WO2024082321A1 - 一种凝胶状含能材料、制备方法及相关系统和装置 - Google Patents

一种凝胶状含能材料、制备方法及相关系统和装置 Download PDF

Info

Publication number
WO2024082321A1
WO2024082321A1 PCT/CN2022/127412 CN2022127412W WO2024082321A1 WO 2024082321 A1 WO2024082321 A1 WO 2024082321A1 CN 2022127412 W CN2022127412 W CN 2022127412W WO 2024082321 A1 WO2024082321 A1 WO 2024082321A1
Authority
WO
WIPO (PCT)
Prior art keywords
energetic material
gel
gap
conical
shell
Prior art date
Application number
PCT/CN2022/127412
Other languages
English (en)
French (fr)
Inventor
石桓通
胡于家
成伦
李兴文
吴坚
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2024082321A1 publication Critical patent/WO2024082321A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/08Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide with a nitrated organic compound

Definitions

  • the invention belongs to the field of new explosives and relates to a gelatinous energetic material, a preparation method and related systems and devices.
  • the hydroelectric effect refers to a complex physical process in which high voltage and high current are rapidly converted into energy after passing through a liquid medium, accompanied by a variety of extreme physical effects.
  • the mechanical, acoustic, optical, and chemical effects it produces have great application prospects in industry.
  • the underwater shock wave generation technology based on the hydroelectric effect has been widely used in scenarios including mechanical processing, electric pulse cleaning, extracorporeal lithotripsy, oil and gas unblocking, and reservoir transformation.
  • Water gap discharge is a common underwater shock wave generation technology based on the hydroelectric effect. When a strong electric field is loaded on the electrodes at both ends of the gap, the water medium between the electrodes undergoes electrical breakdown and forms a plasma discharge channel.
  • this method has the following disadvantages: 1) It requires a complex structure of the bullet feeding mechanism to help complete the repetitive work, which is expensive and the structures such as the runner and bearings are prone to failure under the action of strong shock waves; 2) The liquid energetic material needs to be loaded into the shell to form an energetic bullet, but the energetic shell in the storage bin is easily damaged under strong impact, affecting the repetitive work; 3) The liquid energetic material using thickeners such as cellulose acetate is not viscous enough, there is a sedimentation problem and it cannot be left standing for more than 24 hours.
  • the purpose of the present invention is to solve the problems in the prior art and to provide a gel-like energetic material, a preparation method and related systems and devices.
  • the present invention provides a gel-like energetic material, which comprises, by weight, 30 to 65 parts of nitromethane, 10 to 30 parts of metal oxide powder, 15 to 40 parts of aluminum powder and 1 to 3 parts of hydrophobic fumed silica gel.
  • the present invention provides a method for preparing a gel-like energetic material, comprising the following steps:
  • Step 1 Evenly mix the metal oxide powder and the aluminum powder to obtain aluminum powder/metal oxide powder
  • Step 2 adding aluminum powder/metal oxide powder to nitromethane, stirring at room temperature to uniformly mix the nitromethane and the aluminum powder/metal oxide powder to obtain aluminum powder/metal oxide/nitromethane powder;
  • Step 3 Add hydrophobic fumed silica to the aluminum powder/metal oxide/nitromethane powder, stir at room temperature, and gel the mixture to obtain a gel-like energetic material;
  • step 2 and step 3 the stirring speed is 50 r/min to 500 r/min.
  • the present invention provides a device for preparing a gel-like energetic material, comprising:
  • a cavity wherein the cavity is provided with a cavity sealing cover, a spiral stirring rod is arranged inside, and a stirring rod mounting hole is opened at the bottom;
  • a cavity sealing cover wherein a pressure valve is provided on the cavity sealing cover
  • a spiral stirring rod wherein a mounting seat is arranged at the bottom of the spiral stirring rod, the mounting seat is arranged in the mounting hole of the stirring rod, a filling port connected to the cavity is opened on the mounting seat, and a countersunk hole is arranged at the outlet of the filling port for connecting the stirring extension rod;
  • a stirring extension rod the end of which is connected to a stirring motor for driving the spiral stirring rod to rotate.
  • the present invention provides a method for preparing a gel-like energetic material, comprising the following steps:
  • Step 1 Evenly mix the metal oxide powder and the aluminum powder to obtain aluminum powder/metal oxide powder
  • Step 2 Add nitromethane to the cavity, then add aluminum powder/metal oxide powder to the cavity, cover the cavity sealing cover, start the stirring motor to drive the spiral stirring rod to rotate and stir at room temperature to make the nitromethane and aluminum powder/metal oxide powder evenly mixed, and turn off the stirring motor;
  • Step 3 Open the cavity sealing cover, add hydrophobic fumed silica into the cavity, cover the cavity sealing cover, start the stirring motor to drive the spiral stirring rod to rotate and stir at room temperature to gel the mixture to obtain a gel-like energetic material.
  • the present invention provides a gel-like energetic material continuous pushing device, comprising a shell, wherein the shell is a cylindrical structure assembled from a front shell, a middle shell and a rear shell;
  • the interior of the front shell is an energetic material storage bin, the front end is provided with an energetic material push port connected to the energetic material storage bin, and the rear end is provided with a switching socket; the energetic material storage bin is filled with the gel-like energetic material;
  • a motor is arranged in the middle shell, an adapter socket is arranged at the front end, and a sealed adapter socket is arranged at the rear end, and the adapter socket at the front end is used to connect with the adapter socket at the rear end of the front shell;
  • the motor is installed on the screw;
  • a pushing piston block is installed at the front end of the screw, and a sealing ring is sleeved on the pushing piston block;
  • a silicone oil partition and a ball screw are fixedly arranged between the pushing piston block and the motor, and the ball screw is located between the motor and the silicone oil partition; in the middle shell, silicone oil is filled between the silicone oil partition and the sealed adapter socket at the rear end of the middle shell;
  • a battery and a control module are arranged in the rear shell body, and a sealed adapter socket is arranged at the front end for sealingly connecting with the sealed adapter socket at the rear end of the middle shell body, and the rear end of the rear shell body is a closed structure;
  • the control module is installed on the battery and connected to the control end of the motor;
  • the battery is connected to the power supply end of the motor;
  • the motor drives the piston block to push the gel-like energetic material out of the energetic material pushing port to form a conical energetic material block.
  • the present invention provides a gap discharge device, comprising an integrated gap discharge pulse source and the gel-like energetic material continuous pushing device;
  • the integrated gap discharge pulse source comprises a shell with an opening at the rear end, a small capacitor is arranged inside the front end of the shell, a charging insulation is arranged between the small capacitor and the cable socket, a cable socket is provided on the charging insulation, and the small capacitor is connected to an external cable; a gas switch is arranged at the rear end of the small capacitor, one end of the gas switch is connected to the small capacitor, and the other end is connected to a high-voltage transmission rod, an electrode insulation is sleeved on the outside of the high-voltage transmission rod, and a high-voltage electrode is arranged at the end of the high-voltage transmission rod; a reflux column is arranged at the rear end of the shell, the reflux column is sealed and connected to the front shell of the continuous pushing device, and a detonation gap is formed between the two, and the high-voltage electrode is located in the detonation gap; the energetic material pushing port of the continuous pushing device is connected to the detonation gap, and the continuous pushing device pushes the gel
  • the present invention provides a water gap discharge experimental system, comprising a water gap discharge experimental platform and the gap discharge device;
  • the water gap discharge experimental platform comprises a water tank, a large capacitor and an oscilloscope; the gap discharge device is vertically arranged in the water tank, and a coaxial transmission device is installed at the front end; the rear end of the coaxial transmission device is connected to the front end of the gap discharge device, and the front end is connected to one end of a coaxial cable, and the other end of the coaxial cable is connected to a large capacitor through a three-electrode switch;
  • a shock wave pressure probe and a forming plate are arranged in the water in the water cylinder, and the shock wave pressure probe and the forming plate are respectively arranged on both sides of the conical energetic material block and are located on the path of the shock wave generated by the explosion of the conical energetic material block; the oscilloscope is respectively connected to the shock wave pressure probe, the voltage probe and the current probe; the voltage probe is arranged on the coaxial cable, and the current probe is arranged on the coaxial cable and the grounding wire of the three-electrode switch.
  • the present invention provides a water gap discharge experimental method, comprising the following steps:
  • Step 1 Install the gap discharge device under the coaxial transmission device, form a 20 mm long water gap between the high voltage electrode and the energetic material push port, and immerse the gap discharge device in water;
  • Step 2 Control the high-voltage power supply to charge the large capacitor.
  • the voltage of the large capacitor reaches 10 kV and the energy storage reaches 300 J, charging stops.
  • Step 3 Trigger the three-electrode switch to pre-discharge, and the control module picks up the magnetic field signal and controls the motor to work;
  • Step 4 The gel-like energetic material is pushed into the water gap to form a conical energetic material block
  • Step 5 Install a shock wave pressure probe for measuring the amplitude, impulse and energy density of the shock wave generated by the detonation of the conical energetic material block at a distance of 15 cm from the conical energetic material block;
  • Step 6 Control the high-voltage power supply to charge the large capacitor.
  • the voltage of the large capacitor reaches 20 kV and the energy storage reaches 1200 J, charging is stopped.
  • Step 7 Trigger the three-electrode switch to form a discharge circuit. After the electric energy is injected into the conical energetic material block, it will detonate and generate a shock wave in the water.
  • the present invention provides a rock breaking system, comprising a portable power source and the gap discharge device; the gap discharge device is arranged in a plurality of prefabricated holes in a target rock mass with fracturing requirements, and a cable socket of the gap discharge device is connected to the portable power source via a portable coaxial cable.
  • the present invention provides a rock breaking method, comprising the following steps:
  • Step 1 first determine the fracturing requirements of the target rock mass, wherein the fracturing requirements include the fracturing position and the crack morphology;
  • Step 2 setting a number of holes on the surface of the target rock mass according to the fracturing requirements
  • Step 3 installing a plurality of gap discharge devices in corresponding holes respectively;
  • Step 4 controlling the power supply to charge and pre-discharge to start the gel-like energetic material continuous pushing device
  • Step 5 the gel-like energetic material continuous pushing device pushes the gel-like energetic material into the detonation gap to form a conical energetic material block;
  • Step 6 controlling the power supply to charge the capacitor
  • Step 7 the capacitor voltage reaches the limit withstand voltage of the gas switch
  • Step 8 The gas switch breaks down to form a discharge circuit, and energy is injected into the detonation gap;
  • Step 9 detonating the conical energetic material block by discharging through the detonation gap
  • Step 10 judging whether the target rock mass has achieved the fracturing effect, if not as expected, returning to step 5, and the discharge loop formed during detonation will start the continuous pushing device again, if as expected, executing step 11;
  • Step 11 install the gap discharge device to a new working position, and repeat the above steps 2-10 until all target areas have achieved the desired fracturing effect.
  • the present invention provides a shale oil reservoir transformation system, including a control platform and the above-mentioned gap discharge device, wherein the gap discharge device is arranged in a vertical well or a horizontal well; the control platform is connected to the gap discharge device through a cable to detonate the conical energetic material block in the detonation gap to generate a shock wave.
  • the present invention provides a shale oil reservoir transformation method, comprising the following steps:
  • Step 1 determining the type of operation scenario, where the types of operation scenarios include vertical wells and horizontal wells;
  • Step 2 If it is a vertical well, install the gap discharge device at the working position through the transmission coaxial cable;
  • the intermittent discharge device is pushed to the operating position of the heating well through the coiled tubing;
  • Step 3 the control platform controls the power supply to charge the capacitor through the cable, and pre-discharges to start the gel-like energetic material continuous pushing device;
  • Step 4 the gel-like energetic material continuous pushing device pushes the gel-like energetic material into the detonation gap to form a conical energetic material block;
  • Step 5 the control platform controls the power supply to charge the capacitor through the cable
  • Step 6 the capacitor voltage reaches the limit withstand voltage of the gas switch
  • Step 7 The gas switch breaks down to form a discharge circuit, and energy is injected into the detonation gap;
  • Step 8 detonating the conical energetic material block by discharging through the detonation gap
  • Step 9 evaluate the reservoir transformation effect. If it does not meet expectations, return to step 4; if it meets expectations, go to step 10;
  • Step 10 Install the gap discharge device to the new working position and repeat steps 1 to 9 until all working scenes are transformed.
  • the gel-like energetic material of the present invention uses a hydrophobic silica additive to enable it to be self-supporting in water, and forms a conical energetic material block with a height of more than 5 cm and a retention time of more than 10 min when the mass is 10 g, which can be stably loaded in the water gap for a long time without a shell and connect the positive and negative electrodes of the gap.
  • the other components of the energetic material do not contain explosives in the dangerous goods entry.
  • the common formula is a mixture containing nitromethane, aluminum powder, and metal oxides. The friction sensitivity and impact sensitivity are both zero after the pyrotechnic test, and the safety is extremely high.
  • the formula ingredients are insoluble or extremely difficult to dissolve in water, and they do not fail or decompose under long-term immersion in water, and can still detonate normally under the action of pulse current.
  • the gel-like energetic material After the gel-like energetic material is loaded in the water gap, it can generate a shock wave with a fixed amplitude, impulse and energy under the drive of a specific parameter pulse source, and has excellent repeatability. Compared with the water gap discharge under the original parameters, the amplitude, impulse and energy of the shock wave are greatly improved, and it has great engineering application prospects.
  • the spiral stirring rod used in the gel-like energetic material preparation device of the present invention can quickly mix the powder components (aluminum powder, metal oxide powder), liquid components (nitromethane) and gel additives (hydrophobic gas phase SiO2 ), and prepare a uniform, impurity-free, bubble-free gel-like energetic material in a short time.
  • the preparation device adopts a sealed structure, which solves the problem of nitromethane volatilization during the preparation process and prevents impurities from mixing into the energetic material during the stirring preparation process.
  • the proportion of each component of the gel-like energetic material directly affects the detonation effect. After the preparation is completed, it is directly filled into the continuous pushing working device through the preparation device, reducing the loss during the preparation, subpackaging and filling process, and realizing the precise proportion of the energetic material.
  • the gel-like energetic material continuous pushing device of the present invention is suitable for all modified water gap discharge devices, and can be directly installed on one side of the ground electrode as part of the reflux device.
  • the energetic material is stored inside the pushing device, and is pushed to the water gap electrode by the linear motor through the piston structure. After detonation, the amplitude, impulse and energy of the shock wave are greatly improved.
