WO2024083636A1 - Systeme de lecture radiofrequence embarque sur un vehicule de transport - Google Patents

Systeme de lecture radiofrequence embarque sur un vehicule de transport Download PDF

Info

Publication number
WO2024083636A1
WO2024083636A1 PCT/EP2023/078368 EP2023078368W WO2024083636A1 WO 2024083636 A1 WO2024083636 A1 WO 2024083636A1 EP 2023078368 W EP2023078368 W EP 2023078368W WO 2024083636 A1 WO2024083636 A1 WO 2024083636A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
meander
radio frequency
mobile assembly
axis
Prior art date
Application number
PCT/EP2023/078368
Other languages
English (en)
Inventor
Julien DESTRAVES
Laurent COUTURIER
Jérôme CONSTANTY
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Publication of WO2024083636A1 publication Critical patent/WO2024083636A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0444Antenna structures, control or arrangements thereof, e.g. for directional antennas, diversity antenna, antenna multiplexing or antennas integrated in fenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0452Antenna structure, control or arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10346Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the far field type, e.g. HF types or dipoles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10415Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM
    • G06K7/10425Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device
    • G06K7/10435Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device the interrogation device being positioned close to a conveyor belt or the like on which moving record carriers are passing
    • G06K7/10445Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device the interrogation device being positioned close to a conveyor belt or the like on which moving record carriers are passing the record carriers being fixed to further objects, e.g. RFIDs fixed to packages, luggage, mail-pieces or work-pieces transported on a conveyor belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2241Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in or for vehicle tyres
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07758Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag
    • G06K19/07764Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag the adhering arrangement making the record carrier attachable to a tire

