminals 10 other than terminal 10A (terminal 10B, terminal 10C), and update information for the generative model is transmitted to the information processing device 20.
  • the above-mentioned generative model may be, for example, a model generated by a DPGAN (Differential Privacy Generative Adversarial Network) algorithm, which is a generative model that prevents training data from being identified from a trained generative model by adding noise to the gradient and parameters of the loss function during the learning process.
  • DPGAN Different Privacy Generative Adversarial Network
  • the information processing device 20 may distribute the updated generative model GN2 or parameter information of the updated generative model GN2 to each of the terminals 10.
  • the information processing device 20 generates synthetic data using the above-mentioned trained generative model.
  • the synthetic data GD2 shown in FIG. 17 indicates synthetic data generated using the generative model GN2.
  • the information processing device 20 may use the synthetic data GD2 as training data to train the model N1.
  • the information processing device 20 may also monitor data trends of the local data based on the generated synthetic data.
  • statistics S5 indicate trend information data generated from statistics of the local data estimated based on the synthetic data GD2.
  • the inference model can be learned without the local data acquired by the terminal 10 itself being collected in the information processing device 20. Therefore, privacy protection in this information processing system can be guaranteed.
  • synthetic data is generated using a generative model that is generated using local data as training data. This makes it possible to generate synthetic data that is closer to the data actually used for training. Therefore, the inference accuracy of the inference model by the information processing device 20 can be improved.
  • FIG. 18 is a sequence diagram for explaining an example of operation in a modified example of the information processing system according to this embodiment.
  • S103, S107, S109, S111, S113, and S115 shown in FIG. 18 are as explained above with reference to FIG. 4, FIG. 9, and FIG. 12, so duplicate explanations will be omitted.
  • the information processing device 20 and the terminal 10 learn the generative model through associative learning (S151).
  • the information processing device 20 then generates synthetic data based on the above generative model (S155).
  • the learning unit 230 of the information processing device 20 learns the inference model using the synthetic data generated based on the generative model as learning data.
  • FIG. 19 is a sequence diagram that explains the process flow of the subroutines S151 and S155 in the sequence diagram shown in FIG. 18.
  • the learning unit 230 of the information processing device 20 transmits a learning instruction including setting values of the initial parameters and hyperparameters of the generative model to each of the multiple terminals 10 (S500).
  • initial parameters and hyperparameters may be set to random values the first time the associative learning loop of S500 to S503 is performed.
  • the learning units 150 of the multiple terminals 10 use the local data as learning data to learn the generative model for which they received a learning instruction from the information processing device 20 (S501).
  • Each of the learning units 150 causes the communication unit 170 to transmit update information of the generative model to the information processing device 20 based on the learning results (S502).
  • the information processing device 20 aggregates the update information of the generative model received from each of the multiple terminals 10, and updates the generative model based on the aggregated results (S503).
  • the information processing device 20 and the terminal 10 repeat the processes of S500 to S502 until the learning of the generative model converges.
  • FIG. 20 is a block diagram illustrating a hardware configuration 90 according to one embodiment of the present disclosure.
  • the hardware configuration 90 can be applied to the terminal 10 and the information processing device 20.
  • the hardware configuration 90 includes, for example, a processor 901, a ROM (Read Only Memory) 903, a RAM (Random Access Memory) 905, a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925.
  • a processor 901 a ROM (Read Only Memory) 903, a RAM (Random Access Memory) 905, a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925.
  • a processor 901 a ROM (Read Only Memory) 903
  • RAM Random Access Memory
  • a host bus 907 a bridge 909
  • an external bus 911 an interface 913
  • an input device 915 an output device 917
  • the processor 901 functions, for example, as an arithmetic processing device and a control device, and controls the overall operation of each component or part of it based on various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927.
  • the ROM 903 is a means for storing the programs and/or data used in the calculations read by the processor 901.
  • the RAM 905 temporarily or permanently stores, for example, the programs and/or various parameters that are appropriately changed when the programs are executed by the processor 901.
  • the processor 901, ROM 903, and RAM 905 are connected to one another via, for example, a host bus 907 capable of high-speed data transmission.
  • the host bus 907 is connected to an external bus 911, which has a relatively low data transmission speed, via, for example, a bridge 909.
  • the external bus 911 is connected to various components via an interface 913.
  • the input device 915 examples include a mouse, a keyboard, a touch panel, a button, a switch, and a lever. Furthermore, a remote controller capable of transmitting a control signal using infrared rays or other radio waves may be used as the input device 915.
  • the input device 915 also includes an audio input device such as a microphone.
  • the input device 915 may also include an imaging device and a sensor.
  • the imaging device is a device that captures real space and generates a captured image using various components such as an imaging element, such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and a lens for controlling the formation of a subject image on the imaging element.
  • the imaging device may capture still images or may capture moving images.
  • the sensors are various types of sensors, such as distance sensors, acceleration sensors, gyro sensors, geomagnetic sensors, vibration sensors, light sensors, and sound sensors.
  • the sensors obtain information about the state of the hardware configuration 90 itself, such as the attitude of the housing of the hardware configuration 90, or information about the surrounding environment of the hardware configuration 90, such as the brightness or noise around the hardware configuration 90.
  • the sensors may also include a Global Positioning System (GPS) sensor that receives GPS signals to measure the latitude, longitude, and altitude of the device.
  • GPS Global Positioning System
  • the output device 917 includes various vibration devices capable of visually or audibly notifying the user of acquired information, such as display devices such as CRTs (Cathode Ray Tubes), LCDs (Liquid Crystal Displays), or organic EL (Electro-Luminescence), audio output devices such as speakers and headphones, printers, mobile phones, or facsimiles.
  • display devices such as CRTs (Cathode Ray Tubes), LCDs (Liquid Crystal Displays), or organic EL (Electro-Luminescence)
  • audio output devices such as speakers and headphones, printers, mobile phones, or facsimiles.
  • the storage device 919 is a device for storing various types of data.
  • a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, or a magneto-optical storage device is used.
  • the drive 921 is a device that reads information recorded on a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, or writes information to the removable recording medium 927 .
  • a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory
  • the removable recording medium 927 is, for example, a DVD medium, a Blu-ray (registered trademark) medium, an HD DVD medium, various semiconductor storage media, etc.
  • the removable recording medium 927 may be, for example, an IC card equipped with a non-contact type IC chip, an electronic device, etc.
  • connection port 923 is a port for connecting an external device 929, such as a Universal Serial Bus (USB) port, an IEEE 1394 port, a Small Computer System Interface (SCSI) port, an RS-232C port, or an optical audio terminal.
  • USB Universal Serial Bus
  • SCSI Small Computer System Interface
  • RS-232C Small Computer System Interface
  • the external connection device 929 is, for example, a printer, a portable music player, a digital camera, a digital video camera, or an IC recorder.
  • the communication device 925 is a communication device for connecting to a network, such as a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB), a router for optical communications, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various types of communications.
  • a network such as a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB), a router for optical communications, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various types of communications.
  • the steps in the processing of the operation of the terminal 10 and the information processing device 20 according to this embodiment do not necessarily have to be processed chronologically in the order described in the explanatory diagram.
  • each step in the processing of the operation of the terminal 10 and the information processing device 20 may be processed in an order different from the order described in the explanatory diagram, or may be processed in parallel.
  • a learning unit that learns an inference model by federated learning
  • An acquisition unit that acquires privacy protection data from a plurality of terminals, the privacy protection data being data obtained by performing privacy protection processing on local data obtained by each of the plurality of terminals;
  • the learning unit is training the inference model based on the privacy-preserving data; Distributing information about the inference model, including hyperparameters of the inference model that are set based on the results of the learning, to the multiple terminals;
  • the acquisition unit is acquiring, from the plurality of terminals, update information of the inference model obtained by each of the plurality of terminals learning the inference model using the distributed hyperparameters with the local data as learning data;
  • the learning unit is updating the inference model using the update information;
  • Information processing device that acquires privacy protection data from a plurality of terminals, the privacy protection data being data obtained by performing privacy protection processing on local data obtained by each of the plurality of terminals;
  • the learning unit is training the inference model based on the privacy-preserving data
  • the learning unit learns the inference model using the privacy preserving data as learning data.
  • the information processing device according to (1) (3) A generator for generating synthetic data based on the privacy preserving data, The learning unit learns the inference model using the synthetic data as learning data.
  • the privacy-preserving data is data generated by performing a data conversion process that satisfies differential privacy on the local data.
  • the data conversion process is a process of assigning a random number of a predetermined strength to each element included in the local data.
  • (6) The information processing device according to (5), wherein the data conversion process is performed using a Laplace mechanism or a Gaussian mechanism.
  • the privacy preserving data is generated by performing a data conversion process on the local data to reduce a dimension of the local data.
  • the privacy-preserving data is statistical data generated by performing a data conversion process that satisfies differential privacy on statistical data of the local data,
  • the generation unit estimates a distribution of the local data based on the privacy-preserving data; generating the synthetic data based on the estimated distribution;
  • the privacy protection data is statistical data generated by performing an encryption process that satisfies requirements for secure computation on the statistical data of the local data,
  • the generating unit performs a compilation process of the privacy protection data while the privacy protection data remains encrypted, estimating a distribution of the local data based on a result of the aggregation process; generating the synthetic data based on the estimated distribution;
  • the information processing device according to (3).