  • the gel-like energetic material can be self-supporting and waterproof, and is directly stored inside the pushing device. There is no need to load other materials such as shells.
  • the pushing device has a simple and reliable structure and a high degree of integration. And because the shell is not loaded outside the energetic material, the shock wave will not cause leakage, sympathetic explosion and other problems to the energetic material, affecting the repeated operation of the device.
  • the shell of the continuous pushing device is integrated and stably connected to the ground electrode.
  • the large current flows directly into the earth through the shell without passing through the stored energetic material, and there is no risk of electrostatic detonation.
  • the device is designed to be sealed as a whole, and the energetic material can be stored inside it for more than one month without failure, decomposition, or sympathetic explosion, and can still be stably detonated.
  • FIG1 is a schematic structural diagram of a device for preparing a gel-like energetic material according to the present invention.
  • FIG. 2 is a schematic structural diagram of a device for continuously pushing a gel-like energetic material according to the present invention.
  • FIG. 3 is a schematic structural diagram of a gap discharge device according to the present invention.
  • FIG. 4 is a schematic structural diagram of a water gap discharge experimental system of the present invention.
  • FIG5 is a discharge waveform diagram of Example 1.
  • FIG6 is a discharge waveform diagram of Example 4.
  • FIG. 7 is a shock wave pressure waveform diagram of Example 1.
  • FIG8 is a shock wave pressure waveform diagram of Example 2.
  • FIG. 9 is a shock wave pressure waveform diagram of Example 3.
  • FIG. 10 is a shock wave pressure waveform diagram of Example 4.
  • FIG. 11 is a shock wave pressure waveform diagram of Comparative Example 1.
  • FIG12 is a shock wave pressure waveform diagram of Comparative Example 2.
  • FIG13 is a shock wave pressure waveform diagram of Comparative Example 3.
  • FIG. 14 is a schematic diagram of a rock breaking system according to the present invention.
  • FIG. 15 is a flow chart of the rock breaking method of the present invention.
  • FIG. 16 is a schematic diagram of a vertical well shale reservoir transformation system according to the present invention.
  • FIG. 17 is a schematic diagram of a horizontal well shale reservoir transformation system according to the present invention.
  • FIG18 is a flow chart of the shale oil reservoir transformation method of the present invention.
  • 1-gel-like energetic material preparation device 2-gel-like energetic material continuous pushing device, 3-water gap discharge experimental platform, 4-integrated gap discharge pulse source, 101-pressurization valve, 102-spiral stirring rod, 103-cavity sealing cover, 104-cavity, 105-stirring rod installation hole, 106-filling port, 107-stirring extension rod, 201-battery, 202-control module, 203-sealed adapter socket, 204-motor control line, 205-motor power line, 206-motor, 207-silicon oil, 208-ball screw, 209-silicon oil partition, 210-screw, 211-pressure relief hole, 212-sealing ring, 213-pushing piston block, 214-energetic material storage bin, 215-assembly thread, 216-energetic material pushing port, 217-gel-like energetic material, 218-conical energetic material block, 301- Large capacitor, 302-three-electrode switch
  • horizontal does not mean that the component must be absolutely horizontal, but can be slightly tilted.
  • horizontal only means that its direction is more horizontal than “vertical”, which does not mean that the structure must be completely horizontal, but can be slightly tilted.
  • the terms “set”, “install”, “connect”, and “connect” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal connection of two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the embodiment of the present invention discloses a self-supporting gel-like energetic material, which can be stably loaded in a gap for a long time without a shell, and includes 30-40 parts of nitromethane, 10-30 parts of metal oxide powder, 20-60 parts of aluminum powder, and 1-2 parts of hydrophobic fumed silica for gelation.
  • the types of metal oxide powder include but are not limited to copper oxide, manganese dioxide, ferric oxide and ferrous oxide, the particle size range of the metal oxide powder is 1 ⁇ m-100 ⁇ m, and the particle size range of the aluminum powder is 1 ⁇ m-100 ⁇ m.
  • the embodiment of the present invention discloses a method for preparing the above-mentioned gelatinous energetic material, comprising the following steps:
  • Step 1 Evenly mix the metal oxide powder and the aluminum powder to obtain aluminum powder/metal oxide powder
  • Step 2 adding aluminum powder/metal oxide powder to nitromethane, stirring at a speed of 50 r/min to 500 r/min at room temperature to uniformly mix the nitromethane and the aluminum powder/metal oxide powder to obtain aluminum powder/metal oxide/nitromethane powder;
  • Step 3 Add hydrophobic fumed silica to the aluminum powder/metal oxide/nitromethane powder, and stir at room temperature at a speed of 50 r/min to 500 r/min to gel the mixture to obtain a gel-like energetic material.
  • the embodiment of the present invention discloses a gel-like energetic material preparation device 1 for realizing the preparation method of the above-mentioned gel-like energetic material, comprising a cavity 104, a cavity sealing cover 103, a spiral stirring rod 102 and a stirring extension rod 107.
  • the cavity 104 is provided with a cavity sealing cover 103, a spiral stirring rod 102 is arranged inside, and a stirring rod mounting hole 105 is provided at the bottom; a pressurizing valve 101 is provided on the cavity sealing cover 103; a mounting seat is provided at the bottom of the spiral stirring rod 102, the mounting seat is arranged in the stirring rod mounting hole 105, a filling port 106 connected to the cavity 104 is provided on the mounting seat, and a countersunk hole is provided at the outlet of the filling port 106 for connecting the stirring extension rod 107; the end of the stirring extension rod 107 is connected to a stirring motor for driving the spiral stirring rod 102 to rotate.
  • the raw materials for preparing the gel-like energetic material are placed in the cavity 104, and the spiral stirring rod 102 is installed in the cavity through the stirring rod mounting hole 105, so that the raw materials are evenly mixed and gelled.
  • One end of the stirring extension rod 107 is connected to the spiral stirring rod 102, and the other end can be connected to the stirring motor for low-speed stirring, or manual stirring. Since nitromethane is volatile, the cavity sealing cover 103 is used to seal the entire cavity 104 and the interior during the entire stirring process.
  • the stirring extension rod 107 is removed to expose the hollow filling port 106 inside, and the inside of the cavity 104 is pressurized by the pressure valve 101, and the energetic material is squeezed out from the filling port 106 for packaging, so as to achieve a precise ratio of the energetic material.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment discloses a gel-like energetic material, which includes, by weight, 40.375 parts of nitromethane, 23 parts of copper oxide powder, 34.5 parts of aluminum powder, and is gelled with 1-2 parts of hydrophobic fumed silica.
  • This embodiment also discloses a method for preparing a gel-like energetic material, comprising the following steps:
  • Step 101 23 parts of copper oxide powder and 34.5 parts of aluminum powder are placed in a three-dimensional mixer and mixed for 30 minutes to make them completely mixed; wherein the particle size range of the copper oxide powder is 1 ⁇ m to 100 ⁇ m, and the particle size range of the aluminum powder is 1 ⁇ m to 100 ⁇ m;
  • Step 102 installing a spiral stirring rod 102 on the cavity 104 of the gel-like energetic material preparation device 1, taking 40.375 parts of nitromethane and placing it in the cavity 104, and then placing 20 g of the completely mixed aluminum powder/copper oxide powder in the cavity 104, covering the cavity sealing cover 103, and rotating the spiral stirring rod 102 at a low speed for 10 minutes at room temperature to uniformly mix the nitromethane and the mixed powder; wherein the purity of the nitromethane is greater than 99%, the room temperature is 10°C to 30°C, and the low-speed rotation stirring is 50 r/min to 500 r/min;
  • Step 103 Open the cavity sealing cover 103, take 2.125 parts of hydrophobic fumed silica and place it in the cavity 104, cover the cavity sealing cover 103, and rotate the spiral stirring rod 102 at a low speed at room temperature for 10 minutes to gel the energetic material;
  • Step 104 Open the pressurizing valve 101 on the cavity sealing cover 103 , and open the filling port 106 below the spiral stirring rod 102 , pressurize, and fill the gel-like energetic material into the energetic material storage bin 214 of the gel-like energetic material continuous pushing device 2 .
  • Step 105 Install the energetic material storage bin 214 of the gel-like energetic material continuous pushing device 2 to the gel-like energetic material continuous pushing device 2 .
  • Comparative Example 1 The difference between Comparative Example 1 and Examples 1-4 is that there is no pre-discharge to start the continuous pushing working device, and the water gap formed between the energetic material pushing port and the high-voltage electrode is still 20 mm in length and does not contain gel-like energetic material blocks.
  • Comparative Example 2 is different from Example 3 in that no hydrophobic gas-phase SiO2 is added to gel the energetic material.
  • Comparative Example 3 The difference between Comparative Example 3 and Example 3 is that the mass of the conical gel-like energetic material block is 1.6 g, and the electrode gap distance is adjusted to 10 mm.
  • FIG. 5 it is a discharge waveform diagram of Example 1. It can be seen that a discharge loop is formed after the three-electrode switch is triggered, and a high voltage is quickly loaded to the high-voltage electrode.
  • the energetic material undergoes a breakdown process, the voltage drops from 7.5 kV to 3 kV, and the current rises rapidly from 0 kA to 30 kA. During this period, the energy deposition rate inside the energetic material is slow, and the detonation has not started.
  • the time period of 2.5 ⁇ s ⁇ 10 ⁇ s the energetic material is completely broken down to form a plasma discharge channel.
  • the energy storage in the capacitor is rapidly deposited inside the energetic material, causing the temperature of the energetic material in the breakdown channel to rise rapidly.
  • the temperature rise causes the copper oxide powder and aluminum powder in the gel energetic material to undergo a violent thermite reaction, further increasing the temperature of the energetic material.
  • the combined action of the two causes nitromethane to detonate, generating a shock wave with extremely strong amplitude, impulse and energy.
  • the detonation of the energetic material will also constrain the outward expansion of the plasma channel, making the plasma channel resistance higher and maintaining a higher energy deposition power.
  • FIG. 6 is a discharge waveform diagram of Example 4.
  • the ratio of doped aluminum powder to copper oxide is less, which makes the conical energetic material block formed by it have a larger resistance. Therefore, after the electrode switch is triggered, the high voltage is loaded to the high voltage electrode and the capacitor voltage of 20 kV is maintained in the time period of 0 ⁇ s ⁇ 2.5 ⁇ s. In the time period of 2.5 ⁇ s ⁇ 5 ⁇ s, the energetic material undergoes a breakdown process, the voltage drops from 20 kV to 3 kV, and the current rises rapidly from 0 kA to 27 kA. During this period, the energy deposition rate inside the energetic material is slow, and the detonation has not started.
  • the energetic material In the time period of 5 ⁇ s ⁇ 12 ⁇ s, the energetic material is completely broken down inside, forming a plasma discharge channel to cause it to detonate. Comparing the discharge processes of Examples 1 and 4, it can be seen that the doping of aluminum powder and copper oxide powder will affect the formation of breakdown and discharge channels, and affect the subsequent energy deposition efficiency.
  • Aluminum powder plays a decisive role in this process, because compared with nitromethane, copper oxide powder and water, its own resistance is small, which is conducive to the formation of breakdown and discharge channels.
  • the higher the content of aluminum powder the shorter the breakdown time of the energetic material, the greater the peak current, the higher the energy deposition efficiency, and the more conducive to the detonation of the energetic material. Therefore, a certain amount of aluminum powder and copper oxide powder must be doped into the gel-like energetic material to make nitromethane detonate.
  • the gel-like energetic material can be detonated under the energy storage of a 1200 J driving source, generating a shock wave with extremely strong amplitude and impulse, and has certain engineering application value.
  • the principle is that the pulse source injects a large amount of energy into the gap of the energetic material in a short period of time, causing it to break down and form a discharge channel.
  • the metal oxide and aluminum powder undergo a violent thermite reaction to release a large amount of heat. The synergistic effect of the two causes the gel-like energetic material to explode.
  • the detonation wave propagates outward to detonate the outer layer of energetic material to enhance the shock wave, and on the other hand, it limits the expansion of the discharge channel inward, so that it maintains a high resistance to accelerate the electric energy deposition power, and maintain the propagation and development of the detonation wave.
  • the proportion of nitromethane in the gel-like energetic material is too low, although the conical energetic material block is easier to detonate, the nitromethane content is too low during the propagation of the detonation wave, which is not conducive to further development. Therefore, the ratio has a regulating effect on the shock wave generated by the final explosion of the gel-like energetic material.
  • the formula of the gel-like energetic material can be adjusted as needed to obtain the ideal shock wave peak value, impulse density and energy density.
  • the gel-like energetic material and the continuous pushing device thereof of the present invention have the following advantages:
  • the gel-like energetic material has a self-supporting effect and can be directly pushed into the water gap without a shell. It will not fail or decompose after long-term immersion and can still detonate normally under the action of pulse current. At the same time, the shell-free structure greatly reduces the cost of manufacturing, transportation, and use, and improves the reliability of the device.
  • the continuous pushing device has a simple and reliable structure and high integration.
  • the energetic materials in the storage bin can be stably stored for a long time without decomposition, failure or explosion.
  • the formula and filling quality of the gel-like energetic material have a regulatory effect on the shock wave. In actual engineering, it can be adjusted as needed to obtain the ideal shock wave peak value, impulse density and energy density.
  • the embodiment of the present invention discloses a gel-like energetic material continuous pushing device 2, comprising a shell, which is a cylindrical structure assembled from a front shell, a middle shell and a rear shell;
  • the interior of the front shell is an energetic material storage bin 214, the front end is provided with an energetic material push port 216 connected to the energetic material storage bin 214, and the rear end is provided with an adapter socket; the energetic material storage bin 214 is filled with a gel-like energetic material 217; a motor 206 is provided in the middle shell, a adapter socket is provided at the front end, and a sealed adapter socket 203 is provided at the rear end, and the adapter socket at the front end is used to connect with the adapter socket at the rear end of the front shell; the motor 206 is installed on the screw 210; a pushing piston block 213 is installed at the front end of the screw 210, and a sealing ring 212 is sleeved on the pushing piston block 213; a silicone oil partition plate 209 and a ball screw 208 are fixedly provided between the pushing piston block 213 and the motor 206, and the ball screw 208 is fixedly provided between the pushing piston block 213 and the motor 206.
  • the lever 208 is located between the motor 206 and the silicone oil partition 209; in the middle shell, silicone oil 207 is filled between the silicone oil partition 209 and the sealed adapter socket 203 at the rear end of the middle shell; a battery 201 and a control module 202 are arranged in the rear shell, and a sealed adapter socket 203 is arranged at the front end for sealing connection with the sealed adapter socket 203 at the rear end of the middle shell, and the rear end of the rear shell is a closed structure; the control module 202 is installed on the battery 201 and connected to the control end of the motor 206; the battery 201 is connected to the power supply end of the motor 206; the motor 206 drives the piston block 213 to push the gel-like energetic material 217 out of the energetic material push port 216 to form a conical energetic material block 218.
  • the gel-like energetic material is stored in the energetic material storage bin 214, and under the action of the pushing piston block 213, it is pushed out from the energetic material pushing port 216 to form a conical energetic material block 218.
  • the pushing piston block 213 is pushed forward by the screw 210, and an annular sealing ring 212 is installed to seal it with the outside.
  • the motor 206 is connected to the other end of the screw 210 and provides propulsion power.
