WO2024082809A1 - 激光发射组件、硅光集成芯片及激光器 - Google Patents

激光发射组件、硅光集成芯片及激光器 Download PDF

Info

Publication number
WO2024082809A1
WO2024082809A1 PCT/CN2023/114556 CN2023114556W WO2024082809A1 WO 2024082809 A1 WO2024082809 A1 WO 2024082809A1 CN 2023114556 W CN2023114556 W CN 2023114556W WO 2024082809 A1 WO2024082809 A1 WO 2024082809A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
coupled
splitter
microring
modulator
Prior art date
Application number
PCT/CN2023/114556
Other languages
English (en)
French (fr)
Inventor
李晨蕾
郑学哲
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2024082809A1 publication Critical patent/WO2024082809A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 

Definitions

  • the utility model relates to the field of laser technology, in particular to a laser emission component, a silicon photonic integrated chip and a laser.
  • silicon photonic chips have gained more and more attention in the field of optical communications due to their advantages such as small size and easy integration, and are widely regarded as key technologies in the next generation of networks.
  • External cavity direct-modulated lasers using the above silicon photonic chips are developing towards small size, low power consumption and high speed.
  • a micro-ring modulator is used as an external cavity reflector and a semiconductor optical amplifier (Reflective Semiconductor Optical Amplifier, RSOA for short) is integrated into an external cavity directly modulated laser through hybrid integration.
  • the micro-ring resonant cavity serves as both a reflective cavity and a modulator of the laser.
  • the output of the laser is modulated by the modulation effect of the micro-ring modulator.
  • the wavelength of the micro-ring resonator drifts, causing the reflectivity of the laser gain medium chip to change, thereby causing the laser to produce a mode hopping phenomenon, reducing the quality of the laser modulation signal.
  • the utility model provides a laser emission component, which includes a bandpass filter, a splitter, a first microring modulator, a second microring modulator and a common waveguide; one end of the splitter is coupled to the bandpass filter, and the other end thereof is coupled to the first microring modulator and the second microring modulator respectively, and the common waveguide couples the first microring modulator and the second microring modulator;
  • the bandpass filter is used to couple with an external semiconductor optical amplifier to filter the optical signal from the semiconductor optical amplifier, or to filter the optical signal returned from the splitter and then output it to the semiconductor optical amplifier;
  • the splitter is used to split the optical signal from the bandpass filter into a first optical signal and a second optical signal;
  • a portion of the first optical signal is outputted externally, and another portion of the optical signal is coupled to the first micro-ring modulator and returns to the band-pass filter after passing through the common waveguide, the second micro-ring modulator and the splitter in sequence;
  • a portion of the second optical signal is outputted externally, and another portion of the optical signal is coupled to the second micro-ring modulator and returns to the band-pass filter after passing through the common waveguide, the first micro-ring modulator and the splitter in sequence;
  • the modulation direction of the optical signal by the first micro-ring modulator is opposite to the modulation direction of the optical signal by the second micro-ring modulator.
  • the bandpass filter comprises a mode converter and a Bragg grating, wherein the Bragg grating is coupled to the mode converter, and the mode converter is also coupled to the splitter and the semiconductor optical amplifier, respectively, wherein:
  • the mode converter is used to input the optical signal from the semiconductor optical amplifier into the Bragg grating for filtering, and output the filtered optical signal to the splitter; or, to input the optical signal returned by the splitter into the Bragg grating for filtering, and output the filtered optical signal to the semiconductor optical amplifier.
  • the mode converter comprises a first terminal, a second terminal and a third terminal, wherein:
  • the first end of the mode converter is used to receive an optical signal of a first mode; wherein the optical signal of the first mode is an optical signal from the semiconductor optical amplifier or an optical signal returned by the splitter;
  • the second end of the mode converter is used to input the optical signal of the first mode into the Bragg grating for filtering, and then receive the optical signal of the second mode reflected by the Bragg grating;
  • the third terminal of the mode converter is used to output the optical signal of the first mode obtained by converting the optical signal of the second mode to the semiconductor optical amplifier or the splitter.
  • the splitter includes a first transmission waveguide, a second transmission waveguide and a third transmission waveguide, the first transmission waveguide is coupled to the bandpass filter, the second transmission waveguide and the third transmission waveguide are respectively coupled to the first transmission waveguide, and the second transmission waveguide is coupled to the first microring modulator, and the third transmission waveguide is coupled to the second microring modulator.
  • the first microring modulator includes a first microring resonant cavity and a first heating electrode, the first microring resonant cavity is coupled to the second transmission waveguide, and the first heating electrode is coupled to the first microring resonant cavity to adjust the resonance peak of the first microring resonant cavity;
  • the second microring modulator includes a second microring resonant cavity and a second heating electrode, the second microring resonant cavity is coupled to the third transmission waveguide, and the second heating electrode is coupled to the second microring resonant cavity, so as to adjust the resonance peak of the second microring resonant cavity.
  • the laser emitting assembly further includes a phase shifter, which is coupled between the bandpass filter and the splitter, and is used to adjust the working wavelength of the bandpass filter for the optical signal.
  • a bandpass filter is integrated between the first and second micro-ring modulators and the semiconductor optical amplifier.
  • the bandpass filter can effectively suppress the mode hopping phenomenon caused by factors such as the decrease in side mode suppression ratio and the resonance peak drift of the semiconductor optical amplifier, which is beneficial to improving the quality of the modulated signal emitted by the laser emitting component.
  • the utility model provides a silicon photonic integrated chip, on which the above-mentioned laser emitting component is integrated.
  • the III-V material and the silicon material in the silicon photonic integrated chip are connected via silicon nitride material.
  • the quality of the modulated signal emitted by the silicon photonic integrated chip can be guaranteed by setting the above-mentioned laser emitting component.
  • the utility model provides a laser, which includes the above-mentioned silicon photonic integrated chip and a semiconductor optical amplifier, wherein the bandpass filter of the silicon photonic integrated chip is coupled to the semiconductor optical amplifier.
  • the semiconductor optical amplifier is coupled to the bandpass filter by end face coupling or grating coupling.
  • the quality of the modulated signal emitted by the laser can be guaranteed by the arrangement of the above silicon photonic integrated chip.
  • FIG1 is a schematic diagram of a module structure of a laser emission assembly according to an embodiment
  • FIG2 is a schematic structural diagram of a bandpass filter according to an embodiment
  • FIG. 3 is a schematic diagram of the specific structure of a laser emission assembly according to an embodiment.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • severeal means one or more
  • multiple means at least two, such as two, three, etc., unless otherwise clearly and specifically defined, and the meanings of “multiple groups”, “multiple paths” and “multiple bundles” are the same, and will not be elaborated one by one here.