Definitions

  • the present invention relates to a radio frequency transponder reading system on board a transport vehicle.
  • Radio frequency transponders are mainly linked to the mobile units of the transport vehicle.
  • radio frequency transponders operate in the UHF frequency range (acronym for Ultra High Frequencies), that is to say between 300 MHz and 3GHz.
  • UHF frequency range an Ultra High Frequencies
  • connected objects are moving components of these transport vehicles. Consequently, these are mobile in operation by traveling in a plane movement around a fixed axis of rotation relative to the transport vehicle.
  • the said transponders travel through loops closed on themselves.
  • Document US20210021015A1 shows, in the case of a land vehicle, the implementation of an on-board reading system for RFID tags (acronym in English for Radio Frequency IDentification) and TMS sensors (acronym in English for Tire Mounted Sensor) located in the pneumatic casings of the mounted assemblies of the land vehicle.
  • This system is composed of a radio frequency reader/transmitter galvanically connected to four transmission lines to radio frequency antennas each covering a certain geographical area.
  • the radio frequency antennas are fixed integrally to the fixed part of the land vehicle.
  • This solution requires multiplying radio frequency antennas, generally two-dimensional and planar or even three-dimensional. This creates spatial clutter within the land vehicle which is harmful to the installation of other components of the land vehicle.
  • the separation of the various elements multiplies the connection points between the various elements, which increases the risk of failure of the reading system due to vibrations and shocks that means of transport generally experience.
  • the multitude of assemblies mounted on a land vehicle generates a multiplicity of transmission lines and radio frequency antennas, which is costly.
  • One of the objects of the invention which follows aims to resolve the problems of reliability and cost of systems for reading mobile radio frequency transponders within transport vehicles.
  • circumferential S axial A and radial R directions, directions defined in relation to the rotating reference of the mobile assembly around its natural axis of rotation.
  • the radial direction R is the direction moving away perpendicularly from the natural axis of rotation.
  • Axial direction A is the direction parallel to the natural axis of rotation.
  • the circumferential direction S forms a direct trihedron with the predefined radial and axial directions.
  • the invention relates to a transport vehicle comprising a system for reading radio frequency transponders and at least one mobile assembly capable of ensuring the movement of the transport vehicle relative to the ground on which the transport vehicle rolls, comprising a tire tire set in motion around an axis of rotation, the free movement of the at least one mobile assembly taking place in a mainly two-dimensional plane in a cylindrical reference frame associated with the at least one mobile assembly whose axial direction is the direction of the axis of rotation, the pneumatic tire defining a median plane which is perpendicular to the axis of rotation, the at least one mobile assembly, preferably the pneumatic tire, being equipped with a radio frequency transponder.
  • the reading system includes: - An electrical signal generator emitting at a frequency FO included in the Ultra High Frequency band, coupled to an electrical signal demodulator adapted to a frequency band around FO, mounted on the transport vehicle.
  • At least one bidirectional communication cable being partly flexible, comprising a conductive core covered with a first dielectric element, itself covered with a conductive assembly, having one end galvanically connected to the reading system, having at its free end a capacitive coupling means between the conductive core and the conductive assembly via a second dielectric element, adapted to the frequency band of the reading system, the length lo is divided according to a metric whose unit is a LO wavelength defined by the FO frequency.
  • the at least one cable being fixed integrally to the transport vehicle and externally to the at least one mobile assembly, comprises a radiating part.
  • the arrangement is characterized in that the distance of the radial projection of a first continuous part of the radiating part of the at least one cable on a cylinder, of axis of revolution coaxial with the axis of rotation, circumscribed to the pneumatic tire is less than or equal to 1 meter, preferably less than or equal to 0.5 meters, in that the distance of the axial projection, in the direction of the axis of rotation, of the first continuous part of the radiating part of at least a cable on the median plane of the tire is less than 2 meters, preferably less than or equal to 1 meter, very preferably less than or equal to 0.5 meters, in that the first part continues from the radiating part of the at least one cable comprises at least one meander, in that the curvilinear length of the at least one meander is between 0.9 and 1.1 times the half-wavelength LO defined by the communication frequency FO modulo the wavelength LO and in that the distance “P” separating the two ends of the at least one meander is less than a quarter of the wavelength LO.
  • free movement means that the movement is carried out without displacement constraints like a movement with imposed displacement.
  • this is the movement of the material points of the assembled assembly outside the contact zone of the pneumatic casing with the ground, commonly called contact area .
  • contact area the contact zone of the pneumatic casing with the ground.
  • the mobile assembly is the subassembly of the transport vehicle used to move the transport vehicle relative to the ground.
  • the mobile assembly comprises a pneumatic band driven in rotation around an axis of rotation by non-deformable parts, that is to say more rigid than the pneumatic tire such as a rim.
  • the radio frequency transponder which can be an RFID tag or another electronic device with its own or passive energy source.
  • the radio frequency transponder is attached to the mobile assembly of the transport vehicle.
  • This can be, for example, an RFID tag in a pneumatic envelope, a TPMS sensor (English acronym for Tire Pressure Monitoring System) attached to the wheel or any electronic object communicating by radio frequency equipped with a radio frequency antenna located on a mobile assembly.
  • TPMS sensor Tire Pressure Monitoring System
  • the invention discloses placing a reading system on board the transport vehicle externally to the mobile assembly. Therefore it is not linked to the movement of the mobile assembly.
  • This reading system comprises a first device comprising a transmitter/receiver of electrical signals at a fixed frequency and a demodulator of electrical signals on a frequency band around the fixed frequency.
  • This first device is connected to a bidirectional communication cable.
  • This cable is composed of a conductive core, hollow or solid, generally metallic and a second hollow conductive tube coaxial with the conductive core.
  • a first dielectric element separates the two conductive components.
  • One end of the cable is connected to the electronic transmission/reception device while the other end is free.
  • This cable comprises at least one radiating part, that is to say it functionally transmits or receives radio waves externally to the hollow conductive tube.
  • the cable is equipped at its free end with a capacitive coupling means between the conductive core and the conductive assembly constituted by the hollow conductive tube, via a second dielectric element, adapted to the frequency band of the reading system.
  • This type of bidirectional communication cable uses surface radio waves via this capacitive coupling means. This makes it possible to have a bidirectional cable that does not have any specific features on its surface on the radiating part. Thus, in the event of significant deformation of the cable during its installation in the transport vehicle, the communication functionality of the cable is not affected as could be a leaky feed antenna. whose distribution and shapes of the orifices passing through the conductive tube are more sensitive to the deformation of the bidirectional cable. In addition, this technical solution is more economical since making the orifices on the conductive tube is significantly more expensive than installing an electrical reflection device by capacitive coupling at the end of a coaxial cable.
  • This type of cable is described in patent application US2016/0197408A1 comprising at its free end an electrical reflection device by capacitive coupling consisting of a conductive component connected to the conductive core and possibly separated from the conductive tube by a second dielectric materials generating capacitive coupling.
  • the length of the conductive component is generally a quarter wavelength of the radio waves emitted and received by the cable antenna.
  • This device creates surface radio propagation waves on the conductive tube in the opposite direction to that emitted by the signal generator up to a surface wave attenuation zone made by magnetized rings, generally made of ferrite, mounted axially externally. to the cable.
  • the invention is based first of all on the particular arrangement of the reading system and in particular of the radiating part of the bidirectional communication cable in relation to the path followed by the radio frequency transponder driven in movement by the mobile assembly.
  • the spatial distance between the radiating part of the cable and the radio frequency transponder must be less than a certain distance, preferably one meter, during part of the loop described by the radio frequency transponder during the journey of the mobile assembly so that radio frequency communication can be established between the reading system and the radio frequency transponder. This is ensured through two conditions linked to the structure of the mobile assembly.
  • the mobile assembly having a predominantly two-dimensional movement, in the reference frame linked to the mobile assembly, outside the zones with imposed displacement, it is possible to define a median plane for the pneumatic tire of the mobile assembly which has as property of being perpendicular to the axis of rotation of the mobile assembly and of separating the mobile assembly into two parts symmetrical with respect to the median plane.
  • a median plane for the pneumatic tire of the mobile assembly which has as property of being perpendicular to the axis of rotation of the mobile assembly and of separating the mobile assembly into two parts symmetrical with respect to the median plane.
  • mostly bidirectional movement that the distance traveled by a material point of the moving set between two instants, decomposed on an orthonormal reference frame linked to the moving set, has a smaller component than the other two. Generally this component is that which is carried by the direction of the axis of rotation of the mobile assembly.
  • the first condition is that a continuous sub-part of the radiating part of the communication cable is not further than 2 meters from the median plane attached to the pneumatic tire of the mobile assembly following the direction of the axis of rotation of the mobile assembly.
  • the pneumatic tire of the mobile assembly being driven by a pure rotational movement around its axis of rotation, it is necessary to control the distance between the continuous part of the radiating part of the bidirectional communication cable and the pneumatic tire of the mobile assembly.
  • a second projection condition must be respected. It, for the area of the pneumatic tire rotating around its axis of rotation, consists of defining the maximum radial projection distance R of the continuous part of the radiating part of the bidirectional communication cable on the closest surface of the pneumatic tire of the mobile assembly, which corresponds to the radially external surface of the tire relative to its axis of rotation.
  • the continuous part of the radiating part of the bidirectional communication cable which is in this spatial zone relative to the mobile assembly includes at least one meander.
  • the meander is defined by a width named “1” and a length named “L”.
  • the length “L” is defined in relation to the axial direction of the radiating part of the cable outside the meander zones.
  • One of the ends of the length “L” begins at the change in curvature of the cable and which initiates the meander.
  • the other end is defined by the most distant point of the meander, that is to say having the greatest orthogonal projection, in relation to the axial direction of the cable.
  • the width “1” of the meander is defined using each axial average, depending on the direction of the cable, of the points of the meander defining the outward or return of the meander, that is to say all the points of the cable located between the two ends defining the length “L” of the meander on the outward or return route of the meander.
  • the distance between these two axial averages, according to the axial direction of the cable, determines the width “1” of the meander.
  • the exit end of the meander according to the direction of propagation of the radio waves provided by the transmission/reception system, the last point of the meander where the tangent has a main component carried by the direction of the length “L” of the meander.
  • the distance “P” is measured between the entry end and the exit end of the meander.
  • this makes it possible to establish communication with the radio frequency transponder, in particular when the latter is passive, by providing a sufficient quantity of energy for the latter to wake up and enter into communication when the radio frequency transponder is close to this meander during its course associated with the movement of the mobile assembly.
  • this meander makes it possible to create a narrow spatial zone, located between the entry end and the exit end of the meander, in which the electric field E generated by the radiating part of the communication cable is stable and higher in amplitude than that generated outside the meander or even within the meander.
  • the linear radiating part of the communication cable is sufficient to capture the return message as long as the distance between the two elements remains reasonable. Therefore, this meander is to be used mainly in areas of difficult communication with the radio frequency transponder. For example, when one wishes to interrogate a radio frequency transponder spatially distant from the radiating part of the communication cable or when the environment of the vehicle or of the mobile assembly is not favorable to radio frequency communication due for example to elements electrically conductive. Thus, with a radio frequency transponder located both on the exterior side of the tire and on the exterior of the transport vehicle, only the positioning of the radiating part of the cable radially external to the tire is possible.
  • the top of the tire includes a metal top, often of radial design, which is harmful to radio frequency communication.
  • the presence of meander still makes it possible to interrogate the radio frequency transponder of the mobile assembly and to receive its radio frequency response via the first continuous part of the radiating part of the communication cable.
  • To increase the duration of exposure to this electric field E simply multiply the meanders and in particular make these meanders contiguous. For example, this can be achieved by folding the cable in the shape of an “S” which is the addition of two contiguous meanders whose loops are opposite.
  • the S shape makes it possible to avoid spatially shifting the two meanders due to the curvature of the cable. This technique makes it possible to extend the communication zone with improved electric field E of each meander.
  • the continuous part of the radiating part of the bidirectional communication cable which is located in the spatial zone around the mobile assembly has a curvilinear length greater than one unit of cable length.
  • the unit of cable length is defined by the wavelength LO associated with the frequency FO of emission of the radio signal by the reading system propagating in a medium of given relative dielectric permittivity.
  • the radiating part of the at least one cable comprising at least one second continuous part disjoint from the first continuous part, the distance of the radial projection of the at least one second continuous part of the radiating part of the at least one cable on a cylinder, with an axis of revolution coaxial with the axis of rotation of the at least one second mobile assembly, circumscribed to the pneumatic tire of the at least one second mobile assembly is less than or equal to 1 meter, preferably less at 0.5 meters and the distance of the axial projection, in the direction of the axis of rotation of the at least one second mobile assembly, of the at least one second continuous part of the radiating part of the at least one cable on the plane median of the pneumatic tire of the at least one second mobile assembly is less than 2 meters, preferably less than 1 meter, very preferably less than 0.5 meters.
  • the conventional solution would then be to add a second bidirectional communication cable and to position a continuous part of the radiating part of this second cable in the appropriate geographical zone of the second mobile assembly, which is expensive.
  • the solution here is to use the same bidirectional communication cable, which limits the number of galvanic connections to the electrical signal transmitter/receiver of the reading system.
  • This cable is then equipped with a second continuous radiating part disjoint from the first continuous part. However, it may be the same radiating part of the cable.
  • the same cable interrogates and receives information from each radio frequency transponder, each associated with a different mobile unit.
  • To create an extended radiating spatial zone simply pass the radiating part of the cable several times over the same spatial zone in order to create a continuous zone. This creates an extended radiating zone allowing easy communication with the transponders of the transport vehicle crossing the spatial zone.
  • the conductor assembly in the radiating part of the cable, is covered by a second conductor assembly which is connected to ground.
  • the at least one second continuous part of the radiating part of the at least one cable comprises at least one meander
  • the curvilinear length of the at least one meander of the at least one second part is between 0.9 and 1.1 times the half-wavelength L0 defined by the communication frequency F0 modulo the wavelength L0
  • the distance “P” separating the two ends of at least a meander of the at least a second part is less than a quarter of the wavelength LO.
  • the second continuous part of the radiating part of the bidirectional communication cable which is located near a mobile assembly comprises at least one meander.
  • the meander is defined by a width named “1” and a length named “L”.
  • the length “L” is defined in relation to the axial direction of the radiating part of the cable outside the meander zones, the said cable being in the zone defined by the radial projection and the axial projection of the cable on the mobile assembly.
  • One end of the length “L” begins at the change in curvature of the cable which initiates the meander.
  • the other end is defined by the most distant point of the meander, that is to say having the greatest orthogonal projection, in relation to the axial direction of the cable.
  • the width “1” of the meander is defined using each axial average, depending on the direction of the cable, of the points of the meander defining the outward or return of the meander, that is to say all the points of the cable located between the two ends defines the length “L” on the outward or return route of the meander.
  • This meander makes it possible to constitute an improved communication zone between the bidirectional communication cable and the transponder in a radio frequency transmission communication mode emanating from the reading system, that is to say triggered by the reading system .
  • this makes it possible to establish communication with the radio frequency transponder, in particular when the latter is passive, by providing a sufficient quantity of energy for the latter to wake up and enter into communication when the radio frequency transponder is close to this meander during its path associated with the movement of the second mobile assembly.
  • this meander makes it possible to create a narrow spatial zone, located between the entry end and the exit end of the meander, in which the electric field E generated by the radiating part of the communication cable is stable and higher in amplitude than that generated outside the meander or even within the meander.
  • this meander makes it possible to create an extended spatial zone, proportional to the length “L” of the meander, in which the electric field E generated by the radiating part of the communication cable is stable and higher in amplitude than that generated outside the meander.
  • This increase in the electric field E at the level of the meander, between the entry end and the exit end is only possible due to the particular distance P between its two points of the meander which creates an air gap, it that is to say an oppositely charged system, positive and negative charges facing each other, like a capacitor, when the curvilinear length of the meander is close to the half wavelength LO associated with the communication frequency FO of the reading system.
  • the increase in the amplitude of the electric field E provides an increase in the radio energy to the radio frequency transponder which makes it possible to activate it in communication mode.
  • the energy captured by the radio frequency transponder is used to transmit the radio frequency message returned from the radio frequency transponder.
  • the linear radiating part of the communication cable is sufficient to capture the return message as long as the distance between the two elements remains reasonable. Therefore, this meander is to be used mainly in areas of difficult communication with the radio frequency transponder.
  • meander when it is desired to interrogate a radio frequency transponder spatially distant from the radiating part of the communication cable or when the environment of the vehicle or mobile assembly is not favorable to radio frequency communication due for example to elements electrically conductive.
  • the presence of meander still makes it possible to interrogate the radio frequency transponder of the mobile assembly and to receive its radio frequency response via the second continuous part of the radiating part of the communication cable.
  • the arrangement of the rest of the meander that is to say outside the entry and exit end points, only slightly modifies the electric field E. As a result, this meander can easily adapt to any complex and dense environment such as a motor vehicle.
  • this can be achieved by folding the cable in the shape of an “S” which is the addition of two contiguous meanders whose loops are opposite.
  • S shape makes it possible to avoid spatially shifting the two meanders due to the curvature of the cable.
  • This technique makes it possible to extend the communication zone with the improved electric field E which is generated by each meander.
  • the continuous part of the radiating part of the bidirectional communication cable which is located in the spatial zone around the second mobile assembly has a curvilinear length greater than one unit of length of the cable.
  • the unit of cable length is defined by the wavelength associated with the frequency F0 of emission of the radio signal by the reading system propagating in a medium of given relative dielectric permittivity.
  • the length of the antenna in the spatial zone delimited by one of the two geometric conditions is adapted to transmit and receive radio signals to from the radio frequency transponder fixed on the mobile assembly.
  • the greater the length of the continuous part of the radiating part of the bidirectional communication cable the better the communication between the reading system and the radio frequency transponder.
  • the radiating part of the at least one cable comprises at most 7 meanders, preferably at most 5 meanders.
  • the multiplication of meanders limits the radiating nature of the cable outside the zones where the meanders are located, which can be harmful for the interrogation of the radio frequency transponders of the transport vehicle not being located, during their movement, in the spatial zones of the continuous parts of the radiating part of the communication cable.
  • An alternative to compensate for this low cable emission radiation consists of increasing the electrical power of the reading system. But at the same power supplied to the reading system, it is preferable to limit the number of meanders to ensure sufficient radio frequency communication over the total length of the radiating part of the bidirectional communication cable.
  • each continuous part of the radiating part of at least one cable comprises at most 3 meanders, preferably at most 2 meanders.
  • each continuous part of the radiating part of the cable has no more than 3 meanders and very preferably no more than 2.
  • radio transmission power is left in areas without meander.
  • the radio frequency transponder associated with the at least one mobile assembly comprising a radio frequency antenna comprising at least one wire strand defining a first longitudinal axis, each meander of the first and/or the at least one second continuous part of the part radiating from the at least one cable defining a straight line D defined by the two ends of the at least one meander, the angle formed by the direction vectors of the first longitudinal axis and the straight line D is less than +/- 30 degrees, preferably less than +/- 20 degrees over at least part of the closed path described by the at least one mobile assembly (1).
  • the radio frequency transponder is equipped with a wire antenna
  • the directions of the first longitudinal axis and the direction of the straight line D are substantially parallel to each other in order to ensure a electromagnetic coupling between the radio frequency transponder and the effective part of the meander.
  • the improved electric field E generated by the meander is oriented along the straight line D.
  • the wire antenna of the transponder is substantially aligned with the improved electric field E generated by the meander.
  • the wire antenna should be collinear with the improved electric field E so that the efficiency of the coupling is maximum.
  • the level of communication between the two antennas remains completely suitable as long as the angle formed by the two directions does not move away. no more than 30 degrees. This is preferable when the radio frequency transponder is passive, that is to say without its own source or production of electrical energy.
  • the electromagnetic coupling then serves to activate the radio frequency transponder by transmitting energy to it before it transmits.
  • the radio frequency transponder being in movement while the reading system is fixed relative to the transport vehicle, the angular condition is not necessarily respected over the entire route described by the radio frequency transponder. However, it is enough for this to be carried out on part of the route of the mobile assembly for the radio frequency communication between the two electronic systems to be effective.
  • the at least one mobile assembly being able to describe a rotational movement around a single axis of rotation defining a cylindrical reference around this axis of rotation, the first longitudinal axis of the radio frequency antenna of the radio frequency transponder associated with the at least one mobile assembly having its main component oriented circumferentially in the cylindrical mark, the at least one meander associated with the first and/or the at least one second continuous part of the radiating part of the at least one cable being arranged radially externally to the movable assembly relative to the axis of rotation, the straight line D of the at least one meander has its main component oriented circumferentially in the cylindrical reference of the movable assembly.
  • the first longitudinal axis of the radio frequency transponder of the mobile assembly is mainly circumferential in the cylindrical reference of the mounted assembly, as can be found in the case of buried RFID radio tags in the structure of the tire at the level of the sidewall or the low zone, and that the meander is located radially external to the tire relative to the axis of rotation of the mobile assembly, it is wise to place the meander so that the straight line D has a predominantly circumferential direction in the cylindrical reference frame of the mobile assembly.
  • the directions of the first longitudinal axis of the wire antenna of the radio frequency transponder and of the improved electric field E generated by the meander align substantially with part of the loop described by the movement of the radio frequency transponder.
  • the size of the radio frequency antenna of the radio frequency transponder is reduced due to the relative dielectric permittivity of the rubber mixtures of the tire.
  • the relative dielectric permittivity of rubber mixtures is different from that of air, which modifies the wavelength of radio waves.
  • the size of the radio frequency antenna is less than the distance “P” between the entry and exit ends of the meander. Therefore, it is possible that the entire radiating antenna of the transponder is placed in the enhanced electric field E generated by the meander, which increases the power transmitted to the radio frequency transponder.
  • the mobile assembly being capable of describing a rotational movement around a single axis of rotation defining a cylindrical marker around this axis of rotation, the first longitudinal axis of the radio frequency antenna of the radio frequency transponder associated with the at least one mobile assembly having its main component oriented circumferentially in the cylindrical marker, the at least one meander associated with the first and/or the at least one second continuous part of the radiating part of the cable being arranged axially externally and radially internally to the movable assembly relative to the axis of rotation, the straight line D of the at least one meander has its main component oriented circumferentially in the cylindrical reference of the mobile assembly.
  • the first longitudinal axis of the radio frequency transponder of the mobile assembly is mainly circumferential in the cylindrical mark of the mounted assembly, as can be found in the case of RFID radio labels buried in the structure of the tire at the level of the sidewall or the low zone, and that the continuous part of the radiating part of the communication cable is located axially externally and radially internally to the tire relative to the axis of rotation of the mobile assembly, it is judicious to place the meander so that the straight line D has a predominantly circumferential direction in the cylindrical reference frame of the mobile assembly.
  • the directions of the first longitudinal axis of the wire antenna of the radio frequency transponder and of the electric field generated by the meander align substantially on a part of the loop described by the movement of the radio frequency transponder.
  • the size of the radio frequency antenna of the transponder radio frequency is reduced due to the relative dielectric permittivity of the rubber mixtures of the tire.
  • the relative dielectric permittivity of rubber mixtures is different from that of air, which modifies the wavelength of radio waves.
  • the size of the radio frequency antenna is less than the distance “P” between the entry and exit ends of the meander.
  • the entire radiating antenna of the transponder is placed in the electric field E generated by the meander, which increases the communication power of the radio frequency transponder.
  • the radio frequency transponder comprises an RFID tag.
  • the radio frequency transponder comprises an RFID radio tag (acronym in English for Radio Frequency Identification). This is small since it requires few components to operate, which allows it to be installed inside the pneumatic tire of the mobile assembly or on its exterior surface via a patch. specific bond.
  • the main function of such an electronic system is to convey identification information, generally encoded in the non-erasable memory of the electronic system.
  • the RFID radio tag is passive, without its own energy source.
  • the interrogation phase of the RFID tag consists first of all in transferring radioelectric energy to it to become operational and then respond to its interrogation.
  • each continuous part of at least one cable describes an angular sector around the axis of rotation at least greater than 30 degrees , preferably greater than 60 degrees, very preferably greater than 120 degrees
  • the continuous part of the radiating part of the communication cable bidirectional, including the meander extends over an angular sector of at least 30 degrees.
  • the continuous part of the radiating part of the at least one cable is fixed on the at least one wall delimiting the cavity of the means of transport accommodating the mobile assembly.
  • the direct or indirect fixing of the continuous part of the radiating part of the bidirectional communication cable on the wheel arch is preferred.
  • the wheel arch delimits the cavity where the assembly mounted on the vehicle will connect in use.
  • this component is not metallic which implies no shielding effect or radio interference.
  • the propagation of radio waves between the communication cable and the transponder is favored by the absence of metallic or conductive components interposed between the two antennas.
  • the cavity naturally constitutes a free zone for installing the communication cable in an extremely confined space such as that of a motor vehicle.
  • the continuous part of the radiating part of the at least one cable extends at a constant radial distance from the unique axis of rotation of the mobile assembly.
  • This condition ensures reliability in the radio frequency communication between the two components in the case of a passive radio frequency transponder, such as an RFID tag, in the tire. Indeed, it is commonly accepted to position the RFID tag at the side of the tire in a direction that is mainly circumferential relative to the axis of rotation of the assembled assembly. In addition, the shape of the walls delimiting the receiving cavity of the assembled assembly generally follows this geometric condition. Thus, also the communication between the two antennas is optimized both in terms of duration and quality and keeping constant the spatial distance between the radio frequency transponder and the continuous part of the radiating part of the communication cable
  • the radio frequency transponder transmits via a subcarrier frequency.
  • the radio frequency transponder uses the radio frequency transmission signal that it receives to transmit the response to its interrogation.
  • This mode of operation is particularly used in passive radio frequency transponders of the RFID tag type, that is to say not having their own source of energy to transmit.
  • These communication modes use various modulations depending on whether one wishes to promote the communication sensitivity of the bidirectional communication cable or the communication speed between the two radio frequency devices.
