WO2024082761A1 - 一种基于大数据分析的风量测量系统 - Google Patents

一种基于大数据分析的风量测量系统 Download PDF

Info

Publication number
WO2024082761A1
WO2024082761A1 PCT/CN2023/110051 CN2023110051W WO2024082761A1 WO 2024082761 A1 WO2024082761 A1 WO 2024082761A1 CN 2023110051 W CN2023110051 W CN 2023110051W WO 2024082761 A1 WO2024082761 A1 WO 2024082761A1
Authority
WO
WIPO (PCT)
Prior art keywords
air volume
axial
sensing
air
wind
Prior art date
Application number
PCT/CN2023/110051
Other languages
English (en)
French (fr)
Inventor
蔡宽平
Original Assignee
西安京兆电力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安京兆电力科技有限公司 filed Critical 西安京兆电力科技有限公司
Publication of WO2024082761A1 publication Critical patent/WO2024082761A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction

Definitions

  • the present invention belongs to the technical field of air volume measurement, and relates to an air volume measurement system, and in particular to an air volume measurement system based on big data analysis.
  • the length of the straight pipe section without equipment and bends in the boiler air inlet duct is often less than 1 times the diameter of the duct or the length of the cross-section side, which is far from meeting the provisions of the national standard "Measurement of full pipe fluid flow using a differential pressure device installed in a circular cross-section pipeline Part 4: Venturi tube” GB/T2624.4-2006/ISO5167-4:2003 Article 6.2 on the shortest upstream and downstream straight pipe sections installed between various pipe fittings and Venturi tubes.
  • the boiler air inlet duct in the coal-fired power generation unit is equipped with an adjustable damper, a supporting structure, an elbow, a baffle, and even a variable diameter section.
  • the above factors result in no section in the boiler air inlet duct having a uniform wind field, and all of them are non-uniform wind field ducts, which cannot meet the requirements of the air volume measurement device for the front and rear straight pipe sections.
  • the average velocity tube air volume measurement device is mainly composed of an air volume flowmeter improved based on the principle of pitot tube velocity measurement, that is, multiple pairs of sampling holes (more than two pairs of holes) are evenly arranged on the straight pipe section of the air volume flowmeter along its length direction, respectively, to measure the total positive pressure and total negative pressure of the fluid, and then the average differential pressure is measured by equalizing the pressure in the straight pipe section of the air volume flowmeter to calculate the flow rate of the fluid.
  • Average velocity tube air volume flowmeters include Willabar, Annubar, Deltabar, Wilba, Superbar, etc.
  • the average velocity tube air volume flowmeter has a simple structure, is easy to assemble and disassemble, and has a small pressure loss.
  • the air volume measuring device based on the Venturi tube air volume flowmeter uses the fact that when gas flows through the air volume flowmeter, it first changes from coarse to fine to speed up the gas flow rate, and then forms a "vacuum" area at the rear of the throat which changes from fine to coarse.
  • a negative pressure sampling hole is provided in the vacuum area, and a differential pressure is formed between the sampling hole and the inlet sampling hole to measure the air volume.
  • the advantages of the Venturi tube type air volume flowmeter are large differential pressure, high accuracy and small resistance loss; the duct air volume measurement is more accurate when the Venturi tube type air volume flowmeter is set in the air duct of a uniform wind field, while the accuracy of the duct air volume measurement cannot be guaranteed when the single point is set in the air duct of a non-uniform wind field, or the average differential pressure of the air volume measurement when multiple points are set geometrically uniformly in the air duct of a non-uniform wind field cannot accurately measure the average air volume value of the cross-sectional air duct in real time, which is determined by the nature of the non-uniform wind field; to a certain extent, the large differential pressure of this single-point or multi-point Venturi air volume flowmeter may turn into a disadvantage in a non-uniform wind field, amplifying the error effect; Venturi tube type air volume flowmeters such as single-throat diameter tubes, double-throat diameter tubes, multi-throat diameter tubes and other air volume flowmeters.
  • the wing air volume measurement device mainly places one or more wing-shaped throttling parts with a flow cross-sectional area smaller than the cross-sectional area of the air duct in the wind field, and uses the pressure difference generated before and after the fluid flows through the wing-shaped throttling parts to measure the air volume in the air duct; the wing air volume measurement system was widely used in early small-power coal-fired power generation units. Its advantage is that the throttling device is prefabricated in the air duct, which has both rectification and measurement functions, and the measurement of the air volume in the air duct is relatively accurate, but its disadvantages are that it is large in size, large throttling loss, complex structure, difficult installation, and easy to clog.
  • the multi-point insertion air volume flowmeter in the air volume measurement device mainly uses upper and lower inclined backrest tubes (inserted with steel wire to prevent blockage) to adopt multi-point geometric average distribution on the air duct section, and each branch pipe establishes a differential pressure respectively, and then the branch pipes are connected to equalize the pressure, and finally led to the main pipe; the geometric mean wind speed value, that is, the actual wind speed value, is obtained after multiple geometric pressure equalizations, but the geometric mean wind speed value is not an approximate actual wind speed value, and the error is particularly large.
  • the existing air volume measurement technologies are unable to accurately and real-time measure the air volume in the air duct of a non-uniform wind field, especially in the air inlet duct of a coal-fired boiler.
  • the present invention provides a real-time and accurate air volume measurement system based on big data analysis; including at least one large data air volume dynamic sensor device arranged in the cross-section of the wind duct of the non-uniform wind field, an air volume transmitter connected thereto, and a control, monitoring and analysis unit A for controlling and monitoring them.
  • the big data air volume dynamic sensing device includes an active sensing part and a driven air volume sensing part, and an active sensing part driving part, wherein the active sensing part driving part includes a transmission part for transmitting the active sensing part and a driving part thereof; the driven air volume sensing part includes a dynamic air volume sensor and a rotating part for moving the dynamic air volume sensor back and forth on the active sensing part; or the driven air volume sensing part includes a plurality of air volume flow meters evenly distributed on the active sensing part.
  • the large data air volume dynamic sensing device is a large data air volume dynamic longitude and latitude sensing device, which includes a longitude sensing active part and its latitude driven air volume sensing part, a longitude sensing active part driving part, and the longitude sensing active part driving part includes a vertical transmission part and a vertical driving part for longitude transmitting the longitude sensing active part.
  • the latitudinal driven air volume sensor portion includes a latitudinal dynamic air volume sensor and a lateral rotating portion for moving the latitudinal dynamic air volume sensor back and forth in the lateral direction of the air duct on the longitudinal sensing active portion.
  • the latitudinal dynamic air volume sensor comprises a slider and an air volume flow meter fixed thereon.
  • the latitudinal driven air volume sensing portion includes a plurality of air volume flow meters evenly distributed on the longitudinal active sensing portion.
  • the number of the air volume transmitters is the same as that of the air volume flowmeters, and they are connected to respective sampling tubes, or the air volume flowmeter is connected to an air volume transmitter via positive and negative equalizing pressure tubes.
  • the air volume flow meter is at least one of a Pitot tube air volume flow meter and a Venturi type air volume flow meter.
  • the Venturi-type air volume flow meter is at least one of a single-throat diameter tube air volume flow meter, a double-throat diameter tube air volume flow meter and a multi-throat diameter tube air volume flow meter.
  • the warp sensing active part includes a transverse part and a vertical part, the cross-section of the transverse part body is an inverted C-shaped structure, the vertical part body is a long closed shell, and the transverse part body and the vertical part body are welded together to form an inverted T-shaped structure;
  • the transverse rotating part includes left and right transverse fixed pulleys respectively arranged at both ends of the transverse part body and partially exposed on the top surface of the transverse part body, left and right angular fixed pulleys are respectively arranged on the two inner sides of the lower end of the vertical part body, and an upper fixed pulley is arranged on the inner side of the upper end, a transverse rotating steel wire is wound around the left and right transverse fixed pulleys, the left and right angular fixed pulleys and the upper fixed pulley, and a transverse stepping motor drives the upper fixed pulley;
  • the weft dynamic air volume sensor is fixed at the lower end of the transverse part body and is arranged on the trans
  • the vertical transmission part includes a vertical transmission part body and upper and lower fixed seats with bearings at the upper and lower ends thereof, and a vertical screw fixed in the bearings of the upper and lower fixed seats; a nut threadedly connected to the vertical screw is also provided at the upper end of the transverse part body, and the driving part is a vertical stepping motor, which is fixed on the upper end surface of the vertical transmission part body and drives the vertical screw axially.
  • the longitudinal sensing active part includes a transverse part and a vertical part, the cross-section of the transverse part body is an inverted C-shaped structure, the vertical part body is a long closed shell, the transverse part body and the vertical part body are welded together to form an inverted T-shaped structure; the air volume flowmeter is fixed at the lower end of the transverse part body.
  • the vertical transmission part includes a vertical transmission part body and upper and lower fixed seats with bearings at both ends thereof, and a vertical screw fixed in the bearings of the upper and lower fixed seats; a nut threadedly connected to the vertical screw is also provided at the upper end of the transverse part body, and the driving part is a vertical stepping motor, which is fixed on the upper end surface of the vertical transmission part body and drives the vertical screw axially.
  • the large data air volume dynamic sensing device is a large data air volume dynamic axial radial sensing device, which includes an axial sensing active part and its radial driven air volume sensing part, an axial sensing active part driving part, and the axial sensing active part driving part includes an axial transmission part and an axial driving part for axially transmitting the axial sensing active part.
  • the radial driven air volume sensor unit includes a radial dynamic air volume sensor and a radial rotating unit for moving the radial dynamic air volume sensor back and forth in the air duct radially on the axial sensing active unit.
  • the radial dynamic air volume sensor comprises a slider A and an air volume flowmeter A fixed thereon.
  • the radial driven air volume sensing part includes a plurality of air volume flow meters A evenly distributed on the axial active sensing part.
  • the number of the air volume transmitters is the same as that of the air volume flowmeter A, and they are connected to respective sampling tubes, or the air volume flowmeter A is connected to an air volume transmitter via positive and negative equalizing pressure tubes.
  • the air volume flow meter A is at least one of a Pitot tube air volume flow meter and a Venturi type air volume flow meter.
  • the Venturi type air volume flow meter is at least one of a single-throat diameter tube air volume flow meter, a double-throat diameter tube air volume flow meter and a multi-throat diameter tube air volume flow meter.
  • the axial sensing active part includes an axial sensing active part body, the cross-section of the axial sensing active part body is a C-shaped structure, and its opening is located on its right side;
  • the radial rotating part includes a central fixed pulley and a peripheral fixed pulley respectively arranged at both ends of the axial sensing active part body and a dynamic radial transmission wire therebetween, and a static transmission part that axially drives the central fixed pulley to rotate and a radial stepping motor that drives it;
  • the radial dynamic air volume sensor is fixed on the side of the opening of the axial sensing active part body and is arranged on the dynamic radial transmission wire.
  • the axial transmission part comprises an axial transmission part body with an I-shaped cross section and a central inner fixed pulley, a right inner fixed pulley and a static axial transmission wire therebetween, which are respectively arranged at the center and the right end of the circular air duct on its front side;
  • the axial transmission part body passes through the center of the circular air duct and its two ends are respectively fixed on the left and right walls of the circular air duct and the right end extends out of the outer wall of the air duct;
  • the axial driving part is an axial stepping motor, which is fixed on the axial transmission part body and drives the right inner fixed pulley through an axial connection;
  • the axial sensing active part body is also provided with a sleeve at the center point of the air duct, one end of the sleeve is fixed to the axial sensing active part body at the center point of the circular air duct, and the other end is fixed between the inner and outer bearings in the I-shaped structural vertical ribs of the axial transmission part body; the inner wall of the central inner fixed pulley is embedded in the outer wall of the sleeve;
  • the static transmission part includes a central outer fixed pulley, a right end outer fixed pulley and a static radial transmission wire therebetween, which are respectively arranged at the rear side of the axial transmission part body, at the center of the circular air duct and at the right end thereof; the radial stepping motor is fixed on the axial transmission part body and drives the right end outer fixed pulley through an axial connection; the central outer fixed pulley is connected to drive the central fixed pulley to rotate through a connecting shaft, and the connecting shaft between the central outer fixed pulley and the central fixed pulley is embedded in the inner bearing.
  • the axial transmission part comprises an axial transmission part body with an I-shaped cross section and a central inner fixed pulley, a right inner fixed pulley and a static axial transmission wire therebetween respectively arranged at the center and the right end of the circular air duct on its front side;
  • the axial transmission part body is fixed to the left and right walls of the circular air duct through the center of the circular air duct and the right end extends out of the outer wall of the air duct;
  • the axial driving part is an axial stepping motor fixed to the axial transmission part body and connected to the shaft to drive the right inner fixed pulley;
  • the axial sensing active part body is also provided with a sleeve at the center point of its air duct, one end of the sleeve is fixed on the axial sensing active part body at the center point of the circular air duct, and the other end is fixed between the inner and outer bearings in the I-shaped structural vertical ribs of the axial transmission part body; the inner wall of the central inner fixed pulley is embedded in the outer wall of the sleeve.
  • the present invention uses a big data wind volume measurement dynamic sensor device set in the cross section of the wind duct in a non-uniform wind field, evenly distributes preset points in the cross section of the wind duct in all directions and performs big data wind volume measurement on each preset point, and uses the average wind speed value of the wind duct cross section data to represent the actual cross section wind speed, thereby solving the problem of inaccurate measurement of the wind volume in the wind duct by the geometric average wind speed value of the wind volume measurement device in the prior art.
  • the technical solution of the present invention is applied to the coal-fired boiler of the coal-fired power generation unit to more accurately reach or approach its optimal wind-coal ratio, which greatly improves the safety and combustion efficiency of the coal-fired boiler, saves energy and protects the environment, and at the same time improves the flexible power generation of the coal-fired power generation unit, with obvious economic benefits, thereby improving the stable operation of the entire power grid.