  • the motor 206 is immersed in silicone oil 207 as a whole to maintain insulation, and is sealed with the silicone oil partition 209 through the ball screw 208.
  • a plurality of pressure relief holes 211 are arranged between the silicone oil partition 209 and the pushing piston block 213 to keep the water pressure inside and outside the device consistent.
  • the motor 206 is powered by the battery 201 and controlled by the control module 202. After passing through the sealed adapter socket 203, it is connected to the motor power line 205 through the motor control line 204.
  • the control module 202 is internally installed with a Hall sensor, a vibration sensor, etc., which can collect current signals, magnetic field signals, vibration signals, etc. to control the operation of the motor 206.
  • the assembly thread 215 can install the gel-like energetic material continuous pushing device 2 on the modified integrated gap discharge pulse source 4 to increase the amplitude, impulse and energy of the shock wave.
  • the working principle of the gel-like energetic material continuous pushing device 2 of the present invention is as follows:
  • the gel-like energetic material continuous pushing device 2 can be installed on all modified integrated gap discharge pulse sources 4 as an important supplement to the shock wave energy. Generally speaking, the gel-like energetic material continuous pushing device 2 is installed on one side of the ground electrode, and the energetic material pushing port 216 replaces the ground electrode of the original water gap discharge device to form a water gap with its high-voltage electrode.
  • a pre-discharge method can be used to enable the control module 202 to pick up a magnetic field signal to start the motor 206, or an energetic material can be preset between the gaps.
  • the screw 210 pushes the pushing piston block 213 to squeeze the gel-like energetic material 217 in the energetic material storage bin 214, and the gel-like energetic material 217 will be squeezed out of the energetic material pushing port 216 to form a conical energetic material block 218 between the water gaps.
  • the three-electrode switch is triggered to form a discharge circuit, and the electric energy is quickly injected into the conical energetic material block 218. Electric breakdown occurs inside the conical energetic material block 218 and a plasma discharge channel is formed. The high temperature, radiation and other effects generated cause the conical energetic material block 218 to explode and push the water medium to form a shock wave.
  • the control module 202 picks up the magnetic field signal and the vibration signal again, and starts the motor 206 to push the gel-like energetic material 217.
  • the conical energetic material block 218 can be formed again between the gaps to prepare for the next discharge and form a continuous working condition.
  • the energetic material push port 216 can be designed as a porous, Tesla valve or other form to prevent the transfer of explosion and ignition of the gel-like energetic material 217 in the energetic material storage bin 214. And because the energetic material storage bin 214 is installed on one side of the ground electrode, the current directly passes through the energetic material push port 216 to form a loop without passing through the overall structure, so the gel-like energetic material 217 in the energetic material storage bin 214 has no risk of sympathetic explosion.
  • the nitromethane at the energetic material pushing port 216 will gradually dissolve in water, leaving the hydrophobic fumed silica to form a hydrophobic protective layer, so that the gel-like energetic material 217 in the energetic material pushing port 216 can be stored for more than one month without failure or decomposition, and can still be stably detonated.
  • an embodiment of the present invention discloses a gap discharge device, including an integrated gap discharge pulse source 4 and a gel-like energetic material continuous pushing device 2;
  • the integrated gap discharge pulse source 4 comprises a shell with an opening at the rear end, a small capacitor 406 is arranged inside the front end of the shell, a charging insulator 407 is arranged between the small capacitor 406 and the cable socket 408, and a cable socket 408 is provided on the charging insulator 407 for connecting the small capacitor 406 with an external cable; a gas switch 405 is arranged at the rear end of the small capacitor 406, one end of the gas switch 405 is connected to the small capacitor 406, and the other end is connected to a high-voltage transmission rod 404, an electrode insulation 403 is sleeved on the outer side of the high-voltage transmission rod 404, and a high-voltage electrode 402 is arranged at the end of the high-voltage transmission rod 404; a reflux column 401 is arranged at the rear end of the shell, and the reflux column 401 is sealed and connected to the front shell of the continuous pushing device 2, and a detonation gap is formed between the two, and the high-voltage electrode 40
  • the gap discharge device of the present invention can be applied to outdoor working environments, including mines, oil wells, tunnels, etc. It highly integrates a gas switch 405 and a small capacitor 406, charges the small capacitor 406 through a portable coaxial cable 409 via a cable socket 408, and transmits electric energy to the water gap through a high-voltage transmission rod 404 and a high-voltage electrode 402, and then forms a loop through a reflux column 401, and the electrode insulation 403 and the charging insulation 407 are used for internal insulation.
  • the continuous pushing device is installed on one side of the reflux column 401, and its energetic material pushing port 216 forms a water gap with the high-voltage electrode 402.
  • an embodiment of the present invention discloses a water gap discharge experimental system, including a water gap discharge experimental platform 3 and the above-mentioned gap discharge device;
  • the water gap discharge experimental platform 3 includes a water cylinder 310, a large capacitor 301 and an oscilloscope 311; the gap discharge device is vertically arranged in the water cylinder 310, and a coaxial transmission device 306 is installed at the front end; the rear end of the coaxial transmission device 306 is connected to the front end of the gap discharge device, and the front end is connected to one end of a coaxial cable 304, and the other end of the coaxial cable 304 is connected to the large capacitor 301 through a three-electrode switch 302;
  • a shock wave pressure probe 308 and a formed plate 309 are arranged in the water in the water cylinder 310.
  • the shock wave pressure probe 308 and the formed plate 309 are respectively arranged on both sides of the conical energetic material block 218, and are located on the path of the shock wave 307 generated by the explosion of the conical energetic material block 218;
  • the oscilloscope 311 is respectively connected to the shock wave pressure probe 308, the voltage probe 305 and the current probe 303;
  • the voltage probe 305 is arranged on the coaxial cable 304, and the current probe 303 is arranged on the ground wire of the coaxial cable and the three-electrode switch 302.
  • the gel-like energetic material continuous pushing device 2 is installed below the coaxial transmission device 306, and the gel-like energetic material 217 is stored inside the gel-like energetic material continuous pushing device 2.
  • the gel-like energetic material continuous pushing device 2 is placed as a whole in a water cylinder 301 filled with water. After the gel-like energetic material continuous pushing device 2 is working, a conical energetic material block 218 is formed in the water gap. After the large laboratory capacitor 301 is charged, the three-electrode switch 302 is triggered, and the electric energy is injected into the conical energetic material block 218 through the coaxial cable 304. After the electric breakdown occurs inside the conical energetic material block 218, a plasma channel is formed.
  • the high temperature, radiation and other effects generated cause the conical energetic material block 218 to explode and push the water medium to form a shock wave 307.
  • the shock wave signal is picked up by the shock wave pressure probe 308, the discharge voltage signal is picked up by the voltage probe 305, and the current signal is picked up by the current probe 303. All the above signals are recorded and saved by the oscilloscope 311.
  • the shock wave generated by the water gap discharge experimental platform 3 is a free water shock wave, which can be applied to scenes such as mechanical processing and electric pulse cleaning.
  • the formed plate 309 is placed in water and processed by setting appropriate shock wave parameters.
  • the embodiment of the present invention discloses a water gap discharge experimental method, comprising the following steps:
  • Step 1 Install the gel-like energetic material continuous pushing device 2:
  • Step 101 The gel-like energetic material continuous pushing device 2 is installed directly below the coaxial transmission device 306, the high-voltage electrode 402 and the energetic material pushing port 216 form a water gap of 20 mm in length, and the gel-like energetic material continuous pushing device 2 is immersed in water.
  • Step 102 Control the high voltage power supply to charge the large capacitor 301.
  • the voltage of the large capacitor 301 reaches 10 kV and the energy storage reaches 300 J, the charging is stopped.
  • Step 103 Trigger the three-electrode switch 302 to pre-discharge, and the control module 202 controls the motor 206 to work after picking up the magnetic field signal.
  • Step 104 The gel-like energetic material 217 is pushed into the gap between the electrodes to form a conical energetic material block 218 with a mass of 3.2 g and a height of 20 mm.
  • Step 2 Detonating the conical energetic material block 218 .
  • Step 201 Install a pressure sensor PCB 138 at a distance of 15 cm from the load to measure the amplitude, impulse and energy density of the shock wave generated by the energetic material;
  • Step 202 Control the high voltage power supply to charge the large capacitor 301.
  • the voltage of the large capacitor 301 reaches 20 kV and the energy storage reaches 1200 J, the charging is stopped.
  • Step 203 Trigger the three-electrode switch 302 to form a discharge circuit, and inject electrical energy into the conical energetic material block 218 to cause it to detonate, generating a strong shock wave in water.
  • an embodiment of the present invention discloses a rock breaking system, including a portable power source 503 and a gap discharge device; the gap discharge device is arranged in a plurality of prefabricated holes 502 in a target rock mass 501 with fracturing requirements, and a cable socket 408 of the gap discharge device is connected to the portable power source 503 via a portable coaxial cable 409 .
  • This embodiment is a dual-hole directional rock breaking scenario.
  • Two parallel holes 502 are set on the side of the target rock mass 501 according to the fracturing requirements.
  • the size of the hole 502 is slightly larger than the overall size after the gel-like energetic material continuous pushing device 2 and the integrated gap discharge pulse source 4 are assembled.
  • the spacing between the holes 502 is determined based on multiple parameters such as the tensile strength of the rock mass and the target crack morphology. Generally speaking, the greater the tensile strength of the rock mass and the more complex the target crack morphology, the closer the spacing between the holes 502.
  • the device is powered by a portable power supply 503, and the rock breaking operation begins after the device is connected. Dual-hole directional rock breaking will form directional cracks connecting the dual holes, which is suitable for application scenarios such as coal seam roof cutting.
  • the present invention discloses a rock breaking method using the above rock breaking system, comprising the following steps:
  • Step 1 First determine the required fracturing position and crack shape of the rock mass.
  • Step 2 Set a certain number and spacing of holes on the rock surface according to the fracturing requirements.
  • Step 3 assembling the same number of continuous pushing devices and integrated gap discharge pulse sources as the number of holes in the rock mass, wherein the continuous pushing devices are pre-installed with gel-like energetic materials.
  • Step 4 Install the assembled whole device in the hole of the rock mass.
  • Step 5 control the power supply to charge, pre-discharge and start the continuous pushing device.
  • Step 6 The pushing device pushes the gel-like energetic material into the gap to form a conical energetic material block 218.
  • Step 7 controlling the power supply to charge the capacitor.
  • Step 8 The capacitor voltage reaches the maximum withstand voltage of the gas switch.
  • Step 9 The switch breaks down, forming a discharge circuit and injecting energy into the gap.
  • Step 10 gap discharge detonates the conical energetic material block 218.
  • Step 11 determine whether the target rock mass has achieved the fracturing effect. If it does not meet expectations, return to step 6, and the discharge loop formed during detonation will start the continuous pushing device again. If it meets expectations, execute step 12.
  • Step 12 carry the device to a new working position and repeat the above steps 2-11 until all target areas achieve the ideal fracturing effect.
  • an embodiment of the present invention discloses a vertical well shale reservoir transformation system, including a control platform 601 and a gap discharge device, wherein the gap discharge device is arranged in the vertical well; the control platform 601 is connected to the gap discharge device via a cable to detonate the conical energetic material block 218 in the detonation gap to generate a shock wave.
  • an embodiment of the present invention discloses a horizontal well shale reservoir transformation system, including a control platform 601 and a gap discharge device, wherein the gap discharge device is arranged in the horizontal well; the control platform 601 is connected to the gap discharge device via a cable to detonate the conical energetic material block 218 in the detonation gap to generate a shock wave.
  • This embodiment is a vertical well and horizontal well shale reservoir transformation.
  • the device installation method is selected according to the shale oil reservoir transformation scenario. If it is a vertical well 602, the device is installed at the operating position under the action of gravity with the help of a transmission coaxial cable 603. If it is a horizontal well 610, the device is pushed to the operating position of the heating well 606 with the help of a continuous oil pipe 607.
  • the ground control platform 601 charges the capacitor through the cable, and the pre-discharge starts the continuous pushing device.
  • the pushing device pushes the gel-like energetic material into the gap to form a conical energetic material block 218.
  • the ground control platform is started again to charge the capacitor.
  • the switch breaks down to form a discharge circuit.
  • the conical energetic material block 218 is detonated to generate a strong shock wave.
  • the strong shock wave couples into the reservoir to form a complex fracture network 604.
  • the shock wave is repeated a specific number of times at the same operating position to create a complex fracture network near the target operating position to improve the permeability of shale oil.
  • the shale oil can be directly extracted by conventional methods in the vertical well scenario, and in the horizontal well scenario, in-situ heating is required in the heating well to improve the permeability of the low-permeability shale oil 609 in the oil production well 608, and then the low-permeability shale oil is extracted by the oil production machine 605.
  • the device can also be used for oil and gas blockage removal, oil well production increase and other scenarios, and the operation process and method are similar to the above.
  • the present invention discloses a shale oil reservoir transformation method, comprising the following steps:
  • Step 1 Determine whether the operation scenario is a vertical well or a horizontal well.
  • Step 2 If it is a vertical well, the device is installed at the operating position under the action of gravity with the help of the transmission coaxial cable 603. If it is a horizontal well, the device is pushed to the heating well operating position with the help of the continuous oil pipe 607.
  • Step 3 on the ground, the control power supply charges the capacitor through the cable, and pre-discharges to start the continuous pushing device.
  • Step 4 The pushing device pushes the gel-like energetic material into the gap to form a conical energetic material block 218.
  • Step 5 on the ground, the control power is used to charge the capacitor through the cable.
  • Step 6 The capacitor voltage reaches the maximum withstand voltage of the gas switch.
  • Step 7 The switch breaks down, forming a discharge circuit and injecting energy into the gap.
  • Step 8 gap discharge detonates the conical energetic material block 218.
  • Step 9 repeating steps 4 to 8 a specific number of times at the same operating location to create a complex fracture network near the target operating location and improve the shale oil permeability.
  • Step 10 Install the device to the new operating location with the help of coaxial cable or coiled tubing.
  • Step 11 evaluate the reservoir transformation effect. If it does not meet expectations, return to step 1 and put the device back into the well. If it meets expectations, execute step 12.
  • Step 12 directly extract shale oil in the vertical well scenario, and in the horizontal well scenario, increase the permeability of low-permeability shale oil by in-situ heating in the heating well, and extract shale oil in the oil production well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