  • the modulation is mainly characterized by two quantities: the number of transitions for a binary state , physically it is a change of state of the impedance of the radiofrequency transponder of the electronic chip of an RFID tag for example, which induces a modification of the amplitude and the phase of the return signal, and the unit period to observe transitions.
  • the reading system In the case of An RFID tag, it is the reading system and in particular the generator of electrical signals which controls the modulation scheme on which the radio frequency transponder must communicate. This is not a choice of the radio frequency transponder but an obligation given to it by the reading system.
  • the subcarrier frequency of the radiofrequency transponder includes a number of transitons less than 5, preferably a single transition over the unit period of the subcarrier frequency.
  • the subcarrier frequency of the radiofrequency transponder comprises a unit period less than lOps, preferably less than 8 ps.
  • the radio frequency communication rate between the radio frequency transponder and the bidirectional communication cable is favored, that is to say the reading rate of the continuous part of the radiating part of the communication cable which is favorable in the context of the envisaged arrangement.
  • the arrangement is characterized by reading distances between the bidirectional communication cable and the radio frequency transponder less than 1 meter over a short coupling duration between the two devices due to the relative movement of the radio frequency transponder mounted on the assembly mobile.
  • this mode of modulation is then better, in particular for transport vehicles when the continuous part of the radiating part of the communication cable is directly opposite the pneumatic tire of the mobile assembly. for high or very high vehicle driving speeds.
  • Fig. 1 presents a perspective view of the communication space of the radiating part of the communication cable with the mobile assembly consisting of a pneumatic tire mounted and inflated on a rim which is not shown.
  • Fig. 2 presents an embodiment of the bidirectional communication cable of the reading system according to the invention.
  • Fig. 3 presents a perspective view of the installation of the reading system in a motor vehicle.
  • - Fig. 4 shows a sectional view of a tire equipped with an RFID tag.
  • - Fig. 5 shows an example of a radio frequency transponder, in this case an RFID tag.
  • Figs. 6a to 6c present an example of a continuous part of the radiating part of the cable at the level of a mobile assembly.
  • Fig. 7 shows a dimensional description of a meander of the bidirectional communication cable.
  • a pneumatic tire 12 representing the deformable part of a mobile assembly 1 consisting of the pneumatic tire mounted and inflated on a rim, the rim not being represented here.
  • the pneumatic tire 12 rotates around a natural axis of rotation 102.
  • the pneumatic tire 12 defines a median plane 101 which is perpendicular to the axis of rotation 102, separating the pneumatic tire 12 into two sub-parts symmetrical with respect to the median plane 101.
  • This pneumatic tire 12 is equipped with a radio frequency transponder of the RFID type, that is to say without a source of its own energy, used to measure the inflation pressure of the mobile assembly using a pressure sensor which corresponds to an electronic device such as RFID sensor.
  • This pneumatic tire 12 also includes an active TPMS type sensor mounted on the rim valve. The radial, azimuthal and axial position of these radiofrequency devices are generally arbitrary in the mobile assembly.
  • the pneumatic tire 12 is circumscribed in a cylinder 108 with an axis of revolution 102 resting on the radially outermost position of the top of the pneumatic casing relative to the axis of rotation 102.
  • the pneumatic tire 12b is inflated but not statically loaded, the cylinder 108 rests on a multitude of points at the top equally distributed over the perimeter of the top.
  • the implantation space 104 of the continuous part of the radiating part of the bidirectional communication cable as being a cylinder with an axis of revolution coaxial with the axis 102, extending radially relative to to the axis 102 from the exterior surface of the cylinder 108 at a distance R materialized by the gray arrow represented in the median plane 101.
  • This cylinder 104 is straight since it is limited by flat faces collinear with the median plane 101 located on either side and on the other from the median plane 101 at an axial distance A from the median plane 101 in the direction of the axis 102. These axial distances A are visualized by gray arrows carried by the axis 102.
  • Fig. 2 shows a bidirectional communication cable 32 according to a first configuration working perfectly well, and not only, for RFID tag type applications.
  • the cable 32 comprises an elongated bipolar coaxial conductive structure 312 with an electrically conductive inner conductor 314 and an electrically conductive envelope conductor 316 coaxially surrounding the inner conductor 314.
  • the inner conductor 314 is cylindrical and the conductor envelope 316 is hollow and cylindrical.
  • the inner conductor 31 like the casing conductor 316, is formed of a metallic material, in which an electrically insulating intermediate layer (for example made of plastic) is advantageously present radially between the inner conductor 314 and the casing conductor. 316 along the length of the conductive structure 312.
  • an electrically insulating intermediate layer for example made of plastic
  • a first end 318 of the conductive structure 312 is provided for connecting a transmitter and/or a receiver of the reading system for an antenna signal to be transmitted using the cable 32 or an antenna signal to be received by the cable 32.
  • the cable 32 is provided with a conventional coaxial plug 320, which coaxial plug provides an electrical connector for the internal conductor 314 and for the envelope conductor 316 at this first end 318 in a conventional manner.
  • This extension 324 extends outside the envelope conductor 316, starting from the second end 322 of the conductive structure 312, in a rectilinear manner and coaxial with the path of the internal conductor 314 and of the envelope conductor 316 directly before the second end 322.
  • the inner conductor extension 324 extends to a free end 326 of the inner conductor extension 324, wherein some capacitive coupling from the free end 326 or the inner conductor extension 324 to the shell conductor 316 exists in the region of the second end 322 thereof, depending on the length of the inner conductor extension 324.
  • the cable 32 creates an alternating electromagnetic field around it, but radiates relatively little.
  • This cable 32 functions as a traveling wave antenna in a “coupled mode”, in order to therefore have good control over the range of the cable 32.
  • a surface wave damping device 330 is arranged on the outer circumference of the envelope conductor 316, at a distance from the second end 322, at a point between the two ends 318 and 322.
  • This device is formed, in the example illustrated, of a plurality of ferrite rings 332, 334, 336 and 338, which each surround the outer circumference of the enveloped conductor 316.
  • the ferrite rings 332 to 338 are arranged at a distance from each other when seen in the longitudinal direction of the conductive structure 312 and advantageously provide damping of the mentioned traveling waves, which rise from the second end 322 of the structure. conductive 312, when these waves arrive at the location of the damping device 330.
  • the damping device 330 formed of the ferrite rings 332 to 338 or their arrangement location in the path of the coaxial conductive structure 312 divides the total length of the conductive structure 312 into a signal conductive section 340 and a radiating section 342, wherein during operation of the cable 32, section 340 is used to conduct the antenna signal emanating from or to the first end 318, and section 342 is used to transmit information and/or energy emanating from cable 32 or towards cable 32.
  • the number of ferrite rings and the individual distances between the ferrite rings can be adapted to the respective use case or to the operating parameters of the cable 32.
  • At least one ferrite ring in the case of a plurality of ferrite rings, preferably at least the “first” ferrite ring, closest to the second end 322, that is to say the ferrite ring 332 in the example illustrated, is arranged such that it can move along the conductive structure 312.
  • the damping device 330 can, as an exception to the example illustrated, also include different damping components, such as for example an electrical network structure consisting of capacitive components and/or inductive and/or resistive elements, which is arranged at a relevant point of the path of the conductive structure 312 and connected to two sides to sections 340, 342 of the conductive structure 312 going to the first end 318 and to the second end 322.
  • damping components such as for example an electrical network structure consisting of capacitive components and/or inductive and/or resistive elements, which is arranged at a relevant point of the path of the conductive structure 312 and connected to two sides to sections 340, 342 of the conductive structure 312 going to the first end 318 and to the second end 322.
  • a main cable component 32 is formed by the coaxial conductive structure 312, which can be a flexible or semi-rigid cable which has an “open end” or the internal conductive extension 324 mentioned.
  • a shielding conductor 316 is removed to a certain extent in the remaining area of the conductive structure, so that a dipole antenna is created, one arm of which is formed by the interior conductor extension 324 and the other branch of which is formed by the envelope conductor 316.
  • the surface wave damping device 330 formed here by one or more ferrite rings limits the effective antenna length for transmission/reception at section 342.
  • the position of the damping device 330 here the position of the first ferrite ring 332 in particular, also influences the properties of the damping device 330 and therefore the properties of the traveling waves. back.
  • the internal conductor extension 324 has a length which represents at least approximately a quarter wavelength of the relevant antenna signal. .
  • the length of the internal conductor extension 324 can be chosen such that a desired impedance is defined in combination with the position of the first ferrite ring 332 to obtain as high a reflection attenuation of the cable 32 as possible.
  • the length of the cable 32 and the lengths of its individual sections mentioned can be provided in such a way that they are adapted to the case of use
  • Fig. 2 11 is the length of the signal conductor section 340, 12 is the length of the surface wave damping device 330, 13 is the length of the signal transmitter/receiver section 342 and 14 is the length of the internal conductor extension.
  • the distance dl designates a distance between the ferrite rings 332 and 334. This distance dl is for example between 5 and 20 mm.
  • the envelope conductor 316 of the coaxial conductive structure 312 has at least one opening, this opening is drawn in dotted lines as an example and marked by 339.
  • the distance from the opening 339 of the damping device 330 is marked by d2 is in the range of 1 to 5 m.
  • a plurality of apertures 339 may also be arranged distributed along the length of the signal transmitter/receiver section 342 with a mutual spacing of between 0.1 and 5 times the signal wavelength.
  • Fig. 3 presents a perspective view of the installation of the reading system 3 in a transport vehicle 2 of the motor vehicle type.
  • the motor vehicle 2 is here represented by a transparent volume representing the closed equipped covered body, which corresponds to the complete vehicle from which the axles and the powertrain have been removed. However, on this vehicle 2, we see four cavities denoted 21a-l, 21a-2, 21b-l and 21b-2 each capable of accommodating a mounted assembly of the vehicle.
  • the assembled assembly here includes radio frequency devices such as RFID tags and/or TPMS sensors at the level of the pneumatic casing.
  • This vehicle 2 also includes the reading system 3 allowing communication with the radio frequency devices of the mounted assemblies.
  • This reading system 3 comprises a first device for transmitting and reading signals electrical 31 installed in the vehicle 2 at the level of the apron, which is a wall mainly vertical relative to the ground where the vehicle moves delimiting the engine compartment of the vehicle located here at the front of the vehicle 2 of the passenger compartment.
  • This device 31 therefore includes the electrical signal transmitter but also the electrical signal demodulator.
  • two bidirectional communication cables 32a and 32b extend towards the left and right sides of the vehicle 2 respectively.
  • These communications cables are traveling wave cables described in FIG. 2 and are mounted on the device 31 in order to constitute a galvanic connection.
  • Each cable 32a, 32b travels through the structure of the vehicle 2 in order to reach the proximity of at least one cavity 21a-l, 21a-2, 21b-l, 21b-2 for receiving the mounted assemblies.
  • Each cable includes a signal transmission part starting from the device 31 then becomes radiating.
  • each cable 32a, 32b reaches the proximity of two cavities for receiving the mounted assemblies each corresponding to the front axle and the rear axle of the vehicle 2.
  • the cable 32a presents a continuous part 32a-l which is continuous located at the level of the wheel arch, describing an angular sector around the axis of the front axle of 120 degrees.
  • This part 32a-l of the communication cable 32a is located in the communication zone of the radio frequency devices of the assembled assembly to be accommodated in the cavity 21a- 1.
  • this part 32a-l of the communication cable 32a will communicate with the devices radio frequencies of the mounted assembly present in the reception cavity 21a-l.
  • the continuous part 32a-l of the cable is located radially external to the assembled assembly. Therefore, although not shown in Fig. 3, the continuous part 32a-l comprises a meander whose direction of the median extends axially relative to the natural axis of rotation of the mounted assembly, when it rolls in a straight line, to be accommodated in cavity 21a-l.
  • the same cable 32a then extends towards the second receiving cavity 21a-2 located on the left side of the vehicle 2 at the level of the rear axle.
  • the cable 32a has a second continuous part 32a-2 radiant located in the communication zone of the radio frequency devices of the assembled assembly to be accommodated in the cavity 21a-2.
  • the second continuous and radiating part 32a-2 extends angularly around the axis of rotation of the rear axle over an angular sector of 90 degrees. In fact, the rear axle is not directional here, therefore the assembled assembly moves little angularly during the rolling phase.
  • the radio frequency communication between the continuous and radiating part 32a-2 of the bidirectional communication cable 32a is facilitated compared to that of the part 32a-l where the axle is directional generating an angular movement of the assembly mounted in a turn For example.
  • These two continuous and radiating parts 32a-l and 32a-2 are disjointed and each only allows communication with a mounted assembly.
  • the continuous part 32a-2 located near the cavity 21a-2 would make it possible to communicate with the various twin mounted assemblies, located on the same axle and on the same side of the vehicle 2.
  • the communication cable 32b comprises a radiating part having two separate continuous parts each communicating with a mounted assembly located respectively on the front axle and the rear axle.
  • the cable 32a located on the left side of the vehicle 2 the cable 32b presents at the level of the first continuous part 32b-l, a meander.
  • the continuous part 32b-l is located radially external to the assembled assembly, the direction of the median straight line of the meander extends mainly in the axial direction defined by the axis of the front axle of the vehicle 2.
  • the total length of the bidirectional communication cable 32a and 32b does not exceed the length of 5 meters here.
  • the length of the continuous and radiating part 32a-l, 32a-2, 32b-l and 32b-2 is greater than 50 centimeters, corresponding to a quarter of the development of a tire casing for a private vehicle. This length is beyond the cable length unit for UHF radio frequency communication at 920 MHz or 2.4 GHz.
  • Fig. 4 represents a detailed view of a pneumatic envelope which constitutes the pneumatic tire of a mobile assembly which the assembly represents mounted consisting of a pneumatic casing in an inflated mounted state on rim.
  • the rim represents the non-deformable part of the mobile assembly.
  • the diagram focuses at the level of the bead 84 of the pneumatic casing. This figure illustrates the positioning of a radio frequency transponder 100 of the RFID tag type in the outer zone of the pneumatic casing relative to the carcass ply 87.
  • the bead 84 is constituted by the rod 85 around which the carcass ply 87 is wound with a folded part 88 located in the outer zone of the pneumatic casing.
  • the folded part 88 of the carcass ply 87 ends with a free edge 881.
  • a mass of rubber 91 called rod filler is located radially externally and adjacent to the rod 85. It has a radially outer free edge 911 supporting on one side of the carcass ply 87 (more precisely on the exterior calendering of the carcass ply, there is no direct contact between the cables of the carcass ply and the radio frequency transponder 100).
  • a second mass of rubber 92 called “reinforcement filling” is adjacent to it. It has two free edges.
  • the first free edge 921 is located radially internally and is supported on the upturned part 88 of the carcass ply.
  • the other free edge 922 is located radially externally and ends on the face of the ply of the carcass ply 87.
  • the sidewall 83 covers both the reinforcing padding 92 and the carcass ply 87.
  • the sidewall has a free edge 831 located radially internally and ending on the upturned part 88 of the carcass ply.
  • the second free edge 932 is located in the exterior zone of the pneumatic envelope 1.
  • the bead 84 of this pneumatic envelope is equipped with two RFID tags 100 and lOObis located in the outer zone of the pneumatic envelope.
  • the first radio frequency transponder 100 being previously encapsulated in an electrically insulating coating rubber is positioned on the exterior face of the bead filler 91. It is positioned at a distance of 20 millimeters from the free edge 881 of the turned over part 88 of the carcass ply which constitutes a mechanical singularity. This positioning ensures a zone of mechanical stability for the electronic member 100 which is beneficial to its mechanical endurance. In addition, its burial within the structure of the mechanical envelope ensures good protection against mechanical attacks coming from outside the tire.
  • the second radio frequency transponder lOObis being previously encapsulated in an electrically compatible insulating coating rubber or similar with the material of the sidewall 83 is positioned on the exterior face of the sidewall.
  • the similarity of material between the sidewall 83 and the coating rubber ensures placement within and at the periphery of the sidewall 83 of the RFID tag lOObis during the cooking process.
  • the lOObis RFID tag is simply placed on the raw exterior face of the sidewall 83 during the manufacturing of the pneumatic envelope. Pressurizing the raw blank in the cooking mold ensures the positioning of the lOObis RFID tag in the cooked state as shown.
  • This lOObis RFID transponder is located far from any free edge of a rubbery constituent of the pneumatic casing.
  • Fig. 5 is an illustration of a radio frequency transponder 100 operating in the frequency range between 860 and 960 MHz intended to be incorporated into a pneumatic envelope via an identification patch made of elastomeric materials.
  • the axis of revolution of the radiating antenna 10 parallel to the direction U in a direction perpendicular to the wires of the carcass ply of the pneumatic casing with radial structure, in particular if these are metallic.
  • the radio frequency transponder 100 here has a radiating antenna 10 and an electronic part located inside the radiating antenna 10.
  • the electronic part comprises an electronic chip connected to a printed circuit.
  • a primary antenna made of a conductive wire is connected to the printed circuit.
  • the opposite side of the printed circuit to the primary antenna includes a meander-shaped galvanic circuit.
  • the diameter of the circumscribed cylinder of the primary antenna is 0.8 millimeters. Both the primary antenna and the galvanic circuit on the opposite side of the printed circuit allow the impedance of the primary antenna to be adapted to that of the electronic card.
  • the electronic card thus constituted is embedded in a mass 300 of epoxy resin ensuring the mechanical reliability of the electronic components and the electrical insulation of the electronic card.
  • the cylinder circumscribed by the rigid mass 300 has a diameter of 1.15 millimeters and a length of 6 millimeters.
  • the length L of the radiating antenna 10 is here 45 millimeters and corresponds to the half-wavelength of radio waves at the frequency of 915 MHz in a medium of relative dielectric permittivity approximately equal to 5.
  • radiating antenna 10 is made using a steel wire 120 with a diameter of 0.225 millimeters coated on the surface with a layer of brass. This steel wire 120 is the wire strand of the radiating antenna of the radiofrequency transponder 100 defining the first longitudinal axis of the radiofrequency transponder 100.
  • the radiating antenna 10 is broken down into two main zones.
  • the first zone 201 corresponds to the section of the radiating antenna not located to the right of the electronic part. It comprises two sub-zones 201a and 201b surrounding on either side the rigid and electrically insulating mass 300.
  • Each sub-zone 201a 201b with a length L1 of 19 millimeters comprises 12 circular turns with a constant winding diameter DI of 1,275 millimeters. This determines inner and outer diameters of 1.05 and 1.5 millimeters respectively.
  • the PI propeller pitch of the circular turns is 1.55 millimeters.
  • the ratio of the step of propeller PI on the winding diameter DI of the turns is 1.21.
  • the axially outer ends of each sub-zone 201a and 201b end in two contiguous turns. As a result, the high ratio ensures that the effectiveness of the radioelectric properties of the radiating antenna 10 in this zone 201 is maximized.
  • the contact between the turns located most externally to the radiating antenna 10 prevents the interweaving of the coil springs together when handling radio frequency transponders.
  • the majority of turns of the first zone 201 of the radiating antenna 10 has a ratio greater than 0.8, the radio performance of the radio frequency transponder 100 is significantly improved.
  • the radiating antenna 10 On the second zone 202 of the radiating antenna 10 corresponding to the section of the radiating antenna 10 located to the right of the electronic part, the radiating antenna 10 has a length of 7 millimeters.
  • the coil spring has a constant P2 helix pitch of 1 millimeter and a constant D2 winding diameter of 1,575 millimeters.
  • the inner diameter of the helical spring of the second zone of the radiating antenna is 1.35 millimeters. This makes it possible to have a constant ratio of pitch to winding diameter of around 0.63. This ratio makes it possible to maximize the inductance of the second zone 202 of the radiating antenna relative to the first zone 201, which allows better efficiency of electromagnetic coupling with the electronic part.
  • the internal diameter of the radiating antenna 10, equal to 1.05, of the first zone 201 is less than the diameter of the mass 300, representing the circumscribed cylinder of the electronic part, equal to 1.15 millimeters.
  • the sub-zones 201a and 201b of the first zone 201 of the radiating antenna 10 represent mechanical stops to the axial movement of the mass 300 inside the radiating antenna 10. The installation of the part electronic will be carried out, in a first embodiment by threading the rigid and insulating mass 300 into the radiating antenna 10.
  • Figs. 6a, 6b and 6c are various two-dimensional views of the communication zone 104 of the radio frequency transponders of the mounted assembly; which in this example are mainly fixed on the pneumatic tire 12, and the system of reading mounted on the transport vehicle.
  • the pneumatic tire 12 is mounted on a rim not shown.
  • the mobile assembly thus constituted defines a natural axis of rotation 102 and a median plane 101.
  • This mobile assembly is mounted on the axle of the vehicle.
  • the vehicle can move on the ground 600 via the pneumatic tire 12.
  • This pneumatic tire 12 here comprises two radio frequency transponders each located in one side of the pneumatic tire 12 at the level of the lower zone.
  • the radio frequency transponders describe a closed loop 601-1, respectively 601-2, which is similar to a circle whose axis of rotation corresponds to the natural axis of rotation 102 of the pneumatic tire 12.
  • Fig. 6a is a view in the YZ plane of the motor vehicle, which corresponds to a front view of the mobile assembly.
  • Fig. 6b corresponds to a view in the XY plane, which corresponds to a top view of the mobile assembly, and
  • FIG. 6c represents a view in the XZ plane, which corresponds to a side face of the mobile assembly.
  • the radio frequency communication cylinder 104 is visualized in the three figures between the radio frequency transponders of the mobile assembly and the reading system represented via the radiating part of the bidirectional communication cable 32a. When the communication cable 32a enters the communication volume 104, this cable becomes the continuous part 32a-2 of the radiating part of the cable 32a for the mobile assembly located at the right rear of the vehicle.
  • the continuous part 32a-2 first runs along the inner side of the tire 12 relative to the vehicle, describing part of a first circle centered on the natural axis of rotation 102 of the mobile assembly. Then, after a curvature of this cable 32a, it moves to the other side of the median plane 101 of the mobile assembly, in the direction Y of the vehicle, i.e. on the exterior side of the tire 12 and of the vehicle. Finally, it partly describes a second circle always centered on the axis of rotation natural 102 of the mobile assembly before the cable ends on a termination present in the volume 104 in this specific case. This termination could be located outside the volume delimited by cylinder 104.
  • the first circle described by the continuous part 32a-2 is located axially external to the mobile assembly.
  • the first circle has a radius less than the maximum radius of the moving assembly, it could be greater.
  • On this arc of circle described by the continuous part 32a-2 of the communication cable there is a meander 501, visible in Fig 6c, extending perpendicular to the arc of circle, that is to say radially in the reference of the mobile assembly.
  • the surface delimited by the meander extends radially internally to the first circle so that it intercepts the loop 601-2 described by the movement of the radio frequency transponder present on the inner side of the tire 12. This loop is materialized by a circle in dotted line in Fig. 6c.
  • the length of the radio frequency antenna of the RFID tag is of the order of 5 centimeters when the RFID radio tag is buried in the structure of the tire.
  • this radio tag is oriented mainly circumferentially.
  • the meander 501 has a distance separating the outward strand and the return strand here of approximately 8 centimeters which allows better radio frequency communication between the meander 501 and the antenna of the RFID radio tag since the entire radiating antenna of the radio tag is located within the enhanced electric field generated by the entry and exit ends of the meander at a given time.
  • the second circle described by the continuous part 32a-2 of the communication cable 32a is located radially externally to the pneumatic tire 12 relative to the axis of rotation 102.
  • the cable 32a on the exterior side of the vehicle is mainly located axially external to the tire 12 with the exception of the meander 500-2 extending axially internally relative to the tire 12.
  • the meander 500-1 is located then axially externally to the pneumatic tire 12 as illustrated in Figs. 6a and Fig. 6b.
  • the loop 601-1 described by the pseudo periodic movement of the radio frequency transponder of the tire is located axially close to the second circle of the communication cable 32a, which optimizes radio frequency communication between the two antennas.
  • the meander 500-2 would here make it possible to interrogate another radio frequency transponder mounted on a mobile assembly having a width, in the axial direction, smaller or located to the right of the top of the tire 12, this top radially externally covering the tire 12
  • the meanders 500-1 and 500-2 are not contiguous since the exit end of the meander 500-1 does not coincide with the entry end of the meander 500-2. However, they remain close, allowing the creation of two zones of improved communication which, however, are distinct. In the case of contiguous meanders, in the shape of an “S” for example, the two meanders would form a single improved communication zone.
  • the curvilinear length of the meanders 500-1 and 500-2 is of the order of 15 centimeters and the spacing P between the entry and exit ends of each meander is of the order of 4 centimeters.
  • the meander 501 although having a curvilinear length of 14 centimeters, has a spacing P of the order of 6 centimeters.
  • Such a continuous part 32a-2 of the radiating part of the communication cable 32a allows communication by radio waves with radio frequency transponders mounted on the mobile assembly, in particular the pneumatic tire 12.
  • This radio frequency communication remains operational whether the radio frequency transponders are located on one or the other side of the pneumatic tire 12 and what is more whatever the dimension, in particular the width, of the mobile assembly fitted to the transport vehicle.
  • this configuration is not necessarily unique for achieving this radio frequency communication objective, it is an illustrative example.
  • Fig. 7 is an example of meander 500 on the continuous part of the radiating part of a bidirectional communication cable.
  • This meander 500 is defined in a UV orthonormal plane associated with the meander.
  • the U axis is defined by the tangent of the bidirectional communication cable located just upstream and/or downstream of the meander 500, if these two directions are not parallel we will take the median direction.
  • the meander 500 has a forward 511 and a return 512 which are interconnected by a segment 513 at their second end. The first end of the outward route 511, respectively of return 512, is connected to the bidirectional communication cable located downstream or upstream of the meander 500.
  • the change of direction between on the one hand the bidirectional communication cable and on the other hand the outward 511 or the return 513 of the meander 500 is made possible by the flexible nature of the communication cable which allows a more or less accentuated curvature of the communication cable.
  • the flexibility of the cable also allows this change of direction via the curvature potential of the communication cable.
  • This meander 500 is defined on the one hand by the average spacing or the average width between the outward journey 51 and the return 512 named “1” and the length L of the meander 500.
  • This second end 523 or 524 is determined by two conditions.
  • the first condition is that it is the largest coordinate in direction V of a point on the communication cable 32 from the first end 521 of the outward route 511, respectively the first end 522 of the return route 512. Note that the origin of the axis V is defined at point 521, respectively 522.
  • the second condition is that the tangent of the point of the communication cable 32 at this second end 523 or 524 has its largest component carried by the direction V. Finally, the segment 513 is delimited by the second ends 523 and 524 of the outbound 511 and the return 512.
  • the average spacing “1” of the meander is determined by taking the distance in direction U between outward 511 and return 512.
  • the position in direction U of outward 511, respectively return 512 corresponds to the average value UA, respectively UB, of the coordinates of the points of the outward journey 511, respectively of the return 512, in the direction U having a homogeneous distribution of the points along the cable 32.
  • the outward journey 511 is delimited by the points 521 and 523 while the return 512 is delimited by points 522 and 524.
  • Points 521 and 522 are respectively the starting point and the arrival point of the meander 500.
  • Each of the points 521 and 522 corresponds to the change in curvature of the cable relative to the direction of the cable located downstream, respectively upstream, of the meander 500, i.e. the direction of the vector U.
  • the curvilinear length of the meander 500 as the distance, along the bidirectional communication cable between the entry end 525 and the exit end 526 of the meander 500.
  • Each of the points 525 or 526 is determined by the following condition. This is the point of the communication cable, starting from the starting point 521, respectively from the arrival point 522, whose tangent has its largest component carried by the direction V.
  • the curvilinear length of the cable must be between 0.9 andl.l times the half-wavelength L0 associated with the communication frequency of the reader system. In the case of communication at the frequency F0 of 900MHz, the half-wavelength is then approximately 15 centimeters, the curvilinear length of the meander 500 must then be between 13.5 and 16.6 centimeters.
  • the distance “P” corresponds to the spacing between points 525 and 526 of the bidirectional communication cable. These two points 525 and 526 define the line D, the distance D corresponds to the length of the segment between the material points 525 and 526. Necessarily, the line D is substantially parallel to the axis U. In the case of communication at the frequency F0 of 900MHz, the half-wavelength is then approximately 15 centimeters, the distance “P” must be less than a quarter of the wavelength, or 7.5 cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Véhicule (2) équipé d'un ensemble mobile (1) comprenant un bandage pneumatique (12) mis en rotation autour d'un axe (102), l'ensemble mobile (1) étant équipé d'un transpondeur radiofréquence (100) et un système de lecture (3) comprenant : - Un générateur couplé à un démodulateur (31) de signaux électriques - Un câble (32) connecté galvaniquement au générateur (31), fixé sur le moyen de transport (2) comprenant une partie rayonnante (342), Caractérisé en ce que la projection R sur un cylindre (104), d'axe de révolution (102), circonscrit au bandage pneumatique (12) de la partie rayonnante est inférieure à 1 mètre, en ce que la partie rayonnante (342) comprend un méandre (500), la longueur curviligne du méandre (500) est comprise entre 0.9 et 1.1 fois la demi-longueur d'onde L0 associée à la fréquence de communication, la distance « P » entre les deux extrémités du méandre (500) est inférieure au quart de longueur d'onde.

