WO2024084801A1 - Communication record management server, communication record management method, and computer program - Google Patents

Communication record management server, communication record management method, and computer program Download PDF

Info

Publication number
WO2024084801A1
WO2024084801A1 PCT/JP2023/030441 JP2023030441W WO2024084801A1 WO 2024084801 A1 WO2024084801 A1 WO 2024084801A1 JP 2023030441 W JP2023030441 W JP 2023030441W WO 2024084801 A1 WO2024084801 A1 WO 2024084801A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
information
unit
performance
history
Prior art date
Application number
PCT/JP2023/030441
Other languages
French (fr)
Japanese (ja)
Inventor
充一 梅村
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Publication of WO2024084801A1 publication Critical patent/WO2024084801A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • This disclosure relates to a communication history management server, a communication history management method, and a computer program.
  • in-vehicle devices have the ability to use wireless communication to receive various services from external servers and send information acquired by in-vehicle sensors to external servers.
  • Vehicles equipped with such in-vehicle devices are known as connected cars.
  • Patent Document 1 One proposal for solving these problems is disclosed in Patent Document 1, which will be described later.
  • the technology disclosed in Patent Document 1 aims to visually notify the communication environment.
  • the technology disclosed in Patent Document 1 acquires a field strength map indicating a predetermined field strength, and displays the field strength map superimposed on a graphic indicating the vehicle's driving position based on road map data and the vehicle position.
  • a communication performance management server includes a communication performance information receiving unit for receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, a communication performance information storage unit for storing the communication performance information received by the communication performance information receiving unit, and a communication performance transmission unit that, in response to receiving a request to transmit communication performance information with a specified geographical range from an external device, generates information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information stored in the communication performance information storage unit, and transmits the information to the external device.
  • FIG. 1 is a diagram showing a route proposal screen in an in-vehicle device according to the first embodiment.
  • FIG. 2 is a block diagram showing the overall configuration of the vehicle assistance system according to the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the in-vehicle device according to the first embodiment.
  • FIG. 4 is a block diagram showing the configuration of the communication record management server according to the first embodiment.
  • FIG. 5 is a diagram showing a record configuration of a communication performance information DB (Database) according to the first embodiment.
  • FIG. 6 is a flowchart showing a control structure of a computer program realizing the communication performance recording unit in the first embodiment.
  • FIG. 7 is a flowchart showing a control structure of a computer program realizing the driving unit according to the first embodiment.
  • FIG. 8 is a flowchart showing a control structure of a computer program implementing the path calculation unit according to the first embodiment.
  • FIG. 9 is a flowchart showing a control structure of a computer program implementing the grid drawing unit according to the first embodiment.
  • FIG. 10 is a block diagram showing the configuration of a vehicle assistance system according to the second embodiment.
  • FIG. 11 is a block diagram showing the configuration of an in-vehicle device according to the second embodiment.
  • FIG. 12 is a block diagram showing the configuration of a communication record management server according to the second embodiment.
  • FIG. 13 is a block diagram showing the configuration of a vehicle assistance system according to the third embodiment.
  • FIG. 14 is a block diagram showing the configuration of an in-vehicle device according to the third embodiment.
  • FIG. 15 is a flowchart showing a control structure of a computer program realizing a communication record comparing unit according to the third embodiment.
  • FIG. 16 is a block diagram showing the configuration of a driving assistance system according to the fourth embodiment.
  • FIG. 17 is a block diagram showing the configuration of an in-vehicle device according to the fourth embodiment.
  • FIG. 18 is a block diagram showing the configuration of a communication history management server according to the fourth embodiment.
  • FIG. 19 is a diagram showing a record configuration of a communication performance statistical information DB according to the fourth embodiment.
  • FIG. 20 is a flowchart showing a control structure of a computer program realizing a communication statistics calculation unit in the communication performance management server according to the fourth embodiment.
  • FIG. 21 is a flowchart showing a control structure of a computer program realizing a communication history transmission unit in the communication history management server according to the fourth embodiment.
  • FIG. 22 is a block diagram showing a functional configuration of a communication history server according to a modification of the fourth embodiment.
  • FIG. 23 is a diagram showing a display in the vehicle assistance system according to the fifth embodiment.
  • FIG. 24 is a flowchart showing a control structure of a computer program for generating a display in the vehicle assistance system in accordance with the fifth embodiment.
  • FIG. 25 is a flowchart showing a control structure of a computer program for implementing display of a driving route.
  • FIG. 26 is a block diagram showing a configuration of steps for implementing the in-vehicle device of each embodiment according to this disclosure.
  • FIG. 27 is a diagram showing the external appearance of a computer system that realizes each driving assistance server according to this disclosure.
  • FIG. 28 is a hardware configuration diagram of the computer system shown in FIG.
  • Patent Document 1 a field strength map is displayed superimposed on a map. It is clear that communication speed drops at points with low field strength. However, even if the field strength is high, the communication speed does not necessarily increase. Depending on the situation, even if the field strength is high, the communication speed may decrease or the latency may increase. Even if the environment changes slightly, the communication speed may suddenly deteriorate. The position of the vehicle and the surrounding conditions change from moment to moment. Therefore, even if a field strength map is obtained, it is difficult to predict how the communication speed, latency, etc. will actually change, so it is not necessarily the case that communication quality sufficient for using the service while the connected car is running can be obtained. In other words, the technology disclosed in Patent Document 1 is not considered sufficient for application to connected cars.
  • the purpose of this disclosure is to provide a communication history management server, a communication history management method, and a computer program that provide information that makes it easy to determine a driving route that takes communication quality into consideration.
  • a communication performance management server includes a communication performance information receiving unit for receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, a communication performance information storage unit for storing the communication performance information received by the communication performance information receiving unit, and a communication performance transmission unit for generating information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information stored in the communication performance information storage unit in response to receiving from an external device a transmission request for communication performance information specifying a geographical range, and transmitting the information to the external device.
  • the communication history information storage unit of this communication history management server accumulates communication quality metrics information during actual communications by multiple devices, along with location information and date and time information.
  • the communication history transmission unit In response to a request from an external device, the communication history transmission unit generates information on communication history, including communication quality information, and transmits it to the external device.
  • the external device can estimate and use communication quality at a specific location using communication quality information based on actual communication history by other devices. As a result, the external device can easily determine a driving route that takes communication quality into consideration.
  • the communication performance transmission unit may include a most recent communication performance transmission unit that reads communication performance information including location information corresponding to a geographical range specified by the transmission request, date and time information within a most recent specified time period, and communication quality metrics information from the communication performance information storage unit, and transmits the information to an external device.
  • the most recent communication record transmission unit transmits communication record information for the most recent specified time period within the area range specified by the transmission request to the external device.
  • the external device can easily determine a driving route taking into account the highly accurate communication quality at the current time.
  • each piece of communication performance information may further include communication environment information related to the communication environment when wireless communication related to the communication performance information was performed, and the transmission request may further include information related to the communication environment of the external device, and the communication performance transmission unit may include a device-specific communication performance transmission unit that, in response to receiving the transmission request, reads out from the communication performance information storage unit the communication performance information including location information corresponding to a geographical range specified by the transmission request, communication environment information consistent with information related to the communication environment included in the transmission request, and communication quality metrics information, and transmits the communication performance information to the external device.
  • the external device can obtain communication performance information by region and date and time regarding that communication environment. As a result, the external device can easily determine a driving route that takes into account the communication quality of the wireless communication device being used.
  • the communication environment information may include communication line information, communication carrier information, or a combination of these.
  • the external device can obtain communication performance information by region and date and time for that communication line or carrier. As a result, the external device can easily determine a driving route that takes into account the reliable communication quality of the wireless communication device being used.
  • the communication performance management server may further include a communication statistics calculation unit that calculates communication performance statistical information by performing statistical processing on communication quality metrics information on the communication performance information stored in the communication performance information storage unit, based at least on a location specified by the location information, and a communication performance statistical information storage unit that stores the communication performance statistical information calculated by the communication statistics calculation unit in association with the location information
  • the communication performance transmission unit may include a communication performance statistical information transmission unit that transmits to the external device, in response to receiving a transmission request for communication performance information with a specified geographical range from the external device, location information corresponding to the geographical range specified by the transmission request and communication performance statistical information at the location specified by the location information, from the communication performance statistical information stored in the communication performance statistical information storage unit.
  • the external device can obtain communication performance information by region and date and time about communications by other devices that have that wireless communication device. As a result, the external device can easily determine a driving route that takes into account the communication quality of the wireless communication device being used.
  • the communication statistics calculation unit may include a period-based communication statistics calculation unit that performs statistical processing on communication quality metrics information to calculate period-based communication performance statistical information, using at least a location specified by the location information and a period specified by the date and time information as a criterion for the communication performance information stored in the communication performance information storage unit.
  • the external device can obtain communication performance information by region and date and time by the external device using that wireless communication device. As a result, the external device can easily determine a driving route that takes into account the communication quality of the wireless communication device being used.
  • each piece of communication performance information may further include information on the communication environment when wireless communication related to the communication performance information was performed, and the transmission request may include information on the communication environment of the external device.
  • the communication performance transmission unit may selectively execute the first process and the second process depending on whether the received transmission request includes information on the communication environment.
  • the first process may be a process of reading, from the communication performance statistical information storage unit, communication statistical performance information that matches location information corresponding to the geographical range specified by the transmission request and information on the communication environment included in the transmission request, calculating communication quality metrics information based on the read communication statistical performance information, and transmitting the calculated information to the external device.
  • the second process may be a process of reading, from the communication performance information storage unit, communication performance information that corresponds to location information corresponding to the geographical range specified by the transmission request, and transmitting the calculated information to the external device.
  • a communication performance management method includes a step in which a computer receives communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, a step in which the computer accumulates the communication performance information received in the step of receiving the communication performance information in a storage device, and a step in which the computer, in response to receiving from an external device a request to transmit communication performance information specifying a geographical range, generates information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information accumulated in the storage device, and transmits the information to the external device.
  • the computer accumulates communication history during actual communication between multiple devices, together with location information and date and time information.
  • the computer further generates information relating to the communication history, including communication quality information, in response to a request from the external device, and transmits it to the external device.
  • the external device can estimate and use communication quality at a specific location, using the communication quality information based on the actual communication history of other devices. As a result, the external device can easily determine a driving route that takes communication quality into consideration.
  • a computer program causes a computer to execute the steps of receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, storing the communication performance information received in the step of receiving communication performance information in a storage device, and in response to receiving a request to transmit communication performance information with a specified geographical range from an external device, generating information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information stored in the storage device, and transmitting the information to the external device.
  • the computer By executing this computer program, the computer accumulates communication records of actual communications between multiple devices together with location information and date and time information.
  • the computer further generates information on communication records, including communication quality information, in response to a request from an external device, and transmits the information to the external device.
  • the external device can estimate and use communication quality at a specific location using communication quality information based on the actual communication records of other devices. As a result, the external device can easily determine a driving route that takes communication quality into consideration.
  • a route proposal screen 50 in the vehicle assistance system is a screen displayed on a touch panel display device of an in-vehicle device.
  • the route proposal screen 50 is for proposing to a user a first route 66 and a second route 68 from a current position 62 of a vehicle 60 to a destination 64, which are calculated under different constraints regarding communication quality on the route.
  • the entire route proposal screen 50 is rectangular. Each rectangular area is divided into rectangular grids of the same size. In this embodiment, each grid is colored based on the communication quality actually measured by the vehicle when the vehicle is present in the grid, and is displayed superimposed on a map together with the first route 66 and the second route 68. Note that a map is not shown in FIG. 1 to simplify the drawing.
  • grids without hatching indicate that the communication quality is relatively good, and is sufficient for receiving the services to be used in the vehicle 60.
  • Grids with hatching indicate that the communication quality is worse, and is insufficient for receiving the services to be used in the vehicle 60. Note that in this example, the hatched areas are displayed in red, and the unhatched areas are displayed transparently.
  • grids are classified into two types to facilitate understanding of the display related to communication quality.
  • Communication quality may be divided into three or more stages, and each stage may be displayed separately.
  • grids with poor communication quality are displayed with a red hue and the lowest brightness.
  • the brightness of the grid increases, and once the quality reaches a certain level, the grid is displayed colorless (transparent) or in a color other than red (for example, blue).
  • the saturation may be changed without changing the brightness. Also, both the hue and the brightness or saturation may be changed.
  • the display mode of each grid should change as a monotonic function of the communication quality in that grid.
  • a monotonic function should be used that associates the gradual change from blue through green to red with the superiority or inferiority of communication quality.
  • a first route 66 and a second route 68 are further displayed as examples.
  • the first route 66 is calculated as a route by which the vehicle 60 travels from the current position 62 to the destination 64 in the shortest time without imposing any constraints on communication quality, for example.
  • the second route 68 is also a route by which the vehicle 60 travels from the current position 62 to the destination 64, but is calculated as a route that provides the communication quality required to use a specific service in the vehicle 60 as a constraint on communication quality.
  • a vehicle assistance system 100 includes a plurality of on-board devices 102, 104, and 106, each mounted on a different vehicle, a server 108 for providing some kind of service to these on-board devices using communication, or conversely, for receiving sensor data from the on-board devices and analyzing traffic conditions, and a communication history management server 110 for managing communication with a plurality of on-board devices such as the on-board device 102, accumulating information regarding actual communication quality in each grid in an area such as that shown in FIG. 1, and distributing the information to each on-board device.
  • On-board devices such as the on-board device 102 are mounted on vehicles. Therefore, all of them have wireless communication units as described below.
  • a mobile phone line can be used as a medium for wireless communication. Depending on the location, it is also expected that Wi-Fi communication will be used.
  • the on-board device 102 and the like can communicate with the server 108 and the communication history management server 110 via wireless communication with a base station and communication via a wired network from the base station to the server 108 and the communication history management server 110.
  • the in-vehicle device 102 includes a communication unit 150 for communicating with an external device such as a server 108 via a wireless communication device (not shown), a communication history recording unit 154 connected to the communication unit 150, a CAN (Controller Area Network) 152 connected to the sensor 112, a GNSS (Global Navigation Satellite System) receiver 114, and the communication history recording unit 154, and a communication history information DB 156 connected to the communication history recording unit 154.
  • the communication unit 150 further receives data for a service provided by the server 108 and transmits the data to a service execution unit such as an ECU (Electronic Control Unit) (not shown) via the CAN 152.
  • ECU Electronic Control Unit
  • the CAN is used to acquire GNSS information and sensor information.
  • this disclosure is not limited to such an embodiment.
  • CAN FD CAN with Flexible Data rate
  • CAN XL CAN XL
  • Most Media Oriented Systems Transport
  • FlexRay FlexRay
  • in-vehicle Ethernet (“Ethernet” is a registered trademark), etc.
  • the communication performance recording unit 154 periodically measures the communication quality when the communication unit 150 is communicating, and records the communication quality including the actual bit rate (communication speed). Even when communication is not being performed by the communication unit 150, radio wave intensity information can be obtained, and such information is recorded.
  • the communication history recording unit 154 receives sensor data from the GNSS receiver 114 and various other sensors 112 mounted on the vehicle via the CAN 152, and records communication history records that combine the vehicle status, location information, and other information obtained from that information in the communication history information DB 156.
  • the in-vehicle device 102 further includes a communication history transmission unit 158 connected to the communication history recording unit 154, a communication history acquisition unit 160 connected to the communication history information DB 156, a driving unit 162 connected to the touch panel display device 116, a route calculation unit 164 connected to the communication history information DB 156, the driving unit 162, and the communication history acquisition unit 160, and a grid drawing unit 166.
  • the communication history transmission unit 158 transmits the communication history information of the communication unit 150 recorded by the communication history recording unit 154 to the communication history management server 110 according to a predetermined transmission schedule.
  • the communication history acquisition unit 160 acquires communication history information of other vehicles from the communication history management server 110 by transmitting a transmission request for communication history information to the communication history management server 110 when necessary, and updates (adds) the communication history information DB 156.
  • the transmission request at this time includes information specifying the target area, and may also include information on the required date and time, or the communication environment in some cases.
  • the communication environment here includes the communication line or communication carrier used for communication, or a combination of these.
  • the driving unit 162 is a device for performing automatic driving or remote driving in addition to the function of a general so-called in-vehicle navigation system, and receives input of information for route proposal (information on the destination of the driving route, etc.) through interaction with the user using the touch panel display device 116.
  • the communication history acquisition unit 160 may receive communication history information from the communication history management server 110 according to a predetermined schedule.
  • the driving unit 162 may allow the user to input constraint conditions for generating the driving route.
  • the constraint conditions are, for example, the number of driving routes to be generated, information specifying the service to be used on the driving route, conditions that the driving route must satisfy, and the like.
  • the three driving routes are, for example, the first shortest route to the third shortest route shown below.
  • the first shortest route is the shortest route connecting the current position and the destination regardless of the communication speed.
  • the second shortest route is the shortest route among the driving routes that is expected to have a communication speed at which the service can be used throughout.
  • the third shortest route is a driving route that is expected to have a service that replaces the service or the same service as the service and ensures the required bit rate, even if the service may not be available at a sufficient bit rate in some parts, as long as the communication speed is more than half the specified bit rate.
  • the route calculation unit 164 requests the communication record acquisition unit 160 to acquire information such as communication record, required position, and time from the communication record information DB 156 based on the user input received by the driving unit 162 and the communication conditions required to use the service.
  • the route calculation unit 164 calculates multiple driving routes under multiple types of constraints based on the communication record information acquired by the communication record acquisition unit 160 from the communication record information DB 156, the destination information, and the required communication conditions, and displays them on the touch panel display device 116 via the driving unit 162.
  • the grid drawing unit 166 displays information indicating the communication record in each part of the displayed area by superimposing it on the driving route candidates and the map displayed on the touch panel display device 116.
  • the communication record information is information that combines the communication record (communication speed or radio wave strength) with information indicating the vehicle state (vehicle speed or traveling direction, etc.) when the communication record was acquired.
  • the grid drawing unit 166 divides the displayed area into grids, adjusts the color, brightness or saturation of each grid as a function of an index value representing the past communication performance (communication quality) in each grid, and displays the grid by superimposing it on the proposed driving route and the map.
  • the past communication performance is obtained from information stored in the communication performance information DB 156.
  • the communication history management server 110 includes a communication history acquisition unit 200 , a communication history information storage unit 202 , and a communication history transmission unit 204 .
  • the communication history acquisition unit 200 acquires communication history information collected by the in-vehicle devices at various locations and dates from multiple in-vehicle devices.
  • the communication history information storage unit 202 accumulates the communication history information received by the communication history acquisition unit 200.
  • the communication history transmission unit 204 transmits the communication history information accumulated in the communication history information storage unit 202 to an in-vehicle device (such as the in-vehicle devices 102, 104, or 106 shown in FIG. 2) of a subscriber of the communication history management service by the communication history management server 110 in response to a transmission request from the in-vehicle device.
  • the device that transmits the communication history information to the communication history acquisition unit 200 is not limited to an in-vehicle device.
  • the communication history transmission unit 204 may not only respond to a transmission request from the in-vehicle device, but may also transmit communication history information to each in-vehicle device according to a predetermined schedule.
  • FIG. 5 shows an example of a column configuration of a table of communication history information DB 156.
  • the columns of communication history information DB 156 include a communication history ID and a vehicle ID.
  • the communication history ID is an identifier for identifying a record of the communication history.
  • the vehicle ID is an identifier for identifying a vehicle equipped with an on-board device that recorded the communication history.
  • Other columns include, for example, measurement interval, modem, GNSS, date and time, latitude, longitude, grid ID, geometry value, communication speed, (vehicle) speed, (vehicle) heading, route ID, (vehicle) direction of travel, (vehicle) acceleration/deceleration, (vehicle) steering angle, accelerator operation, brake operation, communication line, communication operator, band number, (mobile phone) cell ID, SINR, RSSI, RSRP, and RSRQ.
  • the measurement interval indicates the measurement interval of the communication speed.
  • the unit of the measurement interval is seconds.
  • the date and time indicates the date and time when the in-vehicle device acquired the communication record.
  • the latitude and longitude indicate the location where the vehicle was located at the time of communication.
  • the grid ID refers to the value obtained by converting the latitude and longitude into a character string using a conversion method called geohash.
  • the geohash converts the latitude and longitude into a character string by applying a specified conversion table to the latitude and longitude.
  • Each character string identifies a rectangular area on the ground. The longer the string length, the smaller the rectangular area.
  • the two rectangular areas identified by the two character strings are within the rectangular area identified by the matching character string. If the length of the character strings used as geohashes is the same, the size (area) of the rectangular areas identified by them is the same. Therefore, by setting the length of the character strings used as geohashes to a fixed length and making the first few characters common, the map (or the corresponding area) can be divided into multiple rectangular areas adjacent to each other.
  • a rectangular area is called a grid
  • its identifier latitude and longitude converted to a geohash
  • the communication speed indicates the communication speed measured for the actual communication, if communication was possible at the time indicated by the value in the date and time column. If communication was not possible due to being out of range or other reasons, in this embodiment, "-1" is recorded as the communication speed.
  • SINR, RSSI, RSRP, and RSRQ refer to the signal-to-interference-plus-noise ratio, received signal strength, received power of the reference signal, and received quality of the reference signal, respectively, and correspond to the radio wave strength information described above.
  • communication performance information DB156 stores information indicating communication quality, including the communication speed measured in actual communication, together with the vehicle's state at that time (such as the vehicle's speed and direction of travel shown in FIG. 5) and the date and time. This process updates communication performance information DB156.
  • values such as the communication speed, SINR, RSSI, RSRP, and RSRQ shown in FIG. 5, as well as their statistical values, are considered to be indicators of communication quality. Therefore, in this specification, these values are referred to as "communication quality metrics,” and information indicating these values is referred to as "communication quality metrics information.”
  • FIG. 6 shows the control structure of a program that realizes the communication performance recording unit 154 shown in FIG. 3.
  • this program includes step 250 that executes step 252 according to a predetermined schedule (in this embodiment, at a fixed interval).
  • Step 252 includes step 260, which performs communication processing using communication unit 150 or measurement processing of signal strength, step 262, which acquires information indicating the vehicle status via CAN 152, and step 264, which combines the information acquired in steps 260 and 262 and records the information in communication performance information DB 156.
  • This program further includes step 266, which branches the flow of control according to whether or not there is a communication history management server that is linked to the in-vehicle device 102, and step 268, which, when the determination in step 266 is positive, transmits communication history information to the linked communication history management server and ends the execution of step 252. When the determination in step 266 is negative, the execution of step 252 ends.
  • FIG. 7 shows a control structure of a program realizing route calculation unit 164 shown in Fig. 3.
  • this program includes a step 310 of acquiring a position of a destination through interaction with a user, and a step 312 of acquiring information on a communication service required to receive a service from server 108 (information on a required communication speed, for example, a bit rate, etc.).
  • the program further includes step 314 of acquiring communication history information for an area including the vicinity of the current location to the vicinity of the destination from the communication history information DB 156 (FIG. 3), step 316 of branching the flow of control depending on whether or not there is a communication history management server linked to the in-vehicle device 102, and step 318 of branching the flow of control depending on whether or not there is sufficient data from the communication history information DB 156 for route calculation when the determination in step 316 is positive.
  • This program further includes step 320 of acquiring communication history information of the area from the vicinity of the current location to the vicinity of the destination from a communication history management server (in this example, the communication history management server 110 shown in FIG. 2) linked to the in-vehicle device 102 when the determination in step 318 is negative, and step 322 of calculating a driving route using the acquired communication history information, providing information regarding the calculated driving route to the driving unit 162, and terminating execution of the program.
  • step 320 is not executed, and the route calculation process in step 322 is immediately executed.
  • FIG. 8 shows the control structure of a program that realizes step 322 shown in FIG. 7.
  • step 322 includes step 350 of setting a search range for the driving route, and step 352 of generating a route graph connecting the current position and the destination within the search range based on map information provided in the driving unit 162.
  • the route graph here refers to a graph in which intersections are nodes and roads connecting intersections are edges (links). In this embodiment, each edge is provided with information indicating the length of the corresponding road. In this route graph, there are many routes connecting the current position and the destination.
  • This program further includes step 354 of searching for the shortest route from the current position to the destination in the route graph generated in step 352.
  • the Dijkstra algorithm is used to search for the shortest route.
  • this is not limited to the Dijkstra algorithm, and any algorithm that can find the shortest route in a graph may be used.
  • the program further includes step 356 of referencing communication performance information to delete from the route graph edges including points where the bit rate is less than half the bit rate specified by the service, step 358 of searching for the shortest route in the route graph processed in step 356, step 360 of deleting from the route graph links including points where the bit rate is less than the specified bit rate, and step 362 of searching for the shortest route in the route graph processed in step 360 and terminating step 322.
  • the above process makes it possible to identify the shortest driving route regardless of the specified bit rate, the shortest driving route that allows communication at a bit rate at least half the specified bit rate, and the shortest driving route that allows communication at a bit rate equal to or higher than the specified bit rate.
  • FIG. 9 shows the control structure of a program that realizes the grid drawing unit 166 shown in FIG. 3.
  • the grid drawing obtained by the grid drawing unit 166 is, for example, like the grid shown in FIG. 1.
  • each grid is displayed in a different display mode depending on the communication speed available in that grid.
  • a number of driving routes generated in step 322 of FIG. 7 are displayed superimposed on a specified map, and a semi-transparent grid is further superimposed.
  • this program includes step 370, which obtains a geohash value representing the area displayed on the touch panel display device 116, and divides this area into a predetermined number of grid areas from the top left to the bottom right. Step 370 also calculates a geohash for a predetermined position (e.g., the center position) in each grid area.
  • a predetermined position e.g., the center position
  • the program further includes step 372, which performs step 374 for each grid region obtained in step 370.
  • Step 374 includes step 380 of searching communication performance information DB 156 for records that start with the same character string as the geohash of the grid area and whose date and time are within a specified range centered on the current time, and calculating their average communication speed, and step 382 of quantizing the average communication speed calculated in step 380 into several stages to determine the display color (hue) and brightness of the target grid area.
  • the hue is red
  • the brightness is determined as a monotonic function of the communication speed, such that the brightness is low when the communication speed is low and the brightness is high when the communication speed is high. Note that in this embodiment, the brightness is set to a maximum value when the communication speed is greater than a specified threshold value.
  • Step 374 further includes step 384, which sets the alpha value of each grid area when it is displayed to a value that represents semi-transparency, and ends step 374. At this time, the alpha value is set so that the grid with the highest brightness is displayed transparently.
  • Operation B1) Accumulation of communication history While the vehicle equipped with the on-board device 102 is moving, the communication unit 150 periodically measures the communication speed and radio wave strength. When communication is not being performed, the communication unit 150 measures only the radio wave strength. The communication unit 150 provides this information to the communication history recording unit 154 as communication history.
  • the communication history recording unit 154 receives information indicating the vehicle status from the sensor 112 and the GNSS receiver 114 via the CAN 152.
  • the communication history recording unit 154 generates communication history information from the communication history received from the communication unit 150 and information indicating the vehicle status, and stores the communication history information in the communication history information DB 156.
  • step 310 of FIG. 7 the in-vehicle device 102 acquires the destination designation and identifies its location.
  • the route calculation unit 164 acquires information on the communication service required by the service designated by the user (step 312). As a result of this process, the required bit rate is determined.
  • the route calculation unit 164 further acquires communication history information related to the area connecting the vicinity of the current position and the vicinity of the destination from the communication history information DB 156 (step 314 in FIG. 7). If there is no communication history management server linked to the in-vehicle device 102 (the determination in step 316 in FIG. 7 is negative), the route calculation unit 164 executes a route calculation process (step 322 in FIG. 7). If there is a communication history management server linked to the in-vehicle device 102 (the determination in step 316 in FIG. 7 is positive), it is determined whether the communication history acquired from the communication history information DB 156 is sufficient to determine a driving route based on the bit rate determined in the target area (step 318).
  • the route calculation unit 164 calculates a driving route using only the communication history acquired from the communication history information DB 156 (step 322). If the determination in step 318 is negative, the route calculation unit 164 instructs the communication history acquisition unit 160 to acquire communication history information of the target area from the communication history management server 110. The communication history acquisition unit 160 adds the acquired communication history information to the communication history information DB 156, and the route calculation unit 164 reacquires the communication history information from the communication history information DB 156 and then calculates the driving route using the reacquired communication history information (step 322).
  • the route calculation unit 164 of the in-vehicle device 102 calculates a driving route as follows.
  • a search range for the driving route is determined based on the relationship between the current position and the destination (step 350). There are various methods for determining this search range.
  • the search range is a rectangle whose diagonal is a line connecting the current position and the destination.
  • the search range is not limited to this, and various other methods are possible.
  • the route calculation unit 164 generates a route graph based on information about each intersection within the search range determined in step 350 and the roads connecting those intersections (step 352). At this time, roads whose road width is smaller than a certain value may be excluded from the route graph.
  • the route calculation unit 164 applies the Dijkstra algorithm to the route graph generated in this manner to generate a driving route consisting of the shortest route from the current position to the destination (step 352).
  • the generation of the driving route at this time does not take into account the communication speed along the way.
  • the driving route generated in step 352 is the shortest route when it is selected not to receive services via communication.
  • step 356 the route calculation unit 164 further removes edges with communication speeds less than half the specified bit rate from the route graph. As a result, the remaining edges are equal to or greater than half the specified bit rate.
  • step 358 the route calculation unit 164 searches for the shortest route in this route graph. This route is the shortest route among all driving routes that are expected to use a bit rate equal to or greater than half the specified bit rate.
  • step 360 the route calculation unit 164 further removes edges with a bit rate below the specified rate from the route graph.
  • the shortest route in the remaining route graph is searched for.
  • the travel route obtained by this process is the shortest travel route among the travel routes that are expected to have a communication speed equal to or greater than the specified bit rate.
  • a program consisting of a series of procedures such as steps 352 and 354 in FIG. 8 can be prepared, and an appropriate program can be executed based on the user's specifications.
  • the order in which the programs are executed is also specified in advance. By executing the programs according to such specifications, the amount of calculation required to calculate the driving route can be reduced.
  • the driving unit 162 When the driving route is calculated by the above-mentioned process, the driving unit 162 generates the route proposal screen 50 shown in Fig. 1 and displays it on the touch panel display device 116. The driving unit 162 first displays a map of the relevant area. The driving unit 162 further displays the three calculated driving routes superimposed on the map. The driving routes can be displayed by continuously drawing rectangles connecting the start point and end point of each edge that forms the driving route.
  • the grid drawing unit 166 creates a grid display as shown in FIG. 1 as follows. Referring to FIG. 9, the grid drawing unit 166 obtains a geohash value representing the area displayed on the touch panel display device 116, and divides this area from the upper left to the lower right into a predetermined number of grid areas (step 370). At this time, a geohash is calculated for a predetermined position (e.g., the center position) in each grid area.
  • a predetermined position e.g., the center position
  • the grid drawing unit 166 further performs the following step 374 for each grid area.
  • the grid drawing unit 166 searches the communication performance information DB 156 for records that start with the same character string as the geohash of the target grid area and whose date and time are within a specified range centered on the current time, and calculates the average communication speed for those records (step 380).
  • the grid drawing unit 166 further quantizes the average communication speed calculated in step 380 into several stages, and determines the display color (hue) and brightness of the target grid area (step 382).
  • the hue is red
  • the brightness is determined as a monotonic function of the communication speed, such that the brightness is low when the communication speed is low and the brightness is high when the communication speed is high.
  • the grid drawing unit 166 further sets a value representing semi-transparency to the alpha value when each grid area is displayed (step 384). At this time, the grid drawing unit 166 sets the alpha value so that the grid with the highest brightness is displayed transparently.
  • the image of the grid area created in this way is superimposed on the image of the map and the driving route in the driving unit 162.
  • the map, the driving route, and the grid are displayed superimposed on the display surface of the touch panel type display device 116.
  • the map is displayed as is. Areas where the communication speed is low are displayed semi-transparently on the map as red areas with a brightness according to the communication speed. The lower the communication speed, the darker the red the area is displayed, and the higher the communication speed, the brighter the red the area is displayed.
  • communication speeds actually measured in the past are stored in the communication performance information DB 156 and are used to calculate the driving route.
  • an appropriate driving route can be calculated according to the bit rate required by the service being used.
  • multiple driving routes are calculated based on the constraints specified by the user. The user can select an appropriate driving route depending on how they wish to use the service.
  • the communication speed status in the area surrounding the current location and destination is visually displayed. This allows the user to select an appropriate route based on the purpose of using the service, the communication status, and the distance to the destination, such as how well the communication-based services will be provided while traveling from the current location to the destination, and what route should be taken to make full use of the service.