公开了一种凝胶状含能材料、制备方法及相关系统和装置,所述凝胶状含能材料能够在无外壳的情况下长时间稳定装填在水间隙内并连通间隙正负电极。含能材料的其他成分不含有危险品条目中的爆炸物,常见的配方为包含硝基甲烷、铝粉、金属氧化物的混合物,经火工品测试摩擦感度、撞击感度均为零,安全性极高。并且配方成分不溶于或极难溶于水,在水长时间浸泡下不失效、不分解,仍能在脉冲电流作用下正常起爆。凝胶状含能材料装填于水间隙中后在特定参数脉冲源的驱动下能够产生固定幅值、冲量与能量的冲击波,同时具有极好的可重复性。相比于原参数下的水间隙放电极大提升了冲击波的幅值、冲量与能量,具有极大的工程应用前景。

Description

一种凝胶状含能材料、制备方法及相关系统和装置 技术领域
本发明属于新型炸药领域,涉及一种凝胶状含能材料、制备方法及相关系统和装置。
背景技术
液电效应是指高电压大电流通过液体介质后能量迅速转化并伴生多种极端物理效应的复杂物理过程,其产生的包括机械效应、声学效应、光效应、化学效应等在工业上具有巨大应用前景。尤其是基于液电效应的水中冲击波产生技术,在包括机械加工成型、电脉冲清洗、体外碎石、油气解堵、储层改造等场景中得到广泛应用。水间隙放电是常见的基于液电效应的水中冲击波产生技术,当间隙两端电极加载强电场后,电极间的水介质发生电击穿并形成等离子体放电通道,能量进一步注入使得放电通道迅速膨胀,并推动外部水介质形成强冲击波向外传播,具备可控、安全、重复性好等优点。相比基于金属丝电爆炸的水中冲击波产生技术,水间隙放电不需要配套的送丝设备,水间隙在电容能量释放完毕后会自动恢复未击穿状态,为下一次放电做好准备,因此在高效重复工作场景中更具备优势。但是,水间隙放电与水中金属丝电爆炸均受到脉冲电容器储能其能量转化效率较低的限制,当装置体积受制于复杂、狭小的工作环境(井下、矿洞、隧道等)时无法产生足够能量的冲击波。
基于这种背景,在水中金属丝电爆炸研究领域人们提出钝感含能材料包覆于金属丝外的负载构型,利用金属丝电爆炸点燃外层钝感含能材料,耦合丝爆冲击波与含能材料冲击波以提升单次作业所能产生的冲击波能量。所用含能材料往往不含有危险品条目中的爆炸物,常见的配方为包含硝基甲烷、铝粉、金属氧化物的混合物。但是这种方式存在以下缺点:1)需要结构复杂的送弹机构等帮助完成重复工作,价格昂贵且转轮、轴承等结构在强冲击波作用下容易出现故障;2)液态含能材料需要装填在外壳中形成含能弹,但是强冲击下储存仓中的含能弹壳容易破损影响重复工作;3)利用醋酸纤维素等增稠剂的液态含能材料黏度不够,存在沉降问题且无法静置超过24小时。
因此,研制可用于水间隙放电的含能材料是亟待解决的关键问题,从而实现复杂、狭小作业地形下单次强冲击波的可靠产生。此外还需要解决以下关键问题:1)研制具备自支撑特性、不溶于水的钝感含能材料,能够在无外壳情况下长时间稳定保持在水间隙内;2)研制可推送含能材料至水间隙的连续工作装置,适用于现有水间隙放电装置,结构简单可靠,储存仓内含能材料长时间稳定储存,不分解、不失效、不殉爆;3)研制配套的含能材料制备装置,能够制备均匀、无杂质、无气泡的含能材料。
技术问题
本发明的目的在于解决现有技术中的问题,提供一种凝胶状含能材料、制备方法及相关系统和装置。
技术解决方案
第一方面,本发明提供一种凝胶状含能材料,按照质量份数计,包括30~65份的硝基甲烷、10~30份的金属氧化物粉末、15~40份的铝粉以及1~3份疏水性气相二氧化硅凝胶化。
第二方面,本发明提供一种凝胶状含能材料的制备方法,包括以下步骤:
步骤1:将金属氧化物粉末和铝粉混合均匀,得到铝粉/金属氧化物粉末;
步骤2:将铝粉/金属氧化物粉末加入硝基甲烷中,在室温下搅拌,使硝基甲烷与铝粉/金属氧化物粉末均匀混合,得到铝粉/金属氧化物/硝基甲烷粉末;
步骤3:向铝粉/金属氧化物/硝基甲烷粉末加入疏水性气相二氧化硅,在室温下搅拌,使混合物凝胶化,得到凝胶状含能材料;
所述步骤2和步骤3中,搅拌的转速为50r/min~500r/min。
第三方面,本发明提供一种用于制备凝胶状含能材料的装置,包括:
腔体,所述腔体设置腔体密封盖,内部设置有螺旋搅拌杆,底部开设有搅拌杆安装孔;
腔体密封盖,所述腔体密封盖上开设有加压阀;
螺旋搅拌杆,所述螺旋搅拌杆的底部设置安装座,所述安装座设置于搅拌杆安装孔内,所述安装座上开设有与腔体相连通的灌装口,所述灌装口的出口处设有沉孔,用于连接搅拌延长杆;
搅拌延长杆,所述搅拌延长杆的末端连接搅拌电机,用于驱动螺旋搅拌杆旋转。
第四方面,本发明提供一种制备凝胶状含能材料的方法,包括以下步骤:
步骤1:将金属氧化物粉末和铝粉混合均匀,得到铝粉/金属氧化物粉末;
步骤2:向腔体中加入硝基甲烷,再向腔体中加入铝粉/金属氧化物粉末,盖上腔体密封盖,启动搅拌电机驱动螺旋搅拌杆在室温下旋转搅拌,使硝基甲烷与铝粉/金属氧化物粉末均匀混合,关闭搅拌电机;
步骤3:打开腔体密封盖,向腔体中加入疏水性气相二氧化硅,盖上腔体密封盖,启动搅拌电机驱动螺旋搅拌杆在室温下旋转搅拌,使混合物凝胶化,得到凝胶状含能材料。
第五方面,本发明提供一种凝胶状含能材料连续推送装置,包括壳体,所述壳体为由前壳体、中壳体和后壳体拼装而成的筒体结构;
所述前壳体的内部为含能材料存储仓,前端开设与含能材料存储仓相连通的含能材料推送口,后端设置转接插座;所述含能材料存储仓内填充有所述的凝胶状含能材料;
所述中壳体内设置电机,前端设置转接插座,后端设置密封转接插座,前端的转接插座用于与前壳体后端的转接插座连接;所述电机安装在螺杆上;所述螺杆的前端安装推动活塞块,推动活塞块上套设有密封圈;推动活塞块与电机之间固定设置有硅油隔板和滚珠丝杠,滚珠丝杠位于电机与硅油隔板之间;中壳体内,硅油隔板与中壳体后端的密封转接插座之间填充有硅油;
所述后壳体内设置有电池和控制模块,前端设置密封转接插座,用于与中壳体后端的密封转接插座密封连接,后壳体的后端为封闭结构;所述控制模块安装在电池上,并与电机的控制端连接;电池与电机的电源端连接;所述电机驱动推动活塞块将凝胶状含能材料由含能材料推送口推出,形成锥形含能材料块。
第六方面,本发明提供一种间隙放电装置,包括集成式间隙放电脉冲源和所述的凝胶状含能材料连续推送装置;
所述集成式间隙放电脉冲源包括后端开口的外壳,所述外壳的前端内部设置有小型电容,所述小型电容与电缆插口之间设置充电绝缘,所述充电绝缘上开设电缆插口,用于小型电容与外接电缆相连;小型电容后端设置气体开关,气体开关一端与小型电容相连,另一端连接高压传输杆,高压传输杆外侧套设电极绝缘,高压传输杆的末端设置高压电极;所述外壳的后端设置回流柱,所述回流柱与连续推送装置的前壳体密封连接,二者之间形成起爆间隙,所述高压电极位于起爆间隙内;连续推送装置的含能材料推送口与起爆间隙相连通,连续推送装置将凝胶状含能材料推送至起爆间隙,形成锥形含能材料块。
第七方面,本发明提供一种水间隙放电实验系统,包括水间隙放电实验平台和所述的间隙放电装置;
所述水间隙放电实验平台包括水缸、大型电容和示波器;所述间隙放电装置竖直设置于水缸内,前端安装同轴传输装置;所述同轴传输装置的后端连接间隙放电装置的前端,前端连接同轴电缆的一端,同轴电缆的另一端通过三电极开关连接大型电容;
所述水缸内的水中设置有冲击波压力探头和成型板件,所述冲击波压力探头和成型板件分别设置于锥形含能材料块的两侧,并位于锥形含能材料块爆轰产生冲击波的路径上;所述示波器分别与冲击波压力探头、电压探头和电流探头相连;电压探头设置于同轴电缆上,电流探头设置于同轴电缆和三电极开关的接地线上。
第八方面,本发明提供一种水间隙放电实验方法,包括以下步骤:
步骤1:将间隙放电装置安装在同轴传输装置下方,高压电极与含能材料推送口形成20 mm长度的水间隙,并将间隙放电装置浸没在水中;
步骤2:控制高压电源向大型电容充电,大型电容电压到达10 kV,储能达到300 J时停止充电;
步骤3:触发三电极开关预放电,控制模块拾取到磁场信号后控制电机工作;
步骤4:凝胶状含能材料被推送至水间隙,形成锥形含能材料块;
步骤5:在距离锥形含能材料块15 cm的位置安装用于测量锥形含能材料块爆轰产生冲击波的幅值、冲量与能量密度的冲击波压力探头;
步骤6:控制高压电源向大型电容充电,大型电容电压到达20 kV,储能达到1200 J时停止充电;
步骤7:触发三电极开关形成放电回路,电能注入锥形含能材料块后使其发生爆轰,产生水中冲击波。
第十方面,本发明提供一种破岩系统,包括携式电源以及所述的间隙放电装置;所述间隙放电装置设置于具有致裂需求的目标岩体内预制的若干孔洞内,间隙放电装置的电缆插口通过携式同轴电缆连接携式电源。
第十一方面,本发明提供一种破岩方法,包括以下步骤:
步骤1,首先确定目标岩体的致裂需求,所述致裂需求包括致裂位置和裂纹形态;
步骤2,根据致裂需求在目标岩体的表面设置若干孔洞;
步骤3,将若干间隙放电装置分别安装于对应孔洞中;
步骤4,控制电源充电,预放电启动凝胶状含能材料连续推送装置;
步骤5,凝胶状含能材料连续推送装置将凝胶状含能材料推送至起爆间隙内,形成锥形含能材料块;
步骤6,控制电源向电容器充电;
步骤7,电容器电压达到气体开关极限耐受电压;
步骤8,气体开关击穿,形成放电回路,能量注入起爆间隙;
步骤9,起爆间隙放电起爆锥形含能材料块;
步骤10,判断目标岩体是否达到致裂效果,若不符合预期,则返回步骤5,且起爆时形成的放电回路将再次启动连续推送装置,若符合预期,执行步骤11;
步骤11,将间隙放电装置安装至新的工作位置,重复上述步骤2-10,直至所有目标区域都达到的致裂效果。
第十二方面,本发明提供一种页岩油储层改造系统,包括控制平台以及所述的间隙放电装置,所述间隙放电装置设置在垂直井或水平井内;控制平台通过电缆连接间隙放电装置引爆起爆间隙中的锥形含能材料块,产生冲击波。
第十三方面,本发明提供一种页岩油储层改造方法,包括以下步骤:
步骤1,确定作业场景的类型,所述作业场景的类型包括垂直井和水平井;
步骤2,若为垂直井,则通过传输同轴电缆在将间隙放电装置安装在作业位置;
若为水平井,则通过连续油管将间隙放电装置推送至加热井作业位置;
步骤3,控制平台控制电源通过电缆向电容器充电,预放电启动凝胶状含能材料连续推送装置;
步骤4,凝胶状含能材料连续推送装置将凝胶状含能材料推送至起爆间隙内,形成锥形含能材料块;
步骤5,控制平台控制电源通过电缆向电容器充电;
步骤6,电容器电压达到气体开关极限耐受电压;
步骤7,气体开关击穿,形成放电回路,能量注入起爆间隙;
步骤8,起爆间隙放电起爆锥形含能材料块;
步骤9,评估储层改造效果,若不符合预期,返回步骤4;若符合预期,执行步骤10;
步骤10,将间隙放电装置安装至新作业位置,重复步骤1~步骤9,直至所有作业场景改造完成。
有益效果
本发明的凝胶状含能材料,采用的疏水性二氧化硅添加剂使其能在水中实现自支撑,在质量为10 g时形成高度超过5 cm,保持时间超过10 min的锥形含能材料块,能够在无外壳的情况下长时间稳定装填在水间隙内并连通间隙正负电极。含能材料的其他成分不含有危险品条目中的爆炸物,常见的配方为包含硝基甲烷、铝粉、金属氧化物的混合物,经火工品测试摩擦感度、撞击感度均为零,安全性极高。并且配方成分不溶于或极难溶于水,在水长时间浸泡下不失效、不分解,仍能在脉冲电流作用下正常起爆。凝胶状含能材料装填于水间隙中后在特定参数脉冲源的驱动下能够产生固定幅值、冲量与能量的冲击波,同时具有极好的可重复性。相比于原参数下的水间隙放电极大提升了冲击波的幅值、冲量与能量,具有极大的工程应用前景。
本发明的凝胶状含能材料制备装置,采用的螺旋搅拌杆能够使粉末成分(铝粉、金属氧化物粉末)、液体成分(硝基甲烷)与凝胶添加剂(疏水性气相SiO 2)快速混合、在短时间内制备均匀、无杂质、无气泡的凝胶状含能材料。制备装置采用密封结构,解决了制备过程中硝基甲烷的挥发问题,并杜绝了搅拌制备过程中杂质混入含能材料。凝胶状含能材料的各成分配比直接影响到起爆效果,制备完成后直接通过制备装置灌装至连续推送工作装置,减少制备、分装、装填过程中的损耗,实现含能材料的精准配比。