  • FIG1 is a schematic diagram of the front structure of a dynamic longitude and latitude sensor device for measuring large data air volume provided in Example 1, which is arranged in a rectangular air duct;
  • FIG2 is a schematic diagram of a side cross-sectional structure of the dynamic longitude and latitude sensing device for measuring large data air volume in FIG1 arranged in the rectangular air duct in the direction A-A;
  • FIG. 3 is a schematic diagram of the plan layout of a hot air duct entering a ball mill in a simulated 300MW coal-fired power generation unit, providing an air volume measurement system based on big data analysis based on Example 1;
  • FIG4 is a schematic diagram of the vertical layout of the primary hot air duct entering the ball mill in FIG3 in the direction of B-B;
  • FIG5a is a 3D wind speed measurement curve diagram of the air volume measurement system when the load value of the simulated air duct section in FIG3 is 33%;
  • FIG5 b is a 3D wind speed measurement curve diagram of the air volume measurement system when the load value of the simulated air duct section in FIG3 is 41.7%;
  • FIG5c is a 3D wind speed measurement curve diagram of the air volume measurement system when the load value of the simulated air duct section in FIG3 is 58.3%;
  • FIG5d is a 3D wind speed measurement curve diagram of the air volume measurement system when the load value of the simulated air duct section in FIG3 is 70%;
  • FIG5e is a 3D wind speed measurement curve diagram of the air volume measurement system when the load value of the simulated air duct section in FIG3 is 87.6%;
  • FIG5f is a 3D wind speed measurement curve diagram of the air volume measurement system when the load value of the simulated air duct section in FIG3 is 100%;
  • FIG6 is a 3D curve diagram of selected data average wind speed value points when the error of the set data average wind speed value of the wind volume measurement system based on big data analysis of the simulated air duct section in FIG3 is 6/4500;
  • FIG. 7 is a schematic diagram of a flow chart of a method for measuring air volume based on big data analysis provided by the present invention.
  • FIG. 8 is a schematic diagram of a method for determining the data average wind speed value point of a wind volume measurement system based on big data analysis provided by the present invention
  • FIG. 9 is a flow chart of a correction method for combining an air volume measurement system based on big data analysis and an air volume measurement system in which an air volume flow meter is set at a data average wind speed value point according to the present invention
  • Example 10 is a schematic diagram of the front structure of a dynamic axial radial sensing device for measuring large data air volume provided in Example 2, which is arranged in a circular air duct;
  • Figure 11 is a schematic diagram of the side section structure in the C-C direction of the dynamic axial radial sensor device for measuring the big data air volume in Figure 10, which is arranged in a circular air duct.
  • 1 rectangular air duct 1 rectangular air duct; 2 warp sensing active part driving part, 2-1 vertical transmission part, 2-1-1 vertical transmission part body, 2-1-2 upper fixing seat, 2-1-3 lower fixing seat, 2-1-4 vertical screw, 2-1-5 vertical track, 2-2 vertical driving part; 3 warp sensing active part, 3-1 transverse part, 3-1-1 transverse part body, 3-1-2 transverse track, 3-2 vertical part, 3-2-1 vertical axial body, 3-2-2 nut; 4 latitudinal driven air volume sensor, 4-1 latitudinal dynamic air volume sensor, 4-1-1 slider, 4-1-2 air volume flow meter, 4-2 lateral rotation part, 4-2-1 left lateral fixed pulley, 4-2-2 right lateral fixed pulley, 4-2-3 left angular fixed pulley, 4-2-4 right angular fixed pulley, 4-2-5 upper fixed pulley, 4-2-6 lateral rotation wire, 4-2-7 lateral stepping motor;
  • big data wind volume dynamic sensor device a sensor device that can measure the wind speed of several points evenly or substantially evenly distributed in the cross section perpendicular to the gas flow direction in a non-uniform wind field wind duct, thereby comprehensively measuring the wind duct wind speed and determining the average wind speed value of the wind duct data in the non-uniform wind field or/and the point position of the average wind speed value through big data analysis.
  • big data wind volume dynamic longitude and latitude sensor device and big data wind volume dynamic axial radial sensor device.
  • the big data air volume dynamic sensing device includes an active sensing part and a driven air volume sensing part, and an active sensing part driving part.
  • the active sensing part driving part includes a transmission part for driving the active sensing part and a driving part thereof (sampling in the longitudinal or axial direction).
  • the driven air volume sensing part includes a dynamic air volume sensor and a rotating part for moving the dynamic air volume sensor back and forth on the active sensing part (sampling in the latitudinal or radial direction); or the driven air volume sensing part includes a plurality of air volume flow meters evenly distributed on the active sensing part (sampling in the latitudinal or radial direction).
  • the big data wind volume dynamic sensor device is arranged in the cross section of the wind duct in the non-uniform wind field, is connected to the wind volume transmitter, and together with the control monitoring and analysis unit A that controls and monitors them, constitutes a wind volume measurement system based on big data analysis.
  • the control monitoring and analysis unit A controls the big data air volume dynamic sensing device under a specific load value of a certain air duct to measure the wind speed of several points that are evenly or substantially evenly distributed in the cross-section vertical to the gas flow direction one by one, thereby measuring the wind speed of the air duct in all directions and obtaining the average wind speed value of the data or determining the corresponding points.
  • a large data air volume dynamic longitude and latitude sensor device provided by the present invention is arranged in a rectangular air duct.
  • the large data air volume dynamic sensor device is a large data air volume dynamic longitude and latitude sensor device;
  • the large data air volume dynamic longitude and latitude sensor device is arranged in a certain cross section of the rectangular air duct 1, and includes a warp sensing active part 3 and its weft driven air volume sensor part 4, a warp sensing active part driving part 2,
  • the warp sensing active part driving part 2 includes a vertical transmission part 2-1 and a vertical driving part 2-2 for warp driving the warp sensing active part;
  • the weft driven air volume sensor part 4 includes a weft dynamic air volume sensor 4-1 and a lateral rotating part 4-2 for moving the weft dynamic air volume sensor 4-1 back and forth in the air duct horizontally (X-axis direction, i.e., weft direction) on the warp sensing active part.
  • the active part 3 of the longitudinal sensing comprises a transverse part 3-1 and a vertical part 3-2.
  • the main body of the active part 3 of the longitudinal sensing is an inverted T-shaped structure in the transverse direction.
  • the cross section of the transverse part main body 3-1-1 is an inverted C-shaped structure.
  • a transverse track 3-1-2 is arranged on the inner top surface of the C-shaped structure.
  • the vertical part main body 3-2-1 is a long closed shell.
  • the transverse part main body 3-1-1 and the vertical part main body 3-2-1 are welded together to form an inverted T-shaped structure.
  • a nut 3-2-2 is arranged on the upper end of the rear side of the vertical part main body.
  • the lateral rotating part 4-2 includes left and right lateral fixed pulleys 4-2-1 and 4-2-2 respectively arranged at both ends of the lateral part body 3-1-1 and partially exposed on the top surface of the lateral part body 3-1-1, and left and right angular fixed pulleys 4-2-3 and 4-2-4 are respectively arranged on the inner sides of the lower end of the vertical part body 3-2-1, and an upper fixed pulley 4-2-5 is arranged at the upper end of the vertical part body 3-2-1, and a lateral rotating steel wire 4-2-6 is wound around the above-mentioned left and right lateral fixed pulleys, left and right angular fixed pulleys and upper fixed pulley, and a lateral stepping motor 4-2-7 for driving the upper fixed pulley.
  • the latitudinal dynamic air volume sensor 4-1 is fixed to the lower end of the transverse portion body and is arranged on the transverse rotating wire 4-2-6; the latitudinal dynamic air volume sensor 4-1 includes a slider 4-1-1 sliding along the transverse track and an air volume flow meter 4-1-2 fixed thereon and located below the C-shaped structure of the transverse portion body.
  • the vertical transmission part 2-1 includes a vertical transmission part body 2-1-1 and upper and lower fixed seats 2-1-2 and 2-1-3 with bearings are respectively provided in the upper and lower ends thereof, and a vertical screw 2-1-4 fixed in the upper and lower fixed base bearings;
  • the vertical drive part 2-2 is a vertical stepping motor, which is fixed on the upper end surface of the transmission part body 2-1-1 and axially drives the vertical screw 2-1-4.
  • the cross section of the vertical transmission part body 2-1-1 is a groove structure, and the bottom of the groove structure has a vertical track 2-1-5 (in order to make the nut 3-2-2 slide up and down smoothly in the groove), and the whole is vertically fixed on the outer wall above the rectangular air duct 1; in this way, the meridian sensing active part 3 is driven by the nut 3-2-2 to move up and down on the vertical screw 2-1-4 as a whole (Y-axis direction, i.e. meridian direction).
  • the rectangular duct air volume measurement system formed by the above-mentioned big data air volume dynamic longitude and latitude sensor device also includes an air volume transmitter connected to the air volume flowmeter in the big data air volume dynamic longitude and latitude sensor device and a control, monitoring and analysis unit A for controlling and monitoring the big data air volume dynamic longitude and latitude sensor device.
  • this embodiment provides a flow chart of a method for measuring air volume based on big data analysis for an air duct in a non-uniform wind field based on the above-mentioned rectangular air duct air volume measurement system, and the steps are as follows:
  • the angular displacement of the air volume flowmeter in the latitudinal and longitudinal directions is set in the control monitoring and analysis unit A (i.e., the displacement of the air volume flowmeter in the lateral (X-axis direction, i.e., the latitudinal) and vertical (Y-axis direction, i.e., the longitudinal) directions is set in the control monitoring and analysis unit A, i.e., the preset angular displacement of the lateral stepping motor and the vertical stepping motor is set respectively; the angular displacement of the two directions can be the same or different);
  • the control monitoring and analysis unit A first controls the air volume flowmeter to move from the initial position to a preset angular displacement in the longitudinal direction, and then controls the air volume flowmeter to measure the wind speed values (i.e., differential pressure values) of all preset points in the latitudinal direction one by one, and at the same time sends the measured air volume at the corresponding preset point to the air volume transmitter, and then the air volume transmitter stores its air volume electrical signal in the control monitoring and analysis unit A (i.e., the control monitoring and analysis unit A first controls the vertical stepper motor to move a preset angular displacement, and then controls the horizontal stepper motor to drive the upper fixed pulley to drive the horizontal rotating wire 4-2-6 to rotate a preset angular displacement, thereby driving the air volume flowmeter to measure the wind speed values of all preset points in the horizontal direction one by one, and at the same time sends the measured wind speed value (i.e., differential pressure) at the corresponding preset point to the air volume transmitter, and then the air volume transmitter
  • the control monitoring and analysis unit A controls the vertical stepping motor to move a preset angular displacement, and the step 2 is repeated until the air volume flow meter measures the wind speed values at all preset points in the rectangular air duct in all directions;
  • the control monitoring and analysis unit accumulates the wind speed measurement values of all the above preset points and divides them by the number of preset points in the rectangular air duct to obtain the average wind speed value of the air duct data within the sampling period T, which is the air volume measurement value of the air duct.
  • the wind speed measurement of all preset points in the entire rectangular air duct requires a sampling period T, but the size of this sampling period T is determined by factors such as the speed of the horizontal stepper motor and the vertical stepper motor, the size of the rectangular air duct, the number of preset points in the rectangular air duct, and the wind speed in the rectangular air duct.
  • the shorter the sampling period T the more accurate the average wind speed value of the above-mentioned air duct data.
  • the average wind speed value of the above-mentioned air duct data is independent of the size of the sampling period T.
  • the preset point intervals are determined by requirements such as the size of the wind duct, the complexity of the wind field, and the accuracy of its wind volume measurement.
  • this embodiment further provides a method for determining the data average wind speed value point through the wind volume measurement system of the non-uniform wind field wind duct based on the above rectangular wind duct wind volume measurement system, and the steps are as follows:
  • the angular displacement of the air flow meter in the latitudinal and longitudinal directions is set in the control monitoring and analysis unit A (i.e., the displacement of the air flow meter in the lateral (X-axis direction, i.e., the latitudinal) and vertical (Y-axis direction, i.e., the longitudinal) directions is set in the control monitoring and analysis unit A, i.e., the angular displacement of the lateral stepping motor and the vertical stepping motor is set respectively; the angular displacement of the two directions can be the same or different);
  • Control monitoring and analysis unit A collects specific load values of the air duct
  • the control monitoring and analysis unit A first controls the air volume flowmeter to move from the initial position to a preset angular displacement in the longitudinal direction, and then controls the air volume flowmeter to measure the wind speed values (i.e., differential pressure values) of all preset points in the latitudinal direction one by one, and at the same time sends the measured air volume at the corresponding preset point to the air volume transmitter, and then the air volume transmitter stores its air volume electrical signal, its position signal, and the specific load value in the control monitoring and analysis unit A in a one-to-one correspondence (i.e., the control monitoring and analysis unit A first controls the vertical stepper motor to move a preset angular displacement, and then controls the horizontal stepper motor to drive the upper fixed pulley to drive the horizontal rotating wire 4-2-6 to rotate a preset angular displacement, thereby driving the air volume flowmeter to measure the wind speed values (i.e., differential pressure) of all preset points in the horizontal direction one by one, and at the same time sends the measured air volume
  • the control monitoring and analysis unit A controls the air volume flow meter to move in the longitudinal direction by a preset angular displacement, and repeats step 3 until the air volume flow meter measures the wind speed values of all preset points in the rectangular air duct in all directions;
  • step 2 Adjust the duct load values in step 2 one by one (such as 35%, 40%, 50%, 60%, 70%, 80%, 90%, 100%); repeat steps 2, 3, and 4 until the wind speed values of all preset points in the duct under the monitored duct load value (the load value is evenly selected within the allowable range of the duct load value, such as 35%, 40%, 50%, 60%, 70%, 80%, 90%, 100% load) are measured;
  • Control monitoring and analysis unit A to accumulate the wind speed values of all preset points of the monitored wind duct at different load values, and then divide them by the number of preset points to calculate the average wind speed value of the data at each load value, and then gradually increase the error of the set wind duct data average wind speed from zero until at least one common preset point is determined, which is the point of the wind duct data average wind speed value.
  • the wind speed measurement values of the common preset points are all within the range of the sum of the average wind speed value of the data at each load value and the increased error of the set wind duct data average wind speed;