  • the communication history management server 110 accumulates communication history information from each vehicle. Therefore, when calculating a driving route in a certain in-vehicle device, if sufficient communication history is not stored in the in-vehicle device, the necessary communication history information can be obtained from the communication history management server 110. As a result, it is possible to calculate the optimal driving route for using communication services over a wide area.
  • the user is allowed to select one of three driving routes displayed on the touch panel display device 116.
  • this disclosure is not limited to such an embodiment. It is also possible to implement an embodiment in which a driving route that can always maintain the required communication speed is selected, or if no such route exists, a driving route with the highest average communication speed along the way is automatically selected.
  • Vehicle assistance system 400 Fig. 10 shows the configuration of a vehicle assistance system 400 according to the second embodiment.
  • the vehicle assistance system 400 according to the second embodiment includes a server 108, in-vehicle devices 402, 404, and 406 that use the service provided by the server 108, and a communication history management server 408 that accumulates communication history information by a plurality of in-vehicle devices such as the in-vehicle device 402 and transmits the communication history information to each in-vehicle device upon request.
  • the route calculation unit is not located in the in-vehicle device 402, but in the communication record management server 408.
  • an in-vehicle device 402 differs from the in-vehicle device 102 shown in FIG. 3 in that it does not include a communication history obtaining unit 160 and a route calculating unit 164.
  • the driving unit 162 differs from the driving unit 162 shown in FIG. 3 in that the driving unit 162 requests the necessary communication history information from the communication history management server 408, rather than from the communication history information DB 156, based on information about the destination input by the user using the touch panel display device 116.
  • the communication history management server 408 includes a communication history acquisition unit 450 that acquires communication history information from a plurality of in-vehicle devices, a communication history information storage unit 202 for storing the communication history information acquired by the communication history acquisition unit 450, and a route calculation unit 452 that receives a calculation request for a driving route specifying a current position and a destination from the driving unit 162 of an in-vehicle device such as the in-vehicle device 402 shown in FIG. 10 , reads out communication history information of the corresponding area from the communication history information storage unit 202, and transmits it to the in-vehicle device 402.
  • a communication history acquisition unit 450 that acquires communication history information from a plurality of in-vehicle devices
  • a communication history information storage unit 202 for storing the communication history information acquired by the communication history acquisition unit 450
  • a route calculation unit 452 that receives a calculation request for a driving route specifying a current position and a destination from the driving unit 16
  • the second embodiment differs only in that, when a destination is input via the touch panel display device 116, the driving unit 162 requests communication history information by specifying the current position and destination from the route calculation unit 452 of the communication history management server 408, rather than from the communication history information DB 156, and that, in response to this request, the route calculation unit 452 reads out the communication history information of the relevant area from the communication history information storage unit 202 and transmits it to the driving unit 162.
  • each functional unit of the vehicle assistance system 400 operates in the same manner as the corresponding functional unit in the first embodiment.
  • Vehicle assistance system 500 13 a vehicle assistance system 500 according to the third embodiment of the present disclosure includes a server 108, in-vehicle devices 502, 504, and 506, and a communication history management server 110.
  • the server 108 and the communication history management server 110 are the same as the server 108 and the communication history management server 110 in the first embodiment shown in FIG.
  • the in-vehicle device 502 is similar to the in-vehicle device 102 shown in FIG. 3. However, unlike the in-vehicle device 102, the in-vehicle device 502 includes a communication record comparison unit 552 that receives a measurement result on the current communication speed from the communication record recording unit 154, compares the communication speed with a communication speed estimated from information stored in the communication record information DB 156, calculates the difference between the two, and outputs the calculated value.
  • the in-vehicle device 102 also includes a communication unit 550, instead of the communication unit 150 shown in FIG.
  • the communication unit 550 requests the server 108 to reduce the bit rate of the service using the server 108.
  • the server 108 reduces the resolution of the video or reduces the number of transmission frames so that the service can be continued.
  • the communication unit 550 requests the server 108 to increase the bit rate used for the service if possible.
  • the in-vehicle device 502 further includes a route calculation unit 556 that has the function of redoing route calculation when the absolute value of the value output by the communication performance comparison unit 552 is greater than a threshold value, in addition to the functions of the route calculation unit 164.
  • the in-vehicle device 502 further includes a communication performance transmission unit 554 that immediately transmits communication performance information created from the latest measurement results measured by the communication performance recording unit 154 to the server 108 when the absolute value of the value output by the communication performance comparison unit 552 is greater than or equal to a threshold value, in addition to the functions of the communication performance transmission unit 158.
  • Communication performance comparison unit 552 15 shows a control structure of a program realizing communication performance comparison unit 552. Referring to FIG. 15, this program includes a step 600 of repeatedly executing a step 602.
  • Step 602 includes step 610 of receiving the latest measured value of the communication speed from the communication history recording unit 154, step 612 of reading past communication history information at the current location from the communication history information DB 156, and step 614 of branching the flow of control according to whether the difference between the latest measurement result and the communication speed in the communication history read in step 612 is equal to or greater than a threshold value. If the determination in step 614 is negative, the processing of the latest measurement result in step 602 ends.
  • This program further includes step 616 of immediately transmitting communication performance information obtained from the latest measurement results to the communication performance management server 110 when the determination in step 614 is positive, step 618 of changing the communication quality with the server 108 by controlling the communication unit 550 based on the latest measurement results, and step 620 of controlling the route calculation unit 556 to execute a route change to recalculate the driving route and terminate execution of step 602. Note that in this embodiment, the results of the route change are not presented to the user, but are immediately reflected in the operation of the driving unit 162.
  • the communication unit 550 periodically measures the communication speed and radio wave strength when communication is being performed, and measures only the radio wave strength at that time when communication is not being performed, and provides the measurement results to the communication history recording unit 154.
  • the communication history recording unit 154 operates in the same manner as in Fig. 3. However, the communication history recording unit 154 also provides the latest communication history to the communication history comparison unit 552.
  • the communication performance comparison unit 552 receives the latest communication performance from the communication unit 550 (step 610 in FIG. 15), reads out the past communication performance at that point from the communication performance information DB 156 based on the current position of the in-vehicle device 502, and subtracts the speed of the past communication performance from the latest measured speed (step 612). If the absolute value of the subtraction result is greater than the threshold value (the determination in step 614 is positive), the communication performance comparison unit 552 provides the communication performance based on the latest measurement result to the communication performance transmission unit 554 (step 616). The communication performance comparison unit 552 further provides the subtraction result in step 614 to the communication unit 550 (step 618). The communication performance comparison unit 552 similarly provides the communication performance based on the latest measurement result to the route calculation unit 556 (step 618).
  • the communication history sending unit 554 immediately sends the communication history based on the latest measurement result to the communication history management server 110.
  • the communication history management server 110 stores the received communication history in the communication history information storage unit 202 (see FIG. 4).
  • the communication unit 550 requests the server 108 to adjust the bit rate of the service provided by the server 108 based on the latest measurement result.
  • the route calculation unit 556 recalculates the driving route based on the latest measurement result, and controls the driving unit 162 to change the driving route according to the result.
  • the communication unit 550 changes the bit rate of the service received from the server 108 according to the communication speed according to the latest measurement result. As a result, if the communication speed decreases, the service is changed to a service with a correspondingly lower bit rate. Conversely, if the communication speed increases, the service is changed to a service with a correspondingly higher bit rate.
  • the service in the case of video streaming, can be maintained by changing the image resolution or frame rate in this way according to the available communication speed.
  • the route by automatically changing the route, a course that provides better communication quality is selected. As a result, the user can use the service under better conditions.
  • a driving assistance system 650 includes the server 108 , in-vehicle devices such as in-vehicle devices 652 , 654 and 656 , and a communication history management server 658 .
  • the in-vehicle device 652 differs from the in-vehicle device 102 in that, in addition to the functions of the in-vehicle device 102 shown in FIG. 3, it performs statistical processing on the communication records stored in the communication record information DB 156 and suggests driving routes based on the results. In this statistical processing, values indicating that communication was not possible (such as "-1") are excluded from the calculation of so-called average values. However, they are counted when calculating statistical information on whether communication was possible or not.
  • the in-vehicle device 652 includes, in addition to the respective parts of the in-vehicle device 102 shown in Figure 3, a communication statistics calculation unit 700 that performs a predetermined statistical processing on the communication performance information stored in the communication performance information DB 156, a communication performance statistical information DB 702 for storing statistical information regarding communication calculated by the communication performance calculation unit 700, and a route calculation unit 704 that calculates a driving route using the communication performance statistical information stored in the communication performance statistical information DB 702.
  • a communication statistics calculation unit 700 that performs a predetermined statistical processing on the communication performance information stored in the communication performance information DB 156
  • a communication performance statistical information DB 702 for storing statistical information regarding communication calculated by the communication performance calculation unit 700
  • a route calculation unit 704 that calculates a driving route using the communication performance statistical information stored in the communication performance statistical information DB 702.
  • the communication performance acquisition unit 160 when the communication performance acquisition unit 160 receives a request to acquire communication performance information from the route calculation unit 704, it provides the route calculation unit 704 with communication performance statistical information stored in the communication performance statistical information DB 702 rather than the communication performance information DB 156.
  • the communication performance acquisition unit 160 receives the communication performance statistical information stored in the communication performance statistical information DB 702 from the communication performance management server 658.
  • the communication performance acquisition unit 160 adds this communication performance statistical information to the communication performance statistical information DB 702 and then provides it to the route calculation unit 704.
  • the route calculation unit 704 differs from the route calculation unit 164 in that the communication performance used when calculating the driving route is not the actual measurement information stored in the communication performance information DB 156 but the statistically processed information stored in the communication performance statistical information DB 702.
  • Communication record management server 658 18, the communication performance management server 658 includes a communication performance acquisition unit 200, a communication performance information storage unit 202, and a communication statistics calculation unit 720 for performing statistical processing similar to that of the communication statistics calculation unit 700 shown in Fig. 17 on the communication performance information stored in the communication performance information storage unit 202.
  • the communication performance management server 658 further includes a communication performance statistical information storage unit 722 for storing statistical information regarding the communication performance calculated by the communication statistics calculation unit 720, and a communication performance transmission unit 724 for reading out communication performance statistical information corresponding to the current location specified by the communication performance acquisition unit 160 from the communication performance statistical information storage unit 722 and transmitting the communication performance statistical information to the communication performance acquisition unit 160 in response to a request from the communication performance acquisition unit 160 shown in Fig. 17.
  • FIG. 19 shows the column structure of the communication performance statistical information DB 702 shown in FIG. 17.
  • the communication performance statistical information storage unit 722 shown in FIG. 18 has a similar column structure.
  • the communication performance statistical information DB 702 has a date/time column, a grid ID column, a communication speed column, a speed column, a direction column, a communication line column, a communication carrier column, a band number column, a cell ID column, and the same SINR, RSSI, RSRP, and RSRQ columns as those shown in FIG. 5.
  • the date and time is used to specify the unit period that the statistics are for. For example, if the date and time column contains a value indicating the year (such as "2022"), this indicates that statistics covering the entire year of 2022 constitute one record in the communication performance statistical information DB702. If the date and time column contains information indicating a certain month (such as "202206"), it indicates that statistics relating to that information covering one month are stored in that one record. Similarly, by using the date and time column, statistics for one day, one hour, etc. can each be stored as one record in the communication performance statistical information DB702. By including date and time information in the record in this way, statistical information can be recorded hierarchically over various periods.
  • the grid ID is a geohash identifier that identifies the grid that is the subject of the statistics. This value is assigned to each grid on a fixed basis. However, as mentioned above, grid IDs also have a hierarchical structure. Therefore, if the smallest unit of size for a grid is determined and statistical values for the communication status in that grid are recorded, statistics for larger grids can be calculated at any time. In this way, by using the value in the date and time column and the value in the grid ID column, statistical information can be calculated and recorded with a geographical and temporal hierarchical structure.
  • the columns below communication speed are values after statistical processing.
  • the method of statistical processing for each of these columns differs depending on the column. For example, for communication speed, speed, direction, SINR, RSSI, RSRP, and RSRQ, representative values obtained by statistical processing, such as the average, maximum, minimum, and CDF (cumulative distribution function), or any combination of these, are stored.
  • the direction may be converted into a numerical value and the average taken, or 360 degrees may be divided into specified angles and the number of values that fall within each angle range may be counted.
  • the communication line, communication operator, band number, and cell ID are all discrete values, but for these, the ones used within the target unit period may be counted by type and the values recorded.
  • FIG. 20 shows the control structure of a program that causes a computer to function as the communication statistics calculation unit 720 shown in FIG. 18.
  • This program is started by receiving as arguments parameters 730 that specify the granularity of the period for which statistics are to be calculated and the granularity when dividing the area into grids.
  • This program calculates communication performance statistics for each period of the specified granularity and area of the specified granularity.
  • "high granularity” means that the units to be processed are large, and "low granularity” means that the units to be processed are small. Of course, high and low granularity are relative terms.
  • This program includes step 732, which checks the current time and the range (full area range) that covers the entire position where the communication performance information stored in the communication performance information storage unit 202 was obtained.
  • the full area range is a rectangle, and is specified by the coordinates (latitude, longitude) of its northwestern and southeastern ends.
  • the shape that specifies the full area range is not limited to a rectangle. Any shape, including shapes that are not composed of straight lines, such as a circle or ellipse, can be used.
  • the program further includes step 734 of determining a target period by dividing the period for statistical calculation according to parameter 730, and step 736 of determining a set of target areas for statistical calculation by dividing the entire range according to a specified granularity according to parameter 730.
  • step 734 the unit period including the current time obtained in step 732 and the unit period immediately preceding it are basically the subject of the calculation of statistics. However, for example, if the creation of statistics has already been completed and it has been determined that no updates will be made, the immediately preceding unit period is not included in the calculation of statistics.
  • step 736 the entire rectangular area identified in step 732 is divided into rectangular areas of the size specified by parameter 730. As described above, each divided area is assigned a unique geohash code.
  • the program further includes step 738 of executing step 740 for each unit period included in the target period determined in step 734.
  • the unit period included in the target period is basically one unit period including the current time, or two unit periods including the most recent unit period.
  • Step 740 includes step 742, which performs step 744 for each target area divided in step 736.
  • Step 744 includes step 750 of reading out communication performance information from communication performance information storage unit 202 shown in FIG. 18 using the target period and target area as keys, and step 752 of calculating each piece of statistical information shown in communication performance statistical information DB 702 based on the communication performance information read out in step 750.
  • the calculation of the statistical information in step 752 involves different processing for each item. Note that when a relational database is used for communication performance statistical information DB 702, the processing in step 732 may be simplified for representative statistical values such as the average, maximum value, minimum value, or variance by including a command to calculate these representative statistical values in the query when reading out the records.
  • Step 744 further includes step 754, which branches the flow of control according to whether or not a record having the same key as the key used in step 750 exists in the communication performance statistical information storage unit 722.
  • Step 744 further includes step 756, which updates the record having that key according to the latest statistical value calculated in step 752 when the determination in step 754 is positive, and terminates step 744, and step 758, which adds a new record to the communication performance statistical information storage unit 722 using the target period and target area used in step 750 as keys and the statistical value calculated in step 752 as content, and terminates step 744 when the determination in step 754 is negative.
  • the above explanation relates to the program executed by the communication statistics calculation unit 720 of the communication record management server 658 shown in FIG. 18. Meanwhile, the communication statistics calculation unit 700 of the in-vehicle device 652 shown in FIG. 17 also executes a program with essentially the same control structure as that shown in FIG. 20.
  • the target area is limited, and the size of the grid used when proposing a route is also limited. Therefore, the granularity of the date and time and the granularity of the range division when executing a program similar to that shown in FIG. 20 are also made relatively high. As a result, even a device that is not blessed with many computational resources, such as the in-vehicle device 652, can stably calculate communication statistics.
  • FIG. 21 shows the control structure of a program for causing a computer to function as the communication history transmission unit 724 shown in FIG. 18. This program is started every time the communication history management server 658 receives a request to transmit communication history statistics from an external device.
  • this program includes a step 780 of extracting information indicating the date and time, date and time granularity, range, and range granularity of the target of transmission from the received transmission request message. If a date and time is not specified, the most recent unit time is assumed to be specified. In this case, the unit time is determined by the date and time granularity. If the date and time granularity is not specified, a default unit time, for example, one hour, is used. The range is required. The range granularity is specified, for example, by the number of digits of the geohash used. If the range granularity is not specified, the range granularity is determined as a function of the size of the specified range.
  • this program includes step 782 of reading from the communication performance statistical information storage unit 722 a record that corresponds to the date and time, date and time granularity, range, and range granularity extracted in step 780, and step 784 of shaping the information contained in the record read in step 782 into a predetermined format and transmitting it to an external device in one or more packets, thereby terminating execution of this program.
  • the communication history recording unit 154 of the in-vehicle device 652 shown in Fig. 17 periodically acquires communication history information and stores it in the communication history information DB 156.
  • the communication history transmitting unit 158 similarly transmits the communication history information to the communication history management server 658.
  • the communication history acquiring unit 200 of the communication history management server 658 shown in Fig. 18 acquires communication history information from multiple in-vehicle devices including the in-vehicle device 652, and stores it in the communication history information storage unit 202.
  • the communication statistics calculation unit 700 performs statistical processing on the communication performance information stored in the communication performance information DB 156 according to a certain schedule, and stores the results in the communication performance statistical information DB 702.
  • the schedule may be one in which the statistical processing is performed only once every minimum time unit described above, or one in which the statistical processing is performed every time a predetermined period longer than the minimum time unit has elapsed.
  • the communication statistics calculation unit 700 uses only the information in the communication performance information DB 156.
  • the load of the statistical calculation processing by the communication statistics calculation unit 700 is smaller than that of the communication statistics calculation unit 720.
  • the statistical information stored in the communication performance statistical information DB 702 is information obtained from information in a relatively limited area, and is limited to statistical information with a higher granularity in terms of time and geography compared to the statistical information stored in the communication performance statistical information storage unit 722.
  • the communication statistics calculation unit 720 performs statistical processing on the communication performance information stored in the communication performance information storage unit 202 according to a fixed schedule, similar to the in-vehicle device 652, and stores the obtained communication performance statistical information in the communication performance statistical information storage unit 722.
  • a program with a control structure shown in Figure 20 is started for each region in each hierarchical level within the range to be managed, with one cycle usually being 24 or 12 hours. For example, if 12 hours is one cycle of statistical processing, then 24 hours of information will be processed twice. In the first process, statistical information for the first 12 hours is calculated. In the second process, statistical information for the 24 hours is calculated, and the statistical information calculated based on the 12 hours of information is updated with that information.
  • Multiple programs shown in FIG. 20 can be run simultaneously, enabling parallel processing. If the granularity of the date and time when calculating statistical information decreases, the range increases, and the granularity of the range also decreases, the number of objects for statistical calculation becomes very large. In such cases, the statistical processing can be performed on multiple processors, and each processor can further use a GPU to perform parallel calculations, allowing the required statistical processing to be performed in a timely manner.
  • the computing resources available to the communication history management server 658 can be increased according to demand. As a result, it becomes possible to flexibly respond to increased demand from external devices.
  • the route calculation unit 704 calculates a driving route, it specifies the current position and destination and requests the communication history acquisition unit 160 to acquire communication history for the relevant area.
  • the communication history acquisition unit 160 inputs communication history statistical information that has been subjected to statistical processing for the specified area from the information stored in the communication history statistical information DB 702 to the route calculation unit 704. If the information obtained from the communication history statistical information DB 702 is sufficient for calculating the driving route in the specified area, the route calculation unit 704 immediately executes the route calculation process, and if not, requests the communication history acquisition unit 160 to acquire communication history statistical information for the specified area from the communication history management server 658.
  • the communication history acquisition unit 160 transmits a request to transmit statistical information to the communication history transmission unit 754 of the communication history management server 658 so that the requested information can be obtained.
  • This transmission request includes information specifying the time range and geographic range for which statistical information is required, as well as information specifying their granularity. For example, if information is required for a range not covered by the statistical information stored in the communication statistics calculation unit 700, the communication performance acquisition unit 160 requests statistical information relating to at least that range from the communication performance management server 658. If the information stored in the communication statistics calculation unit 700 is not sufficient to determine the detailed communication conditions for each region, the communication performance acquisition unit 160 requests statistical information for a divided area with lower granularity from the communication performance management server 658.
  • the communication history sending unit 724 of the communication history management server 658 shown in FIG. 18 executes the program shown in FIG. 21. That is, the communication history sending unit 724 extracts information indicating the date and time, date and time granularity, range, and range granularity to be transmitted from the transmission request message (step 780). If this information is not specified, as described above, the communication history sending unit 724 uses default values. The communication history sending unit 724 reads out a record corresponding to the information obtained from the transmission request in this way from the communication history statistical information storage unit 722 (step 782).
  • the communication performance transmission unit 724 extracts only records (communication environment information) that have matching communication device information, communication line information, and communication carrier information when reading information from the communication performance statistical information DB 702.
  • the communication performance transmission unit 724 further performs statistical processing on values related to the communication quality metrics of those records to calculate statistical representative values.
  • the communication history transmission unit 724 formats the information contained in the read record or the statistically processed information into a specified format and transmits it to the communication history acquisition unit 160 of the in-vehicle device 652 in one or more packets (step 784).
  • the communication history acquisition unit 160 receives this statistical information from the communication history transmission unit 724 and adds it to the communication history statistical information DB 702 in FIG. 17.
  • the added information is input from the communication history statistical information DB 702 to the route calculation unit 704.
  • the route calculation unit 704 uses the communication history statistical information thus obtained to calculate the route from the current position to the destination according to specified conditions.
  • each other part is the same as that of the in-vehicle device in the first to third embodiments.
  • the communication history management server normally operates in the same way as in the fourth embodiment, but when information about the communication environment is attached to the transmission request, it extracts only records that meet the specified conditions from the details of the communication history information stored in the communication history information storage unit 202, rather than the statistical information stored in the communication history statistical information storage unit 722. Statistical processing is performed on the retrieved records, and the results are sent to the in-vehicle device.
  • FIG. 22 shows a block diagram of a communication history management server 790 of this modified example.
  • the communication history management server 790 differs from the communication history management server 658 shown in FIG. 18 in that, instead of the communication history transmission unit 724 shown in FIG. 18, it includes a communication history transmission unit 792 that receives a transmission request and executes different processing depending on whether information about the communication environment is attached to the transmission request.
  • the communication history transmission unit 792 normally reads information from the communication history statistical information storage unit 722 and transmits it to the in-vehicle device, similar to the communication history transmission unit 724 in the fourth embodiment.
  • the transmission request includes information about the communication environment (for example, a communication line or a communication carrier, or a combination of these)
  • the communication history transmission unit 792 performs different processing.
  • the communication history management server 790 further includes an on-demand communication statistical processing calculation unit 794 that, in response to an instruction from the communication history transmission unit 792 when information regarding the communication environment is attached to a transmission request, reads records from the communication history information storage unit 202 that contain the specified date and time and range, as well as communication environment information that matches the information regarding the communication environment, and at the same time performs statistical processing on the communication quality metrics of the read records and returns the processing to the communication history transmission unit 792.
  • an on-demand communication statistical processing calculation unit 794 that, in response to an instruction from the communication history transmission unit 792 when information regarding the communication environment is attached to a transmission request, reads records from the communication history information storage unit 202 that contain the specified date and time and range, as well as communication environment information that matches the information regarding the communication environment, and at the same time performs statistical processing on the communication quality metrics of the read records and returns the processing to the communication history transmission unit 792.
  • the communication history transmission unit 792 does not obtain the information from the communication history statistical information storage unit 722, but obtains the information from the communication statistical processing calculation unit 794 at any time.
  • the communication history management server 790 can normally use information from the communication history statistical information storage unit 722 to transmit communication quality metrics to the in-vehicle device at high speed.
  • the communication history management server 790 can transmit to the in-vehicle device communication quality metrics obtained only from communication history that matches that specific communication environment. As a result, it is possible to improve the accuracy of the statistical quality metrics transmitted to the in-vehicle device while preventing an increase in the load of statistical processing.
  • the fifth embodiment is characterized by the display mode when a driving route is proposed.
  • the configuration of the in-vehicle device for this purpose is the same as that of the in-vehicle device 102 shown in FIG. 3, for example.
  • a grid is not superimposed on a map as in the grid drawing unit 166 shown in FIG. 3.
  • the fifth embodiment uses a proposed route display unit (not shown) that displays a proposed driving route in a different mode depending on the communication speed assumed to be available in each grid through which the driving route passes, as shown in FIG. 23.
  • the display 800 of the touch panel display device 116 includes a driving route display 810, a first route prediction image display 812, and a second route prediction image display 814.
  • the driving route display 810 displays a map, on which the current position and destination of the vehicle image 816 are superimposed as speech bubbles 820 and 822. No grid is displayed. Instead, each part of the image of the driving routes 830 and 832 is displayed with a hue and brightness that corresponds to the communication speed of the grid to which it belongs. Typically, the hue is red, and the brightness is adjusted according to a monotonic function of the communication speed, so that the higher the communication speed, the higher the brightness, and the lower the brightness, the lower the communication speed. However, due to the constraints of the drawing, such changes in the display mode are not shown in Figure 23.
  • a representative value of the communication speed (for example, the average bit rate, the ratio of the route length where the minimum bit rate specified by the service can be used to the entire route, etc.) is displayed in association with each driving route.
  • An example is the "communication quality satisfaction" shown by the speech bubbles 824 and 826 in FIG. 23.
  • the communication quality satisfaction rate for the first route (first driving route) is 75%. This means that the total route length of the part of the first driving route where the bit rate specified by the service can be maintained corresponds to 75% of the total length of the first driving route. For the second driving route, this value is 25%.
  • the service can be used with the highest quality expected for 3/4 of the total length, but for the second driving route, it can only be used for 1/4.
  • the first route prediction image display 812 and the second route prediction image display 814 show the predicted image quality of the image displayed on each driving route in the form of an image when the service used while driving on each driving route is video streaming.
  • a sample image is prepared in advance.
  • the predicted image quality is shown by an image in which the number of pixels of the sample image is reduced according to the ratio of the representative value of the predicted communication speed when driving on each driving route to the communication speed at which the image can be received with its original resolution. If the communication quality on each route is shown by a numerical value as described above, the user can understand the difference, but it is difficult to intuitively grasp the difference.
  • the first route prediction image display 812 and the second route prediction image display 814 by showing the communication quality on each driving route as a difference in an image, it is possible to make it easier for the user to intuitively grasp the difference in communication quality.
  • speech bubbles are used, but instead of speech bubbles, for example, a line connecting the display of communication quality and the corresponding driving route may be displayed to associate the driving route with the display of communication quality.
  • FIG. 24 shows the control structure of a computer program that realizes the route proposal processing unit described above with respect to the fifth embodiment.
  • this program includes step 850 for setting a destination, step 852 for acquiring the current position of the vehicle, and step 854 for receiving from the user specification of constraint conditions for calculating a route.
  • the program further includes step 856 of searching for a driving route from the current position specified in steps 850 and 852 to the destination under the constraints specified in step 856, step 858 of displaying each of the driving routes searched for in step 856 as shown in driving route display 810 of FIG. 23, step 860 of calculating a representative value representing the communication quality for each of the driving routes, and step 862 of displaying the representative value calculated in step 860 for each of the driving routes together with speech bubbles 824 and 826 having convex portions that contact the corresponding driving routes.
  • the program further includes step 864 of judging whether or not an image representing the communication image quality should be displayed, such as when the service is related to video, and branching the flow of control according to the result of the judgment, step 866 of processing a sample image prepared in advance based on the representative value calculated in step 860 for each driving route when the judgment in step 864 is positive, and step 868 of displaying the sample image processed in step 866 at a predetermined position on the driving route display 810, as shown by the first route predicted image display 812 and the second route predicted image display 814 in FIG. 23, and terminating the execution of the program.
  • steps 866 and 868 are not executed.
  • step 858 of FIG. 24 includes step 900, which performs the same grid drawing process as shown in FIG. 9, and step 902, which performs step 904 for each of the grids obtained in step 900.
  • Step 904 includes step 910, which calculates the overlapping portion between the grid to be processed and each driving route, and step 912, which sets the alpha value of each pixel for each overlapping portion calculated in step 910 so that the overlapping portion is displayed semi-transparently and the remaining portion is displayed transparently, and then ends step 904.
  • any part of the grid that does not overlap with the driving route is displayed transparently.
  • the map is displayed as is.
  • the overlapping part is displayed with the hue and brightness set in the process of step 900, while the non-overlapping part is displayed transparently.
  • each part of each driving route is displayed in a different manner (hue and brightness) according to the communication quality (communication speed) in that part.
  • the map is displayed in the parts other than the driving route. In other words, a display such as that shown by driving route display 810 in Figure 23 is obtained.
  • this fifth embodiment also visually displays the communication quality along the proposed driving route, allowing the user to select the driving route that they consider optimal based on the service they wish to use and the time required to reach the destination.
  • the vehicle-mounted device includes a Micro Controller Unit (MCU) including a communication device and a storage device for storing a program executed by the MCU.
  • MCU Micro Controller Unit
  • Each component of the MCU is hardware.
  • FIG. 26 shows the configuration of the MCU 950 in block form.
  • the MCU 950 includes an MPU 952 which is a processor, a high-speed bus 978 to which the MPU 952 is connected, an SRAM 954 connected to the high-speed bus 978, a flash memory 956 connected to the high-speed bus 978, and a ROM 958 connected to the high-speed bus 978.
  • the SRAM 954 holds data necessary for executing programs, etc.
  • the flash memory 956 stores a program 976 for realizing each function of the in-vehicle device according to the first to fifth embodiments.
  • the ROM 958 stores a boot-up program for the MPU 952, etc.
  • the MCU 950 further includes a low-speed bus 960 connected to a high-speed bus 978 via a bridge 962, and a serial I/F 964, an ADC 966, a timer/counter 968, a clock generator 970, a power supply control unit 972, and a general-purpose I/F 974, all of which are connected to the low-speed bus 960.
  • Fig. 27 is an external view of an example of a computer system that realizes the communication history management servers 110 and 408 and the communication history management server 658 according to the above embodiments.
  • Fig. 28 is a block diagram showing an example of the hardware configuration of the computer system shown in Fig. 27.
  • this computer system 1050 includes a computer 1070 to which a DVD drive 1102 is connected, and a keyboard 1074, a mouse 1076, and a monitor 1072 for interacting with a user, all of which are connected to the computer 1070.
  • a computer 1070 to which a DVD drive 1102 is connected
  • a keyboard 1074, a mouse 1076, and a monitor 1072 for interacting with a user all of which are connected to the computer 1070.
  • computer 1070 includes CPU 1090, GPU 1092, bus 1110 connected to CPU 1090, GPU 1092, and DVD drive 1102, ROM 1096 connected to bus 1110 and storing a boot-up program for computer 1070, RAM 1098 connected to bus 1110 and storing instructions constituting programs, system programs, working data, and the like, and SSD 1100 which is a non-volatile memory connected to bus 1110.
  • SSD 1100 stores programs executed by CPU 1090 and GPU 1092, as well as data used by programs executed by CPU 1090 and GPU 1092, and the like.
  • the computer 1070 further includes a network I/F 1108 that provides a connection to a network 1086 that enables communication with other terminals, and a USB port 1106 to which a USB memory 1084 can be attached and which provides communication between the USB memory 1084 and each part within the computer 1070.
  • Computer 1070 further includes an input/output I/F 1104 that is connected to external devices such as microphone 1082 and speaker 1080 and bus 1110, and that reads out audio signals, video signals, and text data generated by CPU 1090 and stored in RAM 1098 or SSD 1100 according to instructions from CPU 1090, converts the signals to analog, amplifies them, and drives speaker 1080, and digitizes analog audio signals from microphone 1082 and stores them in RAM 1098 or SSD 1100 at any address specified by CPU 1090.
  • I/F 1104 is connected to external devices such as microphone 1082 and speaker 1080 and bus 1110, and that reads out audio signals, video signals, and text data generated by CPU 1090 and stored in RAM 1098 or SSD 1100 according to instructions from CPU 1090, converts the signals to analog, amplifies them, and drives speaker 1080, and digitizes analog audio signals from microphone 1082 and stores them in RAM 1098 or SSD 1100 at any address specified by CPU 1090.
  • the programs and parameters for implementing the communication history management servers 110, 408 and 658 in the above embodiments, as well as the sample images used in the fifth embodiment, are all stored, for example, in the SSD 1100, RAM 1098, DVD 1078 or USB memory 1084 shown in FIG. 28, or in a storage medium of an external device (not shown) connected via the network I/F 1108 and network 1086.
  • these data and parameters are written, for example, from outside into the SSD 1100, and loaded into the RAM 1098 when executed by the computer 1070.
  • a program that realizes the functions of each part according to the above-mentioned embodiment in cooperation with the computer 1070 includes a plurality of instructions written and arranged to operate the computer 1070 to realize those functions. Some of the basic functions required to execute the instructions are provided by the operating system (OS (Operating System)) or third party programs that run on the computer 1070, or by modules of various tool kits installed on the computer 1070. Thus, the program does not necessarily include all of the functions required to realize the system and method of this embodiment.
  • the program need only include instructions that perform the operations of each of the above-mentioned devices and their components by statically linking appropriate functions or functions of a "programming tool kit" in a controlled manner to obtain the desired results, or by dynamically linking to those functions when the program is executed.
  • the method of operating the computer 1070 for this purpose is well known, so it will not be repeated here.
  • the GPU 1092 is capable of parallel processing, and can execute large amounts of calculations, such as those involved in route search processing and statistical processing, simultaneously in parallel or in a pipelined manner. For example, parallel calculation elements discovered in a program when the program is compiled, or parallel calculation elements discovered when the program is executed, are dispatched from the CPU 1090 to the GPU 1092 as needed, and executed, with the results being returned to the CPU 1090 directly or via a specified address in the RAM 1098, and substituted for a specified variable in the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Traffic Control Systems (AREA)