  • the terms “installed”, “connected”, “connected”, “fixed”, “coupled” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed, “connected”, “connected”, “fixed”, “coupled” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the present invention provides a laser emitting assembly 100 , which includes a band-pass filter 110 , a splitter 120 , a first micro-ring modulator 130 , a second micro-ring modulator 140 and a common waveguide 150 .
  • one end of the splitter 120 is coupled to the bandpass filter 110, and the other end thereof is coupled to the first micro-ring modulator 130 and the second micro-ring modulator 140 respectively.
  • the common waveguide 150 cascade-couples the first micro-ring modulator 130 and the second micro-ring modulator 140, so that the first micro-ring modulator 130 and the second micro-ring modulator 140 can achieve a push-pull working state, that is, by loading a differential signal to the first micro-ring modulator 130 and the second micro-ring modulator 140, the first micro-ring modulator 130 and the second micro-ring modulator 140 can perform push-pull modulation on the optical signal.
  • the bandpass filter 110 allows optical signals with wavelengths within its bandwidth to pass through, but prohibits optical signals with wavelengths outside its bandwidth to pass through, thereby achieving bandpass filtering of the optical signals input therein; specifically, it is used to couple with an external semiconductor optical amplifier 200 to filter the optical signals from the semiconductor optical amplifier 200, or to filter the optical signals returned from the splitter 120 and then output them to the semiconductor optical amplifier 200.
  • the splitter 120 is used to split the optical signal from the bandpass filter 110 into a first optical signal and a second optical signal.
  • the first optical signal is outputted externally through the output waveguide, and the other part of the optical signal is coupled to the first micro-ring modulator 130, and is returned to the band-pass filter 110 after passing through the common waveguide 150, the second micro-ring modulator 140 and the splitter 120 in sequence;
  • the first micro-ring modulator 130 and the second micro-ring modulator 140 have basically the same structure and free spectrum range, and the difference between the two is that the modulation directions of the optical signal are opposite, that is, the modulation direction of the optical signal by the first micro-ring modulator 130 is opposite to that of the second micro-ring modulator 140.
  • the first optical signal in a push-pull working state, is coupled to the first microring modulator 130 in a push-pull working state.
  • the first microring modulator 130 performs positive phase modulation on the first optical signal transmitted clockwise. Then, the modulated signal is coupled to the second microring modulator 140 via the common waveguide 150. At this time, the optical signal input to the second microring modulator 140 is transmitted in the second microring modulator 140 in a counterclockwise direction. The second microring modulator 140 performs anti-phase modulation on the counterclockwise optical signal. The modulated optical signal is transmitted to the splitter 120 and then returned to the bandpass filter 110.
  • the resonance peaks of the optical signal modulation by the first and second microring modulators are moved in opposite directions, so that the positions of the resonance peaks of the two are exchanged. Therefore, the change in the position of the resonance peak offsets the change in the resonant cavity reflection of the first and second microring modulators during the modulation process.
  • Part of the second optical signal is outputted externally, and the other part of the optical signal is coupled to the second microring modulator 140, and is sequentially returned to the bandpass filter 110 after passing through the common waveguide 150, the first microring modulator 130 and the splitter 120.
  • the second optical signal in a push-pull working state, is coupled to the second microring modulator 140. If the second optical signal is transmitted in a clockwise direction in the second microring modulator 140, the second microring modulator 140 performs positive phase modulation on the clockwise transmitted second optical signal. Then, the modulated signal is coupled to the first microring modulator 130 after passing through the common waveguide 150.
  • the optical signal input to the first microring modulator 130 is transmitted in a counterclockwise direction in the first microring modulator 130, and the first microring modulator 130 performs anti-phase modulation on the counterclockwise transmitted optical signal.
  • the modulated optical signal is transmitted to the splitter 120 and then returned to the bandpass filter 110.
  • a bandpass filter 110 is integrated between the first and second micro-ring modulators and the semiconductor optical amplifier 200. Since the bandpass filter 110 can only allow optical signals with wavelengths within its bandpass range to pass through, optical signals with wavelengths outside the bandpass range of the bandpass filter 110 cannot be reflected to the semiconductor optical amplifier 200 through the bandpass filter 110, thereby avoiding the phenomenon that the reflectivity of the semiconductor optical amplifier 200 to the optical signal changes, thereby effectively suppressing the mode hopping phenomenon caused by factors such as the decrease in the side mode suppression ratio and the resonance peak drift of the semiconductor optical amplifier 200, which is beneficial to improving the quality of the modulated signal emitted by the laser emitting component 100.
  • the structural form of the bandpass filter 110 is not limited, and the specific structural form of the bandpass filter 110 can be adjusted according to the actual filtering requirements of the optical signal.
  • the bandpass filter 110 includes a mode converter 111 and a Bragg grating 112, the Bragg grating 112 is coupled to the mode converter 111, and the mode converter 111 is coupled to the semiconductor optical amplifier 200 and the splitter 120, respectively, wherein:
  • the mode converter 111 is used to input the optical signal from the semiconductor optical amplifier 200 into the Bragg grating 112 for filtering, and output the filtered optical signal to the splitter 120, or to input the optical signal returned by the splitter 120 into the Bragg grating 112 for filtering, and output the filtered optical signal to the semiconductor optical amplifier 200.
  • the mode converter 111 includes a first end 1111, a second end 1112 and a third end (not labeled), wherein the first end 1111 and the third end are coupled to the semiconductor optical amplifier 200 and the splitter 120, and the second end 1112 is coupled to the Bragg grating 112, wherein:
  • the first end 1111 serves as an optical signal receiving end of the mode converter 111, and is used to receive an optical signal of the first mode (i.e., a TE0 fundamental mode optical signal) from the semiconductor optical amplifier 200 or returned by the splitter 120;
  • an optical signal of the first mode i.e., a TE0 fundamental mode optical signal
  • the second end 1112 serves as an optical signal receiving end of the mode converter 111, and is used to input the optical signal of the first mode into the Bragg grating 112 for filtering, and then receive the optical signal of the second mode (i.e., the TE1 high-order mode optical signal) reflected by the Bragg grating 112;
  • the third end serves as an optical signal output end of the mode converter 111 , and is used to output the optical signal of the first mode obtained by converting the optical signal of the second mode to the semiconductor optical amplifier 200 or the splitter 120 .
  • the semiconductor optical amplifier 200 inputs the optical signal of the first mode to the mode converter 111 through the first end 1111, and the mode converter 111 inputs the optical signal of the first mode to the Bragg grating 112 through the second end 1112 for bandpass filtering.
