WO2024081343A1 - Systems and methods for acoustic-based diagnosis - Google Patents

Systems and methods for acoustic-based diagnosis Download PDF

Info

Publication number
WO2024081343A1
WO2024081343A1 PCT/US2023/034997 US2023034997W WO2024081343A1 WO 2024081343 A1 WO2024081343 A1 WO 2024081343A1 US 2023034997 W US2023034997 W US 2023034997W WO 2024081343 A1 WO2024081343 A1 WO 2024081343A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficients
audio data
rasta
mfcc
plp
Prior art date
Application number
PCT/US2023/034997
Other languages
French (fr)
Inventor
Drew Edward GRANT
James E. West
Valerie E. RENNOLL
Ian MCLANE
Original Assignee
The Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Johns Hopkins University filed Critical The Johns Hopkins University
Publication of WO2024081343A1 publication Critical patent/WO2024081343A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H80/00ICT specially adapted for facilitating communication between medical practitioners or patients, e.g. for collaborative diagnosis, therapy or health monitoring

Definitions

  • Coronavirus SARS-CoV-2 and its associated disease has led to unprecedented global disruptions.
  • the rapid and uncontrolled spread of COVID- 19 across the world can be largely attributed to lack of test access.
  • a prompt, positive test allows individuals to isolate and seek treatment earlier, reducing transmission risks, disease severity, and deaths.
  • billions of vaccines were deployed in 2021 and 2022, experts agree that testing is critical to regulate the spread of COVID-19[1],[2].
  • RT-PCR Reverse transcription polymerase chain reaction
  • rapid antigen tests (BinaxNOW by Abbott, BD Veritor by Becton Dickinson, Flowflex by ACON Laboratories, to name a few) demonstrate wide variability and significantly lower sensitivity than the gold standard RT-PCR tests; sensitivities have been reported from 44% to 79% in university screening programs [4], [5], Severe shortages of supplies and logistical challenges related to deployment have also limited testing at critical points throughout the pandemic [6], A reliable Al-based screening tool based on easily acquirable physiological sounds (cough, speech, and breathing) would provide a simple, scalable, low-cost, and expeditious method to detect COVID-19.
  • embodiments consistent with the present disclosure include a method of forming a classification model associated with a respiratory disease based on training audio data, where the training audio data is characterized by a pre-existing correlation with the respiratory disease.
  • the method can include normalizing the training audio data, removing portions of the training audio data below an audio energy threshold to produce thresholded audio data, segmenting the thresholded audio data into uniform time segments, extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded audio data, generating a feature matrix using the MFCC coefficients and RASTA-PLP coefficients, and classifying the feature matrix based on the pre-existing correlation to form the classification model using at least one of: a random forest technique, a multilayer perceptron technique, and a logistic regression technique.
  • a method of generating a probability of a diagnosis based on acquired audio data includes: forming the classification model of the previous embodiment; normalizing the acquired audio data; removing portions of the acquired audio data below the audio energy threshold to produce thresholded acquired audio data; segmenting the thresholded acquired audio data into uniform time segments; extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; generating an acquired feature matrix using the MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; using the classification model and the acquired feature matrix to generate the probability of the diagnosis of the respiratory disease.
  • FIG. 1 depicts a proposed system pipeline
  • FIGS. 2-10 depict various results associated with the analysis consistent with this disclosure.
  • the COVID-19 classification system which is visually summarized in FIG. 1, is developed and tested by processing cough, speech, and breathing recordings gathered from a single, large dataset.
  • the COVID-19 detection system pipeline consistent with this disclosure consists of (1) data collection, (2) pre-processing, (3) feature extraction, (4) classification, and (5) performance evaluation stages.
  • the baseline classification schema follows traditional and standard audio machine learning systems [28] and is tested on multiple datasets and conditions to understand its overall performance.
  • FIG. 2 depicts, in histogram form, the number of recordings included in each of the five datasets that were used to train and test the COVID-19 detection system.
  • the DiCOVA Blind and NeurlPS 2021 Datasets include subjects with other self-reported respiratory conditions. All recordings were from unique subjects, except for the Repeatability Dataset which included ten replicate recordings from each subject.
  • Dataset includes crowdsourced sound recordings derived from the Coswara Dataset [20],
  • the challenge consisted of two data cohorts: a ‘validation’ set used for model training and cross validation, and a ‘blind’ set for blind testing and evaluation. Both datasets include ‘heavy cough’, ‘deep breathing’, and ‘normal counting’ recordings for each subject, which were voluntarily submitted via web application along with qualitative information on age, gender, health status, symptoms, pre-existing respiratory ailments, and comorbidities.
  • the validation dataset consists of 965 subjects, of which 172 (17.8%) self-reported as being COVID-positive.
  • the blind test set consists of 471 subjects, of which 71 (15.1%) self-reported as being COVID- positive.
  • the DiCOVA datasets were used for initial training and baseline performance characterization across the three sound types.
  • NeurlPS 2021 Dataset includes crowdsourced cough and breathing sound recordings collected by the University of Cambridge and released for scientific exploration [29], The recordings were voluntarily submitted via a web- or Android-based application with information on symptoms, asthma diagnosis, and COVID status.
  • the cough subset contains 106 subjects; 31 (29.3%) self-reported with COVID-19, 11 (10.4%) self-reported with asthma, and the remaining 64 (60.4%) self-reported as healthy.
  • the breathing subset contains 99 subjects; 68 (68.7%) self-reported with COVID-19, 11 (11.1%) self-reported with asthma, and the remaining 31 (31.3%) self-reported as healthy.
  • the Social Media Dataset was compiled by gathering speech recordings from individuals available online through television, video sharing platforms, and social media. The standard procedure to collect recordings was as follows: several news (e.g. New York Times, CNN, Fox News) and social media sites (e.g. Twitter, TikTok, Facebook, Instagram, YouTube) were searched with standard strings for recordings of subjects who had self-reported as testing positive for COVID-19 within the last seven days. Recordings of the same subject were then gathered that were taken at least one month prior to the positive COVID-19 report to ensure no overlap with incubation or asymptomatic periods.
  • news e.g. New York Times, CNN, Fox News
  • social media sites e.g. Twitter, TikTok, Facebook, Instagram, YouTube
  • the final dataset includes 36 subjects, each with a negative and positive COVID-19 recording.
  • the data, along with detailed descriptions of the media, including the subjects, COVID-19 status, site used, link to media, search strings used, and quality assessment can be found at https://github.com/drewgrant/COVIDAudioSocialMediaDataset.
  • Repeatability Dataset was compiled by gathering speech recordings of participants in a similar fashion to the Coswara/DiCOVA Dataset process. Eleven participants (6 COVID-negative participants, 5 COVID-positive participants) followed the standard DiCOVA Dataset process for speech, counting normally from one to ten, and voluntarily submitted recordings via web application. The participants repeated this process ten times, moving locations within their home between each recording. The subjects also provided qualitative information (age, gender, health status, symptoms, pre-existing respiratory ailments, and comorbidities) following the standard set of questions from the Coswara Dataset. This dataset was used to evaluate the generalizability of the CO VID-19 classification to unseen data and the replicability of the system when used repeatedly by a single speaker.
  • the baseline classification system extracts RelAtive SpecTrAl -Perceptual Linear Prediction (RASTA-PLP) and Mel Frequency Cepstral Coefficient (MFCC) features and performs classification via multilayer perceptron [19], This schema was the highest performing system in the Second DiCOVA Challenge [20], The system reported here has been slightly modified for standardization across sound events; multilayer perceptron and 25 MFCC and
  • MFCC-A features are used across all sound events, but RASTA-PLPs of model order 25, 20, and 22 were used for speech, breathing, and cough analysis, respectively, determined empirically from the previous work.
  • the classification method involves three main stages, preprocessing, feature extraction, and classification.