Abstract

This communication record management server comprises: a communication record information reception unit for receiving communication record information that includes at least location information, date and time information, and communication quality metrics information related to at least communication quality of wireless communication at a location identified by the location information and at a date and time identified by the date and time information; a communication record information storage unit for accumulating communication record information received by the communication record information reception unit; and a communication record transmission unit for generating, in response to receiving from an external device a transmission request for transmission of communication record information for which a regional range is specified, communication record-related information on the basis of the communication record information accumulated in the communication record information storage unit, and transmitting the generated communication record-related information to the external device, the communication record-related information including location information corresponding to a location within the regional range specified by the transmission request and communication quality information obtained from the communication quality metrics information.

Description

通信実績管理サーバおよび通信実績管理方法ならびにコンピュータプログラムCOMMUNICATION RECORDS MANAGEMENT SERVER, COMMUNICATION RECORDS MANAGEMENT METHOD, AND COMPUTER PROGRAM
 この開示は、通信実績管理サーバおよび通信実績管理方法ならびにコンピュータプログラムに関する。この出願は2022年10月18日出願の日本出願第2022-166644号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容をここに参照により援用する。 This disclosure relates to a communication history management server, a communication history management method, and a computer program. This application claims priority to Japanese Application No. 2022-166644, filed on October 18, 2022, and all contents of said Japanese application are incorporated herein by reference.
 無線通信により、外部サーバによる様々なサービスを受けたり、車載センサにより取得した情報を外部サーバに送信したりする機能を持つ車載装置が増えている。こうした車載装置を搭載した車両はコネクテッドカーと呼ばれる。 An increasing number of in-vehicle devices have the ability to use wireless communication to receive various services from external servers and send information acquired by in-vehicle sensors to external servers. Vehicles equipped with such in-vehicle devices are known as connected cars.
 コネクテッドカーが無線通信を前提とするサービスを利用する際には、通信品質が問題となる。通信品質が悪化したり、通信圏外になったりするとサービスの利用が継続できない。 When a connected car uses a service that requires wireless communication, communication quality becomes an issue. If communication quality deteriorates or the car is out of range, the service cannot be used continuously.
 こうした問題を解決するための1つの提案が後掲の特許文献1に開示されている。特許文献1に開示されている技術は、通信環境を視覚的に通知することを目的としている。特許文献1に開示されている技術は、所定の電界強度を示す電界強度マップを取得し、道路地図データと車両位置とに基づいて、車両の走行位置を示すグラフィックに、電界強度マップを重畳して表示する。 One proposal for solving these problems is disclosed in Patent Document 1, which will be described later. The technology disclosed in Patent Document 1 aims to visually notify the communication environment. The technology disclosed in Patent Document 1 acquires a field strength map indicating a predetermined field strength, and displays the field strength map superimposed on a graphic indicating the vehicle's driving position based on road map data and the vehicle position.
特開2021-135099号公報JP 2021-135099 A
 この開示の一局面に係る通信実績管理サーバは、位置情報と、日時情報と、位置情報により特定される位置における、日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するための通信実績情報受信部と、通信実績情報受信部により受信された通信実績情報を蓄積するための通信実績情報記憶部と、外部装置から、地域的範囲が指定された通信実績情報の送信要求を受信したことに応答して、通信実績情報記憶部に蓄積された通信実績情報に基づいて、送信要求により指定された地域的範囲内に相当する位置情報と通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、外部装置に送信する通信実績送信部とを含む。 A communication performance management server according to one aspect of this disclosure includes a communication performance information receiving unit for receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, a communication performance information storage unit for storing the communication performance information received by the communication performance information receiving unit, and a communication performance transmission unit that, in response to receiving a request to transmit communication performance information with a specified geographical range from an external device, generates information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information stored in the communication performance information storage unit, and transmits the information to the external device.
 この開示の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの開示に関する次の詳細な説明から明らかとなるであろう。 The above and other objects, features, aspects and advantages of this disclosure will become apparent from the following detailed description of this disclosure taken in conjunction with the accompanying drawings.
図1は、第1実施形態に係る車載装置における経路提案画面を示す図である。FIG. 1 is a diagram showing a route proposal screen in an in-vehicle device according to the first embodiment. 図2は、第1実施形態に係る車両支援システムの全体構成を示すブロック図である。FIG. 2 is a block diagram showing the overall configuration of the vehicle assistance system according to the first embodiment. 図3は、第1実施形態に係る車載装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the in-vehicle device according to the first embodiment. 図4は、第1実施形態に係る通信実績管理サーバの構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the communication record management server according to the first embodiment. 図5は、第1実施形態に係る通信実績情報DB(Database)のレコード構成を示す図である。FIG. 5 is a diagram showing a record configuration of a communication performance information DB (Database) according to the first embodiment. 図6は、第1実施形態に係る通信実績記録部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 6 is a flowchart showing a control structure of a computer program realizing the communication performance recording unit in the first embodiment. 図7は、第1実施形態に係る運転部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 7 is a flowchart showing a control structure of a computer program realizing the driving unit according to the first embodiment. 図8は、第1実施形態に係る経路算出部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 8 is a flowchart showing a control structure of a computer program implementing the path calculation unit according to the first embodiment. 図9は、第1実施形態に係るグリッド描画部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 9 is a flowchart showing a control structure of a computer program implementing the grid drawing unit according to the first embodiment. 図10は、第2実施形態に係る車両支援システムの構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of a vehicle assistance system according to the second embodiment. 図11は、第2実施形態に係る車載装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of an in-vehicle device according to the second embodiment. 図12は、第2実施形態に係る通信実績管理サーバの構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of a communication record management server according to the second embodiment. 図13は、第3実施形態に係る車両支援システムの構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of a vehicle assistance system according to the third embodiment. 図14は、第3実施形態に係る車載装置の構成を示すブロック図である。FIG. 14 is a block diagram showing the configuration of an in-vehicle device according to the third embodiment. 図15は、第3実施形態に係る通信実績比較部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 15 is a flowchart showing a control structure of a computer program realizing a communication record comparing unit according to the third embodiment. 図16は、第4実施形態に係る運転支援システムの構成を示すブロック図である。FIG. 16 is a block diagram showing the configuration of a driving assistance system according to the fourth embodiment. 図17は、第4実施形態に係る車載装置の構成を示すブロック図である。FIG. 17 is a block diagram showing the configuration of an in-vehicle device according to the fourth embodiment. 図18は、第4実施形態に係る通信実績管理サーバの構成を示すブロック図である。FIG. 18 is a block diagram showing the configuration of a communication history management server according to the fourth embodiment. 図19は、第4実施形態に係る通信実績統計情報DBのレコード構成を示す図である。FIG. 19 is a diagram showing a record configuration of a communication performance statistical information DB according to the fourth embodiment. 図20は、第4実施形態に係る通信実績管理サーバにおいて通信統計算出部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 20 is a flowchart showing a control structure of a computer program realizing a communication statistics calculation unit in the communication performance management server according to the fourth embodiment. 図21は、第4実施形態に係る通信実績管理サーバにおいて通信実績送信部を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 21 is a flowchart showing a control structure of a computer program realizing a communication history transmission unit in the communication history management server according to the fourth embodiment. 図22は、第4実施形態の変形例に係る通信実績サーバの機能的構成を示すブロック図である。FIG. 22 is a block diagram showing a functional configuration of a communication history server according to a modification of the fourth embodiment. 図23は、第5実施形態に係る車両支援システムにおける表示を示す図である。FIG. 23 is a diagram showing a display in the vehicle assistance system according to the fifth embodiment. 図24は、第5実施形態に係る車両支援システムにおいて表示を作成するためのコンピュータプログラムの制御構造を示すフローチャートである。FIG. 24 is a flowchart showing a control structure of a computer program for generating a display in the vehicle assistance system in accordance with the fifth embodiment. 図25は、走行経路の表示を実現するコンピュータプログラムの制御構造を示すフローチャートである。FIG. 25 is a flowchart showing a control structure of a computer program for implementing display of a driving route. 図26は、この開示に係る各実施形態の車載装置を実現するステップの構成を示すブロック図である。FIG. 26 is a block diagram showing a configuration of steps for implementing the in-vehicle device of each embodiment according to this disclosure. 図27は、この開示に係る各運転支援サーバを実現するコンピュータシステムの外観を示す図である。FIG. 27 is a diagram showing the external appearance of a computer system that realizes each driving assistance server according to this disclosure. 図28は、図27に示すコンピュータシステムのハードウェア構成図である。FIG. 28 is a hardware configuration diagram of the computer system shown in FIG.
 [この開示が解決しようとする課題]
 コネクテッドカーが十分なサービスを受けるために重要なのは電界強度のみではない。車載センサの数が多く、そのデータが多くなっているため、コネクテッドカーがセンサデータを外部サーバに送信したり、外部サーバから運転支援などのためのデータをダウンロードしたりするときの通信速度も重要である。また、車両の安全に関連するデータの通信時にはこれらだけでなくレイテンシも重要となる。
[Problem to be solved by this disclosure]
For connected cars to receive sufficient services, it is not only the electric field strength that is important. Due to the large number of on-board sensors and the volume of data, the communication speed is also important when connected cars transmit sensor data to external servers and download data for driving assistance from external servers. In addition to these, latency is also important when communicating data related to vehicle safety.
 上記特許文献1に開示の技術においては、電界強度マップを地図に重畳して表示する。電界強度の低い地点において通信速度が低下することは分かる。しかし電界強度が高くても通信速度が大きくなるとは限らない。状況に応じて電界強度が高くても通信速度が低下したりレイテンシが大きくなったりすることがあり得る。環境がわずかに変化しただけにもかかわらず通信速度が一気に悪化することもあり得る。車両の位置および周囲の状況は刻々と変化する。したがって、電界強度マップが得られたとしても、通信速度、レイテンシなどが実際にどのように変化するかを予測することは困難であるため、コネクテッドカーの走行中に、サービスを利用するのに十分な通信品質が得られるとは限らない。すなわち、特許文献1に開示の技術は、コネクテッドカーに適用するためには十分とは考えられない。 In the technology disclosed in the above-mentioned Patent Document 1, a field strength map is displayed superimposed on a map. It is clear that communication speed drops at points with low field strength. However, even if the field strength is high, the communication speed does not necessarily increase. Depending on the situation, even if the field strength is high, the communication speed may decrease or the latency may increase. Even if the environment changes slightly, the communication speed may suddenly deteriorate. The position of the vehicle and the surrounding conditions change from moment to moment. Therefore, even if a field strength map is obtained, it is difficult to predict how the communication speed, latency, etc. will actually change, so it is not necessarily the case that communication quality sufficient for using the service while the connected car is running can be obtained. In other words, the technology disclosed in Patent Document 1 is not considered sufficient for application to connected cars.
 したがって、この開示は、通信品質を考慮した走行経路の決定が容易に行えるような情報を提供する通信実績管理サーバおよび通信実績管理方法ならびにコンピュータプログラムを提供することを目的とする。 Therefore, the purpose of this disclosure is to provide a communication history management server, a communication history management method, and a computer program that provide information that makes it easy to determine a driving route that takes communication quality into consideration.
 [この開示の効果]
 以上のようにこの開示によると、通信品質を考慮した走行経路の決定が容易に行えるような情報を提供する通信実績管理サーバおよび通信実績管理方法ならびにコンピュータプログラムを提供できる。
[Effects of this disclosure]
As described above, according to this disclosure, it is possible to provide a communication history management server, a communication history management method, and a computer program that provide information that allows easy determination of a driving route taking communication quality into consideration.
 [本開示の実施形態の説明]
 以下の説明および図面においては、同一の部品には同一の参照番号を付してある。したがって、それらについての詳細な説明は繰返さない。
[Description of the embodiments of the present disclosure]
In the following description and drawings, the same parts are given the same reference numbers, and therefore detailed descriptions thereof will not be repeated.
 この開示により示される主な実施形態を以下に列挙する。なお、以下の1または複数の実施形態を任意に組み合わせてもよい。 The main embodiments shown in this disclosure are listed below. Note that one or more of the following embodiments may be combined in any manner.
 (1)この開示の第1の局面に係る通信実績管理サーバは、位置情報と、日時情報と、位置情報により特定される位置における、日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するための通信実績情報受信部と、通信実績情報受信部により受信された通信実績情報を蓄積するための通信実績情報記憶部と、外部装置から、地域的範囲が指定された通信実績情報の送信要求を受信したことに応答して、通信実績情報記憶部に蓄積された通信実績情報に基づいて、送信要求により指定された地域的範囲内に相当する位置情報と通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、外部装置に送信する通信実績送信部とを含む。 (1) A communication performance management server according to a first aspect of this disclosure includes a communication performance information receiving unit for receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, a communication performance information storage unit for storing the communication performance information received by the communication performance information receiving unit, and a communication performance transmission unit for generating information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information stored in the communication performance information storage unit in response to receiving from an external device a transmission request for communication performance information specifying a geographical range, and transmitting the information to the external device.
 この通信実績管理サーバの通信実績情報記憶部は、複数の装置による実際の通信の際の通信品質メトリクス情報を位置情報および日時情報とともに蓄積する。通信実績送信部は、外部装置からの求めに応じて、通信品質情報を含む通信実績に関する情報を生成して外部装置に送信する。外部装置は、他の装置による実際の通信実績に基づく通信品質情報を利用して、特定の位置における通信品質を推定し利用できる。その結果、外部装置においては、通信品質を考慮した走行経路の決定が容易に行える。 The communication history information storage unit of this communication history management server accumulates communication quality metrics information during actual communications by multiple devices, along with location information and date and time information. In response to a request from an external device, the communication history transmission unit generates information on communication history, including communication quality information, and transmits it to the external device. The external device can estimate and use communication quality at a specific location using communication quality information based on actual communication history by other devices. As a result, the external device can easily determine a driving route that takes communication quality into consideration.
 (2)上記(1)において、通信実績送信部は、通信実績情報記憶部から、送信要求により指定された地域的範囲内に相当する位置情報と、直近の所定時間内の日時情報と、通信品質メトリクス情報とを含む通信実績情報を読出して、外部装置に送信する直近通信実績送信部を含んでもよい。 (2) In the above (1), the communication performance transmission unit may include a most recent communication performance transmission unit that reads communication performance information including location information corresponding to a geographical range specified by the transmission request, date and time information within a most recent specified time period, and communication quality metrics information from the communication performance information storage unit, and transmits the information to an external device.
 直近通信実績送信部は、送信要求により指定された地域範囲内における、直近の所定時間内の通信実績情報を外部装置に送信する。その結果、外部装置においては、現時点における精度の高い通信品質を考慮して走行経路を容易に決定できる。 The most recent communication record transmission unit transmits communication record information for the most recent specified time period within the area range specified by the transmission request to the external device. As a result, the external device can easily determine a driving route taking into account the highly accurate communication quality at the current time.
 (3)上記(1)または(2)において、通信実績情報の各々はさらに、通信実績情報に関する無線通信を行った際の通信環境に関する通信環境情報を含んでもよく、送信要求は、外部装置の通信環境に関する情報をさらに含んでもよく、通信実績送信部は、送信要求を受信したことに応答して、通信実績情報記憶部から、送信要求により指定された地域的範囲内に相当する位置情報と、送信要求に含まれている通信環境に関する情報と整合する通信環境情報と、通信品質メトリクス情報とを含む通信実績情報を読出して、外部装置に送信する装置別通信実績送信部を含んでもよい。 (3) In (1) or (2) above, each piece of communication performance information may further include communication environment information related to the communication environment when wireless communication related to the communication performance information was performed, and the transmission request may further include information related to the communication environment of the external device, and the communication performance transmission unit may include a device-specific communication performance transmission unit that, in response to receiving the transmission request, reads out from the communication performance information storage unit the communication performance information including location information corresponding to a geographical range specified by the transmission request, communication environment information consistent with information related to the communication environment included in the transmission request, and communication quality metrics information, and transmits the communication performance information to the external device.
 外部装置が、外部装置の持つ通信環境に関する情報を送信要求に含ませることにより、その通信環境に関する地域別・日時別の通信実績情報が入手できる。その結果、外部装置においては、使用する無線通信装置による通信品質を考慮した走行経路の決定が容易に行える。 By including information about the communication environment of the external device in the transmission request, the external device can obtain communication performance information by region and date and time regarding that communication environment. As a result, the external device can easily determine a driving route that takes into account the communication quality of the wireless communication device being used.
 (4)上記(3)において、通信環境情報は、通信回線情報、通信事業者情報、またはこれらの組み合わせを含んでもよい。 (4) In (3) above, the communication environment information may include communication line information, communication carrier information, or a combination of these.
 外部装置が、外部装置の使用する通信回線、または通信事業者に関する情報を送信要求に含ませることにより、その通信回線または通信事業者に関する地域別・日時別の通信実績情報が入手できる。その結果、外部装置においては、使用する無線通信装置による信頼性の高い通信品質を考慮した走行経路の決定が容易に行える。 By including information about the communication line or carrier used by the external device in the transmission request, the external device can obtain communication performance information by region and date and time for that communication line or carrier. As a result, the external device can easily determine a driving route that takes into account the reliable communication quality of the wireless communication device being used.
 (5)上記(1)において、通信実績管理サーバは、さらに、通信実績情報記憶部に記憶された通信実績情報に対して、少なくとも位置情報により特定される位置を基準として、通信品質メトリクス情報に関する統計処理を行って通信実績統計情報を算出する通信統計算出部と、通信統計算出部により算出された通信実績統計情報を、位置情報に関連付けて記憶する通信実績統計情報記憶部とを含んでもよく、通信実績送信部は、外部装置から、地域的範囲が指定された通信実績情報の送信要求を受信したことに応答して、通信実績統計情報記憶部に記憶された通信実績統計情報の内、送信要求により指定された地域的範囲内に相当する位置情報と位置情報により特定される位置における通信実績統計情報とを外部装置に送信する通信実績統計情報送信部を含んでもよい。 (5) In the above (1), the communication performance management server may further include a communication statistics calculation unit that calculates communication performance statistical information by performing statistical processing on communication quality metrics information on the communication performance information stored in the communication performance information storage unit, based at least on a location specified by the location information, and a communication performance statistical information storage unit that stores the communication performance statistical information calculated by the communication statistics calculation unit in association with the location information, and the communication performance transmission unit may include a communication performance statistical information transmission unit that transmits to the external device, in response to receiving a transmission request for communication performance information with a specified geographical range from the external device, location information corresponding to the geographical range specified by the transmission request and communication performance statistical information at the location specified by the location information, from the communication performance statistical information stored in the communication performance statistical information storage unit.
 外部装置が、外部装置が持つ無線通信装置に関する通信装置情報を送信要求に含ませることにより、その無線通信装置を持つ他の装置による通信に関する地域別・日時別の通信実績情報が入手できる。その結果、外部装置においては、使用する無線通信装置による通信品質を考慮した走行経路の決定が容易に行える。 By including communication device information about the wireless communication device that the external device has in the transmission request, the external device can obtain communication performance information by region and date and time about communications by other devices that have that wireless communication device. As a result, the external device can easily determine a driving route that takes into account the communication quality of the wireless communication device being used.
 (6)上記(5)において、通信統計算出部は、通信実績情報記憶部に記憶された通信実績情報に対して、少なくとも位置情報により特定される位置および日時情報により特定される期間を基準として、通信品質メトリクス情報に関する統計処理を行って期間別通信実績統計情報を算出する期間別通信統計算出部を含んでもよい。 (6) In the above (5), the communication statistics calculation unit may include a period-based communication statistics calculation unit that performs statistical processing on communication quality metrics information to calculate period-based communication performance statistical information, using at least a location specified by the location information and a period specified by the date and time information as a criterion for the communication performance information stored in the communication performance information storage unit.
 外部装置が、外部装置が持つ無線通信装置に関する通信装置情報を送信要求に含ませることにより、その無線通信装置を使用する外部装置による地域別・日時別の通信実績情報を入手できる。その結果、外部装置においては、使用する無線通信装置による通信品質を考慮した走行経路の決定が容易に行える。 By including communication device information about the wireless communication device held by the external device in the transmission request, the external device can obtain communication performance information by region and date and time by the external device using that wireless communication device. As a result, the external device can easily determine a driving route that takes into account the communication quality of the wireless communication device being used.
 (7)上記(6)において、通信実績情報の各々はさらに、通信実績情報に関する無線通信を行った際の通信環境に関する情報を含んでもよく、送信要求は、外部装置の通信環境に関する情報を含むことがあり、通信実績送信部は、受信した送信要求が通信環境に関する情報を含むか否かにしたがって、第1の処理と第2の処理とを選択的に実行してもよく、第1の処理は、通信実績統計情報記憶部から、送信要求により指定された地域的範囲内に相当する位置情報と、送信要求に含まれている通信環境に関する情報とに整合する通信統計実績情報を読出して、読出された通信統計実績情報に基づいて通信品質メトリクス情報を算出し、外部装置に送信する処理であってもよく、第2の処理は、通信実績情報記憶部から、送信要求により指定された地域的範囲内に相当する位置情報に対応する通信実績情報を読出して、外部装置に送信する処理であってもよい。 (7) In the above (6), each piece of communication performance information may further include information on the communication environment when wireless communication related to the communication performance information was performed, and the transmission request may include information on the communication environment of the external device. The communication performance transmission unit may selectively execute the first process and the second process depending on whether the received transmission request includes information on the communication environment. The first process may be a process of reading, from the communication performance statistical information storage unit, communication statistical performance information that matches location information corresponding to the geographical range specified by the transmission request and information on the communication environment included in the transmission request, calculating communication quality metrics information based on the read communication statistical performance information, and transmitting the calculated information to the external device. The second process may be a process of reading, from the communication performance information storage unit, communication performance information that corresponds to location information corresponding to the geographical range specified by the transmission request, and transmitting the calculated information to the external device.
 これにより、統計処理の負荷の増大を防止しながら、車載装置に送信する統計品質メトリクス情報の精度を高めることができる。 This makes it possible to improve the accuracy of the statistical quality metrics information sent to the in-vehicle device while preventing an increase in the load of statistical processing.
 (8)この開示の第2の局面に係る通信実績管理方法は、コンピュータが、位置情報と、日時情報と、位置情報により特定される位置における、日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するステップと、コンピュータが、通信実績情報を受信するステップにおいて受信された通信実績情報を記憶装置に蓄積するステップと、コンピュータが、外部装置から、地域的範囲が指定された通信実績情報の送信要求を受信したことに応答して、記憶装置に蓄積された通信実績情報に基づいて、送信要求により指定された地域的範囲内に相当する位置情報と通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、外部装置に送信するステップとを含む。 (8) A communication performance management method according to a second aspect of this disclosure includes a step in which a computer receives communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, a step in which the computer accumulates the communication performance information received in the step of receiving the communication performance information in a storage device, and a step in which the computer, in response to receiving from an external device a request to transmit communication performance information specifying a geographical range, generates information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information accumulated in the storage device, and transmits the information to the external device.
 この通信実績管理方法によれば、コンピュータが、複数の装置による実際の通信の際の通信実績を位置情報および日時情報とともに蓄積する。コンピュータはさらに、外部装置からの求めに応じて、通信品質情報を含む通信実績に関する情報を生成して外部装置に送信する。外部装置は、他の装置による実際の通信実績に基づく通信品質情報を利用して、特定の位置における通信品質を推定し利用できる。その結果、外部装置においては、通信品質を考慮した走行経路の決定が容易に行える。 According to this communication history management method, the computer accumulates communication history during actual communication between multiple devices, together with location information and date and time information. The computer further generates information relating to the communication history, including communication quality information, in response to a request from the external device, and transmits it to the external device. The external device can estimate and use communication quality at a specific location, using the communication quality information based on the actual communication history of other devices. As a result, the external device can easily determine a driving route that takes communication quality into consideration.
 (9)この開示の第3の局面に係るコンピュータプログラムは、コンピュータに、位置情報と、日時情報と、位置情報により特定される位置における、日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するステップと、通信実績情報を受信するステップにおいて受信された通信実績情報を記憶装置に蓄積するステップと、外部装置から、地域的範囲が指定された通信実績情報の送信要求を受信したことに応答して、記憶装置に蓄積された通信実績情報に基づいて、送信要求により指定された地域的範囲内に相当する位置情報と通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、外部装置に送信するステップとを実行させる。 (9) A computer program according to a third aspect of this disclosure causes a computer to execute the steps of receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least the communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information, storing the communication performance information received in the step of receiving communication performance information in a storage device, and in response to receiving a request to transmit communication performance information with a specified geographical range from an external device, generating information related to communication performance including location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information based on the communication performance information stored in the storage device, and transmitting the information to the external device.
 このコンピュータプログラムをコンピュータが実行することにより、コンピュータが、複数の装置による実際の通信の際の通信実績を位置情報および日時情報とともに蓄積する。コンピュータはさらに、外部装置からの求めに応じて、通信品質情報を含む通信実績に関する情報を生成して外部装置に送信する。外部装置は、他の装置による実際の通信実績に基づく通信品質情報を利用して、特定の位置における通信品質を推定し利用できる。その結果、外部装置においては、通信品質を考慮した走行経路の決定が容易に行える。 By executing this computer program, the computer accumulates communication records of actual communications between multiple devices together with location information and date and time information. The computer further generates information on communication records, including communication quality information, in response to a request from an external device, and transmits the information to the external device. The external device can estimate and use communication quality at a specific location using communication quality information based on the actual communication records of other devices. As a result, the external device can easily determine a driving route that takes communication quality into consideration.
 [本開示の実施形態の詳細]
 本開示の実施形態に係る経路提案画面の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内における全ての変更が含まれることが意図される。
[Details of the embodiment of the present disclosure]
Specific examples of route suggestion screens according to embodiments of the present disclosure will be described below with reference to the drawings. Note that the present disclosure is not limited to these examples, but is intended to include all modifications within the meaning and scope of the claims.
 1.第1実施形態
 A.構成
 A1)経路提案画面50
 図1を参照して、第1実施形態に係る車両支援システムにおける経路提案画面50は、車載装置のタッチパネル型表示装置に表示される画面である。経路提案画面50は、経路上の通信品質に関する異なる制約の下に算出された、車両60の現在位置62から目的地64までの第1経路66および第2経路68をユーザに提案するためのものである。経路提案画面50の全体は矩形である。この矩形の領域はいずれも同じ大きさの長方形のグリッドに分割されている。この実施形態においては、各グリッドは、そのグリッド内に車両が存在しているときに、実際にその車両が計測した通信品質に基づき、色分けされ、第1経路66および第2経路68とともに、地図上に重畳して表示される。なお、図1においては図面を簡略にするために地図は示していない。
1. First embodiment A. Configuration A1) Route proposal screen 50
Referring to FIG. 1, a route proposal screen 50 in the vehicle assistance system according to the first embodiment is a screen displayed on a touch panel display device of an in-vehicle device. The route proposal screen 50 is for proposing to a user a first route 66 and a second route 68 from a current position 62 of a vehicle 60 to a destination 64, which are calculated under different constraints regarding communication quality on the route. The entire route proposal screen 50 is rectangular. Each rectangular area is divided into rectangular grids of the same size. In this embodiment, each grid is colored based on the communication quality actually measured by the vehicle when the vehicle is present in the grid, and is displayed superimposed on a map together with the first route 66 and the second route 68. Note that a map is not shown in FIG. 1 to simplify the drawing.
 図1において、ハッチングが付されていないグリッドは通信品質が比較的よく、車両60において利用しようとするサービスを受けるために十分な通信品質だということを示す。ハッチングが付されているグリッドは、通信品質がこれより悪く、車両60において利用するサービスを受けるためには不十分なことを示す。なお、この例においては、ハッチングされている領域は赤い色を用いて表示されており、ハッチングのない領域は透明に表示されているものとする。 In FIG. 1, grids without hatching indicate that the communication quality is relatively good, and is sufficient for receiving the services to be used in the vehicle 60. Grids with hatching indicate that the communication quality is worse, and is insufficient for receiving the services to be used in the vehicle 60. Note that in this example, the hatched areas are displayed in red, and the unhatched areas are displayed transparently.
 図1は、通信品質に関する表示の理解を容易にするために、グリッドを2通りに分類している。しかしこの開示はそのような実施形態に限定されない。通信品質を3以上の段階に分け、それぞれ別々の表示にしてもよい。典型的には、例えば通信品質が悪いグリッドは赤の色相により、最も低い明度により表示する。通信品質がよくなるに従って、グリッドの明度を高め、一定品質以上になれば無色(透明)または赤と異なる色(例えば青)により表示する。もちろんこれ以外にもグリッドの表示については様々な方法が考えられる。明度を変えず彩度を変えるようにしてもよい。また色相と、明度または彩度とをいずれも変更するようにしてもよい。 In FIG. 1, grids are classified into two types to facilitate understanding of the display related to communication quality. However, this disclosure is not limited to such an embodiment. Communication quality may be divided into three or more stages, and each stage may be displayed separately. Typically, for example, grids with poor communication quality are displayed with a red hue and the lowest brightness. As communication quality improves, the brightness of the grid increases, and once the quality reaches a certain level, the grid is displayed colorless (transparent) or in a color other than red (for example, blue). Of course, various other methods of displaying grids are conceivable. The saturation may be changed without changing the brightness. Also, both the hue and the brightness or saturation may be changed.
 例えば、通常は通信品質の値と正の相関をもって明度を変化させればよい。彩度の場合ならば逆に、通信品質の値と負の相関をもって変化させることが考えられる。要するに各グリッドの表示態様が、そのグリッドにおける通信品質の単調関数として変化するようにすればよい。色相の場合、青から緑を経て赤に至るまでの漸次的な変化を通信品質の優劣に対応付ける単調関数を用いればよい。 For example, normally it is sufficient to change the brightness in a positive correlation with the communication quality value. Conversely, in the case of saturation, it is possible to change it in a negative correlation with the communication quality value. In short, the display mode of each grid should change as a monotonic function of the communication quality in that grid. In the case of hue, a monotonic function should be used that associates the gradual change from blue through green to red with the superiority or inferiority of communication quality.
 図1においてはさらに、例として第1経路66および第2経路68が表示される。第1経路66は、例えば通信品質に対して何ら制約を課さずに最短時間により現在位置62から目的地64に車両60が到達する経路として算出される。第2経路68も同様に現在位置62から目的地64に車両60が到達する経路だが、通信品質に関する制約として、特定のサービスを車両60において利用するために必要な通信品質が得られる経路として算出される。 In FIG. 1, a first route 66 and a second route 68 are further displayed as examples. The first route 66 is calculated as a route by which the vehicle 60 travels from the current position 62 to the destination 64 in the shortest time without imposing any constraints on communication quality, for example. The second route 68 is also a route by which the vehicle 60 travels from the current position 62 to the destination 64, but is calculated as a route that provides the communication quality required to use a specific service in the vehicle 60 as a constraint on communication quality.
 通信品質に対する制約としては、ここに挙げたものだけではなく、車両60のユーザにより様々に設定できる。 The constraints on communication quality are not limited to those listed here; they can be set in various ways by the user of vehicle 60.
 A2)車両支援システム100
 図2を参照して、この開示の第1実施形態に係る車両支援システム100は、それぞれ別々の車両に搭載される複数の車載装置102、104、および106などと、これら車載装置に対して通信を利用してなんらかのサービスを提供したり、逆に車載装置からセンサデータを受信して交通状況の分析を行ったりするためのサーバ108と、車載装置102など複数の車載装置との通信により、図1に示すような領域の各グリッドにおける実際の通信品質に関する情報を蓄積し、各車載装置に配信したりする管理を行うための通信実績管理サーバ110とを含む。
A2) Vehicle Assistance System 100
Referring to FIG. 2, a vehicle assistance system 100 according to the first embodiment of this disclosure includes a plurality of on- board devices 102, 104, and 106, each mounted on a different vehicle, a server 108 for providing some kind of service to these on-board devices using communication, or conversely, for receiving sensor data from the on-board devices and analyzing traffic conditions, and a communication history management server 110 for managing communication with a plurality of on-board devices such as the on-board device 102, accumulating information regarding actual communication quality in each grid in an area such as that shown in FIG. 1, and distributing the information to each on-board device.
 車載装置102などの車載装置は車両に搭載される。したがってこれらはいずれも後述するように無線による通信部を持つ。無線通信の媒体としては、携帯電話回線が利用できる。場所によってはWi-Fi通信を利用することも想定される。いずれにせよ、車載装置102などは、基地局との間における無線通信と、基地局からサーバ108および通信実績管理サーバ110との間の有線ネットワークによる通信とを介してサーバ108および通信実績管理サーバ110と通信できる。  On-board devices such as the on-board device 102 are mounted on vehicles. Therefore, all of them have wireless communication units as described below. A mobile phone line can be used as a medium for wireless communication. Depending on the location, it is also expected that Wi-Fi communication will be used. In any case, the on-board device 102 and the like can communicate with the server 108 and the communication history management server 110 via wireless communication with a base station and communication via a wired network from the base station to the server 108 and the communication history management server 110.
 A3)車載装置102
 図3を参照して、車載装置102は、図示しない無線通信装置を介してサーバ108などの外部機器との通信を行うための通信部150と、通信部150に接続された通信実績記録部154と、センサ112およびGNSS(Global Navigation Satellite System)受信器114並びに通信実績記録部154に接続されたCAN(Controller Area Network)152と、通信実績記録部154に接続された通信実績情報DB156とを含む。通信部150はさらに、サーバ108により提供されるサービスのためのデータを受信し、CAN152を介して図示しないECU(Electronic Control Unit)などのサービス実行部に送信する。なお、この実施形態においてGNSS情報およびセンサ情報を取得するためにCANが用いられている。しかしこの開示はそのような実施形態には限定されない。例えばCAN FD(CAN with Frexible Data rate)、CAN XL,Most(Media Oriented Sytems Transport)、FlexRay、車載Ethernet(「Ethernet」は登録商標)などを用いるようにしてもよい。
A3) In-vehicle device 102
3, the in-vehicle device 102 includes a communication unit 150 for communicating with an external device such as a server 108 via a wireless communication device (not shown), a communication history recording unit 154 connected to the communication unit 150, a CAN (Controller Area Network) 152 connected to the sensor 112, a GNSS (Global Navigation Satellite System) receiver 114, and the communication history recording unit 154, and a communication history information DB 156 connected to the communication history recording unit 154. The communication unit 150 further receives data for a service provided by the server 108 and transmits the data to a service execution unit such as an ECU (Electronic Control Unit) (not shown) via the CAN 152. In this embodiment, the CAN is used to acquire GNSS information and sensor information. However, this disclosure is not limited to such an embodiment. For example, CAN FD (CAN with Flexible Data rate), CAN XL, Most (Media Oriented Systems Transport), FlexRay, in-vehicle Ethernet ("Ethernet" is a registered trademark), etc. may be used.