  • the Bragg grating 112 converts the optical signal of the first mode with a wavelength in its bandpass range into an optical signal of the second mode, and then reflects it back to the mode converter 111 through the second end 1112; finally, the optical signal of the second mode is converted into an optical signal of the first mode after passing through the mode converter 111, and then is output to the splitter 120 through the third end.
  • the mode conversion principle of the optical signal in the bandpass filter 110 is basically the same as the above process, and will not be elaborated here.
  • the bandpass filter 110 formed by the mode converter 111 and the Bragg grating 112 has a small insertion loss of the device, and does not cause loss to the optical signal when the bandpass filter 110 is used for bandpass filtering.
  • the bandpass range of the Bragg grating 112 is sufficient to cover the entire micro-ring modulator (i.e., the first or second micro-ring modulator), so that the bandpass filter 110 can work well with the micro-ring modulator.
  • the mode hopping phenomenon of the laser emitting component 100 can be effectively suppressed, and the working performance and stability of the laser emitting component 100 are further improved, thereby improving the quality of the modulated signal.
  • the splitter 120 includes a first transmission waveguide 121, a second transmission waveguide 122, and a third transmission waveguide 123.
  • the first transmission waveguide 121 is coupled to the bandpass filter 110
  • the second transmission waveguide 122 and the third transmission waveguide 123 are coupled to the first transmission waveguide 121, respectively
  • the second transmission waveguide 122 is coupled to the first microring modulator 130
  • the third transmission waveguide 123 is coupled to the second microring modulator 140.
  • the first transmission waveguide 121 is used to split the optical signal from the bandpass filter 110 into a first optical signal and a second optical signal
  • the second transmission waveguide 122 is used to couple the first optical signal to the first microring modulator 130
  • the third transmission waveguide 123 is used to couple the second optical signal to the second microring modulator 140;
  • the second transmission waveguide 122 is used to receive the optical signal reflected back to the splitter 120 by the first micro-ring modulator 130, and input it to the bandpass filter 110 via the first transmission waveguide 121, while the third transmission waveguide 123 is used to receive the optical signal reflected back to the splitter 120 by the second micro-ring modulator 140, and input it to the bandpass filter 110 via the first transmission waveguide 121.
  • the specific structural form of the splitter 120 is not limited, and it may include but is not limited to a 1x2 MMI optical switch, a 2x2 MMI optical switch or a 50:50 directional coupler.
  • the first microring modulator 130 includes a first microring resonant cavity 131 and a first heating electrode 132.
  • the first microring resonant cavity 131 is coupled to the second transmission waveguide 122 and the common waveguide 150, respectively, and the first heating electrode 132 is coupled to the first microring resonant cavity 131 to adjust the resonance peak of the first microring resonant cavity 131.
  • the second microring modulator 140 includes a second microring resonant cavity 141 and a second heating electrode 142.
  • the second microring resonant cavity 141 is coupled to the third transmission waveguide 123, and the second heating electrode 142 is coupled to the second microring resonant cavity 141 to adjust the resonance peak of the second microring resonant cavity 141.
  • first heating electrode 132 and the second heating electrode 142 include but are not limited to one of a metal heating electrode and a silicon heating electrode.
  • the processing error between the first microring resonant cavity 131 and the second microring resonant cavity 141 is compensated by the first heating electrode 132 and the second heating electrode 142 respectively, which effectively avoids the deviation of the central wavelengths of the first microring resonant cavity 131 and the second microring resonant cavity 141, so that the central wavelengths of the two are aligned; in addition, the adjustment of the first microring resonant cavity 131 by the first heating electrode 132 and the adjustment of the second microring resonant cavity 141 by the second heating electrode 142 are performed independently, so that the first microring resonant cavity 131 and the second microring resonant cavity 141 can be independently adjusted to the appropriate position, avoiding the mutual interference between the two during the adjustment process, and can effectively ensure the reliability of the resonance peak adjustment, which is beneficial to improving the working performance of the laser emitting component 100 and improving the quality of the modulation signal.
  • the laser emitting assembly 100 further includes a phase shifter 160, which is coupled between the bandpass filter 110 and the splitter 120, and is used to adjust the working wavelength of the optical signal of the bandpass filter 110.
  • the longitudinal mode position of the laser emitting assembly 100 can be adjusted by the phase shifter 160, so that the reflectivity of the longitudinal mode under the narrow-band reflection spectrum of the cascaded micro-ring modulator jointly formed by the first and second micro-ring modulators is much greater than that of other longitudinal modes, which is conducive to ensuring the working performance of the laser emitting assembly 100 and the quality of the modulated signal.
  • the structural form of the waveguide in the above embodiments is not limited, and the waveguide includes but is not limited to at least one of SOI silicon-based optical waveguide, SiN silicon-based optical waveguide and lithium niobate optical waveguide.
  • the phase shifter includes but is not limited to one of a phase shifter composed of a SOI silicon-based optical waveguide and a PIN junction diode and a phase shifter composed of a SOI silicon-based optical waveguide and a metal heater.
  • the phase shifter is used to perform phase modulation using the electro-optic effect of a PIN junction diode or to perform phase modulation using a metal electrode thermal modulation method to achieve high-speed phase modulation, and the phase modulation speed can reach the GHz (gigahertz, or GHz) level, which is beneficial to improving the spectral scanning efficiency of the laser.
  • the utility model also provides a silicon photonic integrated chip (not shown), on which the above-mentioned laser emitting component is integrated. This arrangement is beneficial to improving the integration of semiconductor optical amplifiers.
  • the III-V material and the silicon material in the silicon photonic integrated chip are connected via silicon nitride material. This setting enables the change in the overall equivalent refractive index of the laser emitting component to be consistent with the change in the effective refractive index of the first and second micro-ring modulators.
  • the quality of the modulated signal emitted by the silicon photonic integrated chip can be guaranteed by the arrangement of the above-mentioned laser emitting component.
  • the utility model also provides a laser, which comprises the above-mentioned silicon photonic integrated chip and a semiconductor optical amplifier, wherein the bandpass filter of the silicon photonic integrated chip is coupled with the semiconductor optical amplifier.
  • the semiconductor optical amplifier is coupled to the bandpass filter by end coupling or grating coupling. This arrangement enables the semiconductor optical amplifier to be efficiently coupled to the bandpass filter on the silicon photonic integrated chip, thereby forming an external cavity tunable laser.
  • the quality of the modulated signal emitted by the laser can be guaranteed by the arrangement of the above silicon photonic integrated chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光发射组件(100)、硅光集成芯片和激光器,其中,激光发射组件(100)包括:带通滤波器(110)、分路器(120)、第一微环调制器(130)、第二微环调制器(140)以及公用波导(150);带通滤波器(110)对光信号滤波并输出;分路器(120)将来自带通滤波器(110)的光信号分光为第一和第二光信号;第一光信号一部分向外输出,另一部分依次经第一微环调制器(130)、公用波导(150)、第二微环调制器(140)和分路器(120)后返回至带通滤波器(110)中;第二光信号一部分向外输出,另一部分依次经第二微环调制器(140)、公用波导(150)、第一微环调制器(130)和分路器(120)后返回至带通滤波器(110)中;其中,第一微环调制器(130)和第二微环调制器(140)对光信号的调制方向相反。