  • the present embodiment also provides an air volume measurement system in which an air volume flowmeter is set based on the data average wind speed value point: an air volume flowmeter is set at each data average wind speed value point determined according to the above method for determining the data average wind speed value point; since the wind speed values measured at the above data average wind speed value points are basically the same, there is almost no air flow between the air volume flowmeters at each data average wind speed value point, and the wind speed values measured by the air volume flowmeters at each data average wind speed value point are equalized by a pressure equalizing tube and then connected to an air volume transmitter, and then connected to the control monitoring and analysis unit A to form an air volume measurement system in which an air volume flowmeter is set based on the data average wind speed value point.
  • the air volume flowmeters at the above data average wind speed value points do not equalize the pressure through a pressure equalizing tube, and can also be connected to an air volume transmitter respectively, so that the air volume measurement system measures the air volume more accurately.
  • the above method can accurately find the specific common points where the average wind speed value of the data is located in the cross section of the air duct, and set air volume flow meters at these points to measure the air volume of the air duct accurately in real time.
  • this embodiment provides a correction system combining the wind volume measurement system based on big data analysis and the wind volume measurement system with wind volume flowmeter set at the data average wind speed value point, the correction system includes a big data wind volume dynamic longitude and latitude sensor device set in the wind duct cross section and a wind volume flowmeter set at at least one data average wind speed value point on the wind duct cross section displaced therefrom, and wind volume transmitters and control monitoring and analysis units A and B respectively connected to them.
  • the present correction system can also run the wind volume measurement system based on big data analysis and the wind volume measurement system with wind volume flowmeter set at the data average wind speed value point at the same time, one for backup and one for use to ensure the reliable and accurate measurement of the wind volume in the wind duct.
  • this embodiment provides a correction method combining a wind volume measurement system based on big data analysis and a wind volume measurement system based on the data average wind speed value point setting wind volume flowmeter, as shown in FIG9, which is a flow chart of a correction method combining a wind volume measurement system based on big data analysis and a wind volume measurement system based on the data average wind speed value point setting wind volume flowmeter.
  • the method is to use at least one big data wind volume dynamic longitude and latitude sensor device to perform all-round dynamic point-by-point wind speed measurement at preset point intervals in each sampling cycle, and then accumulate the wind speed measurement values of all the above preset points and divide them by the preset number of points to obtain the wind duct data average wind speed value Fdps (for a specific description of the wind volume measurement method, see the flow chart of a wind volume measurement method based on big data analysis for a non-uniform wind field wind duct shown in FIG7 and its description part); at the same time, use at least one data average wind speed value point wind volume flowmeter to perform real-time wind volume measurement in the wind duct cross section, and then calculate the average wind speed value Fdps measured by the above average wind speed value.
  • the wind speed measurement values at the speed value points are accumulated and divided by the number of average wind speed value points or the geometric pressure of the data average wind speed value point air volume flowmeter to obtain the average wind speed value Fpps of the duct data average wind speed value point; then the difference between the above-mentioned duct data average wind speed value Fdps and the duct data average wind speed value point average wind speed value Fpps is calculated; when the above-mentioned difference is greater than the predetermined measurement error value, a warning signal is output and the duct data average wind speed value Fdps is adopted; when the above-mentioned difference is less than the predetermined measurement error value, a normal signal is output and one of the duct data average wind speed value Fdps and the duct data average wind speed point average wind speed value Fpps is adopted.
  • a warning signal can also be output to manually or automatically adjust the setting position of the data average wind speed value point air volume flowmeter.
  • the predetermined measurement error value is not greater than 2% (i.e., the secondary accuracy requirement for industrial air volume measurement).
  • this correction method can also allow the air volume measurement system based on big data analysis and the air volume measurement system based on the data average wind speed value point setting air volume flowmeter to run simultaneously, verify each other, and ensure the reliability and accuracy of the duct air volume measurement.
  • the rectangular wind duct in this simulation experiment simulates the rectangular wind duct of a 300MW coal-fired thermal power unit, and the following simulated wind volume measurement experiment is carried out:
  • FIG. 3 and 4 it is a schematic diagram of the simulated air duct structure of the air volume measurement system based on big data analysis.
  • the simulated air duct section is a primary hot air rectangular air duct section of a 300MW coal-fired power generation unit entering a ball mill 10.
  • the simulation ratio of the actual air duct to the simulated air duct is 2:1.
  • the expansion joint A 11, the expansion joint B 12, the cold air pipe 13, the cold air outlet 14, the shut-off valve 15, the regulating valve 16 and the expansion joint C 17 in the actual air duct are cancelled to make a simple structure simulated air duct; at the same time, a fan is set at the primary hot air inlet, and a large data air volume dynamic longitude and latitude sensor device (i.e., the large data air volume dynamic longitude and latitude sensor device shown in Figures 1 and 2) is installed at the cross section of the simulated air duct close to the ball mill 10; in the figure, 0.00, 2.235, 6.10, and 8.30 are elevations of 0.00 meters, 2.235 meters, 6.10 meters, and 8.30 meters, respectively.
  • the fan is selected: Shanghai Halon Fan Electric Co., Ltd. fan model 4-72, air volume 10562-3712m 3 /h, full pressure 1673/2554Pa, and its frequency modulation and speed control device is configured: ABB inverter product model ACSS10, which meets the 25-100% wind speed adjustment range; at the same time, the above-mentioned big data air volume dynamic longitude and latitude sensor device of appropriate size is designed according to the size of the simulated air duct cross-section, and installed on the cross-section of the simulated air duct.
  • the air volume flowmeter model specification of the big data air volume dynamic longitude and latitude sensor device AFM-110 plug-in multi-throat flow measurement device (i.e.
  • control monitoring and analysis unit A includes: 1) a latitude and longitude mobile control data storage box, its specification: Cool Mei CM6024, 2) a Lenovo laptop and a set of air volume measurement section flow field visualization analysis and optimization point selection software.
  • the horizontal stepper motor and vertical stepper motor are equipped with the Leadshine intelligent 57CME26 stepper motor.
  • the differential pressure transmitter transmits the air volume measurement value data corresponding to each preset point under the monitored air duct load value to the latitude and longitude mobile control data storage box through the data line, and transmits the load value, preset point and its corresponding air volume measurement value in the latitude and longitude mobile control data storage box to the Lenovo laptop one by one, and uses the air volume measurement section flow field visualization analysis and optimization point selection software for big data analysis and processing.
  • the wind speed is sampled at the preset points of the measured cross section at load values of 33%, 41.7%, 58.3%, 70%, 87.6% and 100% respectively.
  • the wind volume electrical signals of each preset point are transmitted to the control monitoring and analysis unit A through the air volume transmitter to form a database.
  • the database is imported into the "wind volume measurement cross-section flow field visualization analysis and optimization point selection software" for analysis and processing to form a cross-section-wind speed stereogram wind speed peak diagram, which can intuitively see the wind speed size of the sampling point at different positions on the measured cross section at the same load value, as shown in Figures 5a to 5f, which are 3D wind volume measurement curves of the wind volume measurement system when the load values are 33%, 41.7%, 58.3%, 70%, 87.6% and 100% respectively;
  • the control monitoring and analysis unit calculates the pre-selected data average wind speed value points through image observation and big data: the sum of the wind speeds measured at all 120 preset points under a certain load value is divided by 120 to obtain the average wind speed value of the data under the load value; according to the setting of the average wind speed error of the wind duct data as 0, 1/4500, 2/4500, 3/4500, 4/4500... gradually increases (where 4500 is the maximum wind speed value measured in the above simulated wind duct), confirm that the measured load value falls within the set value.
  • Figure 6 is a 3D curve diagram of the selected data average wind speed points when the set data average wind speed error of the wind volume measurement system based on big data analysis of the simulated wind duct section is 6/4500, wherein the 5 black dots in the figure are the 5 common pre-selected points of the data average wind speed values when the set data average wind speed error of the wind duct data is 6/4500.
  • the position of the average wind speed value point of the duct cross-section data is measured. Due to the limitations of the simulated wind duct simulation ratio and the load regulation of the actual equipment, support, and online sampling in the duct, the position of the average wind speed value of the wind field data under partial load is affected. It is necessary to set an air volume meter at the corresponding position of the actual measured duct cross-section to measure the wind speed, and compare it with the air volume measurement result of the simulated wind duct experiment. According to the actual installation of the air volume measurement system composed of a dynamic longitude and latitude sensor device based on big data air volume measurement on the duct cross-section, it is calibrated or verified to meet the accuracy requirements of the duct air volume measurement.
  • the above experiment is aimed at simulating the wind duct air volume measurement experiment, it is completely feasible to use the above device and method in the actual non-uniform wind field duct, because the wind duct simulation experiment only reduces the actual wind duct by a corresponding proportion, and no matter how complex the actual wind duct is, the wind speed measurement surface diagrams of all non-uniform wind field ducts are irregular 3D surfaces. As long as we can accurately find a few data average wind speed value points in the non-uniform wind field duct (that is, a group of such positions can be found within a reasonable range of wind volume measurement error) to represent the data average wind speed value points in the duct cross section, it will be sufficient.
  • the technical solution of the present invention finds the data average wind speed value point in the cross section of the wind duct through simulation experiments or actual measurement of the wind volume in the wind duct, and then sets the wind volume flowmeter at the data average wind speed value point.
  • the point is set more specifically, which subverts the concept of the existing technology that the geometric average wind speed value represents the actual wind speed value, and greatly improves the accuracy of the wind volume measurement system.
  • the present embodiment provides a big data wind volume dynamic longitude and latitude sensing device in a rectangular air duct, which is an optimization based on the first embodiment, and the difference is that the latitudinal dynamic wind volume sensing portion described in the first embodiment includes a plurality of wind volume flow meters evenly distributed on the lateral portion body, so that the lateral rotating portion described in the first embodiment, i.e., the lateral stepping motor, the upper fixed pulley, the left and right angular fixed pulleys, the left and right lateral fixed pulleys and the lateral transmission wires therebetween, can be eliminated, so that the time required for monitoring the wind volume of the entire air duct under a specific load value can be greatly shortened, the sampling period T can be shortened, and the real-time measurement of the wind volume can be ensured; the rest of the parts refer to the corresponding contents of the first embodiment.
  • the rectangular duct air volume measurement system composed of the above-mentioned big data air volume dynamic longitude and latitude sensing device also includes the same number of air volume transmitters or an air volume transmitter respectively connected to several air volume flowmeters in the big data air volume dynamic longitude and latitude sensing device, and a control monitoring and analysis unit A for controlling and monitoring the big data air volume dynamic longitude and latitude sensing device.
  • the number of the air volume transmitters is the same as that of the air volume flowmeters and they are connected to each other; of course, only to measure the air volume in the air duct more accurately, the positive and negative pressure sampling holes of the air volume flowmeter can be connected to a positive pressure equalizing pipe and a negative pressure equalizing pipe respectively, and then connected to an air volume transmitter through the positive and negative pressure equalizing pipes.
  • the present embodiment also provides a wind volume measurement method based on big data analysis for a non-uniform wind field duct, a method for determining the data average wind speed value point through the above-mentioned wind volume measurement method based on big data analysis for a non-uniform wind field duct, a wind volume measurement system for setting an air volume flowmeter based on the data average wind speed value point, a correction system and method combining a wind volume measurement system based on big data analysis for a non-uniform wind field duct and a wind volume measurement system for setting an air volume flowmeter based on the data average wind speed value point, and the corresponding content thereof can be found in the corresponding part of Example 1.
  • the present embodiment provides a large data air volume dynamic axial radial sensing device in a circular air duct, as shown in Figures 10 and 11, which are schematic diagrams of the structure of a large data air volume dynamic axial radial sensing device provided by the present invention arranged in a circular air duct.
  • the large data air volume dynamic sensing device is a large data air volume dynamic axial radial sensing device, which is arranged in a certain cross-section of a circular air duct 1', and includes an axial sensing active part 5 and its radial driven air volume sensing part 6, and an axial sensing active part driving part.
  • the axial sensing active part driving part includes an axial transmission part 7-1 and its axial driving part for axially transmitting the axial sensing active part.
  • the radial driven air volume sensing part 6 includes a radial dynamic air volume sensor 6-1 and a radial rotating part 6-2 for moving the radial dynamic air volume sensor back and forth in the air duct radially on the
  • the axial sensing active part 5 includes an axial sensing active part body 5-1, the cross-section of the axial sensing active part body is a C-shaped structure, its opening is located on its right side surface and a transverse track A 5-1-1 is provided on its inner bottom surface;
  • the radial rotating part 6-2 includes a central fixed pulley 6-2-1 and a peripheral fixed pulley 6-2-2 respectively arranged at both ends of the axial sensing active part body 5-1 and a dynamic radial transmission wire 6-2-3 therebetween, and a static transmission part 6-2-4 for axially driving the central fixed pulley to rotate and a radial stepping motor driving it;
  • the radial dynamic air volume sensor 6-1 is fixed on the side of the opening of the axial sensing active part body 5-1 and is provided on the dynamic radial transmission wire 6-2-3.
  • the axial transmission part 7-1 comprises an axial transmission part body 7-1-1 with an I-shaped cross section and a central inner fixed pulley 7-1-2, a right inner fixed pulley 7-1-3 and a static axial transmission wire 7-1-4 therebetween, which are respectively arranged at the center and the right end of the circular air duct on its front side;