Description

DESCRIPTION
TITRE : SYSTEME DE LECTURE RADIOFREQUENCE EMBARQUE SUR UN VEHICULE DE TRANSPORT
Domaine de l’invention
[0001] La présente invention concerne un système de lecture de transpondeur radiofréquence embarqué au sein d’un véhicule de transport. Les transpondeurs radiofréquences sont eux principalement liés aux ensembles mobiles du véhicule de transport.
Arrière-plan technologique
[0002] Le développement récent des objets connectés nécessite d’équiper ceux-ci de transpondeurs radiofréquences. Généralement ces transpondeurs radiofréquences fonctionnent dans la gamme de fréquences des UHF (acronyme d’Ultra Hautes Fréquences), c’est-à-dire entre 300 MHz et 3GHz. Dans le cas des véhicules de transport comme les véhicules à bandage pneumatique, les objets connectés sont des composants mobiles de ces véhicules de transport. Par conséquent, ceux-ci sont mobiles en fonctionnement en parcourant un mouvement plan autour d’un axe de rotation fixe par rapport au véhicule de transport. De ce fait, dans un repère lié au véhicule de transport, les dits transpondeurs parcourent des boucles fermées sur elles -mêmes.
[0003] Le document US20210021015A1 montre, dans le cas d’un véhicule terrestre, l’implantation d’un système de lecture embarqué d’étiquettes RFID (acronyme en anglais de Radio Frequency IDentification) et de capteurs TMS (acronyme en anglais de Tire Mounted Sensor) localisées dans les enveloppes pneumatiques des ensembles montés du véhicule terrestre. Ce système est composé d’un lecteur/émetteur radiofréquence connecté galvaniquement à quatre lignes de transmission jusqu’à des antennes radiofréquences couvant chacune une certaine zone géographique. Les antennes radiofréquences sont fixés solidairement à la partie fixe du véhicule terrestre. Cette solution nécessite de multiplier les antennes radiofréquences généralement bidimensionnelles et planes voire tridimensionnelles. Cela crée un encombrement spatial au sein du véhicule terrestre qui est dommageable à l’implantation des autres composants du véhicule terrestre. De plus, la séparation des divers éléments, (le lecteur radiofréquence, la ligne de transmission et l’antenne radiofréquence) multiplie les points de connexion entre les divers éléments, ce qui multiplie les risques de défaillance du système de lecture en raison des vibrations et chocs que subissent en général les moyens de transport. Enfin, la multitude d’ensembles montés d’un véhicule terrestre engendre une multiplicité des lignes de transmission et des antennes radiofréquences, ce qui est coûteux.
[0004] L’un des objets de l’invention qui va suivre a pour objectif de résoudre les problèmes de fiabilité et de coût des systèmes de lecture des transpondeurs radiofréquences mobiles au sein des véhicules de transport.
[0005] Afin de mieux comprendre l’invention, on entend ici par les directions circonférentielle S, axiale A et radiale R, des directions définies par rapport au repère tournant de l’ensemble mobile autour de son axe de rotation naturel. La direction radiale R est la direction s’éloignant perpendiculairement de l’axe de rotation naturel. La direction axiale A est la direction parallèle à l’axe de rotation naturel. Enfin la direction circonférentielle S forme un trièdre direct avec les directions radiale et axiale prédéfinies.
Description de l’invention
[0006] L’invention porte sur un véhicule de transport comprenant un système de lecture de transpondeurs radiofréquences et au moins un ensemble mobile apte à assurer le mouvement du véhicule de transport par rapport au sol sur lequel roule le véhicule de transport, comprenant un bandage pneumatique mis en mouvement autour d’un axe de rotation, le mouvement libre du au moins un ensemble mobile s’effectuant dans un plan majoritairement bidimensionnel dans un repère cylindrique associé à le au moins un ensemble mobile dont la direction axiale est la direction de l’axe de rotation, le bandage pneumatique définissant un plan médian qui est perpendiculaire à l’axe de rotation, le au moins un ensemble mobile, préférentiellement le bandage pneumatique, étant équipé d’un transpondeur radiofréquence. Le système de lecture comprend : - Un générateur de signaux électriques émettant à une fréquence FO comprise dans la bande des Ultra Hautes Fréquences, couplé à un démodulateur de signaux électriques adapté à une bande de fréquences autour de FO, monté sur le véhicule de transport.
Au moins un câble de communication bidirectionnelle, étant en partie souple, comprenant une âme conductrice recouvert d’un premier élément diélectrique, lui- même recouvert d’un ensemble conducteur, ayant une extrémité connectée galvaniquement au système de lecture, ayant à son extrémité libre un moyen de couplage capacitif entre l’âme conductrice et l’ensemble conducteur par l’intermédiaire d’un second élément diélectrique, adaptée à la bande de fréquences du système de lecture, la longueur lo est divisée selon une métrique dont l’unité est une longueur d’onde LO définie par la fréquence FO.
- Le au moins un câble, étant fixé solidairement sur le véhicule de transport et extérieurement à le au moins un ensemble mobile, comprend une partie rayonnante.
L’agencement est caractérisé en ce que la distance de la projection radiale d’une première partie continue de la partie rayonnante du au moins un câble sur un cylindre, d’axe de révolution coaxial à l’axe de rotation, circonscrit au bandage pneumatique est inférieure ou égale à 1 mètre, préférentiellement inférieure ou égale à 0,5 mètre, en ce que la distance de la projection axiale, selon la direction de l’axe de rotation, de la première partie continue de la partie rayonnante du au moins un câble sur le plan médian du bandage pneumatique est inférieure à 2 mètres, préférentiellement inférieure ou égale à 1 mètre, très préférentiellement inférieure ou égale à 0,5 mètre, en ce que la première partie continue de la partie rayonnante du au moins un câble comprend au moins un méandre, en ce que la longueur curviligne du au moins un méandre est compris entre 0.9 et 1.1 fois la demi-longueur d’onde LO définie par la fréquence de communication FO modulo la longueur d’onde LO et en ce que la distance « P » séparant les deux extrémités du au moins un méandre est inférieure au quart de la longueur d’onde LO.
[0007] Le terme « mouvement libre » signifie que le mouvement est opéré sans contrainte de déplacement comme un mouvement à déplacement imposé. Par exemple, dans le cas d’un ensemble monté chargé statiquement et mis en rotation, il s’agit du mouvement des points matériels de l’ensemble monté en dehors de la zone de contact de l’enveloppe pneumatique avec le sol, communément appelée aire de contact. En effet dans cette zone, le mouvement d’un point matériel de l’enveloppe pneumatique en contact avec le sol est guidé par le sol tant que la condition de glissement n’est pas atteinte, on est donc à déplacement imposé, ce qui ne rentre pas dans la définition du mouvement libre.
[0008] Tout d’abord, l’ensemble mobile est le sous-ensemble du véhicule de transport servant à déplacer le véhicule de transport par rapport au sol. L’ensemble mobile comprend une bande pneumatique entraînée en rotation autour d’un axe de rotation par des pièces non déformables, c’est-à-dire plus rigides que le bandage pneumatique comme une jante.
[0009] Le transpondeur radiofréquence qui peut être une étiquette RFID ou un autre dispositif électronique avec sa propre source d’énergie ou passif. Le transpondeur radiofréquence est lui fixé sur l’ensemble mobile du véhicule de transport. Cela peut être par exemple une étiquette RFID dans une enveloppe pneumatique, un capteur TPMS (Acronyme anglais de tire Pressure Monitoring System) accroché à la roue ou tout objet électronique communiquant par radiofréquence muni d’une antenne radiofréquence se situant sur un ensemble mobile. Afin de lire cet objet électronique lié à l’ensemble mobile donc en mouvement dans le véhicule de transport, l’invention divulgue de placer un système de lecture embarqué sur le véhicule de transport extérieurement à l’ensemble mobile. De ce fait il n’est pas lié au mouvement de l’ensemble mobile. Ce système de lecture comprend un premier dispositif comprenant un émetteur/récepteur de signaux électriques à une fréquence fixe et un démodulateur de signaux électriques sur une bande de fréquences autour de la fréquence fixe. Ce premier dispositif est connecté à un câble de communication bidirectionnelle. Ce câble est composé d’une âme conductrice, creuse ou pleine, généralement métallique et d’un second tube creux conducteur coaxial à l’âme conductrice. Un premier élément diélectrique sépare les deux composants conducteurs. L’une des extrémités du câble est connectée au dispositif électronique d’émission /réception tandis que l’autre extrémité est libre. Ce câble comprend au moins une partie rayonnante c’est-à-dire qu’il émet ou reçoit fonctionnellement des ondes radioélectriques extérieurement au tube conducteur creux. Le câble est équipé à son extrémité libre d’un moyen de couplage capacitif entre l’âme conductrice et l’ensemble conducteur constitué par le tube creux conducteur, par l’intermédiaire d’un second élément diélectrique, adaptée à la bande de fréquences du système de lecture.
[0010] Ce type de câble de communication bidirectionnelle utilise les ondes radioélectriques de surface par l’intermédiaire de ce moyen de couplage capacitif. Cela permet de disposer d’un câble bidirectionnel n’ayant pas de spécificités à sa surface sur la partie rayonnante. Ainsi, dans l’hypothèse d’une forte déformation du câble lors de son implantation dans le véhicule de transport, la fonctionnalité de communication du câble n’est pas affectée comme pourrait l’être un câble à fuites (« leaky feed antenna ») dont la distribution et les formes des orifices traversant le tube conducteur sont plus sensibles à la déformation du câble bidirectionnelle. De plus, cette solution technique est plus économique puisque la réalisation des orifices sur le tube conducteur est nettement plus onéreuse que la mise en place d’un dispositif de réflexion électrique par couplage capacitif à l’extrémité d’un câble coaxial.
[0011] Ce type de câble est décrite dans la demande de brevet US2016/0197408A1 comprenant à son extrémité libre un dispositif de réflexion électrique par couplage capacitif constitué d’un composant conducteur connecté à l’âme conductrice et éventuellement séparé du tube conducteur par un second matériaux diélectrique générant un couplage capacitif. La longueur du composant conducteur est généralement un quart de longueur d’onde des ondes radioélectriques émises et reçues par l’antenne câble. Ce dispositif crée des ondes de propagation radioélectriques de surface sur le tube conducteur en sens opposé à celui émis par le générateur de signaux jusqu’à une zone d’atténuation des ondes de surfaces réalisés par des anneaux aimantés, généralement en ferrite, montés axialement extérieurement au câble.
[0012] L’invention repose tout d’abord sur l’agencement particulier du système de lecture et en particulier de la partie rayonnante du câble de communication bidirectionnelle par rapport au parcours suivi par le transpondeur radiofréquence entrainé en mouvement par l’ensemble mobile. En effet, il faut que la distance spatiale entre la partie rayonnante du câble et le transpondeur radiofréquence soit inférieure à une certaine distance, préférentiellement un mètre, au cours d’une partie de la boucle décrite par le transpondeur radiofréquence lors du parcours de l’ensemble mobile pour que la communication radiofréquence puisse s’établir entre le système de lecture et le transpondeur radiofréquence. Ceci est assurée au travers de deux conditions liées à la structure de l’ensemble mobile. En effet, l’ensemble mobile ayant un mouvement majoritairement bidimensionnel, dans le repère lié à l’ensemble mobile, en dehors des zones à déplacement imposé, il est possible de définir un plan médian au bandage pneumatique de l’ensemble mobile qui a comme propriété d’être perpendiculaire à l’axe de rotation de l’ensemble mobile et de séparer l’ensemble mobile en deux parties symétriques par rapport au plan médian. On entend ici par le terme « mouvement majoritairement bidirectionnel » que la distance parcourue par un point matériel de l’ensemble mobile entre deux instants, décomposée sur un repère orthonormé lié à l’ensemble mobile, a une composante plus petite que les deux autres. Généralement cette composante est celle qui est portée par la direction de l’axe de rotation de l’ensemble mobile. La première condition est qu’une sous partie continue de la partie rayonnante du câble de communication ne soit pas plus éloignée de 2 mètres du plan médian attaché au bandage pneumatique de l’ensemble mobile suivant la direction de l’axe de rotation de l’ensemble mobile. Bien entendu plus l’implantation de la partie continue de la partie rayonnante du câble par rapport au transpondeur radiofréquence est proche, meilleure est la communication radiofréquence entre les deux dispositifs radiofréquences.
[0013] Ensuite le bandage pneumatique de l’ensemble mobile étant animé d’un mouvement de rotation pure autour de son axe de rotation, il est nécessaire de maîtriser la distance entre la partie continue de la partie rayonnante du câble de communication bidirectionnelle et le bandage pneumatique de l’ensemble mobile. A cet effet, une seconde condition de projection est à respecter. Elle, pour la zone du bandage pneumatique en rotation autour de son axe de rotation, consiste à définir la distance maximale de projection radiale R de la partie continue de la partie rayonnante du câble de communication bidirectionnelle sur la plus proche surface du bandage pneumatique de l’ensemble mobile, ce qui correspondant à la surface radial ement externe du bandage pneumatique par rapport à son axe de rotation. [0014] Lorsque ces conditions sont réunies au cours d’une partie de la boucle décrite lors du parcours du transpondeur radiofréquence fixé sur l’ensemble mobile, on assure que la partie continue de la partie rayonnante du câble de communication bidirectionnelle est potentiellement en communication bidirectionnelle avec le transpondeur radiofréquence sur cette partie de la boucle ; qui plus est cette communication est spatialement périodique puisqu’elle se répète à chaque boucle. Bien entendu, plus cette partie de la boucle est étendue, meilleure est la communication entre les deux composants d’un point de vue temporel. Préférentiellement, la condition est respectée sur la totalité de la boucle décrivant le parcours du transpondeur radiofréquence.
[0015] Enfin, il est nécessaire que la partie continue de la partie rayonnante du câble de communication bidirectionnelle qui se trouve dans cette zone spatiale par rapport à l’ensemble mobile comprend au moins un méandre. Le méandre est défini par une largeur nommé « 1 » et une longueur nommée « L ». La longueur « L » est définie par rapport à la direction axiale de la partie rayonnante du câble en dehors des zones de méandre. L’une des extrémités de la longueur « L » commence au changement de courbure du câble et qui initie le méandre. L’autre extrémité est définie par le point du méandre le plus éloigné, c’est-à-dire ayant la plus grande projection orthogonale, par rapport à la direction axiale du câble. La largeur « 1 » du méandre est définie à l’aide de chaque moyenne axiale, selon la direction du câble, des points du méandre définissant l’aller ou le retour du méandre, c’est-à-dire l’ensemble des points du câble situés entre les deux extrémités définissant la longueur « L » du méandre sur l’aller ou le retour du méandre. La distance entre ces deux moyennes axiales, selon la direction axiale du câble, détermine la largeur « 1 » du méandre On appellera l’extrémité d’entrée du méandre, selon le sens de propagation des ondes radioélectriques fournis par le système d’émission/réception, le premier point du méandre où la tangente présente une composante principale portée par la direction de la longueur « L » du méandre. On appellera l’extrémité de sortie du méandre, selon le sens de propagation des ondes radioélectriques fournis par le système d’émission/réception, le dernier point du méandre où la tangente présente une composante principale portée par la direction de la longueur « L » du méandre. La distance « P » est mesurée entre l’extrémité d’entrée et l’extrémité de sortie du méandre. [0016] Ce méandre permet de constituer une zone de communication améliorée entre le câble de communication bidirectionnelle et le transpondeur dans un mode de communication d’émission radiofréquence émanant du système de lecture, c’est-à-dire déclenchée par le système de lecture. Ainsi, cela permet d’établir la communication avec le transpondeur radiofréquence, notamment lorsque celui-ci est passif, en fournissant une quantité d’énergie suffisante pour que ce dernier se réveille et se mette en communication lorsque le transpondeur radiofréquence se trouve à proximité de ce méandre au cours de son parcours associé au mouvement de l’ensemble mobile. En effet ce méandre permet de créer une zone spatiale étroite, située entre l’extrémité d’entrée et l’extrémité de sortie du méandre, dans laquelle le champs électrique E généré par la partie rayonnante du câble de communication est stable et plus élevée en amplitude que celui générée en dehors du méandre voire au sein du méandre.
[0017] Cette augmentation du champs électrique E au niveau du méandre, entre l’extrémité d’entrée et l’extrémité de sortie n’est possible qu’en raison de la distance P particulière entre ses deux points du méandre qui crée un entrefer, c’est-à-dire un système chargé de façon opposée, des charges positives et négatives en vis-à-vis, comme un condensateur, lorsque la longueur curviligne du méandre est proche de la demi longueur d’onde LO associée à la fréquence de communication FO du système de lecture. L’augmentation de l’amplitude du champ électrique E procure un accroissement de l’énergie radioélectrique vers le transpondeur radiofréquence qui permet de l’activer en mode de communication. Dans le cadre d’un transpondeur radiofréquence passif comme une radio étiquette RFID passive, l’énergie captée par le transpondeur radiofréquence sert à l’émission du message radiofréquence retour du transpondeur radiofréquence. En phase de réception du message radiofréquence émanant du transpondeur radiofréquence, la partie rayonnante linéique du câble de communication est suffisante pour capter le message retour tant que la distance entre les deux éléments reste raisonnable. De ce fait, ce méandre est à utiliser principalement dans des zones de communication difficiles avec le transpondeur radiofréquence. Par exemple, lorsque l’on souhaite interroger une transpondeur radiofréquence éloignée spatialement de la partie rayonnante du câble de communication ou que l’environnement du véhicule ou de l’ensemble mobile ne soit pas favorable à la communication radiofréquence en raison par exemple d’éléments conducteurs électriquement. Ainsi, un transpondeur radiofréquence situé à la fois sur le côté extérieur du bandage pneumatique et sur l’extérieur du véhicule de transport, seul le positionnement de la partie rayonnante du câble radialement extérieurement au bandage pneumatique est possible. Or, le sommet du bandage pneumatique, la partie la plus radialement extérieure du bandage pneumatique par rapport à son axe de rotation comprend un sommet métallique, souvent de conception radiale ce qui est néfaste à la communication radiofréquence. Dans ces cas précis, la présence de méandre permet quand même d’interroger le transpondeur radiofréquence de l’ensemble mobile et de recevoir sa réponse radiofréquence par l’intermédiaire de la première partie continue de la partie rayonnante du câble de communication.
[0018] Il est à noter que l’agencement du reste du méandre, c’est-à-dire en dehors des points d’extrémités d’entrée et de sortie, ne modifie que faiblement le champs électrique E. De ce fait, ce méandre peut facilement s’adapter à tout environnement complexe et dense comme peut être un véhicule automobile. Seule la distance entre les extrémités d’entrée et de sortie, l’orientation de la droite définie par ces deux extrémités et la longueur curviligne entre ces deux extrémités sont à contrôler pour assurer la fonction du méandre en matière d’amélioration de la communication radiofréquence. Enfin, ce type de méandre permet aussi de minimiser la consommation d’énergie électrique du câble de communication. En effet, le rayonnement radioélectrique est localisé et non étendu ce qui permet d’économiser de l’énergie. Bien entendu, plus la distance « P » entre les extrémités de sortie et d’entrée du méandre est faible, plus fort est le champ électrique E généré par ces points au détriment de la durée d’exposition du transpondeur radiofréquence à ce champ électrique E amélioré. Pour augmenter la durée d’exposition à ce champ électrique E, il suffit de multiplier les méandres et notamment rendre ces méandres jointifs. Par exemple, cela peut être réalisé au travers du pliement du câble sous la forme d’un « S » qui est l’addition de deux méandres jointifs dont les boucles sont opposées. La forme en S permet de ne pas décaler spatialement les deux méandres du fait de la courbure du câble. Cette technique permet d’étendre la zone de communication à champ électrique E amélioré de chaque méandre.
[0019] De plus il est préférable que la partie continue de la partie rayonnante du câble de communication bidirectionnelle qui se trouve dans la zone spatiale autour de l’ensemble mobile a une longueur curviligne supérieure à une unité de longueur du câble. L’unité de longueur du câble est définie par la longueur d’onde LO associée à la fréquence FO d’émission du signal radioélectrique par le système de lecture se propageant dans un milieu de permittivité diélectrique relative donnée. Ainsi, on assure que la longueur de l’antenne dans la zone spatiale délimitée par l’une des deux conditions géométriques est adaptée pour émettre et recevoir des signaux radioélectriques vers de depuis le transpondeur radiofréquence fixé sur l’ensemble mobile. Bien entendu plus la longueur de la partie continue de la partie rayonnante du câble de communication bidirectionnelle est grande, meilleure est la communication entre le système de lecture et le transpondeur radiofréquence.
[0020] Selon un mode de réalisation spécifique, la partie rayonnante du au moins un câble comprenant au moins une seconde partie continue disjointe de la première partie continue, la distance de la projection radiale de la au moins une seconde partie continue de la partie rayonnante du au moins un câble sur un cylindre, d’axe de révolution coaxial à l’axe de rotation du au moins un second ensemble mobile, circonscrit au bandage pneumatique du au moins un second ensemble mobile est inférieure ou égale à 1 mètre, préférentiellement inférieure à 0,5 mètre et la distance de la projection axiale, selon la direction de l’axe de rotation du au moins un second ensemble mobile, de la au moins une seconde partie continue de la partie rayonnante du au moins un câble sur le plan médian du bandage pneumatique du au moins un second ensemble mobile est inférieure à 2 mètres, préférentiellement inférieure à 1 mètre, très préférentiellement inférieure à 0,5 mètre.