Description

激光发射组件、硅光集成芯片及激光器
本申请要求于2022年10月20日提交中国专利局、申请号为202222760192.9、发明名称为“激光发射组件、硅光集成芯片及激光器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及激光技术领域,特别是涉及一种激光发射组件、硅光集成芯片及激光器。
背景技术
随着激光技术的发展,而硅光芯片因为其体积小、易于集成等优势,在光通信中领域中受到越来越多的重视,被广泛视为下一代网络中的关键技术。而应用上述硅光芯片的外腔式直调激光器正向着体积小,功耗低,速度快的趋势发展。
相关技术中,目前已经实现了将微环调制器作为外腔反射镜与半导体光放大器(Reflective Semiconductor Optical Amplifier ,简称RSOA,即半导体增益芯片)通过混合集成的方式实现外腔式直调激光器,微环谐振腔既作为激光器的反射腔也做为调制器,通过微环调制器的调制作用,对激光器的输出进行调制。
然而,当采用调制微环谐振腔时,微环谐振腔发生波长漂移,使得激光器增益介质芯片的反射率也随之改变,从而导致激光器产生跳模现象,降低了激光器的调制信号的质量。
实用新型内容
基于此,有必要针对上述调制信号质量低的问题,提供一种激光发射组件、硅光集成芯片及激光器。
第一方面,本实用新型提供一种激光发射组件,其包括带通滤波器、分路器、第一微环调制器、第二微环调制器以及公用波导;所述分路器的其中一端与所述带通滤波器耦合,其另外一端分别与所述第一微环调制器和所述第二微环调制器耦合,所述公用波导将所述第一微环调制器和所述第二微环调制器耦合;其中:
所述带通滤波器,用于与外部的半导体光放大器耦合,将来自所述半导体光放大器的光信号进行滤波处理,或将从所述分路器返回的光信号进行滤波处理后输出至半导体光放大器;
所述分路器,用于将来自所述带通滤波器的光信号分光为第一光信号和第二光信号;
所述第一光信号的其中一部分光信号向外输出,另一部分光信号耦合至所述第一微环调制器中,并依次经所述公用波导、所述第二微环调制器和所述分路器后返回至所述带通滤波器中;
所述第二光信号的其中一部分光信号向外输出,另一部分光信号耦合至所述第二微环调制器中,并依次经所述公用波导、所述第一微环调制器和所述分路器后返回至所述带通滤波器中;
其中,所述第一微环调制器对光信号的调制方向和所述第二微环调制器对光信号的调制方向相反。
在其中一个实施例中,所述带通滤波器包括模式转换器以及布拉格光栅,所述布拉格光栅与所述模式转换器耦合,所述模式转换器还分别与所述分路器和所述半导体光放大器耦合,其中:
所述模式转换器,用于将来自所述半导体光放大器的光信号输入至所述布拉格光栅中进行滤波,将滤波后的光信号进输出至所述分路器;或,用于将由所述分路器返回的光信号输入至所述布拉格光栅中进行滤波,对滤波后的光信号输出至所述半导体光放大器。
在其中一个实施例中,所述模式转换器包括第一端、第二端以及第三端,其中:
所述模式转换器的第一端,用于接收第一模式的光信号;其中,所述第一模式的光信号为来自所述半导体光放大器的光信号或由所述分路器返回的光信号;
所述模式转换器的第二端,用于将所述第一模式的光信号输入至所述布拉格光栅中进行滤波后,接收由所述布拉格光栅反射的第二模式的光信号;
所述模式转换器的第三端,用于将所述由第二模式的光信号转换得到的第一模式的光信号输出至所述半导体光放大器或所述分路器。
在其中一个实施例中,所述分路器包括第一传输波导、第二传输波导以及第三传输波导,所述第一传输波导与所述带通滤波器耦合,所述第二传输波导和所述第三传输波导分别与所述第一传输波导耦合,且所述第二传输波导与所述第一微环调制器耦合,所述第三传输波导与所述第二微环调制器耦合。
在其中一个实施例中,所述第一微环调制器包括第一微环谐振腔以及第一加热电极,所述第一微环谐振腔与所述第二传输波导耦合,所述第一加热电极与所述第一微环谐振腔耦合,用以调节所述第一微环谐振腔的谐振峰;
所述第二微环调制器包括第二微环谐振腔和第二加热电极,所述第二微环谐振腔与所述第三传输波导耦合,所述第二加热电极与所述第二微环谐振腔耦合,用以调节所述第二微环谐振腔的谐振峰。
在其中一个实施例中,所述激光发射组件还包括相移器,所述相移器耦合至所述带通滤波器与所述分路器之间,所述相移器用于调节所述带通滤波器对光信号的工作波长。
在上述激光发射组件中,通过第一和第二微环调制器与半导体光放大器之间集成有带通滤波器,带通滤波器能够有效地抑制由于边模抑制比下降与半导体光放大器的谐振峰漂移等因素而引起的跳模现象,有利于提高经激光发射组件发射的调制信号的质量。
第二方面,本实用新型提供了一种硅光集成芯片,上述的激光发射组件集成于所述硅光集成芯片上。
在其中一个实施例中,所述硅光集成芯片中的三五族材料与硅材料之间通过氮化硅材料连接。
在上述硅光集成芯片中,通过上述激光发射组件的设置,能够保证由硅光集成芯片发射的调制信号的质量。
第三方面,本实用新型提供了一种激光器,其包括上述的硅光集成芯片以及半导体光放大器,所述硅光集成芯片的带通滤波器与所述半导体光放大器耦合。
在其中一个实施例中,所述半导体光放大器通过端面耦合或光栅耦合的方式与所述带通滤波器耦合。
在上述激光器中,通过上述硅光集成芯片的设置,能够保证由激光器发射的调制信号的质量。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施方式的激光发射组件的模块结构示意图;
图2为一个实施方式的带通滤波器的结构示意图;
图3为一个实施方式的激光发射组件的具体结构示意图。