  • the generating unit performs a compilation process of the privacy protection data, Distributing trend information indicating a statistical data trend of the local data to each of the plurality of terminals based on a result of the aggregation process;
  • the acquisition unit acquires, from each of the plurality of terminals, the privacy protection data generated by each of the plurality of terminals by correcting or excluding local data that is deemed to be an abnormal value based on the trend information.
  • the information processing device according to (3).
  • the privacy preserving data includes feature amounts of elements included in the local data and label information associated with each feature amount;
  • the generation unit distributes a distribution of the feature amounts for each of the label information as the trend information.
  • the information processing device according to (10).
  • the generating unit monitors changes in distribution trends of the local data based on a result of the aggregation process of the privacy protection data, the learning unit, when the generation unit detects that the distribution trend has changed, re-learns the inference model using associative learning;
  • the information processing device according to (3).
  • the generation unit generates the synthetic data based on a generative model generated based on distribution information of the local data estimated from the privacy-preserving data or the local data.
  • the information processing device according to (3).
  • the acquisition unit acquires, from the multiple terminals, difference information indicating a difference between parameters of the inference model before and after the update as update information of the inference model, and
  • the learning unit updates the inference model based on the difference information.
  • the information processing device according to any one of (1) to (14).
  • the processor Learning an inference model through federated learning; Obtaining privacy protection data from a plurality of terminals, the data being data obtained by performing privacy protection processing on local data obtained by each of the plurality of terminals; training the inference model based on the privacy-preserving data; Distributing information about the inference model, including hyperparameters of the inference model that are set based on the results of the learning, to the multiple terminals; acquiring, from the plurality of terminals, update information of the inference model obtained by each of the plurality of terminals learning the inference model using the distributed hyperparameters with the local data as learning data; updating the inference model using the update information; and 2.
  • An information processing method implemented by a computer comprising: (16) Computer, a learning unit that learns an inference model by federated learning; An acquisition unit that acquires privacy protection data from a plurality of terminals, the privacy protection data being data obtained by performing privacy protection processing on local data obtained by each of the plurality of terminals; The learning unit is training the inference model based on the privacy-preserving data; Distributing information about the inference model, including hyperparameters of the inference model that are set based on the results of the learning, to the multiple terminals; The acquisition unit is acquire, from the plurality of terminals, update information of the inference model obtained by each of the plurality of terminals learning the inference model using the distributed hyperparameters with the local data as learning data; The learning unit is updating the inference model using the update information; A program that functions as an information processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

【課題】連合学習による機械学習モデルのセキュリティ性を担保しながら、推論精度をさらに向上させることが可能な、新規かつ改良された技術を提案する。 【解決手段】連合学習により推論モデルの学習を行う学習部と、複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたプライバシー保護データを前記複数の端末から取得する取得部と、を備え、前記学習部は、前記プライバシー保護データに基づいて前記推論モデルの学習を行い、前記学習の結果に基づいて前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、前記取得部は、前記複数の端末から、前記ローカルデータを学習データとして前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、前記学習部は、前記更新情報を用いて前記推論モデルを更新する、情報処理装置が提供される。

Description

情報処理装置、情報処理方法、およびプログラム
 本開示は、情報処理装置、情報処理方法、およびプログラムに関する。
 近年、収集されたデータに基づいてなんらかの推論を行う機械学習モデル(推論モデル)の開発が行われている。また、上記のような推論モデルの開発において、収集されるデータに含まれるプライバシー情報の保護等のセキュリティ性を担保しながら、モデルの開発を行うための技術も提案されている。例えば、特許文献1には、医用データを処理するための機械学習モデルの訓練において、連合学習の手法を用いた技術が開示されている。
特開2021-117964号公報
 しかし、特許文献1に開示される技術のように連合学習の手法を用いた機械学習モデルにおいては、セキュリティ性を担保するために、モデルの推論精度が代償となる可能性があった。
 上記課題を解決するために、本開示のある観点によれば、連合学習により推論モデルの学習を行う学習部と、複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得する取得部と、を備え、前記学習部は、前記プライバシー保護データに基づいて前記推論モデルの学習を行い、前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、前記取得部は、前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、前記学習部は、前記更新情報を用いて前記推論モデルを更新する、情報処理装置が提供される。
 また、本開示によれば、プロセッサが、連合学習により推論モデルの学習を行うことと、複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得することと、前記プライバシー保護データに基づいて前記推論モデルの学習を行うことと、前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布することと、前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得することと、前記更新情報を用いて前記推論モデルを更新することと、を含む、コンピュータにより実行される情報処理方法が提供される。