[0021] C’est une configuration où le câble de communication bidirectionnelle est capable d’interroger des ensembles mobiles du même véhicule de transport qui sont éloignés l’un de l’autre de sorte que la même partie continue de la partie rayonnante du câble de communication ne puisse pas interroger les deux ensembles mobiles. La solution conventionnelle serait alors d’ajouter un second câble de communication bidirectionnelle et de positionner une partie continue de la partie rayonnante de ce second câble dans la zone géographique adéquate du second ensemble mobile, ce qui est coûteux. La solution ici est d’employer le même câble de communication bidirectionnelle, ce qui limite le nombre de connexions galvaniques à l’émetteur/récepteur de signaux électriques du système de lecture. Ce câble est alors équipé d’une seconde partie continue rayonnante disjointe de la première partie continue. Cependant, il peut s’agir de la même partie rayonnante du câble. Ainsi, le même câble interroge et réceptionne les informations de chaque transpondeur radiofréquence associé chacun à un ensemble mobile différent. Pour réaliser une zone spatiale rayonnante étendue, il suffit de faire passer plusieurs fois la partie rayonnante du câble sur une même zone spatiale afin de créer une zone continue. On crée ainsi une zone rayonnante étendue permettant une communication aisée avec les transpondeurs du véhicule de transport traversant la zone spatiale. Bien entendu, il est possible de créer plusieurs zones spatiales rayonnantes étendues, disjointes l’une de l’autre à l’aide de cette technique. Entre ces zones spatiales, le câble a un comportement rayonnant moindre qui permet cependant la transmission des signaux radioélectriques le long du câble jusqu’au lecteur. Bien entendu, il est tout à fait possible de multiplier les parties continues et rayonnantes sur la longueur du câble de communication afin de communiquer avec plusieurs ensembles mobiles éloignés géographiquement les uns des autres pour communiquer avec tous les transpondeurs radiofréquences du véhicule de transport, que ceux-ci soient liés à un ensemble mobile du véhicule de transport ou non. De même une partie continue de la partie rayonnante du câble de communication bidirectionnelle peut communiquer avec des ensembles mobiles différents tant que ceux- ci se situent à la bonne distance de la partie continue de la partie rayonnante du câble.
[0022] Selon un mode de réalisation spécifique, dans la partie rayonnante du câble, l’ensemble conducteur est recouvert d’un second ensemble conducteur qui est relié à la masse.
[0023] Cela permet de limiter le rayonnement électromagnétique issu du câble dans le véhicule de transport ce qui peut être nécessaire selon la compatibilité électromagnétique du véhicule de transport souhaitée.
[0024] Selon un mode de réalisation particulier, la au moins une seconde partie continue de la partie rayonnante du au moins un câble comprend au moins un méandre, la longueur curviligne du au moins un méandre de la au moins une seconde partie est compris entre 0.9 et 1.1 fois la demi-longueur d’onde L0 définie par la fréquence de communication F0 modulo la longueur d’onde L0, la distance « P » séparant les deux extrémités du au moins un méandre de la au moins une seconde partie est inférieure au quart de la longueur d’onde LO.
[0025] Il est préférable que la seconde partie continue de la partie rayonnante du câble de communication bidirectionnelle qui se trouve à proximité d’un ensemble mobile comprend au moins un méandre. Le méandre est défini par une largeur nommé « 1 » et une longueur nommée « L ». La longueur « L » est définie par rapport à la direction axiale de la partie rayonnante du câble en dehors des zones de méandre, le dit câble étant dans la zone définie par la projection radiale et la projection axiale du câble sur l’ensemble mobile. L’une des extrémités de la longueur « L » commence au changement de courbure du câble qui initie le méandre. L’autre extrémité est définie par le point du méandre le plus éloigné, c’est-à-dire ayant la plus grande projection orthogonale, par rapport à la direction axiale du câble. La largeur « 1 » du méandre est définie à l’aide de chaque moyenne axiale, selon la direction du câble, des points du méandre définissant l’aller ou le retour du méandre, c’est-à-dire l’ensemble des points du câble situés entre les deux extrémités définition la longueur « L » sur l’aller ou le retour du méandre. La distance entre ces deux moyennes axiales, selon la direction axiale du câble, détermine la largeur « 1 » du méandre. On appellera l’extrémité d’entrée du méandre, selon le sens de propagation des ondes radioélectriques fournis par le système d’émission/réception, le premier point du méandre où la tangente présente une composante principale portée par la direction de la longueur « L » du méandre. On appellera l’extrémité de sortie du méandre, selon le sens de propagation des ondes radioélectriques fournis par le système d’émission/réception, le dernier point du méandre où la tangente présente une composante principale portée par la direction de la longueur « L » du méandre. La distance « P » est mesurée entre l’extrémité d’entrée et l’extrémité de sortie du méandre.
[0026] Ce méandre permet de constituer une zone de communication améliorée entre le câble de communication bidirectionnelle et le transpondeur dans un mode de communication d’émission radiofréquence émanant du système de lecture, c’est-à-dire déclenchée par le système de lecture. Ainsi, cela permet d’établir la communication avec le transpondeur radiofréquence, notamment lorsque celui-ci est passif, en fournissant une quantité d’énergie suffisante pour que ce dernier se réveille et se mette en communication lorsque le transpondeur radiofréquence se trouve à proximité de ce méandre au cours de son parcours associé au mouvement du second ensemble mobile. En effet ce méandre permet de créer une zone spatiale étroite, située entre l’extrémité d’entrée et l’extrémité de sortie du méandre, dans laquelle le champs électrique E généré par la partie rayonnante du câble de communication est stable et plus élevée en amplitude que celui générée en dehors du méandre voire au sein du méandre.
[0027] En effet ce méandre permet de créer une zone spatiale étendue, proportionnelle à la longueur « L » du méandre, dans laquelle le champs électrique E généré par la partie rayonnante du câble de communication est stable et plus élevée en amplitude que celui générée en dehors du méandre. Cette augmentation du champs électrique E au niveau du méandre, entre l’extrémité d’entrée et l’extrémité de sortie n’est possible qu’en raison de la distance P particulière entre ses deux points du méandre qui crée un entrefer, c’est-à- dire un système chargé de façon opposée, des charges positives et négatives en vis-à-vis, comme un condensateur, lorsque la longueur curviligne du méandre est proche de la demi longueur d’onde LO associée à la fréquence de communication FO du système de lecture.
[0028] L’augmentation de l’amplitude du champ électrique E procure un accroissement de l’énergie radioélectrique vers le transpondeur radiofréquence qui permet de l’activer en mode de communication. Dans le cadre d’un transpondeur radiofréquence passif comme une radio étiquette RFID, l’énergie captée par le transpondeur radiofréquence sert à l’émission du message radiofréquence retour du transpondeur radiofréquence. En phase de réception du message radiofréquence émanant du transpondeur radiofréquence, la partie rayonnante linéique du câble de communication est suffisante pour capter le message retour tant que la distance entre les deux éléments reste raisonnable. De ce fait, ce méandre est à utiliser principalement dans des zones de communication difficiles avec le transpondeur radiofréquence. Par exemple, lorsque l’on souhaite interroger une transpondeur radiofréquence éloignée spatialement de la partie rayonnante du câble de communication ou que l’environnement du véhicule ou de l’ensemble mobile ne soit pas favorable à la communication radiofréquence en raison par exemple d’éléments conducteurs électriquement. Dans ces cas précis, la présence de méandre permet quand même d’interroger le transpondeur radiofréquence de l’ensemble mobile et de recevoir sa réponse radiofréquence par l’intermédiaire de la seconde partie continue de la partie rayonnante du câble de communication. [0029] Il est à noter que l’agencement du reste du méandre, c’est-à-dire en dehors des points d’extrémités d’entrée et de sortie, ne modifie que faiblement le champs électrique E. De ce fait, ce méandre peut facilement s’adapter à tout environnement complexe et dense comme peut être un véhicule automobile. Seule la distance entre les extrémités d’entrée et de sortie, l’orientation de la droite définie par ces deux extrémités et la longueur curviligne entre ces deux extrémités sont à contrôler pour assurer la fonction du méandre en matière d’amélioration de la communication radiofréquence. Enfin, ce type de méandre permet aussi de minimiser la consommation d’énergie électrique du câble de communication. En effet, le rayonnement radioélectrique est localisé et non étendu ce qui permet d’économiser de l’énergie. Bien entendu, plus la distance « P » entre les extrémités de sortie et d’entrée du méandre est faible, plus fort est le champ électrique E généré par ces points au détriment de la durée d’exposition du transpondeur radiofréquence à ce champ électrique E amélioré Pour augmenter la durée d’exposition à ce champ électrique E amélioré, il suffit de multiplier les méandres et notamment rendre ces méandres jointifs. Par exemple, cela peut être réalisé au travers du pliement du câble sous la forme d’un « S » qui est l’addition de deux méandres jointifs dont les boucles sont opposées. La forme en S permet de ne pas décaler spatialement les deux méandres du fait de la courbure du câble. Cette technique permet d’étendre la zone de communication à champ électrique E amélioré qui est généré par chaque méandre.
[0030] De plus il est préférable que la partie continue de la partie rayonnante du câble de communication bidirectionnelle qui se trouve dans la zone spatiale autour du second ensemble mobile a une longueur curviligne supérieure à une unité de longueur du câble. L’unité de longueur du câble est définie par la longueur d’onde associée à la fréquence F0 d’émission du signal radioélectrique par le système de lecture se propageant dans un milieu de permittivité diélectrique relative donnée. Ainsi, on assure que la longueur de l’antenne dans la zone spatiale délimitée par l’une des deux conditions géométriques est adaptée pour émettre et recevoir des signaux radioélectriques vers de depuis le transpondeur radiofréquence fixé sur l’ensemble mobile. Bien entendu plus la longueur de la partie continue de la partie rayonnante du câble de communication bidirectionnelle est grande, meilleure est la communication entre le système de lecture et le transpondeur radiofréquence. [0031] Selon un mode de réalisation avantageux, la partie rayonnante du au moins un câble comprend au plus 7 méandres, préférentiellement au plus 5 méandres.
[0032] La multiplication des méandres limite le caractère rayonnant du câble en dehors des zones ou sont localisés les méandres, ce qui peut être néfaste pour l’interrogation des transpondeurs radiofréquences du véhicule de transport ne se situant pas, au cours de leur mouvement, dans les zones spatiales des parties continues de la partie rayonnante du câble de communication. Une alternative pour pallier ce faible rayonnement d’émission du câble consiste à augmenter la puissance électrique du système de lecture. Mais à iso puissance fournie au système de lecture, il est préférable de limiter le nombre de méandres pour assurer une communication radiofréquence suffisante sur la longueur totale de la partie rayonnante du câble de communication bidirectionnelle.
[0033] Selon un autre mode de réalisation avantageux, chaque partie continue de la partie rayonnante du au moins un câble comprend au plus 3 méandres, préférentiellement au plus 2 méandres.
[0034] Dans cette même logique d’uniformité de la capacité de communication du câble, il est préférable que chaque partie continue de la partie rayonnante du câble ne compte pas plus 3 méandres et très préférentiellement pas plus de 2. Ainsi, on répartit la puissance de rayonnement entre les diverses parties continues si elles sont plusieurs. De plus, on laisse de la puissance radioélectrique d’émission dans les zones sans méandre.
[0035] Avantageusement, le transpondeur radiofréquence associé à le au moins un ensemble mobile comprenant une antenne radiofréquence comprenant au moins un brin filaire définissant un premier axe longitudinal, chaque méandre de la première et/ou la au moins une seconde partie continue de la partie rayonnante du au moins un câble définissant une droite D définie par les deux extrémités du au moins un méandre, l’angle formé par les vecteurs directeurs du premier axe longitudinal et de la droite D est inférieure à +/- 30 degrés, préférentiellement inférieur à +/- 20 degrés sur au moins une partie du parcours fermé décrit par l’au moins un ensemble mobile (1).
[0036] Dans le cas particulier où le transpondeur radiofréquence est équipé d’une antenne filaire, il est nécessaire que les directions du premier axe longitudinal et la direction de la droite D soient sensiblement parallèles entre elles afin d’assurer un couplage électromagnétique entre le transpondeur radiofréquence et la partie efficace du méandre. En effet, le champ électrique E amélioré, généré par le méandre est orienté selon la droite D. Ainsi, l’antenne filaire du transpondeur est sensiblement alignée avec le champ électrique E amélioré généré par le méandre. Idéalement, l’antenne filaire devrait être colinéaire au champ électrique E amélioré pour que l’efficacité du couplage soit maximale Cependant, le niveau de communication entre les deux antennes reste totalement convenable tant que l’angle formé par des deux directions ne s’éloigne pas de plus de 30 degrés. Ceci est préférable lorsque le transpondeur radiofréquence est passif, c’est-à-dire sans source propre ou de production d’énergie électrique. En effet, le couplage électromagnétique sert alors à activer le transpondeur radiofréquence en lui transmettant de l’énergie avant que celui-ci émet.
[0037] Bien entendu le transpondeur radiofréquence étant en mouvement tandis que le système de lecture est fixe par rapport au véhicule de transport, la condition angulaire n’est pas forcément respectée sur la totalité du parcours décrit par le transpondeur radiofréquence. Cependant, il suffit que celle-ci soit réalisé sur une partie du parcours de l’ensemble mobile pour que la communication radiofréquence entre les deux systèmes électroniques soit efficace.
[0038] Selon un premier mode de réalisation très spécifique, l’au moins un ensemble mobile étant apte à décrire un mouvement de rotation autour d’un unique axe de rotation définissant un repère cylindrique autour de cet axe de rotation, le premier axe longitudinal de l’antenne radiofréquence du transpondeur radiofréquence associé à le au moins un ensemble mobile ayant sa composante principale orientée circonférentiellement dans le repère cylindrique, le au moins un méandre associée à la première et /ou la au moins une seconde partie continue de la partie rayonnante du au moins un câble étant agencée radial ement extérieurement à l’ensemble mobile par rapport à l’axe de rotation, la droite D du au moins un méandre a sa composante principale orientée circonférentiellement dans le repère cylindrique de l’ensemble mobile.
[0039] Lorsque le premier axe longitudinal du transpondeur radiofréquence de l’ensemble mobile est principalement circonférentiel dans le repère cylindrique de l’ensemble monté, comme on peut le trouver dans le cas des radio étiquettes RFID enfouie dans la structure du pneumatique au niveau du flanc ou de la zone basse, et que le méandre est localisé radialement extérieurement au bandage pneumatique par rapport à l’axe de rotation de l’ensemble mobile, il est judicieux de placer le méandre de sorte que la droite D ait une direction majoritairement circonférentielle dans le repère cylindrique de l’ensemble mobile. De ce fait, il est certain qu’au cours du mouvement de rotation de l’ensemble mobile, les directions du premier axe longitudinal de l’antenne filaire du transpondeur radiofréquence et du champ électrique E amélioré généré par le méandre s’alignent sensiblement sur une partie de la boucle décrite par le mouvement du transpondeur radiofréquence.
[0040] Très spécifiquement à ce premier mode de réalisation spécifique, l’antenne radiofréquence du transpondeur radiofréquence associé à le au moins un ensemble mobile et le au moins un méandre associé à la première et /ou la au moins une seconde partie continue de la partie rayonnante du câble se projetant dans un même plan circonférentiel, la projection de l’antenne du transpondeur radiofréquence coupe au moins la projection de la droite D du au moins un méandre.
[0041] Dans la cas où le transpondeur radiofréquence de l’ensemble mobile est enfoui dans les mélanges caoutchouteux du bandage pneumatique comme cela peut être le cas pour une radio étiquette RFID, la taille de l’antenne radiofréquence du transpondeur radiofréquence, définie par le ou les brins filaires et étant liée à la fréquence de radiocommunication F0 du transpondeur radiofréquence, est réduite en raison de la permittivité diélectrique relative des mélanges caoutchouteux du bandage pneumatique. En effet la permittivité diélectrique relative des mélanges caoutchouteux est différente de celle de l’air, ce qui modifie la longueur d’onde des ondes radioélectriques. Dans ce cas- là, en fonction de la fréquence de communication F0, il est possible que la taille de l’antenne radiofréquence soit inférieure à la distance « P » entre les extrémités d’entrée et de sortie du méandre. De ce fait, il est possible que la totalité de l’antenne rayonnante du transpondeur soit placé dans le champ électrique E amélioré généré par le méandre, ce qui augmente la puissance émise vers le transpondeur radiofréquence.
[0042] Selon un second mode de réalisation très spécifique, l’ensemble mobile étant apte à décrire un mouvement de rotation autour d’un unique axe de rotation définissant un repère cylindrique autour de cet axe de rotation, le premier axe longitudinal de l’antenne radiofréquence du transpondeur radiofréquence associé à le au moins un ensemble mobile ayant sa composante principale orientée circonférentiellement dans le repère cylindrique, le au moins un méandre associé à la première et /ou la au moins une seconde partie continue de la partie rayonnante du câble étant agencée axialement extérieurement et radialement intérieurement à l’ensemble mobile par rapport à l’axe de rotation, la droite D du au moins un méandre a sa composante principale orientée circonférentiellement dans le repère cylindrique de l’ensemble mobile.
[0043] Lorsque le premier axe longitudinal du transpondeur radiofréquence de l’ensemble mobile est principalement circonférentiel dans le repère cylindrique de l’ensemble monté, comme on peut le trouver dans le cas des radio étiquettes RFID enfouie dans la structure du pneumatique au niveau du flanc ou de la zone basse, et que la partie continue de la partie rayonnante du câble de communication est localisé axialement extérieurement et radialement intérieurement au bandage pneumatique par rapport à l’axe de rotation de l’ensemble mobile, il est judicieux de placer le méandre de sorte que la droite D ait une direction majoritairement circonférentielle dans le repère cylindrique de l’ensemble mobile. De ce fait, il est certain qu’au cours du mouvement de rotation de l’ensemble mobile, les directions du premier axe longitudinal de l’antenne filaire du transpondeur radiofréquence et du champ électrique généré par le méandre s’alignent sensiblement sur une partie de la boucle décrite par le mouvement du transpondeur radiofréquence.
[0044] Très spécifiquement à ce second mode de réalisation spécifique, l’antenne radiofréquence du transpondeur radiofréquence associé à le au moins un ensemble mobile et le au moins un méandre associé à la première et/ou la au moins une seconde partie continue de la partie rayonnante du câble se projetant dans un même plan axial, la projection de l’antenne du transpondeur radiofréquence coupe au moins la projection de la droite D du au moins un méandre.
[0045] Dans la cas où le transpondeur radiofréquence de l’ensemble mobile est enfoui dans les mélanges caoutchouteux du bandage pneumatique comme cela peut être le cas pour une radio étiquette RFID, la taille de l’antenne radiofréquence du transpondeur radiofréquence, définie par le ou les brins filaires et étant liée à la fréquence de radiocommunication FO du transpondeur radiofréquence, est réduite en raison de la permittivité diélectrique relative des mélanges caoutchouteux du bandage pneumatique. En effet la permittivité diélectrique relative des mélanges caoutchouteux est différente de celle de l’air, ce qui modifie la longueur d’onde des ondes radioélectriques. Dans ce cas- là par exemple, en fonction de la fréquence de communication FO, il est possible que la taille de l’antenne radiofréquence soit inférieure à la distance « P » entre les extrémités d’entrée et de sortie du méandre. De ce fait, il est possible que la totalité de l’antenne rayonnante du transpondeur soit placé dans le champ électrique E généré par le méandre, ce qui augmente la puissance de communication du transpondeur radiofréquence.
[0046] Avantageusement, le transpondeur radiofréquence comprend une étiquette RFID.
[0047] C’est un mode de réalisation particulier ou le transpondeur radiofréquence comprend une radio étiquette RFID (acronyme en anglais de Radio Frequency Identification). Celle-ci est de taille réduite puisqu’elle nécessite peu de composants pour fonctionner ce qui permet de l’installer à l’intérieur même du bandage pneumatique de l’ensemble mobile ou sur sa surface extérieure par l’intermédiaire d’un patch de liaison spécifique. La fonction principale d’un tel système électronique est de véhiculer des informations d’identification, généralement codées dans la mémoire non effaçable du système électronique. Dans un mode de réalisation spécifique, la radio étiquette RFID est passif, sans source d’énergie propre. Dans ce cas particulier, la phase d’interrogation de l’étiquette RFID consiste tout d’abord à lui transférer de l’énergie radioélectrique pour devenir opérationnelle et ensuite répondre à son interrogation.
[0048] Avantageusement, l’ensemble mobile étant apte à décrire un mouvement de rotation autour d’un axe de rotation, chaque partie continue du au moins un câble décrit un secteur angulaire autour de l’axe de rotation au moins supérieur à 30 degrés, préférentiellement supérieur à 60 degrés, très préférentiellement supérieur à 120 degrés
[0049] Dans le cas d’un ensemble mobile tournant autour d’un unique axe de rotation, il est préférable que, dans un repère tournant associé à l’unique axe de rotation, la partie continue de la partie rayonnante du câble de communication bidirectionnelle, y compris le méandre, s’étende sur un secteur angulaire d’au moins 30 degrés. Ainsi, on assure, selon la vitesse de rotation de l’ensemble mobile autour de son unique axe de rotation d’une certaine durée de communication entre le transpondeur radiofréquence tournant avec l’ensemble mobile et le système de lecture fixe dans le véhicule de transport. Bien entendu plus le secteur angulaire est grand, plus la durée de communication est augmentée à vitesse de rotation donnée.,