具体实施例
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施例做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似改进,因此本实用新型不受下面公开的具体实施例的限制。
在本实用新型的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“若干个”的含义是一个或多个,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定,其中“多组”、“多路”、“多束”的含义同理,在此不再一一展开赘述。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
请参阅图1所示,本实用新型提供一种激光发射组件100,其包括带通滤波器110(Band-pass filter)、分路器120、第一微环调制器130、第二微环调制器140以及公用波导150。
具体地,分路器120的其中一端与带通滤波器110耦合,其另外一端分别与第一微环调制器130和第二微环调制器140耦合,公用波导150将第一微环调制器130和第二微环调制器140级联耦合,使得第一微环调制器130和第二微环调制器140可实现推挽式的工作状态,即,可通过对第一微环调制器130和第二微环调制器140加载差分信号,使得第一微环调制器130和第二微环调制器140对光信号能够进行推挽式的调制。其中:
带通滤波器110,其能够允许波长在其带宽范围内的光信号通过,但禁止波长在其带宽范围外的光信号通过,从而实现对输入其内的光信号进行带通滤波;具体地,其用于与外部的半导体光放大器200耦合,将来自半导体光放大器200的光信号进行滤波处理,或将从分路器120返回的光信号进行滤波处理后输出至半导体光放大器200。
分路器120,用于将来自带通滤波器110的光信号分光为第一光信号和第二光信号。
第一光信号的其中一部分光信号通过输出波导向外输出,另一部分光信号耦合至第一微环调制器130中,并依次经公用波导150、第二微环调制器140和分路器120后返回至带通滤波器110中;其中,需要说明的是第一微环调制器130和第二微环调制器140结构形式及自由光谱范围是基本相同的,而两者的区别在于对光信号的调制方向相反,即第一微环调制器130对光信号的调制方向和第二微环调制器140对光信号的调制方向相反。比如,在一些实施例中,在推挽式工作状态下,第一光信号耦合至第一微环调制器130内,若第一光信号在第一微环调制器130以顺时针的方向传输,则第一微环调制器130对顺时针传输的第一光信号进行正相的调制,之后该调制信号经公用波导150后耦合至第二微环调制器140内,此时输入至第二微环调制器140的光信号在第二微环调制器140内以逆时针的方向传输,第二微环调制器140则对逆时针传输的光信号进行反相的调制,调制后的光信号传输至分路器120后返回至带通滤波器110。上述的光信号调制过程中,即在同样的输入电信号下,使得第一和第二微环调制器两者对光信号调制的谐振峰向相反方向移动,使得两者谐振峰位置交换,因此,谐振峰位置的变化抵消了调制过程中第一和第二微环调制器的谐振腔反射的变化。
第二光信号的其中一部分光信号向外输出,另一部分光信号耦合至第二微环调制器140中,并依次经公用波导150、第一微环调制器130和分路器120后返回至带通滤波器110中;具体的,在一些实施例中,在推挽式工作状态下,第二光信号耦合至第二微环调制器140内,若第二光信号在第二微环调制器140以顺时针的方向传输,则第二微环调制器140对顺时针传输的第二光信号进行正相的调制,之后该调制信号经公用波导150后耦合至第一微环调制器130内,此时输入至第一微环调制器130的光信号在第一微环调制器130内以逆时针的方向传输,第一微环调制器130则对逆时针传输的光信号进行反相的调制,调制后的光信号传输至分路器120后返回至带通滤波器110。
上述组件中,在第一和第二微环调制器与半导体光放大器200之间集成有带通滤波器110,由于带通滤波器110只能允许波长在其带通范围内的光信号通过,使得波长在带通滤波器110的带通范围外的光信号无法经带通滤波器110反射至半导体光放大器200,避免了半导体光放大器200对光信号的反射率发生改变的现象,从而能够有效地抑制由于边模抑制比下降与半导体光放大器200的谐振峰漂移等因素而引起的跳模现象,有利于提高经激光发射组件100发射的调制信号的质量。
值得一提的是,带通滤波器110的结构形式是不限的,带通滤波器110具体的结构形式可以根据实际的光信号的滤波需求进行调整。比如,如图1-2所示,在一些实施例中,带通滤波器110包括模式转换器111以及布拉格光栅112,布拉格光栅112与模式转换器111耦合,模式转换器111分别与半导体光放大器200和分路器120耦合,其中:
模式转换器111,用于将来自半导体光放大器200的光信号输入至布拉格光栅112中进行滤波,将滤波后的光信号进输出至分路器120,或,用于将由分路器120返回的光信号输入至布拉格光栅112中进行滤波,对滤波后的光信号输出至半导体光放大器200。
进一步的,模式转换器111包括第一端1111、第二端1112以及第三端(图未标),其中,第一端1111和第三端均与半导体光放大器200和分路器120耦合,第二端1112与布拉格光栅112耦合,其中:
第一端1111作为模式转换器111的光信号接收端,其用于接收来自半导体光放大器200的或由分路器120返回的第一模式的光信号(即TE0基模光信号);