 また、本開示によれば、コンピュータを、連合学習により推論モデルの学習を行う学習部と、複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得する取得部と、を備え、前記学習部は、前記プライバシー保護データに基づいて前記推論モデルの学習を行い、前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、前記取得部は、前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、前記学習部は、前記更新情報を用いて前記推論モデルを更新する、情報処理装置、として機能させるための、プログラムが提供される。
本開示の一実施形態に係る情報処理システムの構成例を示す説明図である。 本実施形態に係る端末10の構成例を示すブロック図である。 本実施形態に係る情報処理装置20の構成例を示すブロック図である。 本実施形態に係る情報処理システムの第1の動作例を説明するためのシーケンス図である。 図4に示したシーケンス図におけるS101のサブルーチンの処理の流れを説明するシーケンス図である。 データ処理部130によるプライバシー保護データの生成処理の一例を説明するための図である。 図4に示したシーケンス図におけるS107のサブルーチンの処理の流れを説明するシーケンス図である。 図4に示したシーケンス図におけるS109のサブルーチンの処理の流れを説明するシーケンス図である。 本実施形態に係る情報処理システムの第2の動作例を説明するためのシーケンス図である。 図9に示したシーケンス図のS131およびS105のサブルーチンの処理の流れを説明するためのシーケンス図である。 データ処理部130によるプライバシー保護データの生成処理の他の一例を説明するための図である。 本実施形態に係る情報処理システムの第3の動作例を説明するためのシーケンス図である。 図12に示したシーケンス図におけるS141およびS103のサブルーチンの処理の流れを説明するためのシーケンス図である。 本実施形態による情報処理システムの第3の動作例におけるプライバシー保護データの集約を説明するための図である。 本実施形態の第3の動作例における異常値の検知について説明するための概念図である。 本実施形態の第3の動作例における異常値の検知について説明するための他の概念図である。 本実施形態の変形例におけるプライバシー保護データの生成について説明するための図である。 本実施形態による情報処理システムの変形例での動作例を説明するためのシーケンス図である。 図18に示したシーケンス図におけるS151およびS155のサブルーチンの処理の流れを説明するシーケンス図である。 本開示の一実施形態に係るハードウェア構成90を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書および図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字またはアルファベットを付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、複数の構成要素の各々に同一符号のみを付する。
 なお、説明は以下の順序で行うものとする。
 1.概要
 2.システム構成例
 3.機能構成例
  3-1.端末10 
  3-2.情報処理装置20
 4.動作例
  4-1.第1の動作例
  4-2.第2の動作例
  4-3.第3の動作例
 5.変形例
 6.ハードウェア構成例
 7.まとめ
 <1.概要>
 まず、本開示の一実施形態の概要について述べる。
 上述したように、近年においては、収集されたデータに基づいて何らかの推論を行う推論モデルの開発が行われている。
 推論モデルによれば、未知のデータに基づいて各種の推論を精度高く実現することも可能である。このため、推論モデルの生成・活用は、種々の分野において盛んに行われている。
 しかし、例えばサーバが複数の装置からデータを収集し、当該データに基づく学習を行う場合には、プライバシーの保護が課題となる。
 そこで、複数の装置から収集したデータを用いた学習を行う場合においてデータのプライバシーを保護する手法として、連合学習(Federated Learning)と呼ばれる手法が存在する。
 一般的な連合学習では、サーバから複数の装置の各々に機械学習モデルの学習指示が出され、複数の端末の各々において取得されるデータを用いたモデルの学習が行われる。サーバ側には学習結果が収集され、当該学習結果に基づいて、サーバ側に保持されるモデルが更新される。
 従って、連合学習によれば、複数の装置が保持する、実際に学習に用いられるデータが外部の装置に晒されることなく、推論モデルの学習が行われ得る。
 しかし、機械学習システムを構築するためには、機械学習モデルの学習による最適化が一度行われるだけでは十分でない。一般に機械学習システムの構築は、学習データの準備、モデルの最適化(学習)、および、モデルの運用(推論)の3つの段階に大きく分けることが出来る。
 機械学習モデルの学習段階においては、モデル構造、最適化手法、およびハイパーパラメータを選定するために、複数の試行パターンごとに学習が行われる。これにより、より最適なハイパーパラメータが設定され得る。
 従来、連合学習を用いた機械学習モデルにおいては、実際に学習に用いられるデータがサーバには集約されないため、上記のようなハイパーパラメータの選定のための学習が、複数の端末によって行われていた。
 より詳細には、ハイパーパラメータの設定値の複数の試行パターンごとに、各設定値を用いた学習指示が、サーバから複数の端末に送信される。複数の端末の各々は、受信したハイパーパラメータの設定値を用いて、複数の端末において取得されるデータを学習データとして学習を行う。サーバは、複数の端末から学習結果を集約し、集約結果に基づいてモデルのパラメータを更新する。サーバは、更新後のモデルのパラメータを複数の端末に再度配布する。以上の処理が、学習が収束するまで繰り返される。
 上記の一連の処理が繰り返され、ハイパーパラメータの設定値の1つの試行パターンを用いた学習が収束すると、残りのハイパーパラメータの設定値の試行パターンについても同様に、上記の一連の処理が繰り返される。
 従って、例えば、1のハイパーパラメータの試行パターンによる学習の収束までに、上記の一連の処理が10回繰り返される必要があると仮定すると、試行パターンが10種類ある場合には、複数の端末は、10回×10種類=100回の学習を行う必要がある。
 ここで、ハイパーパラメータの設定値として様々な試行パターンが試行されるほど、より最適なハイパーパラメータが設定され得る。一方で、ハイパーパラメータの試行パターンの増加は、ハイパーパラメータの選定のための学習に要する時間および処理負荷の増加につながるという不都合があった。
 さらに、複数の端末の演算能力が低い場合、ハイパーパラメータの試行パターンの数は極力少ないことが望ましい。これにより、複数の端末がハイパーパラメータの選定のために行う学習の回数が低減される。しかし、試行パターンの数を低減すると、モデルの推論精度が代償となる可能性がある。
 また、機械学習モデルの推論精度は、学習データの品質に大きく影響される。このため、学習データの準備段階で、データ内の異常値、および、悪意のあるユーザによる不正値等の不正なデータが検知され、修正されることが望ましい。
 しかし、一般的な連合学習では、実際に学習に用いられるデータはサーバ側には集約されないため、サーバ側で不正なデータを検知することが難しいという課題があった。
 さらに、学習済のモデルを用いた推論段階(以下、運用段階とも称する)に移行した後に、社会環境の変化等の要因により、端末で取得されるデータの傾向に変化が生じる場合がある。この場合、モデルの学習が行われた時点での学習データと、推論段階において取得されるデータとに乖離が生じ得る。このような場合、モデルの再学習が行われることが望ましい。
 しかし一般的な連合学習では、実際に学習に用いられるデータは端末で保持されるため、サーバ側ではデータ傾向の変化の検出が困難である。
 本開示の一実施形態に係る技術思想は上記のような点に着目して発想されたものであり、連合学習による機械学習モデルのセキュリティ性の担保と、さらに高い推論精度の両立を実現するものである。
 このために、本開示の一実施形態に係る情報処理装置20は、複数の端末10の各々において取得される、実際に学習に用いられるデータ(以下、ローカルデータ)に基づいて、ローカルデータに対しプライバシー保護処理が行われたデータであるプライバシー保護データを取得する通信部250を備える。通信部250は、情報処理装置20の取得部の一例である。
 また、本開示の一実施形態に係る情報処理装置20は、収集されたプライバシー保護データに基づいて推論モデルの学習を行う学習部230を備える。さらに、学習部230は、当該学習の結果に基づいて設定されたハイパーパラメータの情報を含む推論モデルを端末10に配布する。
 また、本開示の一実施形態に係る情報処理装置20の学習部230は、複数の端末の各々により、ローカルデータを学習データとして、配布された推論モデルの学習が行われることにより得られるモデルの更新情報を用いて、上記推論モデルを更新する。
 上記で述べたような処理によれば、情報処理装置20側にはローカルデータが収集されない。このため、推論モデルの学習のために収集されるデータのプライバシーを保護することが出来る。
 また、上記で述べたような処理によれば、情報処理装置20は、実際に学習に用いられるデータであるローカルデータに対してプライバシー保護処理が行われたデータである、プライバシー保護データに基づいて学習を行う。これにより、プライバシー情報を保護しながら、よりローカルデータに近いデータに基づき、ハイパーパラメータの試行のための学習が行われる。このため、上記推論モデルの推論精度の向上が期待できる。
 また、上述のような処理によれば、複数の端末10の各々では、情報処理装置20から配布されたハイパーパラメータを用いて推論モデルの学習が行われる。そのため、端末10では、ハイパーパラメータの試行のための学習が不要となる。従って、端末10側での学習の処理負荷が軽減される。
 さらに、本開示の一実施形態に係る情報処理装置20は、プライバシー保護データの集計処理を行う。情報処理装置20は、集計処理の結果に基づき、ローカルデータの統計的なデータ傾向を示す傾向情報を、複数の端末10に配布する。
 また、本開示の一実施形態に係る情報処理装置20は、プライバシー保護データの集計結果に基づき、ローカルデータの分布傾向の変化を監視する。
 さらに、情報処理装置20は、ローカルデータの分布傾向が変化したことが検知されると、推論モデルの再学習を行う。
 上記で述べたような処理によれば、複数の端末10において、ローカルデータの分布傾向を示す傾向情報に基づき、学習データに含まれる異常値を検知し得る。
 また、上記で述べたような処理によれば、推論モデルが運用段階に移行した後でも、ローカルデータの傾向の変化に応じた当該推論モデルの再学習が行われ得る。
 以下、上記を実現するシステム構成例について詳細に説明する。
 <2.システム構成例>
 図1は、本開示の一実施形態に係る情報処理システムの構成例を示す説明図である。
 図1に示すように、本開示の一実施形態に係る情報処理システムは、複数の端末10と情報処理装置20とを備える。
 各々の端末10と情報処理装置20とは、ネットワーク30を介して互いが通信可能に接続される。
 なお、図1には、本実施形態に係る情報処理システムが端末10A、端末10B、および端末10Cの、3の端末10を備える場合を例示しているが、本実施形態に係る端末10の数は特に限定されない。例えば、本実施形態に係る情報処理システムは、2の端末10を備えていてもよい。または、本実施形態に係る情報処理システムは、3以上の端末10を備えていてもよい。
 また、図1には、端末10がスマートフォンにより実現される場合を例示しているが、端末10は他の情報処理端末により実現されてもよい。例えば、端末10は、PC(Personal Computer)、タブレット型端末、ゲーム機、ウェアラブルデバイス等により実現されてもよい。