[0050] Préférentiellement, la partie continue de la partie rayonnante du au moins un câble est fixé sur la au moins une paroi délimitant la cavité du moyen de transport accueillant l’ensemble mobile.
[0051] Dans le cas d’un ensemble mobile tournant autour d’un unique axe de rotation comme celui comprenant par une enveloppe pneumatique dans une voiture, la fixation directe ou indirecte de la partie continue de la partie rayonnante du câble de communication bidirectionnelle sur le passage de roue est préférée. En effet, le passage de roue délimite la cavité où se connectera l’ensemble monté au véhicule en condition d’usage. Généralement ce composant n’est pas métallique ce qui implique aucun effet de blindage ou de perturbations radioélectriques. La propagation des ondes radioélectriques entre le câble de communication et le transpondeur est favorisée par l’absence de composants métalliques ou conducteurs s’interposant entre les deux antennes. Enfin la cavité constitue naturellement une zone libre d’implantation du câble de communication dans un espace extrêmement confiné comme celui d’un véhicule automobile.
[0052] Très préférentiellement, la partie continue de la partie rayonnante du au moins un câble s’étend à une distance radiale constante de Tunique axe de rotation de l’ensemble mobile.
[0053] Cette condition assure une fiabilité dans la communication radiofréquence entre les deux composants dans le cas d’un transpondeur radiofréquence passif, comme une étiquette RFID, dans le bandage pneumatique. En effet, il est communément admis de positionner l’étiquette RFID au niveau du flanc du pneumatique suivant une direction majoritairement circonférentielle par rapport à l’axe de rotation de l’ensemble monté. De plus, la forme des parois délimitant la cavité d’accueil de l’ensemble monté suit généralement cette condition géométrique. Ainsi, aussi la communication entre les deux antennes est optimisée aussi bien en matière de durée que de qualité et gardant constante la distance spatiale entre le transpondeur radiofréquence et la partie continue de la partie rayonnante du câble de communication
[0054] Préférentiellement, le transpondeur radiofréquence émet par une fréquence sous porteuse.
[0055] Ce sont des cas d’application où le transpondeur radiofréquence utilise le signal d’émission radiofréquence qu’il reçoit pour transmettre la réponse à son interrogation. Ce mode de fonctionnement est particulièrement employé dans les transpondeurs radiofréquence passif de type étiquette RFID, c’est-à-dire ne disposant pas de source d’énergie propre pour émettre. Ces modes de communication emploient diverses modulations selon que l’on souhaite favoriser la sensibilité de communication du câble de communication bidirectionnelle ou la vitesse de communication entre les deux dispositifs radiofréquences La modulation est caractérisée principalement par deux grandeurs : le nombre de transitions pour un état binaire, physiquement il s’agit d’un changement d’état de l’impédance du transpondeur radiofréquence de la puce électronique d’une étiquette RFID par exemple, qui induit une modification de l’amplitude et de la phase du signal retour, et la période unitaire pour observer les transitions. En favorisant la sensibilité du câble de communication, il convient de travailler sur un nombre important de transitions pour un état binaire sur une période unitaire élevée. Par exemple, le codage en Miller 8 applicable en RFID UHF, permet de gagner 5 à 10 dBm de sensibilité. A l’inverse, limiter le nombre de transitions, jusqu’ à une seule transition par période unitaire sur une période unitaire courte favorise le débit des transactions entre le transpondeur radiofréquence et le câble de communication bidirectionnelle, le maximise en fait, Le modulation FMO, c’est à-dire une transition par période unitaire de 7,6 ps par exemple, permet d’augmenter d’un facteur 10 le taux de lecture du câble de communication bidirectionnelle par rapport à une modulation en Miller 8. Dans le cas d’une étiquette RFID, c’est le système de lecture est en particulier le générateur de signaux électriques qui commande le schéma de modulation sur lequel le transpondeur radiofréquence devra communiquer. Ce n’est pas un choix du transpondeur radiofréquence mais une obligation qui lui est donnée par le système de lecture. [0056] Très préférentiellement, la fréquence sous porteuse du transpondeur radiofréquence comprend un nombre de transitons inférieure à 5, préférentiellement une seule transition sur la période unitaire de la fréquence sous porteuse.
[0057] Très préférentiellement, la fréquence sous porteuse du transpondeur radiofréquence comprend une période unitaire inférieure à lOps, préférentiellement inférieure à 8 ps.
[0058] En optant pour des périodes courtes et des transitions peu nombreuses, on favorise le débit de communication radiofréquence entre le transpondeur radiofréquence et le câble de communication bidirectionnelle, c’est -à-dire le taux de lecture de la partie continue de la partie rayonnante du câble de communication ce qui est favorable dans le contexte de l’agencement envisagé. En effet, l’agencement se caractérise par des distances de lecture entre le câble de communication bidirectionnelle et le transpondeur radiofréquence inférieures à 1 mètre sur une durée de couplage entre les deux dispositifs courte du fait du mouvement relatif du transpondeur radiofréquence monté sur l’ensemble mobile. L’inventeur a constaté que ce mode de modulation est alors meilleur, notamment pour des véhicules de transport lorsque la partie continue de la partie rayonnante du câble de communication se trouve en vis-à-vis directe avec le bandage pneumatique de l'ensemble mobile pour les hautes ou très hautes vitesses de roulage du véhicule.
Description brève des dessins
[0059] L’invention sera mieux comprise à la lecture de la description qui va suivre donnée uniquement à titre d’exemple non limitatif et faite en se référant aux figures annexées dans lesquelles les mêmes numéros de référence désignent partout des parties identiques et dans lesquelles :
- La Fig. 1 présente une vue en perspective de l’espace de communication de la partie rayonnante du câble de communication avec l’ensemble mobile constitué d’un bandage pneumatique monté et gonflé sur une jante qui n’est pas représentée.
- La Fig. 2 présente un mode de réalisation du câble de communication bidirectionnelle du système de lecture selon l’invention. La Fig. 3 présente une vue en perspective de l’implantation du système de lecture dans un véhicule automobile.
- La Fig. 4 présente une vue en coupe d’un pneumatique équipé d’une étiquette RFID.
- La Fig. 5 présente un exemple de transpondeur radiofréquence, en l’occurrence une étiquette RFID.
- Les Fig. 6a à 6c présentent un exemple de partie continue de la partie rayonnante du câble au niveau d’un ensemble mobile.
- La Fig. 7 présente une description dimensionnelle d’un méandre du câble de communication bidirectionnelle.
Description détaillée de modes de réalisation
[0060] Sur la Fig. 1 on visualise un bandage pneumatique 12 représentant la partie déformable d’un ensemble mobile 1 constituée du bandage pneumatique monté et gonflé sur une jante, la jante n’étant pas représentée ici. Le bandage pneumatique 12 tourne autour d’un axe naturel de rotation 102. Le bandage pneumatique 12 définit un plan médian 101 qui est perpendiculaire à l’axe de rotation 102, séparant le bandage pneumatique 12 en deux sous parties symétriques par rapport au plan médian 101. Ce bandage pneumatique 12 est équipé d’un transpondeur radiofréquence de type RFID, c’est-à-dire sans source d’énergie propre, servant à mesurer la pression de gonflage de l’ensemble mobile à l’aide d’un capteur de pression ce qui correspond à un dispositif électronique de type RFID capteur. Ce bandage pneumatique 12 comprend aussi un capteur actif de type TPMS monté à la valve de la jante. La position radiale, azimutale et axiale de ces dispositifs radiofréquences sont généralement quelconques dans l’ensemble mobile.
[0061] Le bandage pneumatique 12 est circonscrit dans un cylindre 108 d’axe de révolution 102 s’appuyant sur la position radial ement la plus extérieure du sommet de l’enveloppe pneumatique par rapport à l’axe de rotation 102. Ici, le bandage pneumatique 12b est gonflé mais pas chargé statiquement, le cylindre 108 s’appuie sur une multitude de points du sommet équitablement réparties sur le périmètre du sommet. [0062] On peut alors définir l’espace d’implantation 104 de la partie continue de la partie rayonnante du câble de communication bidirectionnelle comme étant un cylindre d’axe de révolution coaxial à l’axe 102, s’étendant radial ement par rapport à l’axe 102 depuis la surface extérieure du cylindre 108 à une distance R matérialisée par la flèche grise représentée dans la plan médian 101. Ce cylindre 104 est droit puisqu’il est limité par des faces planes colinéaires au plan médian 101 situées de part et d’autre du plan médian 101 à une distance axiale A du plan médian 101 selon la direction de l’axe 102. Ces distances axiales A sont visualisées par des flèches grises portées par l’axe 102. Il est impératif de positionner une partie continue de la partie rayonnante du câble de communication directionnelle, préférentiellement d’une longueur d’au moins une unité de longueur du câble, définie par la fréquence F0 d’émission du système de lecture, dans le cylindre droit 104 afin que les dispositifs radiofréquences de l’ensemble mobile puissent communiquer avec le système de lecture embarqué sur le moyen de transport à l’aide du dit câble de communication bidirectionnelle.
[0063] La Fig. 2 montre un câble de communication bidirectionnelle 32 selon une première configuration fonctionnant parfaitement bien, et non uniquement, pour des applications de type étiquette RFID.
[0064] Le câble 32 comprend une structure conductrice coaxiale bipolaire allongée 312 avec un conducteur intérieur électriquement conducteur 314 et un conducteur enveloppe électriquement conducteur 316 entourant coaxialement le conducteur intérieur 314. Dans l'exemple illustré, le conducteur interne 314 est cylindrique et le conducteur enveloppe 316 est creux et cylindrique.
[0065] Le conducteur intérieur 314 comme le conducteur d'enveloppe 316 est formé d'un matériau métallique, dans lequel une couche intermédiaire électriquement isolante (par exemple en plastique) est avantageusement présente radialement entre le conducteur intérieur 314 et le conducteur d'enveloppe 316 sur la longueur de la structure conductrice 312.
[0066] Une première extrémité 318 de la structure conductrice 312 est prévue pour connecter un émetteur et/ou un récepteur du système de lecture pour un signal d'antenne à transmettre en utilisant le câble 32 ou un signal d'antenne à recevoir par le câble 32. Le câble 32 est pourvu d'une prise coaxiale conventionnelle 320, laquelle fiche coaxiale réalise un connecteur électrique pour le conducteur interne 314 et pour le conducteur enveloppe 316 à cette première extrémité 318 de manière classique.
[0067] Dans cette configuration, une extension 324 de conducteur interne 314, qui est formée d'un seul tenant avec le conducteur interne 314 dans l'exemple illustré et est donc connectée électriquement au conducteur interne 314, est prévue à une seconde extrémité opposée 322 de la structure conductrice 312. Cette extension 324 s'étend hors du conducteur enveloppe 316, en partant de la deuxième extrémité 322 de la structure conductrice 312, de manière rectiligne et coaxiale au parcours du conducteur interne 314 et du conducteur enveloppe 316 directement avant le deuxième extrémité 322.
[0068] L'extension de conducteur interne 324 s'étend jusqu'à une extrémité libre 326 de l'extension de conducteur interne 324, dans laquelle un certain couplage capacitif de l'extrémité libre 326 ou de l'extension de conducteur interne 324 au conducteur d'enveloppe 316 existe dans la région de la deuxième extrémité 322 de celui-ci, en fonction de la longueur de l'extension de conducteur interne 324.
[0069] Dans un mode de transmission du câble 32, c'est-à-dire si un signal d'antenne à transmettre est introduit au niveau de la fiche coaxiale 320 de la première extrémité 318, alors ce signal d'antenne parcourt la structure conductrice 312 jusqu'à l'extrémité 322 et y est réfléchie plus ou moins fortement, pour refluer sous forme d'onde progressive liée émanant de la deuxième extrémité 322 le long du conducteur enveloppe 316 en direction de la première extrémité 318.
[0070] Pour un mode de fonctionnement choisi en conséquence, par exemple en ce qui concerne la fréquence et la puissance du signal d'antenne injecté, il peut être obtenu que le câble 32 crée un champ électromagnétique alternatif autour d'elle, mais rayonne relativement peu. Ce câble 32 fonctionne comme une antenne à ondes progressives dans un « mode couplé », afin d'avoir donc un bon contrôle sur la portée du câble 32.
[0071] Dans l'exemple de la Fig. 2, un dispositif d'amortissement d'ondes de surface 330 est disposé sur la circonférence extérieure du conducteur enveloppe 316, à distance de la deuxième extrémité 322, en un point entre les deux extrémités 318 et 322. Ce dispositif est formé, dans l'exemple illustré, d'une pluralité d'anneaux de ferrite 332, 334, 336 et 338, qui entourent à chaque fois la circonférence extérieure du conducteur enveloppe 316.
[0072] Les anneaux de ferrite 332 à 338 sont disposés à distance les uns des autres vus dans la direction longitudinale de la structure conductrice 312 et effectuent avantageusement un amortissement des ondes progressives mentionnées, qui remontent à partir de la deuxième extrémité 322 de la structure conductrice 312, lorsque ces ondes arrivent à l'emplacement du dispositif d'amortissement 330.
[0073] Le dispositif d'amortissement 330 formé des anneaux de ferrite 332 à 338 ou de leur emplacement d'agencement dans le parcours de la structure conductrice coaxiale 312 divise la longueur totale de la structure conductrice 312 en une section conductrice de signal 340 et une section rayonnante 342, dans laquelle pendant le fonctionnement du câble 32, la section 340 est utilisée pour conduire le signal d'antenne émanant de ou vers la première extrémité 318, et la section 342 est utilisée pour transmettre des informations et/ ou de l'énergie émanant du câble 32 ou vers le câble 32.
[0074] Le nombre d'anneaux de ferrite et les distances individuelles entre les anneaux de ferrite peuvent être adaptés au cas d'utilisation respectif ou aux paramètres de fonctionnement du câble 32.
[0075] On peut également prévoir qu'au moins un anneau de ferrite, dans le cas d'une pluralité d'anneaux de ferrite, de préférence au moins le « premier » anneau de ferrite, le plus proche de la deuxième extrémité 322, c'est-à-dire l'anneau de ferrite 332 dans l’exemple illustré, est agencé de telle sorte qu'il puisse se déplacer le long de la structure conductrice 312.
[0076] Par conséquent, les propriétés du dispositif d'amortissement ainsi formé peuvent être influencées ou adaptées au cas d'utilisation réel.
[0077] En alternative ou en complément des bagues de ferrite 332 à 338, le dispositif d'amortissement 330 peut, en dérogation à l'exemple illustré, comporter également différents composants d'amortissement, comme par exemple une structure de réseau électrique constitué de composants capacitifs et/ou éléments inductifs et/ou résistifs, qui est disposé en un point pertinent du parcours de la structure conductrice 312 et relié des deux côtés aux sections 340, 342 de la structure conductrice 312 allant à la première extrémité 318 et à la deuxième extrémité 322.
[0078] Un composant principal de câble 32 est formé par la structure conductrice coaxiale 312, qui peut être un câble souple ou semi-rigide qui présente une « extrémité ouverte » ou le prolongement conducteur interne 324 mentionné.
[0079] Dans la zone de l'extension de conducteur interne 324, un conducteur enveloppe 316 formant un blindage est supprimé dans une certaine mesure dans la zone restante de la structure conductrice, de sorte qu'une antenne dipôle est créée, dont un bras est formé par l'extension de conducteur intérieur 324 et dont l'autre branche est formée par le conducteur enveloppe 316. D’autres modes de réalisation du couplage capacitif non illustrés ici existent.
[0080] Le dispositif d'amortissement d'ondes de surface 330 formé ici par un ou plusieurs anneaux de ferrite limite la longueur effective d'antenne pour l'émission/réception à la section 342.
[0081] Outre un réglage de cette longueur d'antenne, la position du dispositif d'amortissement 330, ici la position du premier anneau de ferrite 332 notamment, influence également les propriétés du dispositif d'amortissement 330 et donc les propriétés des ondes progressives de retour.
[0082] Il est généralement avantageux en ce qui concerne la génération souhaitée d'ondes progressives de retour si l'extension de conducteur interne 324 a une longueur qui, représente au moins approximativement un quart de longueur d'onde du signal d'antenne concerné.
[0083] Pour une géométrie appropriée du câble 32 et un mode de fonctionnement correspondant, il peut être obtenu que la majorité d'un signal d'émission migre le long de la "section émetteur/récepteur de signal" 342 en tant que courant de gaine, et que comparativement peu d'énergie haute fréquence est rayonné (« mode couplé »).
[0084] La longueur de l'extension de conducteur interne 324 peut être choisie de telle manière qu'une impédance souhaitée soit définie en combinaison avec la position du premier anneau de ferrite 332 pour obtenir un affaiblissement de réflexion du câble 32 aussi élevé que possible.
[0085] La longueur du câble 32 et les longueurs de ses sections individuelles mentionnées peuvent être prévues de telle sorte qu'elles soient adaptées au cas d'utilisation
[0086] Sur la Fig. 2, 11 est la longueur de la section conductrice de signal 340, 12 est la longueur du dispositif d'amortissement d'ondes de surface 330, 13 est la longueur de la section émetteur/récepteur de signal 342 et 14 est la longueur de l'extension de conducteur interne.
[0087] La distance dl désigne une distance entre les anneaux de ferrite 332 et 334. Cette distance dl est par exemple comprise entre 5 et 20 mm.
[0088] Le conducteur enveloppe 316 de la structure conductrice coaxiale 312 présente au moins une ouverture, cette ouverture est dessinée en pointillés à titre d'exemple et repérée par 339. La distance de l'ouverture 339 du dispositif d'amortissement 330 est marquée par d2 se situe dans la plage de 1 à 5 m. Cependant, une pluralité d'ouvertures 339 peuvent également être disposées de manière répartie sur la longueur de la section émetteur/récepteur de signal 342 avec un espacement mutuel compris entre 0,1 et 5 fois la longueur d'onde du signal.
[0089] La Fig. 3 présente une vue en perspective de l’implantation du système de lecture 3 dans un véhicule de transport 2 de type véhicule automobile.
[0090] Le véhicule automobile 2 est ici représentée par un volume transparent représentant la caisse habillée équipée fermée ce qui correspondant au véhicule complet à laquelle les essieux et le groupe motopropulseur ont été retirés. Cependant, on visualise sur ce véhicule 2, quatre cavités notées 21a-l, 21a-2, 21b-l et 21b-2 aptes à accueillir chacun un ensemble monté du véhicule. L’ensemble monté comprend ici des dispositifs radiofréquences de type étiquettes RFID et/ou capteur TPMS au niveau de l’enveloppe pneumatique.
[0091] Ce véhicule 2 comprend aussi le système de lecture 3 permettant la communication avec les dispositifs radiofréquences des ensembles montés. Ce système de lecture 3 comprend un premier dispositif d’émission et de lecture de signaux électriques 31 implanté dans le véhicule 2 au niveau du tablier, qui est une paroi principalement verticale par rapport au sol où se déplace le véhicule délimitant le compartiment moteur du véhicule situé ici à l’avant du véhicule 2 de l’habitacle passager. Ce dispositif 31 comprend donc l’émetteur de signaux électriques mais aussi le démodulateur de signal électrique.
[0092] A partir de ce dispositif 31 partent deux câbles de communication bidirectionnelle 32a et 32b vers respectivement les côtés gauche et droit du véhicule 2. Ces câbles de communications sont des câbles à ondes progressives décrit dans la Fig. 2 et sont montés sur le dispositif 31 afin de constituer une liaison galvanique. Chaque câble 32a, 32b chemine au travers de la structure du véhicule 2 afin d’atteindre la proximité d’au moins une cavité 21a-l, 21a-2, 21b-l, 21b-2 d’accueil des ensembles montés. Chaque câble comprend une partie transmission de signal au départ du dispositif 31 puis devient rayonnant.
[0093] En fait, comme illustré dans la Fig. 3, chaque câble 32a, 32b atteint la proximité de deux cavités d’accueil des ensembles montés correspondant chacune à l’essieu avant et l’essieu arrière du véhicule 2. Au niveau de la première cavité 21a-l, le câble 32a présente une partie continue 32a-l qui est continue située au niveau du passage de roue, décrivant un secteur angulaire autour de l’axe de l’essieu avant de 120 degrés. Cette partie 32a-l du câble de communication 32a est située dans la zone de communication des dispositifs radiofréquences de l’ensemble monté devant être accueillis dans la cavité 21a- 1. Ainsi cette partie 32a-l du câble de communication 32a communiquera avec les dispositifs radiofréquences de l’ensemble monté présent dans la cavité d’accueil 21a-l. Ici, la partie continue 32a-l du câble est située radialement extérieurement à l’ensemble monté. De ce fait, bien que non représenté sur la Fig. 3, la partie continue 32a-l comprend un méandre dont la direction de la médiane s’étend axial ement par rapport à l’axe de rotation naturel de l’ensemble monté, lorsque celui-ci roule en ligne droite, devant être accueilli dans la cavité 21a-l.
[0094] Cependant, le même câble 32a s’étend ensuite en direction de la seconde cavité d’accueil 21a-2 située sur le côté gauche du véhicule 2 au niveau de l’essieu arrière. Au niveau de cette cavité 21a-2, le câble 32a présente une seconde partie continue 32a-2 rayonnante située dans la zone de communication des dispositifs radiofréquences de l’ensemble monté devant être accueilli dans la cavité 21a-2. La seconde partie continue et rayonnante 32a-2 s’étend angulairement autour de l’axe de rotation de l’essieu arrière sur un secteur angulaire de 90 degrés. En effet, l’essieu arrière n’est pas ici directionnelle par conséquent l’ensemble monté bouge peu angulairement au cours de la phase de roulage. Par conséquent, la communication radiofréquence entre la partie continue et rayonnante 32a-2 du câble de communication bidirectionnelle 32a est facilité par rapport à celle de la partie 32a-l où l’essieu est directionnel engendrant un mouvement angulaire de l’ensemble monté en virage par exemple. Ces deux parties 32a-l et 32a-2 continues et rayonnantes sont disjointes et ne permettent de communiquer chacune qu’avec un ensemble monté. Cependant, dans le cas d’un essieu à roues jumelées comme dans le cadre d’un véhicule utilitaire en mode traction, la partie continue 32a-2 située à proximité de la cavité 21a-2 permettraient de communiquer avec les divers ensembles montés jumelés, situés sur le même essieu et du même côté du véhicule 2.