  • the axial transmission part body 7-1-1 passes through the center of the circular air duct and its two ends are respectively fixed on the left and right walls of the circular air duct 1' and the right end extends out of the outer wall of the air duct;
  • the axial driving part is an axial stepping motor, which is fixed on the axial transmission part body 7-1-1 and drives the right inner fixed pulley 7-1-3 through an axis connection;
  • the axial sensing active part body 5-1 is also provided with a sleeve 5-1-2 at the center point of the air duct, one end of the sleeve is fixed to the axial sensing active part body at the center point of the circular air duct, and the other end is fixed between the inner and outer bearings in the I-shaped structural vertical ribs of the axial transmission part body 7-1-1; the inner wall of the central inner fixed pulley 7-1-2 is embedded in the outer wall of the sleeve;
  • the static transmission part 6-2-4 includes a center outer fixed pulley 6-2-6, a right end outer fixed pulley, and a static radial transmission wire between them, which are respectively arranged on the rear side of the axial transmission part body 7-1-1 at the center of the circular air duct and the right end thereof; the radial stepping motor is fixed on the axial transmission part body 7-1-1 and drives the right end outer fixed pulley through an axial connection; the center outer fixed pulley 6-2-6 is connected to drive the center fixed pulley 6-2-1 to rotate through a connecting shaft, and the connecting shaft between the center outer fixed pulley and the center fixed pulley is embedded in the inner bearing.
  • the radial dynamic air volume sensor 6-1 includes a slider A6-1-1 sliding along the transverse track A5-1-1 and an air volume flow meter A6-1-2 fixed thereon and located above the C-shaped structure of the axial sensing active part body.
  • the circular duct air volume measurement system formed by the above-mentioned large data air volume dynamic axial radial sensor device also includes an air volume transmitter connected to the air volume flowmeter A in the large data air volume dynamic axial radial sensor device and a control, monitoring and analysis unit A for controlling and monitoring the large data air volume dynamic axial radial sensor device.
  • this embodiment provides a flow chart of a method for measuring the air volume of an air duct in a non-uniform wind field based on the circular air duct air volume measurement system, and the steps are as follows:
  • the control monitoring and analysis unit A first controls the air volume flowmeter A to move axially from the initial position by a preset angular displacement, and then controls the air volume flowmeter A to radially measure the wind speed values (i.e., differential pressure values) of all preset radial points one by one, and at the same time sends the measured air volume at the corresponding preset points to the air volume transmitter, and then the air volume transmitter stores its air volume electrical signal in the control monitoring and analysis unit A (i.e., the control monitoring and analysis unit A first controls the axial stepping motor to move by a preset angular displacement, and then controls the radial stepping motor to drive the air volume flowmeter A in the radial rotating part 6-2 to radially measure the wind speed values of all preset horizontal points one by one, and at the same time sends the measured wind speed values (i.e., differential pressure) at the corresponding preset points to the air volume transmitter, and then the air volume transmitter stores its air volume electrical signal in the control monitoring and analysis unit A);
  • the control monitoring and analysis unit A controls the air volume flow meter A to move axially by a preset angular displacement, and the step 2 is repeated until the air volume flow meter A measures the wind speed values of all preset points in the entire circular air duct;
  • the control monitoring and analysis unit A accumulates the wind speed measurement values of all the above preset points and divides it by the number of preset points to obtain the average wind speed value of the duct data within the sampling period T, which is the duct air volume measurement value.
  • the wind speed measurement of all preset points in the entire circular air duct requires a sampling period T, but the size of this sampling period T is determined by factors such as the speed of the axial stepper motor and the radial stepper motor, the size of the circular air duct, the number of preset points in the circular air duct, and the wind speed in the circular air duct.
  • the shorter the sampling period T the more accurate the average wind speed value of the above-mentioned air duct data.
  • the average wind speed value of the above-mentioned air duct data is independent of the size of the sampling period T.
  • the preset point intervals are determined by requirements such as the size of the wind duct, the complexity of the wind field, and the accuracy of its wind volume measurement.
  • this embodiment further provides a flow chart of a method for determining the data average wind speed value point through the above-mentioned air volume measurement method of the non-uniform wind field air duct based on the above-mentioned circular air duct air volume measurement system, and the steps are as follows:
  • the angular displacement of the air volume flow meter A in the axial and radial directions is set in the control monitoring and analysis unit A (i.e., the linear displacement and angular displacement of the air volume flow meter A in the radial and axial directions are set in the control monitoring and analysis unit A, i.e., the angular displacement of the radial stepping motor and the axial stepping motor are set respectively; the angular displacement of the two directions can be the same or different);
  • Control monitoring and analysis unit A collects specific load values of the air duct
  • the control monitoring and analysis unit A first controls the air volume flowmeter A to move axially from the initial position by a preset angular displacement, and then controls the air volume flowmeter A to radially measure the wind speed values (i.e., differential pressure values) of all preset points in the radial direction one by one, and at the same time sends the measured air volume at the corresponding preset point to the air volume transmitter, and then the air volume transmitter stores its air volume electrical signal, its position signal, and the specific load value in the control monitoring and analysis unit A in a one-to-one correspondence (i.e., the control monitoring and analysis unit A first controls the axial stepping motor to move by a preset angular displacement, and then controls the radial stepping motor to drive the air volume flowmeter A in the radial rotating part 6-2 to radially measure the wind speed values (i.e., differential pressure values) of all preset points in the radial direction one by one, and at the same time sends the measured air volume at the corresponding preset point to
  • the control monitoring and analysis unit A controls the air volume flow meter A to move axially by a preset angular displacement, and repeats step 3 until the air volume flow meter A measures the wind speed values at all preset points in the circular air duct;
  • step 2 Adjust the duct load values in step 2 one by one (such as 35%, 40%, 50%, 60%, 70%, 80%, 90%, 100%); repeat steps 2, 3, and 4 until the wind speed values of all preset points in the duct under the monitored duct load value (i.e., evenly select load values within the allowable range of the duct load value, such as 35%, 40%, 50%, 60%, 70%, 80%, 90%, 100% load) are measured;
  • the control monitoring and analysis unit A calculates the average wind speed value of the data under each load value by accumulating the wind speed values of all preset points of the monitored wind duct at different load values and then divides them by the number of preset points, and then gradually increases the error of the average wind speed of the set wind duct data from zero until at least one common preset point is determined.
  • the wind speed measurement values of the common preset points are all within the range of the sum of the average wind speed value of the data under each load value and the increased error of the average wind speed of the set wind duct data.
  • the present embodiment provides an air volume measurement system for setting an air volume flowmeter based on the data average wind speed value point: an air volume flowmeter is set at each data average wind speed value point determined according to the above method for determining the data average wind speed value point; since the wind speed values measured at the above data average wind speed value points are basically the same, there is almost no air flow between the air volume flowmeters at the data average wind speed value points, and the wind speed values measured by the air volume flowmeters at the data average wind speed value points are pressure-equalized and then connected to an air volume transmitter, and then connected to the control monitoring and analysis unit A to form an air volume measurement system for setting an air volume flowmeter based on the data average wind speed value point.
  • the above data average wind speed value point air volume flowmeters can also be connected to an air volume transmitter respectively, so that the air volume measurement system measures the air volume value more accurately.
  • the above method can accurately find the specific common points where the average wind speed value of the data is located in the cross section of the air duct, and set air volume flow meters at these points to measure the air volume of the air duct accurately in real time.
  • this embodiment also provides a correction system combining the air volume measurement system based on big data analysis and the air volume measurement system based on the data average wind speed value point setting air volume flowmeter, the correction system includes a large data air volume dynamic axial radial sensor device set in the air duct cross section and an air volume flowmeter set at at least one data average wind speed value point on the wind duct cross section displaced therefrom, and the air volume transmitters and control monitoring and analysis units connected to them respectively.
  • the present correction system can also run the air volume measurement system based on big data analysis and the air volume measurement system based on the data average wind speed value point setting air volume flowmeter at the same time, one for backup and one for use to ensure the reliability and accuracy of the air volume measurement of the air duct.
  • this embodiment also provides a correction method combining an air volume measurement system based on big data analysis and an air volume measurement system based on data average wind speed value point setting air volume flowmeter, as shown in FIG9, which is a flow chart of a correction method combining an air volume measurement system based on big data analysis and an air volume measurement system based on data average wind speed value point setting air volume flowmeter.
  • the method is: using at least one big data air volume dynamic axial radial sensor device in the air duct cross section to perform all-round dynamic point-by-point wind speed measurement at preset point intervals in each sampling cycle, and then accumulating the wind speed measurement values of all the above preset points and dividing by the preset number of points is the average wind speed value Fdps of the air duct data (for a specific description of the air volume measurement method, see FIG7 for a flow chart of an air volume measurement method based on big data analysis for a non-uniform wind field air duct and its description part); at the same time, using at least one data average wind speed value point setting air volume flowmeter in the air duct cross section to perform real-time wind volume measurement.
  • Measure then add up the measured average wind speed value and divide by the number of average wind speed value points or geometric pressure to get the average wind speed value Fpps of the duct data average wind speed value point; then calculate the difference between the average wind speed value Fdps of the duct data and the average wind speed value Fpps of the duct data average wind speed value point; when the difference is greater than the predetermined measurement error value, output a warning signal and use the average wind speed value Fdps of the duct data; when the difference is less than the predetermined measurement error value, output a normal signal and use one of the average wind speed value Fdps of the duct data and the average wind speed value Fpps of the duct data average wind speed point.
  • a warning signal can also be output to manually or automatically adjust the setting position of the data average wind speed value point air volume flowmeter A.
  • the predetermined measurement error value is not greater than 2% (i.e., the second-level requirement of industrial measurement accuracy).
  • this correction method can also allow the air volume measurement system based on big data analysis and the air volume measurement system based on the data average wind speed value point setting air volume flowmeter to run simultaneously, verify each other, and ensure the reliability and accuracy of the duct air volume measurement.
  • This embodiment provides a large data air volume dynamic axial radial sensing device in a circular air duct, which is an optimization of the third embodiment, and the difference is that the radial driven air volume sensing part in the third embodiment includes a plurality of air volume flowmeters A evenly arranged radially on the main body of the axial sensing active part.
  • the radial rotating part 6-2 in the third embodiment can be eliminated, which can greatly shorten the time required for monitoring the air volume of the entire air duct under a certain load value, shorten the sampling period T, and ensure the real-time measurement of the air volume; the rest of the contents refer to the corresponding contents of the third embodiment.
  • the circular duct air volume measurement system composed of the above-mentioned large data air volume dynamic sensing axial radial device also includes an air volume transmitter respectively connected to a plurality of air volume flowmeters A in the large data air volume dynamic axial radial sensing device and a control monitoring and analysis unit A for controlling and monitoring the large data air volume dynamic axial radial sensing device.
  • the number of the air volume transmitters is the same as that of the air volume flowmeter A and they are connected to each other; of course, only for more accurate air volume measurement, the positive and negative pressure sampling holes of the air volume flowmeter A can be connected to a positive pressure equalizing pipe and a negative pressure equalizing pipe respectively, and then connected to an air volume transmitter through the positive and negative pressure equalizing pipes.
  • this embodiment also provides a method for measuring the air volume of an air duct in a non-uniform wind field, a method for determining the data average wind speed value point through the above-mentioned air volume measurement method for the air duct in the non-uniform wind field, an air volume measurement system based on a data average wind speed value point air volume flowmeter, and a correction system and method based on the big data air volume measurement system and the data average wind speed value point air volume flowmeter air volume measurement system.
  • the corresponding contents refer to the corresponding parts of Example 3.
  • the air volume flow meter in the big data air volume dynamic sensing device described in the present invention is an AFM-110 type insertion multi-throat flow measurement device.
  • Other Venturi type air volume flow meters such as single-throat tube, double-throat tube, multi-throat tube and other air volume flow meters, can also be selected.
  • Pitot tube air volume flow meters can also be selected.
  • a back-purge device for measuring gas pipelines in Chinese patent CN111520611A can be used to solve the problem of inaccurate duct air volume measurement caused by dust clogging the air volume flowmeter in the big data air volume dynamic sensor device.
  • the inventive point of the present invention is: the big data wind volume dynamic sensing device presets the number of preset points evenly distributed in the air duct and measures the wind speed in all directions within the cross section of the air duct, and performs massive big data monitoring and analysis to obtain the average wind speed value of the air duct data and its corresponding points (of course, basically evenly distributed preset points in the air duct can also be used, as long as all-round wind speed measurements can be performed to find the average wind speed value of the data and its points), and an air volume measurement system and method, a correction system and method composed of an air volume flowmeter, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明提供了一种实时准确地基于大数据分析的风量测量系统包括在非均匀风场风道横截面中至少设置一大数据风量动态传感装置,及与其连接的风量变送器,和控制监测它们的控制监测分析单元A。本发明利用在非均匀风场风道横截面内设置大数据风量测量动态传感装置,在风道横截面中全方位的均布预设点位并对各预设点位进行大数据风量测量,用风道横截面数据平均风速值代表实际横截面风速,解决了现有技术风量测量装置几何平均风速值对风道风量测量不准的问题。