 (端末10)
 本実施形態に係る端末10は、取得したローカルデータを学習データとして、情報処理装置20から配布される推論モデルの学習を行う。
 端末10は、学習結果に基づき、推論モデルの更新情報を情報処理装置20へ送信する。更新情報は、例えば、学習の結果得られる更新後のパラメータであってもよい。または、更新前と更新後のパラメータの差分情報であってもよい。
 また、本実施形態に係る端末10は、取得されたローカルデータに対し、プライバシー保護処理を行うことにより、プライバシー保護データを生成する。
 端末10は、生成したプライバシー保護データを情報処理装置20へ送信する。
 また、本実施形態に係る端末10は、情報処理装置20から配布される、ローカルデータのデータ傾向を示す傾向情報を受信してもよい。
 端末10は、当該傾向情報に基づいて、新たに取得されたローカルデータのうち、異常値または不正値などの不正なデータを検知してもよい。端末10は、検知された不正なデータを除いたローカルデータに基づいて、プライバシー保護情報を生成してもよい。
 (情報処理装置20)
 本実施形態に係る情報処理装置20は、複数の端末10から取得したプライバシー保護情報に基づき生成した推論モデルを、端末10に配布する。
 また、本実施形態に係る情報処理装置20は、複数の端末10から、上記推論モデルの更新情報を受信し、当該更新情報に基づいて推論モデルを更新する。
 本実施形態に係る情報処理装置20は、更新後の推論モデルに係る、情報処理装置20からの更新情報(更新モデル、ハイパーパラメータ等)、を複数の端末10に配布する。
 (ネットワーク30)
 本実施形態に係るネットワーク30は、端末10と情報処理装置20との間における通信を仲介する。
 <3.機能構成例>
 <<3-1.端末10の構成例>>
 続いて、本実施形態に係る端末10の構成例について詳細に説明する。
 図2は、本実施形態に係る端末10の構成例を示すブロック図である。
 図2に示すように、本実施形態に係る端末10は、取得部110、データ処理部130、学習部150、および通信部170を備えていてもよい。
 (取得部110)
 本実施形態に係る取得部110は、各種のデータを収集する。
 取得部110により収集されるデータは、端末10での推論モデルの学習データとして用いられてよい。
 取得部110は、端末10での推論モデルの学習データの一要素として利用可能なセンサ情報を収集するための各種のセンサを備えてよい。
 例えば、取得部110は、通信部170と他の装置との無線通信に係る通信速度または帯域幅等の情報を取得してもよい。
 または、取得部110は、外部記憶装置等の外部装置から、学習データとして用いられる音データ、文字データ、または画像データ等の各種データを取得してもよい。画像データは、例えば医用画像であってもよい。
 以下、取得部110により収集される、端末10での推論モデルの学習データとして用いられるデータを、ローカルデータと称する。
 (データ処理部130)
 本実施形態に係るデータ処理部130は、取得部110により取得されたローカルデータに基づいて、プライバシー保護データを生成する機能を有する。
 より詳細には、データ処理部130は、ローカルデータに対し、プライバシー保護処理を行う。プライバシー保護処理は、ローカルデータに含まれるプライバシー情報等の秘匿対象の要素の特定および復元を困難にする処理を指す。
 このとき、データ処理部130が生成するプライバシー保護データとして、いくつかのデータ形式が考えられる。
 例えば、データ処理部130により生成されるプライバシー保護データは、ローカルデータに対して、差分プライバシーを満たすデータ変換処理が行われたデータであってもよい。データ変換処理は、ローカルデータに含まれる要素の各々に対して、予め定められた強度の乱数を付与する処理であってもよい。
 また、差分プライバシーを満たすデータ変換処理として、例えば、ラプラスメカニズム、または、ガウシアンメカニズムが用いられてもよい。
 または、プライバシー保護データは、データ処理部130により、ローカルデータに対して、データの次元を削減するデータ変換処理が行われることにより生成されるデータであってもよい。この場合、データ処理部130は、Auto-Encoder(自己符号化器)のアルゴリズムを用いて、ローカルデータの次元削減を行ってもよい。
 または、データ処理部130により生成されるプライバシー保護データは、ローカルデータに対し、匿名化処理が行われることにより生成されたデータであってもよい。
 または、データ処理部130によるプライバシー保護データの生成の他の一例として、データ処理部130によりローカルデータの統計量が算出されてもよい。プライバシー保護データは、データ処理部130が算出されたローカルデータの統計量に対し差分プライバシーを満たすデータ変換処理を行うことにより生成された統計量データであってもよい。
 または、プライバシー保護データは、データ処理部130が、算出されたローカルデータの統計量に対し、秘密計算の要件を満たす暗号化処理を行うことによって生成されたデータであってもよい。
 また、本開示の一実施形態に係るデータ処理部130は、情報処理装置20から、複数の端末10全体でのデータの傾向情報を取得してもよい。
 データ処理部130は、傾向情報に基づき、取得部110により新たに取得されるローカルデータに含まれる異常値を検知してもよい。
 さらに、データ処理部130は、ローカルデータから、異常値と見做されたデータを修正または除外する処理を行ってもよい。データ処理部130は、異常値と見做されたデータが修正または除外されたローカルデータに基づいて、プライバシー保護データを生成してもよい。
 (学習部150)
 本実施形態に係る学習部150は、取得部110により取得されるローカルデータを学習データとして、情報処理装置20から配布される推論モデルの学習を行う。
 学習部150は、上記学習の結果に基づいて、推論モデルの更新情報を出力する。更新情報は、例えば、推論モデルのパラメータの、学習の前後での差分情報であってもよい。
 (通信部170)
 本実施形態に係る通信部170は、ネットワーク30を介して情報処理装置20との通信を行う。
 通信部170は、例えば、データ処理部130により生成されたプライバシー保護データを、情報処理装置20へ送信する。
 また、通信部170は、学習部150による学習の結果出力された推論モデルの更新情報を、情報処理装置20へ送信する。
 また、通信部170は、情報処理装置20から、推論モデル、および、当該推論モデルの情報処理装置20からの更新情報等を受信する。
 以上、本実施形態に係る端末10の構成例について述べた。なお、図2を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る端末10の構成はかかる例に限定されない。
 本実施形態に係る端末10は、例えば、ユーザによる情報の入力を受け付ける入力部、各種の情報を表示する表示部などをさらに備えてもよい。
 本実施形態に係る端末10の構成は、仕様と運用に応じて柔軟に変形可能である。
 <<3-2.情報処理装置20の構成例>>
 次に、本実施形態に係る情報処理装置20の構成例について詳細に説明する。
 図3は、本実施形態に係る情報処理装置20の構成例を示すブロック図である。
 図3に示すように、本実施形態に係る情報処理装置20は、生成部210、学習部230、および通信部250を備えていてもよい。
 (生成部210)
 本実施形態に係る生成部210は、端末10から取得されたプライバシー保護データの集計処理を行う。
 例えば、プライバシー保護データが暗号化処理されている場合、生成部210は、秘密計算の手法を用いて、プライバシー保護データを復号することなく、当該プライバシー保護データが暗号化されたままの状態で集計処理を行ってもよい。
 また、生成部210は、プライバシー保護データの集計処理の結果に基づき、ローカルデータの分布を推定する。
 また、生成部210は、プライバシー保護データがローカルデータの統計量である場合には、推定されたローカルデータの分布に基づいて、合成データを生成してもよい。本開示において、合成データとは、推定されたローカルデータの分布に基づき疑似的にサンプリングされたデータを指す。
 また、生成部210は、上記プライバシー保護データの集計処理の結果に基づき、ローカルデータの統計的なデータ傾向の推定結果を示す傾向情報を生成してもよい。
 傾向情報は、生成部210が、定期的に複数の端末10からプライバシー保護データを収集し、一定期間ごとのプライバシー保護データの集計処理結果の差分を算出することにより生成されてもよい。
 なお、端末10から収集され情報処理装置20に蓄積されたプライバシー保護データのデータセットそのものが、傾向情報として用いられてもよい。
 生成部210は、通信部250に、当該傾向情報を複数の端末10の各々へ配布させてもよい。
 さらに、生成部210は、プライバシー保護データの集計処理の結果に基づき、ローカルデータの分布傾向の変化を監視してもよい。
 (学習部230)
 本実施形態に係る学習部230は、連合学習により推論モデルの学習を行う。
 推論モデルは、CNN(Convolutional Neural Network)であってもよい。この場合、例えば情報処理装置20は、当該推論モデルを用いて、端末10により取得される医用画像の画像認識を行い、認識結果に基づき当該医用画像から推定される疾病の診断を行ってもよい。
 または、推論モデルは、時系列データを扱うことが可能なLSTM(Long Short-Term Memory)モデルであってもよい。この場合、例えば情報処理装置20は、当該推論モデルを用いて、端末10において取得される通信速度等の無線通信品質情報に基づく無線通信の品質予測を行ってもよい。
 学習部230は、端末10から取得されるプライバシー保護データ、または、当該プライバシー保護データに基づき生成される合成データを学習データとして、上記推論モデルのハイパーパラメータの選定のための学習を行う。
 より詳細には、学習部230は、上記推論モデルの管理者により決定されるハイパーパラメータの候補値の組合せの試行パターンに応じて、全ての試行パターンが網羅されるように、推論モデルの学習を行ってもよい。
 推論モデルのハイパーパラメータは、学習部230による学習の結果に基づいて、推論モデルの管理者により設定されてもよい。
 また、推論モデルの初期パラメータが、学習部230によるハイパーパラメータ試行のための学習の結果に基づいて取得されてもよい。
 学習部230は、設定されたハイパーパラメータ情報を含む上記推論モデルを、複数の端末10に配布する。
 また、本実施形態に係る学習部230は、端末10から取得される推論モデルの更新情報に基づいて、当該推論モデルを更新する。
 さらに、本実施形態に係る学習部230は、生成部210によりローカルデータの分布傾向が変化したことが検知された場合、連合学習技術を用いて、上記推論モデルの再学習を行ってもよい。
 (通信部250)
 本実施形態に係る通信部250は、ネットワーク30を介して複数の端末10と通信を行う。通信部250は、情報処理装置20の取得部の一例である。
 通信部250は、例えば、学習部230による学習の結果に基づき設定されたハイパーパラメータ情報を含む上記推論モデル、および、当該推論モデルの情報処理装置20側からの更新情報を、端末10に送信する。
 また、通信部250は、複数の端末10から、推論モデルの更新情報を受信する。
 以上、本実施形態に係る情報処理装置20の構成例について述べた。なお、図3を用いて説明した上記の説明はあくまで一例であり、本実施形態に係る情報処理装置20の構成は係る例に限定されない。
 本実施形態に係る情報処理装置20は、例えば、ユーザによる情報の入力を受け付ける入力部、各種の情報を表示する表示部などをさらに備えてもよい。
 本実施形態に係る情報処理装置20の構成は、仕様および運用に応じて柔軟に変形可能である。
 <4.動作例>
 続いて、図4~図16を参照して、本開示の一実施形態に係る情報処理システムの動作例を説明する。
 <<4-1.第1の動作例>>