本发明的凝胶状含能材料连续推送装置,适用于所有经改造的水间隙放电装置,可直接作为回流装置的一部分安装于地电极一侧。含能材料储存于推送装置内部,由直线电机经活塞结构推送至水间隙电极间,起爆后极大提升了冲击波的幅值、冲量与能量。凝胶状含能材料能够自支撑且防水,直接贮存于推送装置内部,不需要装填弹壳等其他材料,推送装置结构简单可靠,且集成度高。并且由于含能材料外不装填弹壳,因此冲击波不会对含能材料造成泄露、殉爆等问题影响装置重复工作。连续推送装置外壳一体化设计并与地电极稳定连接,起爆时大电流直接经外壳流入大地而不通过贮存的含能材料,无静电起爆风险。装置整体密封设计,含能材料可在其内部存储超过一个月不失效、不分解、不殉爆,仍能稳定起爆。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明凝胶状含能材料制备装置的结构示意图。
图2为本发明凝胶状含能材料连续推送装置的结构示意图。
图3为本发明间隙放电装置的结构示意图。
图4为本发明水间隙放电实验系统的结构示意图。
图5为实施例1的放电波形图。
图6为实施例4的放电波形图。
图7为实施例1的冲击波压力波形图。
图8为实施例2的冲击波压力波形图。
图9为实施例3的冲击波压力波形图。
图10为实施例4的冲击波压力波形图。
图11为对比例1的冲击波压力波形图。
图12为对比例2的冲击波压力波形图。
图13为对比例3的冲击波压力波形图。
图14为本发明破岩系统的示意图。
图15为本发明破岩方法的流程图。
图16为本发明垂直井页岩储层改造系统的示意图。
图17为本发明水平井页岩储层改造系统的示意图。
图18为本发明页岩油储层改造方法的流程图。
其中,1-凝胶状含能材料制备装置,2-凝胶状含能材料连续推送装置,3-水间隙放电实验平台,4-集成式间隙放电脉冲源,101-加压阀,102-螺旋搅拌杆,103-腔体密封盖,104-腔体,105-搅拌杆安装孔,106-灌装口,107-搅拌延长杆,201-电池,202-控制模块,203-密封转接插座,204-电机控制线,205-电机电源线,206-电机,207-硅油,208-滚珠丝杠,209-硅油隔板,210-螺杆,211-泄压孔,212-密封圈,213-推送活塞块,214-含能材料储存仓,215-装配螺纹,216-含能材料推送口,217-凝胶状含能材料,218-锥形含能材料块,301-大型电容,302-三电极开关,303-电流探头,304-同轴电缆,305-电压探头,306-同轴传输装置,307-冲击波,308-冲击波压力探头,309-成型板件,310-水缸,311-示波器,401-回流柱,402-高压电极,403-电极绝缘,404-高压传输杆,405-气体开关,406-小型电容,407-充电绝缘,408-电缆插口,409-携式同轴电缆,501-目标岩体,502-孔洞,503-携式电源,601-控制平台,602-垂直井,603-传输同轴电缆,604-复杂裂缝网络,605-抽油机,606-加热井,607-连续油管,608-采油井,609-低渗页岩油,610-水平井。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明实施例的描述中,需要说明的是,若出现术语“上”、“下”、“水平”、“内”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”,并不表示要求部件绝对水平,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面结合附图对本发明做进一步详细描述:
本发明实施例公开了一种自支撑的凝胶状含能材料,能够在无外壳的情况下长时间稳定装填在间隙内,以质量份数计,包括30~40份的硝基甲烷,10~30份的金属氧化物粉末,20~60份的铝粉,并且采用1~2份疏水性气相二氧化硅凝胶化。其中,金属氧化物粉末的种类包括但不限于氧化铜、二氧化锰、三氧化二铁和四氧化三铁,金属氧化物粉末粒度范围是1 μm~100 μm,铝粉的粒度范围是1 μm~100 μm。
本发明实施例公开了一种上述凝胶状含能材料的制备方法,包括以下步骤:
步骤1:将金属氧化物粉末和铝粉混合均匀,得到铝粉/金属氧化物粉末;
步骤2:将铝粉/金属氧化物粉末加入硝基甲烷中,在室温下以50r/min~500r/min的转速进行搅拌,使硝基甲烷与铝粉/金属氧化物粉末均匀混合,得到铝粉/金属氧化物/硝基甲烷粉末;
步骤3:向铝粉/金属氧化物/硝基甲烷粉末加入疏水性气相二氧化硅,在室温下以50r/min~500r/min的转速进行搅拌,使混合物凝胶化,得到凝胶状含能材料。
如图1所示,本发明实施例公开了一种实现上述凝胶状含能材料的制备方法的凝胶状含能材料制备装置1,包括腔体104、腔体密封盖103、螺旋搅拌杆102和搅拌延长杆107。腔体104设置腔体密封盖103,内部设置有螺旋搅拌杆102,底部开设有搅拌杆安装孔105;腔体密封盖103上开设有加压阀101;螺旋搅拌杆102的底部设置安装座安装座设置于搅拌杆安装孔105内安装座上开设有与腔体104相连通的灌装口106灌装口106的出口处设有沉孔,用于连接搅拌延长杆107;搅拌延长杆107的末端连接搅拌电机,用于驱动螺旋搅拌杆102旋转。
凝胶状含能材料制备原料放置于腔体104内,螺旋搅拌杆102通过搅拌杆安装孔105安装在腔体内,使各原料均匀混合并凝胶化。搅拌延长杆107一端连接螺旋搅拌杆102,另一端可连接搅拌电机进行低速搅拌,也可手动搅拌。由于硝基甲烷具有挥发性,整个搅拌过程中使用腔体密封盖103对整个腔体104及内部进行密封。凝胶状含能材料制备完成后,卸下搅拌延长杆107露出内部中空的灌装口106,通过加压阀101对腔体104内部进行加压,含能材料从灌装口106中挤出分装,实现含能材料的精准配比。
实施例1:
本实施例公开了一种凝胶状含能材料,以质量份数计,包括40.375份的硝基甲烷,23份的氧化铜粉,34.5份的铝粉,并且采用1~2份疏水性气相二氧化硅凝胶化。
本实施例还公开了一种凝胶状含能材料的制备方法,包括以下步骤:
步骤101:将23份的氧化铜粉末和34.5份的铝粉置于三维混匀仪中混合30分钟使其完全混合均匀;其中氧化铜粉末的粒度范围为1 μm~100 μm,铝粉粒度范围为1 μm~100 μm;
步骤102:将螺旋搅拌杆102安装在凝胶状含能材料制备装置1的腔体104上,取40.375份的硝基甲烷置于腔体104中,再将20 g已完全混合的铝粉/氧化铜粉末置于腔体104中,盖上腔体密封盖103,螺旋搅拌杆102在室温下低速旋转搅拌10分钟使硝基甲烷与混合粉末均匀混合;其中硝基甲烷的纯度> 99%,室温为10 ℃~30 ℃,低速旋转搅拌为50 r/min~500 r/min;
步骤103:打开腔体密封盖103,取2.125份疏水性气相二氧化硅置于腔体104中,盖上腔体密封盖103,螺旋搅拌杆102在室温下低速旋转搅拌10分钟使含能材料凝胶化;
步骤104:打开腔体密封盖103上的加压阀101,并打开螺旋搅拌杆102下方灌装口106,加压,将凝胶状含能材料灌装至凝胶状含能材料连续推送装置2的含能材料储存仓214中。
步骤105:将凝胶状含能材料连续推送装置2的含能材料储存仓214安装至凝胶状含能材料连续推送装置2。
对比例1与实施例1-4不同的是:没有预放电启动连续推送工作装置,含能材料推送口与高压电极间形成的仍然为20 mm长度的水间隙,不含凝胶状含能材料块。
对比例2与实施例3不同的是:没有添加疏水性气相SiO 2使含能材料凝胶化。
对比例3与实施例3不同的是:锥形凝胶状含能材料块质量为1.6g,电极间隙距离调整为10mm。
如图5所示,为实施例1的放电波形图。可以看出三电极开关触发后形成放电回路,高电压迅速加载至高压电极,在0 μs ~ 2.5 μs时间段内含能材料发生击穿过程,电压从7.5 kV下降至3 kV,电流从0 kA迅速上升至30 kA,这段时间内,含能材料内部能量沉积速率较慢,爆轰未开始。在2.5 μs ~ 10 μs时间段内,含能材料内部完全击穿,形成等离子体放电通道。一方面,电容中的储能在含能材料内部迅速沉积,使击穿通道中的含能材料温度迅速上升。另一方面,温升导致凝胶含能材料中的氧化铜粉末与铝粉发生剧烈的铝热反应,进一步提升含能材料温度。两者共同作用导致硝基甲烷发生爆轰,产生幅值、冲量与能量极强的冲击波。含能材料的爆轰同时会约束等离子体通道的向外扩张,使得等离子体通道阻值较高,维持较高能量沉积功率。在10 μs ~ 40 μs时间段内,含能材料内部形成稳定的放电通道,电压电流波形表现出同步的震荡衰减,直至为零。在这个过程中,电容仍持续向含能材料的放电通道中沉积能量,维持凝胶状含能材料中爆轰波的进一步发展,直至电容中的1200 J储能释放完毕。
参见图6,为实施例4的放电波形图。相比于实施例1,其掺杂的铝粉与氧化铜比例较少,这使得其形成的锥形含能材料块电阻较大,因此电极开关触发后,高电压加载至高压电极并在0 μs ~ 2.5 μs时间段内维持20 kV的电容电压。在2.5 μs ~ 5 μs时间段内含能材料发生击穿过程,电压从20 kV下降至3 kV,电流从0 kA迅速上升至27 kA,这段时间内,含能材料内部能量沉积速率较慢,爆轰未开始。在5 μs ~ 12 μs时间段内,含能材料内部完全击穿,形成等离子体放电通道使其爆轰。对比实施例1与4的放电过程,可知铝粉与氧化铜粉末的掺杂会影响击穿与放电通道的形成,并且影响后续能量沉积效率。铝粉在这个过程中起到了决定性的作用,因为相比于硝基甲烷、氧化铜粉末和水,其本身电阻较小,有利于击穿和放电通道的形成。铝粉的含量越高,含能材料击穿的时间越短,峰值电流越大,能量沉积效率越高,也约有利于含能材料的爆轰。因此凝胶状含能材料中必须掺杂一定份数的铝粉和氧化铜粉末,才能使硝基甲烷发生爆轰。
参见表2,基于上述水间隙放电实验平台对多种配比下凝胶状含能材料进行实验测试,驱动源储能均为1200 J,最终得到的实验结果。
参见图7~图10,由实施例1~4可以看出,凝胶状含能材料在1200 J驱动源储能下均能起爆,产生产生幅值与冲量极强的冲击波,具有一定的工程应用价值。其原理为脉冲源在短时间内向含能材料间隙中注入大量能量,使其发生击穿并形成放电通道。并且金属氧化物与铝粉发生剧烈铝热反应放出大量热量,两者协同作用使得凝胶状含能材料发生爆炸,爆轰波一方面向外传播起爆外层含能材料增强冲击波,另一方面向内限制放电通道的膨胀,使其保持较高电阻加速电能沉积功率,维持爆轰波的传播与发展。
对比实施例1~4可以看出,不同配比下凝胶状含能材料起爆产生的冲击波峰值、冲量密度与能量密度不同。实施例3产生的冲击波最强,这是由于其配比最适合爆轰波的形成与发展。当凝胶状含能材料中硝基甲烷的占比过高时,形成的锥形含能材料块电阻过高,击穿与放电通道的形成较为困难,使得电能沉积功率较低,不利于起爆以及爆轰波的传播发展。而当凝胶状含能材料中硝基甲烷的占比过低时,尽管锥形含能材料块起爆较为容易,但是爆轰波传播过程中硝基甲烷含量太低,也不利于进一步发展。因此,配比对于凝胶状含能材料最终爆炸产生的冲击波具有调控作用。在实际工程中,可根据需要调节凝胶状含能材料配方,以得到理想的冲击波峰值、冲量密度与能量密度。
参见图9和图11,对比实施例3和对比例1的冲击波波形。实施例3的冲击波峰值压力为11.5 MPa,冲量密度为566.9 Pa·s,能量密度为2180.1 J/m 2,对比例1的冲击波峰值压力为6.5 MPa,冲量密度为74.5 Pa·s,能量密度为69 J/m 2。结果表明质量3.2 g,高度20 mm的锥形凝胶含能材料块能够将冲击波峰值压力提升1.8倍,冲量密度提升7.6倍,能量密度提升31.6倍。因此装载凝胶状含能材料的连续推送装置能够显著提升单发冲击波的幅值,能量密度与冲量密度,且能够可靠连续产生冲击波。
参见图9和图12,对比实施例3和对比例2的冲击波波形。实施例3的冲击波峰值压力为11.5 MPa,冲量密度为566.9 Pa·s,能量密度为2180.1 J/m 2,对比例2的冲击波峰值压力为6.5 MPa,冲量密度为155.5 Pa·s,能量密度为117.4 J/m 2。结果表明,未凝胶化的含能材料几乎无法提升水间隙放电的冲击波。因为未凝胶化的含能材料没有自支撑效果,仍为流体状态。在无外壳情况下无法维持在电极间隙内起爆,因此产生的冲击波与水间隙放电类似。对于掺杂了其他增稠剂的固液复合含能材料结果也类似,例如添加醋酸纤维素等,因为这些情况下均无法使含能材料凝胶化,形成自支撑特性。
参见图9和图13,对比实施例3和对比例3的冲击波波形。实施例3的冲击波峰值压力为11.5 MPa,冲量密度为566.9 Pa·s,能量密度为2180.1 J/m 2,对比例3的冲击波峰值压力为6.8 MPa,冲量密度为337.6 Pa·s,能量密度为799.3 J/m 2。结果表明连续推送装置单次推送的含能材料块质量越大,产生的冲击波越强。在质量为10 g时凝胶状含能材料能够形成高度超过5 cm,在水中保持时间超过10 min的锥形含能材料块。在实际工程中,可根据需要调节凝胶状含能材料的质量以及间隙距离,以得到理想的冲击波峰值、冲量密度与能量密度。