第二端1112作为模式转换器111的光信号接收端,用于将第一模式的光信号输入至布拉格光栅112中进行滤波后,接收由布拉格光栅112反射的第二模式的光信号(即TE1高阶模光信号);
第三端作为模式转换器111的光信号输出端,用于将由第二模式的光信号转换得到的第一模式的光信号输出至半导体光放大器200或分路器120。
需要说明的是,由模式转换器111和布拉格光栅112构成的带通滤波器110的具体工作原理如下:
在光信号从半导体光放大器200经带通滤波器110输出至分路器120的过程中,首先,半导体光放大器200经第一端1111将第一模式的光信号输入至模式转换器111,则模式转换器111将第一模式的光信号经第二端1112输入至布拉格光栅112进行带通滤波处理,第一模式的光信号经模式转换器111进入布拉格光栅112时并无损耗;然后,布拉格光栅112将波长处于其带通范围的第一模式的光信号转换为第二模式的光信号后,通过第二端1112反射回模式转换器111;最后,该第二模式的光信号经过模式转换器111时又被下载为第一模式的光信号后,则经第三端向外输出至分路器120。当然,在光信号从分路器120传经带通滤波器110反射回半导体光放大器200的过程中,光信号在带通滤波器110中的模式转换原理与上述的过程基本相同,在此不再展开赘述。
上述实施例中,通过模式转换器111和布拉格光栅112共同构成的带通滤波器110,使得器件的插入损耗小,在利用带通滤波器110进行带通滤波处理时并不会对光信号造成损耗,布拉格光栅112的带通范围足够覆盖整个微环调制器(即第一或第二微环调制器),使得带通滤波器110能够很好地与微环调制器配合工作;另外,由于上述结构形式的带通滤波器110的引入,能够有效抑制激光发射组件100的跳模现象,进一步提高了该激光发射组件100的工作性能和稳定性,从而提高调制信号的质量。
如图1、3所示,在一些实施例中,分路器120包括第一传输波导121、第二传输波导122以及第三传输波导123,第一传输波导121与带通滤波器110耦合,第二传输波导122和第三传输波导123分别与第一传输波导121耦合,且第二传输波导122与第一微环调制器130耦合,第三传输波导123与第二微环调制器140耦合。其中:
而在激光发射组件100将来自半导体光放大器200的光信号向外输出的过程中,第一传输波导121用于将来自带通滤波器110的光信号分光为第一光信号和第二光信号,第二传输波导122用于将第一光信号耦合至第一微环调制器130,第三传输波导123用于将第二光信号耦合至第二微环调制器140;
而在将激光发射组件100反射回半导体光放大器200的过程中,第二传输波导122用于接收由第一微环调制器130反射回分路器120的光信号,并经第一传输波导121输入至带通滤波器110,而第三传输波导123用于接收由第二微环调制器140反射回分路器120的光信号,并经第一传输波导121输入至带通滤波器110。
值得一提的是,分路器120具体的结构形式是不限的,其可以包括但不限于1x2的MMI型光开关、2x2的MMI型光开关或50:50的定向耦合器。
如图1、3所示,在一些实施例中,第一微环调制器130包括第一微环谐振腔131以及第一加热电极132,第一微环谐振腔131分别与第二传输波导122和公用波导150耦合,而第一加热电极132与第一微环谐振腔131耦合,用以调节第一微环谐振腔131的谐振峰;第二微环调制器140包括第二微环谐振腔141和第二加热电极142,第二微环谐振腔141与第三传输波导123耦合,第二加热电极142与第二微环谐振腔141耦合,用以调节第二微环谐振腔141的谐振峰。
值得一提的是,第一加热电极132和第二加热电极142包括但不限于金属加热电极和硅加热电极中的其中一种。
上述实施例中,通过第一加热电极132和第二加热电极142分别对第一微环谐振腔131和第二微环谐振腔141之间所存在加工误差进行补偿,有效地避免了第一微环谐振腔131和第二微环谐振腔141两者的中心波长出现偏差的情况,使得两者的中心波长对齐;另外,第一加热电极132对第一微环谐振腔131的调节和第二加热电极142对第二微环谐振腔141的调节是分别独立进行的,使得第一微环谐振腔131和第二微环谐振腔141能够独立地调节至合适位置,避免了在调节过程中两者互相干扰的情况,能够有效地保证谐振峰调节的可靠性,有利于提高激光发射组件100的工作性能,提高调制信号的质量。
如图所示,在一些实施例中,激光发射组件100还包括相移器160,相移器160耦合至带通滤波器110与分路器120之间,相移器160用于调节带通滤波器110对光信号的工作波长。具体的,通过相移器160能够调节激光发射组件100的纵模位置,从而使得该纵模在第一和第二微环调制器所共同构成的级联微环调制器的窄带反射谱下的反射率远大于其它纵模,有利于保障激光发射组件100的工作性能,保障调制信号的质量。
可以理解的是,上述各实施例中的波导的结构形式是不限的,波导包括但不限于SOI硅基光波导、SiN硅基光波导和铌酸锂光波导中的至少一种。
可以理解的是,在一些实施例中,相移器包括但不限于由SOI硅基光波导和PIN结二极管构成的相移器、和由SOI硅基光波导和金属加热器构成的相移器中的其中一种。其中,相移器,用于采用PIN结二极管的电光效应进行相位调制,或采用金属电极热调的方式进行相位调制,以实现高速的相位调制,相位调制速度可以达到GHz(千兆赫,或称为吉赫)级别,有利于提高激光器的光谱扫描效率。
本实用新型还提供一种硅光集成芯片(未图示),上述的激光发射组件集成于硅光集成芯片上,该设置有利于提高半导体光放大器的集成化。