 まず、図4~8を参照し、本実施形態に係る情報処理システムの第1の動作例を説明する。第1の動作例では、端末10のデータ処理部130により生成されるプライバシー保護データが、ローカルデータに対して差分プライバシーを満たすデータ変換処理または/およびデータの次元を削減する処理が行われることにより生成されたデータである例を説明する。
 図4は、本実施形態に係る情報処理システムの第1の動作例を説明するためのシーケンス図である。図4に示したシーケンス図は、第1の動作例における処理の流れの概要を示す。
 まず、情報処理装置20は、複数の端末10の各々からプライバシー保護データを集約する(S101)。
 次に、情報処理装置20は、集約されたプライバシー保護データに基づき、ハイパーパラメータ、および、初期パラメータ探索のための試行パターンに応じた推論モデルの学習を行う(S107)。
 次いで、情報処理装置20および複数の端末10は、連合学習による推論モデルの学習を行う(S109)。
 複数の端末10は、それぞれの端末10において学習済みの推論モデルを用いて、推論を行う(S111)。
 以降、情報処理装置20および端末10は、ローカルデータのデータ分布傾向の変化を監視する(S113)。
 データ分布傾向が変化したことが検知されると、情報処理装置20および端末10は、連合学習によるモデルの再学習を行う(S115)。
 以上、図4を用いて、本実施形態による第1の動作例を説明した。次いで、図4に示したS101、S107、およびS109について、より詳細な処理の流れを説明する。
 ((サブルーチンS101))
 図5は、図4に示したシーケンス図におけるS101のサブルーチンの処理の流れを説明するシーケンス図である。
 図5に示したように、まず、複数の端末10の各々のデータ処理部130は、差分プライバシーを満たすデータ変換処理、または、次元削減処理等の手法により、ローカルデータへのプライバシー保護処理を行う(S201)。
 ここで、図6を参照して、上記プライバシー保護処理について説明する。図6は、データ処理部130によるプライバシー保護データの生成処理の一例を説明するための図である。図6に示したローカルデータLD1は、端末10Aの取得部110により収集されたローカルデータの一例を示す。
 図6に示した変換処理後データDA1は、データ処理部130によりローカルデータLD1に基づき上記のようなデータ変換処理が行われることにより生成されたプライバシー保護データの一例を示す。
 端末10A以外の他の端末10の各々においても、同様にローカルデータに基づきプライバシー保護データが生成される。
 端末10の通信部170は、プライバシー保護処理済みのデータを、プライバシー保護データとして情報処理装置20へ送信する(S203)。
 情報処理装置20は、端末10からプライバシー保護データを収集し、プライバシー保護データの集計処理を行う。図6に示した変換処理後データDA2は、情報処理装置20により収集されたプライバシー保護データのデータセットの一例を示す。
 また、図6に示したモデルN1は、情報処理装置20が学習を行う推論モデルを示す。図6に示したように、情報処理装置20は、変換処理後データDA2に基づき、モデルN1の学習を行うことが出来る。
 また、情報処理装置20は、変換処理後データDA2に基づき、複数の端末10全体でのプライバシー保護データの統計量を集計処理することが出来る。図6に示した統計量S1は、集計されたプライバシー保護データの統計量の一例を示す。
 本動作例において、プライバシー保護情報は、ローカルデータに対して差分プライバシーを満たすデータ変換処理等の、プライバシー保護処理が施されたデータである。このため、情報処理装置20は、プライバシー保護情報の集計処理結果である統計量S1に基づいて、元のデータであるローカルデータの統計量を推定することが出来る。
 さらに、情報処理装置20は、統計量S1に基づき、端末10により取得されるデータ傾向の変化を検出してもよい。統計量S2は、端末10により検出されたデータ傾向の変化を示す傾向情報の一例を示す。
 以上、図5を用いて、図4に示したシーケンス図におけるS101のサブルーチンについて説明した。
 ((サブルーチンS107))
 図7は、図4に示したシーケンス図におけるS107のサブルーチンの処理の流れを説明するシーケンス図である。
 図7に示したように、情報処理装置20は、端末10から受信したプライバシー保護データに基づいて、推論モデルのハイパーパラメータを選定するための試行パターンに応じた学習を行う。
 まず、推論モデルの管理者により決定されるハイパーパラメータの候補値の試行パターンのうち、1のハイパーパラメータの組合せが選定される(S205)。
 次いで、学習部230は、選定されたハイパーパラメータを用いた推論モデルの学習を行うための、推論モデルの初期パラメータを設定する(S207)。
 学習部230は、選定されたハイパーパラメータおよび初期パラメータを用い、プライバシー保護データを学習データとして推論モデルの学習を行う(S209)。
 情報処理装置20は、ハイパーパラメータの全ての試行パターンが網羅されるまで、S205~S209の処理を繰り返してもよい。
 全ての試行パターン分の学習が完了すると、学習の結果に基づき、推論モデルの管理者により、推論モデルのハイパーパラメータが設定される。学習部230は、設定されたハイパーパラメータに応じて、推論モデルの初期パラメータを設定する(S211)。
 以上、図7を用いて、図4に示したシーケンス図におけるS107のサブルーチンの処理の流れについて説明した。
 なお、上記では、情報処理装置20においてハイパーパラメータの選定のための学習が行われる例を説明したが、本開示は係る例に限定されない。例えば、上記で説明したS209における、選定されたハイパーパラメータおよび初期パラメータを用いた学習の処理の後に、端末10が、当該学習の結果に基づき、選定されたハイパーパラメータおよび初期パラメータの評価を行ってもよい。
 さらに、S211において、端末10による評価結果に基づき推論モデルのハイパーパラメータが設定されてもよい。
 ((サブルーチンS109))
 次に、図8は、図4に示したシーケンス図におけるS109のサブルーチンの処理の流れを説明するシーケンス図である。
 図8に示したように、情報処理装置20の学習部230は、通信部250に、図4に示したS107において設定されたハイパーパラメータおよび初期パラメータの情報と共に、推論モデルの学習指示を端末10に対して送信させる(S213)。
 複数の端末10の各々は、ローカルデータを学習データとして推論モデルの学習を行う(S215)。
 複数の端末10の各々は、学習の結果に基づき、推論モデルの更新情報を情報処理装置20へ送信する(S217)。
 情報処理装置20の学習部230は、複数の端末10から受信した更新情報を集約し、情報処理装置20が保持する推論モデルを更新する(S219)。
 以上、図4~図8を参照して、本実施形態に係る情報処理システムの第1の動作例を説明した。
 <<4-2.第2の動作例>>
 次に、図9~11を参照して、本実施形態に係る情報処理システムの第2の動作例を説明する。
 本動作例では、プライバシー保護データが、複数の端末10の各々により生成されたローカルデータの統計量である例を説明する。情報処理装置20は、ローカルデータの統計量に基づいて、ローカルデータの分布を推定する。情報処理装置20は、推定したローカルデータの分布に基づき生成した合成データを学習データとして、推論モデルの学習を行うことが出来る。
 図9は、本実施形態に係る情報処理システムの第2の動作例を説明するためのシーケンス図である。なお、図9に示したS107、S109、S111、S113、およびS115は、上記で図4を参照して説明した通りであるため、重複する説明を省略する。
 図9に示したように、情報処理装置20は、端末10により生成されるローカルデータの統計量データをプライバシー保護データとして集約する(S131)。
 次いで、情報処理装置20は、集約されたプライバシー保護データ(統計量データ)に基づき、合成データを生成する(S105)。
 本動作例では、情報処理装置20の情報処理装置203は、S105において生成された合成データを学習データとして、推論モデルの学習を行う。次いで、S107~S115の処理が行われる。
 図10は、図9に示したシーケンス図のS131およびS105のサブルーチンの処理の流れを説明するためのシーケンス図である。
 ((サブルーチンS131))
 図10に示したように、複数の端末10のデータ処理部130は、ローカルデータの統計量を計算する(S301)。
 端末10のデータ処理部130は、統計量データに対し所定のデータ変換処理を行うことにより、プライバシー保護処理を行う(S302)。
 ここで、図11を参照して、本動作例におけるデータ処理部130によるプライバシー保護処理について説明する。図11は、データ処理部130によるプライバシー保護データの生成処理の他の一例を説明するための図である。図11に示したローカルデータLD2は、端末10Aの取得部110により収集されたローカルデータの一例を示す。
 また、図11に示したローカルデータ統計量LS1は、端末10Aのデータ処理部130により算出されたローカルデータの統計量データを示す。変換処理後統計量DB1は、データ処理部130により、ローカルデータ統計量LS1に差分プライバシーを満たすデータ変換処理が行われることにより生成されたプライバシー保護データの一例を示す。
 次いで、端末10のデータ処理部130は、プライバシー保護処理済みの統計量のデータを、プライバシー保護データとして、通信部170に情報処理装置20へ送信させる(S303)
 ((サブルーチンS105))
 情報処理装置20は、複数の端末10の各々から受信したプライバシー保護処理済みの統計量データに基づき、複数の端末10全体でのローカルデータの分布を推定する。情報処理装置20は、推定したローカルデータの分布に基づき、合成データを生成する(S304)。
 図11に示した例では、統計量S3が、情報処理装置20により集計されたローカルデータの統計量の一例を示す。情報処理装置20は、統計量S3に基づきローカルデータの分布を推定し、推定された分布に基づいて合成データGD1を生成する。
 情報処理装置20は、合成データGD1を学習データとして、モデルN1の学習を行ってもよい。
 また、情報処理装置20は、統計量S3に基づき、傾向情報として統計量S4を算出してもよい。
 以上、図9~図11を用いて、本実施形態に係る情報処理システムの第2の動作例を説明した。
 <<4-3.第3の動作例>>
 次に、図12~図16を参照して、本実施形態に係る情報処理システムの第3の動作例を説明する。
 第3の動作例では、情報処理装置20によりプライバシー保護データに基づいて生成される、ローカルデータの分布傾向を示す傾向情報を用いて、複数の端末10の各々において異常値の検出が行われる例を詳細に説明する。
 本動作例では、複数の端末10により取得されるローカルデータが、画像等の入力データから抽出された特徴量の統計量と、各特徴量に関連付けられたラベル情報である例を説明する。
 例えば、特徴量は、医用画像から抽出された特徴量であってもよい。また、特徴量は、複数あってよい。
 また、本動作例では、ローカルデータに含まれるラベル情報が、入力されたデータが正解であるか不正解であるかを分類する2値分類問題における、正解および不正解の2種類のラベルである例を説明する。
 図12は、本実施形態に係る情報処理システムの第3の動作例を説明するためのシーケンス図である。なお、図12に示したS105、S107、S109、S111、S113、およびS115は、上記で図4および図9を参照して説明した通りであるため、重複する説明を省略する。
 図12に示したように、情報処理装置20および端末10は、プライバシー保護情報として、プライバシー保護処理済みのローカルデータの統計量を集約する処理を行う。このとき、情報処理装置20は、プライバシー保護データの集計結果に基づき推定されたローカルデータのデータ傾向を示す傾向情報を複数の端末10の各々へ配布する(S141)。