综上所述,本发明的凝胶状含能材料及其连续推送装置有以下几个优势:
1、大幅提升水间隙放电单发冲击波峰值压力、冲量密度与能量密度,并且兼容所有经改造的集成式间隙放电脉冲源4。
2、凝胶状含能材料具备自支撑效应,可在无外壳情况下直接推送至水间隙内,长时间浸泡下不失效、不分解,仍能在脉冲电流作用下正常起爆,同时无外壳结构大幅降低的制造、运输、使用过程中的成本,提升装置可靠性。
3、连续推送装置结构简单可靠、集成度高,储存仓内含能材料长时间稳定储存,不分解、不失效、不殉爆。
4、凝胶状含能材料的配方以及填充质量对冲击波具有调控作用,在实际工程中可根据需要调节以得到理想的冲击波峰值、冲量密度与能量密度。
如图2所示,本发明实施例公开了一种凝胶状含能材料连续推送装置2,包括壳体,壳体为由前壳体、中壳体和后壳体拼装而成的筒体结构;
前壳体的内部为含能材料存储仓214,前端开设与含能材料存储仓214相连通的含能材料推送口216,后端设置转接插座;含能材料存储仓214内填充有凝胶状含能材料217;中壳体内设置电机206,前端设置转接插座,后端设置密封转接插座203,前端的转接插座用于与前壳体后端的转接插座连接;电机206安装在螺杆210上;螺杆210的前端安装推动活塞块213,推动活塞块213上套设有密封圈212;推动活塞块213与电机206之间固定设置有硅油隔板209和滚珠丝杠208,滚珠丝杠208位于电机206与硅油隔板209之间;中壳体内,硅油隔板209与中壳体后端的密封转接插座203之间填充有硅油207;后壳体内设置有电池201和控制模块202,前端设置密封转接插座203,用于与中壳体后端的密封转接插座203密封连接,后壳体的后端为封闭结构;控制模块202安装在电池201上,并与电机206的控制端连接;电池201与电机206的电源端连接;电机206驱动推动活塞块213将凝胶状含能材料217由含能材料推送口216推出,形成锥形含能材料块218。
凝胶状含能材料储存在含能材料储存仓214中,在推送活塞块213的作用下,由含能材料推送口216推出形成锥形含能材料块218。推送活塞块213由螺杆210向前推进,并安装环形密封圈212与外界密封。电机206与螺杆210另一端相连并提供推进动力,电机206整体浸泡在硅油207中保持绝缘,通过滚珠丝杠208与硅油隔板209进行密封。推进过程中硅油隔板209与推送活塞块213之间设置多个泄压孔211保持装置内外水压一致。电机206由电池201供电、控制模块202控制,经密封转接插座203后通过电机控制线204和电机电源线205相连。控制模块202内部安装霍尔传感器、振动传感器等,可采集电流信号、磁场信号、振动信号等控制电机206工作。装配螺纹215可将凝胶状含能材料连续推送装置2安装在经改造的集成式间隙放电脉冲源4上,提升冲击波的幅值、冲量与能量。
本发明凝胶状含能材料连续推送装置2的工作原理如下:
凝胶状含能材料连续推送装置2可安装在所有经改造的集成式间隙放电脉冲源4上,作为冲击波能量的重要补充。一般来说,凝胶状含能材料连续推送装置2安装在地电极一侧,含能材料推送口216取代原本水间隙放电装置的地电极,与其高压电极形成水间隙。初始工作时,可采用预放电的方式,使控制模块202拾取到磁场信号启动电机206工作,也可在间隙间预设含能材料。当电机206工作后通过螺杆210推动推送活塞块213挤压含能材料储存仓214中的凝胶状含能材料217,凝胶状含能材料217会从含能材料推送口216中被挤出从而在水间隙间形成锥形含能材料块218。操作人员控制外部电源向电容充电后,触发三电极开关形成放电回路,电能迅速注入锥形含能材料块218。锥形含能材料块218内部发生电击穿并形成等离子体放电通道,产生的高温、辐射等效应使锥形含能材料块218发生爆轰,并推动水介质形成冲击波。在放电过程中控制模块202再次拾取磁场信号和振动信号,并启动电机206推送凝胶状含能材料217。间隙间又能形成锥形含能材料块218,为下次放电做好准备,形成连续工作条件。含能材料推送口216可设计为多孔、特斯拉阀等形态防止传爆点燃含能材料储存仓214内的凝胶状含能材料217。并且由于含能材料储存仓214安装在地电极一侧,电流直接通过含能材料推送口216形成回路而不经过整体结构,因此含能材料储存仓214内的凝胶状含能材料217无殉爆风险。而凝胶状含能材料连续推送装置2长时间浸没在水中时,含能材料推送口216处的硝基甲烷会逐渐溶于水,留下疏水性气相二氧化硅形成疏水保护层,使得含能材料推送口216内凝胶状含能材料217可存储超过一个月不失效、不分解,仍能稳定起爆。
如图3所示,本发明实施例公开了一种间隙放电装置,包括集成式间隙放电脉冲源4和凝胶状含能材料连续推送装置2;
集成式间隙放电脉冲源4包括后端开口的外壳,外壳的前端内部设置有小型电容406,小型电容406与电缆插口408之间设置充电绝缘407,充电绝缘407上开设电缆插口408,用于小型电容406与外接电缆相连;小型电容406后端设置气体开关405,气体开关405一端与小型电容406相连,另一端连接高压传输杆404,高压传输杆404外侧套设电极绝缘403,高压传输杆404的末端设置高压电极402;外壳的后端设置回流柱401,回流柱401与连续推送装置2的前壳体密封连接,二者之间形成起爆间隙,高压电极402位于起爆间隙内;连续推送装置2的含能材料推送口216与起爆间隙相连通,连续推送装置2将凝胶状含能材料217推送至起爆间隙,形成锥形含能材料块218。
本发明间隙放电装置可适用于室外作业环境,包括矿山、油井、隧道等。其高度集成了气体开关405与小型电容406,通过携式同轴电缆409经电缆插口408向小型电容406充电,并通过高压传输杆404与高压电极402传输电能至水间隙,再通过回流柱401形成回路,电极绝缘403与充电绝缘407用于内部绝缘。使用时连续推送装置安装在回流柱401一侧,其含能材料推送口216与高压电极402形成水间隙。
如图4所示,为本发明实施例公开了一种水间隙放电实验系统,包括水间隙放电实验平台3和上述间隙放电装置;
水间隙放电实验平台3包括水缸310、大型电容301和示波器311;间隙放电装置竖直设置于水缸310内,前端安装同轴传输装置306;同轴传输装置306的后端连接间隙放电装置的前端,前端连接同轴电缆304的一端,同轴电缆304的另一端通过三电极开关302连接大型电容301;
水缸310内的水中设置有冲击波压力探头308和成型板件309,冲击波压力探头308和成型板件309分别设置于锥形含能材料块218的两侧,并位于锥形含能材料块218爆轰产生冲击波307的路径上;示波器311分别与冲击波压力探头308、电压探头305和电流探头303相连;电压探头305设置于同轴电缆304上,电流探头303设置于同轴电缆和三电极开关302的接地线上。
凝胶状含能材料连续推送装置2安装于同轴传输装置306下方,凝胶状含能材料217储存于凝胶状含能材料连续推送装置2内部。凝胶状含能材料连续推送装置2整体置于装满水的水缸301中,凝胶状含能材料连续推送装置2工作后在水间隙间形成锥形含能材料块218。实验室大型电容301充电后,触发三电极开关302,电能经同轴电缆304注入锥形含能材料块218。锥形含能材料块218内部发生电击穿后形成等离子体通道,产生的高温、辐射等效应使锥形含能材料块218发生爆轰,并推动水介质形成冲击波307。冲击波信号由冲击波压力探头308拾取,放电的电压信号由电压探头305拾取,电流信号由电流探头303拾取,以上所有信号由示波器311记录并保存。水间隙放电实验平台3所产生的冲击波为自由水域冲击波,可应用于机械加工成型、电脉冲清洗等场景。将成型板件309置于水中,设置合适的冲击波参数即可对其进行加工。
本发明实施例公开了一种水间隙放电实验方法,包括以下步骤:
步骤1:安装凝胶状含能材料连续推送装置2:
步骤101:将凝胶状含能材料连续推送装置2安装在同轴传输装置306正下方,高压电极402与含能材料推送口216形成20 mm长度的水间隙,并将凝胶状含能材料连续推送装置2浸没在水中。
步骤102:控制高压电源向大型电容301充电,大型电容301电压到达10 kV,储能达到300 J时停止充电。
步骤103:触发三电极开关302预放电,控制模块202拾取到磁场信号后控制电机206工作。
步骤104:凝胶状含能材料217被推送至电极间隙间,形成质量3.2 g,高度20 mm的锥形含能材料块218。
步骤2:起爆锥形含能材料块218。
步骤201:在距离负载15 cm的位置安装压力传感器PCB 138用于测量含能材料产生冲击波的幅值、冲量与能量密度;
步骤202:控制高压电源向大型电容301充电,大型电容301电压到达20 kV,储能达到1200 J时停止充电。
步骤203:触发三电极开关302形成放电回路,电能注入锥形含能材料块218后使其发生爆轰,产生水中强冲击波。
如图14所示,本发明实施例公开了一种破岩系统,包括携式电源503以及间隙放电装置;间隙放电装置设置于具有致裂需求的目标岩体501内预制的若干孔洞502内,间隙放电装置的电缆插口408通过携式同轴电缆409连接携式电源503。
本实施例为双孔定向破岩场景。根据致裂需求目标岩体501侧面设置了两个平行的孔洞502,孔洞502尺寸略大于凝胶状含能材料连续推送装置2与集成式间隙放电脉冲源4组装完毕后的整体尺寸,孔洞502间距根据岩体抗拉强度、目标裂纹形态等多参数联合确定。一般来说,岩体抗拉强度越大,目标裂纹形态约复杂,则孔洞502间距越近。野外作业时装置由携式电源503供电,连接装置后开始执行破岩操作。双孔定向破岩将形成连接双孔的定向裂缝,适用于煤层顶板切缝等应用场景。
如图15所示,本发明公开了一种采用上述破岩系统的破岩方法,包括以下步骤:
步骤1,首先确定岩体所需致裂位置、裂纹形态。
步骤2,根据致裂需求在岩体表面设置一定数量、间距的孔洞。
步骤3,组装与岩体孔洞相同数量的连续推送装置与集成式间隙放电脉冲源,连续推送装置已预装凝胶状含能材料。
步骤4,将组装完毕的整体装置安装在岩体孔洞中。
步骤5,控制电源充电,预放电启动连续推送装置。
步骤6,推送装置将凝胶状含能材料推送至间隙内,形成锥形含能材料块218。
步骤7,控制电源向电容器充电。
步骤8,电容器电压达到气体开关极限耐受电压。
步骤9,开关击穿,形成放电回路,能量注入间隙。
步骤10,间隙放电起爆锥形含能材料块218。
步骤11,判断目标岩体是否达到致裂效果,若不符合预期,则返回步骤6,且起爆时形成的放电回路将再次启动连续推送装置,若符合预期,执行步骤12。
步骤12,携带装置至新的工作位置,重复上述步骤 2-11,直至所有目标区域都达到理想的致裂效果。
如图16所示,本发明实施例公开了一种垂直井页岩储层改造系统,包括控制平台601以及间隙放电装置,所述间隙放电装置设置在垂直井内;控制平台601通过电缆连接间隙放电装置引爆起爆间隙中的锥形含能材料块218,产生冲击波。
如图17所示,本发明实施例公开了一种水平井页岩储层改造系统,包括控制平台601以及间隙放电装置,所述间隙放电装置设置在水平井内;控制平台601通过电缆连接间隙放电装置引爆起爆间隙中的锥形含能材料块218,产生冲击波。
本实施例为垂直井与水平井页岩储层改造,根据页岩油储层改造场景选取装置安装方式,若为垂直井602,则借助传输同轴电缆603在重力作用下将装置安装在作业位置,若为水平井610,则借助连续油管607将装置推送至加热井606作业位置。通过地面控制平台601通过电缆向电容器充电,预放电启动连续推送装置。推送装置将凝胶状含能材料推送至间隙内,形成锥形含能材料块218,再次启动地面控制平台向电容器充电,电容器电压达到气体开关极限耐受电压后开关击穿,形成放电回路,能量注入间隙后起爆锥形含能材料块218产生强冲击波。强冲击波耦合进入储层形成复杂裂缝网络604,在同一作业位置重复特定次数的冲击波,在目标作业位置附近制造复杂缝网,提高页岩油渗透率。储层改造效果达到预期后,垂直井场景下可直接采取常规方法开采页岩油,水平井场景下需要在加热井中进行原位加热,提升采油井608中低渗页岩油609的渗透率,随后使用采油机605对低渗页岩油进行开采。该装置除储层改造外,还可用于油气解堵,油井增产等场景,作业流程与方式与上述类似。