在一些实施例中,硅光集成芯片中的三五族材料与硅材料之间通过氮化硅材料连接,该设置能够使得激光发射组件整体等效折射率的变化与第一和第二微环调制器有效折射率变化一致。
在上述硅光集成芯片中(未图示),通过上述激光发射组件的设置,能够保证由硅光集成芯片发射的调制信号的质量。
本实用新型还提供一种激光器,其包括上述的硅光集成芯片以及半导体光放大器,硅光集成芯片的带通滤波器与半导体光放大器耦合。
在一些实施例中,半导体光放大器通过端面耦合或光栅耦合的方式与带通滤波器耦合,通过该设置使得半导体光放大器与硅光集成芯片上的带通滤波器形成高效的耦合,从而形成外腔式的可调激光器。
在上述激光器中,通过上述硅光集成芯片的设置,能够保证由激光器发射的调制信号的质量。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施例,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种激光发射组件,其特征在于,其包括带通滤波器、分路器、第一微环调制器、第二微环调制器以及公用波导;所述分路器的其中一端与所述带通滤波器耦合,其另外一端分别与所述第一微环调制器和所述第二微环调制器耦合,所述公用波导将所述第一微环调制器和所述第二微环调制器耦合;其中:
    所述带通滤波器,用于与外部的半导体光放大器耦合,将来自所述半导体光放大器的光信号进行滤波处理,或将从所述分路器返回的光信号进行滤波处理后输出至半导体光放大器;
    所述分路器,用于将来自所述带通滤波器的光信号分光为第一光信号和第二光信号;
    所述第一光信号的其中一部分光信号向外输出,另一部分光信号耦合至所述第一微环调制器中,并依次经所述公用波导、所述第二微环调制器和所述分路器后返回至所述带通滤波器中;
    所述第二光信号的其中一部分光信号向外输出,另一部分光信号耦合至所述第二微环调制器中,并依次经所述公用波导、所述第一微环调制器和所述分路器后返回至所述带通滤波器中;
    其中,所述第一微环调制器对光信号的调制方向和所述第二微环调制器对光信号的调制方向相反。
  2. 根据权利要求1所述的激光发射组件,其特征在于,所述带通滤波器包括模式转换器以及布拉格光栅,所述布拉格光栅与所述模式转换器耦合,所述模式转换器还分别与所述分路器和所述半导体光放大器耦合,其中:
    所述模式转换器,用于将来自所述半导体光放大器的光信号输入至所述布拉格光栅中进行滤波,将滤波后的光信号进输出至所述分路器;或,用于将由所述分路器返回的光信号输入至所述布拉格光栅中进行滤波,对滤波后的光信号输出至所述半导体光放大器。
  3. 根据权利要求2所述的激光发射组件,其特征在于,所述模式转换器包括第一端、第二端以及第三端,其中:
    所述模式转换器的第一端,用于接收第一模式的光信号;其中,所述第一模式的光信号为来自所述半导体光放大器的光信号或由所述分路器返回的光信号;
    所述模式转换器的第二端,用于将所述第一模式的光信号输入至所述布拉格光栅中进行滤波后,接收由所述布拉格光栅反射的第二模式的光信号;
    所述模式转换器的第三端,用于将所述由第二模式的光信号转换得到的第一模式的光信号输出至所述半导体光放大器或所述分路器。
  4. 根据权利要求1所述的激光发射组件,其特征在于,所述分路器包括第一传输波导、第二传输波导以及第三传输波导,所述第一传输波导与所述带通滤波器耦合,所述第二传输波导和所述第三传输波导分别与所述第一传输波导耦合,且所述第二传输波导与所述第一微环调制器耦合,所述第三传输波导与所述第二微环调制器耦合。
  5. 根据权利要求4所述的激光发射组件,其特征在于,所述第一微环调制器包括第一微环谐振腔以及第一加热电极,所述第一微环谐振腔与所述第二传输波导耦合,所述第一加热电极与所述第一微环谐振腔耦合,用以调节所述第一微环谐振腔的谐振峰;
    所述第二微环调制器包括第二微环谐振腔和第二加热电极,所述第二微环谐振腔与所述第三传输波导耦合,所述第二加热电极与所述第二微环谐振腔耦合,用以调节所述第二微环谐振腔的谐振峰。
  6. 根据权利要求1所述的激光发射组件,其特征在于,所述激光发射组件还包括相移器,所述相移器耦合至所述带通滤波器与所述分路器之间,所述相移器用于调节所述带通滤波器对光信号的工作波长。
  7. 一种硅光集成芯片,其特征在于,上述权利要求1所述的激光发射组件集成于所述硅光集成芯片上。
  8. 根据权利要求7所述的硅光集成芯片,其特征在于,所述硅光集成芯片中的三五族材料与硅材料之间通过氮化硅材料连接。
  9. 一种激光器,其特征在于,所述激光器包括权利要求7所述的硅光集成芯片以及半导体光放大器,所述硅光集成芯片的带通滤波器与所述半导体光放大器耦合。
  10. 根据权利要求9所述的激光器,其特征在于,所述半导体光放大器通过端面耦合或光栅耦合的方式与所述带通滤波器耦合。
PCT/CN2023/114556 2022-10-20 2023-08-24 激光发射组件、硅光集成芯片及激光器 WO2024082809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222760192.9U CN218524975U (zh) 2022-10-20 2022-10-20 激光发射组件、硅光集成芯片及激光器
CN202222760192.9 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024082809A1 true WO2024082809A1 (zh) 2024-04-25