 複数の端末10の各々は、配布された傾向情報に基づき、ローカルデータに含まれる異常値を検知する(S103)。
 さらに、本動作例では、端末10は、S109におけるモデルの学習を行う際に、ローカルデータから異常値を除いたデータを学習データとして学習を行う。
 図13は、図12に示したシーケンス図におけるS141およびS103のサブルーチンの処理の流れを説明するためのシーケンス図である。
 また、図14は、本実施形態による情報処理システムの第3の動作例におけるプライバシー保護データの集約を説明するための図である。
 なお、図13においては、端末10A、端末10B、および端末10Cによる処理が例示されているが、上述したように、本実施形態に係る端末10の数は係る例に限定されない。本実施形態に係る情報処理システムは、2以上の端末10を備えてもよい。
 ((サブルーチンS141))
 図13に示したように、端末10Aのデータ処理部130は、取得したローカルデータに含まれる特徴量について、正解ラベル毎に特徴量の統計量を計算する(S401)。端末10Bおよび端末10Cにおいても、それぞれ、正解ラベル毎に特徴量の統計量が計算される(S402、S403)。
 端末10Aは、計算した統計量データにプライバシー保護処理を行う(S404)。端末10Bおよび端末10Cにおいても、それぞれ、プライバシー保護処理が行われる(S405、S406)
 図14に示したローカルデータ統計量LS2、ローカルデータ統計量LS3、およびローカルデータ統計量LS4は、それぞれ、端末10A、端末10B、および端末10Cにより計算された正解ラベル毎の特徴量の統計量データにプライバシー保護処理が行われたデータである、プライバシー保護データを示す。
 次に、複数の端末10の各々は、情報処理装置20に、プライバシー保護処理済みの統計量データおよびラベル情報を送信する(S407、S408、S409)。
 情報処理装置20の生成部210は、複数の端末10から受信した統計量データの集計処理を行う(S410)。
 生成部210は、集計処理結果に基づき、正解ラベル毎のデータの傾向(特徴量の分布)を算出する(S411)。
 図14に示した集計結果AS1は、情報処理装置20による統計量データの集計処理結果を示す。また、集計結果AS2は、集計結果AS1に基づき算出された、正解ラベル毎のデータの傾向である、傾向情報を示す。
 情報処理装置20の生成部210は、算出されたデータの傾向(傾向情報)を、複数の端末10の各々へ配布する(S412、S413、S414)。
 ((サブルーチンS103))
 端末10Aは、情報処理装置20から配布された傾向情報に基づいて、取得部110が取得したローカルデータに含まれる異常値の検知を行う(S415)。
 図15は、本実施形態の第3の動作例における異常値の検知について説明するための概念図である。図15に示したローカルデータ統計量LS5は、端末10の取得部110が新たに取得したローカルデータに含まれる正解ラベル毎の特徴量の分布を示す。
 ローカルデータ統計量LS5に含まれる丸で示された各点は、正解のラベルが付与された特徴量の分布点を指す。また、ローカルデータ統計量LS5に含まれるXで示された分布点は、不正解のラベルが付与された特徴量の分布点を示す。
 また、サンプル点P1は、ローカルデータ統計量LS5に含まれる、正解のラベルが付与された特徴量の分布点を示す。
 図15に示した例では、正解のラベルが付与されている丸で示された分布点は、実線の楕円で囲まれた範囲に凡そ分布していることが理解される。一方、不正解のラベルが付与されているXで示された分布点は、点線の楕円で囲まれた範囲に分布していることが理解される。
 サンプル点P1は、正解のラベルが付与された分布点であるが、ローカルデータ統計量LS5の分布において、実線の楕円で示される範囲から離れた位置に分布していることが理解される。
 従って、サンプル点P1は、端末10Aで取得されたローカルデータの分布傾向に基づけば、異常値と見做され得る。
 しかし、端末10Aのみで得られるローカルデータの分布の傾向の情報だけでは、サンプル点P1が、複数の端末10全体で見たときのローカルデータの分布傾向においても異常値と見做せるか否かが確かではない。
 そこで、図16を参照して、本動作例における異常値の検知について説明する。図16は、本実施形態の第3の動作例における異常値の検知について説明するための他の概念図である。図16に示した分布範囲AC1および分布範囲AC2は、情報処理装置20から端末10Aに配布された傾向情報に基づくデータの分布傾向を示す。
 図16に示したように、サンプル点P1は、分布範囲AC1の分布範囲に含まれない。従って、サンプル点P1は、複数の端末10全体でのローカルデータの分布傾向においても、異常値と見做し得ることが理解される。
 端末10Aは、このように、情報処理装置20から配布された、複数の端末10全体でのローカルデータの分布傾向に基づいて、ローカルデータに含まれる異常値をより高精度に検知し得る。
 端末10B、および端末10Cにおいても、情報処理装置20から配布された傾向情報を用いて、ローカルデータに含まれる異常値の検知が行われる(S416、S417)。
 以上、図12~図16を参照して、本実施形態に係る情報処理システムの第3の動作例を説明した。
 <5.変形例>
 次に、図17~図19を用いて、上記で説明した本実施形態に係る情報処理システムの変形例を説明する。
 本変形例では、情報処理装置20および端末10は、連合学習により、合成データを生成するための生成モデルを生成する。情報処理装置20は、当該生成モデルにより生成された合成データを学習データとして、推論モデルの学習を行う。
 図17は、本実施形態の変形例におけるプライバシー保護データの生成について説明するための図である。
 図17に示したローカルデータLD3は、端末10Aにより取得されるローカルデータを示す。
 また、生成モデルGNは、情報処理装置20および端末10の連合学習により生成される生成モデルを示す。生成モデルGN1は、複数の端末10の各々により学習が行われる生成モデルであり、生成モデルGN2と対応するモデルである。生成モデルGN2は、情報処理装置20により、生成モデルGN1の各々の学習結果に基づいて更新される生成モデルである。
 端末10Aは、ローカルデータLD3を学習データとして、生成モデルGN1の学習を行う。生成モデルGN1は、端末10Aによる学習済みの生成モデルを示す。
 端末10Aは、生成モデルGN1の学習の結果得られる、生成モデルの更新情報を情報処理装置20に送信する。
 端末10A以外の端末10(端末10B、端末10C)においても、同様に生成モデルの学習が行われ、当該生成モデルの更新情報が情報処理装置20へ送信される。
 上記生成モデルは、例えば、学習過程において、損失関数の勾配およびパラメータにノイズを付与することにより、学習済みの生成モデルから学習データが特定されることを防ぐ生成モデルである、DPGAN(Differential Privacy Generative Adversarial Network)のアルゴリズムにより生成されたモデルであってもよい。
 この場合、端末10から情報処理装置20へ送信される生成モデルの更新情報から、ローカルデータが推測されることを防ぐことが出来る。従って、本実施形態による情報処理システムのセキュリティ性をより高めることが出来る。
 情報処理装置20は、更新後の生成モデルGN2または更新後の生成モデルGN2のパラメータ情報を、端末10の各々に配布してもよい。
 情報処理装置20は、学習済みの上記生成モデルを用いて、合成データを生成する。図17に示した合成データGD2は、生成モデルGN2を用いて生成された合成データを示す。
 情報処理装置20は、合成データGD2を学習データとして、モデルN1の学習を行ってもよい。
 また、情報処理装置20は、生成した合成データに基づき、ローカルデータのデータ傾向を監視してもよい。図17に示した例では、統計量S5は、合成データGD2に基づき推定されたローカルデータの統計量から生成される傾向情報のデータを示す。
 上記変形例のような情報処理システムによれば、端末10において取得されるローカルデータそのものが情報処理装置20に集約されることなく、推論モデルの学習が行われ得る。従って、本情報処理システムにおけるプライバシーの保護を担保することが出来る。
 また、本変形例によれば、ローカルデータを学習データとして生成された生成モデルを用いて合成データが生成される。これにより、実際に学習に用いられるデータにより近い合成データが生成され得る。従って、情報処理装置20による推論モデルの推論精度が向上し得る。
 次に、図18および図19を用いて、上述した本実施形態による情報処理システムの変形例での動作例を説明する。
 図18は、本実施形態による情報処理システムの変形例での動作例を説明するためのシーケンス図である。図18に示したS103、S107、S109、S111、S113、およびS115は、上記で図4、図9、および図12を参照して説明した通りであるので、重複する説明を省略する。
 図18に示したように、まず、情報処理装置20および端末10は、生成モデルを連合学習により学習する(S151)。
 情報処理装置20は、次に、上記生成モデルに基づいて合成データを生成する(S155)。
 本変形例では、情報処理装置20の学習部230は、生成モデルに基づき生成された合成データを学習データとして推論モデルの学習を行う。
 図19は、図18に示したシーケンス図におけるS151およびS155のサブルーチンの処理の流れを説明するシーケンス図である。
 ((サブルーチンS151))
 図19に示したように、情報処理装置20の学習部230は、複数の端末10の各々に、生成モデルの初期パラメータおよびハイパーパラメータの設定値を含む学習指示を送信する。(S500)。
 なお、初期パラメータおよびハイパーパラメータには、S500~S503の連合学習Loopの初回においては、ランダムに設定された値が用いられてもよい。
 次に、複数の端末10の学習部150は、ローカルデータを学習データとして、情報処理装置20から学習指示を受信した生成モデルの学習を行う(S501)。
 学習部150の各々は、学習結果に基づき、通信部170に、生成モデルの更新情報を情報処理装置20に対して送信させる(S502)。
 情報処理装置20は、複数の端末10の各々から受信した生成モデルの更新情報を集約し、集約結果に基づいて生成モデルを更新する(S503)。
 情報処理装置20および端末10は、生成モデルの学習が収束するまで、S500~S502の処理を繰り返す。
 ((サブルーチンS155))
 次いで、情報処理装置20の生成部210は、学習済みの生成モデルを用いて合成データを生成する(S504)。
 以上、図18および図19を参照して、本実施形態による情報処理システムの変形例での動作例を説明した。
 <6.ハードウェア構成>
 以上、本開示の実施形態を説明した。次に、本開示の一実施形態に係る端末10および情報処理装置20に共通するハードウェア構成例について説明する。
 図20は、本開示の一実施形態に係るハードウェア構成90を示すブロック図である。
 ハードウェア構成90は、端末10および情報処理装置20に適用され得る。
 図20に示すように、ハードウェア構成90は、例えば、プロセッサ901、ROM(Read Only Memory)903、RAM(Random Access Memory)905、ホストバス907、ブリッジ909、外部バス911、インターフェース913、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923、および、通信装置925を備える。なお、ここで示すハードウェア構成は一例であり、構成要素の一部が省略されてもよい。また、ここで示される構成要素以外の構成要素をさらに含んでもよい。
 (プロセッサ901)
 プロセッサ901は、例えば、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置919、またはリムーバブル記録媒体927に記録された各種プログラムに基づいて各構成要素の動作全般またはその一部を制御する。