  • MFCCs logarithmically warp audio signals in Mel-scale filter banks to emulate human perception [32]
  • MFCCs are extracted by applying a Mel-filter bank to the short-time power spectrum of a signal, taking the logarithm, applying the Discrete Cosine Transform, and Tiftering’ (or, multiplying the whole cepstrum by a rectangular window centered on lower quefrencies) to discard the higher cepstral coefficients and retain the number of desired coefficients [28], [33],
  • MFCCs encode high-level spectral content: the lower-order coefficients describe the overall spectral shape of the signal, while the higher-order coefficients represent finer spectral details, such as pitch and tonal information [34], MFCCs have been used in countless state-of-the-art acoustic systems [35], [36], [37], [38
  • RASTA-PLP features bandpass filter and nonlinearly compress audio signals to reduce the effects of additive noise and channel effects [39], RASTA filtering applies a bandpass filter to each frequency sub-band to smooth over short-term noise variations and remove channel distortions in the signal [28], PLP is a feature representation acquired via psychoacoustic transformations in critical band analysis, equal loudness, pre-emphasis, and intensity -loudness prior to employing the linear prediction algorithm [40] on windowed speech [28], Combining the RASTA and PLP algorithms generates a more robust feature representation that reduces the effects of diverse recording equipment, speaker-dependent information, and the wide range of acoustic environments that one might find in crowdsourced datasets.
  • FIG. 3 shows the average and standard deviation of the feature vectors extracted from a single subject (subject nine from the Social Media Dataset) saying ‘bye’ in two recordings: 1) without and 2) with COVID. These frames were chosen because the classifier correctly identified the presence or absence of COVID across all frames.
  • FIG. 3 demonstrates the subtle differences that occur between features in the two COVID cases, even for a single speaker saying the same syllable. These subtle differences in the feature vectors are what drive the need for advanced machine learning techniques for classification.
  • a multilayer perceptron classifier was used due to its ability to effectively model complex and nonlinear relationships and its ease of implementation [42], Other deep learning algorithms were not considered because of their black-box nature; challenges with repeatability and replicability from hyperparameter selection, initialization states, random seeding, and data selection; and limited training data [43],
  • ROC curves relate the sensitivity and specificity across all possible decision thresholds. As the classifier improves, the ROC curve becomes steeper and increases the AUC- ROC, a metric that provides a generalized, threshold-independent understanding of the classifier’s performance. While other metrics could be used (i.e., precision, recall, Fl score, etc.), AUC-ROC is common for diagnostic tests and data science applications [48], [49], including COVID detection tasks [7], [8], [20], and allows for performance standardization and model comparisons across datasets and studies.
  • the ROC curve informs the selection of a decision threshold value for deploying the classification system; average probability scores above the threshold classify the subject as having COVID.
  • the threshold value is typically selected to balance the sensitivity and specificity for the use-case of the classifier, since it can be difficult to agree at which threshold it is acceptable to risk missing disease.
  • the decision threshold is selected as the point that maximizes Youden’s J Statistic [50]
  • a single development threshold is used throughout the paper, referred to as the ‘development threshold’ .
  • the remaining datasets are evaluated both with this development threshold and with an ‘optimal threshold’ that optimizes Youden’s J Statistic for that specific dataset.
  • DiCOVA Validation Dataset results are the average AUC-ROC across all folds, as well as the average sensitivity and specificity for an optimal decision threshold across all five folds.
  • the performance metrics obtained using an earlier version of the proposed system with the DiCOVA Blind Dataset were validated externally by the DiCOVA team (presented in [20] as T-14), making these results highly credible and objective.
  • the NeurlPS and Repeatability Datasets are used to test on data that is ostensibly collected in a similar fashion but could diverge in the latent distribution from the initial DiCOVA Validation Dataset due to population, instructions, or recording equipment.
  • the Social Media Dataset is also used to further challenge the model by using unstructured audio with natural, conversational speech.
  • the baseline AUCROC was compared to the AUC-ROC on data subsets by gender (all male or all female), age (15-29, 30-45, 46-59, or over 59), other respiratory diseases (yes or no), or symptom status (asymptomatic or symptomatic).
  • gender all male or all female
  • age 15-29, 30-45, 46-59, or over 59
  • other respiratory diseases yes or no
  • symptom status asymptomatic or symptomatic
  • Probability scores for each frame of speech across the ten recordings of a subject are also analyzed using the Kruskal -Wallis non-parametric test to assess intra-speaker differences.
  • the baseline model is tested on paired recordings of a single speaker with and without CO VID from the Social Media Dataset. The number of subjects with correct classifications for both COVID states are determined. Subjects that were misclassified for one or both COVID states are grouped by whether the misclassification occurred due to the chosen detection threshold or if the system reversed the actual CO VID states for the subject. The probability scores from each frame for all subjects with and without COVID are also assessed with the Wilcoxon test to determine if a significant difference exists for a single subject with and without CO VID.
  • the acoustic detection system classified subjects with and without COVID-19 via breathing, cough, and speech sounds with an average AUC-ROC of 0.77.
  • the real-world deployability testing procedures highlight several challenges, including diverse recording devices, training and testing data mismatches, noise corruption, and natural variations in speaking, that could cause the system performance to decrease in realworld settings, but also highlight the system’s robustness to confounding factors.
  • FIG. 4 depicts ROC curves comparing the system’s performance using recordings from Android and web-based devices.
  • the system displays decreased performance with recordings from web-based devices. Possible explanations for this performance degradation could include that the subject is less likely to speak directly into the microphone using a webbased device or there is greater variability in the soundcard pre-processing for web-based devices, but additional testing data with varied recording devices is required to determine why specific devices would degrade classifier performance.
  • FIGS. 5A and 5B show the AUC-ROC, sensitivity, and specificity values along with the ROC curves for each dataset classified individually. Specifically, FIG. 5A depicts system AUC-ROC, sensitivity, and specificity values and FIG. 5B depicts ROC curves for breathing, cough, and speech sounds from all datasets classified individually. The average, minimum, and maximum AUC-ROC values across all datasets and sound types is 0.77, 0.64, and 0.87, which indicates that the system accurately identifies subjects with CO VID using breathing, cough, and speech sounds from various datasets that differed from the initial system development set.
  • the classifier performed best with the DiCOVA Blind Dataset, which was expected as this dataset is the most similar to the DiCOVA Validation Dataset used for system development.
  • the lowest AUC-ROC (0.64) was obtained using the Social Media Dataset.
  • the performance degradation for this specific dataset was also expected as the recordings contained spontaneous speech, rather than the structured speech contained in the DiCOVA Validation Dataset used for the system development.
  • no other acoustic respiratory disease system has been tested on spontaneous conversational speech, yet the performance is not considerably worse than the system presented here with structured speech datasets (DiCOVA, Repeatability) or other systems that are trained and tested with fixed speech phrases [55] [56],
  • the sensitivity and specificity values were calculated using both the development and optimal thresholds.
  • the optimal threshold which differs across each dataset and sound type, the system demonstrated an average sensitivity and specificity of 79.5% and 62.1%, respectively.
  • the threshold must be determined from the available system training data.
  • the system was less accurate at identifying subjects with COVID, as indicated by a decreased average sensitivity of 50.3%.
  • FIG. 6 depicts the distribution of average probability scores for all recordings in a particular dataset.
  • the average probability score distributions across the DiCOVA Blind, DiCOVA Validation, and NeurlPS Datasets are comparable.
  • the sensitivity and specificity values for the optimal and development thresholds are typically comparable.
  • the average probability score distributions are considerably different than the DiCOVA Datasets. This leads to considerable variation in the measured sensitvities and specificities across these datasets when using the development and optimal thresholds.
  • the training dataset must include more recordings that are representative of those found across all datasets or a strict protocol should be implemented to guarantee that the training and testing recordings are collected in a similar manner.
  • Table II shows a comparison of model complexity (low, moderate, high) and feature dimensionality from other systems in literature, demonstrating the proposed system’s competitive diagnostic performance with lower dimensionality. Specifically, Table II provides feature dimensionality, classification model, and classification performance comparison to other proposed systems in literature. Systems with high model complexity are more susceptible to overfitting and require devices with extensive computational resources. The proposed system’s low model complexity allows for model optimization, scaling, rapid testing of new unseen data, and deployment on low resource devices.