Family

ID=85248070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114556 WO2024082809A1 (zh) 2022-10-20 2023-08-24 激光发射组件、硅光集成芯片及激光器

Country Status (2)

Country Link
CN (1) CN218524975U (zh)
WO (1) WO2024082809A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218524975U (zh) * 2022-10-20 2023-02-24 苏州旭创科技有限公司 激光发射组件、硅光集成芯片及激光器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170139237A1 (en) * 2013-10-24 2017-05-18 Oracle International Corporation Dual-ring-modulated laser that uses push-pull modulation
CN108923250A (zh) * 2018-07-25 2018-11-30 中国科学院半导体研究所 片上集成傅里叶锁模激光器
US20190058306A1 (en) * 2017-08-18 2019-02-21 Futurewei Technologies, Inc. Efficient Wavelength Tunable Hybrid Laser
CN112202048A (zh) * 2020-10-09 2021-01-08 联合微电子中心有限责任公司 外腔激光器及其制备方法、波长调谐方法
CN212725953U (zh) * 2020-08-27 2021-03-16 武汉敏芯半导体股份有限公司 一种高调制速率的混合集成半导体激光器
CN113900312A (zh) * 2020-06-22 2022-01-07 苏州旭创科技有限公司 硅基可调滤波器、激光器及光模块
CN218524975U (zh) * 2022-10-20 2023-02-24 苏州旭创科技有限公司 激光发射组件、硅光集成芯片及激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170139237A1 (en) * 2013-10-24 2017-05-18 Oracle International Corporation Dual-ring-modulated laser that uses push-pull modulation
US20190058306A1 (en) * 2017-08-18 2019-02-21 Futurewei Technologies, Inc. Efficient Wavelength Tunable Hybrid Laser
CN108923250A (zh) * 2018-07-25 2018-11-30 中国科学院半导体研究所 片上集成傅里叶锁模激光器
CN113900312A (zh) * 2020-06-22 2022-01-07 苏州旭创科技有限公司 硅基可调滤波器、激光器及光模块
CN212725953U (zh) * 2020-08-27 2021-03-16 武汉敏芯半导体股份有限公司 一种高调制速率的混合集成半导体激光器
CN112202048A (zh) * 2020-10-09 2021-01-08 联合微电子中心有限责任公司 外腔激光器及其制备方法、波长调谐方法
CN218524975U (zh) * 2022-10-20 2023-02-24 苏州旭创科技有限公司 激光发射组件、硅光集成芯片及激光器

Also Published As

Publication number Publication date
CN218524975U (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
US9939663B2 (en) Dual-ring-modulated laser that uses push-pull modulation
US9755753B2 (en) Tunable U-laser transmitter with integrated Mach-Zehnder Modulator
US5946129A (en) Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity
US11784463B2 (en) Silicon photonics based tunable laser
US8422530B2 (en) Laser module
US9778493B1 (en) Dual-ring-modulated laser that uses push-push/pull-pull modulation
WO2024082809A1 (zh) 激光发射组件、硅光集成芯片及激光器
US20090154505A1 (en) Wavelength tunable laser diode using double coupled ring resonator
WO2005099054A1 (ja) コヒーレント光源および光学装置
US20230268718A1 (en) Silicon-based tunable filter, tunable laser and optical module
CN103346469B (zh) 一种光电振荡器
CN110323665A (zh) 波长可调直接调制硅基外腔激光器
CN110459956B (zh) 一种窄线宽可调谐激光器
CN111244758A (zh) 基于横磁模的硅基窄线宽高功率外腔激光器
CN113937617B (zh) 一种多波长激光器
CN110289546A (zh) 硅基波长快速切换外腔激光器
JP2016212265A (ja) レーザ光源
CN116544780A (zh) 一种基于氮化硅外腔的高性能可调谐半导体激光器
US6256137B1 (en) Wavelength converter
JP2017003670A (ja) ハイブリッド集積型光送信器
WO2015085544A1 (zh) 一种激光器
CN114937920A (zh) 一种窄线宽可调外腔激光器
CN110989268B (zh) 一种全光逻辑门
JP2000010137A (ja) 波長変換器
CN110911948A (zh) 一种基于混合集成技术的啁啾管理激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878804

Country of ref document: EP

Kind code of ref document: A1