 通信実績記録部154は、通信部150による通信時には、その通信品質を定期的に計測し、実際のビットレート(通信速度)を含めて通信品質を記録する。通信部150による通信が行われていないときでも、電波強度情報は取得できるため、それらの情報は記録する。 The communication performance recording unit 154 periodically measures the communication quality when the communication unit 150 is communicating, and records the communication quality including the actual bit rate (communication speed). Even when communication is not being performed by the communication unit 150, radio wave intensity information can be obtained, and such information is recorded.
 通信実績記録部154は、車両に搭載されているGNSS受信器114およびその他の種々のセンサ112からのセンサデータを、CAN152を介して受信し、それら情報から得られる車両状態、位置情報などを組み合わせた通信実績のレコードを通信実績情報DB156に記録する。 The communication history recording unit 154 receives sensor data from the GNSS receiver 114 and various other sensors 112 mounted on the vehicle via the CAN 152, and records communication history records that combine the vehicle status, location information, and other information obtained from that information in the communication history information DB 156.
 車載装置102はさらに、通信実績記録部154に接続された通信実績送信部158と、通信実績情報DB156に接続された通信実績取得部160と、タッチパネル型表示装置116に接続された運転部162と、通信実績情報DB156、運転部162および通信実績取得部160に接続された経路算出部164と、グリッド描画部166とを含む。 The in-vehicle device 102 further includes a communication history transmission unit 158 connected to the communication history recording unit 154, a communication history acquisition unit 160 connected to the communication history information DB 156, a driving unit 162 connected to the touch panel display device 116, a route calculation unit 164 connected to the communication history information DB 156, the driving unit 162, and the communication history acquisition unit 160, and a grid drawing unit 166.
 通信実績送信部158は、所定の送信スケジュールに従って、通信実績記録部154により記録された通信部150の通信実績情報を通信実績管理サーバ110に送信する。通信実績取得部160は、必要が生じたときに通信実績管理サーバ110に通信実績情報の送信要求を送信することにより、通信実績管理サーバ110から他の車両の通信実績情報を取得し、通信実績情報DB156を更新(追加)する。このときの送信要求は、対象となる領域を特定する情報を含み、場合によっては必要な日時の情報、または通信環境を含んでもよい。ここでいう通信環境とは、通信に使用する通信回線もしくは通信事業者、またはこれらの組み合わせを含む。運転部162は、一般的ないわゆる車載ナビの機能に加えて、自動運転または遠隔運転を行うための装置であり、タッチパネル型表示装置116を用いたユーザとのインタラクションにより、経路提案のための情報の入力(走行経路の目的地などに関する情報)を受ける。なお、通信実績取得部160は、所定のスケジュールに従って通信実績管理サーバ110から通信実績情報を受信するようにしてもよい。 The communication history transmission unit 158 transmits the communication history information of the communication unit 150 recorded by the communication history recording unit 154 to the communication history management server 110 according to a predetermined transmission schedule. The communication history acquisition unit 160 acquires communication history information of other vehicles from the communication history management server 110 by transmitting a transmission request for communication history information to the communication history management server 110 when necessary, and updates (adds) the communication history information DB 156. The transmission request at this time includes information specifying the target area, and may also include information on the required date and time, or the communication environment in some cases. The communication environment here includes the communication line or communication carrier used for communication, or a combination of these. The driving unit 162 is a device for performing automatic driving or remote driving in addition to the function of a general so-called in-vehicle navigation system, and receives input of information for route proposal (information on the destination of the driving route, etc.) through interaction with the user using the touch panel display device 116. The communication history acquisition unit 160 may receive communication history information from the communication history management server 110 according to a predetermined schedule.
 このとき、運転部162は、走行経路生成の際の制約条件をユーザに入力させるようにしてもよい。制約条件は、例えば生成する走行経路の数、走行経路において利用しようとするサービスを特定する情報、走行経路が満たすべき条件などである。以下の実施形態においては、走行経路の数として3本を生成することがユーザにより指定されたものとする。その3本の走行経路としては、例えば、以下に示す第1最短経路から第3最短経路であるものとする。第1最短経路は、通信速度と無関係に現在位置と目的地とを結ぶ最短経路である。第2最短経路は、全体にわたりサービスが利用可能な通信速度が見込まれる走行経路の内の最短経路である。第3最短経路は、一部においてサービスが十分なビットレートでは利用できない可能性もあるが、指定ビットレートの半分以上の通信速度があれば、そのサービスを代替するサービス、またはそのサービスと同じサービスであって必要なビットレートを確保することが見込まれる走行経路である。 At this time, the driving unit 162 may allow the user to input constraint conditions for generating the driving route. The constraint conditions are, for example, the number of driving routes to be generated, information specifying the service to be used on the driving route, conditions that the driving route must satisfy, and the like. In the following embodiment, it is assumed that the user specifies that three driving routes are to be generated. The three driving routes are, for example, the first shortest route to the third shortest route shown below. The first shortest route is the shortest route connecting the current position and the destination regardless of the communication speed. The second shortest route is the shortest route among the driving routes that is expected to have a communication speed at which the service can be used throughout. The third shortest route is a driving route that is expected to have a service that replaces the service or the same service as the service and ensures the required bit rate, even if the service may not be available at a sufficient bit rate in some parts, as long as the communication speed is more than half the specified bit rate.
 経路算出部164は、運転部162が受けたユーザ入力と、サービスを利用するために求められる通信条件とに基づいて、通信実績、必要な位置、時間などの情報を通信実績情報DB156から取得するように、通信実績取得部160に要求する。経路算出部164は、通信実績取得部160により通信実績情報DB156から取得された通信実績情報と、目的地情報と、必要な通信条件とに基づいて、複数種類の制約の下に複数の走行経路を算出し運転部162を介してタッチパネル型表示装置116に表示する。グリッド描画部166は、この実施形態においては、タッチパネル型表示装置116に表示される走行経路候補および地図に重畳して、表示されている地域の各部における通信実績を示す情報を表示する。なお、通信実績情報とは、通信実績(通信速度または電波強度)と、その通信実績を取得したときの車両の状態(車両の速度または進行方向など)を示す情報と組み合わせた情報である。 The route calculation unit 164 requests the communication record acquisition unit 160 to acquire information such as communication record, required position, and time from the communication record information DB 156 based on the user input received by the driving unit 162 and the communication conditions required to use the service. The route calculation unit 164 calculates multiple driving routes under multiple types of constraints based on the communication record information acquired by the communication record acquisition unit 160 from the communication record information DB 156, the destination information, and the required communication conditions, and displays them on the touch panel display device 116 via the driving unit 162. In this embodiment, the grid drawing unit 166 displays information indicating the communication record in each part of the displayed area by superimposing it on the driving route candidates and the map displayed on the touch panel display device 116. Note that the communication record information is information that combines the communication record (communication speed or radio wave strength) with information indicating the vehicle state (vehicle speed or traveling direction, etc.) when the communication record was acquired.
 グリッド描画部166は、より詳細には、表示されている領域をグリッドに分割し、各グリッドにおける過去の通信実績(通信品質)を表す指標値の関数として各グリッドの色彩、明度または彩度を調整したものを走行経路候補および地図に重畳して表示する。過去の通信実績は通信実績情報DB156に蓄積された情報から得られる。 More specifically, the grid drawing unit 166 divides the displayed area into grids, adjusts the color, brightness or saturation of each grid as a function of an index value representing the past communication performance (communication quality) in each grid, and displays the grid by superimposing it on the proposed driving route and the map. The past communication performance is obtained from information stored in the communication performance information DB 156.
 A4)通信実績管理サーバ110
 図4を参照して、通信実績管理サーバ110は、通信実績取得部200と、通信実績情報記憶部202と、通信実績送信部204とを含む。
A4) Communication record management server 110
With reference to FIG. 4, the communication history management server 110 includes a communication history acquisition unit 200 , a communication history information storage unit 202 , and a communication history transmission unit 204 .
 通信実績取得部200は、複数の車載装置から、それら車載装置が様々な地点および日時において収集した通信実績情報を取得する。通信実績情報記憶部202は、通信実績取得部200が受信した通信実績情報を蓄積する。通信実績送信部204は、通信実績情報記憶部202に蓄積された通信実績情報を、通信実績管理サーバ110による通信実績管理サービスの契約者の車載装置(例えば図2に示す車載装置102、104または106など)からの送信要求に応答してその車載装置に送信する。なお、通信実績取得部200に通信実績情報を送信するのは、車載装置には限定されない。携帯電話など、通信機能を持つ装置ならどのようなものでもよい。携帯電話のように移動可能なものならより望ましいが、移動可能ではないが通信機能を持つもの、例えば路側装置のようなものでもよい。また通信実績送信部204は、車載装置からの送信要求に応答するだけではなく、予め定められたスケジュールに従って各車載装置に通信実績情報を送信してもよい。 The communication history acquisition unit 200 acquires communication history information collected by the in-vehicle devices at various locations and dates from multiple in-vehicle devices. The communication history information storage unit 202 accumulates the communication history information received by the communication history acquisition unit 200. The communication history transmission unit 204 transmits the communication history information accumulated in the communication history information storage unit 202 to an in-vehicle device (such as the in- vehicle devices 102, 104, or 106 shown in FIG. 2) of a subscriber of the communication history management service by the communication history management server 110 in response to a transmission request from the in-vehicle device. Note that the device that transmits the communication history information to the communication history acquisition unit 200 is not limited to an in-vehicle device. Any device with a communication function, such as a mobile phone, may be used. A mobile phone that is mobile is preferable, but a device that is not mobile but has a communication function, such as a roadside device, may also be used. The communication history transmission unit 204 may not only respond to a transmission request from the in-vehicle device, but may also transmit communication history information to each in-vehicle device according to a predetermined schedule.
 A5)通信実績情報DB156の構成
 図5に通信実績情報DB156のテーブルのカラム構成の例を示す。図5を参照して、通信実績情報DB156のカラムは、通信実績IDと車両IDとを含む。通信実績IDは、通信実績のレコードを特定する識別子である。車両IDは、その通信実績を記録した車載装置を搭載した車両を特定する識別子である。
A5) Configuration of communication history information DB 156 Fig. 5 shows an example of a column configuration of a table of communication history information DB 156. Referring to Fig. 5, the columns of communication history information DB 156 include a communication history ID and a vehicle ID. The communication history ID is an identifier for identifying a record of the communication history. The vehicle ID is an identifier for identifying a vehicle equipped with an on-board device that recorded the communication history.
 その他のカラムとしては、例えば、測定間隔、モデム、GNSS、日時、緯度、経度、グリッドID、ジオメトリ値、通信速度、(車両の)速度、(車両の)方位、ルートID、(車両の)進行方向、(車両の)加減速、(車両の)舵角、アクセル操作、ブレーキ操作、通信回線、通信事業者、Band番号、(携帯電話の)セルID、SINR、RSSI、RSRP、およびRSRQなどがある。 Other columns include, for example, measurement interval, modem, GNSS, date and time, latitude, longitude, grid ID, geometry value, communication speed, (vehicle) speed, (vehicle) heading, route ID, (vehicle) direction of travel, (vehicle) acceleration/deceleration, (vehicle) steering angle, accelerator operation, brake operation, communication line, communication operator, band number, (mobile phone) cell ID, SINR, RSSI, RSRP, and RSRQ.
 これらの内の主なものを説明すると、測定間隔は通信速度の測定間隔を示す。測定間隔の単位は秒である。日時は車載装置が通信実績を取得した日時を示す。緯度および経度はそれぞれ通信時に車両が存在していた位置を示す。グリッドIDは、緯度および経度を、ジオハッシュ(Geohash)と呼ばれる変換方法により文字列に変換した値のことをいう。ジオハッシュは、緯度および経度に対し所定の変換表を適用することにより文字列に変換する。各文字列は、地上のある矩形領域を特定する。文字列長が長いほど、その矩形領域は小さくなる。2つの文字列において先頭から所定桁数までの文字列が一致していれば、その2つの文字列により特定される2つの矩形領域は、一致した文字列により特定される矩形領域の中にある。ジオハッシュとして使用する文字列長が同じ場合、それらにより特定される矩形領域の大きさ(面積)は同じである。したがって、ジオハッシュとして使用する文字列長を一定長とし、かつその先頭の何文字かを共通とすることにより、地図(または対応する地域)を、互いに隣接した複数の矩形領域に分割できる。ここではそうした矩形領域をグリッドとよび、その識別子(ジオハッシュに変換した緯度および経度)をグリッドIDと呼ぶ。 The main ones are as follows: The measurement interval indicates the measurement interval of the communication speed. The unit of the measurement interval is seconds. The date and time indicates the date and time when the in-vehicle device acquired the communication record. The latitude and longitude indicate the location where the vehicle was located at the time of communication. The grid ID refers to the value obtained by converting the latitude and longitude into a character string using a conversion method called geohash. The geohash converts the latitude and longitude into a character string by applying a specified conversion table to the latitude and longitude. Each character string identifies a rectangular area on the ground. The longer the string length, the smaller the rectangular area. If the strings from the beginning to a specified number of digits in two character strings match, the two rectangular areas identified by the two character strings are within the rectangular area identified by the matching character string. If the length of the character strings used as geohashes is the same, the size (area) of the rectangular areas identified by them is the same. Therefore, by setting the length of the character strings used as geohashes to a fixed length and making the first few characters common, the map (or the corresponding area) can be divided into multiple rectangular areas adjacent to each other. Here, such a rectangular area is called a grid, and its identifier (latitude and longitude converted to a geohash) is called a grid ID.
 通信速度は、日時のカラムの値により示されるときに通信が可能だった場合には、実際に行った通信について計測した通信速度を表す。圏外などの理由により通信が不可能だった場合には、この実施形態においては通信速度として「-1」を記録する。 The communication speed indicates the communication speed measured for the actual communication, if communication was possible at the time indicated by the value in the date and time column. If communication was not possible due to being out of range or other reasons, in this embodiment, "-1" is recorded as the communication speed.
 SINR、RSSI、RSRP、RSRQは、それぞれ信号対干渉雑音比、受信信号強度、参照信号の受信電力、参照信号の受信品質のことをいい、上記した電波強度情報に相当する。 SINR, RSSI, RSRP, and RSRQ refer to the signal-to-interference-plus-noise ratio, received signal strength, received power of the reference signal, and received quality of the reference signal, respectively, and correspond to the radio wave strength information described above.
 このように、通信実績情報DB156は、実際の通信において測定された通信速度を含む通信品質を示す情報を、そのときの車両の状態(図5に示す、車両の速度、および車両の進行方向など)および日時とともに記憶する。この処理により通信実績情報DB156は更新される。なお、図5に示す通信速度、SINR、RSSI、RSRP、およびRSRQなどの値、ならびにこれらの統計値は通信の品質を表す指標と考えられる。そこでこれらの値を、この明細書においては「通信品質メトリクス」と呼び、これらの値を示す情報を「通信品質メトリクス情報」と呼ぶ。 In this way, communication performance information DB156 stores information indicating communication quality, including the communication speed measured in actual communication, together with the vehicle's state at that time (such as the vehicle's speed and direction of travel shown in FIG. 5) and the date and time. This process updates communication performance information DB156. Note that values such as the communication speed, SINR, RSSI, RSRP, and RSRQ shown in FIG. 5, as well as their statistical values, are considered to be indicators of communication quality. Therefore, in this specification, these values are referred to as "communication quality metrics," and information indicating these values is referred to as "communication quality metrics information."
 A6)プログラムの制御構造
 A6-1)通信実績記録部154
 図3に示す車載装置102の各機能部は、コンピュータと、コンピュータが実行するプログラムとにより実現される。
A6) Program Control Structure A6-1) Communication Performance Recording Unit 154
Each functional unit of the in-vehicle device 102 shown in FIG. 3 is realized by a computer and a program executed by the computer.
 図6に、図3に示す通信実績記録部154を実現するプログラムの制御構造を示す。図6を参照して、このプログラムは、所定のスケジュール(この実施形態においては一定周期)に従って、ステップ252を実行するステップ250を含む。 FIG. 6 shows the control structure of a program that realizes the communication performance recording unit 154 shown in FIG. 3. Referring to FIG. 6, this program includes step 250 that executes step 252 according to a predetermined schedule (in this embodiment, at a fixed interval).
 ステップ252は、通信部150を使用した通信処理、または信号強度の計測処理を行うステップ260と、CAN152を介して車両の状態を示す情報を取得するステップ262と、ステップ260および262において取得した情報を組み合わせて通信実績情報DB156に記録するステップ264とを含む。 Step 252 includes step 260, which performs communication processing using communication unit 150 or measurement processing of signal strength, step 262, which acquires information indicating the vehicle status via CAN 152, and step 264, which combines the information acquired in steps 260 and 262 and records the information in communication performance information DB 156.
 このプログラムはさらに、車載装置102と連携している通信実績管理サーバがあるか否かに従って制御の流れを分岐させるステップ266と、ステップ266の判定が肯定的なときに、連携先の通信実績管理サーバに対して通信実績情報を送信してステップ252の実行を終了するステップ268とを含む。ステップ266の判定が否定的なときにはステップ252の実行が終了される。 This program further includes step 266, which branches the flow of control according to whether or not there is a communication history management server that is linked to the in-vehicle device 102, and step 268, which, when the determination in step 266 is positive, transmits communication history information to the linked communication history management server and ends the execution of step 252. When the determination in step 266 is negative, the execution of step 252 ends.
 A6-2)経路算出部164
 図7に、図3に示す経路算出部164を実現するプログラムの制御構造を示す。図7を参照して、このプログラムは、ユーザとのインタラクションにより目的地の位置を取得するステップ310と、サーバ108によるサービスを受けるために要求される通信サービスに関する情報(必要な通信速度、例えばビットレートなどに関する情報)を取得するステップ312とを含む。
A6-2) Path calculation unit 164
Fig. 7 shows a control structure of a program realizing route calculation unit 164 shown in Fig. 3. Referring to Fig. 7, this program includes a step 310 of acquiring a position of a destination through interaction with a user, and a step 312 of acquiring information on a communication service required to receive a service from server 108 (information on a required communication speed, for example, a bit rate, etc.).
 このプログラムはさらに、通信実績情報DB156(図3)から、現在位置周辺から目的地周辺までを含む領域の通信実績情報を取得するステップ314と、車載装置102と連携している通信実績管理サーバがあるか否かに従って制御の流れを分岐させるステップ316と、ステップ316における判定が肯定的なときに、経路算出のために通信実績情報DB156からのデータが十分か否かに従って制御の流れを分岐させるステップ318とを含む。 The program further includes step 314 of acquiring communication history information for an area including the vicinity of the current location to the vicinity of the destination from the communication history information DB 156 (FIG. 3), step 316 of branching the flow of control depending on whether or not there is a communication history management server linked to the in-vehicle device 102, and step 318 of branching the flow of control depending on whether or not there is sufficient data from the communication history information DB 156 for route calculation when the determination in step 316 is positive.
 このプログラムはさらに、ステップ318における判定が否定的なときに、車載装置102と連携している通信実績管理サーバ(この例においては図2に示す通信実績管理サーバ110)から、現在位置周辺から目的地周辺までの領域の通信実績情報を取得するステップ320と、取得された通信実績情報を使用して走行経路の算出を実行し、算出された走行経路に関する情報を運転部162に与えてプログラムの実行を終了するステップ322とを含む。ステップ316における判定が否定的なとき、およびステップ318における判定が肯定的なときにはステップ320は実行されず、直ちにステップ322の経路算出処理が実行される。 This program further includes step 320 of acquiring communication history information of the area from the vicinity of the current location to the vicinity of the destination from a communication history management server (in this example, the communication history management server 110 shown in FIG. 2) linked to the in-vehicle device 102 when the determination in step 318 is negative, and step 322 of calculating a driving route using the acquired communication history information, providing information regarding the calculated driving route to the driving unit 162, and terminating execution of the program. When the determination in step 316 is negative or when the determination in step 318 is positive, step 320 is not executed, and the route calculation process in step 322 is immediately executed.
 図8に、図7に示すステップ322を実現するプログラムの制御構造を示す。図8を参照して、ステップ322は、走行経路の探索範囲を設定するステップ350と、探索範囲内において、運転部162に備えられている地図情報に基づき現在位置と目的地とを結ぶ経路グラフを生成するステップ352とを含む。ここにいう経路グラフとは、交差点をノード、交差点と交差点とを結ぶ道路をエッジ(リンク)としたグラフのことをいう。この実施形態においては、各エッジには、対応する道路の長さを示す情報が付されている。この経路グラフにおいては、現在位置と目的地とを結ぶ経路が多数存在する。 FIG. 8 shows the control structure of a program that realizes step 322 shown in FIG. 7. Referring to FIG. 8, step 322 includes step 350 of setting a search range for the driving route, and step 352 of generating a route graph connecting the current position and the destination within the search range based on map information provided in the driving unit 162. The route graph here refers to a graph in which intersections are nodes and roads connecting intersections are edges (links). In this embodiment, each edge is provided with information indicating the length of the corresponding road. In this route graph, there are many routes connecting the current position and the destination.
 このプログラムはさらに、ステップ352において生成された経路グラフにおいて、現在位置から目的地までの最短経路を探索するステップ354を含む。この実施形態においては、最短経路の探索にはダイクストラ法を用いる。もちろん、ダイクストラ法に限らず、グラフの最短経路を求められるアルゴリズムならばどのようなものを用いてもよい。 This program further includes step 354 of searching for the shortest route from the current position to the destination in the route graph generated in step 352. In this embodiment, the Dijkstra algorithm is used to search for the shortest route. Of course, this is not limited to the Dijkstra algorithm, and any algorithm that can find the shortest route in a graph may be used.
 このプログラムはさらに、通信実績情報を参照して、サービスにより指定されているビットレートの半分未満となる地点を含むエッジを経路グラフから削除するステップ356と、ステップ356の処理が行われた経路グラフにおいて最短経路を探索するステップ358と、経路グラフからさらに指定されているビットレート未満の地点を含むリンクを削除するステップ360と、ステップ360の処理が行われた経路グラフにおいて最短経路を探索してステップ322を終了するステップ362とを含む。 The program further includes step 356 of referencing communication performance information to delete from the route graph edges including points where the bit rate is less than half the bit rate specified by the service, step 358 of searching for the shortest route in the route graph processed in step 356, step 360 of deleting from the route graph links including points where the bit rate is less than the specified bit rate, and step 362 of searching for the shortest route in the route graph processed in step 360 and terminating step 322.
 以上の処理により、指定ビットレートにかかわらず最短となる走行経路と、指定ビットレートの少なくとも半分以上のビットレートにより通信可能な最短の走行経路と、指定ビットレート以上により通信可能な最短の走行経路とが特定できる。 The above process makes it possible to identify the shortest driving route regardless of the specified bit rate, the shortest driving route that allows communication at a bit rate at least half the specified bit rate, and the shortest driving route that allows communication at a bit rate equal to or higher than the specified bit rate.
 図9は、図3に示すグリッド描画部166を実現するプログラムの制御構造を示す。グリッド描画部166により得られるグリッドの図は、例えば図1に示すグリッドのようなものである。図1においては、各グリッドが、そのグリッドにおいて利用可能な通信速度に応じて異なる表示態様により表示されている。所定の地図の上に、図7のステップ322において生成された複数の走行経路が重畳して表示され、さらに半透明のグリッドが重畳される。 FIG. 9 shows the control structure of a program that realizes the grid drawing unit 166 shown in FIG. 3. The grid drawing obtained by the grid drawing unit 166 is, for example, like the grid shown in FIG. 1. In FIG. 1, each grid is displayed in a different display mode depending on the communication speed available in that grid. A number of driving routes generated in step 322 of FIG. 7 are displayed superimposed on a specified map, and a semi-transparent grid is further superimposed.
 図9を参照して、このプログラムは、タッチパネル型表示装置116に表示される領域を表すジオハッシュ値を取得し、この領域を左上から右下まで所定個数のグリッド領域に分割するステップ370を含む。ステップ370においてはさらに、各グリッド領域の中の所定位置(例えば中心位置)のジオハッシュが算出される。 Referring to FIG. 9, this program includes step 370, which obtains a geohash value representing the area displayed on the touch panel display device 116, and divides this area into a predetermined number of grid areas from the top left to the bottom right. Step 370 also calculates a geohash for a predetermined position (e.g., the center position) in each grid area.
 このプログラムはさらに、ステップ370において得られた各グリッド領域に対してステップ374を実行するステップ372を含む。 The program further includes step 372, which performs step 374 for each grid region obtained in step 370.
 ステップ374は、通信実績情報DB156から、そのグリッド領域のジオハッシュと同じ文字列を先頭に持ち、かつその日時により示される時刻が現在時刻を中心とする所定範囲にあるレコードを検索し、それらの平均通信速度を算出するステップ380と、ステップ380において算出された平均通信速度をいくつかの段階に量子化し、対象のグリッド領域の表示色(色相)および明度を決定するステップ382とを含む。この実施形態においては、色相は赤色とし、通信速度が小さいと明度が低く、通信速度が大きいと明度が高くなるような、通信速度の単調関数として明度を決定する。なお、この実施形態においては、通信速度が所定のしきい値より大きくなると、明度を最大値とする。 Step 374 includes step 380 of searching communication performance information DB 156 for records that start with the same character string as the geohash of the grid area and whose date and time are within a specified range centered on the current time, and calculating their average communication speed, and step 382 of quantizing the average communication speed calculated in step 380 into several stages to determine the display color (hue) and brightness of the target grid area. In this embodiment, the hue is red, and the brightness is determined as a monotonic function of the communication speed, such that the brightness is low when the communication speed is low and the brightness is high when the communication speed is high. Note that in this embodiment, the brightness is set to a maximum value when the communication speed is greater than a specified threshold value.
 ステップ374はさらに、各グリッド領域の表示時のアルファ値に半透明を表す値を設定してステップ374を終了するステップ384を含む。このとき、明度が最大のグリッドに関しては透明に表示されるようにアルファ値を設定する。 Step 374 further includes step 384, which sets the alpha value of each grid area when it is displayed to a value that represents semi-transparency, and ends step 374. At this time, the alpha value is set so that the grid with the highest brightness is displayed transparently.
 B.動作
 B1)通信実績の蓄積
 車載装置102を搭載した車両の移動中、通信部150は定期的に通信速度および電波強度を測定する。通信を行っていないときには、通信部150は電波強度のみを測定する。通信部150はこれらの情報を通信実績として通信実績記録部154に与える。
B. Operation B1) Accumulation of communication history While the vehicle equipped with the on-board device 102 is moving, the communication unit 150 periodically measures the communication speed and radio wave strength. When communication is not being performed, the communication unit 150 measures only the radio wave strength. The communication unit 150 provides this information to the communication history recording unit 154 as communication history.
 通信実績記録部154は、CAN152を介してセンサ112およびGNSS受信器114から車両の状態を示す情報を受信する。通信実績記録部154は、通信部150から受信した通信実績と車両の状態を表す情報とから通信実績情報を生成し通信実績情報DB156に蓄積する。 The communication history recording unit 154 receives information indicating the vehicle status from the sensor 112 and the GNSS receiver 114 via the CAN 152. The communication history recording unit 154 generates communication history information from the communication history received from the communication unit 150 and information indicating the vehicle status, and stores the communication history information in the communication history information DB 156.
 B2)目的地の入力
 ユーザが目的地に出かける場合、ユーザはタッチパネル型表示装置116を用いたインタラクションにより、経路設定の初期画面を表示させ、目的地および利用するサービスを指定する。図7のステップ310において、車載装置102は目的地の指定を取得し、その位置を特定する。経路算出部164はステップ312において、ユーザにより指定されたサービスにより要求される通信サービスに関する情報を取得する(ステップ312)。この処理の結果、必要なビットレートが決定される。
B2) Destination Input When the user leaves for a destination, the user interacts with the touch panel display device 116 to display an initial screen for route setting and specify the destination and the service to be used. In step 310 of FIG. 7, the in-vehicle device 102 acquires the destination designation and identifies its location. In step 312, the route calculation unit 164 acquires information on the communication service required by the service designated by the user (step 312). As a result of this process, the required bit rate is determined.
 経路算出部164はさらに、現在位置付近および目的地付近を結ぶ領域に関する通信実績情報を通信実績情報DB156から取得する(図7のステップ314)。車載装置102と連携している通信実績管理サーバが存在していなければ(図7のステップ316における判定が否定的)、経路算出部164は経路算出処理を実行する(図7のステップ322)。車載装置102と連携している通信実績管理サーバが存在していれば(図7のステップ316における判定が肯定的)、通信実績情報DB156から取得された通信実績が、対象となる領域において決定されたビットレートに基づいて走行経路を定めるのに十分か否かを判定する(ステップ318)。ステップ318における判定が肯定的なら経路算出部164は通信実績情報DB156から得た通信実績のみを用いて走行経路を算出する(ステップ322)。ステップ318における判定が否定的なら、経路算出部164は通信実績取得部160に指示して、通信実績管理サーバ110から対象となる領域の通信実績情報を取得させる。通信実績取得部160は取得した通信実績情報を通信実績情報DB156に追加し、経路算出部164は通信実績情報を通信実績情報DB156から再取得した後、再取得した通信実績情報を用いて走行経路を算出する(ステップ322)。 The route calculation unit 164 further acquires communication history information related to the area connecting the vicinity of the current position and the vicinity of the destination from the communication history information DB 156 (step 314 in FIG. 7). If there is no communication history management server linked to the in-vehicle device 102 (the determination in step 316 in FIG. 7 is negative), the route calculation unit 164 executes a route calculation process (step 322 in FIG. 7). If there is a communication history management server linked to the in-vehicle device 102 (the determination in step 316 in FIG. 7 is positive), it is determined whether the communication history acquired from the communication history information DB 156 is sufficient to determine a driving route based on the bit rate determined in the target area (step 318). If the determination in step 318 is positive, the route calculation unit 164 calculates a driving route using only the communication history acquired from the communication history information DB 156 (step 322). If the determination in step 318 is negative, the route calculation unit 164 instructs the communication history acquisition unit 160 to acquire communication history information of the target area from the communication history management server 110. The communication history acquisition unit 160 adds the acquired communication history information to the communication history information DB 156, and the route calculation unit 164 reacquires the communication history information from the communication history information DB 156 and then calculates the driving route using the reacquired communication history information (step 322).
 B3)経路算出
 車載装置102の経路算出部164は以下のようにして走行経路を算出する。図8を参照して、現在位置と目的地との関係に基づいて、走行経路の探索範囲を決定する(ステップ350)。この探索範囲の決定方法としては種々が考えられる。この実施形態においては、現在位置と目的地とを結ぶ線を対角線とする長方形を探索範囲とする。もちろん、探索範囲はこれには限定されず、他にも様々な方法が考えられる。
B3) Route Calculation The route calculation unit 164 of the in-vehicle device 102 calculates a driving route as follows. Referring to FIG. 8, a search range for the driving route is determined based on the relationship between the current position and the destination (step 350). There are various methods for determining this search range. In this embodiment, the search range is a rectangle whose diagonal is a line connecting the current position and the destination. Of course, the search range is not limited to this, and various other methods are possible.
 続いて経路算出部164は、ステップ350において決定された探索範囲内に存在する各交差点と、それら交差点の間を結ぶ道路との情報に基づいて経路グラフを生成する(ステップ352)。このとき、道路幅が一定の値より小さい道路については経路グラフから外してもよい。 Then, the route calculation unit 164 generates a route graph based on information about each intersection within the search range determined in step 350 and the roads connecting those intersections (step 352). At this time, roads whose road width is smaller than a certain value may be excluded from the route graph.
 経路算出部164は、このようにして生成された経路グラフに対してダイクストラ法を適用することにより、現在位置から目的地までの最短経路からなる走行経路を生成する(ステップ352)。このときの走行経路の生成には、途中の通信速度は考慮されていない。すなわち、ステップ352において生成される走行経路は、通信によるサービスを受けないことを選択したときの最短経路である。 The route calculation unit 164 applies the Dijkstra algorithm to the route graph generated in this manner to generate a driving route consisting of the shortest route from the current position to the destination (step 352). The generation of the driving route at this time does not take into account the communication speed along the way. In other words, the driving route generated in step 352 is the shortest route when it is selected not to receive services via communication.
 経路算出部164はさらに、ステップ356において、指定ビットレートの半分未満の通信速度のエッジを経路グラフから削除する。この結果、残ったエッジは指定ビットレートの半分以上となる。経路算出部164は、ステップ358においてこの経路グラフにおいて最短経路を探索する。この経路は、指定ビットレートの半分以上のビットレートが使用できると見込まれる走行経路の内、最短となる経路である。 In step 356, the route calculation unit 164 further removes edges with communication speeds less than half the specified bit rate from the route graph. As a result, the remaining edges are equal to or greater than half the specified bit rate. In step 358, the route calculation unit 164 searches for the shortest route in this route graph. This route is the shortest route among all driving routes that are expected to use a bit rate equal to or greater than half the specified bit rate.
 経路算出部164はさらに、ステップ360において、指定ビットレート未満のエッジを経路グラフから削除する。続くステップ362において、残りの経路グラフにおける最短経路を探索する。この処理により得られる走行経路は、指定ビットレート以上の通信速度が見込まれる走行経路の内、最短の走行経路である。 In step 360, the route calculation unit 164 further removes edges with a bit rate below the specified rate from the route graph. In the following step 362, the shortest route in the remaining route graph is searched for. The travel route obtained by this process is the shortest travel route among the travel routes that are expected to have a communication speed equal to or greater than the specified bit rate.
 このようにして、ユーザにより指定された制約条件に基づいて、複数の走行経路が算出される。 In this way, multiple driving routes are calculated based on the constraints specified by the user.
 なお、制約条件としては上記したものに限られず、他にも種々考えられる。それらに対しては例えば図8のステップ352および354のような一連の手続からなるプログラムを準備し、ユーザの指定に基づいて適切なプログラムを実行すればよい。好ましくは、プログラムの実行順序も予め指定しておく。そうした指定に従ってプログラムを実行することにより、走行経路の算出に必要な計算量を少なくできる。 Note that constraints are not limited to those mentioned above, and various other constraints are possible. To address these constraints, a program consisting of a series of procedures such as steps 352 and 354 in FIG. 8 can be prepared, and an appropriate program can be executed based on the user's specifications. Preferably, the order in which the programs are executed is also specified in advance. By executing the programs according to such specifications, the amount of calculation required to calculate the driving route can be reduced.
 B4)経路提案画面の表示
 上記した処理により走行経路が算出されると、運転部162が図1に示す経路提案画面50を生成してタッチパネル型表示装置116に表示する。運転部162はまず、該当領域の地図を表示する。運転部162はさらに、算出された3本の走行経路を地図上に重畳して表示する。走行経路の表示は、その走行経路を形成する各エッジの始点および終点を結ぶ矩形を連続して描画することにより行える。
B4) Display of route proposal screen When the driving route is calculated by the above-mentioned process, the driving unit 162 generates the route proposal screen 50 shown in Fig. 1 and displays it on the touch panel display device 116. The driving unit 162 first displays a map of the relevant area. The driving unit 162 further displays the three calculated driving routes superimposed on the map. The driving routes can be displayed by continuously drawing rectangles connecting the start point and end point of each edge that forms the driving route.
 グリッド描画部166は、図1に示されるようなグリッド表示を以下のようにして作成する。図9を参照して、グリッド描画部166は、タッチパネル型表示装置116に表示される領域を表すジオハッシュ値を取得し、この領域を左上から右下まで所定個数のグリッド領域に分割する(ステップ370)。このとき、各グリッド領域の中の所定位置(例えば中心位置)のジオハッシュが算出される。 The grid drawing unit 166 creates a grid display as shown in FIG. 1 as follows. Referring to FIG. 9, the grid drawing unit 166 obtains a geohash value representing the area displayed on the touch panel display device 116, and divides this area from the upper left to the lower right into a predetermined number of grid areas (step 370). At this time, a geohash is calculated for a predetermined position (e.g., the center position) in each grid area.
 グリッド描画部166はさらに、各グリッド領域に対して以下のステップ374を実行する。 The grid drawing unit 166 further performs the following step 374 for each grid area.
 ステップ374においてグリッド描画部166は、通信実績情報DB156から、対象となるグリッド領域のジオハッシュと同じ文字列を先頭に持ち、かつその日時により示される時刻が現在時刻を中心とする所定範囲にあるレコードを検索し、それらの平均通信速度を算出する(ステップ380)。グリッド描画部166はさらに、ステップ380において算出された平均通信速度をいくつかの段階に量子化し、対象のグリッド領域の表示色(色相)および明度を決定する(ステップ382)。この実施形態においては、色相は赤色とし、通信速度が小さいと明度が低く、通信速度が大きいと明度が高くなるような、通信速度の単調関数として明度を決定する。 In step 374, the grid drawing unit 166 searches the communication performance information DB 156 for records that start with the same character string as the geohash of the target grid area and whose date and time are within a specified range centered on the current time, and calculates the average communication speed for those records (step 380). The grid drawing unit 166 further quantizes the average communication speed calculated in step 380 into several stages, and determines the display color (hue) and brightness of the target grid area (step 382). In this embodiment, the hue is red, and the brightness is determined as a monotonic function of the communication speed, such that the brightness is low when the communication speed is low and the brightness is high when the communication speed is high.
 グリッド描画部166はさらに、各グリッド領域の表示時のアルファ値に半透明を表す値を設定する(ステップ384)。このとき、グリッド描画部166は、明度が最大となっているグリッドに関しては透明に表示されるようにアルファ値を設定する。このようにして作成されたグリッド領域の画像は運転部162において地図および走行経路の画像に重畳される。その結果、図1に示すように、タッチパネル型表示装置116の表示面において、地図と、走行経路と、グリッドとが重畳して表示される。通信速度が大きな領域においては地図がそのまま表示される。通信速度が小さな領域は、地図の上に、通信速度の大きさにしたがった明度の赤い領域として半透明に表示される。通信速度が小さいほど各領域は暗い赤により表示され、通信速度が大きくなるほど明るい赤により表示される。 The grid drawing unit 166 further sets a value representing semi-transparency to the alpha value when each grid area is displayed (step 384). At this time, the grid drawing unit 166 sets the alpha value so that the grid with the highest brightness is displayed transparently. The image of the grid area created in this way is superimposed on the image of the map and the driving route in the driving unit 162. As a result, as shown in FIG. 1, the map, the driving route, and the grid are displayed superimposed on the display surface of the touch panel type display device 116. In areas where the communication speed is high, the map is displayed as is. Areas where the communication speed is low are displayed semi-transparently on the map as red areas with a brightness according to the communication speed. The lower the communication speed, the darker the red the area is displayed, and the higher the communication speed, the brighter the red the area is displayed.
 以上のようにこの実施形態によれば、過去に実際に計測された通信速度が通信実績情報DB156に蓄積され、走行経路の算出に使用される。その結果、利用するサービスにより要求されるビットレートに応じた適切な走行経路の算出が行える。走行経路の算出のときには、ユーザが指定した制約に基づいて、複数の走行経路が算出される。ユーザは、サービスをどのように利用するかに応じ、適切な走行経路を選択できる。 As described above, according to this embodiment, communication speeds actually measured in the past are stored in the communication performance information DB 156 and are used to calculate the driving route. As a result, an appropriate driving route can be calculated according to the bit rate required by the service being used. When calculating the driving route, multiple driving routes are calculated based on the constraints specified by the user. The user can select an appropriate driving route depending on how they wish to use the service.