参见图18,本发明公开了一种页岩油储层改造方法,包括以下步骤:
步骤1,确定作业场景为垂直井还是水平井。
步骤2,若为垂直井,则借助传输同轴电缆603在重力作用下将装置安装在作业位置,若为水平井,则借助连续油管607将装置推送至加热井作业位置。
步骤3,在地面控制电源通过电缆向电容器充电,预放电启动连续推送装置。
步骤4,推送装置将凝胶状含能材料推送至间隙内,形成锥形含能材料块218。
步骤5,在地面控制电源通过电缆向电容器充电。
步骤6,电容器电压达到气体开关极限耐受电压。
步骤7,开关击穿,形成放电回路,能量注入间隙。
步骤8,间隙放电起爆锥形含能材料块218。
步骤9,在同一作业位置重复特定次数的步骤4~步骤8,在目标作业位置附近制造复杂缝网,提高页岩油渗透率。
步骤10,借助同轴电缆或连续油管将装置安装至新作业位置。
步骤11,评估储层改造效果,若不符合预期,则返回步骤1将装置重新下井,若符合预期,执行步骤12。
步骤12,垂直井场景下直接开采页岩油,水平井场景下通过在加热井中原位加热提升低渗页岩油渗透率,在采油井中开采页岩油。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种凝胶状含能材料,其特征在于,按照质量份数计,包括30~65份的硝基甲烷、10~30份的金属氧化物粉末、15~40份的铝粉以及1~3份疏水性气相二氧化硅凝胶化。
  2. 根据权利要求1所述的凝胶状含能材料,其特征在于,所述硝基甲烷的纯度大于99%;所述金属氧化物粉末和铝粉的粒度均为1 μm~100 μm;所述金属氧化物采用氧化铜、二氧化锰、三氧化二铁或四氧化三铁。
  3. 一种采用权利要求1或2所述凝胶状含能材料的制备方法,其特征在于,包括以下步骤:
    步骤1:将金属氧化物粉末和铝粉混合均匀,得到铝粉/金属氧化物粉末;
    步骤2:将铝粉/金属氧化物粉末加入硝基甲烷中,在室温下搅拌,使硝基甲烷与铝粉/金属氧化物粉末均匀混合,得到铝粉/金属氧化物/硝基甲烷粉末;
    步骤3:向铝粉/金属氧化物/硝基甲烷粉末加入疏水性气相二氧化硅,在室温下搅拌,使混合物凝胶化,得到凝胶状含能材料;
    所述步骤2和步骤3中,搅拌的转速为50r/min~500r/min。
  4. 一种用于制备权利要求1或2所述凝胶状含能材料的装置,其特征在于,包括:
    腔体(104),所述腔体(104)设置腔体密封盖(103),内部设置有螺旋搅拌杆(102),底部开设有搅拌杆安装孔(105);
    腔体密封盖(103),所述腔体密封盖(103)上开设有加压阀(101);
    螺旋搅拌杆(102),所述螺旋搅拌杆(102)的底部设置安装座,所述安装座设置于搅拌杆安装孔(105)内,所述安装座上开设有与腔体(104)相连通的灌装口(106),所述灌装口(106)的出口处设有沉孔,用于连接搅拌延长杆(107);
    搅拌延长杆(107),所述搅拌延长杆(107)的末端连接搅拌电机,用于驱动螺旋搅拌杆(102)旋转。
  5. 一种采用权利要求4所述装置制备凝胶状含能材料的方法,其特征在于,包括以下步骤:
    步骤1:将金属氧化物粉末和铝粉混合均匀,得到铝粉/金属氧化物粉末;
    步骤2:向腔体(104)中加入硝基甲烷,再向腔体(104)中加入铝粉/金属氧化物粉末,盖上腔体密封盖(103),启动搅拌电机驱动螺旋搅拌杆(102)在室温下旋转搅拌,使硝基甲烷与铝粉/金属氧化物粉末均匀混合,关闭搅拌电机;
    步骤3:打开腔体密封盖(103),向腔体(104)中加入疏水性气相二氧化硅,盖上腔体密封盖(103),启动搅拌电机驱动螺旋搅拌杆(102)在室温下旋转搅拌,使混合物凝胶化,得到凝胶状含能材料。
  6. 根据权利要求5所述的制备凝胶状含能材料的方法,其特征在于,得到凝胶状含能材料之后,拆掉搅拌延长杆(107),打开腔体密封盖(103)上的加压阀(101),通过加压阀(101)向腔体(104)内加压,使凝胶状含能材料由灌装口(106)排出。
  7. 一种凝胶状含能材料连续推送装置,其特征在于,包括壳体,所述壳体为由前壳体、中壳体和后壳体拼装而成的筒体结构;
    所述前壳体的内部为含能材料存储仓(214),前端开设与含能材料存储仓(214)相连通的含能材料推送口(216),后端设置转接插座;所述含能材料存储仓(214)内填充有权利要求1或2所述的凝胶状含能材料(217);
    所述中壳体内设置电机(206),前端设置转接插座,后端设置密封转接插座(203),前端的转接插座用于与前壳体后端的转接插座连接;所述电机(206)安装在螺杆(210)上;所述螺杆(210)的前端安装推动活塞块(213),推动活塞块(213)上套设有密封圈(212);推动活塞块(213)与电机(206)之间固定设置有硅油隔板(209)和滚珠丝杠(208),滚珠丝杠(208)位于电机(206)与硅油隔板(209)之间;中壳体内,硅油隔板(209)与中壳体后端的密封转接插座(203)之间填充有硅油(207);
    所述后壳体内设置有电池(201)和控制模块(202),前端设置密封转接插座(203),用于与中壳体后端的密封转接插座(203)密封连接,后壳体的后端为封闭结构;所述控制模块(202)安装在电池(201)上,并与电机(206)的控制端连接;电池(201)与电机(206)的电源端连接;所述电机(206)驱动推动活塞块(213)将凝胶状含能材料(217)由含能材料推送口(216)推出,形成锥形含能材料块(218)。
  8. 一种间隙放电装置,其特征在于,包括集成式间隙放电脉冲源(4)和权利要求7所述的凝胶状含能材料连续推送装置(2);
    所述集成式间隙放电脉冲源(4)包括后端开口的外壳,所述外壳的前端内部设置有小型电容(406),所述小型电容(406)与电缆插口(408)之间设置充电绝缘(407),所述充电绝缘(407)上开设电缆插口(408),用于小型电容(406)与外接电缆相连;小型电容(406)后端设置气体开关(405),气体开关(405)一端与小型电容(406)相连,另一端连接高压传输杆(404),高压传输杆(404)外侧套设电极绝缘(403),高压传输杆(404)的末端设置高压电极(402);所述外壳的后端设置回流柱(401),所述回流柱(401)与连续推送装置(2)的前壳体密封连接,二者之间形成起爆间隙,所述高压电极(402)位于起爆间隙内;连续推送装置(2)的含能材料推送口(216)与起爆间隙相连通,连续推送装置(2)将凝胶状含能材料(217)推送至起爆间隙,形成锥形含能材料块(218)。
  9. 一种水间隙放电实验系统,其特征在于,包括水间隙放电实验平台(3)和权利要求8所述的间隙放电装置;
    所述水间隙放电实验平台(3)包括水缸(310)、大型电容(301)和示波器(311);所述间隙放电装置竖直设置于水缸(310)内,前端安装同轴传输装置(306);所述同轴传输装置(306)的后端连接间隙放电装置的前端,前端连接同轴电缆(304)的一端,同轴电缆(304)的另一端通过三电极开关(302)连接大型电容(301);
    所述水缸(310)内的水中设置有冲击波压力探头(308)和成型板件(309),所述冲击波压力探头(308)和成型板件(309)分别设置于锥形含能材料块(218)的两侧,并位于锥形含能材料块(218)爆轰产生冲击波(307)的路径上;所述示波器(311)分别与冲击波压力探头(308)、电压探头(305)和电流探头(303)相连;电压探头(305)设置于同轴电缆(304)上,电流探头(303)设置于同轴电缆和三电极开关(302)的接地线上。
  10. 一种利用权利要求9所述实验系统的水间隙放电实验方法,其特征在于,包括以下步骤:
    步骤1:将间隙放电装置安装在同轴传输装置(306)下方,高压电极(402)与含能材料推送口(216)形成20 mm长度的水间隙,并将间隙放电装置浸没在水中;
    步骤2:控制高压电源向大型电容(301)充电,大型电容(301)电压到达10 kV,储能达到300 J时停止充电;
    步骤3:触发三电极开关(302)预放电,控制模块(202)拾取到磁场信号后控制电机(206)工作;
    步骤4:凝胶状含能材料(217)被推送至水间隙,形成锥形含能材料块(218);
    步骤5:在距离锥形含能材料块(218)15 cm的位置安装用于测量锥形含能材料块(218)爆轰产生冲击波(307)的幅值、冲量与能量密度的冲击波压力探头(308);
    步骤6:控制高压电源向大型电容(301)充电,大型电容(301)电压到达20 kV,储能达到1200 J时停止充电;
    步骤7:触发三电极开关(302)形成放电回路,电能注入锥形含能材料块(218)后使其发生爆轰,产生水中冲击波(307)。
  11. 一种破岩系统,其特征在于,包括携式电源(503)以及权利要求8所述的间隙放电装置;所述间隙放电装置设置于具有致裂需求的目标岩体(501)内预制的若干孔洞(502)内,间隙放电装置的电缆插口(408)通过携式同轴电缆(409)连接携式电源(503)。
  12. 一种采用权利要求11所述系统的破岩方法,其特征在于,包括以下步骤:
    步骤1,首先确定目标岩体(501)的致裂需求,所述致裂需求包括致裂位置和裂纹形态;
    步骤2,根据致裂需求在目标岩体(501)的表面设置若干孔洞(502);
    步骤3,将若干间隙放电装置分别安装于对应孔洞(502)中;
    步骤4,控制电源充电,预放电启动凝胶状含能材料连续推送装置(2);
    步骤5,凝胶状含能材料连续推送装置(2)将凝胶状含能材料(217)推送至起爆间隙内,形成锥形含能材料块(218);
    步骤6,控制电源向电容器充电;
    步骤7,电容器电压达到气体开关(405)极限耐受电压;
    步骤8,气体开关(405)击穿,形成放电回路,能量注入起爆间隙;
    步骤9,起爆间隙放电起爆锥形含能材料块(218);
    步骤10,判断目标岩体(501)是否达到致裂效果,若不符合预期,则返回步骤5,且起爆时形成的放电回路将再次启动连续推送装置,若符合预期,执行步骤11;
    步骤11,将间隙放电装置安装至新的工作位置,重复上述步骤2-10,直至所有目标区域都达到的致裂效果。
  13. 一种页岩油储层改造系统,其特征在于,包括控制平台(601)以及权利要求8所述的间隙放电装置,所述间隙放电装置设置在垂直井或水平井内;控制平台(601)通过电缆连接间隙放电装置引爆起爆间隙中的锥形含能材料块(218),产生冲击波。
  14. 一种采用权利要求13所述系统的页岩油储层改造方法,其特征在于,包括以下步骤:
    步骤1,确定作业场景的类型,所述作业场景的类型包括垂直井和水平井;
    步骤2,若为垂直井,则通过传输同轴电缆(603)在将间隙放电装置安装在作业位置;
    若为水平井,则通过连续油管(607)将间隙放电装置推送至加热井作业位置;
    步骤3,控制平台(601)控制电源通过电缆向电容器充电,预放电启动凝胶状含能材料连续推送装置(2);
    步骤4,凝胶状含能材料连续推送装置(2)将凝胶状含能材料(217)推送至起爆间隙内,形成锥形含能材料块(218);
    步骤5,控制平台(601)控制电源通过电缆向电容器充电;
    步骤6,电容器电压达到气体开关(405)极限耐受电压;
    步骤7,气体开关(405)击穿,形成放电回路,能量注入起爆间隙;
    步骤8,起爆间隙放电起爆锥形含能材料块(218);
    步骤9,评估储层改造效果,若不符合预期,返回步骤4;若符合预期,执行步骤10;
    步骤10,将间隙放电装置安装至新作业位置,重复步骤1~步骤9,直至所有作业场景改造完成。
PCT/CN2022/127412 2022-10-18 2022-10-25 一种凝胶状含能材料、制备方法及相关系统和装置 WO2024082321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211273737.1 2022-10-18
CN202211273737.1A CN115504844B (zh) 2022-10-18 2022-10-18 一种凝胶状含能材料、制备方法及相关系统和装置