  • Confounding Factors To assess the system robustness to possible confounding factors, such as (1) gender, (2) age, (3) the presence of symptoms, or (4) other respiratory diseases, statistical analyses were performed using Wilcoxon and Kruskal -Wallis tests on the average probability scores returned by the classifier for each recording. Significant differences (p ⁇ 0.0001) between the average probability scores of subjects with and without COVID across sound types were identified, confirming separability between groups. Due to this difference, subsequent analyses were grouped by COVID status and sound type. This resulted in six different groupings for each confounding factor analyzed: COVID positive and negative within each sound class of breathing, cough, or speech.
  • FIG. 7 shows the system AUC-ROC when the trained models are only tested on specific subsets of the data to identify performance gaps due to gender, other respiratory diseases, and symptoms.
  • FIG. 7 depicts the AUC- ROC of the system when tested on various subsets of data according to gender, age, symptom reporting, or other respiratory disease and compared to the system performance with all datasets of a specific sound type combined (baseline). While the analysis is limited due to the small percentage of subjects who reported symptoms or other respiratory conditions, as shown in Table I, the results do point out areas the require further consideration and additional data. When comparing system performance with gender, the system shows a greater than 5% decrease in performance with females.
  • DiCOVA Validation Dataset used for model training is overwhelmingly male (72.5% male vs. 27.5% female), one would expect biasing towards male subjects and that more females in the training data might increase the performance with female subjects. All datasets except the NeurlPS 2021 contained gender labels.
  • the results indicate that the system performs better using speech to detect asymptomatic CO VID positive subjects compared to breathing and cough. This may suggest the system is able to detect subtle nuances of asymptomatic COVID positive subjects that are only perceptible through the dynamic variations of phonemes produced in speech. Conversely, fewer asymptomatic subjects are accurately classified using cough sounds, which is particularly interesting considering many of the acoustic COVID detection systems proposed by researchers use cough sounds.
  • FIG. 8 A shows the AUCROC of the system when trained and tested with stationary and nonstationary noise at sound levels from 0 dB to 60 dB.
  • Added noise of any level or type decreases the performance of the system, with an overall linear trend between added noise level and system performance.
  • Cough, speech, and breathing sounds typically exhibit similar trends between system performance and added noise level, except for cough sounds, which are particularly susceptible to training on recordings with nonstationary or stationary noise and testing on recordings with nonstationary noise. It is clear that the presence of noise in real-world deployment would significantly decrease the performance of the system when trained on clean, well-controlled recordings.
  • FIG. 8B depicts the measured AUCROC at various SAD thresholds for the baseline classification system using recordings that are clean and with added stationary noise at a signal -to-noise (SNR) level of 40 dB.
  • the chosen sound activity detection threshold (indicated by the dashed line) optimized the average performance across breathing, cough, and speech sounds for clean recordings.
  • a SAD threshold of 0.0001 was used throughout the paper to measure system performance, which was found to optimize the average performance across breathing, cough, and speech sounds in the no-noise condition.
  • FIG. 9 shows the average probability scores across each of the ten recordings for subjects included in the Repeatability Dataset. Specifically, FIG. 9 depicts average probability scores measured from eleven subjects counting in ten separate recordings. The blue dotted line indicates the optimal threshold for this specific dataset (0.03) which was computed using Youden J’s Statistic for all the recordings, while the yellow dashed line indicates the development threshold (0.22). A recording with an average probability score above the threshold is classified as a subject with COVID. The results suggest that a single subject would not have a consistent COVID classification based on the chosen probability threshold.
  • the average probability score determined by the system from the same speaker can be variable across different times or locations or with variations in the speech production.
  • the optimal threshold results in poorer classification results than the development threshold in FIG. 9; however, the optimal threshold results in only four false negative recordings compared to 27 false negative recordings using the development threshold. Additionally, when the optimal threshold is used, 64% of the recordings are correctly classified. Six subjects are correctly classified across all recordings, four subjects are misclassified across all recordings, and one subject has varying classifications across the ten recordings. In comparison, the development threshold correctly classifies 61% of recordings. Five subjects are correctly classified across all recordings, one subject is misclassified across all recordings, and five subjects have varying classifications across the ten recordings. Statistical testing revealed that all subjects had significant differences (p ⁇ 0.002) between the average probability scores measured from each frame across their ten recordings. This indicates that natural variations in speaking patterns or slight changes in the recording environment leads to significant differences in the measured probability score distributions.
  • FIG. 10 shows the average probability scores of the 36 subjects included in the Social Media Dataset.
  • the optimal threshold for this specific dataset (0.04) was used to determine a classification; 64% of recordings were correctly classified.
  • the development threshold correctly classified only 49% of recordings in this case, likely due to the mismatch in spontaneous and structured speech.
  • the subjects are ordered based on (1) whether the system correctly classified the recording before and while the subject had COVID (‘correct’), the probability score when the subject did not have COVID was greater than when the subject did have CO VID (‘reversed’), or if a different threshold would have correctly identified both states of COVID (‘threshold’), and (2) the difference between the average probability score. Eleven subjects were correctly classified, thirteen subjects had reversed probability scores, and twelve subjects had incorrect classifications due to the chosen threshold.
  • FIG. 10 depicts the predicted probability scores for subj ects in the Social Media Dataset whose non-CO VID and CO VID recordings were tested on the system.
  • the predicted probability scores in FIG. 10 illustrate that the system is able to detect differences in the subject’s non-COVID and CO VID recordings; however, the threshold value limits the system’s ability to make accurate classifications.
  • E. ZWICKER and U. T. ZWICKER “Audio engineering and psychoacoustics: Matching signals to the final receiver, the human auditory system,” in Readings in Multimedia Computing and Networking, ser. The Morgan Kaufmann Series in Multimedia Information and Systems, K. Jeffay and H. Zhang, Eds. San Francisco: Morgan Kaufmann, 2002, pp. 11-22.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Systems and methods are provided that include forming a classification model associated with a respiratory disease based on training audio data, where the training audio data is characterized by a pre-existing correlation with the respiratory disease. In an embodiment, the method can include normalizing the training audio data, removing portions of the training audio data below an audio energy threshold to produce thresholded audio data, segmenting the thresholded audio data into uniform time segments, extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded audio data, generating a feature matrix using the MFCC coefficients and RASTA-PLP coefficients, and classifying the feature matrix based on the pre-existing correlation to form the classification model using a multilayer perceptron technique. Systems and methods can further include generating a probability of a diagnosis based on acquired audio data and the classification model.

Description

SYSTEMS AND METHODS FOR ACOUSTIC-BASED DIAGNOSIS
DESCRIPTION
Cross-reference to Related Applications
[0001] This application claims the priority and benefit of U.S. Provisional Application No. 63/416,298, filed on October 14, 2022, which is hereby incorporated by reference in its entirety.
Field
[0002] Systems and methods consistent with the present disclosure are directed to acousticbased diagnosis.
Background
[0003] Coronavirus SARS-CoV-2 and its associated disease (COVID-19) has led to unprecedented global disruptions. The rapid and uncontrolled spread of COVID- 19 across the world can be largely attributed to lack of test access. A prompt, positive test allows individuals to isolate and seek treatment earlier, reducing transmission risks, disease severity, and deaths. While billions of vaccines were deployed in 2021 and 2022, experts agree that testing is critical to regulate the spread of COVID-19[1],[2].