[0095] De façon analogue, du fait de la symétrie du véhicule automobile 2, le câble de communication 32b comprend une partie rayonnante présentant deux parties continues disjointes communiquant chacune avec un ensemble monté situé respectivement sur l’essieu avant et l’essieu arrière. Comme pour le câble 32a situé sur le côté gauche du véhicule 2, le câble 32b présente au niveau de la première partie continue 32b-l, un méandre. Comme la partie continue 32b-l est située radialement extérieurement à l’ensemble monté, la direction de la droite médiane du méandre s’étend majoritairement selon la direction axiale définie par l’axe de l’essieu avant du véhicule 2.
[0096] La longueur totale du câble de communication bidirectionnelle 32a et 32b n’excède pas ici la longueur de 5 mètres. La longueur de la partie continue et rayonnante 32a-l, 32a-2, 32b-l et 32b-2 est supérieure à 50 centimètres, correspondant au quart du développement d’une enveloppe pneumatique pour véhicule particulier. Cette longueur est au-delà de l’unité de longueur du câble pour une communication radiofréquence en UHF à 920 MHz ou 2.4 GHz.
[0097] La Fig. 4 représente une vue de détail d’une enveloppe pneumatique qui constitue le bandage pneumatique d’un ensemble mobile que représente l’ensemble monté constitué d’une enveloppe pneumatique dans un état monté gonflé sur jante. La jante représente la partie indéformable de l’ensemble mobile Le schéma se focalise au niveau du bourrelet 84 de l’enveloppe pneumatique. Cette figure illustre le positionnement d’un transpondeur radiofréquence 100 de type étiquette RFID dans la zone extérieure de l’enveloppe pneumatique par rapport à la nappe carcasse 87.
[0098] Le bourrelet 84 est constitué par la tringle 85 autour de laquelle s’enroule la nappe carcasse 87 avec une partie repliée 88 située dans la zone extérieure de l’enveloppe pneumatique. La partie repliée 88 de la nappe carcasse 87 se termine par un bord libre 881. Une masse de gomme 91 nommée bourrage tringle est située radial ement extérieurement et de façon adjacente à la tringle 85. Elle présente un bord libre radial ement extérieur 911 prenant appui sur une face de la nappe carcasse 87 (plus précisément sur le calandrage extérieur de la nappe carcasse, il n’y a pas de contact direct entre les câblés de la nappe carcasse et le transpondeur radiofréquence 100). Une deuxième masse de gomme 92 nommée « bourrage de renfort » lui est adjacente. Elle possède deux bords libres. Le premier bord libre 921 est situé radial ement intérieurement et prend appui sur la partie retournée 88 de la nappe carcasse. L’autre bord libre 922 est situé radialement extérieurement et se termine sur la face de la nappe de la nappe carcasse 87. Enfin le flanc 83 recouvre à la fois le bourrage de renfort 92 et la nappe carcasse 87. Le flanc possède un bord libre 831 situé radialement intérieurement et se terminant sur la partie retournée 88 de la nappe carcasse.
[0099] Sur la zone intérieure de l’enveloppe pneumatique, se trouve la gomme intérieure étanche 90 qui est adjacente à la nappe carcasse 87 dans cette configuration. Elle se termine par un bord libre 901 adjacent à la nappe carcasse 87. Enfin un protecteur talon 93 vient protéger la nappe carcasse 87 et les extrémités radialement intérieures 901, 921 et 831 respectivement de la gomme intérieure étanche 90, de la gomme de bourrage renfort 92 et du flanc 83. La face extérieure de ce protecteur talon 93 est apte à être en contact direct avec le crochet de jante lors du montage de l’enveloppe pneumatique sur la roue. Ce protecteur talon 93 présente deux bords libres radialement extérieurs. Le premier bord libre 931 est situé dans la zone intérieure de l’enveloppe pneumatique 1. Le second bord libre 932 est situé dans la zone extérieure de l’enveloppe pneumatique 1. [00100] Le bourrelet 84 de cette enveloppe pneumatique est équipé de deux étiquettes RFID 100 et lOObis situés dans la zone extérieure de l’enveloppe pneumatique. Le premier transpondeur radiofréquence 100 étant préalablement encapsulé dans une gomme d’enrobage isolante électriquement est positionné sur la face extérieure du bourrage tringle 91. Il est positionné à une distance de 20 millimètres du bord libre 881 de la partie retournée 88 de la nappe carcasse qui constitue une singularité mécanique. Ce positionnement assure une zone de stabilité mécanique pour l’organe électronique 100 qui est bénéfique à son endurance mécanique. De plus, son enfouissement au sein même de la structure de l’enveloppe mécanique lui assure une bonne protection aux agressions mécaniques en provenance de l’extérieur du pneumatique.
[00101] Le deuxième transpondeur radiofréquence lOObis étant préalablement encapsulé dans une gomme d’enrobage isolante électriquement compatible ou similaire avec le matériau du flanc 83 est positionné sur la face extérieure du flanc. La similarité de matériau entre le flanc 83 et la gomme d’enrobage assure une mise en place au sein et à la périphérie du flanc 83 de l’étiquette RFID lOObis au cours du procédé de cuisson. L’étiquette RFID lOObis est simplement posé sur la face extérieure à cru du flanc 83 au cours de la confection de l’enveloppe pneumatique. La mise sous pression de l’ébauche cru dans le moule de cuisson assure le positionnement de l’étiquette RFID lOObis à l’état cuit tel que représenté. Ce transpondeur RFID lOObis est situé loin de tout bord libre d’un constituant caoutchouteux de l’enveloppe pneumatique. En particulier il est éloigné du bord libre 932 du protecteur talon, du bord libre 881 de la nappe carcasse et des bords libres 911 et 922 des gommes de bourrage. Son positionnement en partie haute du bourrelet assure une performance de communication accrue avec un lecteur radiofréquence externe.
[00102] La Fig. 5 est une illustration d’un transpondeur radiofréquence 100 fonctionnant dans la gamme de fréquence entre 860 et 960 Mhz destinée à être incorporée dans une enveloppe pneumatique par l’intermédiaire d’un patch d’identification en matériaux élastomère. Pour faciliter la performance de radiocommunication et l’intégrité physique du transpondeur radiofréquence 100 au sein de l’enveloppe pneumatique, il sera préférable de disposer l’axe de révolution de l’antenne rayonnante 10, parallèle à la direction U dans une direction perpendiculaire aux fils de la nappe carcasse de l’enveloppe pneumatique à structure radiale, en particulier si ceux-ci sont métalliques.
[00103] Le transpondeur radiofréquence 100 présente ici une antenne rayonnante 10 et une partie électronique située à l’intérieur de l’antenne rayonnante 10. La partie électronique comprend une puce électronique connectée à un circuit imprimé. Une antenne primaire constituée d’un fil conducteur est connectée au circuit imprimé. La face opposée du circuit imprimé à l’antenne primaire comprend un circuit galvanique en forme de méandre. Enfin, le diamètre du cylindre circonscrit de l’antenne primaire est de 0.8 millimètres. Aussi bien l’antenne primaire que le circuit galvanique sur la face opposée du circuit imprimé permettent d’adapter l’impédance de l’antenne primaire à celle de la carte électronique.
[00104] La carte électronique ainsi constituée est noyée dans une masse 300 en résine époxy assurant la fiabilité mécanique des composants électroniques et l’isolation électrique de la carte électronique. Le cylindre circonscrit à la masse rigide 300 a un diamètre de 1.15 millimètres et une longueur de 6 millimètres.
[00105] La longueur L de l’antenne rayonnante 10 est ici de 45 millimètres et correspond à la demi-longueur d’onde des ondes radioélectriques à la fréquence de 915 MHz dans un milieu de permittivité diélectrique relatif environ égale à 5. L’antenne rayonnante 10 est réalisée à l’aide d’un fil d’acier 120 de diamètre 0,225 millimètre revêtu en surface d’une couche de laiton. Ce fil d’acier 120 est le brin filaire de l’antenne rayonnante du transpondeur radiofréquence 100 définissant le premier axe longitudinal du transpondeur radiofréquence 100.
[00106] Ici, l’antenne rayonnante 10 se décompose en deux zones principales. La première zone 201 correspond à la section de l’antenne rayonnante ne se situant pas au droit de la partie électronique. Elle comprend deux sous zones 201a et 201b entourant de part et d’autre la masse 300 rigide et isolante électriquement.
[00107] Chaque sous zone 201a 201b d’une longueur L1 de 19 millimètres comprend 12 spires circulaires d’un diamètre d’enroulement DI constant de 1.275 millimètres. Cela détermine des diamètres intérieur et extérieur de respectivement 1.05 et 1.5 millimètres. Le pas d’hélice PI des spires circulaires est de 1.55 millimètres. Ainsi, le rapport du pas d’hélice PI sur le diamètre d’enroulement DI des spires est de 1.21. Les extrémités axial ement extérieures de chaque sous zone 201a et 201b se terminent par deux spires jointives. De ce fait, le rapport élevé assure de maximiser l’efficacité des propriétés radioélectriques de l’antenne rayonnante 10 dans cette zone 201. De plus, le contact entre les spires situées le plus extérieurement à l’antenne rayonnante 10 empêche l’entrelacement des ressorts hélicoïdaux entre eux lors de la manipulation des transpondeurs radiofréquences. Comme la majorité des spires de la première zone 201 de l’antenne rayonnante 10 présente un rapport supérieur à 0.8, la performance radioélectrique du transpondeur radiofréquence 100 s’en trouve nettement améliorée.
[00108] Sur la seconde zone 202 de l’antenne rayonnante 10 correspondante à la section de l’antenne rayonnante 10 se situant au droit de la partie électronique, l’antenne rayonnante 10 présente une longueur de 7 millimètres. Le ressort hélicoïdal présente un pas d’hélice P2 constant de 1 millimètre et un diamètre d’enroulement D2 constant de 1.575 millimètres. Ainsi, le diamètre intérieur du ressort hélicoïdal de la deuxième zone de l’antenne rayonnante est de 1.35 millimètres. Cela permet d’avoir un rapport du pas sur le diamètre d’enroulement constant de l’ordre de 0,63. Ce rapport permet de maximiser l’inductance de la deuxième zone 202 de l’antenne rayonnantelO par rapport à la première zone 201, ce qui permet une meilleure efficacité de couplage électromagnétique avec la partie électronique.
[00109] Dans ce cas particulier, le diamètre intérieur de l’antenne rayonnante 10, égal à 1.05, de la première zone 201 est inférieur au diamètre de la masse 300, représentant le cylindre circonscrit de la partie électronique, égal à 1.15 millimètres. De ce fait, les sous zones 201a et 201b de la première zone 201 de l’antenne rayonnante 10 représentent des butées mécaniques au mouvement axial de la masse 300 à l’intérieur de l’antenne rayonnante 10. La mise en place de la partie électronique sera réalisée, dans un premier mode de réalisation par enfilement de la masse 300 rigide et isolante dans l’antenne rayonnante 10.
[00110] Les Fig. 6a, 6b et 6c sont diverses vues bidimensionnelles de la zone de communication 104 des transpondeurs radiofréquences de l’ensemble monté ; qui dans cet exemple sont majoritairement fixées sur le bandage pneumatique 12, et le système de lecture monté sur le véhicule de transport. Le bandage pneumatique 12 est monté sur une jante non représentée. L’ensemble mobile ainsi constitué définit un axe de rotation naturel 102 et un plan médian 101. Cet ensemble mobile est monté sur l’essieu du véhicule. Ici, on visualise l’ensemble mobile situé à l’arrière droit du véhicule de transport. Le véhicule peut se déplacer sur le sol 600 par l’intermédiaire du bandage pneumatique 12. Ce bandage pneumatique 12 comprend ici, deux transpondeurs radiofréquences situés chacun dans un côté du bandage pneumatique 12 au niveau de la zone basse. Ainsi, l’un des côtés est situé à l’intérieur du véhicule tandis que l’autre s’ouvre sur l’extérieur du véhicule en l’absence d’élément de carrosserie du véhicule de transport venant obstruer cette ouverture. Au cours du mouvement de rotation de l’ensemble mobile, les transpondeurs radiofréquences décrivent une boucle fermée 601-1, respectivement 601- 2, qui s’apparente à un cercle dont l’axe de rotation correspond à l’axe de rotation naturel 102 du bandage pneumatique 12.
[00111] La Fig. 6a est une vue dans le plan YZ du véhicule automobile, ce qui correspond à une vue de devant de l’ensemble mobile. La Fig. 6b correspond à une vue dans le plan XY, ce qui correspond à une vue de dessus de l’ensemble mobile, et la Fig. 6c représente une vue dans le plan XZ, ce qui correspond à une face de côté de l’ensemble mobile. On visualise le cylindre de communication radiofréquence 104 sur les trois figures entre les transpondeurs radiofréquences de l’ensemble mobile et le système de lecture représenté par l’intermédiaire de la partie rayonnante du câble de communication bidirectionnelle 32a. Lorsque le câble de communication 32a entre dans le volume de communication 104, ce câble devient la partie continue 32a-2 de la partie rayonnante du câble 32a pour l’ensemble mobile situé à l’arrière droit du véhicule. Le fait que le câble 32a, une fois pénétré à l’intérieur du volume 104, ne ressort plus du volume 104 indique qu’il y a une unique partie continue 32a-2 de la partie rayonnante du câble 32a associé à cet ensemble mobile. La partie continue 32a-2 parcourt tout d’abord le coté intérieur du bandage pneumatique 12 par rapport au véhicule en décrivant une partie d’un premier cercle centré sur l’axe de rotation naturel 102 de l’ensemble mobile. Puis, après une courbure de ce câble 32a, celui-ci se déplace de l’autre côté du plan médian 101 de l’ensemble mobile, selon la direction Y du véhicule soit sur le côté extérieur du bandage pneumatique 12 et du véhicule. Enfin, il décrit en partie un second cercle toujours centré sur l’axe de rotation naturel 102 de l’ensemble mobile avant que le câble se termine sur une terminaison présente dans le volume 104 dans ce cas précis. Cette terminaison pourrait se situer en dehors du volume délimité par le cylindre 104.
[00112] Le premier cercle décrit par la partie continue 32a-2 se situe axialement extérieurement à l’ensemble mobile. Ici, le premier cercle a un rayon inférieur au rayon maximal de l’ensemble mobile, il pourrait être supérieur. Sur cet arc de cercle décrit par la partie continue 32a-2 du câble de communication, se trouve un méandre 501, visible sur la Fig 6c, s’étendant perpendiculaire à l’arc de cercle, c’est -à-dire radialement dans le repère de l’ensemble mobile. La surface délimitée par le méandre s’étend radialement intérieurement au premier cercle de sorte qu’il intercepte la boucle 601-2 décrite par le mouvement du transpondeur radiofréquence présent sur le côté intérieur du bandage pneumatique 12. Cette boucle est matérialisée par un cercle en pointillé sur la Fig. 6c. Pour une radio étiquette RFID fonctionnant à la fréquence UHF de 920 Mhz, la longueur de l’antenne radiofréquence de l’étiquette RFID est de l’ordre de 5 centimètres lorsque la radio étiquette RFID est enfouie dans la structure du bandage pneumatique. Généralement cette radio étiquette est orientée majoritairement circonférentiellement. Le méandre 501 a une distance séparant le brin aller et le brin retour ici d’environ 8 centimètres ce qui permet une meilleure communication radiofréquence entre le méandre 501 et l’antenne de la radio étiquette RFID puisque l’ensemble de l’antenne rayonnante de la radio étiquette est située dans le champ électrique amélioré généré par les extrémités d’entrée et de sortie du méandre à un instant donné.
[00113] Le second cercle décrit par la partie continue 32a-2 du câble de communication 32a est situé radialement extérieurement au bandage pneumatique 12 par rapport à l’axe de rotation 102. Dans l’exemple illustré dans les figures 6 de cet ensemble mobile, le câble 32a sur le côté extérieur du véhicule est majoritairement situé axialement extérieurement au bandage pneumatique 12 à l’exception du méandre 500-2 s’étendant axialement intérieurement par rapport au bandage pneumatique 12. En effet, le méandre 500-1 se situe alors axialement extérieurement au bandage pneumatique 12 comme l’illustrent les Fig. 6a et Fig. 6b. Cependant la boucle 601-1 décrite par le mouvement pseudo périodique du transpondeur radiofréquence du bandage pneumatique se situe axialement à proximité du second cercle du câble de communication 32a, ce qui optimise la communication radiofréquence entre les deux antennes. Le méandre 500-2 permettrait ici d’interroger un autre transpondeur radiofréquence monté sur un ensemble mobile présentant une largeur, selon la direction axiale, plus petite ou situé au droit du sommet du bandage pneumatique 12, ce sommet coiffant radialement extérieurement le bandage pneumatique 12. Ici, les méandres 500-1 et 500-2 ne sont pas jointifs puisque l’extrémité de sortie du méandre 500-1 ne coïncide pas avec l’extrémité d’entrée du méandre 500-2. Ils restent cependant proches permettant de créer deux zones de communication améliorée qui cependant sont distinctes. Dans le cas de méandres jointifs, en forme de « S » par exemple, les deux méandres formeraient une seule et unique zone de communication améliorée. Ici, la longueur curviligne des méandres 500-1 et 500-2 est de l’ordre de 15 centimètres et l’écartement P entre les extrémités d‘ entrée et de sortie de chaque méandre est de l’ordre de 4 centimètres. En revanche le méandre 501, bien qu’ayant une longueur curviligne de 14 centimètres, a un écartement P de l’ordre de 6 centimètres.
[00114] Une telle partie continue 32a-2 de la partie rayonnante du câble de communication 32a, fixé solidairement sur le véhicule de transport et notamment sur les surfaces délimitant la cavité d’accueil de l’ensemble mobile, permet de communiquer par ondes radioélectriques avec des transpondeurs radiofréquences montés sur l’ensemble mobile, en particulier le bandage pneumatique 12. Cette communication radiofréquence reste opérationnelle que les transpondeurs radiofréquences se situent sur l’un ou l’autre des côtés du bandage pneumatique 12 et qui plus est quelle que soit la dimension, notamment la largeur, de l’ensemble mobile équipant le véhicule de transport. Cependant cette configuration n’est pas forcément unique pour atteindre cet objectif de communication radiofréquence, c’est un exemple illustratif.
[00115] La Fig. 7 est un exemple de méandre 500 sur la partie continue de la partie rayonnante d’un câble de communication bidirectionnelle. Ce méandre 500, est défini dans un plan orthonormé UV associé au méandre. L’axe U définit par la tangente du câble de communication bidirectionnelle situé juste en amont et/ou en aval du méandre 500, si ces deux directions ne sont pas parallèles on prendra la direction médiane. Le méandre 500 se présente par un aller 511 et un retour 512 qui sont reliés entre eux par un segment 513 à leur seconde extrémité. La première extrémité de l’aller 511, respectivement du retour 512, est reliée au câble de communication bidirectionnelle situé en aval ou en amont du méandre 500. Le changement de direction entre d’une part le câble de communication bidirectionnelle et d’autre part l’aller 511 ou le retour 513 du méandre 500 est rendu possible par le caractère souple du câble de communication qui permet une courbure plus ou moins accentuée du câble de communication. Naturellement on retrouve ce même changement de directions entre, d’une part l’aller 511, ou le retour 512, du méandre 500 et le segment 513. La souplesse du câble permet aussi ce changement de direction par l’intermédiaire du potentiel de courbure du câble de communication.
[00116] Ce méandre 500 est défini d’une part par l’écartement moyen ou la largeur moyenne entre l’aller 51 let le retour 512 nommé « 1 » et la longueur L du méandre 500. On définit la longueur « L » de l’aller 511, ou du retour 512, du méandre 500 comme la distance selon la direction V, perpendiculaire à la direction U du câble de communication bidirectionnelle, entre le point de départ 521 de l’aller 511, respectivement le point d’arrivée 522 du retour 512, et la seconde extrémité 523 de l’aller 511, respectivement la seconde extrémité 524 du retour 512. Cette seconde extrémité 523 ou 524 est déterminée par deux conditions. La première condition est qu’il s’agit de la plus grande coordonnée selon la direction V d’un point du câble de communication 32 depuis la première extrémité 521 de l’aller 511, respectivement la première extrémité 522 du retour 512. A noter que l’origine de l’axe V est défini au point 521, respectivement 522. La seconde condition est que la tangente du point du câble de communication 32 à cette seconde extrémité 523 ou 524 a sa plus grande composante portée par la direction V. Enfin, le segment 513 est délimitée par les secondes extrémités 523 et 524 de l’aller 511 et du retour 512.
[00117] Enfin l’écartement moyen « 1 » du méandre est déterminée en prenant la distance selon la direction U entre l’aller 511 et le retour 512. La position selon la direction U de l’aller 511, respectivement du retour 512, correspond à la valeur moyenne UA, respectivement UB, des coordonnées des points de l’aller 511, respectivement du retour 512, selon la direction U en ayant une distribution homogène des points le long du câble 32. L’aller 511 est délimité par les points 521 et 523 tandis que le retour 512 est délimité par les points 522 et 524. Les points 521 et 522 sont respectivement le point de départ et le point d’arrivée du méandre 500. Chacun des points 521 et 522 correspond au changement de courbure du câble par rapport à la direction du câble situé en aval, respectivement en amont, du méandre 500, soit la direction du vecteur U.
[00118] Et on définit la longueur curviligne du méandre 500 comme la distance, le long du câble de communication bidirectionnelle entre l’extrémité d’entrée 525 et l’extrémité de sortie 526 du méandre 500. Chacun des points 525 ou 526 est déterminé par la condition suivante. Il s’agit du point du câble de communication, en partant du point de départ 521, respectivement du point d’arrivée 522, dont la tangente présente sa plus grande composante portée par la direction V.
[00119] Il faut que la longueur curviligne du câble soit comprise entre 0.9 etl.l fois la demi-longueur d’onde L0 associée à la fréquence de communication du système de lecteur. Dans le cas d’une communication à la fréquence F0 de 900MHz, la demi- longueur d’onde est alors de 15 centimètres environ, la longueur curviligne du méandre 500 doit alors se situer entre 13, 5 et 16, 6 centimètres.
[00120] Enfin, la distance « P » correspond à l’écartement entre les points 525 et 526 du câble de communication bidirectionnelle. Ces deux points 525 et 526 définissent la droite D, la distance D correspond à la longueur du segment compris entre les points matériels 525 et 526. Nécessairement, la droite D est substantiellement parallèle à l’axe U. Dans le cas d’une communication à la fréquence F0 de 900MHz, la demi-longueur d’onde est alors de 15 centimètres environ, la distance « P » doit être inférieure au quart de la longueur d’onde, soit 7, 5 cm.