Description

一种基于大数据分析的风量测量系统
本申请要求于2022年10月19日提交中国知识产权局、申请号为202211280223.9、申请名称为“一种基于大数据分析的风量测量系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于风量测量技术领域,涉及一种风量测量系统,特别涉及一种基于大数据分析的风量测量系统。
背景技术
在燃煤发电机组工程设计中,为了整体工程投资经济性,锅炉进风风道的无设备和弯曲的直管段长度,往往不足1倍风道直径或截面边长度,这样远远不能满足国标《用安装在圆形截面管道中的差压装置测量满管流体流量第4部分:文丘里管》GB/T2624.4—2006/ISO5167-4:2003第6.2条安装在各种管件和文丘里管之间的最短上游和下游直管段中的规定。另外,燃煤发电机组中锅炉进风风道中设有调节风门、支撑结构、弯头件、挡板,甚至风道还设有变径段,上述因素导致锅炉进风风道内其无一截面处风场为均匀风场,全为非均匀风场风道,不能满足风量测量装置对前后直管段的要求。
针对上述非均匀风场风道的现有风量测量装置有如下几种:
(1)均速管风量测量装置:
均速管风量测量装置主要是基于皮托管测速原理改进的风量流量计构成,即在风量流量计直线管段上沿其长度方向前后分别均匀设多对取样孔(二对孔以上),分别测量流体的全正压和全负压,再在风量流量计直线管段内进行均压测量出平均差压,以此计算出流体的流量,均速管风量流量计如威力巴,阿牛巴,德尔塔巴,威尔巴,超力巴等;均速管风量流量计其结构简单,装拆方便,压损小,将其设置在均匀风场风道中进行风量测量比较准确,但将其设置在非均匀风场风道中进行风道风量测量,由于其自身多对取样孔线状设置(一维),在风量流量计直线管段内均压后差压不能精准代表非均匀风场风道横截面实际风速值,即横截面几何平均风速值不等于横截面实际风速值,因此无法准确测量风道风量值。
(2)基于文丘里管型风量流量计的风量测量装置
基于文丘里管型风量流量计的风量测量装置中文丘里管型风量流量计是利用气体流过风量流量计时,先由粗变细以加快气体流速,再在由细变粗的喉部后部形成一个“真空”区,在真空区设有负压取样孔,该取样孔与入口取样孔就形成差压进行风量测量。文丘里管型风量流量计优点是差压大,准确性高,阻力损失小;将文丘里管型风量流量计设置在均匀风场风道中风道风量测量比较准确,而将其单点设置在非均匀风场风道中单点位置风量测量无法保障风道风量测量的准确性,或将其多点几何均匀设置在非均匀风场风道中风量测量平均差压也无法准确地实时测量出横截面风道平均风量值,这是由非均匀风场性质决定的;从某种程度来讲,这种单点或者多点文丘里风量流量计差压大在非均匀风场中可能转变为缺点,放大误差作用;文丘里管型风量流量计如单喉径管,双喉径管,多喉径管等风量流量计。
(3)机翼风量测量装置
机翼风量测量装置主要是在风场风道中固定放置一或多个流通截面积小于风道截面积的机翼型节流件,利用流体流过机翼型节流件前后产生的压差进行风道风量测量;机翼风量测量系统在早期的小功率燃煤发电机组应用比较多,其优点是在风道中预制节流装置,兼整流和测量功能,对风道风量测量比较准确,但缺点是其体积庞大,节流损失大,结构复杂,安装困难,易堵塞。
(4)多点插入式风量测量装置
基于多点插入式风量流量计的风量测量装置中多点插入式风量流量计主要是用上下斜口靠背管(插钢丝防堵)在风道截面上采用多点几何平均布点,各支管分别建立差压,然后分支管连通均压,最后引至母管后而构成;其是通过多次几何均压后得出几何平均风速值,即实际风速值,但是该几何平均风速值并不是近似的实际风速值,误差特别大。另外,在不断地多点均压风量测量过程中,会造成均压支管、分支管、母管靠背管中有测量气体微流动现象,同时将风场中微粒带进支管、分支管和母管,这种微流动现象伴随负荷和风场涡流变化每时每刻都存在,导致母管很快被粉尘堵塞,导致其差压越来越小;为了解决上述粉尘堵塞问题,现有技术中在上下斜口靠背管中设置随风速振动的钢丝来解决,但实际上该钢丝只在某一特定负荷风速下产生风速振动,除该负荷外其余负荷风速下均不会产生振动;另外在正常负荷下风道中也不可能出现交变风速使钢丝产生振动,因此,在上下斜口背靠管中插入钢丝无法清除多点插入式风量流量计内粉尘堵塞问题。这样,基于矩阵多点插入式风量流量计的风量测量系统按照几何均布取样点在非均匀风场风道中风量准确测量难以实现。
总之现有风量测量技术,均无法准确实时对非均匀风场风道,尤其是对燃煤锅炉进风风道中风量进行测量。
发明内容
为了解决上述现有技术中非均匀风场风道风量测量不准确的问题,本发明提供了一种实时准确地基于大数据分析的风量测量系统;包括在非均匀风场风道横截面中至少设置一大数据风量动态传感装置,及与其连接的风量变送器,和控制监测它们的控制监测分析单元A。
优选的,所述大数据风量动态传感装置包括传感主动部及其从动风量传感部、传感主动部驱动部,所述传感主动部驱动部包括传动所述传感主动部的传动部及其驱动部;所述从动风量传感部包括一动态风量传感件及在所述传感主动部上来回移动动态风量传感件的转动部;或者所述从动风量传感部包括均布在所述传感主动部上若干个风量流量计。
优选的,所述大数据风量动态传感装置为大数据风量动态经纬传感装置,其包括经向传感主动部及其纬向从动风量传感部、经向传感主动部驱动部,所述经向传感主动部驱动部包括经向传动所述经向传感主动部的竖向传动部及其竖向驱动部。
优选的,所述纬向从动风量传感部包括一纬向动态风量传感件及在所述经向传感主动部上风道横向来回移动纬向动态风量传感件的横向转动部。
优选的,所述纬向动态风量传感件包括滑块及固定在其上一风量流量计。
优选的,所述纬向从动风量传感部包括均布在所述经向传感主动部上若干个风量流量计。
优选的,所述风量变送器数量与所述风量流量计配置相同数量,并分别各自取样管连通,或者所述风量流量计通过正、负均压管与一风量变送器连通。
优选的,所述风量流量计是皮托管风量流量计和文丘里型风量流量计中的至少一种。
优选的,所述文丘里型风量流量计为单喉径管风量流量计、双喉径管风量流量计和多喉径管风量流量计中的至少一种。
优选的,所述经向传感主动部包括横向部和竖向部,所述横向部本体横截面为倒扣的C型结构,所述竖向部本体为长条状封闭壳体,所述横向部本体和竖向部本体焊接在一起为倒T型结构;所述横向转动部包括分别设在横向部本体的两端并部分露出横向部本体顶面上的左、右横向定滑轮,设在竖向部本体内下端两内侧分别设左、右转角定滑轮和其上端内侧设上定滑轮,及在所述左右横向定滑轮、左右转角定滑轮和上定滑轮上缠绕一横向转动钢丝,和驱动所述上定滑轮的一横向步进电机;所述纬向动态风量传感件固定在所述横向部本体下端且设在横向转动钢丝上。
优选的,所述竖向传动部包括竖向传动部本体及其上下两端内分别设均带轴承的上、下固定座,和固定在所述上、下固定座轴承中的竖向螺杆;所述横向部本体上端部还设一与所述竖向螺杆螺纹连接的螺母,所述驱动部为竖向步进电机,其固定在竖向传动部本体上端面上且轴向驱动竖向螺杆。
优选的,所述经向传感主动部包括横向部和竖向部,所述横向部本体横截面为倒扣的C型结构,所述竖向部本体为长条状封闭壳体,所述横向部本体和竖向部本体焊接在一起为倒T型结构;所述风量流量计固定在所述横向部本体下端。
优选的,所述竖向传动部包括竖向传动部本体及其上下两端分别内还设均带轴承的上、下固定座,和固定在所述上、下固定座轴承中的竖向螺杆;所述横向部本体上端部还设一与所述竖向螺杆螺纹连接的螺母,所述驱动部为一竖向步进电机,其在固定所述竖向传动部本体上端面上且轴向驱动竖向螺杆。
优选的,所述大数据风量动态传感装置为大数据风量动态轴径向传感装置,其包括轴向传感主动部及其径向从动风量传感部、轴向传感主动部驱动部,所述轴向传感主动部驱动部包括轴向传动所述轴向传感主动部的轴向传动部及其轴向驱动部。
优选的,所述径向从动风量传感部包括一径向动态风量传感件及在所述轴向传感主动部上风道径向来回移动径向动态风量传感件的径向转动部。
优选的,所述径向动态风量传感件包括滑块A及固定在其上的风量流量计A。
优选的,所述径向从动风量传感部包括均布在所述轴向传感主动部上若干个风量流量计A。
优选的,所述风量变送器数量与所述风量流量计A配置相同数量,并分别各自取样管连通,或者所述风量流量计A通过正、负均压管与一风量变送器连通。
优选的,其特征在于,所述风量流量计A是皮托管风量流量计和文丘里型风量流量计中的至少一种。
优选的,所述文丘里型风量流量计为单喉径管风量流量计、双喉径管风量流量计和多喉径管风量流量计中的至少一种。
优选的,所述轴向传感主动部包括一轴向传感主动部本体,所述轴向传感主动部本体横截面为C型结构,其开口位于其右侧面;所述径向转动部包括分别设置在轴向传感主动部本体两端的中心定滑轮和周沿定滑轮及其之间的动径向传动钢丝、和轴向驱动所述中心定滑轮转动的静传动部及驱动其的一径向步进电机;所述径向动态风量传感件固定在轴向传感主动部本体开口侧面且设在动径向传动钢丝上。
优选的,所述轴向传动部包括横断面为工字型结构的轴向传动部本体及其前侧位于圆形风道中心处和其右端的位置上分别设中心内定滑轮、右端内定滑轮及它们之间的静轴向传动钢丝;所述轴向传动部本体通过圆形风道中心其两端分别固定在圆形风道左右壁上且右端伸出风道外壁;所述轴向驱动部为一轴向步进电机,其固定在所述轴向传动部本体上且通过轴连接驱动右端内定滑轮;
所述轴向传感主动部本体在其风道中心点上还设一套管,所述套管一端固定在圆形风道中心点处的轴向传感主动部本体上,另一端固定在所述轴向传动部本体的工字型结构竖筋中内外轴承之间;所述中心内定滑轮内壁镶嵌在所述套管外壁上;
所述静传动部包括在轴向传动部本体其后侧位于圆形风道中心处和其右端分别设中心外定滑轮、右端外定滑轮及它们之间的静径向传动钢丝;所述径向步进电机固定在所述轴向传动部本体上并通过轴连接驱动右端外定滑轮;所述中心外定滑轮通过连接轴连接驱动中心定滑轮旋转,所述中心外定滑轮与中心定滑轮之间的连接轴嵌入内轴承内。
优选的,所述轴向传动部包括横断面为工字型结构的轴向传动部本体及其前侧位于圆形风道中心处和其右端的位置上分别设中心内定滑轮、右端内定滑轮及它们之间的静轴向传动钢丝;所述轴向传动部本体通过圆形风道中心固定在圆形风道左右壁上且右端伸出风道外壁;所述轴向驱动部为一轴向步进电机,其固定在所述轴向传动部本体上通过轴连接驱动右端内定滑轮;
所述轴向传感主动部本体在其风道中心点上还设一套管,所述套管一端固定在圆形风道中心点处的轴向传感主动部本体上,另一端固定在所述轴向传动部本体的工字型结构竖筋中内外轴承之间;所述中心内定滑轮内壁镶嵌在所述套管外壁上。
本发明利用在非均匀风场风道横截面内设置大数据风量测量动态传感装置,在风道横截面中全方位的均布预设点位并对各预设点位进行大数据风量测量,用风道横截面数据平均风速值代表实际横截面风速,解决了现有技术风量测量装置几何平均风速值对风道风量测量不准的问题。尤其在将本发明的技术方案应用至燃煤发电机组燃煤锅炉中使其更准确地达到或接近其最佳风煤比,这样就大大地提高燃煤锅炉的安全性、燃烧效率,节能环保,同时提高燃煤发电机组灵活发电,经济效益明显,从而提高了整个电网稳定运行。
附图说明
图1是实施例一提供的一种大数据风量测量动态经纬传感装置设置在矩形风道内正面结构示意图;
图2是图1中大数据风量测量动态经纬传感装置设置在矩形风道内A-A方向侧剖结构示意图;
图3是基于实施例一提供一种基于大数据分析的风量测量系统的模拟300MW燃煤发电机组中进入球磨机的一次热风风道进入段平面布置示意图;
图4是图3中进入球磨机的一次热风风道进入段B-B方向立面布置示意图;
图5a是图3中模拟风道段在负荷值为33%时风量测量系统3D风速测量曲线图;
图5b是图3中模拟风道段在负荷值为41.7%时风量测量系统3D风速测量曲线图;
图5c是图3中模拟风道段在负荷值为58.3%时风量测量系统3D风速测量曲线图;
图5d是图3中模拟风道段在负荷值为70%时风量测量系统3D风速测量曲线图;
图5e是图3中模拟风道段在负荷值为87.6%时风量测量系统3D风速测量曲线图;
图5f是图3中模拟风道段在负荷值为100%时风量测量系统3D风速测量曲线图;
图6是图3中模拟风道段基于大数据分析的风量测量系统的设定数据平均风速值误差为6/4500时选取数据平均风速值点位的3D曲线图;
图7是本发明提供一种基于大数据分析的风量测量方法流程示意图;
图8是本发明提供一种基于大数据分析的风量测量系统确定数据平均风速值点位的方法流程示意图;
图9是本发明提供一种基于大数据分析的风量测量系统和数据平均风速值点位设置风量流量计的风量测量系统相结合的校正方法流程示意图;
图10是实施例二提供的一种大数据风量测量动态轴径向传感装置设置在圆形风道内正面结构示意图;
图11是图10中大数据风量测量动态轴径向传感装置设置在圆形风道内C-C方向侧剖结构示意图。
图中标号说明:1矩形风道;2经向传感主动部驱动部,2-1竖向传动部,2-1-1竖向传动部本体,2-1-2上固定座,2-1-3下固定座,2-1-4竖向螺杆,2-1-5竖向轨道,2-2竖向驱动部;3经向传感主动部,3-1横向部,3-1-1横向部本体,3-1-2横向轨道,3-2竖向部,3-2-1竖向部本体,3-2-2螺母;4纬向从动风量传感部,4-1纬向动态风量传感件,4-1-1滑块,4-1-2风量流量计,4-2横向转动部,4-2-1左横向定滑轮,4-2-2右横向定滑轮,4-2-3左转角定滑轮,4-2-4右转角定滑轮,4-2-5上定滑轮,4-2-6横向转动钢丝,4-2-7横向步进电机;
1´圆形风道;5轴向传感主动部,5-1轴向传感主动部本体,5-1-1横向轨道A,5-1-2套管;6径向从动风量传感部,6-1径向动态风量传感件,6-1-1滑块A,6-1-2风量流量计A,6-2径向转动部,6-2-1中心定滑轮,6-2-2周沿定滑轮,6-2-3动径向传动钢丝,6-2-4静传动部,6-2-6中心外定滑轮;7-1轴向传动部,7-1-1轴向传动部本体,7-1-2中心内定滑轮,7-1-3右端内定滑轮,7-1-4静轴向传动钢丝;
10球磨机,11膨胀节A,12膨胀节B,13冷风管,14冷风口,15关断阀,16调节阀,17膨胀节C,0.00标高0.00米,2.235标高2.235米、6.10标高6.10米、8.30标高8.30米。
具体实施方式
大数据风量动态传感装置的概念是:在非均匀风场风道中对垂直气体流向的横截面内均布或者基本均布的若干点位能逐一地分别测量其风速,从而全方位测量风道风速并通过大数据分析确定非均匀风场风道数据平均风速值或/和数据平均风速值点位的传感装置。如大数据风量动态经纬传感装置和大数据风量动态轴径向传感装置。
大数据风量动态传感装置包括传感主动部及其从动风量传感部、传感主动部驱动部,所述传感主动部驱动部包括传动所述传感主动部的传动部及其驱动部(经向或轴向方向取样),所述从动风量传感部包括一动态风量传感件及在所述传感主动部上来回移动动态风量传感件(纬向或者径向方向取样)的转动部;或者所述从动风量传感部包括均布在所述传感主动部上若干个风量流量计(纬向或径向方向取样)。
所述大数据风量动态传感装置设置在非均匀风场风道横截面中,与风量变送器连通,和控制监测它们的控制监测分析单元A一起构成基于大数据分析的风量测量系统。