[0004] Reverse transcription polymerase chain reaction (RT-PCR) and rapid antigen testing are most often used to reduce transmissions, with rapid antigen tests offering a quicker and lower cost solution compared to RT-PCR [3], However, rapid antigen tests (BinaxNOW by Abbott, BD Veritor by Becton Dickinson, Flowflex by ACON Laboratories, to name a few) demonstrate wide variability and significantly lower sensitivity than the gold standard RT-PCR tests; sensitivities have been reported from 44% to 79% in university screening programs [4], [5], Severe shortages of supplies and logistical challenges related to deployment have also limited testing at critical points throughout the pandemic [6], A reliable Al-based screening tool based on easily acquirable physiological sounds (cough, speech, and breathing) would provide a simple, scalable, low-cost, and expeditious method to detect COVID-19.
[0005] Previous literature has shown that classification of COVID-19 using acoustic signatures is indeed possible: [7] achieved a 93.8% accuracy on forced-cough recordings with parallel ResNet50 deep learning architectures; [8] used three parallel classifier systems with a mediator to achieve a final accuracy of 92.64% (though the app predicted an inconclusive test result 38.7% of the time, which was not accounted for in the accuracy; [9] applied transfer learning on a pre-trained ResNet50 architecture to achieve accuracies above 92% for cough, speech, and breathing sounds; [10] used a three stage deep learning architecture, to correctly identify 71% of positive patients. The release of public datasets such as Coswara/DiCOVA Challenge [11], [12], University of Cambridge/NeurlPS 2021 [13], and COUGHVID [14] has dramatically accelerated the development and release of new classification approaches with reported area-under-the-curve of the receiver operating curve (AUC-ROC) ranging from 0.60 to 0.95 [15], [16], [17], [18], Previously, the authors have also presented early work on the Coswara dataset [19] that was the top performer in the breathing and cough tracks of the Second DiCOVA Challenge, achieving an AUC-ROC of 0.87 and 0.82 respectively [20], [0006] Motivated by these preliminary studies, several systems have been deployed by researchers and corporate entities for public or clinical use, and a handful have applied for regulatory approval. The COVID Voice Detector by Carnegie Mellon was built on foundations of earlier voice-profiling work for vocal fold pathologies [21], [22], The system briefly went live on March 30, 2020 to offer CO VID classifications, but was quickly withdrawn by the researchers due to concerns regarding data quality, clinical validity, and risk [23], ResApp announced promising preliminary results from COVID-19 detection with cough sounds in a pilot clinical trial, based originally on pneumonia work, reportedly achieving 92% sensitivity and 80% specificity. However, an independent study of ResApp’s algorithm when deployed revealed significantly lower sensitivity (84%) and specificity of (58%), citing challenges in generalizability and training datasets [24],
[0007] Regrettably, these systems failed to address several key considerations and compounding challenges related to mass deployment, including but not limited to: (1) variability between recording equipment (computer, iPhone, Android phone, etc.), (2) model generalizability, (3) analysis of training dataset biases and statistics, (4) performance when presented with other respiratory diseases and conditions, (5) performance in the presence of additive noise, and (6) accuracy for repeated testing of a single individual. This non-exhaustive list of challenges is only partially addressed in existing literature related to acoustic-based COVID-19 classification. [25] and [26] acknowledge these shortcomings, but do not provide analyses to address them. Only [27] offers an analysis regarding dataset preparation ((3) above), model overfitting ((2) above), and comparison with other respiratory diseases like asthma and bronchitis ((4) above). To the best of our knowledge, no researchers have robustly quantified system performance with environmental noise corruption, the same speaker with different classes, the same speaker with the same class, and variability between recording equipment.
Summary
[0008] In one aspect, embodiments consistent with the present disclosure include a method of forming a classification model associated with a respiratory disease based on training audio data, where the training audio data is characterized by a pre-existing correlation with the respiratory disease. In an embodiment, the method can include normalizing the training audio data, removing portions of the training audio data below an audio energy threshold to produce thresholded audio data, segmenting the thresholded audio data into uniform time segments, extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded audio data, generating a feature matrix using the MFCC coefficients and RASTA-PLP coefficients, and classifying the feature matrix based on the pre-existing correlation to form the classification model using at least one of: a random forest technique, a multilayer perceptron technique, and a logistic regression technique.
[0009] In a further embodiment consistent with this disclosure, a method of generating a probability of a diagnosis based on acquired audio data includes: forming the classification model of the previous embodiment; normalizing the acquired audio data; removing portions of the acquired audio data below the audio energy threshold to produce thresholded acquired audio data; segmenting the thresholded acquired audio data into uniform time segments; extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; generating an acquired feature matrix using the MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; using the classification model and the acquired feature matrix to generate the probability of the diagnosis of the respiratory disease.
[0010] Additional features and embodiments of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claimed subject matter. Brief Description of the Drawings
[0011] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments and together with the description, serve to explain the principles of the disclosure. In the figures:
[0012] FIG. 1 depicts a proposed system pipeline; and
[0013] FIGS. 2-10 depict various results associated with the analysis consistent with this disclosure.
Description of the Embodiments
[0014] Reference will now be made in detail to the disclosed embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
[0015] To successfully deploy an acoustic-based COVID-19 classifier, it is critical to understand how the above-identified challenges will impact the detection accuracy, necessary training data, and system limitations. This study is not centered around comparing model architectures or maximizing accuracy; instead, a specific detection system is presented as a baseline and the effects of the aforementioned challenges are quantified to understand the robustness considerations needed to deploy such a system at-large. The aim of this work is to provide a preliminary framework and understanding to other researchers on techniques to measure system robustness.
[0016] Methods
[0017] The COVID-19 classification system, which is visually summarized in FIG. 1, is developed and tested by processing cough, speech, and breathing recordings gathered from a single, large dataset. As depicted in FIG. 1, the COVID-19 detection system pipeline consistent with this disclosure consists of (1) data collection, (2) pre-processing, (3) feature extraction, (4) classification, and (5) performance evaluation stages. The baseline classification schema follows traditional and standard audio machine learning systems [28] and is tested on multiple datasets and conditions to understand its overall performance.
[0018] A. Datasets
[0019] Four data sources were used to train and test the COVID-19 classification system. The model is trained using the development subset of the Second DiCOVA Challenge Dataset [20] and then tested across four additional datasets. A summary of the datasets and the included physiological sound types is presented in FIG. 2.
[0020] Specifically, FIG. 2 depicts, in histogram form, the number of recordings included in each of the five datasets that were used to train and test the COVID-19 detection system. The DiCOVA Blind and NeurlPS 2021 Datasets include subjects with other self-reported respiratory conditions. All recordings were from unique subjects, except for the Repeatability Dataset which included ten replicate recordings from each subject.
[0021] 1) DiCOVA Validation and Blind Datasets: The Second DiCOVA Challenge
Dataset includes crowdsourced sound recordings derived from the Coswara Dataset [20], The challenge consisted of two data cohorts: a ‘validation’ set used for model training and cross validation, and a ‘blind’ set for blind testing and evaluation. Both datasets include ‘heavy cough’, ‘deep breathing’, and ‘normal counting’ recordings for each subject, which were voluntarily submitted via web application along with qualitative information on age, gender, health status, symptoms, pre-existing respiratory ailments, and comorbidities. The validation dataset consists of 965 subjects, of which 172 (17.8%) self-reported as being COVID-positive. The blind test set consists of 471 subjects, of which 71 (15.1%) self-reported as being COVID- positive. The DiCOVA datasets were used for initial training and baseline performance characterization across the three sound types.