 また、現在位置と目的地とを囲む領域における通信速度の状態が視覚的に表示される。そのため、ユーザは、現在位置から目的地まで移動する間に、通信を用いたサービスがどの程度充実して提供されるか、サービスを十分に利用するためにはどのようなルートを採用したらよいか、など、サービスの利用目的と、通信状況と、目的地までの距離とに従って適切な走行経路を選択できる。 In addition, the communication speed status in the area surrounding the current location and destination is visually displayed. This allows the user to select an appropriate route based on the purpose of using the service, the communication status, and the distance to the destination, such as how well the communication-based services will be provided while traveling from the current location to the destination, and what route should be taken to make full use of the service.
 また、通信実績管理サーバ110は各車両からの通信実績情報を蓄積している。そのため、ある車載装置において走行経路を算出するときに、十分な通信実績が車載装置に記憶されていないときには、必要な通信実績情報を通信実績管理サーバ110から取り寄せることができる。その結果、幅広い領域にわたり、通信サービスを利用するための最適な走行経路の算出が行える。 In addition, the communication history management server 110 accumulates communication history information from each vehicle. Therefore, when calculating a driving route in a certain in-vehicle device, if sufficient communication history is not stored in the in-vehicle device, the necessary communication history information can be obtained from the communication history management server 110. As a result, it is possible to calculate the optimal driving route for using communication services over a wide area.
 なお、上記第1実施形態においては、タッチパネル型表示装置116に表示された3本の走行経路のいずれかをユーザに選択させる。しかしこの開示はそのような実施形態には限定されない。常に要求された通信速度が維持できる走行経路を選択するか、もしもそのような経路が存在しないときには、途中における平均通信速度が最も大きな走行経路を自動的に選択するような実施形態も可能である。 In the first embodiment, the user is allowed to select one of three driving routes displayed on the touch panel display device 116. However, this disclosure is not limited to such an embodiment. It is also possible to implement an embodiment in which a driving route that can always maintain the required communication speed is selected, or if no such route exists, a driving route with the highest average communication speed along the way is automatically selected.
 2.第2実施形態
 A.構成
 A1)車両支援システム400
 図10に、第2実施形態に係る車両支援システム400の構成を示す。図10を参照して、第2実施形態に係る車両支援システム400は、サーバ108と、サーバ108により提供されるサービスを利用する車載装置402、404および406などと、車載装置402など複数の車載装置による通信実績情報を蓄積し、求めに応じて各車載装置に通信実績情報を送信する通信実績管理サーバ408とを含む。
2. Second embodiment A. Configuration A1) Vehicle assistance system 400
Fig. 10 shows the configuration of a vehicle assistance system 400 according to the second embodiment. Referring to Fig. 10, the vehicle assistance system 400 according to the second embodiment includes a server 108, in- vehicle devices 402, 404, and 406 that use the service provided by the server 108, and a communication history management server 408 that accumulates communication history information by a plurality of in-vehicle devices such as the in-vehicle device 402 and transmits the communication history information to each in-vehicle device upon request.
 この実施形態においては、第1実施形態と異なり、経路算出部が車載装置402にはなく、通信実績管理サーバ408に存在している。 In this embodiment, unlike the first embodiment, the route calculation unit is not located in the in-vehicle device 402, but in the communication record management server 408.
 A2)車載装置402
 図11を参照して、車載装置402は、図3に示す車載装置102と比較して、通信実績取得部160および経路算出部164を含まない点において車載装置102と異なる。
A2) In-vehicle device 402
11, an in-vehicle device 402 differs from the in-vehicle device 102 shown in FIG. 3 in that it does not include a communication history obtaining unit 160 and a route calculating unit 164.
 また、運転部162は、タッチパネル型表示装置116を使用してユーザから入力された目的地に関する情報に基づいて、必要な通信実績情報を通信実績情報DB156からではなく、通信実績管理サーバ408に対して要求する点において、図3に示す運転部162と異なる。 Furthermore, the driving unit 162 differs from the driving unit 162 shown in FIG. 3 in that the driving unit 162 requests the necessary communication history information from the communication history management server 408, rather than from the communication history information DB 156, based on information about the destination input by the user using the touch panel display device 116.
 A3)通信実績管理サーバ408
 図12を参照して、通信実績管理サーバ408は、複数の車載装置から通信実績情報を取得する通信実績取得部450と、通信実績取得部450が取得した通信実績情報を蓄積するための通信実績情報記憶部202と、図10に示す車載装置402のような車載装置の運転部162から、現在位置と目的地とを指定した走行経路の算出要求を受信して、該当する領域の通信実績情報を通信実績情報記憶部202から読出し、車載装置402に送信するための経路算出部452とを含む。
A3) Communication record management server 408
12 , the communication history management server 408 includes a communication history acquisition unit 450 that acquires communication history information from a plurality of in-vehicle devices, a communication history information storage unit 202 for storing the communication history information acquired by the communication history acquisition unit 450, and a route calculation unit 452 that receives a calculation request for a driving route specifying a current position and a destination from the driving unit 162 of an in-vehicle device such as the in-vehicle device 402 shown in FIG. 10 , reads out communication history information of the corresponding area from the communication history information storage unit 202, and transmits it to the in-vehicle device 402.
 B.動作
 この第2実施形態においては、タッチパネル型表示装置116により目的地の入力がされたときに、運転部162が通信実績情報DB156ではなく、通信実績管理サーバ408の経路算出部452に対して現在位置および目的地を指定して通信実績情報を要求する点、経路算出部452がこの要求に応答して、通信実績情報記憶部202から該当する領域の通信実績情報を読出し、運転部162に送信する点のみにおいて異なる。それ以外の点において、車両支援システム400の各機能部は第1実施形態の対応する機能部と同様に動作する。
B. Operation The second embodiment differs only in that, when a destination is input via the touch panel display device 116, the driving unit 162 requests communication history information by specifying the current position and destination from the route calculation unit 452 of the communication history management server 408, rather than from the communication history information DB 156, and that, in response to this request, the route calculation unit 452 reads out the communication history information of the relevant area from the communication history information storage unit 202 and transmits it to the driving unit 162. In other respects, each functional unit of the vehicle assistance system 400 operates in the same manner as the corresponding functional unit in the first embodiment.
 3.第3実施形態
 A.構成
 A1)車両支援システム500
 図13を参照して、この開示の第3実施形態に係る車両支援システム500は、サーバ108と、車載装置502、504および506などと、通信実績管理サーバ110とを含む。サーバ108および通信実績管理サーバ110は、図2に示す第1実施形態におけるサーバ108および通信実績管理サーバ110と同じである。
3. Third embodiment A. Configuration A1) Vehicle assistance system 500
13, a vehicle assistance system 500 according to the third embodiment of the present disclosure includes a server 108, in- vehicle devices 502, 504, and 506, and a communication history management server 110. The server 108 and the communication history management server 110 are the same as the server 108 and the communication history management server 110 in the first embodiment shown in FIG.
 A2)車載装置502
 図14を参照して、車載装置502は図3に示す車載装置102と類似している。しかし車載装置502は、車載装置102と異なり、通信実績記録部154から現在の通信速度に関する計測結果を受け、通信実績情報DB156に記憶されている情報から推定される通信速度と比較して両者の相違を算出しその値を出力する通信実績比較部552を含む。車載装置102はまた、図3に示す通信部150に代えて、通信実績比較部552の出力する相違の大きさがしきい値より大きいことに応答して、サーバ108から受けるサービスのためのビットレートを調整する機能を持つ通信部550を含む。通信実績記録部154が計測した実際の速度が予測速度よりもしきい値以上小さくなった場合、通信部550はサーバ108を利用するサービスのビットレートを小さくするようサーバ108に要求する。この結果、例えばサーバ108により提供されるのが映像ストリームのようなものであれば、サーバ108は映像の解像度を下げるか、送信フレーム数を小さくするかして、サービスの利用が継続できるようにする。逆に予測よりも実際の計測値の方がしきい値以上大きくなっているならば、通信部550はサーバ108に対してサービスに使用するビットレートを可能なら高くするように要求する。
A2) In-vehicle device 502
14, the in-vehicle device 502 is similar to the in-vehicle device 102 shown in FIG. 3. However, unlike the in-vehicle device 102, the in-vehicle device 502 includes a communication record comparison unit 552 that receives a measurement result on the current communication speed from the communication record recording unit 154, compares the communication speed with a communication speed estimated from information stored in the communication record information DB 156, calculates the difference between the two, and outputs the calculated value. The in-vehicle device 102 also includes a communication unit 550, instead of the communication unit 150 shown in FIG. 3, that has a function of adjusting the bit rate for the service received from the server 108 in response to the magnitude of the difference output by the communication record comparison unit 552 being greater than a threshold value. When the actual speed measured by the communication record recording unit 154 becomes smaller than the predicted speed by the threshold value or more, the communication unit 550 requests the server 108 to reduce the bit rate of the service using the server 108. As a result, if the service provided by the server 108 is something like a video stream, for example, the server 108 reduces the resolution of the video or reduces the number of transmission frames so that the service can be continued. Conversely, if the actual measured value is greater than the prediction by more than the threshold value, the communication unit 550 requests the server 108 to increase the bit rate used for the service if possible.
 車載装置502はさらに、図3に示す経路算出部164に代えて、経路算出部164の持つ機能に加えて、通信実績比較部552の出力する値の絶対値がしきい値より大きいときに、経路算出をやり直す機能を持つ経路算出部556を含む。車載装置502はさらに、図3に示す通信実績送信部158に代えて、通信実績送信部158の持つ機能に加えて、通信実績比較部552が出力する値の絶対値がしきい値以上のときに、通信実績記録部154により計測された最新の計測結果から作成した通信実績情報を直ちにサーバ108に送信する通信実績送信部554を含む。 Instead of the route calculation unit 164 shown in FIG. 3, the in-vehicle device 502 further includes a route calculation unit 556 that has the function of redoing route calculation when the absolute value of the value output by the communication performance comparison unit 552 is greater than a threshold value, in addition to the functions of the route calculation unit 164. Instead of the communication performance transmission unit 158 shown in FIG. 3, the in-vehicle device 502 further includes a communication performance transmission unit 554 that immediately transmits communication performance information created from the latest measurement results measured by the communication performance recording unit 154 to the server 108 when the absolute value of the value output by the communication performance comparison unit 552 is greater than or equal to a threshold value, in addition to the functions of the communication performance transmission unit 158.
 A3)通信実績比較部552
 図15に、通信実績比較部552を実現するプログラムの制御構造を示す。図15を参照して、このプログラムは、ステップ602を繰返し実行するステップ600を含む。
A3) Communication performance comparison unit 552
15 shows a control structure of a program realizing communication performance comparison unit 552. Referring to FIG. 15, this program includes a step 600 of repeatedly executing a step 602.
 ステップ602は、通信速度の最新の計測値を通信実績記録部154から受信するステップ610と、現在位置における過去の通信実績情報を通信実績情報DB156から読出すステップ612と、最新の計測結果とステップ612において読出された通信実績における通信速度との差がしきい値以上か否かに従って制御の流れを分岐させるステップ614とを含む。ステップ614における判定が否定的なら、ステップ602における、最新の計測結果に対する処理は終了する。 Step 602 includes step 610 of receiving the latest measured value of the communication speed from the communication history recording unit 154, step 612 of reading past communication history information at the current location from the communication history information DB 156, and step 614 of branching the flow of control according to whether the difference between the latest measurement result and the communication speed in the communication history read in step 612 is equal to or greater than a threshold value. If the determination in step 614 is negative, the processing of the latest measurement result in step 602 ends.
 このプログラムはさらに、ステップ614における判定が肯定的なときに、最新の計測結果から得た通信実績情報を通信実績管理サーバ110に直ちに送信するステップ616と、最新の計測結果に基づいて通信部550を制御することにより、サーバ108との間の通信品質を変更するステップ618と、経路算出部556を制御することにより、走行経路の算出を再度行う経路変更を実行してステップ602の実行を終了するステップ620とを含む。なおこの実施形態においては、経路変更の結果はユーザに提示されず、ただちに運転部162の動作に反映されるものとする。 This program further includes step 616 of immediately transmitting communication performance information obtained from the latest measurement results to the communication performance management server 110 when the determination in step 614 is positive, step 618 of changing the communication quality with the server 108 by controlling the communication unit 550 based on the latest measurement results, and step 620 of controlling the route calculation unit 556 to execute a route change to recalculate the driving route and terminate execution of step 602. Note that in this embodiment, the results of the route change are not presented to the user, but are immediately reflected in the operation of the driving unit 162.
 B.動作
 図14を参照して、通信部550は他の実施形態における通信部150と同様、通信を実行したときにはその通信速度および電波強度を、通信を行っていないときにはそのときの電波強度のみを、それぞれ定期的に計測し、計測結果を通信実績記録部154に与える。通信実績記録部154は図3の場合と同様に動作する。ただし通信実績記録部154は、通信実績比較部552にも最新の通信実績を与える。
B. Operation Referring to Fig. 14, like the communication unit 150 in the other embodiments, the communication unit 550 periodically measures the communication speed and radio wave strength when communication is being performed, and measures only the radio wave strength at that time when communication is not being performed, and provides the measurement results to the communication history recording unit 154. The communication history recording unit 154 operates in the same manner as in Fig. 3. However, the communication history recording unit 154 also provides the latest communication history to the communication history comparison unit 552.
 通信実績比較部552は、最新の通信実績を通信部550から受信し(図15のステップ610)、現在の車載装置502の位置に基づいて、その地点における過去の通信実績を通信実績情報DB156から読出し、最新の計測速度から過去の通信実績の速度を減算する(ステップ612)。通信実績比較部552は、減算結果の絶対値がしきい値より大きければ(ステップ614における判定が肯定的)、最新の計測結果による通信実績を通信実績送信部554に与える(ステップ616)。通信実績比較部552はさらに、ステップ614における減算結果を通信部550に与える(ステップ618)。通信実績比較部552は同様に最新の計測結果による通信実績を経路算出部556に与える(ステップ618)。 The communication performance comparison unit 552 receives the latest communication performance from the communication unit 550 (step 610 in FIG. 15), reads out the past communication performance at that point from the communication performance information DB 156 based on the current position of the in-vehicle device 502, and subtracts the speed of the past communication performance from the latest measured speed (step 612). If the absolute value of the subtraction result is greater than the threshold value (the determination in step 614 is positive), the communication performance comparison unit 552 provides the communication performance based on the latest measurement result to the communication performance transmission unit 554 (step 616). The communication performance comparison unit 552 further provides the subtraction result in step 614 to the communication unit 550 (step 618). The communication performance comparison unit 552 similarly provides the communication performance based on the latest measurement result to the route calculation unit 556 (step 618).
 この結果、通信実績送信部554は、最新の計測結果による通信実績を直ちに通信実績管理サーバ110に送信する。通信実績管理サーバ110は受信した通信実績を通信実績情報記憶部202(図4を参照)に格納する。通信部550は、最新の計測結果に基づいて、サーバ108から提供されるサービスのビットレートを調整するようサーバ108に要求する。経路算出部556は、最新の計測結果に基づいて、再度、走行経路の算出を再実行し、その結果に従って走行経路を変更するよう運転部162を制御する。 As a result, the communication history sending unit 554 immediately sends the communication history based on the latest measurement result to the communication history management server 110. The communication history management server 110 stores the received communication history in the communication history information storage unit 202 (see FIG. 4). The communication unit 550 requests the server 108 to adjust the bit rate of the service provided by the server 108 based on the latest measurement result. The route calculation unit 556 recalculates the driving route based on the latest measurement result, and controls the driving unit 162 to change the driving route according to the result.
 以上のようにこの第3実施形態によれば、通信速度に関する最新の計測結果が、過去の通信実績と大きく異なっている場合には、ただちに最新の計測結果が通信実績として通信実績管理サーバ110に送信される。その結果、通信実績管理サーバ110には最新の計測結果が直ちに反映される。同様に、通信部550により、最新の計測結果による通信速度に応じて、サーバ108から受けるサービスのビットレートが変更される。その結果、通信速度が下がればサービスもそれに対応したより低いビットレートによるサービスに変更される。逆に通信速度が上げればサービスもそれに対応してより高いビットレートによるサービスに変更される。例えば映像のストリーミングなどの場合には、このようにして利用可能な通信速度に応じ、画像の解像度を変えたりフレームレートを変えたりして、サービスを維持できる。また、経路変更が自動的に行われることによって、よりよい通信品質が得られるコースが選択される。その結果、ユーザにとってはよりよい状態の下にサービスを利用できる。 As described above, according to the third embodiment, if the latest measurement result regarding the communication speed is significantly different from the past communication performance, the latest measurement result is immediately sent to the communication performance management server 110 as the communication performance. As a result, the latest measurement result is immediately reflected in the communication performance management server 110. Similarly, the communication unit 550 changes the bit rate of the service received from the server 108 according to the communication speed according to the latest measurement result. As a result, if the communication speed decreases, the service is changed to a service with a correspondingly lower bit rate. Conversely, if the communication speed increases, the service is changed to a service with a correspondingly higher bit rate. For example, in the case of video streaming, the service can be maintained by changing the image resolution or frame rate in this way according to the available communication speed. In addition, by automatically changing the route, a course that provides better communication quality is selected. As a result, the user can use the service under better conditions.
 4.第4実施形態
 A.構成
 A1)運転支援システム650
 図16を参照して、この開示の第4実施形態に係る運転支援システム650は、サーバ108と、車載装置652、654および656などの車載装置と、通信実績管理サーバ658とを含む。
4. Fourth embodiment A. Configuration A1) Driving assistance system 650
With reference to FIG. 16 , a driving assistance system 650 according to the fourth embodiment of the present disclosure includes the server 108 , in-vehicle devices such as in- vehicle devices 652 , 654 and 656 , and a communication history management server 658 .
 第4実施形態に係る車載装置652は、図3に示す車載装置102の機能に加え、通信実績情報DB156に記憶された通信実績に対する統計処理を行い、その結果に基づいて走行経路の提案などを行う点において車載装置102と異なる。なおこの統計処理において、通信ができなかったことを示す値(例えば「-1」など)については、いわゆる平均値のような値の算出対象からは除かれる。ただし通信が可能だったか否かに関する統計情報を算出する場合には計数の対象となる。 The in-vehicle device 652 according to the fourth embodiment differs from the in-vehicle device 102 in that, in addition to the functions of the in-vehicle device 102 shown in FIG. 3, it performs statistical processing on the communication records stored in the communication record information DB 156 and suggests driving routes based on the results. In this statistical processing, values indicating that communication was not possible (such as "-1") are excluded from the calculation of so-called average values. However, they are counted when calculating statistical information on whether communication was possible or not.
 A2)車載装置652
 図17を参照して、車載装置652は、前述したとおり、図3に示す車載装置102の各部に加えて、通信実績情報DB156に記憶された通信実績情報に対して所定の統計処理を実行する通信統計算出部700と、通信統計算出部700により算出された通信に関する統計情報を記憶するための通信実績統計情報DB702と、通信実績統計情報DB702に記憶された通信実績統計情報を使用して走行経路を算出する経路算出部704とを含む。
A2) In-vehicle device 652
Referring to Figure 17, as described above, the in-vehicle device 652 includes, in addition to the respective parts of the in-vehicle device 102 shown in Figure 3, a communication statistics calculation unit 700 that performs a predetermined statistical processing on the communication performance information stored in the communication performance information DB 156, a communication performance statistical information DB 702 for storing statistical information regarding communication calculated by the communication performance calculation unit 700, and a route calculation unit 704 that calculates a driving route using the communication performance statistical information stored in the communication performance statistical information DB 702.
 この実施形態においては、通信実績取得部160は、経路算出部704から通信実績情報の取得依頼を受けたときに、通信実績情報DB156ではなく通信実績統計情報DB702に記憶されている通信実績統計情報を経路算出部704に与える。通信実績統計情報DB702に記憶されている通信実績統計情報によっては経路算出部704による走行経路の算出が難しいときには、通信実績取得部160は、通信実績管理サーバ658から通信実績統計情報DB702に記憶されている通信実績統計情報を受信する。通信実績取得部160はこの通信実績統情報を通信実績統計情報DB702に追加してから、さらに経路算出部704に与える。経路算出部704は、走行経路の算出時に使用する通信実績が通信実績情報DB156に記憶されている実測の情報ではなく、通信実績統計情報DB702に記憶されている統計処理後の情報であるという点において経路算出部164と異なる。 In this embodiment, when the communication performance acquisition unit 160 receives a request to acquire communication performance information from the route calculation unit 704, it provides the route calculation unit 704 with communication performance statistical information stored in the communication performance statistical information DB 702 rather than the communication performance information DB 156. When it is difficult for the route calculation unit 704 to calculate the driving route based on the communication performance statistical information stored in the communication performance statistical information DB 702, the communication performance acquisition unit 160 receives the communication performance statistical information stored in the communication performance statistical information DB 702 from the communication performance management server 658. The communication performance acquisition unit 160 adds this communication performance statistical information to the communication performance statistical information DB 702 and then provides it to the route calculation unit 704. The route calculation unit 704 differs from the route calculation unit 164 in that the communication performance used when calculating the driving route is not the actual measurement information stored in the communication performance information DB 156 but the statistically processed information stored in the communication performance statistical information DB 702.
 A3)通信実績管理サーバ658
 図18を参照して、通信実績管理サーバ658は、通信実績取得部200と、通信実績情報記憶部202と、通信実績情報記憶部202に記憶されている通信実績情報に対し、図17に示す通信統計算出部700と同様の統計処理を行うための通信統計算出部720とを含む。通信実績管理サーバ658はさらに、通信統計算出部720により算出された、通信実績に関する統計情報を記憶するための通信実績統計情報記憶部722と、図17に示す通信実績取得部160からの要求に応じて、通信実績取得部160により指定された現在地に対応する通信実績統計情報を通信実績統計情報記憶部722から読出して通信実績取得部160に送信するための通信実績送信部724とを含む。
A3) Communication record management server 658
18, the communication performance management server 658 includes a communication performance acquisition unit 200, a communication performance information storage unit 202, and a communication statistics calculation unit 720 for performing statistical processing similar to that of the communication statistics calculation unit 700 shown in Fig. 17 on the communication performance information stored in the communication performance information storage unit 202. The communication performance management server 658 further includes a communication performance statistical information storage unit 722 for storing statistical information regarding the communication performance calculated by the communication statistics calculation unit 720, and a communication performance transmission unit 724 for reading out communication performance statistical information corresponding to the current location specified by the communication performance acquisition unit 160 from the communication performance statistical information storage unit 722 and transmitting the communication performance statistical information to the communication performance acquisition unit 160 in response to a request from the communication performance acquisition unit 160 shown in Fig. 17.
 図19に、図17に示す通信実績統計情報DB702のカラム構成を示す。図18に示す通信実績統計情報記憶部722もこれと同様のカラム構成を持つ。 FIG. 19 shows the column structure of the communication performance statistical information DB 702 shown in FIG. 17. The communication performance statistical information storage unit 722 shown in FIG. 18 has a similar column structure.
 図19を参照して、通信実績統計情報DB702は、日時カラムと、グリッドIDカラムと、通信速度カラムと、速度カラムと、方位カラムと、通信回線カラムと、通信事業者カラムと、Band番号カラムと、セルIDカラムと、図5に示すものと同じSINR、RSSI、RSRP、およびRSRQの各カラムとを持つ。 Referring to FIG. 19, the communication performance statistical information DB 702 has a date/time column, a grid ID column, a communication speed column, a speed column, a direction column, a communication line column, a communication carrier column, a band number column, a cell ID column, and the same SINR, RSSI, RSRP, and RSRQ columns as those shown in FIG. 5.
 これら各カラムに記憶される情報の内、日時は統計の対象となった単位期間を特定するためのものである。例えば日時カラムに西暦の年を示す値(「2022」など)が入っていれば、2022年の1年間にわたる統計が通信実績統計情報DB702の1レコードの内容であることを示す。ある月を示す情報(「202206」など)が日時カラムに入っていれば、その情報に関する1ヶ月にわたる統計がその1レコードに格納されていることが分かる。同様に、日時カラムを用いれば、1日単位、1時間単位などの統計をそれぞれ1レコードとして通信実績統計情報DB702に格納できる。このように日時情報をレコードに含ませることにより、統計情報を様々な期間にわたり階層的に記録できる。 Of the information stored in each of these columns, the date and time is used to specify the unit period that the statistics are for. For example, if the date and time column contains a value indicating the year (such as "2022"), this indicates that statistics covering the entire year of 2022 constitute one record in the communication performance statistical information DB702. If the date and time column contains information indicating a certain month (such as "202206"), it indicates that statistics relating to that information covering one month are stored in that one record. Similarly, by using the date and time column, statistics for one day, one hour, etc. can each be stored as one record in the communication performance statistical information DB702. By including date and time information in the record in this way, statistical information can be recorded hierarchically over various periods.
 グリッドIDは、統計の対象となったグリッドを特定するジオハッシュの識別子である。この値は各グリッドに固定的に割当てられた値である。ただしグリッドIDも、上記した通り階層的な構造を持っている。したがって、グリッドに関しても、その大きさの最小単位を決めてそのグリッドにおける通信状況の統計的な値を記録しておけば、より大きなグリッドに関する統計を任意のタイミングにおいて算出できる。このように、日時カラムの値とグリッドIDカラムの値とを使用することにより、地理的および時間的な階層構造をもって統計情報を算出したり記録したりできる。 The grid ID is a geohash identifier that identifies the grid that is the subject of the statistics. This value is assigned to each grid on a fixed basis. However, as mentioned above, grid IDs also have a hierarchical structure. Therefore, if the smallest unit of size for a grid is determined and statistical values for the communication status in that grid are recorded, statistics for larger grids can be calculated at any time. In this way, by using the value in the date and time column and the value in the grid ID column, statistical information can be calculated and recorded with a geographical and temporal hierarchical structure.
 図19において、通信速度以下のカラムは、統計処理がなされた後の値である。これら各カラムにおける統計処理の方法は、カラムによって異なる。例えば通信速度、速度、方位、ならびにSINR、RSSI、RSRP、およびRSRQなどについては、統計処理により得られる代表値、例えば平均値、最大値、最小値およびCDF(累積分布関数)などの値のいずれか、またはこれらの任意の組み合わせを格納する。方位については、方位を数値化してその平均をとってもよいし、360度を所定の角度に分割し、各角度範囲に入る値の数を計数してもよい。通信回線、通信事業者、Band番号およびセルIDはいずれも離散的な値となるが、これらについては対象単位期間内に使用されたものを種類別に計数し、その値を記録すればよい。 In FIG. 19, the columns below communication speed are values after statistical processing. The method of statistical processing for each of these columns differs depending on the column. For example, for communication speed, speed, direction, SINR, RSSI, RSRP, and RSRQ, representative values obtained by statistical processing, such as the average, maximum, minimum, and CDF (cumulative distribution function), or any combination of these, are stored. For direction, the direction may be converted into a numerical value and the average taken, or 360 degrees may be divided into specified angles and the number of values that fall within each angle range may be counted. The communication line, communication operator, band number, and cell ID are all discrete values, but for these, the ones used within the target unit period may be counted by type and the values recorded.
 図20に、図18に示す通信統計算出部720としてコンピュータを機能させるプログラムの制御構造を示す。このプログラムは、統計算出の対象となる期間の粒度および領域をグリッドに分割する際の粒度を指定するパラメータ730を引数として受けて起動される。このプログラムは、指定された粒度の期間および指定された粒度の領域ごとに通信実績の統計を算出する。なお、この明細書において「粒度が高い」とは、処理対象となる単位が大きなことをいい、「粒度が低い」とは、処理対象となる単位が小さいことをいう。もちろん粒度が高い、低い、というのは相対的な表現である。 FIG. 20 shows the control structure of a program that causes a computer to function as the communication statistics calculation unit 720 shown in FIG. 18. This program is started by receiving as arguments parameters 730 that specify the granularity of the period for which statistics are to be calculated and the granularity when dividing the area into grids. This program calculates communication performance statistics for each period of the specified granularity and area of the specified granularity. In this specification, "high granularity" means that the units to be processed are large, and "low granularity" means that the units to be processed are small. Of course, high and low granularity are relative terms.
 このプログラムは、現在時刻と、通信実績情報記憶部202に記憶されている情報通信実績情報が取得された位置の全体をカバーする範囲(全領域範囲)を確認するステップ732を含む。全領域範囲は、第4実施形態においては矩形とし、その北西端と南東端の座標(緯度、経度)により指定される。もちろん全領域範囲を指定する形は矩形には限定されない。円または楕円など、直線から構成されないものを含む任意の形状を利用できる。 This program includes step 732, which checks the current time and the range (full area range) that covers the entire position where the communication performance information stored in the communication performance information storage unit 202 was obtained. In the fourth embodiment, the full area range is a rectangle, and is specified by the coordinates (latitude, longitude) of its northwestern and southeastern ends. Of course, the shape that specifies the full area range is not limited to a rectangle. Any shape, including shapes that are not composed of straight lines, such as a circle or ellipse, can be used.
 このプログラムはさらに、パラメータ730に従って、統計算出の期間を分割することにより対象期間を決定するステップ734と、パラメータ730に従って、全領域範囲を、指定された粒度に従って分割することにより、統計算出の対象地域の集合を決定するステップ736とを含む。 The program further includes step 734 of determining a target period by dividing the period for statistical calculation according to parameter 730, and step 736 of determining a set of target areas for statistical calculation by dividing the entire range according to a specified granularity according to parameter 730.
 ステップ734においては、基本的にステップ732において取得された現在時刻を含む単位期間と、その直前の単位期間とが対象となる。ただし、例えば既に統計作成が完了し、更新もしないことが確定している場合には直前の単位期間については統計算出の対象とはしない。 In step 734, the unit period including the current time obtained in step 732 and the unit period immediately preceding it are basically the subject of the calculation of statistics. However, for example, if the creation of statistics has already been completed and it has been determined that no updates will be made, the immediately preceding unit period is not included in the calculation of statistics.
 例えば、日時の粒度が「日」単位であり、現在の日付が「2022年9月1日」であれば、現在時刻を含む日である「2022年9月1日」と、その直前の日である「2022年8月31日」が統計算出の対象となる。しかし、例えば「2022年8月31日」についての統計算出が完了し更新もしないことが確定している場合には「2022年9月1日」のみが統計算出の対象となる。 For example, if the date and time granularity is "day" and the current date is "September 1, 2022," then the day including the current time, "September 1, 2022," and the day immediately preceding that, "August 31, 2022," will be subject to statistical calculation. However, for example, if statistical calculation for "August 31, 2022" has been completed and it has been determined that it will not be updated, then only "September 1, 2022" will be subject to statistical calculation.
 日時の粒度が「時」(時間)であり、現在の日時が「2022年9月1日11時5分17秒」であれば、「2022年9月1日11時」と「2022年9月1日10時」とが統計算出の対象となる。ただし「2022年9月1日10時」についての統計算出が確定している場合には「2022年9月1日11時」のみが統計算出の対象となる。 If the date and time granularity is "hour" (hours) and the current date and time is "September 1, 2022, 11:05:17", then "September 1, 2022, 11:00" and "September 1, 2022, 10:00" will be subject to statistical calculation. However, if statistical calculation for "September 1, 2022, 10:00" has been confirmed, only "September 1, 2022, 11:00" will be subject to statistical calculation.
 ステップ736においては、ステップ732において確認された矩形の全領域範囲が、パラメータ730により指定された大きさの矩形領域に分割される。このときの各分割領域には、前述したとおり、それぞれ固有のジオハッシュコードが割当てられる。 In step 736, the entire rectangular area identified in step 732 is divided into rectangular areas of the size specified by parameter 730. As described above, each divided area is assigned a unique geohash code.
 このプログラムはさらに、ステップ734において決定した対象期間のうちに含まれる各単位期間について、ステップ740を実行するステップ738を含む。上述したとおり、対象期間に含まれる単位期間は基本的に現在時刻を含む1単位期間、またはさらに直近の1単位期間を含む2単位期間である。 The program further includes step 738 of executing step 740 for each unit period included in the target period determined in step 734. As described above, the unit period included in the target period is basically one unit period including the current time, or two unit periods including the most recent unit period.
 ステップ740は、ステップ736において分割された各対象地域について、ステップ744を実行するステップ742を含む。 Step 740 includes step 742, which performs step 744 for each target area divided in step 736.
 ステップ744は、図18に示す通信実績情報記憶部202から、対象期間および対象地域をキーとして通信実績情報を読出すステップ750と、ステップ750において読出された通信実績情報に基づき、通信実績統計情報DB702に示す各統計情報を算出するステップ752とを含む。ステップ752における統計情報の算出については、項目ごとに異なる処理を行うことになる。なお、通信実績統計情報DB702にリレーショナルデータベースを使用する場合には、平均、最大値、最小値、または分散などの代表的な統計的値については、レコードを読出すときのクエリにこれら統計的代表値を算出するコマンドを含ませることにより、ステップ732における処理を簡略化できる場合がある。 Step 744 includes step 750 of reading out communication performance information from communication performance information storage unit 202 shown in FIG. 18 using the target period and target area as keys, and step 752 of calculating each piece of statistical information shown in communication performance statistical information DB 702 based on the communication performance information read out in step 750. The calculation of the statistical information in step 752 involves different processing for each item. Note that when a relational database is used for communication performance statistical information DB 702, the processing in step 732 may be simplified for representative statistical values such as the average, maximum value, minimum value, or variance by including a command to calculate these representative statistical values in the query when reading out the records.
 ステップ744はさらに、ステップ750において使用したキーと同じキーを持つレコードが通信実績統計情報記憶部722に存在しているか否かに従って制御の流れを分岐させるステップ754を含む。ステップ744はさらに、ステップ754における判定が肯定的であるときに、そのキーを持つレコードを、ステップ752において算出された最新の統計値に従って更新しステップ744を終了するステップ756と、ステップ754における判定が否定的であるときに、ステップ750において使用した対象期間および対象地域をキーとし、ステップ752において算出した統計値を内容とする新たなレコードを通信実績統計情報記憶部722に追加してステップ744を終了するステップ758とを含む。 Step 744 further includes step 754, which branches the flow of control according to whether or not a record having the same key as the key used in step 750 exists in the communication performance statistical information storage unit 722. Step 744 further includes step 756, which updates the record having that key according to the latest statistical value calculated in step 752 when the determination in step 754 is positive, and terminates step 744, and step 758, which adds a new record to the communication performance statistical information storage unit 722 using the target period and target area used in step 750 as keys and the statistical value calculated in step 752 as content, and terminates step 744 when the determination in step 754 is negative.
 以上の説明は、図18に示す通信実績管理サーバ658の通信統計算出部720が実行するプログラムに関するものである。一方、図17に示す車載装置652の通信統計算出部700も、本質的には図20に示すものと同じ制御構造のプログラムを実行する。ただし、車載装置652の場合には、対象となる地域も限定され、経路提案の際に使用するグリッドの大きさも限定されるものと考えられる。したがって、図20に示すものと同様のプログラムを実行するときの日時の粒度および範囲の分割の粒度も比較的高くする。その結果、車載装置652のようにそれほど計算資源に恵まれていない装置であっても通信統計を安定して算出できる。 The above explanation relates to the program executed by the communication statistics calculation unit 720 of the communication record management server 658 shown in FIG. 18. Meanwhile, the communication statistics calculation unit 700 of the in-vehicle device 652 shown in FIG. 17 also executes a program with essentially the same control structure as that shown in FIG. 20. However, in the case of the in-vehicle device 652, the target area is limited, and the size of the grid used when proposing a route is also limited. Therefore, the granularity of the date and time and the granularity of the range division when executing a program similar to that shown in FIG. 20 are also made relatively high. As a result, even a device that is not blessed with many computational resources, such as the in-vehicle device 652, can stably calculate communication statistics.
 図21に、図18に示す通信実績送信部724としてコンピュータを機能させるためのプログラムの制御構造を示す。このプログラムは、通信実績管理サーバ658が外部の装置から、通信実績統計の送信要求を受信するたびに起動される。 FIG. 21 shows the control structure of a program for causing a computer to function as the communication history transmission unit 724 shown in FIG. 18. This program is started every time the communication history management server 658 receives a request to transmit communication history statistics from an external device.
 図21を参照して、このプログラムは、受信した送信要求のメッセージから、送信の対象となる日時、日時の粒度、範囲、および範囲の粒度を示す情報を抽出するステップ780を含む。日時の指定がない場合には、直近の単位時間が指定されたものとみなす。この場合の単位時間は日時の粒度により定まる。日時の粒度が指定されていない場合にはデフォルトの単位時間、例えば1時間を単位時間とする。範囲は必須である。範囲の粒度は例えば使用するジオハッシュのけた数により指定される。範囲の粒度が指定されていない場合には、指定された範囲の大きさに対する関数として範囲の粒度が定められる。 Referring to FIG. 21, this program includes a step 780 of extracting information indicating the date and time, date and time granularity, range, and range granularity of the target of transmission from the received transmission request message. If a date and time is not specified, the most recent unit time is assumed to be specified. In this case, the unit time is determined by the date and time granularity. If the date and time granularity is not specified, a default unit time, for example, one hour, is used. The range is required. The range granularity is specified, for example, by the number of digits of the geohash used. If the range granularity is not specified, the range granularity is determined as a function of the size of the specified range.
 このプログラムはさらに、ステップ780に続き、通信実績統計情報記憶部722から、ステップ780により抽出された日時、日時の粒度、範囲、および範囲の粒度に該当するレコードを読出すステップ782と、ステップ782において読出されたレコードに含まれる情報を所定のフォーマットに整形し、1または複数のパケットにより外部の装置に送信してこのプログラムの実行を終了するステップ784とを含む。 Furthermore, following step 780, this program includes step 782 of reading from the communication performance statistical information storage unit 722 a record that corresponds to the date and time, date and time granularity, range, and range granularity extracted in step 780, and step 784 of shaping the information contained in the record read in step 782 into a predetermined format and transmitting it to an external device in one or more packets, thereby terminating execution of this program.
 B.動作
 この実施形態においては、図17に示す車載装置652の通信実績記録部154が、定期的に通信実績情報を取得し、通信実績情報DB156に蓄積する。通信実績送信部158は、同様に通信実績情報を通信実績管理サーバ658に送信する。図18に示す通信実績管理サーバ658の通信実績取得部200は車載装置652を含む複数の車載装置から通信実績情報を取得し、通信実績情報記憶部202に蓄積する。