所述控制监测分析单元A在某一风道具体负荷值下控制所述大数据风量动态传感装置对垂直气体流向的横截面内均布或者基本均布的若干点位能逐一地分别测量其风速,从而全方位测量风道风速并得出数据平均风速值或确定相应点位。
下面结合附图和具体实施方式,进一步阐明本发明;应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
实施例一
如图1和2所示,为本发明提供的一种大数据风量动态经纬传感装置设置在矩形风道内结构示意图,大数据风量动态传感装置为大数据风量动态经纬传感装置;所述大数据风量动态经纬传感装置设置在矩形风道1的某一横截面内,其包括经向传感主动部3及其纬向从动风量传感部4、经向传感主动部驱动部2,所述经向传感主动部驱动部2包括经向传动所述经向传感主动部的竖向传动部2-1及其竖向驱动部2-2;所述纬向从动风量传感部4包括一纬向动态风量传感件4-1及在所述经向传感主动部上风道横向来回移动纬向动态风量传感件4-1(X轴方向即纬向)的横向转动部4-2。
所述经向传感主动部3包括横向部3-1和竖向部3-2,所述经向传感主动部3本体横向为倒T型结构,所述横向部本体3-1-1横截面为倒扣的C型结构,C型结构的内顶面设一横向轨道3-1-2;所述竖向部本体3-2-1为长条状封闭壳体,所述横向部本体3-1-1和竖向部本体3-2-1焊接在一起为倒T型结构;在所述竖向部本体后侧上端设置一螺母3-2-2。
所述横向转动部4-2包括在横向部本体3-1-1的两端分别设左、右横向定滑轮4-2-1、4-2-2并部分露出横向部本体3-1-1的顶面上,及在竖向部本体3-2-1内下端两内侧分别设左、右转角定滑轮4-2-3、4-2-4,及在竖向部本体3-2-1内上端设上定滑轮4-2-5,及在上述左右横向定滑轮、左右转角定滑轮和上定滑轮上缠绕一横向转动钢丝4-2-6,及驱动所述上定滑轮的一横向步进电机4-2-7。
所述纬向动态风量传感件4-1固定所述横向部本体下端且设在横向转动钢丝4-2-6上;所述纬向动态风量传感件4-1包括沿横向轨道滑动的滑块4-1-1及固定在其上并位于横向部本体C型结构下方的风量流量计4-1-2。
所述竖向传动部2-1包括竖向传动部本体2-1-1及其上下两端内分别还设均带轴承的上、下固定座2-1-2和2-1-3,和固定在所述上下固定底座轴承中的竖向螺杆2-1-4;所述竖向驱动部2-2为一竖向步进电机,其固定在传动部本体2-1-1上端面上且轴向驱动竖向螺杆2-1-4。所述竖向传动部本体2-1-1横断面为槽型结构,槽型结构底部带一竖向轨道2-1-5(为了使螺母3-2-2在槽内平稳上下滑动),其整体竖向固定在矩形风道1上方的外壁上;这样,所述经向传感主动部3整体通过螺母3-2-2在所述竖向螺杆2-1-4上上下移动带动(Y轴方向即经向)。
由上述大数据风量动态经纬传感装置构成的矩形风道风量测量系统还包括与大数据风量动态经纬传感装置中风量流量计连接的一风量变送器以及控制监测大数据风量动态经纬传感装置的控制监测分析单元A。
如图7所示,本实施例基于上述矩形风道风量测量系统提供一种非均匀风场风道的基于大数据分析的风量测量方法流程示意图,其步骤如下:
1)在控制监测分析单元A中设置风量流量计在纬向和经向两个方向上每次角位移量(即在控制监测分析单元A中设置风量流量计在横向(X轴方向即纬向)和竖向(Y轴方向即经向)两个方向的每次移动位移大小,即分别设定横向步进电机和竖向步进电机的每次预设角位移量;两个方向的每次角位移量可以相同可以不同);
2)控制监测分析单元A先控制风量流量计从初始位置经向运动一预设角位移量,再控制风量流量计纬向逐一测量该纬向所有预设点位风速值(即差压值),同时将对应预设点位所测风量发送至风量变送器,再由风量变送器将其风量电信号储存在控制监测分析单元A(即控制监测分析单元A先控制竖向步进电机运动一预设角位移量,再控制横向步进电机驱动上定滑轮带动横向转动钢丝4-2-6转动一预设角位移量,从而带动风量流量计横向逐一测量该横向所有预设点位风速值,同时将对应预设点位所测风速值(即压差)发送至风量变送器,再由风量变送器将其风量电信号储存在控制监测分析单元A);
3)再进行控制监测分析单元A控制竖向步进电机运动一预设角位移量,循环步骤2,直至风量流量计全方位测量矩形风道中所有预设点位风速值;
4)控制监测分析单元将上述所有预设点位的风速测量值累加后并除以矩形风道的预设点位数即得出该采样周期T内风道数据平均风速值,此值为风道风量测量值。
上述整个矩形风道所有预设点位的风速测量需要一采样周期T,但是这个采样周期T大小由横向步进电机和竖向步进电机速度大小、矩形风道大小、矩形风道预设点位数、矩形风道风速大小等因素决定,采样周期T越短,上述风道数据平均风速值大小越准确,但在风道负荷值恒定的情况下,上述风道数据平均风速值大小与采样周期T大小无关。
所述预设点位间隔由风道大小、风场复杂度及其风量测量精度等要求确定。
如图8所示,本实施例基于上述矩形风道风量测量系统还提供一种通过上述非均匀风场风道的风量测量系统确定数据平均风速值点位的方法,其步骤如下:
1)在控制监测分析单元A中设置风量流量计在纬向和经向两个方向上每次角位移量(即在控制监测分析单元A中设置风量流量计在横向(X轴方向即纬向)和竖向(Y轴方向即经向)两个方向的每次移动位移大小,即分别设定横向步进电机和竖向步进电机的每次角位移量;两个方向的每次角位移量可以相同可以不同);
2)控制监测分析单元A采集风道具体负荷值;
3)控制监测分析单元A先控制风量流量计从初始位置经向运动一预设角位移量,再控制风量流量计纬向逐一测量该纬向所有预设点位风速值(即差压值),同时将对应预设点位所测风量发送至风量变送器,再由风量变送器将其风量电信号及其位置信号和具体负荷值一一对应地储存在控制监测分析单元A(即控制监测分析单元A先控制竖向步进电机运动一预设角位移量,再控制横向步进电机驱动上定滑轮带动动横向转动钢丝4-2-6转动一预设角位移量,从而带动风量流量计横向逐一测量该横向所有预设点位风速值(即压差),同时将对应预设点位所测风量发送至风量变送器,再由风量变送器将其风量电信号及其位置信号和具体负荷值一一对应地储存在控制监测分析单元);
4)再进行控制监测分析单元A控制风量流量计经向运动一预设角位移量,循环步骤3,直至风量流量计全方位测量矩形风道中所有预设点位风速值;
5)逐一调整步骤2中风道负荷值(如35%、40%、50%、60%、70%、80%、90%、100%);重复执行步骤2、3、4,直至测量完所监测风道负荷值(在风道负荷值允许的范围内均布选取负荷值,如35%、40%、50%、60%、70%、80%、90%、100%负荷)下的风道所有预设点位风速值;
6)控制监测分析单元A将上述所监测风道不同负荷值的所有预设点位风速值分别累加后再分别除以预设点位数计算出每个负荷值下数据平均风速值,再由零逐渐增大设定风道数据平均风速误差,直至确定至少一个共同预设点位,即为此风道数据平均风速值点位。该共同预设点位的风速测量值均在上述每个负荷值下数据平均风速值加增大后的设定风道数据平均风速误差之和的范围内;
另外,本实施例还提供一种基于数据平均风速值点位设置风量流量计的风量测量系统:在根据上述确定数据平均风速值点位的方法确定的各数据平均风速值点位上设风量流量计;由于上述各数据平均风速值点位所测风速值基本一致,在各数据平均风速值点位风量流量计之间几乎不会产生空气流动,将各数据平均风速值点位风量流量计所测风速值通过均压管进行均压后再与一风量变送器连接,再与控制监测分析单元A构成一种基于数据平均风速值点位设置风量流量计的风量测量系统。当然,上述各数据平均风速值点位风量流量计不通过均压管进行均压,也可以分别连接一风量变送器,这样风量测量系统测量风量更精准。
由于风道在不同负荷值下,其风场都是非均匀风场,通过上述方法可以准确地找到风道横截面中数据平均风速值所在的具体共同点位,并在这些点位上设置风量流量计,可以实时准确地对风道风量测量。
其次,基于上述基于大数据分析的风量测量系统和数据平均风速值点位设置风量流量计的风量测量系统,本实施例提供一种基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正系统,所述校正系统包括在风道横截面中设置一大数据风量动态经纬传感装置及与其错位风道横截面上的至少一数据平均风速值点位设风量流量计,和与它们各自分别连接的风量变送器以及控制监测分析单元A、B。当然,本校正系统为了确保风道风量测量结果可靠,还可以基于大数据分析的风量测量系统和数据平均风速值点位设置风量流量计的风量测量系统同时运行,一备一用确保风道风量测量的可靠准确。
最后,基于上述校正系统,本实施例提供一种基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正方法,如图9所示,是一种基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正方法流程示意图。其方法是利用在风道横截面中至少设置一大数据风量动态经纬传感装置在每个采样周期内进行以预设点位间隔的全方位动态逐点风速测量,然后将上述所有预设点位的风速测量值累加除以预设点位数即为风道数据平均风速值Fdps(具体风量测量方法说明,详细图7所示的一种非均匀风场风道的基于大数据分析的风量测量方法流程示意图及其说明部分);同时,利用在风道横截面中设置至少一数据平均风速值点位风量流量计实时进行风量测量,然后将上述所测平均风速值点位风速测量值累加除以其平均风速值点位数或数据平均风速值点位风量流量计几何均压后得出风道数据平均风速值点位平均风速值Fpps;接着计算出上述风道数据平均风速值Fdps与风道数据平均风速值点位平均风速值Fpps的差值;当上述差值大于预定测量误差值,输出预警信号且采用风道数据平均风速值Fdps;当上述差值小于预定测量误差值,输出正常信号并采用风道数据平均风速值Fdps与风道数据平均风速点位平均风速值Fpps中之一。当上述差值大于预定测量误差值时,还可以输出预警信号,重新人工或自动调整数据平均风速值点位风量流量计的设置位置。所述预定测量误差值不大于2%(即工业风量测量二级精度要求)。
当然,本校正方法为了确保风道风量测量结果可靠,还可以基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统同时运行,互相验证,确保风道风量测量的可靠准确。
模拟实验
下面基于上述大数据风量动态经纬传感装置的风量测量系统,本模拟实验中矩形风道模拟300MW燃煤火电机组矩形风道,进行如下模拟风量测量实验:
(一)模拟实验系统介绍:
如图3和4,为基于大数据分析的风量测量系统的所模拟风道结构示意图,模拟风道段为300MW燃煤发电机组进入球磨机10的一次热风矩形风道段,实际风道与模拟风道的模拟比例为2:1,同时取消了实际风道中膨胀节A 11、膨胀节B 12、冷风管13、冷风口14、关断阀15、调节阀16和膨胀节C 17,制作为一简单结构模拟风道;同时,在一次热风入口设一台风机,在接近球磨机10的模拟风道横断面安装一大数据风量动态经纬传感装置(即图1和2所示的大数据风量动态经纬传感装置);图中0.00、2.235、6.10、8.30分别为标高0.00米、标高2.235米、标高6.10米、标高8.30米。
根据模拟风道风速要求,选择风机:上海哈龙风机电器有限公司风机型号4-72,风量10562-3712m 3/h,全压1673/2554Pa,并配置其调频调速装置:ABB公司变频器产品型号ACSS10,满足25-100%风速调节范围;同时根据模拟风道截面大小设计合适大小的上述大数据风量动态经纬传感装置,并安装在模拟风道内横截面上,其中大数据风量动态经纬传感装置中风量流量计型号规格:AFM-110型插入式多喉径流量测量装置(即风量流量计),选配与其连接的罗斯蒙特(ROSEMOUNT)3051 CD0A02A1A1H2B3M5系列智能差压变送器(即风量变送器),量程:0-5171KPa,电源:10.5-55VDC,序号:27315068110,标定:0-747Pa,输出 4-20mA;控制监测分析单元A包括:1)经纬移动控制数据存储箱一台,其规格:酷美 CM6024,2)联想笔记本一台及风量测量截面流场可视化分析和优化选点软件一套。横向步进电机、竖向步进电机选配雷赛智能57CME26步进电机。差压变送器将所监测风道负荷值下各个预设点位对应的风量测量值数据通过数据线输送至经纬移动控制数据储存箱,将经纬移动控制数据存储箱中的负荷值、预设点位及其对应风量测量值一一对应地传输至联想笔记本并利用风量测量截面流场可视化分析和优化选点软件进行大数据分析处理。
(二)模拟实验测量过程及结果:
1)先在控制监测分析单元A上所测量横截面上设定预设点位数:在模拟风道所测量横截面上xy轴交点为预设点位:x轴上分20线,Y轴上分6线,共计120点预设点位;
2)分别在33%,41.7%,58.3%,70%,87.6%,100%负荷值下进行所测量横截面上述预设点位进行风速取样,通过风量变送器将各预设点位风量电信号传输至控制监测分析单元A并形成数据库,将所有的预选负荷取样完成后,将数据库导入“风量测量截面流场可视化分析和优化选点软件”进行分析处理形成一个截面-风速的立体图风速山峰图,可以直观看到所测量横截面上不同位置在同一负荷值下取样点风速大小,如图5a~图5f分别为负荷值分别为33%,41.7%,58.3%,70%,87.6%,100%时风量测量系统3D风量测量曲线图;
3)同时,控制监测分析单元通A过图像观察和大数据计算预选数据平均风速值点位:某一负荷值下所有120个预设点位所测风速之和除以120,即可得该负荷值下数据平均风速值;按设定风道数据平均风速误差为0、1/4500、2/4500、3/4500、4/4500…逐渐增大(其中4500为上述模拟风道的所测最大风速值),确认所测负荷值下落入设定风道数据平均风速误差内的所测预设点位风速值对应的xy坐标若干个共同预设点位,即数据平均风速值预选点位(至少一个),如图6所示,为模拟风道段基于大数据分析的风量测量系统的设定数据平均风速误差为6/4500时选取数据平均风速点位的3D曲线图,其中图中5个黑点为设定风道数据平均风速误差为6/4500时5个数据平均风速值共同预选点位。
(三)模拟实验数据分析:
当然,根据上述模拟风道实验测量出风道横截面数据平均风速值点位的位置,由于模拟风道模拟比和实际风道内设备,支撑、和在线取样的对负荷调节的局限性,对部分负荷下风场数据平均风速值位置是有影响的,需要再在实际所测量风道横截面对应位置设置风量测量计进行风速测量,与模拟风道实验的风量测量结果比较,根据实际在风道横截面上安装基于大数据风量测量动态经纬传感装置构成的风量测量系统对其进行校正或验证,达到满足风道风量测量准确度要求即可。
虽然上述实验是针对模拟风道风量测量实验,但是将上述装置、方法使用在实际非均匀风场风道中是完全可行的,因为风道模拟实验只是将实际风道进行相应比例缩小,而即使实际风道再复杂,但所有非均匀风场风道的风速测量曲面图都是不规则的3D曲面,只要能够准确地找到非均匀风场风道中某几个数据平均风速值点位(即在风量测量误差合理的范围内能找到一组这样的位置)代表风道横截面内数据平均风速值点位即可。