[0022] 2) NeurlPS 2021 Dataset: The NeurlPS 2021 Dataset includes crowdsourced cough and breathing sound recordings collected by the University of Cambridge and released for scientific exploration [29], The recordings were voluntarily submitted via a web- or Android-based application with information on symptoms, asthma diagnosis, and COVID status. The cough subset contains 106 subjects; 31 (29.3%) self-reported with COVID-19, 11 (10.4%) self-reported with asthma, and the remaining 64 (60.4%) self-reported as healthy. The breathing subset contains 99 subjects; 68 (68.7%) self-reported with COVID-19, 11 (11.1%) self-reported with asthma, and the remaining 31 (31.3%) self-reported as healthy. This dataset was used to evaluate the generalizability of the COVID-19 classification system to unseen data. [0023] 3) Social Media Dataset: The Social Media Dataset was compiled by gathering speech recordings from individuals available online through television, video sharing platforms, and social media. The standard procedure to collect recordings was as follows: several news (e.g. New York Times, CNN, Fox News) and social media sites (e.g. Twitter, TikTok, Facebook, Instagram, YouTube) were searched with standard strings for recordings of subjects who had self-reported as testing positive for COVID-19 within the last seven days. Recordings of the same subject were then gathered that were taken at least one month prior to the positive COVID-19 report to ensure no overlap with incubation or asymptomatic periods. Media were included or excluded following precise criteria related to length, noise, and information available; the inclusion and exclusion criteria can be found in the collection protocol at the link below. The final dataset includes 36 subjects, each with a negative and positive COVID-19 recording. The data, along with detailed descriptions of the media, including the subjects, COVID-19 status, site used, link to media, search strings used, and quality assessment can be found at https://github.com/drewgrant/COVIDAudioSocialMediaDataset.
[0024] The dataset was gathered to understand the system’s generalizability and ability to detect changes in a single individual’s COVID-19 status. The limitation of this dataset is that subjects speak in an unstructured, unscripted, and natural manner. This poses challenges compared to the structured speech of the DiCOVA Validation Dataset, in which participants count to twenty normally. Nonetheless, the dataset is included as a meaningful contribution to analyze the robustness of the system.
[0025] 4) Repeatability Dataset: The Repeatability Dataset was compiled by gathering speech recordings of participants in a similar fashion to the Coswara/DiCOVA Dataset process. Eleven participants (6 COVID-negative participants, 5 COVID-positive participants) followed the standard DiCOVA Dataset process for speech, counting normally from one to ten, and voluntarily submitted recordings via web application. The participants repeated this process ten times, moving locations within their home between each recording. The subjects also provided qualitative information (age, gender, health status, symptoms, pre-existing respiratory ailments, and comorbidities) following the standard set of questions from the Coswara Dataset. This dataset was used to evaluate the generalizability of the CO VID-19 classification to unseen data and the replicability of the system when used repeatedly by a single speaker.
[0026] B. Classification Schema
[0027] The baseline classification system extracts RelAtive SpecTrAl -Perceptual Linear Prediction (RASTA-PLP) and Mel Frequency Cepstral Coefficient (MFCC) features and performs classification via multilayer perceptron [19], This schema was the highest performing system in the Second DiCOVA Challenge [20], The system reported here has been slightly modified for standardization across sound events; multilayer perceptron and 25 MFCC and
MFCC-A features are used across all sound events, but RASTA-PLPs of model order 25, 20, and 22 were used for speech, breathing, and cough analysis, respectively, determined empirically from the previous work. The classification method involves three main stages, preprocessing, feature extraction, and classification.
[0028] 1) Pre-processing: All audio recordings had a sampling rate of 44.1 kHz.
Recordings were normalized to an amplitude range within ±1, and segmented into 40 ms windows with 50% overlap. Long time windows were used here to emphasize harmonics, which have been previously analyzed to detect hoarseness [30], a common symptom of respiratory illnesses. The short term energy of the windows was thresholded to perform sound activity detection (SAD) and remove silent segments from each recording [28], [31], Windows with energy below the threshold of 0.0001 were considered to be silence and removed. This threshold was determined empirically to balance system performance across all three sound types in recordings without added noise. Due to the nature of the recordings and the sound activity detection thresholding, the total number of windows for each subject varied with the recording and voiced audio lengths.
[0029] 2) Feature Extraction: The system uses MFCC and RASTA-PLP acoustic features, which are widely found in speech and sound analysis. MFCCs logarithmically warp audio signals in Mel-scale filter banks to emulate human perception [32], MFCCs are extracted by applying a Mel-filter bank to the short-time power spectrum of a signal, taking the logarithm, applying the Discrete Cosine Transform, and Tiftering’ (or, multiplying the whole cepstrum by a rectangular window centered on lower quefrencies) to discard the higher cepstral coefficients and retain the number of desired coefficients [28], [33], MFCCs encode high-level spectral content: the lower-order coefficients describe the overall spectral shape of the signal, while the higher-order coefficients represent finer spectral details, such as pitch and tonal information [34], MFCCs have been used in countless state-of-the-art acoustic systems [35], [36], [37], [38], The changes and trajectories of the MFCCs (commonly referred to as ‘MFCC-As’) capture spectral variations and dynamics. MFCC-A coefficients are computed by taking the first derivative of the MFCCs with respect to frames. The COVID-19 classification system extracts 25 MFCC and 25 MFCC-A features.
[0030] RASTA-PLP features bandpass filter and nonlinearly compress audio signals to reduce the effects of additive noise and channel effects [39], RASTA filtering applies a bandpass filter to each frequency sub-band to smooth over short-term noise variations and remove channel distortions in the signal [28], PLP is a feature representation acquired via psychoacoustic transformations in critical band analysis, equal loudness, pre-emphasis, and intensity -loudness prior to employing the linear prediction algorithm [40] on windowed speech [28], Combining the RASTA and PLP algorithms generates a more robust feature representation that reduces the effects of diverse recording equipment, speaker-dependent information, and the wide range of acoustic environments that one might find in crowdsourced datasets. To the best of the authors’ knowledge, this was the first system to pair MFCC and RASTA-PLP features for COVID detection when it was originally presented [19], RASTA- PLPs of model order 25, 20, and 22 were determined empirically to optimize system performance and used for speech, breathing, and cough analysis, respectively.
[0031] FIG. 3 shows the average and standard deviation of the feature vectors extracted from a single subject (subject nine from the Social Media Dataset) saying ‘bye’ in two recordings: 1) without and 2) with COVID. These frames were chosen because the classifier correctly identified the presence or absence of COVID across all frames. FIG. 3 demonstrates the subtle differences that occur between features in the two COVID cases, even for a single speaker saying the same syllable. These subtle differences in the feature vectors are what drive the need for advanced machine learning techniques for classification.
[0032] 3) Classifier Description: The MFCC, MFCC-A, and RASTA-PLP features for each signal frame are concatenated to create a single feature vector for each frame of a subject’s recording. The classification model [41] processes the feature vectors and returns a probability score for each frame. The probability scores are averaged across all frames of the recording and an optimal classification threshold derived from receiver operating characteristic (ROC) analysis is applied to determine a probable class: COVID positive or COVID negative.
[0033] A multilayer perceptron classifier was used due to its ability to effectively model complex and nonlinear relationships and its ease of implementation [42], Other deep learning algorithms were not considered because of their black-box nature; challenges with repeatability and replicability from hyperparameter selection, initialization states, random seeding, and data selection; and limited training data [43],
[0034] 4) Performance Evaluation: To measure the performance of the classifier in various discrimination and robustness tasks, the sensitivity, specificity, and AUC-ROC were computed [44] [45], These metrics are commonly used for evaluating binary classification tasks [46]; traditional performance metrics, such as overall accuracy or error rate, are severely limited when handling imbalanced data [47], Sensitivity and specificity describe the accuracy of binary diagnostic tests for both classes at a specific decision threshold by indicating the rate of true positives and false positives, respectively.
[0035] ROC curves relate the sensitivity and specificity across all possible decision thresholds. As the classifier improves, the ROC curve becomes steeper and increases the AUC- ROC, a metric that provides a generalized, threshold-independent understanding of the classifier’s performance. While other metrics could be used (i.e., precision, recall, Fl score, etc.), AUC-ROC is common for diagnostic tests and data science applications [48], [49], including COVID detection tasks [7], [8], [20], and allows for performance standardization and model comparisons across datasets and studies.
[0036] The ROC curve informs the selection of a decision threshold value for deploying the classification system; average probability scores above the threshold classify the subject as having COVID. The threshold value is typically selected to balance the sensitivity and specificity for the use-case of the classifier, since it can be difficult to agree at which threshold it is acceptable to risk missing disease. In this work, the decision threshold is selected as the point that maximizes Youden’s J Statistic [50], For the DiCOVA Validation Dataset, a single development threshold is used throughout the paper, referred to as the ‘development threshold’ . The remaining datasets are evaluated both with this development threshold and with an ‘optimal threshold’ that optimizes Youden’s J Statistic for that specific dataset.