Publications (1)

Publication Number Publication Date
WO2024082321A1 true WO2024082321A1 (zh) 2024-04-25

Family

ID=84510493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127412 WO2024082321A1 (zh) 2022-10-18 2022-10-25 一种凝胶状含能材料、制备方法及相关系统和装置

Country Status (2)

Country Link
CN (2) CN115504844B (zh)
WO (1) WO2024082321A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9820610D0 (en) * 1998-09-22 1998-11-11 Townley Malyon Raymond Non explosive rock and concrete breaking system
EP1321505A2 (de) * 2001-12-22 2003-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gelförmiger Treibstoff, Verfahren zu seiner Herstellung und seine Verwendung
US6652682B1 (en) * 2001-10-17 2003-11-25 The United States Of America As Represented By The Secretary Of The Navy Propellant composition comprising nano-sized boron particles
KR20180032521A (ko) * 2017-12-20 2018-03-30 에나엑스 에스.에이. 파암용 급팽창금속혼합물 및 급촉발금속혼합물
CN113717017A (zh) * 2021-08-05 2021-11-30 西安交通大学 一种固液复合含能材料和基于其的负载结构及制备方法
CN114658348A (zh) * 2022-03-30 2022-06-24 西安交通大学 冲击波破岩装置、系统、方法及固液复合含能材料和制备方法
CN216825791U (zh) * 2021-12-11 2022-06-28 上海勤鹏生物技术有限公司 一种氢化淀粉水解物储藏设备
CN216894364U (zh) * 2022-02-08 2022-07-05 屈波 用于油气储层的含能材料注入和引爆机构及爆燃压裂装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666935B1 (en) * 1997-09-09 2003-12-23 The Regents Of The University Of California Sol-gel manufactured energetic materials
US8075716B1 (en) * 2000-01-11 2011-12-13 Lawrence Livermore National Security, Llc Process for preparing energetic materials
CN1569617A (zh) * 2004-05-13 2005-01-26 大连理工大学 氧化物粉末的爆轰合成方法
EP2547863A4 (en) * 2010-03-19 2017-07-05 Exxonmobil Upstream Research Company System and method for fracturing rock in tight reservoirs
CN105712810B (zh) * 2016-02-03 2018-06-01 西安贯通能源科技有限公司 一种复合含能材料及其制备应用方法
CN106748589B (zh) * 2016-11-30 2018-07-03 安徽理工大学 乳化炸药用含能复合敏化剂及其制备方法
CN108180003B (zh) * 2018-01-12 2019-02-12 西安交通大学 金属丝电爆炸驱动含能混合物产生水中冲击波的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9820610D0 (en) * 1998-09-22 1998-11-11 Townley Malyon Raymond Non explosive rock and concrete breaking system
US6652682B1 (en) * 2001-10-17 2003-11-25 The United States Of America As Represented By The Secretary Of The Navy Propellant composition comprising nano-sized boron particles
EP1321505A2 (de) * 2001-12-22 2003-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gelförmiger Treibstoff, Verfahren zu seiner Herstellung und seine Verwendung
KR20180032521A (ko) * 2017-12-20 2018-03-30 에나엑스 에스.에이. 파암용 급팽창금속혼합물 및 급촉발금속혼합물
CN113717017A (zh) * 2021-08-05 2021-11-30 西安交通大学 一种固液复合含能材料和基于其的负载结构及制备方法
CN216825791U (zh) * 2021-12-11 2022-06-28 上海勤鹏生物技术有限公司 一种氢化淀粉水解物储藏设备
CN216894364U (zh) * 2022-02-08 2022-07-05 屈波 用于油气储层的含能材料注入和引爆机构及爆燃压裂装置
CN114658348A (zh) * 2022-03-30 2022-06-24 西安交通大学 冲击波破岩装置、系统、方法及固液复合含能材料和制备方法

Also Published As

Publication number Publication date
CN115504844A (zh) 2022-12-23
CN115504844B (zh) 2023-09-19
CN117142913A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US12078034B2 (en) Cracking permeability increasing method combining hydraulic fracturing and methane in-situ combustion explosion
CN108361061A (zh) 低渗煤层电爆震及微波辅助液氮冻融增透装置及方法
CN105674818A (zh) 一种高压放电驱动含能电极释放能量产生冲击波的方法
CN111397457A (zh) 一次性套筒及一种碎岩方法
CN208168927U (zh) 低渗煤层电爆震及微波辅助液氮冻融增透装置
CN105712810A (zh) 一种复合含能材料及其制备应用方法
CN104819670A (zh) 预钻中孔竖井开挖爆破方法
CN110375590A (zh) 静态破碎剂的发生装置
US4662451A (en) Method of fracturing subsurface formations
CN113717017B (zh) 一种固液复合含能材料和基于其的负载结构及制备方法
US3063373A (en) Method of blasting
WO2024082321A1 (zh) 一种凝胶状含能材料、制备方法及相关系统和装置
CN114658348B (zh) 冲击波破岩装置、系统、方法及固液复合含能材料和制备方法
CN209355785U (zh) 一种结构安全起爆具
CN208564545U (zh) 干冰粉动态破岩装置及干冰粉动态破岩系统
CN208073388U (zh) 一种雷管启动液压坐封工具
CN110631424B (zh) 一种雷管式微型药包
CN105043180A (zh) 一种爆炸法快速堵孔装置
CA2015102C (en) Plasma blasting method
CN212109768U (zh) 一次性套筒
RU2262069C1 (ru) Заряд взрывчатого вещества и способ ведения взрывных работ
CN210242589U (zh) 一种销钉法防渗隔热套管装置
CN209401481U (zh) 储能电容器及可控冲击波发生器
CN216956382U (zh) 深井激发地震勘探高能震源
CN202470917U (zh) 一种高安全飞片式无起爆药工业雷管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962502

Country of ref document: EP

Kind code of ref document: A1