本发明技术方案通过模拟实验或实际对风道风量测量,找到风道横截面内的数据平均风速值点位,然后再在数据平均风速值点位上设置风量流量计,与现有风量测量技术相比,有的放矢设点,颠覆了现有技术几何平均风速值就代表实际风速值的概念,大大提高风量测量系统精度。
实施例二
本实施例提供一种在矩形风道内的大数据风量动态经纬传感装置是在实施例一基础的优化,其区别是:实施例一中所述纬向从动态风量传感部包括在横向部本体上均布设置若干个风量流量计,这样可以取消实施例一中所述横向转动部,即横向步进电机、上定滑轮、左右转角定滑轮、左右横向定滑轮及其它们之间的横向传动钢丝,这样可以大大地缩短某一具体负荷值下整个风道风量监测的所需时间,缩小采样周期T,确保了测量风量的实时性;其余部分参考实施例一对应内容。
由上述大数据风量动态经纬传感装置构成的矩形风道风量测量系统还包括与大数据风量动态经纬传感装置中若干个风量流量计分别连接的相同数量的风量变送器或一风量变送器,以及控制监测大数据风量动态经纬传感装置的控制监测分析单元A。为了精准地风量测量或精准地寻找数据平均风速值点位的定位,所述风量变送器数量与所述风量流量计配置相同数量并分别各自连通;当然,仅为了比较准确地进行风道内风量测量,所述风量流量计的正负压取样孔可分别连通在一正压均压管和一负压均压管上,再通过正负均压管与一风量变送器连通。
同样,基于在矩形风道内的大数据风量动态经纬传感装置,本实施例也提供的一种非均匀风场风道的基于大数据分析的风量测量方法,一种通过上述非均匀风场风道的基于大数据分析的风量测量方法确定数据平均风速值点位的方法,一种基于数据平均风速值点位设置风量流量计的风量测量系统,一种非均匀风场风道的基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正系统及方法,其相应内容参见与实施例一相应部分。
实施例三
本实施例提供一种在圆形风道内的大数据风量动态轴径向传感装置,如图10和11,为本发明提供的一种大数据风量动态轴径向传感装置设置在圆形风道内结构示意图,大数据风量动态传感装置为大数据风量动态轴径向传感装置,所述大数据风量动态轴径向传感装置设置在圆形风道1´的某一横截面内,其包括轴向传感主动部5及其径向从动风量传感部6、轴向传感主动部驱动部,所述轴向传感主动部驱动部包括轴向传动所述轴向传感主动部的轴向传动部7-1及其轴向驱动部。所述径向从动风量传感部6包括一径向动态风量传感件6-1及在所述轴向传感主动部上风道径向来回移动径向动态风量传感件的径向转动部6-2。
所述轴向传感主动部5包括一轴向传感主动部本体5-1,所述轴向传感主动部本体横截面为C型结构,其开口位于其右侧面且其内底面设一横向轨道A 5-1-1;所述径向转动部6-2包括分别设置在轴向传感主动部本体5-1两端的中心定滑轮6-2-1和周沿定滑轮6-2-2及其之间的动径向传动钢丝6-2-3、和轴向驱动所述中心定滑轮转动的静传动部6-2-4及驱动其的一径向步进电机;所述径向动态风量传感件6-1固定在轴向传感主动部本体5-1开口侧面且设动径向传动钢丝6-2-3上。
所述轴向传动部7-1包括横断面为工字型结构的轴向传动部本体7-1-1及其前侧位于圆形风道中心处和其右端的位置上分别设中心内定滑轮7-1-2、右端内定滑轮7-1-3及它们之间的静轴向传动钢丝7-1-4;所述轴向传动部本体7-1-1通过圆形风道中心其两端分别固定在圆形风道1´左右壁上且右端伸出风道外壁;所述轴向驱动部为一轴向步进电机,其固定在所述轴向传动部本体7-1-1上通过轴连接驱动右端内定滑轮7-1-3;
所述轴向传感主动部本体5-1在其风道中心点上还设一套管5-1-2,所述套管一端固定在圆形风道中心点处的轴向传感主动部本体上,另一端固定在所述轴向传动部本体7-1-1的工字型结构竖筋中内、外轴承之间;所述中心内定滑轮7-1-2内壁镶嵌在所述套管外壁上;
所述静传动部6-2-4包括在轴向传动部本体7-1-1其后侧位于圆形风道中心处和其右端分别设中心外定滑轮6-2-6、右端外定滑轮,及它们之间的静径向传动钢丝;所述径向步进电机固定在所述轴向传动部本体7-1-1上通过轴连接驱动右端外定滑轮;所述中心外定滑轮6-2-6通过连接轴连接驱动中心定滑轮6-2-1旋转,所述中心外定滑轮与中心定滑轮之间的连接轴嵌入内轴承内。
所述径向动态风量传感件6-1包括沿横向轨道A 5-1-1滑动的滑块A 6-1-1及固定在其上并位于所述轴向传感主动部本体C型结构上方的风量流量计A 6-1-2。
由上述大数据风量动态轴径向传感装置构成的圆形风道风量测量系统还包括与大数据风量动态轴径向传感装置中风量流量计A连接的一风量变送器以及控制监测大数据风量动态轴径向传感装置的控制监测分析单元A。
如图7,本实施例基于上述圆形风道风量测量系统提供一种非均匀风场风道的风量测量方法流程示意图,其步骤如下:
1)在控制监测分析单元A中设置风量流量计A在轴向和径向两个方向上每次角位移量(即在控制监测分析单元A中分别设置风量流量计A 在径向和轴向两个方向的每次角位移和每次线位移大小,即分别设定径向步进电机和轴向步进电机的每次角位移量;两个方向的每次角位移量可以相同可以不同);
2)控制监测分析单元A先控制风量流量计A从初始位置轴向运动一预设角位移量,再控制风量流量计A径向逐一测量该径向所有预设点位风速值(即差压值),同时将对应预设点位所测风量发送至风量变送器,再由风量变送器将其风量电信号储存在控制监测分析单元A(即控制监测分析单元A先控制轴向步进电机运动一预设角位移量,再控制径向步进电机驱动径向转动部6-2中风量流量计A径向逐一测量该横向所有预设点位风速值,同时将对应预设点位所测风速值(即压差)发送至风量变送器,再由风量变送器将其风量电信号储存在控制监测分析单元A);
3)再进行控制监测分析单元A控制风量流量计A轴向运动一预设角位移量,循环步骤2,直至风量流量计A测量完全部圆形风道中所有预设点位风速值;
4)控制监测分析单元A将上述所有预设点位的风速测量值累加除以预设点位数,即得该采样周期T内风道数据平均风速值,此值为风道风量测量值。
上述整个圆形风道所有预设点位的风速测量需要一采样周期T,但是这个采样周期T大小由轴向步进电机和径向步进电机速度大小、圆形风道大小、圆形风道预设点位数、圆形风道风速大小等因素决定,采样周期T越短,上述风道数据平均风速值大小越准确,但在风道负荷值恒定的情况下,上述风道数据平均风速值大小与采样周期T大小无关。
所述预设点位间隔由风道大小、风场复杂度及其风量测量精度等要求确定。
如图8,本实施例基于上述圆形风道风量测量系统还提供一种通过上述非均匀风场风道的风量测量方法确定数据平均风速值点位的方法流程示意图,其步骤如下:
1)在控制监测分析单元A中设置风量流量计A在轴向和径向两个方向上每次角位移量(即在控制监测分析单元A中设置风量流量计A在径向和轴向两个方向的每次线位移、每次角位移大小,即分别设定径向步进电机和轴向步进电机的每次角位移量;两个方向的每次角位移量可以相同可以不同);
2)控制监测分析单元A采集风道具体负荷值;
3)控制监测分析单元A先控制风量流量计A从初始位置轴向运动一预设角位移量,再控制风量流量计A径向逐一测量该径向所有预设点位风速值(即差压值),同时将对应预设点位所测风量发送至风量变送器,再由风量变送器将其风量电信号及其位置信号和具体负荷值一一对应地储存在控制监测分析单元A(即控制监测分析单元A先控制轴向步进电机运动一预设角位移量,再控制径向步进电机驱动径向转动部6-2中风量流量计A径向逐一测量该径向所有预设点位风速值(即差压值),同时将对应预设点位所测风量发送至风量变送器,再由风量变送器将其风量电信号及其位置信号和具体负荷值一一对应地储存在控制监测分析单元A);
4)再进行控制监测分析单元A控制风量流量计A轴向运动一预设角位移量,循环步骤3,直至风量流量计A测量完圆形风道中所有预设点位风速值;
5)逐一调整步骤2中风道负荷值(如35%、40%、50%、60%、70%、80%、90%、100%);重复执行步骤2、3、4,直至测量完所监测风道负荷值(即在风道负荷值允许的范围内均布选取负荷值,如35%、40%、50%、60%、70%、80%、90%、100%负荷)下的风道所有预设点位风速值;
6)控制监测分析单元A将上述所监测风道不同负荷值的所有预设点位风速值分别累加后分别除以预设点位数计算出每个负荷值下数据平均风速值,再由零逐渐增大设定风道数据平均风速误差,直至确定至少一个共同预设点位。该共同预设点位的风速测量值均在上述每个负荷值下数据平均风速值加增大后的设定风道数据平均风速误差之和的范围内。
另外,本实施例提供一种基于数据平均风速值点位设置风量流量计的风量测量系统:在根据上述确定数据平均风速值点位的方法确定的各数据平均风速值点位上设风量流量计;由于上述各数据平均风速值点位所测风速值基本一致,在各数据平均风速值点位风量流量计之间几乎不会产生空气流动,将各数据平均风速值点位风量流量计所测风速值进行均压后与一风量变送器连接,再与控制监测分析单元A构成一种基于数据平均风速值点位设置风量流量计的风量测量系统。当然,上述各数据平均风速值点位风量流量计也可以分别连接一风量变送器,这样风量测量系统测量风量值更精准。
由于风道在不同负荷值下,其风场都是非均匀风场,通过上述方法可以准确地找到风道横截面中数据平均风速值所在的具体共同点位,并在这些点位上设置风量流量计,可以实时准确地对风道风量测量。
其次,基于上述基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统,本实施例还提供一种基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正系统,所述校正系统包括在风道横截面中设置一大数据风量动态轴径向传感装置及与其错位风道横截面上的至少一数据平均风速值点位设置风量流量计,和它们各自分别连接的风量变送器以及控制监测分析单元。当然,本校正系统为了确保风道风量测量结果可靠,还可以基于大数据分析的风量测量系统和数据平均风速值点位设置风量流量计的风量测量系统同时运行,一备一用确保风道风量测量的可靠准确。
最后,基于上述校正系统,本实施例还提供一种基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正方法,如图9所示,是一种基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统相结合的校正方法流程示意图。其方法是:利用在风道横截面中至少设置一大数据风量动态轴径向传感装置中风量流量计A在每个采样周期内进行以预设点位间隔的全方位动态逐点风速测量,然后将上述所有预设点位的风速测量值累加除以预设点位数即为风道数据平均风速值Fdps(具体风量测量方法说明,详见图7所示的一种非均匀风场风道的基于大数据分析的风量测量方法流程示意图及其说明部分);同时,利用在风道横截面中设置至少一数据平均风速值点位设置风量流量计实时进行风量测量,然后将上述所测平均风速值点位风速测量值累加除以平均风速值点位数或几何均压后得出风道数据平均风速值点位平均风速值Fpps;接着计算出上述风道数据平均风速值Fdps与风道数据平均风速值点位平均风速值Fpps的差值;当上述差值大于预定测量误差值,输出预警信号且采用风道数据平均风速值Fdps;当上述差值小于预定测量误差值,输出正常信号并采用风道数据平均风速值Fdps与风道数据平均风速点位平均风速值Fpps中之一。当上述差值大于预定测量误差值时,还可以输出预警信号,重新人工或自动调整数据平均风速值点位风量流量计A的设置位置。所述预定测量误差值不大于2%(即工业测量精度二级要求)。
当然,本校正方法为了确保风道风量测量结果可靠,还可以基于大数据分析的风量测量系统和基于数据平均风速值点位设置风量流量计的风量测量系统同时运行,互相验证,确保风道风量测量的可靠准确。
实施例四
本实施例提供一种在圆形风道内的大数据风量动态轴径向传感装置是在实施例三基础的优化,其区别是:本实施例三中所述径向从动风量传感部包括在所述轴向传感主动部本体上径向均布设置若干个风量流量计A。这样可以取消本实施例三中所述径向转动部6-2,这样可以大大地缩短在某一负荷值下整个风道风量监测的所需时间,缩小采样周期T,确保了测量风量的实时性;其余部分参考实施例三对应内容。
由上述大数据风量动态传感轴径向装置构成的圆形风道风量测量系统还包括与大数据风量动态轴径向传感装置中若干个风量流量计A分别连接的一风量变送器以及控制监测大数据风量动态轴径向传感装置的控制监测分析单元A。为了精准地风量测量或精准数据平均风速值点位的定位,所述风量变送器数量与所述风量流量计A配置相同数量并分别各自连通;当然,仅为了比较准确地进行风量测量,所述风量流量计A的正负压取样孔可分别连通在一正压均压管和一负压均压管上,再通过正负均压管与一风量变送器连通。
同样,基于在圆形风道内的大数据风量动态轴径向传感装置,本实施例也提供的一种非均匀风场风道的风量测量方法,一种通过上述非均匀风场风道的风量测量方法确定数据平均风速值点位的方法,一种基于数据平均风速值点位风量流量计的风量测量系统,一种基于大数据风量测量系统和数据平均风速值点位风量流量计风量测量系统的校正系统及方法,其相应内容参见与实施例三相应部分。
本发明中所述大数据风量动态传感装置中风量流量计为AFM-110型插入式多喉径流量测量装置,也可以选用其他文丘里型风量流量计,如单喉径管,双喉径管,多喉径管等风量流量计,也可以选用皮托管风量流量计。
本发明中所述大数据风量动态传感装置如果安装在粉尘风道中,可以采用中国专利CN111520611A中一种用于测量气体管路的反吹扫装置,解决所述大数据风量动态传感装置中风量流量计被粉尘堵塞导致风道风量测量不准确问题。
以上实施例虽然是针对具体形状的风道如矩形、圆形设计的大数据风量动态传感装置为例,对本发明进行了说明,但应能理解,同时,本发明的发明点是:大数据风量动态传感装置对风道中均布预设点位数量进行预设而对风道横截面内全方位风速测量,并进行海量大数据监测分析得到风道数据平均风速值及其相应点位(当然也可以采用在风道中基本均布预设点位,只要能进行全方位的风速测量找到数据平均风速值及其点位即可),并设风量流量计等构成的风量测量系统及其方法、校正系统及其方法;其目的是:通过大数据取样并分析找到数据平均风速值,用此数据平均风速值代替现有技术中几何平均风速值进行风道风速准确测量;其作用是:解决了现有技术中风道风量测量不准确的问题,大大地提高风道风量测量的准确性;其效果是:更加准确地达到燃煤锅炉的最佳风煤比要求,这样,(1)安全方面: 通过提高锅炉风量测量运行的实时准确性,大大提高运行的安全性;(2)节能方面:没有过量空气进入,减少源源不断的排烟损失,就是提高锅炉燃烧效率;(3)环保方面:杜绝炉膛过氧环境,在炉膛中心区1200°高温下阻止产生氮氧化物,大大地降低大气污染;(4)对燃煤发电机组提高灵活性发电能力:精准给氧,可以使发电机组灵活性大大提高,并赚取额外的电价补贴;虽然上述效果只说明燃煤锅炉的风道采用本发明的技术方案的效果,当然对其他要求风量准确测量的风道,本发明的技术方案也是可行的。本领域技术人员可在不偏离本发明的上述发明点实质精神和范围的情况下对本发明进行变化或改进,但均应落入本发明技术方案的保护范围内。