[0037] Five-fold cross validation was used for model training and validation within the DiCOVA Validation Dataset, as specified in the Second DiCOVA Challenge [20], The DiCOVA Validation Dataset results are the average AUC-ROC across all folds, as well as the average sensitivity and specificity for an optimal decision threshold across all five folds. The performance metrics obtained using an earlier version of the proposed system with the DiCOVA Blind Dataset were validated externally by the DiCOVA team (presented in [20] as T-14), making these results highly credible and objective.
[0038] C. Real -world Deployability Testing
[0039] To evaluate the robustness of the system for challenges faced in real-world deployment, the baseline performance is reported as a benchmark to understand how varied recording equipment, subject groups, and background noise will impact the system performance via statistical testing and comparison of AUC-ROC, sensitivity, and specificity values.
[0040] 1) Recording Device: Of the datasets analyzed, only NeurlPS provided information on the device, either web- (36%) or Android-based (64%), used to capture the recordings. The AUC-ROC of the system with recordings solely from webbased or Android-based devices are compared to understand if the recording device impacts the system performance. [0041] 2) Model Generalizability: The AUC-ROC, sensitivity, and specificity are obtained from testing the system on the Di-COVA Validation, DiCOVA Blind, NeurlPS 2021, Social Media, and Repeatability Datasets to understand the (1) generalizability of the model, (2) if any overfitting occurred in the initial training, and (3) how widely applicable the model and the development threshold is when applied to unseen, uncorrelated data. ROC curves, AUC- ROC values, and sensitivity and specificity values at the development and optimal thresholds are compared.
[0042] The NeurlPS and Repeatability Datasets are used to test on data that is ostensibly collected in a similar fashion but could diverge in the latent distribution from the initial DiCOVA Validation Dataset due to population, instructions, or recording equipment. The Social Media Dataset is also used to further challenge the model by using unstructured audio with natural, conversational speech.
[0043] 3) Model Complexity: To rapidly scale a classification system for wide-scale deployment and assess recordings in an efficient manner, a model that balances high classification performance and low complexity is preferred. The feature dimensions, classification models, and AUC-ROC for the system proposed here and for others found in the literature for cough sounds are compared.
Figure imgf000015_0001
[0044] 4) Confounding Factors: The demographic diversity of subjects that provided recordings for the datasets used in this study could impact their sound production and the system performance. The percentages of recordings from subjects with different genders, age groups, symptoms, and other respiratory conditions are shown in Table I. Specifically, Table I provides the percentages of recordings submitted with various confounding factors, including gender, age group, COVID symptoms, and other respiratory conditions. The majority of subjects were male and 15 to 45 years old. Only a small percentage of subjects (~29%) reported whether they were asymptomatic or symptomatic and a small percentage (~30%) reported whether or not they had other respiratory conditions.
[0045] To understand how the system performance changes due to these confounding factors, statistical analyses were performed using the average probability scores from all subjects and datasets. Due to the non-normal distribution of the average probability scores (p- value < 0.001 via Shapiro-Wilk test), non-parameteric analyses of variance (Wilcoxon or Kruskal-Wallis tests) were used to determine if gender, age group, symptoms, or other respiratory conditions had a significant effect on the probability score distributions when grouped by the sound type and COVID status. Recordings without a gender or age label were removed from the analysis and the significance level was set to 0.05.
[0046] In addition to the statistical analyses, the baseline AUCROC was compared to the AUC-ROC on data subsets by gender (all male or all female), age (15-29, 30-45, 46-59, or over 59), other respiratory diseases (yes or no), or symptom status (asymptomatic or symptomatic). Though these are not exhaustive analyses of model bias, the testing provides valuable insight into potential performance differences based on the confounding factors that would need to be considered prior to deploying acoustic-based systems more widely.
[0047] 5) Additive Noise Injection: To test the robustness of the system against the presence of ambient noise, the baseline classification system was tested on varying levels of both stationary and nonstationary noise. Recordings from the Di-COVA Validation and Blind Datasets were artificially corrupted with ambient noise and other artifacts. Noise segments were randomly chosen from a noise database and added to the clean signals at prescribed signal-to-noise (SNR) levels. This technique ensures the ability to directly compare performance of the various loudness conditions, but also allows for some randomization in the type of ambient sounds being added.
[0048] The fourteen noise types originally used in [51] are included here: air conditioner, announcements, appliances (washer/dryer), car noise, copy machine, door shutting, eating (munching), multi-talker babble, neighbor speaking, squeaky chair, traffic, road, typing, vacuum cleaner, speakers reading from passages. White, pink and Brownian noise were also included. Sounds were sorted following the technique outlined in [52]: the average Power Spectral Entropy value for each recording was used as a stationarity index such that minimum entropy occurs for highly variable sounds (nonstationary noises) and maximum entropy occurs when the spectral distribution is uniform (stationary noises).
[0049] Ambient noises and recordings were mixed at seven different equally spaced SNR levels from 0 dB (extremely noisy) to 60 dB (quiet). All the final mixed files are normalized to -25 dBFS (decibels relative to full scale of the digital waveform). A combination of three training conditions and three testing conditions were created for each SNR level. The system was trained on one of three training sets: clean (unprocessed) dataset, the dataset with added stationary noise, or the dataset with added nonstationary noise. Each of these systems was then tested on one of three testing sets, which were generated following a similar process: clean (unprocessed) dataset, added stationary noise, and added nonstationary noise. This process was repeated for each of the sound types (speech, breathing, cough). The AUC-ROC of the classifier for each of the noise levels (0 to 60 dB) and nine train-test pairs is then calculated for comparison.
[0050] 6) Single Speaker Repeatability and Discrimination: A longstanding fundamental challenge in speech processing is repeatability [32]; intra-speaker variability and natural variations in speaking rate are unavoidable and that cause no two utterances to be the exact same [53] [54], Two cases are considered to measure the performance of the classifier when used repeatedly by participants: whether the model (1) performs consistently when presented with many recordings from a single participant with the same status, and (2) correctly identifies when a single participant’ status changes. For the first test, the baseline model is tested on ten recordings from each participant in the Repeatability Dataset. The number of correct and consistent classifications when using the development and optimal thresholds are compared. Probability scores for each frame of speech across the ten recordings of a subject are also analyzed using the Kruskal -Wallis non-parametric test to assess intra-speaker differences. For the second test, the baseline model is tested on paired recordings of a single speaker with and without CO VID from the Social Media Dataset. The number of subjects with correct classifications for both COVID states are determined. Subjects that were misclassified for one or both COVID states are grouped by whether the misclassification occurred due to the chosen detection threshold or if the system reversed the actual CO VID states for the subject. The probability scores from each frame for all subjects with and without COVID are also assessed with the Wilcoxon test to determine if a significant difference exists for a single subject with and without CO VID.
[0051] III. RESULTS AND DISCUSSION
[0052] The acoustic detection system classified subjects with and without COVID-19 via breathing, cough, and speech sounds with an average AUC-ROC of 0.77. The real-world deployability testing procedures highlight several challenges, including diverse recording devices, training and testing data mismatches, noise corruption, and natural variations in speaking, that could cause the system performance to decrease in realworld settings, but also highlight the system’s robustness to confounding factors.