Claims

REVENDICATIONS
1. Véhicule de transport (2) comprenant un système de lecture (3) de transpondeurs radiofréquences et au moins un ensemble mobile (1) apte à assurer le mouvement du véhicule de transport par rapport au sol (600) sur lequel roule le véhicule de transport (2), comprenant un bandage pneumatique (12) mis en mouvement autour d’un axe de rotation (102), le mouvement libre du au moins un ensemble mobile (1) s’effectuant dans un plan majoritairement bidimensionnel dans un repère cylindrique associé à le au moins un ensemble mobile dont la direction axiale est la direction de Taxe de rotation (102), le bandage pneumatique (12) définissant un plan médian (101) qui est perpendiculaire à Taxe de rotation (102), le au moins un ensemble mobile (1), préférentiellement la bandage pneumatique (12), étant équipé d’un transpondeur radiofréquence (100, lOObis) le système de lecture (3) comprenant : o Un générateur de signaux électriques (31) émettant à une fréquence F0 comprise dans la bande des Ultra Hautes Fréquences, couplé à un démodulateur (31) de signaux électriques adapté à une bande de fréquences autour de F0, monté sur le véhicule de transport ; o Au moins un câble de communication bidirectionnelle (32), étant en partie souple, comprenant une âme conductrice (314) recouvert d’un premier élément diélectrique, lui-même recouvert d’un ensemble conducteur (316), ayant une extrémité (318) connectée galvaniquement au système de lecture (3), ayant à son extrémité libre (322) un moyen de couplage capacitif entre l’âme conductrice (314) et l’ensemble conducteur (316) par l’intermédiaire d’un second élément diélectrique, adaptée à la bande de fréquences du système de lecture (3) ; o Le au moins un câble de communication bidirectionnelle (32) étant fixé solidairement sur le véhicule de transport (2) et extérieurement à le au moins un ensemble mobile (1), comprenant une partie rayonnante (342),
Caractérisé en ce que la distance de la projection radiale d’une première partie continue (32a-l, 32b-l) de la partie rayonnante (342) du au moins un câble (32) sur un cylindre (104), d’axe de révolution coaxial à l’axe de rotation (102), circonscrit au bandage pneumatique (12) est inférieure ou égale à 1 mètre, préférentiellement inférieure ou égale à 0,5 mètre, en ce que la distance de la projection axiale, selon la direction de l’axe de rotation (102), de la première partie continue (32a-l, 32b- 1 ) de la partie rayonnante (342) du au moins un câble (32) sur le plan médian (101) du bandage pneumatique (12) est inférieure à 2 mètres, préférentiellement inférieure ou égale à 1 mètre, très préférentiellement inférieure ou égale à 0,5 mètre, en ce que la première partie (32a-l, 32b-l) continue de la partie rayonnante (342) du au moins un câble (32) comprend au moins un méandre (500, 500-1, 500-2, 501), en ce que la longueur curviligne du au moins un méandre est compris entre 0.9 et 1.1 fois la demi-longueur d’onde L0 définie par la fréquence de communication F0 modulo la longueur d’onde L0 et en ce que la distance « P » séparant les deux extrémités (525, 526) du au moins un méandre (500, 500-1, 500- 2, 501) est inférieure au quart de la longueur d’onde L0.
2. Véhicule de transport (2) selon la revendication 1 dans lequel la partie rayonnante (342) du au moins un câble (32) comprenant au moins une seconde partie continue (32a-
2, 32b-2) disjointe de la première partie continue (32a-l, 32b-l), la distance de la projection radiale de la au moins une seconde partie continue (32a-2, 32b-2) de la partie rayonnante (342) du au moins un câble (32) sur un cylindre, d’axe de révolution coaxial à l’axe de rotation (102) du au moins un second ensemble mobile (1), circonscrit au bandage pneumatique (12) du au moins un second ensemble mobile (1) est inférieure ou égale à 1 mètre, préférentiellement inférieure à 0,5 mètre et la distance de la projection axiale, selon la direction de l’axe de rotation (102) du au moins un second ensemble mobile (1), de la au moins une seconde partie continue (32a-2, 32b-2) de la partie rayonnante du au moins un câble sur le plan médian (101) du bandage pneumatique (12) du au moins un second ensemble mobile (1) est inférieure à 2 mètres, préférentiellement inférieure à 1 mètre, très préférentiellement inférieure à 0,5 mètre.
3. Véhicule de transport (2) selon la revendication 2 dans lequel, la au moins une seconde partie continue (32a-2), 32b-2) de la partie rayonnante (342) du au moins un câble (32) comprend au moins un méandre (500, 500-1, 500-2, 501), la longueur curviligne du au moins un méandre de la au moins une seconde partie est compris entre
0.9 et 1.1 fois la demi-longueur d’onde LO définie par la fréquence de communication FO modulo la longueur d’onde LO, la distance « P » entre les deux extrémités (525, 526) du au moins un méandre (500, 500-1, 500-2, 501) de la au moins une seconde partie est inférieure au quart de la longueur d’onde L0.
4. Véhicule de transport (2) selon l’une des revendications 1 à 3 dans lequel la partie rayonnante (342) du au moins un câble (32) comprend au plus 7 méandres (500, 501), préférentiellement au plus 5 méandres, (500-1, 500-2, 501).
5. Véhicule de transport (2) selon l’une des revendications 1 à 4 dans lequel, le transpondeur radiofréquence (100, lOObis) associé à le au moins un ensemble mobile (1) comprenant une antenne radiofréquence comprenant au moins un brin filaire définissant un premier axe longitudinal, chaque méandre de la première (32a-l, 32b-l) et/ou la au moins une seconde (32a-2, 32b-2) partie continue de la partie rayonnante du au moins un câble (32) définissant une droite D définie par les deux extrémités (521, 522) du au moins un méandre (500, 500-1, 500-2, 501), l’angle formé par les vecteurs directeurs du premier axe longitudinal et de la droite D est inférieure à +/- 30 degrés, préférentiellement inférieur à +/- 20 degrés sur au moins une partie du parcours fermé décrit par l’au moins un ensemble mobile (1).
6. Véhicule de transport (2) selon la revendication 5 dans lequel, l’au moins un ensemble mobile (1) étant apte à décrire un mouvement de rotation autour d’un unique axe de rotation (102) définissant un repère cylindrique autour de cet axe de rotation (102), le premier axe longitudinal de l’antenne radiofréquence du transpondeur radiofréquence (100, lOObis) associé à le au moins un ensemble mobile (1) ayant sa composante principale orientée circonférentiellement dans le repère cylindrique, le au moins un méandre (500-1, 500-2) associée à la première (32a-l, 32b-l) et /ou la au moins une seconde partie (32a-2, 32b-2) continue de la partie rayonnante (342) du au moins un câble (32) étant agencée radialement extérieurement à l’ensemble mobile (1) par rapport à l’axe de rotation (102), la droite D du au moins un méandre a sa composante principale orientée circonférentiellement dans le repère cylindrique de l’ensemble mobile (1).
7. Véhicule de transport (2) selon la revendication 6 dans lequel, l’antenne radiofréquence du transpondeur radiofréquence (100, lOObis) associé à le au moins un ensemble mobile (1) et le au moins un méandre (500-1) associé à la première et /ou la au moins une seconde partie continue de la partie rayonnante du câble se projetant dans un même plan circonférentiel, la projection de l’antenne du transpondeur radiofréquence coupe au moins la projection de la droite D du au moins un méandre.
8. Véhicule de transport (2) selon la revendication 5 dans lequel, l’ensemble mobile (1) étant apte à décrire un mouvement de rotation autour d’un unique axe de rotation (102) définissant un repère cylindrique autour de cet axe de rotation (102), le premier axe longitudinal de l’antenne radiofréquence du transpondeur radiofréquence (100, lOObis) associé à le au moins un ensemble mobile (1) ayant sa composante principale orientée circonférentiellement dans le repère cylindrique, le au moins un méandre (501) associée à la première et /ou la au moins une seconde partie continue de la partie rayonnante du câble étant agencée axialement extérieurement et radialement intérieurement à l’ensemble mobile (1) par rapport à l’axe de rotation (102), la droite D du au moins un méandre a sa composante principale orientée circonférentiellement dans le repère cylindrique de l’ensemble mobile (1).
9. Véhicule de transport (2) selon la revendication 8 dans lequel, l’antenne radiofréquence du transpondeur radiofréquence (100, lOObis) associé à le au moins un ensemble mobile (1) et le au moins un méandre (501) associé à la première et/ou la au moins une seconde partie continue de la partie rayonnante du câble se projetant dans un même plan axial, la projection de l’antenne du transpondeur radiofréquence coupe au moins la projection de la droite D du au moins un méandre.
10. Véhicule de transport (2) selon l’une des revendications 1 à 9 dans lequel le transpondeur radiofréquence comprend une étiquette RFID (100).
11. Véhicule de transport (2) selon l’une des revendications 1 à 10 dans lequel, l’ensemble mobile étant apte à décrire un mouvement de rotation autour d’un axe de rotation (102), chaque partie continue du au moins un câble décrit un secteur angulaire autour de l’axe de rotation (102) au moins supérieur à 30 degrés, préférentiellement supérieur à 60 degrés, très préférentiellement supérieur à 120 degrés.
12. Véhicule de transport (2) selon l’une des revendications 1 à 11 dans lequel, la partie continue de la partie rayonnante du au moins un câble est fixée sur la au moins une paroi délimitant la cavité (21a-l, 21a-2, 2 lb-1 , 21b-2) du véhicule de transport (2) accueillant l’ensemble mobile (1).
13. Véhicule de transport (2) selon l’une des revendications 11 à 12 dans lequel, la première (32a-l, 32b-l) et/ou la au moins une seconde (32a-2, 32b-2) partie continue de la partie rayonnante du au moins un câble s’étend à une distance radiale constante de l’axe de rotation (102) de l’ensemble mobile.
14. Véhicule de transport (2) selon l’une des revendications 1 à 13 dans lequel le transpondeur radiofréquence (100, lOObis) émet par une fréquence sous porteuse.
15. Véhicule de transport (2) selon la revendication 14 dans lequel la fréquence sous porteuse du transpondeur radiofréquence comprend un nombre de transitons inférieur à 5, préférentiellement une seule transition sur la période unitaire de la fréquence sous porteuse.
PCT/EP2023/078368 2022-10-21 2023-10-12 Systeme de lecture radiofrequence embarque sur un vehicule de transport WO2024083636A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2210922A FR3141264A1 (fr) 2022-10-21 2022-10-21 système de lecture radiofréquence embarqué sur un vehicule de transport
FRFR2210922 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024083636A1 true WO2024083636A1 (fr) 2024-04-25

Family

ID=84488667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/078368 WO2024083636A1 (fr) 2022-10-21 2023-10-12 Systeme de lecture radiofrequence embarque sur un vehicule de transport

Country Status (2)

Country Link
FR (1) FR3141264A1 (fr)
WO (1) WO2024083636A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194999B1 (en) * 1995-05-26 2001-02-27 UHL GüNTER Device fitted on vehicles for monitoring tyre pressure
EP1983604A2 (fr) * 2003-02-03 2008-10-22 Mineral Lassen LLC Dispositif et procédé de communications sans fil
US20090066600A1 (en) * 2007-09-12 2009-03-12 Victor Rabinovich Symmetrical printed meander dipole antenna
US20090174557A1 (en) * 2008-01-03 2009-07-09 Intermec Ip Corp. Compact flexible high gain antenna for handheld rfid reader
US20160197408A1 (en) 2013-09-26 2016-07-07 Dieter Kilian Antenna for short-range applications and use of an antenna of this type
US20210021015A1 (en) 2019-07-19 2021-01-21 The Goodyear Tire & Rubber Company Reader system for tire with an integrated rfid and tpms sensor
US20210178837A1 (en) * 2017-10-27 2021-06-17 Compagnie Generale Des Etablissements Michelin Parameter measurement system for a mounted assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194999B1 (en) * 1995-05-26 2001-02-27 UHL GüNTER Device fitted on vehicles for monitoring tyre pressure
EP1983604A2 (fr) * 2003-02-03 2008-10-22 Mineral Lassen LLC Dispositif et procédé de communications sans fil
US20090066600A1 (en) * 2007-09-12 2009-03-12 Victor Rabinovich Symmetrical printed meander dipole antenna
US20090174557A1 (en) * 2008-01-03 2009-07-09 Intermec Ip Corp. Compact flexible high gain antenna for handheld rfid reader
US20160197408A1 (en) 2013-09-26 2016-07-07 Dieter Kilian Antenna for short-range applications and use of an antenna of this type
US20210178837A1 (en) * 2017-10-27 2021-06-17 Compagnie Generale Des Etablissements Michelin Parameter measurement system for a mounted assembly
US20210021015A1 (en) 2019-07-19 2021-01-21 The Goodyear Tire & Rubber Company Reader system for tire with an integrated rfid and tpms sensor

Also Published As

Publication number Publication date
FR3141264A1 (fr) 2024-04-26

Similar Documents

Publication Publication Date Title
EP3349996B1 (fr) Pneumatique comprenant un transpondeur passif et procede de lecture des donnees
EP3548313B1 (fr) Enveloppe pneumatique équipée d'un organe électronique
WO2018104620A1 (fr) Enveloppe pneumatique équipée d'un organe électronique
EP3551480A1 (fr) Pneumatique adapte pour roulage a plat equipe d'un organe electronique
EP3548316A1 (fr) Module de communication radiofréquence pour pneumatique
WO2019186066A1 (fr) Transpondeur radiofrequence pour pneumatique
AU2008202478B2 (en) An undercarriage fitted with a communication device between a wheel and the undercarriage
FR2779276A1 (fr) Dispositif de radiocommunication et antenne a fente en boucle
EP4035073A1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
EP3793812B1 (fr) Procede de fabrication d'un pneumatique equipe d'un module de communication radiofrequence
EP4069525B1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
WO2021058905A1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
EP4035074A1 (fr) Pneumatique equipe d'un transpondeur radiofrequence
WO2024083636A1 (fr) Systeme de lecture radiofrequence embarque sur un vehicule de transport
WO2024079271A1 (fr) Systeme de lecture radiofrequence embarque sur un vehicule de transport
EP1335838A1 (fr) Insert de securite avec antenne de transmission incorporee
WO2006000572A1 (fr) Passage de roue de véhicule automobile comprenant un circuit électrique et ensemble d'un passage de roue et de moyens d'alimentation
WO2018020143A1 (fr) Dispositif et procede d'ecriture d'un identifiant de roue dans un module de roue
WO2023007079A1 (fr) Systeme de lecture radiofrequence embarque sur un moyen de transport
FR3073094A1 (fr) Systeme de mesure de parametre d'un ensemble monte
FR3104069A1 (fr) Pneumatique equipe d’un transpondeur radiofrequence
EP3802161B1 (fr) Enveloppe pneumatique equipee d'un systeme de mesure et methode de communication d'un tel assemblage