Claims (23)

  1.  一种基于大数据分析的风量测量系统,其特征在于,包括在非均匀风场风道横截面中至少设置一大数据风量动态传感装置,及与其连接的风量变送器,和控制监测它们的控制监测分析单元A。
  2.  根据权利要求1所述风量测量系统,其特征在于,所述大数据风量动态传感装置包括传感主动部及其从动风量传感部、传感主动部驱动部,所述传感主动部驱动部包括传动所述传感主动部的传动部及其驱动部;所述从动风量传感部包括一动态风量传感件及在所述传感主动部上来回移动动态风量传感件的转动部;或者所述从动风量传感部包括均布在所述传感主动部上若干个风量流量计。
  3.  根据权利要求1或2所述风量测量系统,其特征在于,所述大数据风量动态传感装置为大数据风量动态经纬传感装置,其包括经向传感主动部及其纬向从动风量传感部、经向传感主动部驱动部,所述经向传感主动部驱动部包括经向传动所述经向传感主动部的竖向传动部及其竖向驱动部。
  4.  根据权利要求3所述风量测量系统,其特征在于,所述纬向从动风量传感部包括一纬向动态风量传感件及在所述经向传感主动部上风道横向来回移动纬向动态风量传感件的横向转动部。
  5.  根据权利要求4所述风量测量系统,其特征在于,所述纬向动态风量传感件包括滑块及固定在其上一风量流量计。
  6.  根据权利要求3所述风量测量系统,其特征在于,所述纬向从动风量传感部包括均布在所述经向传感主动部上若干个风量流量计。
  7.  根据权利要求6所述风量测量系统,其特征在于,所述风量变送器数量与所述风量流量计配置相同数量,并分别各自取样管连通,或者所述风量流量计通过正、负均压管与一风量变送器连通。
  8.  根据权利要求5或6或7所述风量测量系统,其特征在于,所述风量流量计是皮托管风量流量计和文丘里型风量流量计中的至少一种。
  9.  根据权利要求8所述风量测量系统,其特征在于,所述文丘里型风量流量计为单喉径管风量流量计、双喉径管风量流量计和多喉径管风量流量计中的至少一种。
  10.  根据权利要求4或5所述风量测量系统,其特征在于,所述经向传感主动部包括横向部和竖向部,所述横向部本体横截面为倒扣的C型结构,所述竖向部本体为长条状封闭壳体,所述横向部本体和竖向部本体焊接在一起为倒T型结构;所述横向转动部包括分别设在横向部本体的两端并部分露出横向部本体顶面上的左、右横向定滑轮,设在竖向部本体内下端两内侧分别设左、右转角定滑轮和其上端内侧设上定滑轮,及在所述左右横向定滑轮、左右转角定滑轮和上定滑轮上缠绕一横向转动钢丝,和驱动所述上定滑轮的一横向步进电机;所述纬向动态风量传感件固定在所述横向部本体下端且设在横向转动钢丝上。
  11.  根据权利要求10所述风量测量系统,其特征在于,所述竖向传动部包括竖向传动部本体及其上下两端内分别设均带轴承的上、下固定座,和固定在所述上、下固定座轴承中的竖向螺杆;所述横向部本体上端部还设一与所述竖向螺杆螺纹连接的螺母,所述驱动部为竖向步进电机,其固定在竖向传动部本体上端面上且轴向驱动竖向螺杆。
  12.  根据权利要求6或7所述风量测量系统,其特征在于,
    所述经向传感主动部包括横向部和竖向部,所述横向部本体横截面为倒扣的C型结构,所述竖向部本体为长条状封闭壳体,所述横向部本体和竖向部本体焊接在一起为倒T型结构;所述风量流量计固定在所述横向部本体下端。
  13.  根据权利要求12所述风量测量系统,其特征在于,所述竖向传动部包括竖向传动部本体及其上下两端分别内还设均带轴承的上、下固定座,和固定在所述上、下固定座轴承中的竖向螺杆;所述横向部本体上端部还设一与所述竖向螺杆螺纹连接的螺母,所述驱动部为一竖向步进电机,其在固定所述竖向传动部本体上端面上且轴向驱动竖向螺杆。
  14.  根据权利要求1或2所述风量测量系统,其特征在于,所述大数据风量动态传感装置为大数据风量动态轴径向传感装置,其包括轴向传感主动部及其径向从动风量传感部、轴向传感主动部驱动部,所述轴向传感主动部驱动部包括轴向传动所述轴向传感主动部的轴向传动部及其轴向驱动部。
  15.  根据权利要求14所述风量测量系统,其特征在于,所述径向从动风量传感部包括一径向动态风量传感件及在所述轴向传感主动部上风道径向来回移动径向动态风量传感件的径向转动部。
  16.  根据权利要求15所述风量测量系统,其特征在于,所述径向动态风量传感件包括滑块A及固定在其上的风量流量计A。
  17.  根据权利要求14所述风量测量系统,其特征在于,所述径向从动风量传感部包括均布在所述轴向传感主动部上若干个风量流量计A。
  18.  根据权利要求17所述风量测量系统,其特征在于,所述风量变送器数量与所述风量流量计A配置相同数量,并分别各自取样管连通,或者所述风量流量计A通过正、负均压管与一风量变送器连通。
  19.  根据权利要求16或17或18所述风量测量系统,其特征在于,所述风量流量计A是皮托管风量流量计和文丘里型风量流量计中的至少一种。
  20.  根据权利要求19所述风量测量系统,其特征在于,所述文丘里型风量流量计为单喉径管风量流量计、双喉径管风量流量计和多喉径管风量流量计中的至少一种。
  21.  根据权利要求15或16所述风量测量系统,其特征在于,所述轴向传感主动部包括一轴向传感主动部本体,所述轴向传感主动部本体横截面为C型结构,其开口位于其右侧面;所述径向转动部包括分别设置在轴向传感主动部本体两端的中心定滑轮和周沿定滑轮及其之间的动径向传动钢丝、和轴向驱动所述中心定滑轮转动的静传动部及驱动其的一径向步进电机;所述径向动态风量传感件固定在轴向传感主动部本体开口侧面且设在动径向传动钢丝上。
  22.  根据权利要求21所述风量测量系统,其特征在于,所述轴向传动部包括横断面为工字型结构的轴向传动部本体及其前侧位于圆形风道中心处和其右端的位置上分别设中心内定滑轮、右端内定滑轮及它们之间的静轴向传动钢丝;所述轴向传动部本体通过圆形风道中心其两端分别固定在圆形风道左右壁上且右端伸出风道外壁;所述轴向驱动部为一轴向步进电机,其固定在所述轴向传动部本体上且通过轴连接驱动右端内定滑轮;
    所述轴向传感主动部本体在其风道中心点上还设一套管,所述套管一端固定在圆形风道中心点处的轴向传感主动部本体上,另一端固定在所述轴向传动部本体的工字型结构竖筋中内外轴承之间;所述中心内定滑轮内壁镶嵌在所述套管外壁上;
    所述静传动部包括在轴向传动部本体其后侧位于圆形风道中心处和其右端分别设中心外定滑轮、右端外定滑轮及它们之间的静径向传动钢丝;所述径向步进电机固定在所述轴向传动部本体上并通过轴连接驱动右端外定滑轮;所述中心外定滑轮通过连接轴连接驱动中心定滑轮旋转,所述中心外定滑轮与中心定滑轮之间的连接轴嵌入内轴承内。
  23.  根据权利要求17或18所述风量测量系统,其特征在于,所述轴向传动部包括横断面为工字型结构的轴向传动部本体及其前侧位于圆形风道中心处和其右端的位置上分别设中心内定滑轮、右端内定滑轮及它们之间的静轴向传动钢丝;所述轴向传动部本体通过圆形风道中心固定在圆形风道左右壁上且右端伸出风道外壁;所述轴向驱动部为一轴向步进电机,其固定在所述轴向传动部本体上通过轴连接驱动右端内定滑轮;
    所述轴向传感主动部本体在其风道中心点上还设一套管,所述套管一端固定在圆形风道中心点处的轴向传感主动部本体上,另一端固定在所述轴向传动部本体的工字型结构竖筋中内外轴承之间;所述中心内定滑轮内壁镶嵌在所述套管外壁上。
PCT/CN2023/110051 2022-10-19 2023-07-29 一种基于大数据分析的风量测量系统 WO2024082761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211280223.9A CN115683241A (zh) 2022-10-19 2022-10-19 一种基于大数据分析的风量测量系统
CN202211280223.9 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024082761A1 true WO2024082761A1 (zh) 2024-04-25

Family

ID=85067048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110051 WO2024082761A1 (zh) 2022-10-19 2023-07-29 一种基于大数据分析的风量测量系统

Country Status (2)

Country Link
CN (1) CN115683241A (zh)
WO (1) WO2024082761A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115585872A (zh) * 2022-10-19 2023-01-10 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量校正系统
CN115683241A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种基于大数据分析的风量测量系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2662052Y (zh) * 2003-12-05 2004-12-08 云南昆船第二机械有限公司 管道风速风量调控装置
JP2011112271A (ja) * 2009-11-26 2011-06-09 Kubota Corp 風速センサと可変風量ユニットおよび空調システム
CN206311152U (zh) * 2016-11-21 2017-07-07 中国能源建设集团华北电力试验研究院有限公司 一种多通道自动测量大截面风量的装置
CN109443455A (zh) * 2018-11-06 2019-03-08 中国农业大学 风机通风量测试装置及其测试方法
CN211401311U (zh) * 2020-03-03 2020-09-01 广州智源测控技术开发有限公司 一种凉风扇风量测试装置
CN212364343U (zh) * 2020-06-02 2021-01-15 南京一览环境技术有限公司 一种多点位移动式风量动态测量装置
CN113092808A (zh) * 2021-02-23 2021-07-09 农业农村部环境保护科研监测所 轴流风机用风速测量系统及其测试方法
CN115585872A (zh) * 2022-10-19 2023-01-10 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量校正系统
CN115683240A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种基于大数据分析的风量测量方法
CN115683241A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种基于大数据分析的风量测量系统
CN115683286A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量校正方法
CN115683243A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量系统
CN115683244A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场圆形风道的风量测量系统
CN115683242A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场矩形风道的风量测量系统
CN115711632A (zh) * 2022-10-19 2023-02-24 西安京兆电力科技有限公司 确定非均匀风场风道横截面内数据平均风速值点位的方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2662052Y (zh) * 2003-12-05 2004-12-08 云南昆船第二机械有限公司 管道风速风量调控装置
JP2011112271A (ja) * 2009-11-26 2011-06-09 Kubota Corp 風速センサと可変風量ユニットおよび空調システム
CN206311152U (zh) * 2016-11-21 2017-07-07 中国能源建设集团华北电力试验研究院有限公司 一种多通道自动测量大截面风量的装置
CN109443455A (zh) * 2018-11-06 2019-03-08 中国农业大学 风机通风量测试装置及其测试方法
CN211401311U (zh) * 2020-03-03 2020-09-01 广州智源测控技术开发有限公司 一种凉风扇风量测试装置
CN212364343U (zh) * 2020-06-02 2021-01-15 南京一览环境技术有限公司 一种多点位移动式风量动态测量装置
CN113092808A (zh) * 2021-02-23 2021-07-09 农业农村部环境保护科研监测所 轴流风机用风速测量系统及其测试方法
CN115585872A (zh) * 2022-10-19 2023-01-10 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量校正系统
CN115683240A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种基于大数据分析的风量测量方法
CN115683241A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种基于大数据分析的风量测量系统
CN115683286A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量校正方法
CN115683243A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场风道的风量测量系统
CN115683244A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场圆形风道的风量测量系统
CN115683242A (zh) * 2022-10-19 2023-02-03 西安京兆电力科技有限公司 一种非均匀风场矩形风道的风量测量系统
CN115711632A (zh) * 2022-10-19 2023-02-24 西安京兆电力科技有限公司 确定非均匀风场风道横截面内数据平均风速值点位的方法

Also Published As

Publication number Publication date
CN115683241A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024082763A1 (zh) 一种非均匀风场风道的风量测量系统
WO2024082765A1 (zh) 一种非均匀风场风道的风量测量校正系统
WO2024082760A1 (zh) 确定非均匀风场风道横截面内数据平均风速值点位的方法
WO2024082762A1 (zh) 一种基于大数据分析的风量测量方法
WO2024082761A1 (zh) 一种基于大数据分析的风量测量系统
WO2024082764A1 (zh) 一种非均匀风场风道的风量测量校正方法
CN115683244A (zh) 一种非均匀风场圆形风道的风量测量系统
CN115683242A (zh) 一种非均匀风场矩形风道的风量测量系统
US20170322059A1 (en) Low pressure drop and high temperature flow measuring device
Wen et al. Numerical and experimental study towards a novel torque damper with minimized air flow instability
CN219495322U (zh) 一种非均匀风场风道的风量测量系统
CN108386983B (zh) 一种用于通风空调风管的低阻力分流三通构件
CN107144599B (zh) 一种烟气酸露点测量装置
CN212903356U (zh) 一种制粉系统磨煤机入口风量的测量系统
CN113790867A (zh) 一种梗丝分选通道内流场特性检测方法
CN211121383U (zh) 一种阵列式布置的空气流量测量装置
CN107676563B (zh) 基于仿生学植物分支结构的低阻力三通构件
CN107725945B (zh) 基于耗散率控制的低阻力三通构件
Цаканян et al. Choosing a Universal Air Collector Design for a Cylindrical-Shaped Hot-Wire Anemometer
Kuan et al. CFD simulation and experimental validation of diluted particulate turbulent flows in a 90∘ duct bend
CN106841672B (zh) 阵列小机翼检测锅炉二次分风道风速的装置和方法
CN212409789U (zh) 旋流燃烧器二次风测速装置
CN212031525U (zh) 含尘气流防堵塞通流式动压测速系统
CN110332526A (zh) 一种烟气导流结构、装置、余热锅炉及烟气导流方法
CN110118345B (zh) 一种烟气导流系统、方法及余热锅炉