[0053] 1) Recording Device: As shown in FIG. 4, the classifier shows significantly decreased performance with web-based recordings (AUC-ROC 0.48 for breathing and 0.42 for cough) compared to Android recordings (AUC-ROC 0.73 for breathing and 0.75 for cough). Specifically, FIG. 4 depicts ROC curves comparing the system’s performance using recordings from Android and web-based devices. The system displays decreased performance with recordings from web-based devices. Possible explanations for this performance degradation could include that the subject is less likely to speak directly into the microphone using a webbased device or there is greater variability in the soundcard pre-processing for web-based devices, but additional testing data with varied recording devices is required to determine why specific devices would degrade classifier performance. Due to the decreased performance of the classifier with web-based recordings, only Android-based recordings from the NeurlPS Dataset were included for subsequent analyses when the NeurlPS data is used. It is important to note that only the NeurlPS Dataset provided information on the recording devices used, so it is unclear how varying recording devices impacted the performance across all datasets.
[0054] 2) Model Generalizability: FIGS. 5A and 5B show the AUC-ROC, sensitivity, and specificity values along with the ROC curves for each dataset classified individually. Specifically, FIG. 5A depicts system AUC-ROC, sensitivity, and specificity values and FIG. 5B depicts ROC curves for breathing, cough, and speech sounds from all datasets classified individually. The average, minimum, and maximum AUC-ROC values across all datasets and sound types is 0.77, 0.64, and 0.87, which indicates that the system accurately identifies subjects with CO VID using breathing, cough, and speech sounds from various datasets that differed from the initial system development set. Across the AUCROC values of breathing, cough, and speech sounds, the classifier performed best with the DiCOVA Blind Dataset, which was expected as this dataset is the most similar to the DiCOVA Validation Dataset used for system development. The lowest AUC-ROC (0.64) was obtained using the Social Media Dataset. The performance degradation for this specific dataset was also expected as the recordings contained spontaneous speech, rather than the structured speech contained in the DiCOVA Validation Dataset used for the system development. To the best of the authors’ knowledge, no other acoustic respiratory disease system has been tested on spontaneous conversational speech, yet the performance is not considerably worse than the system presented here with structured speech datasets (DiCOVA, Repeatability) or other systems that are trained and tested with fixed speech phrases [55] [56],
[0055] In FIGS. 5A and 5B, the sensitivity and specificity values were calculated using both the development and optimal thresholds. Using the optimal threshold, which differs across each dataset and sound type, the system demonstrated an average sensitivity and specificity of 79.5% and 62.1%, respectively. However, when the system is deployed in a real-world setting, the correct classification of a subject is unknown, such that an optimal threshold cannot be calculated. Instead, the threshold must be determined from the available system training data. Using the development threshold, the system was less accurate at identifying subjects with COVID, as indicated by a decreased average sensitivity of 50.3%.
[0056] The changes in performance with the set development threshold can be understood by considering the distributions of probability scores across each dataset, shown in FIG. 6. Specifically, FIG. 6 depicts the distribution of average probability scores for all recordings in a particular dataset. For breathing sounds, the average probability score distributions across the DiCOVA Blind, DiCOVA Validation, and NeurlPS Datasets are comparable. As such, the sensitivity and specificity values for the optimal and development thresholds are typically comparable. However, for cough and speech sounds from the NeurlPS, Repeatability, and Social Media Datasets, the average probability score distributions are considerably different than the DiCOVA Datasets. This leads to considerable variation in the measured sensitvities and specificities across these datasets when using the development and optimal thresholds. To overcome this performance degradation when a specific classification threshold must be chosen, the training dataset must include more recordings that are representative of those found across all datasets or a strict protocol should be implemented to guarantee that the training and testing recordings are collected in a similar manner.
[0057] Stowell et al. noted similar difficulties with mismatches between training and testing conditions when using deep learning methods to acoustically detect bird calls with various noise levels, low SNRs, and wide variations in bird call types [57], Stowell et al. emphasized that automatic detection results should be treated with caution because true generalization remains difficult given the mismatch in training and testing conditions. The best solution is to obtain training data that closely matches the conditions of the testing data.
TABLE II
Reference Sound Event Classification Model Complexity AUC-ROC
Sharma et al. [20] Cough BiLSTM Moderate 0.75
Brown et al. [29] Cough Logistic Regression Low 0.80
Ragolta et al. [58] Cough Contextual Attention based Convolutional Neural Network High 0.68
Bagad et al. [59] Cough Convolutional Neural Network (ResNet-18) High 0.68
Proposed System Cough Multilayer Perceptron Low 0.79
[0058] 3) Model Complexity: Table II shows a comparison of model complexity (low, moderate, high) and feature dimensionality from other systems in literature, demonstrating the proposed system’s competitive diagnostic performance with lower dimensionality. Specifically, Table II provides feature dimensionality, classification model, and classification performance comparison to other proposed systems in literature. Systems with high model complexity are more susceptible to overfitting and require devices with extensive computational resources. The proposed system’s low model complexity allows for model optimization, scaling, rapid testing of new unseen data, and deployment on low resource devices.
[0059] 4) Confounding Factors: To assess the system robustness to possible confounding factors, such as (1) gender, (2) age, (3) the presence of symptoms, or (4) other respiratory diseases, statistical analyses were performed using Wilcoxon and Kruskal -Wallis tests on the average probability scores returned by the classifier for each recording. Significant differences (p < 0.0001) between the average probability scores of subjects with and without COVID across sound types were identified, confirming separability between groups. Due to this difference, subsequent analyses were grouped by COVID status and sound type. This resulted in six different groupings for each confounding factor analyzed: COVID positive and negative within each sound class of breathing, cough, or speech. Significant differences were identified for the average probability scores of males and females without COVID for breathing (p = 0.02), cough (p < 0.0001), and speech (p = 0.002); however, no significant differences were identified between males and females with COVID across sound types. A significant difference (p = 0.015) was also identified between cough recordings from subjects without COVID with other respiratory conditions and from subjects without COVID with no condition listed. No other significant differences (p > 0.05) between age groups, symptom presence, or other respiratory conditions were identified across subjects with and without COVID for cough, speech, and breathing.
[0060] These results indicate that the probability score from the classifier for COVID positive patients is not being influenced by confounding factors, including gender, age, and the presence of other respiratory conditions or symptoms. However, these factors seem to influence the probability score for COVID negative patients under certain conditions, as indicated in the analysis above.
[0061] To support these statistical analyses, FIG. 7 shows the system AUC-ROC when the trained models are only tested on specific subsets of the data to identify performance gaps due to gender, other respiratory diseases, and symptoms. Specifically, FIG. 7 depicts the AUC- ROC of the system when tested on various subsets of data according to gender, age, symptom reporting, or other respiratory disease and compared to the system performance with all datasets of a specific sound type combined (baseline). While the analysis is limited due to the small percentage of subjects who reported symptoms or other respiratory conditions, as shown in Table I, the results do point out areas the require further consideration and additional data. When comparing system performance with gender, the system shows a greater than 5% decrease in performance with females. Since the DiCOVA Validation Dataset used for model training is overwhelmingly male (72.5% male vs. 27.5% female), one would expect biasing towards male subjects and that more females in the training data might increase the performance with female subjects. All datasets except the NeurlPS 2021 contained gender labels.
[0062] The largest changes in system performance (up to 25%) occur when assessing subjects based on age. It is important to note that only the DiCOVA Blind and Repeatability Datasets contained age labels. The results suggest that the system is more likely to accurately detect whether subjects over the age of 59 are COVID positive or negative. This may imply that elderly subjects undergo significant vocal changes when infected with CO VID, which may be expected considering older adults have a greater risk of becoming severely ill from CO VID and requiring hospitalization.
[0063] The second largest changes in system performance (up to 22%) occur when assessing subjects with other respiratory conditions or asymptomatic COVID. The difference in performance when a subject reports ‘yes’ to other respiratory disease suggests that the system is more likely to accurately detect whether or not subjects with other respiratory diseases are COVID positive or negative. This may suggest that subjects with other respiratory diseases have acoustic features that overlap with features that the system uses for COVID detection. However, it should be noted that majority of the subjects with ‘other respiratory diseases’ were from DiCOVA Blind Dataset, which the system performed the best on. This is important to note because the DiCOVA Blind Dataset most closely matches the conditions of the DiCOVA Validation Dataset that was used to train the system, so it is not surprising that the system performs well on this subset. Nonetheless, the system’s impressive performance on subjects with other respiratory diseases is particularly noteworthy as a study by Mouliou et al. reports that clinical diagnostics and laboratory test are affected not only by preexisting diseases but also the total health status of the subject [60], Specifically, diseases ranging from asthma, COPD, and pneumonia have been shown to impact the performance of PCR tests and cause false negatives.