 (ROM903、RAM905)
 ROM903は、プロセッサ901に読み込まれるプログラムまたは/および演算に用いられるデータ等を格納する手段である。RAM905には、例えば、プロセッサ901に読み込まれるプログラムまたは/および、当該プログラムを実行する際に適宜変化する各種パラメータ等が一時的または永続的に格納される。
 (ホストバス907、ブリッジ909、外部バス911、インターフェース913)
 プロセッサ901、ROM903、およびRAM905は、例えば、高速なデータ伝送が可能なホストバス907を介して相互に接続される。一方、ホストバス907は、例えば、ブリッジ909を介して比較的データ伝送速度が低速な外部バス911に接続される。また、外部バス911は、インターフェース913を介して種々の構成要素と接続される。
 (入力装置915)
 入力装置915には、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなどが用いられる。さらに、入力装置915としては、赤外線またはその他の電波を利用して制御信号を送信することが可能なリモートコントローラ(以下、リモコン)が用いられることもある。また、入力装置915には、マイクロフォンなどの音声入力装置が含まれる。
 また、入力装置915は、撮像装置、およびセンサを含んでもよい。撮像装置は、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子、および撮像素子への被写体像の結像を制御するためのレンズなどの各種の部材を用いて実空間を撮像し、撮像画像を生成する装置である。撮像装置は、静止画を撮像するものであってもよいし、また動画を撮像するものであってもよい。
 センサは、例えば、測距センサ、加速度センサ、ジャイロセンサ、地磁気センサ、振動センサ、光センサ、音センサなどの各種のセンサである。センサは、例えばハードウェア構成90の筐体の姿勢など、ハードウェア構成90自体の状態に関する情報、または、ハードウェア構成90の周辺の明るさまたは騒音など、ハードウェア構成90の周辺環境に関する情報を取得する。また、センサは、GPS(Global Positioning System)信号を受信して装置の緯度、経度および高度を測定するGPSセンサを含んでもよい。
 (出力装置917)
 出力装置917は、例えば、CRT(Cathode Ray Tube)、LCD(Liquid Crystal Display)、または有機EL(Electro-Luminescence)などのディスプレイ装置、スピーカおよびヘッドホンなどのオーディオ出力装置、プリンタ、携帯電話、またはファクシミリ等、取得した情報を利用者に対して視覚的または聴覚的に通知することが可能な種々の振動デバイスを含む。
 (ストレージ装置919)
 ストレージ装置919は、各種のデータを格納するための装置である。ストレージ装置919としては、例えば、ハードディスクドライブ(HDD)などの磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイスなどが用いられる。
 (ドライブ921)
 ドライブ921は、例えば、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブル記録媒体927に記録された情報を読み出し、またはリムーバブル記録媒体927に情報を書き込む装置である。
 (リムーバブル記録媒体927)
 リムーバブル記録媒体927は、例えば、DVDメディア、Blu-ray(登録商標)メディア、HD DVDメディア、各種の半導体記憶メディア等である。もちろん、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード、または電子機器等であってもよい。
 (接続ポート923)
 接続ポート923は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート、RS-232Cポート、または光オーディオ端子等のような外部接続機器929を接続するためのポートである。
 (外部接続機器929)
 外部接続機器929は、例えば、プリンタ、携帯音楽プレーヤ、デジタルカメラ、デジタルビデオカメラ、またはICレコーダ等である。
 (通信装置925)
 通信装置925は、ネットワークに接続するための通信デバイスであり、例えば、有線または無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カード、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデムなどである。
 <7.まとめ>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、本実施形態による端末10、および情報処理装置20の動作の処理におけるステップは、必ずしも説明図として記載された順序に沿って時系列に処理される必要はない。例えば、端末10および情報処理装置20の動作の処理における各ステップは、説明図として記載した順序と異なる順序で処理されてもよく、並列的に処理されてもよい。
 また、上述した端末10および情報処理装置20に内蔵されるプロセッサ、ROMおよびRAMなどのハードウェアに、本実施形態による情報処理システムの機能を発揮させるための1以上のコンピュータプログラムも作成可能である。また、当該1以上のコンピュータプログラムを記憶させた、コンピュータが読み取り可能な記憶媒体も提供される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 連合学習により推論モデルの学習を行う学習部と、
 複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得する取得部と、を備え、
 前記学習部は、
  前記プライバシー保護データに基づいて前記推論モデルの学習を行い、
  前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、
 前記取得部は、
  前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、
 前記学習部は、
  前記更新情報を用いて前記推論モデルを更新する、
 情報処理装置。
(2)
 前記学習部は、前記プライバシー保護データを学習データとして前記推論モデルの学習を行う、
 前記(1)に記載の情報処理装置。
(3)
 前記プライバシー保護データに基づいて合成データを生成する生成部をさらに備え、
 前記学習部は、前記合成データを学習データとして前記推論モデルの学習を行う、
 前記(1)に記載の情報処理装置。
(4)
 前記プライバシー保護データは、前記ローカルデータに対して、差分プライバシーを満たすデータ変換処理が行われることにより生成されたデータである、
 前記(2)または(3)に記載の情報処理装置。
(5)
 前記データ変換処理は、前記ローカルデータに含まれる要素の各々に対して、予め定められた強度の乱数を付与する処理である、
 前記(4)に記載の情報処理装置。
(6)
 前記データ変換処理は、ラプラスメカニズム、または、ガウシアンメカニズムを用いて実施される、前記(5)に記載の情報処理装置。
(7)
 前記プライバシー保護データは、前記ローカルデータに対して、前記ローカルデータの次元を削減するデータ変換処理が行われることにより生成される、
 前記(2)に記載の情報処理装置。
(8)
 前記プライバシー保護データは、前記ローカルデータの統計量データに対し差分プライバシーを満たすデータ変換処理が行われることにより生成された統計量データであり、
 前記生成部は、前記プライバシー保護データに基づき前記ローカルデータの分布を推定し、
 推定された前記分布に基づいて前記合成データを生成する、
 前記(3)に記載の情報処理装置。
(9)
 前記プライバシー保護データは、前記ローカルデータの統計量データに対し、秘密計算における要件を満たす暗号化処理が行われることにより生成された統計量データであり、
 前記生成部は、前記プライバシー保護データが暗号化されたままの状態で、前記プライバシー保護データの集計処理を行い、
 前記集計処理の結果に基づいて前記ローカルデータの分布を推定し、
 推定された前記分布に基づいて前記合成データを生成する、
 前記(3)に記載の情報処理装置。
(10)
 前記生成部は、前記プライバシー保護データの集計処理を行い、
 当該集計処理の結果に基づき、前記ローカルデータの統計的なデータ傾向を示す傾向情報を前記複数の端末の各々に配布し、
 前記取得部は、前記複数の端末の各々により前記傾向情報に基づき異常値と見做されたローカルデータを修正または除外して生成された前記プライバシー保護データを、前記複数の端末の各々から取得する、
 前記(3)に記載の情報処理装置。
(11)
 前記プライバシー保護データは、前記ローカルデータに含まれる要素の特徴量および各特徴量に関連付けられたラベル情報を含み、
 前記生成部は、前記ラベル情報ごとの前記特徴量の分布を、前記傾向情報として配布する、
 前記(10)に記載の情報処理装置。
(12)
 前記生成部は、前記プライバシー保護データの集計処理結果に基づき前記ローカルデータの分布傾向の変化を監視し、
 前記学習部は、前記生成部により前記分布傾向が変化したことが検知されると、連合学習を用いて前記推論モデルの再学習を行う、
 前記(3)に記載の情報処理装置。
(13)
 前記生成部は、前記プライバシー保護データまたは前記ローカルデータから推定される前記ローカルデータの分布情報に基づいて生成される生成モデルに基づき、前記合成データを生成する、
 前記(3)に記載の情報処理装置。
(14)
 前記取得部は、前記複数の端末から、前記推論モデルの更新情報として、更新前および更新後の推論モデルのパラメータの差分を示す差分情報を取得し、
 前記学習部は、当該差分情報に基づいて前記推論モデルを更新する、
 前記(1)~(14)のいずれか一項に記載の情報処理装置。
(15)
 プロセッサが、
 連合学習により推論モデルの学習を行うことと、
 複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得することと、
 前記プライバシー保護データに基づいて前記推論モデルの学習を行うことと、
 前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布することと、
 前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得することと、
 前記更新情報を用いて前記推論モデルを更新することと、
 を含む、コンピュータにより実行される情報処理方法。
(16)
 コンピュータを、
 連合学習により推論モデルの学習を行う学習部と、
 複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得する取得部と、を備え、
 前記学習部は、
  前記プライバシー保護データに基づいて前記推論モデルの学習を行い、
  前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、
 前記取得部は、
  前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、
 前記学習部は、
  前記更新情報を用いて前記推論モデルを更新する、
 情報処理装置、として機能させるための、プログラム。
 10 端末
 110 取得部
 130 データ処理部
 150 学習部
 170 通信部
 20 情報処理装置
 210 生成部
 230 学習部
 250 通信部
 30 ネットワーク

Claims (16)

  1.  連合学習により推論モデルの学習を行う学習部と、
     複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得する取得部と、を備え、
     前記学習部は、