B. Operation In this embodiment, the communication history recording unit 154 of the in-vehicle device 652 shown in Fig. 17 periodically acquires communication history information and stores it in the communication history information DB 156. The communication history transmitting unit 158 similarly transmits the communication history information to the communication history management server 658. The communication history acquiring unit 200 of the communication history management server 658 shown in Fig. 18 acquires communication history information from multiple in-vehicle devices including the in-vehicle device 652, and stores it in the communication history information storage unit 202.
 図17を参照して、第4実施形態においては、車載装置652において、通信実績情報DB156に保存された通信実績情報に対して通信統計算出部700が一定のスケジュールに従って統計処理を行い、結果を通信実績統計情報DB702に格納する。 Referring to FIG. 17, in the fourth embodiment, in the in-vehicle device 652, the communication statistics calculation unit 700 performs statistical processing on the communication performance information stored in the communication performance information DB 156 according to a certain schedule, and stores the results in the communication performance statistical information DB 702.
 この場合のスケジュールとしては、上記した最小時間単位が経過するごとに1回だけ統計処理を実行するというスケジュールでもよいし、最小時間単位より長い所定期間が経過するごとに統計処理を実行するというスケジュールでもよい。ただし、第4実施形態においては階層的な統計をとる必要がある。そうした場合には、統計処理の実行時に、最小時間単位の処理だけではなく、より上層の統計も算出する。上層の統計を算出する場合には、通信実績情報DB156に蓄積された情報から直接算出してもよいし、通信実績統計情報DB702に格納されている、より下層の統計情報を使用してもよい。第4実施形態においては、上記したように通信統計算出部700は通信実績情報DB156の情報のみを使用する。また、通信統計算出部700による統計算出処理の負荷は、通信統計算出部720と比較すると小さい。一方、通信実績統計情報DB702に蓄積される統計情報は、比較的限定された地域における情報から求められる情報であり、時間的にも地理的にも通信実績統計情報記憶部722の記憶する統計情報と比較して粒度の高い統計情報に限定されることになる。 In this case, the schedule may be one in which the statistical processing is performed only once every minimum time unit described above, or one in which the statistical processing is performed every time a predetermined period longer than the minimum time unit has elapsed. However, in the fourth embodiment, it is necessary to take hierarchical statistics. In such a case, when performing statistical processing, not only the processing of the minimum time unit but also higher-level statistics are calculated. When calculating the higher-level statistics, they may be calculated directly from the information stored in the communication performance information DB 156, or lower-level statistical information stored in the communication performance statistical information DB 702 may be used. In the fourth embodiment, as described above, the communication statistics calculation unit 700 uses only the information in the communication performance information DB 156. In addition, the load of the statistical calculation processing by the communication statistics calculation unit 700 is smaller than that of the communication statistics calculation unit 720. On the other hand, the statistical information stored in the communication performance statistical information DB 702 is information obtained from information in a relatively limited area, and is limited to statistical information with a higher granularity in terms of time and geography compared to the statistical information stored in the communication performance statistical information storage unit 722.
 一方、図18に示す通信実績管理サーバ658においては、車載装置652と同様に一定のスケジュールに従って通信統計算出部720が通信実績情報記憶部202に蓄積された通信実績情報に対する統計処理を行い、得られた通信実績統計情報を通信実績統計情報記憶部722に格納する。 On the other hand, in the communication performance management server 658 shown in FIG. 18, the communication statistics calculation unit 720 performs statistical processing on the communication performance information stored in the communication performance information storage unit 202 according to a fixed schedule, similar to the in-vehicle device 652, and stores the obtained communication performance statistical information in the communication performance statistical information storage unit 722.
 例えば1日を単位とする統計処理を行う場合には、通常は24時間または12時間程度を1サイクルとして、管理対象となる範囲の各階層の各地域について、図20に制御構造を示すプログラムを起動する。例えば12時間を統計処理の1サイクルとすると、24時間の情報を2回処理することになる。最初の処理においては、最初の12時間の統計情報が算出される。2回目の処理においては、24時間の統計情報が算出され、12時間の情報に基づいて算出された統計情報がその情報により更新される。 For example, when performing statistical processing on a daily basis, a program with a control structure shown in Figure 20 is started for each region in each hierarchical level within the range to be managed, with one cycle usually being 24 or 12 hours. For example, if 12 hours is one cycle of statistical processing, then 24 hours of information will be processed twice. In the first process, statistical information for the first 12 hours is calculated. In the second process, statistical information for the 24 hours is calculated, and the statistical information calculated based on the 12 hours of information is updated with that information.
 図20に示すプログラムは複数個、同時に起動でき、並列的な処理が可能である。統計情報算出の際の日時の粒度が下がり、範囲が広がってかつ範囲の粒度も下がると、統計算出の対象数は非常に大きくなる。そうした場合には、統計処理を複数のプロセッサで実行し、かつ各プロセッサにおいてはさらにGPUを用いて並列計算を行うことにより必要な統計処理を適時に実行できる。通信実績管理サーバ658が利用できる計算資源は需要に応じて大きくできる。その結果、外部装置からの需要が大きくなっても柔軟に対応することが可能になる。 Multiple programs shown in FIG. 20 can be run simultaneously, enabling parallel processing. If the granularity of the date and time when calculating statistical information decreases, the range increases, and the granularity of the range also decreases, the number of objects for statistical calculation becomes very large. In such cases, the statistical processing can be performed on multiple processors, and each processor can further use a GPU to perform parallel calculations, allowing the required statistical processing to be performed in a timely manner. The computing resources available to the communication history management server 658 can be increased according to demand. As a result, it becomes possible to flexibly respond to increased demand from external devices.
 経路算出部704が走行経路を算出するときには、現在位置と目的地とを指定して通信実績取得部160に対して該当領域の通信実績の取得を要求する。通信実績取得部160は、通信実績統計情報DB702に記憶されている情報の中から、指定された領域に関する統計処理がされた通信実績統計情報が経路算出部704に入力されるようにする。経路算出部704は、通信実績統計情報DB702から得た情報が指定された領域における走行経路の算出に十分ならば直ちに経路算出処理を実行し、さもなければ指定された領域に関する通信実績統計情報を通信実績管理サーバ658から取得するよう通信実績取得部160に要求する。通信実績取得部160は、要求された情報が得られるように、通信実績管理サーバ658の通信実績送信部754に対して統計情報の送信要求を送信する。 When the route calculation unit 704 calculates a driving route, it specifies the current position and destination and requests the communication history acquisition unit 160 to acquire communication history for the relevant area. The communication history acquisition unit 160 inputs communication history statistical information that has been subjected to statistical processing for the specified area from the information stored in the communication history statistical information DB 702 to the route calculation unit 704. If the information obtained from the communication history statistical information DB 702 is sufficient for calculating the driving route in the specified area, the route calculation unit 704 immediately executes the route calculation process, and if not, requests the communication history acquisition unit 160 to acquire communication history statistical information for the specified area from the communication history management server 658. The communication history acquisition unit 160 transmits a request to transmit statistical information to the communication history transmission unit 754 of the communication history management server 658 so that the requested information can be obtained.
 この送信要求は、統計情報が必要な時間的範囲を特定する情報および地理的範囲を特定する情報、並びにそれらの粒度を特定する情報を含む。例えば通信統計算出部700に記憶された統計情報がカバーしていない範囲の情報が必要な場合には、通信実績取得部160は少なくともその範囲に関する統計情報を通信実績管理サーバ658に要求する。通信統計算出部700に記憶された情報によっては、細かい地域別の通信状況が判別できない場合には、通信実績取得部160はより粒度の低い分割領域の統計情報を通信実績管理サーバ658に要求する。 This transmission request includes information specifying the time range and geographic range for which statistical information is required, as well as information specifying their granularity. For example, if information is required for a range not covered by the statistical information stored in the communication statistics calculation unit 700, the communication performance acquisition unit 160 requests statistical information relating to at least that range from the communication performance management server 658. If the information stored in the communication statistics calculation unit 700 is not sufficient to determine the detailed communication conditions for each region, the communication performance acquisition unit 160 requests statistical information for a divided area with lower granularity from the communication performance management server 658.
 図18に示す通信実績管理サーバ658の通信実績送信部724はこの送信要求を受信すると、図21示すプログラムを実行する。すなわち、通信実績送信部724は、送信要求のメッセージから、送信の対象となる日時、日時の粒度、範囲、および範囲の粒度を示す情報を抽出する(ステップ780)。これら情報の指定がない場合には、上記したとおり、通信実績送信部724はデフォルトの値を用いる。通信実績送信部724は、このようにして送信要求から得た情報に該当するレコードを通信実績統計情報記憶部722から読出す(ステップ782)。 When the communication history sending unit 724 of the communication history management server 658 shown in FIG. 18 receives this transmission request, it executes the program shown in FIG. 21. That is, the communication history sending unit 724 extracts information indicating the date and time, date and time granularity, range, and range granularity to be transmitted from the transmission request message (step 780). If this information is not specified, as described above, the communication history sending unit 724 uses default values. The communication history sending unit 724 reads out a record corresponding to the information obtained from the transmission request in this way from the communication history statistical information storage unit 722 (step 782).
 通信実績送信部724はこのとき、受信した送信要求に特定の通信装置情報、通信回線情報、または通信事業者情報が含まれている場合には、通信実績統計情報DB702から情報を読出すときに、それらと一致する通信装置情報、通信回線情報、および通信事業者情報を持つレコード(通信環境情報)のみを抽出する。通信実績送信部724はさらに、それらレコードの通信品質メトリクスに関する値を統計処理し、統計的な代表値を算出する。 If the received transmission request contains specific communication device information, communication line information, or communication carrier information, the communication performance transmission unit 724 extracts only records (communication environment information) that have matching communication device information, communication line information, and communication carrier information when reading information from the communication performance statistical information DB 702. The communication performance transmission unit 724 further performs statistical processing on values related to the communication quality metrics of those records to calculate statistical representative values.
 通信実績送信部724は、読出されたレコードに含まれる情報、または統計的な処理がされた情報を所定のフォーマットに整形し、1または複数のパケットにより車載装置652の通信実績取得部160に送信する(ステップ784)。 The communication history transmission unit 724 formats the information contained in the read record or the statistically processed information into a specified format and transmits it to the communication history acquisition unit 160 of the in-vehicle device 652 in one or more packets (step 784).
 通信実績取得部160は、この統計情報を通信実績送信部724から受信し、図17の通信実績統計情報DB702に追加する。追加された情報は通信実績統計情報DB702から経路算出部704に入力される。経路算出部704は、こうして得た通信実績の統計情報を使用して、現在位置から目的地までの経路を、指定された条件に従って算出する。 The communication history acquisition unit 160 receives this statistical information from the communication history transmission unit 724 and adds it to the communication history statistical information DB 702 in FIG. 17. The added information is input from the communication history statistical information DB 702 to the route calculation unit 704. The route calculation unit 704 uses the communication history statistical information thus obtained to calculate the route from the current position to the destination according to specified conditions.
 これ以外の各部の動作は、第1実施形態から第3実施形態までにおける車載装置の動作と同じである。 The operation of each other part is the same as that of the in-vehicle device in the first to third embodiments.
 C.変形例
 第4実施形態においては、通信装置、通信回線、または通信事業者などの通信環境に基づく統計メトリクスの算出は行っていない。これらに関してはもともと種類が多く、変化することも多いため、継続的な統計算出には向いていないためである。またそれら情報により通信実績情報を細分化した場合、統計処理のための計算量が増大してしまうという問題もあるためである。しかし、例えば車載装置652が特定の通信装置、通信回線、または通信事業者を使用している場合には、それらを考慮した統計メトリクスを使用した方が通信状態の推定の信頼性は高くなると考えられる。
C. Modifications In the fourth embodiment, statistical metrics based on the communication environment, such as the communication device, communication line, or communication carrier, are not calculated. This is because there are many types of these and they change frequently, making them unsuitable for continuous statistical calculation. In addition, if the communication performance information is subdivided based on these pieces of information, there is a problem that the amount of calculation required for statistical processing increases. However, for example, if the in-vehicle device 652 uses a specific communication device, communication line, or communication carrier, it is considered that the reliability of the estimation of the communication state will be higher if statistical metrics that take these into consideration are used.
 そこでこの変形例においては、通信実績管理サーバは、通常は第4実施形態と同様の動作をするが、送信要求に通信環境に関する情報が付されている場合には、通信実績統計情報記憶部722に記憶されている統計情報ではなく、通信実績情報記憶部202に記憶されている通信実績情報の明細のうち、指定された条件に合致するレコードのみを抽出する。読み出されたレコードには統計処理がされ、その結果が車載装置に送信される。 In this modified example, the communication history management server normally operates in the same way as in the fourth embodiment, but when information about the communication environment is attached to the transmission request, it extracts only records that meet the specified conditions from the details of the communication history information stored in the communication history information storage unit 202, rather than the statistical information stored in the communication history statistical information storage unit 722. Statistical processing is performed on the retrieved records, and the results are sent to the in-vehicle device.
 図22にこの変形例の通信実績管理サーバ790のブロック図を示す。通信実績管理サーバ790が図18に示す通信実績管理サーバ658と異なるのは、図18に示す通信実績送信部724に代えて、送信要求を受信し、送信要求に通信環境に関する情報が付されているか否かに従って異なる処理を実行する通信実績送信部792を含む点である。通信実績送信部792は、通常は第4実施形態における通信実績送信部724と同様、通信実績統計情報記憶部722から情報を読出して車載装置に送信する。しかし通信実績送信部792は、送信要求が通信環境に関する情報(例えば通信回線もしくは通信事業者またはこれらの組み合わせ)を含む場合には、これと異なる処理をする。 FIG. 22 shows a block diagram of a communication history management server 790 of this modified example. The communication history management server 790 differs from the communication history management server 658 shown in FIG. 18 in that, instead of the communication history transmission unit 724 shown in FIG. 18, it includes a communication history transmission unit 792 that receives a transmission request and executes different processing depending on whether information about the communication environment is attached to the transmission request. The communication history transmission unit 792 normally reads information from the communication history statistical information storage unit 722 and transmits it to the in-vehicle device, similar to the communication history transmission unit 724 in the fourth embodiment. However, when the transmission request includes information about the communication environment (for example, a communication line or a communication carrier, or a combination of these), the communication history transmission unit 792 performs different processing.
 通信実績管理サーバ790はさらに、通信環境に関する情報が送信要求に付されているときに、通信実績送信部792からの指示に応答して通信実績情報記憶部202から指定された日時および範囲、ならびに通信環境に関する情報に整合する通信環境情報を含むレコードを読出し、同時に、読み出されたレコードを対象に通信品質メトリクスに関する統計処理を行って通信実績送信部792に返す処理を行う随時通信統計処理算出部794を含む。 The communication history management server 790 further includes an on-demand communication statistical processing calculation unit 794 that, in response to an instruction from the communication history transmission unit 792 when information regarding the communication environment is attached to a transmission request, reads records from the communication history information storage unit 202 that contain the specified date and time and range, as well as communication environment information that matches the information regarding the communication environment, and at the same time performs statistical processing on the communication quality metrics of the read records and returns the processing to the communication history transmission unit 792.
 すなわち、通信実績送信部792は、通信環境に関する情報が送信要求に付されているときには、通信実績統計情報記憶部722から情報を得るのではなく、随時通信統計処理算出部794から情報を得る。 In other words, when information about the communication environment is attached to a transmission request, the communication history transmission unit 792 does not obtain the information from the communication history statistical information storage unit 722, but obtains the information from the communication statistical processing calculation unit 794 at any time.
 このような構成とすることにより、この変形例に係る通信実績管理サーバ790は、通常は通信実績統計情報記憶部722の情報を使用して高速に通信品質メトリクスを車載装置に送信できる。それに加えて、送信要求に通信環境を特定する情報が付されているときには、通信実績管理サーバ790は、その特定の通信環境に合致する通信実績のみから得た通信品質メトリクスを車載装置に送信できる。その結果、統計処理の負荷の増大を防止しながら、車載装置に送信する統計品質メトリクスの精度を高めることができる。 By configuring in this way, the communication history management server 790 according to this modified example can normally use information from the communication history statistical information storage unit 722 to transmit communication quality metrics to the in-vehicle device at high speed. In addition, when information specifying the communication environment is attached to the transmission request, the communication history management server 790 can transmit to the in-vehicle device communication quality metrics obtained only from communication history that matches that specific communication environment. As a result, it is possible to improve the accuracy of the statistical quality metrics transmitted to the in-vehicle device while preventing an increase in the load of statistical processing.
 5.第5実施形態
 第5実施形態は、走行経路の提案時の表示態様に特徴がある。そのための車載装置の構成は、例えば図3に示す車載装置102と同様である。ただしこの実施形態においては、図3に示すグリッド描画部166のように地図にグリッドを重畳して示すのではない。第5実施形態においては、それに代えて、図23に示すように、提案される走行経路を、その走行経路が経由する各グリッドにおいて利用可能と想定される通信速度に応じて異なる態様により表示する提案経路表示部(図示せず)を使用する。
5. Fifth embodiment The fifth embodiment is characterized by the display mode when a driving route is proposed. The configuration of the in-vehicle device for this purpose is the same as that of the in-vehicle device 102 shown in FIG. 3, for example. However, in this embodiment, a grid is not superimposed on a map as in the grid drawing unit 166 shown in FIG. 3. Instead, the fifth embodiment uses a proposed route display unit (not shown) that displays a proposed driving route in a different mode depending on the communication speed assumed to be available in each grid through which the driving route passes, as shown in FIG. 23.
 図23を参照して、第5実施形態において、タッチパネル型表示装置116の表示800は、走行経路表示810と、第1ルート予測画像表示812および第2ルート予測画像表示814とを含む。 Referring to FIG. 23, in the fifth embodiment, the display 800 of the touch panel display device 116 includes a driving route display 810, a first route prediction image display 812, and a second route prediction image display 814.
 走行経路表示810には地図が表示され、その上に車両画像816の現在位置および目的地が、地図上に吹き出し820および822として重畳して表示される。グリッドは表示されない。代わりに、走行経路830および832の画像の各部が、その部分が属するグリッドにおける通信速度に応じた色相および明度をもって表示される。典型的には、色相は赤色であり、通信速度が高ければ高く、低ければ低くなるように、通信速度の単調関数に応じて明度が調整される。ただし図23においては、図面の制約により、そうした表示態様の変化は示されていない。 The driving route display 810 displays a map, on which the current position and destination of the vehicle image 816 are superimposed as speech bubbles 820 and 822. No grid is displayed. Instead, each part of the image of the driving routes 830 and 832 is displayed with a hue and brightness that corresponds to the communication speed of the grid to which it belongs. Typically, the hue is red, and the brightness is adjusted according to a monotonic function of the communication speed, so that the higher the communication speed, the higher the brightness, and the lower the brightness, the lower the communication speed. However, due to the constraints of the drawing, such changes in the display mode are not shown in Figure 23.
 また、第5実施形態においては、各走行経路に対して、通信速度の代表値(例えば平均ビットレート、サービスにより指定された最低限のビットレートが利用できる経路長の経路全体に対する割合など)が、各走行経路に関連付けて表示される。図23における吹き出し824および826などにより示される「通信品質満足度」がその例である。例えば吹き出し824によれば、第1ルート(1番目の走行経路)における通信品質満足度は75%である。これは、第1の走行経路において、サービスにより指定されたビットレートが維持できる部分の経路長の合計が、第1の走行経路の全長の75%に相当することを意味している。第2の走行経路においてはこの値が25%となっている。すなわち、第1の走行経路においては、その全長の3/4において想定される最高の品質によりサービスが利用できるが、第2の走行経路においては1/4しか利用できないということである。このような代表値という数値を表示することにより、各ルートにおける通信品質がユーザにとって理解しやすくなるという効果がある。 In the fifth embodiment, a representative value of the communication speed (for example, the average bit rate, the ratio of the route length where the minimum bit rate specified by the service can be used to the entire route, etc.) is displayed in association with each driving route. An example is the "communication quality satisfaction" shown by the speech bubbles 824 and 826 in FIG. 23. For example, according to the speech bubble 824, the communication quality satisfaction rate for the first route (first driving route) is 75%. This means that the total route length of the part of the first driving route where the bit rate specified by the service can be maintained corresponds to 75% of the total length of the first driving route. For the second driving route, this value is 25%. In other words, for the first driving route, the service can be used with the highest quality expected for 3/4 of the total length, but for the second driving route, it can only be used for 1/4. By displaying such a representative value, it is possible to easily understand the communication quality for each route for the user.
 第1ルート予測画像表示812および第2ルート予測画像表示814は、各走行経路を走行中に利用するサービスが、映像のストリーミングである場合に、各走行経路において表示される画像の予想画質を画像の形により表す。この例においては、サンプル画像を予め準備しておく。予想画質は、画像をその本来の解像度をもって受信できる通信速度に対する、各走行経路を走行したときの予測通信速度の代表値の割合に従って、サンプル画像のピクセル数を削減した画像により表される。上記したように各ルートにおける通信品質を数値により表せば、ユーザにとってその相違を理解することはできるが、直感的にその相違をとらえることはむずかしい。しかし第1ルート予測画像表示812および第2ルート予測画像表示814により示すように、画像の違いとして各走行経路における通信品質を表すことにより、ユーザにとっては通信品質の違いが直感的に把握しやすくなるという効果がある。なおこの例においては吹き出しを用いているが、吹き出しではなく、例えば通信品質の表示と、対応する走行経路とを結ぶ線などを表示することにより、走行経路と通信品質の表示とを対応付けるようにしてもよい。 The first route prediction image display 812 and the second route prediction image display 814 show the predicted image quality of the image displayed on each driving route in the form of an image when the service used while driving on each driving route is video streaming. In this example, a sample image is prepared in advance. The predicted image quality is shown by an image in which the number of pixels of the sample image is reduced according to the ratio of the representative value of the predicted communication speed when driving on each driving route to the communication speed at which the image can be received with its original resolution. If the communication quality on each route is shown by a numerical value as described above, the user can understand the difference, but it is difficult to intuitively grasp the difference. However, as shown by the first route prediction image display 812 and the second route prediction image display 814, by showing the communication quality on each driving route as a difference in an image, it is possible to make it easier for the user to intuitively grasp the difference in communication quality. Note that in this example, speech bubbles are used, but instead of speech bubbles, for example, a line connecting the display of communication quality and the corresponding driving route may be displayed to associate the driving route with the display of communication quality.
 こうした効果は、サービスの種類にあわせてユーザに提示することが望ましい。例えば、ユーザの利用しようとするサービスが映像ではなく音声に関するものならば、サンプル画像ではなくサンプル音声またはサンプル音楽に、通信速度に応じたノイズを重畳することが考えられる。 It is desirable to present such effects to the user in accordance with the type of service. For example, if the service the user is trying to use is related to audio rather than video, it would be possible to superimpose noise according to the communication speed onto a sample audio or music rather than a sample image.
 図24に、第5実施形態に関して上記した経路提案処理部を実現するコンピュータプログラムの制御構造を示す。図24を参照して、このプログラムは、目的地を設定するステップ850と、車両の現在位置を取得するステップ852と、経路を算出するときの制約条件の指定をユーザから受けるステップ854とを含む。 FIG. 24 shows the control structure of a computer program that realizes the route proposal processing unit described above with respect to the fifth embodiment. Referring to FIG. 24, this program includes step 850 for setting a destination, step 852 for acquiring the current position of the vehicle, and step 854 for receiving from the user specification of constraint conditions for calculating a route.
 このプログラムはさらに、ステップ856において指定された制約条件の下に、ステップ850および852において指定された現在位置から目的地までの走行経路を探索するステップ856と、ステップ856において探索された走行経路の各々を図23の走行経路表示810に示すように表示するステップ858と、走行経路の各々に対して、その通信品質を表す代表値を計算するステップ860と、走行経路の各々に対して、ステップ860において計算された代表値を、対応する走行経路に接する凸部を持つ吹き出し824および826とともに表示するステップ862とを含む。 The program further includes step 856 of searching for a driving route from the current position specified in steps 850 and 852 to the destination under the constraints specified in step 856, step 858 of displaying each of the driving routes searched for in step 856 as shown in driving route display 810 of FIG. 23, step 860 of calculating a representative value representing the communication quality for each of the driving routes, and step 862 of displaying the representative value calculated in step 860 for each of the driving routes together with speech bubbles 824 and 826 having convex portions that contact the corresponding driving routes.
 このプログラムはさらに、サービスが映像に関するものであるときのように、通信画質を表すための画像を表示すべきか否かについて判定し、その結果に従って制御の流れを分岐させるステップ864と、ステップ864における判定が肯定的なときに、各走行経路に対してステップ860において計算された代表値に基づき、予め準備したサンプル画像を加工するステップ866と、ステップ866において加工されたサンプル画像を図23における第1ルート予測画像表示812および第2ルート予測画像表示814により示されるように、走行経路表示810に対して所定の位置に表示してこのプログラムの実行を終了するステップ868とを含む。ステップ864において画像表示は不要と判定されたときには、ステップ866および868は実行されない。 The program further includes step 864 of judging whether or not an image representing the communication image quality should be displayed, such as when the service is related to video, and branching the flow of control according to the result of the judgment, step 866 of processing a sample image prepared in advance based on the representative value calculated in step 860 for each driving route when the judgment in step 864 is positive, and step 868 of displaying the sample image processed in step 866 at a predetermined position on the driving route display 810, as shown by the first route predicted image display 812 and the second route predicted image display 814 in FIG. 23, and terminating the execution of the program. When it is judged in step 864 that image display is unnecessary, steps 866 and 868 are not executed.
 図25を参照して、図24のステップ858は、図9に示すものと同じグリッド描画の処理を実行するステップ900と、ステップ900において得られたグリッドの各々に対してステップ904を実行するステップ902とを含む。 Referring to FIG. 25, step 858 of FIG. 24 includes step 900, which performs the same grid drawing process as shown in FIG. 9, and step 902, which performs step 904 for each of the grids obtained in step 900.
 ステップ904は、処理対象のグリッドと各走行経路との重複部分を算出するステップ910と、ステップ910において算出された各重複部分について、重複部分を半透明に、それ以外の部分を透明に表示するように各画素のアルファ値を設定してステップ904を終了するステップ912とを含む。 Step 904 includes step 910, which calculates the overlapping portion between the grid to be processed and each driving route, and step 912, which sets the alpha value of each pixel for each overlapping portion calculated in step 910 so that the overlapping portion is displayed semi-transparently and the remaining portion is displayed transparently, and then ends step 904.
 この処理により、グリッドの内、走行経路と重複する部分を持たないものは透明に表示される。すなわち地図がそのまま表示される。グリッドの内、走行経路と重複する部分を持つものについては、その重複部分はステップ900の処理において設定された色相および明度をもって表示されるが、重複部分以外は透明に表示される。その結果、各走行経路の各部は、その部分における通信品質(通信速度)に応じて異なった態様(色相および明度)をもって表示される。走行経路以外の部分には地図が表示される。すなわち、図23の走行経路表示810により示すような表示が得られる。 By this process, any part of the grid that does not overlap with the driving route is displayed transparently. In other words, the map is displayed as is. For any part of the grid that overlaps with the driving route, the overlapping part is displayed with the hue and brightness set in the process of step 900, while the non-overlapping part is displayed transparently. As a result, each part of each driving route is displayed in a different manner (hue and brightness) according to the communication quality (communication speed) in that part. The map is displayed in the parts other than the driving route. In other words, a display such as that shown by driving route display 810 in Figure 23 is obtained.
 以上のように、この第5実施形態によっても、提案される走行経路における通信品質が視覚的に表示され、ユーザは、利用しようとするサービスと目的地までの所要時間とにあわせて、最適と考える走行経路を選択できる。 As described above, this fifth embodiment also visually displays the communication quality along the proposed driving route, allowing the user to select the driving route that they consider optimal based on the service they wish to use and the time required to reach the destination.
 6.コンピュータによる実現
 A)車載装置のハードウェア
 図2などに示される、この開示に係る車載装置は通信装置、および、MCUにより実行されるプログラムを記憶する記憶装置などを含むMCU(Micro Controller Unit)を含む。MCUの各構成は、いずれもハードウェアである。図26に、MCU950の構成をブロック形式により示す。
6. Implementation by a Computer A) Hardware of the Vehicle-Mounted Device The vehicle-mounted device according to this disclosure, as shown in FIG. 2 and the like, includes a Micro Controller Unit (MCU) including a communication device and a storage device for storing a program executed by the MCU. Each component of the MCU is hardware. FIG. 26 shows the configuration of the MCU 950 in block form.
 図26を参照して、MCU950は、プロセッサであるMPU952と、MPU952が接続される高速バス978と、高速バス978に接続されたSRAM954と、高速バス978に接続された、フラッシュメモリ956と、高速バス978に接続されたROM958とを含む。SRAM954には、プログラムの実行に必要なデータなどが保持される。フラッシュメモリ956には、第1実施形態から第5実施形態に係る車載装置の各機能を実現するためのプログラム976が記憶される。ROM958にはMPU952のブートアッププログラムなどが記憶される。 Referring to FIG. 26, the MCU 950 includes an MPU 952 which is a processor, a high-speed bus 978 to which the MPU 952 is connected, an SRAM 954 connected to the high-speed bus 978, a flash memory 956 connected to the high-speed bus 978, and a ROM 958 connected to the high-speed bus 978. The SRAM 954 holds data necessary for executing programs, etc. The flash memory 956 stores a program 976 for realizing each function of the in-vehicle device according to the first to fifth embodiments. The ROM 958 stores a boot-up program for the MPU 952, etc.
 MCU950はさらに、高速バス978にブリッジ962を介して接続された低速バス960と、いずれも低速バス960に接続されたシリアルI/F964、ADC966、タイマ・カウンタ968、クロック発生器970、電源制御部972および汎用I/F974を含む。 The MCU 950 further includes a low-speed bus 960 connected to a high-speed bus 978 via a bridge 962, and a serial I/F 964, an ADC 966, a timer/counter 968, a clock generator 970, a power supply control unit 972, and a general-purpose I/F 974, all of which are connected to the low-speed bus 960.
 なお、MCUの動作はよく知られており、実施形態において意味があるのはその実行するプログラムの機能なので、以下説明においてはMCU自体の動作についてはここでは繰返さない。 The operation of the MCU is well known, and since what is meaningful in the embodiment is the function of the program it executes, the operation of the MCU itself will not be repeated in the following explanation.
 B)サーバのハードウェア
 図27は、上記実施形態に係る通信実績管理サーバ110および408、ならびに通信実績管理サーバ658などを実現するコンピュータシステムの一例の外観図である。図28は、図27に示すコンピュータシステムのハードウェア構成の一例を示すブロック図である。
B) Server Hardware Fig. 27 is an external view of an example of a computer system that realizes the communication history management servers 110 and 408 and the communication history management server 658 according to the above embodiments. Fig. 28 is a block diagram showing an example of the hardware configuration of the computer system shown in Fig. 27.
 図27を参照して、このコンピュータシステム1050は、DVDドライブ1102が接続されるコンピュータ1070と、いずれもコンピュータ1070に接続された、ユーザと対話するためのキーボード1074、マウス1076、およびモニタ1072とを含む。これらはユーザ対話が必要となったときのための構成の一例であって、ユーザ対話に利用できる一般のハードウェアおよびソフトウェア(例えばタッチパネル、音声入力、ポインティングデバイス一般)であればどのようなものも利用できる。 Referring to FIG. 27, this computer system 1050 includes a computer 1070 to which a DVD drive 1102 is connected, and a keyboard 1074, a mouse 1076, and a monitor 1072 for interacting with a user, all of which are connected to the computer 1070. These are one example of a configuration for when user interaction becomes necessary, and any general hardware and software that can be used for user interaction (e.g., a touch panel, voice input, pointing devices in general) can be used.
 図28を参照して、コンピュータ1070は、CPU1090と、GPU1092と、CPU1090、GPU1092、およびDVDドライブ1102に接続されたバス1110と、バス1110に接続され、コンピュータ1070のブートアッププログラムなどを記憶するROM1096と、バス1110に接続され、プログラムを構成する命令、システムプログラム、および作業データなどを記憶するRAM1098と、バス1110に接続された不揮発性メモリであるSSD1100とを含む。SSD1100は、CPU1090およびGPU1092が実行するプログラム、並びにCPU1090およびGPU1092が実行するプログラムが使用するデータなどを記憶する。コンピュータ1070はさらに、他端末との通信を可能とするネットワーク1086への接続を提供するネットワークI/F1108と、USBメモリ1084が着脱可能で、USBメモリ1084とコンピュータ1070内の各部との通信を提供するUSBポート1106とを含む。 28, computer 1070 includes CPU 1090, GPU 1092, bus 1110 connected to CPU 1090, GPU 1092, and DVD drive 1102, ROM 1096 connected to bus 1110 and storing a boot-up program for computer 1070, RAM 1098 connected to bus 1110 and storing instructions constituting programs, system programs, working data, and the like, and SSD 1100 which is a non-volatile memory connected to bus 1110. SSD 1100 stores programs executed by CPU 1090 and GPU 1092, as well as data used by programs executed by CPU 1090 and GPU 1092, and the like. The computer 1070 further includes a network I/F 1108 that provides a connection to a network 1086 that enables communication with other terminals, and a USB port 1106 to which a USB memory 1084 can be attached and which provides communication between the USB memory 1084 and each part within the computer 1070.
 コンピュータ1070はさらに、マイクロフォン1082、およびスピーカ1080などの外部装置とバス1110とに接続され、CPU1090により生成されRAM1098またはSSD1100に保存された音声信号、映像信号およびテキストデータをCPU1090の指示に従って読出し、アナログ変換および増幅処理をしてスピーカ1080を駆動したり、マイクロフォン1082からのアナログの音声信号をデジタル化してRAM1098またはSSD1100の、CPU1090により指定される任意のアドレスに保存したりするための入出力I/F1104を含む。 Computer 1070 further includes an input/output I/F 1104 that is connected to external devices such as microphone 1082 and speaker 1080 and bus 1110, and that reads out audio signals, video signals, and text data generated by CPU 1090 and stored in RAM 1098 or SSD 1100 according to instructions from CPU 1090, converts the signals to analog, amplifies them, and drives speaker 1080, and digitizes analog audio signals from microphone 1082 and stores them in RAM 1098 or SSD 1100 at any address specified by CPU 1090.
 上記各実施形態において通信実績管理サーバ110、408および658などを実現するためのプログラム、パラメータ、および第5実施形態において使用したサンプル画像などは、いずれも例えば図28に示すSSD1100、RAM1098、DVD1078またはUSBメモリ1084、若しくはネットワークI/F1108およびネットワーク1086を介して接続された図示しない外部装置の記憶媒体などに格納される。典型的には、これらのデータおよびパラメータなどは、例えば外部からSSD1100に書込まれコンピュータ1070による実行時にはRAM1098にロードされる。 The programs and parameters for implementing the communication history management servers 110, 408 and 658 in the above embodiments, as well as the sample images used in the fifth embodiment, are all stored, for example, in the SSD 1100, RAM 1098, DVD 1078 or USB memory 1084 shown in FIG. 28, or in a storage medium of an external device (not shown) connected via the network I/F 1108 and network 1086. Typically, these data and parameters are written, for example, from outside into the SSD 1100, and loaded into the RAM 1098 when executed by the computer 1070.
 コンピュータ1070との協働により上記した実施形態に係る各部の機能を実現するプログラムは、それら機能を実現するようコンピュータ1070を動作させるように記述され配列された複数の命令を含む。この命令を実行するのに必要な基本的機能のいくつかはコンピュータ1070上において動作するオペレーティングシステム(OS(Operating System))若しくはサードパーティのプログラム、またはコンピュータ1070にインストールされる各種ツールキットのモジュールにより提供される。したがって、このプログラムはこの実施形態のシステムおよび方法を実現するのに必要な機能全てを必ずしも含まなくてよい。このプログラムは、命令の中において、所望の結果が得られるように制御されたやり方により適切な機能または「プログラミング・ツール・キット」の機能を静的にリンクすることによって、またはプログラムの実行時に動的にそれら機能に動的にリンクすることにより、上記した各装置およびその構成要素としての動作を実行する命令のみを含んでいればよい。そのためのコンピュータ1070の動作方法は周知なので、ここでは繰返さない。 A program that realizes the functions of each part according to the above-mentioned embodiment in cooperation with the computer 1070 includes a plurality of instructions written and arranged to operate the computer 1070 to realize those functions. Some of the basic functions required to execute the instructions are provided by the operating system (OS (Operating System)) or third party programs that run on the computer 1070, or by modules of various tool kits installed on the computer 1070. Thus, the program does not necessarily include all of the functions required to realize the system and method of this embodiment. The program need only include instructions that perform the operations of each of the above-mentioned devices and their components by statically linking appropriate functions or functions of a "programming tool kit" in a controlled manner to obtain the desired results, or by dynamically linking to those functions when the program is executed. The method of operating the computer 1070 for this purpose is well known, so it will not be repeated here.
 なお、GPU1092は並列処理を行うことが可能であり、例えば経路探索処理および統計処理などに伴う多量の計算を同時並列的またはパイプライン的に実行できる。例えばプログラムのコンパイル時にプログラム中において発見された並列的計算要素、またはプログラムの実行時に発見された並列的計算要素は、随時、CPU1090からGPU1092にディスパッチされ、実行され、その結果が直接に、またはRAM1098の所定アドレスを介してCPU1090に返され、プログラム中の所定の変数に代入される。 The GPU 1092 is capable of parallel processing, and can execute large amounts of calculations, such as those involved in route search processing and statistical processing, simultaneously in parallel or in a pipelined manner. For example, parallel calculation elements discovered in a program when the program is compiled, or parallel calculation elements discovered when the program is executed, are dispatched from the CPU 1090 to the GPU 1092 as needed, and executed, with the results being returned to the CPU 1090 directly or via a specified address in the RAM 1098, and substituted for a specified variable in the program.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、開示の詳細な説明の記載により示されるわけではなく、請求の範囲の各請求項によって示され、請求の範囲の文言と均等の意味および範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present disclosure is indicated not by the detailed description of the disclosure, but by each claim in the claims, and is intended to include all modifications within the scope and meaning equivalent to the wording of the claims.
50 経路提案画面
60 車両
62 現在位置
64 目的地
66 第1経路
68 第2経路
100、400、500 車両支援システム
102、104、106、402、404、406、502、504、506、652、654、656 車載装置
108 サーバ
110、408、658 通信実績管理サーバ
112 センサ
114 GNSS受信器
116 タッチパネル型表示装置
150、550 通信部
152 CAN
154 通信実績記録部
156 通信実績情報DB
158、204、554、724 通信実績送信部
160、200、450 通信実績取得部
162 運転部
164、452、556、704 経路算出部
166 グリッド描画部
202 通信実績情報記憶部
552 通信実績比較部
650 運転支援システム
700、720 通信統計算出部
702 通信実績統計情報DB
722 通信実績統計情報記憶部
800 表示
810 走行経路表示
812 第1ルート予測画像表示
814 第2ルート予測画像表示
816 車両画像
820、822、824、826 吹き出し
830 走行経路
950 MCU
952 MPU
954 SRAM
956 フラッシュメモリ
958、1096 ROM
960 低速バス
962 ブリッジ
964 シリアルI/F
966 ADC
968 タイマ・カウンタ
970 クロック発生器
972 電源制御部
974 汎用I/F
976 プログラム
978 高速バス
1050 コンピュータシステム
1070 コンピュータ
1072 モニタ
1074 キーボード
1076 マウス
1078 DVD
1080 スピーカ
1082 マイクロフォン
1084 USBメモリ
1086 ネットワーク
1090 CPU
1092 GPU
1098 RAM
1100 SSD
1102 DVDドライブ
1104 入出力I/F
1106 USBポート
1108 ネットワークI/F
1110 バス
 