      前記プライバシー保護データに基づいて前記推論モデルの学習を行い、
      前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、
     前記取得部は、
      前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、
     前記学習部は、
      前記更新情報を用いて前記推論モデルを更新する、
     情報処理装置。
  2.  前記学習部は、前記プライバシー保護データを学習データとして前記推論モデルの学習を行う、
     請求項1に記載の情報処理装置。
  3.  前記プライバシー保護データに基づいて合成データを生成する生成部をさらに備え、
     前記学習部は、前記合成データを学習データとして前記推論モデルの学習を行う、
     請求項1に記載の情報処理装置。
  4.  前記プライバシー保護データは、前記ローカルデータに対して、差分プライバシーを満たすデータ変換処理が行われることにより生成されたデータである、
     請求項2に記載の情報処理装置。
  5.  前記データ変換処理は、前記ローカルデータに含まれる要素の各々に対して、予め定められた強度の乱数を付与する処理である、
     請求項4に記載の情報処理装置。
  6.  前記データ変換処理は、ラプラスメカニズム、または、ガウシアンメカニズムを用いて実施される、
     請求項5に記載の情報処理装置。
  7.  前記プライバシー保護データは、前記ローカルデータに対して、前記ローカルデータの次元を削減するデータ変換処理が行われることにより生成される、
     請求項2に記載の情報処理装置。
  8.  前記プライバシー保護データは、前記ローカルデータの統計量データに対し差分プライバシーを満たすデータ変換処理が行われることにより生成された統計量データであり、
     前記生成部は、前記プライバシー保護データに基づき前記ローカルデータの分布を推定し、
     推定された前記分布に基づいて前記合成データを生成する、
     請求項3に記載の情報処理装置。
  9.  前記プライバシー保護データは、前記ローカルデータの統計量データに対し、秘密計算における要件を満たす暗号化処理が行われることにより生成された統計量データであり、
     前記生成部は、前記プライバシー保護データが暗号化されたままの状態で、前記プライバシー保護データの集計処理を行い、
     前記集計処理の結果に基づいて前記ローカルデータの分布を推定し、
     推定された前記分布に基づいて前記合成データを生成する、
     請求項3に記載の情報処理装置。
  10.  前記生成部は、前記プライバシー保護データの集計処理を行い、
     当該集計処理の結果に基づき、前記ローカルデータの統計的なデータ傾向を示す傾向情報を前記複数の端末の各々に配布し、
     前記取得部は、前記複数の端末の各々により前記傾向情報に基づき異常値と見做されたローカルデータを修正または除外して生成された前記プライバシー保護データを、前記複数の端末の各々から取得する、
     請求項3に記載の情報処理装置。
  11.  前記プライバシー保護データは、前記ローカルデータに含まれる要素の特徴量および各特徴量に関連付けられたラベル情報を含み、
     前記生成部は、前記ラベル情報ごとの前記特徴量の分布を、前記傾向情報として配布する、
     請求項10に記載の情報処理装置。
  12.  前記生成部は、前記プライバシー保護データの集計処理結果に基づき前記ローカルデータの分布傾向の変化を監視し、
     前記学習部は、前記生成部により前記分布傾向が変化したことが検知されると、連合学習を用いて前記推論モデルの再学習を行う、
     請求項3に記載の情報処理装置。
  13.  前記生成部は、前記プライバシー保護データまたは前記ローカルデータから推定される前記ローカルデータの分布情報に基づいて生成される生成モデルに基づき、前記合成データを生成する、
     請求項3に記載の情報処理装置。
  14.  前記取得部は、前記複数の端末から、前記推論モデルの更新情報として、更新前および更新後の推論モデルのパラメータの差分を示す差分情報を取得し、
     前記学習部は、当該差分情報に基づいて前記推論モデルを更新する、
     請求項1に記載の情報処理装置。
  15.  プロセッサが、
     連合学習により推論モデルの学習を行うことと、
     複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得することと、
     前記プライバシー保護データに基づいて前記推論モデルの学習を行うことと、
     前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布することと、
     前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得することと、
     前記更新情報を用いて前記推論モデルを更新することと、
     を含む、コンピュータにより実行される情報処理方法。
  16.  コンピュータを、
     連合学習により推論モデルの学習を行う学習部と、
     複数の端末の各々により得られるローカルデータに対してプライバシー保護処理が行われたデータであるプライバシー保護データを、前記複数の端末から取得する取得部と、を備え、
     前記学習部は、
      前記プライバシー保護データに基づいて前記推論モデルの学習を行い、
      前記学習の結果に基づいて設定される前記推論モデルのハイパーパラメータを含む前記推論モデルに関する情報を前記複数の端末に配布し、
     前記取得部は、
      前記複数の端末から、前記複数の端末の各々により、前記ローカルデータを学習データとして、配布された前記ハイパーパラメータを用いた前記推論モデルの学習が行われることにより得られる前記推論モデルの更新情報を取得し、
     前記学習部は、
      前記更新情報を用いて前記推論モデルを更新する、
     情報処理装置、として機能させるための、プログラム。
PCT/JP2023/031384 2022-10-20 2023-08-30 情報処理装置、情報処理方法、およびプログラム WO2024084827A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-168484 2022-10-20
JP2022168484 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024084827A1 true WO2024084827A1 (ja) 2024-04-25

Family

ID=90737571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031384 WO2024084827A1 (ja) 2022-10-20 2023-08-30 情報処理装置、情報処理方法、およびプログラム

Country Status (1)

Country Link
WO (1) WO2024084827A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580826A (zh) * 2021-02-05 2021-03-30 支付宝(杭州)信息技术有限公司 业务模型训练方法、装置及系统
CN113033824A (zh) * 2021-04-21 2021-06-25 支付宝(杭州)信息技术有限公司 模型超参数确定方法、模型训练方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580826A (zh) * 2021-02-05 2021-03-30 支付宝(杭州)信息技术有限公司 业务模型训练方法、装置及系统
CN113033824A (zh) * 2021-04-21 2021-06-25 支付宝(杭州)信息技术有限公司 模型超参数确定方法、模型训练方法及系统

Similar Documents

Publication Publication Date Title
US20230127542A1 (en) Systems and methods for distributed training of deep learning models
KR101940029B1 (ko) 어노말리 디텍션
Thanga Selvi et al. RETRACTED ARTICLE: An optimal artificial neural network based big data application for heart disease diagnosis and classification model
US20190287028A1 (en) Systems, devices, and/or processes for behavioral content processing
CN107591211A (zh) 基于移动终端控制的健康监护方法和系统
WO2020027454A1 (en) Multi-layered machine learning system to support ensemble learning
US20220247571A1 (en) Labeling method, apparatus, and device, and readable storage medium
WO2022005090A1 (ko) 진단 결과를 제공하기 위한 방법 및 장치
WO2022005091A1 (ko) 골 연령 판독 방법 및 장치
WO2023054847A1 (ko) 문서에 대한 기여도를 산정하는 방법 및 이를 이용한 장치
WO2021200392A1 (ja) データ調整システム、データ調整装置、データ調整方法、端末装置及び情報処理装置
WO2024084827A1 (ja) 情報処理装置、情報処理方法、およびプログラム
CN116168053B (zh) 息肉分割模型的训练方法、息肉分割方法及相关装置
JP7192854B2 (ja) 演算装置、演算方法、プログラムおよび判別システム
WO2019198900A1 (en) Electronic apparatus and control method thereof
WO2022174033A1 (en) Self-supervised collaborative approach to machine learning by models deployed on edge devices
JP2021018678A (ja) 訓練方法、訓練装置、クラスタリング方法、クラスタリング装置、クラスタリングモデル生成方法、プログラム及びコンピュータ可読記憶媒体
WO2023182796A1 (ko) 제품 이미지를 기반으로 불량 제품을 감지하는 인공 지능 장치 및 그 방법
WO2021229791A1 (ja) 機械学習装置、機械学習システム、機械学習方法及びプログラム
WO2021199367A1 (ja) 情報処理装置、情報処理端末、方法、プログラム、およびモデル
EP4290450A1 (en) Inference device, inference method, and program
WO2023191374A1 (ko) 구조식 이미지를 인식하는 인공 지능 장치 및 그 방법
WO2023157550A1 (ja) 計算機システム、学習方法、及びエッジ装置
US11568319B2 (en) Techniques for dynamic machine learning integration
WO2020251172A1 (ko) 데이터 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879479

Country of ref document: EP

Kind code of ref document: A1