50 Route proposal screen 60 Vehicle 62 Current position 64 Destination 66 First route 68 Second route 100, 400, 500 Vehicle assistance system 102, 104, 106, 402, 404, 406, 502, 504, 506, 652, 654, 656 Vehicle-mounted device 108 Server 110, 408, 658 Communication record management server 112 Sensor 114 GNSS receiver 116 Touch panel type display device 150, 550 Communication unit 152 CAN
154 Communication record recording unit 156 Communication record information DB
158, 204, 554, 724 Communication record transmission unit 160, 200, 450 Communication record acquisition unit 162 Driving unit 164, 452, 556, 704 Route calculation unit 166 Grid drawing unit 202 Communication record information storage unit 552 Communication record comparison unit 650 Driving support system 700, 720 Communication statistics calculation unit 702 Communication record statistical information DB
722 Communication performance statistical information storage unit 800 Display 810 Driving route display 812 First route prediction image display 814 Second route prediction image display 816 Vehicle images 820, 822, 824, 826 Speech bubble 830 Driving route 950 MCU
952 MPU
954 SRAM
956 Flash memory 958, 1096 ROM
960 Low-speed bus 962 Bridge 964 Serial I/F
966 ADC
968 Timer/Counter 970 Clock Generator 972 Power Supply Control Unit 974 General Purpose I/F
976 Program 978 High-speed bus 1050 Computer system 1070 Computer 1072 Monitor 1074 Keyboard 1076 Mouse 1078 DVD
1080 Speaker 1082 Microphone 1084 USB memory 1086 Network 1090 CPU
1092 GPU
1098 RAM
1100 SSD
1102 DVD drive 1104 Input/output I/F
1106 USB port 1108 Network I/F
1110 Bus

Claims (9)

  1.  位置情報と、日時情報と、前記位置情報により特定される位置における、前記日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するための通信実績情報受信部と、
     前記通信実績情報受信部により受信された前記通信実績情報を蓄積するための通信実績情報記憶部と、
     外部装置から、地域的範囲が指定された前記通信実績情報の送信要求を受信したことに応答して、前記通信実績情報記憶部に蓄積された前記通信実績情報に基づいて、前記送信要求により指定された地域的範囲内に相当する前記位置情報と前記通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、前記外部装置に送信する通信実績送信部とを含む、通信実績管理サーバ。
    a communication performance information receiving unit for receiving communication performance information including at least location information, date and time information, and communication quality metrics information relating to at least communication quality of wireless communication at a location specified by the location information and at a date and time specified by the date and time information;
    a communication history information storage unit for storing the communication history information received by the communication history information receiving unit;
    and a communication performance transmission unit that, in response to receiving a request to transmit the communication performance information from an external device, the request specifying a geographical range, generates information about communication performance based on the communication performance information stored in the communication performance information storage unit, the information including the location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information, and transmits the information to the external device.
  2.  前記通信実績送信部は、前記通信実績情報記憶部から、
      前記送信要求により指定された地域的範囲内に相当する前記位置情報と、
      直近の所定時間内の前記日時情報と、
      前記通信品質メトリクス情報と、
     を含む前記通信実績情報を読出して、前記外部装置に送信する直近通信実績送信部を含む、請求項1に記載の通信実績管理サーバ。
    The communication history transmission unit transmits, from the communication history information storage unit,
    the location information corresponding to a geographical area designated by the request to send;
    The date and time information within a recent predetermined time period;
    The communication quality metrics information;
    2. The communication history management server according to claim 1, further comprising a latest communication history transmission unit which reads out the communication history information including the communication history information and transmits it to the external device.
  3.  前記通信実績情報の各々はさらに、当該通信実績情報に関する無線通信を行った際の通信環境に関する通信環境情報を含み、
     前記送信要求は、前記外部装置の通信環境に関する情報をさらに含み、
     前記通信実績送信部は、前記送信要求を受信したことに応答して、前記通信実績情報記憶部から、
      前記送信要求により指定された地域的範囲内に相当する前記位置情報と、
      前記送信要求に含まれている前記通信環境に関する前記情報と整合する前記通信環境情報と、
      前記通信品質メトリクス情報と、
     を含む前記通信実績情報を読出して、前記外部装置に送信する装置別通信実績送信部を含む、請求項1または請求項2に記載の通信実績管理サーバ。
    Each of the pieces of communication history information further includes communication environment information regarding a communication environment when wireless communication related to the communication history information was performed,
    The transmission request further includes information regarding a communication environment of the external device,
    In response to receiving the transmission request, the communication history transmission unit reads from the communication history information storage unit:
    the location information corresponding to a geographical area designated by the request to send;
    the communication environment information being consistent with the information regarding the communication environment included in the transmission request;
    The communication quality metrics information;
    3. The communication history management server according to claim 1, further comprising an apparatus-specific communication history transmission unit that reads out the communication history information including the communication history information and transmits it to the external apparatus.
  4.  前記通信環境情報は、通信回線情報、通信事業者情報、またはこれらの組み合わせを含む、請求項3に記載の通信実績管理サーバ。 The communication history management server according to claim 3, wherein the communication environment information includes communication line information, communication carrier information, or a combination thereof.
  5.  さらに、前記通信実績情報記憶部に記憶された前記通信実績情報に対して、少なくとも前記位置情報により特定される位置を基準として、前記通信品質メトリクス情報に関する統計処理を行って通信実績統計情報を算出する通信統計算出部と、
     前記通信統計算出部により算出された前記通信実績統計情報を、前記位置情報に関連付けて記憶する通信実績統計情報記憶部とを含み、
     前記通信実績送信部は、外部装置から、地域的範囲が指定された前記通信実績情報の送信要求を受信したことに応答して、前記通信実績統計情報記憶部に記憶された前記通信実績統計情報の内、前記送信要求により指定された地域的範囲内に相当する前記位置情報と当該位置情報により特定される位置における前記通信実績統計情報とを前記外部装置に送信する通信実績統計情報送信部を含む、請求項1に記載の通信実績管理サーバ。
    a communication statistics calculation unit that calculates communication performance statistical information by performing statistical processing on the communication quality metrics information with respect to the communication performance information stored in the communication performance information storage unit, based on at least a position specified by the position information; and
    a communication performance statistical information storage unit that stores the communication performance statistical information calculated by the communication statistics calculation unit in association with the location information,
    2. The communication performance management server according to claim 1, wherein the communication performance sending unit includes a communication performance statistical information sending unit that, in response to receiving a request to send the communication performance information from an external device, the request specifying a geographical range, sends to the external device the location information of the communication performance statistical information stored in the communication performance statistical information storage unit that corresponds to the geographical range specified by the request to send, and the communication performance statistical information at a location specified by the location information.
  6.  前記通信統計算出部は、前記通信実績情報記憶部に記憶された前記通信実績情報に対して、少なくとも前記位置情報により特定される位置および前記日時情報により特定される期間を基準として、前記通信品質メトリクス情報に関する統計処理を行って期間別通信実績統計情報を算出する期間別通信統計算出部を含む、請求項5に記載の通信実績管理サーバ。 The communication performance management server according to claim 5, wherein the communication statistics calculation unit includes a period-specific communication statistics calculation unit that performs statistical processing on the communication quality metrics information to calculate period-specific communication performance statistical information for the communication performance information stored in the communication performance information storage unit, based on at least the location specified by the location information and the period specified by the date and time information.
  7.  前記通信実績情報の各々はさらに、当該通信実績情報に関する無線通信を行った際の通信環境に関する情報を含み、
     前記送信要求は、前記外部装置の通信環境に関する情報を含むことがあり、
     前記通信実績送信部は、受信した前記送信要求が前記通信環境に関する前記情報を含むか否かにしたがって、第1の処理と第2の処理とを選択的に実行し、
     前記第1の処理は、前記通信実績統計情報記憶部から、前記送信要求により指定された地域的範囲内に相当する前記位置情報と、前記送信要求に含まれている前記通信環境に関する前記情報とに整合する前記通信統計実績情報を読出して、前記読出された前記通信統計実績情報に基づいて前記通信品質メトリクス情報を算出し、前記外部装置に送信する処理であり、
     前記第2の処理は、前記通信実績情報記憶部から、前記送信要求により指定された地域的範囲内に相当する前記位置情報に対応する前記通信実績情報を読出して、前記外部装置に送信する処理である、請求項6に記載の通信実績管理サーバ。
    Each piece of communication history information further includes information regarding a communication environment when wireless communication related to the communication history information was performed,
    The transmission request may include information regarding a communication environment of the external device;
    the communication record transmission unit selectively executes a first process or a second process depending on whether the received transmission request includes the information on the communication environment;
    the first process is a process of reading, from the communication performance statistical information storage unit, communication statistic performance information that matches the location information corresponding to a geographical range specified by the transmission request and the information on the communication environment included in the transmission request, calculating the communication quality metrics information based on the communication statistic performance information that has been read, and transmitting the communication quality metrics information to the external device;
    7. The communication history management server according to claim 6, wherein the second process is a process of reading out, from the communication history information storage unit, the communication history information corresponding to the location information within a geographical range specified by the transmission request, and transmitting the communication history information to the external device.
  8.  コンピュータが、位置情報と日時情報と、前記位置情報により特定される位置における、前記日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するステップと、
     コンピュータが、前記通信実績情報を受信するステップにおいて受信された前記通信実績情報を記憶装置に蓄積するステップと、
     コンピュータが、外部装置から、地域的範囲が指定された前記通信実績情報の送信要求を受信したことに応答して、前記記憶装置に蓄積された前記通信実績情報に基づいて、前記送信要求により指定された地域的範囲内に相当する前記位置情報と前記通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、前記外部装置に送信するステップとを含む、通信実績管理方法。
    receiving communication performance information including at least location information, date and time information, and communication quality metrics information related to at least communication quality of wireless communication at a location specified by the location information and at a date and time specified by the date and time information;
    a step of storing the communication history information received in the step of receiving the communication history information in a storage device by a computer;
    a step of, in response to a computer receiving from an external device a request to transmit the communication performance information, the request specifying a geographical range, generating information on communication performance based on the communication performance information stored in the storage device, the information including the location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information, and transmitting the information to the external device.
  9.  コンピュータに、
     位置情報と、日時情報と、前記位置情報により特定される位置における、前記日時情報により特定される日時における無線通信の、少なくとも通信品質に関する通信品質メトリクス情報と、を少なくとも含む通信実績情報を受信するステップと、
     前記通信実績情報を受信するステップにおいて受信された前記通信実績情報を記憶装置に蓄積するステップと、
     外部装置から、地域的範囲が指定された前記通信実績情報の送信要求を受信したことに応答して、前記記憶装置に蓄積された前記通信実績情報に基づいて、前記送信要求により指定された地域的範囲内に相当する前記位置情報と前記通信品質メトリクス情報から得られる通信品質情報とを含む通信実績に関する情報を生成して、前記外部装置に送信するステップとを実行させるための、コンピュータプログラム。
     
    On the computer,
    receiving communication performance information including at least location information, date and time information, and communication quality metrics information relating to at least communication quality of wireless communication at the location specified by the location information and at the date and time specified by the date and time information;
    storing the communication history information received in the step of receiving the communication history information in a storage device;
    in response to receiving a request to send the communication performance information from an external device, the request specifying a geographical range, based on the communication performance information stored in the storage device, generating information on communication performance, the information including the location information corresponding to the geographical range specified by the transmission request and communication quality information obtained from the communication quality metrics information, and transmitting the information to the external device.
PCT/JP2023/030441 2022-10-18 2023-08-24 Communication record management server, communication record management method, and computer program WO2024084801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166644 2022-10-18
JP2022-166644 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084801A1 true WO2024084801A1 (en) 2024-04-25

Family

ID=90737360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030441 WO2024084801A1 (en) 2022-10-18 2023-08-24 Communication record management server, communication record management method, and computer program

Country Status (1)

Country Link
WO (1) WO2024084801A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012084A (en) * 2019-07-05 2021-02-04 トヨタ自動車株式会社 Information processing device, and information processing method
JP2021129212A (en) * 2020-02-13 2021-09-02 株式会社デンソー Radio communication device and server device
JP7046274B1 (en) * 2021-02-05 2022-04-01 三菱電機株式会社 Communication management device, communication management method, communication management program, driving support device, driving support method and driving support program
WO2022085315A1 (en) * 2020-10-23 2022-04-28 株式会社デンソー Radio map generation device, radio map provision device, radio map acquisition and utilization device, and probe information transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012084A (en) * 2019-07-05 2021-02-04 トヨタ自動車株式会社 Information processing device, and information processing method
JP2021129212A (en) * 2020-02-13 2021-09-02 株式会社デンソー Radio communication device and server device
WO2022085315A1 (en) * 2020-10-23 2022-04-28 株式会社デンソー Radio map generation device, radio map provision device, radio map acquisition and utilization device, and probe information transmission device
JP7046274B1 (en) * 2021-02-05 2022-04-01 三菱電機株式会社 Communication management device, communication management method, communication management program, driving support device, driving support method and driving support program

Similar Documents

Publication Publication Date Title
US11878713B2 (en) Driving assistance system and method
JP6934024B2 (en) Route planning system and method
US20230139760A1 (en) Network-assisted scanning of a surrounding environment
CN105009182B (en) Methods for providing navigation route based on network availability and device attributes
CN104838673B (en) Route recommendation is provided
CN102474293B (en) Portable terminal and the method for operating thereof of the environment of applicable current scene are provided
US9727920B1 (en) Insurance policy management using telematics
CN108734429A (en) Multimodal transportation management
US20180096606A1 (en) Method to control vehicle fleets to deliver on-demand transportation services
US9329046B2 (en) Methods and systems generating driver workload data
US20230056115A1 (en) Method of Collecting Data from Fleet of Vehicles
US10775178B2 (en) Spatio-temporal re-routing of navigation
US20190096253A1 (en) Method and apparatus for providing a map data update based on region-specific data turbulence
CN111353632A (en) System and method for vehicle scheduling and routing
US10154419B2 (en) Control of data connections and/or data transmissions in a mobile radio device
US20130328698A1 (en) Co-operative traffic notification
CN105144262A (en) Method for delivering optimum path including plurality of passage places and apparatus therefor
JP2018530835A (en) System for providing city planning tools
KR102467375B1 (en) Systems and methods for improved traffic situation visualization
CN110136438A (en) Road switching method, device, equipment and storage medium based on artificial intelligence
US20200149909A1 (en) Method and apparatus for determining and presenting a spatial-temporal mobility pattern of a vehicle with respect to a user based on user appointments
CN112414420B (en) Navigation method based on traffic flow and related device
WO2024084801A1 (en) Communication record management server, communication record management method, and computer program
CN105450763B (en) Car networking processing system
Van Le et al. Quality of information (qoi)-aware cooperative sensing in vehicular sensor networks