[0064] For symptom reporting, the results indicate that the system performs better using speech to detect asymptomatic CO VID positive subjects compared to breathing and cough. This may suggest the system is able to detect subtle nuances of asymptomatic COVID positive subjects that are only perceptible through the dynamic variations of phonemes produced in speech. Conversely, fewer asymptomatic subjects are accurately classified using cough sounds, which is particularly interesting considering many of the acoustic COVID detection systems proposed by researchers use cough sounds.
[0065] 5) Additive Noise Injection: FIG. 8 A shows the AUCROC of the system when trained and tested with stationary and nonstationary noise at sound levels from 0 dB to 60 dB. Added noise of any level or type decreases the performance of the system, with an overall linear trend between added noise level and system performance. Cough, speech, and breathing sounds typically exhibit similar trends between system performance and added noise level, except for cough sounds, which are particularly susceptible to training on recordings with nonstationary or stationary noise and testing on recordings with nonstationary noise. It is clear that the presence of noise in real-world deployment would significantly decrease the performance of the system when trained on clean, well-controlled recordings. Overall, when noisy conditions are expected, the results indicate that breathing and speech are less susceptible to added noise, likely due to their more consistent spectral profile compared to speech. Inclusion of noisy and non-ideal recordings in the training process has the potential to increase robustness of the system, especially in very noisy conditions. However, as noise in the training set increases, the classifier seems to incorrectly attribute certain features to the detection task, as shown in the case when tested on only clean data after being trained on noisy data. A balance is needed between inclusion of noise in the training dataset and the control of noise in the enduse.
[0066] To improve the system performance with added noise, a different SAD threshold, which determines what frames are considered sound or noise, could also be used, as shown in FIG. 8B. Specifically, FIG. 8B depicts the measured AUCROC at various SAD thresholds for the baseline classification system using recordings that are clean and with added stationary noise at a signal -to-noise (SNR) level of 40 dB. The chosen sound activity detection threshold (indicated by the dashed line) optimized the average performance across breathing, cough, and speech sounds for clean recordings. A SAD threshold of 0.0001 was used throughout the paper to measure system performance, which was found to optimize the average performance across breathing, cough, and speech sounds in the no-noise condition. When classifying recordings with 40 dB of added stationary noise, a higher SAD threshold is found to increase the system AUC-ROC since a lower threshold introduces more noise frames in the analysis. Meanwhile, in the quiet cases, SAD algorithms with thresholds set too low fail to remove any silence or noise while SAD algorithms with thresholds set too high can be overly aggressive and remove key information. Advanced SAD algorithms that dynamically adjust the threshold or calculate optimal thresholds based on calibration recordings may be deployed in the real-world scenarios. However, if noise is sufficiently controlled in the end-use, SAD algorithms with reasonable fixed thresholds would work sufficiently, and are in-fact preferable when the levels of noise and speech are not known in advance [61],
[0067] 6) Single Speaker Repeatability and Discrimination: FIG. 9 shows the average probability scores across each of the ten recordings for subjects included in the Repeatability Dataset. Specifically, FIG. 9 depicts average probability scores measured from eleven subjects counting in ten separate recordings. The blue dotted line indicates the optimal threshold for this specific dataset (0.03) which was computed using Youden J’s Statistic for all the recordings, while the yellow dashed line indicates the development threshold (0.22). A recording with an average probability score above the threshold is classified as a subject with COVID. The results suggest that a single subject would not have a consistent COVID classification based on the chosen probability threshold. The average probability score determined by the system from the same speaker can be variable across different times or locations or with variations in the speech production.
[0068] Visually, it may appear that the optimal threshold results in poorer classification results than the development threshold in FIG. 9; however, the optimal threshold results in only four false negative recordings compared to 27 false negative recordings using the development threshold. Additionally, when the optimal threshold is used, 64% of the recordings are correctly classified. Six subjects are correctly classified across all recordings, four subjects are misclassified across all recordings, and one subject has varying classifications across the ten recordings. In comparison, the development threshold correctly classifies 61% of recordings. Five subjects are correctly classified across all recordings, one subject is misclassified across all recordings, and five subjects have varying classifications across the ten recordings. Statistical testing revealed that all subjects had significant differences (p < 0.002) between the average probability scores measured from each frame across their ten recordings. This indicates that natural variations in speaking patterns or slight changes in the recording environment leads to significant differences in the measured probability score distributions.
[0069] In the Social Media Dataset, similar or greater variability is likely to be present as the recordings had greater variations in time and speech type. FIG. 10 shows the average probability scores of the 36 subjects included in the Social Media Dataset. The optimal threshold for this specific dataset (0.04) was used to determine a classification; 64% of recordings were correctly classified. The development threshold correctly classified only 49% of recordings in this case, likely due to the mismatch in spontaneous and structured speech. In Figure 0, the subjects are ordered based on (1) whether the system correctly classified the recording before and while the subject had COVID (‘correct’), the probability score when the subject did not have COVID was greater than when the subject did have CO VID (‘reversed’), or if a different threshold would have correctly identified both states of COVID (‘threshold’), and (2) the difference between the average probability score. Eleven subjects were correctly classified, thirteen subjects had reversed probability scores, and twelve subjects had incorrect classifications due to the chosen threshold.
[0070] Of the thirteen subjects that had reversed probability scores, nine had average probability scores that differed by less than 0.04. Of the twelve subjects that were misclassified due to the threshold, eight had average probability scores that differed by less than 0.04. This indicates that a large number of subjects were not correctly classified for both states of COVID as there was not an easily detectable change in the average probability score with and without COVID, possibly because any changes were confounded with varying speech or no changes occurred. Although the difference between average probability scores with and without CO VID were frequently small, the majority of subjects did show a significant difference between the average probability scores with and without CO VID, except for six subjects (13, 14, 25, 27, and 30). For subjects with average probability score differences greater than 0.04, 13 out of 18 were correctly classified, which does show promise that an individual can be correctly classified during both states of COVID when the relative changes in the average probability scores are considered. Specifically, FIG. 10 depicts the predicted probability scores for subj ects in the Social Media Dataset whose non-CO VID and CO VID recordings were tested on the system. The predicted probability scores in FIG. 10 illustrate that the system is able to detect differences in the subject’s non-COVID and CO VID recordings; however, the threshold value limits the system’s ability to make accurate classifications.
[0071] Further, it seems that separating out the changes in the average probability scores that occur due to either the variations in speaking or the COVID status remain ambiguous with the chosen system. Interestingly, taking the natural variation of physiological sounds into account (in the form of the distribution of scores in single recording) could provide additional information for classifying COVID; the system has an AUCROC of 0.79, 0.72, and 0.75 for breathing, cough, and speech sounds when using the standard deviation of the probability scores across frames rather than the mean probability scores.
[0072] A similar trend was reported in [62] where the authors reported the effects of different respiratory diseases on speech production. Lee at al. found that the best predictors for differentiating between speech of healthy subjects and subjects with asthma, sarcoidosis, or emphysema were the mean and standard deviations of time-related variables, which highlighted the key differences in how long healthy subjects speak uninterrupted by long pauses to breathe compared to subjects with a disease. The findings here have clear similarities that warrant further investigation in the future.
[0073] 7) Summary and limitations: The proposed acoustic-based detection system offers promising strides towards costeffective and low-resource, rapid testing of COVID-19. Across the four data sources and three sound types included in the study, the system demonstrated an average AUC-ROC of 0.77. In general, COVID-19 positive classifications were not informed by other confounding factors, such as gender, age, and the presence of symptoms or other respiratory conditions. The simulated testing for real-world deployability highlighted several weaknesses of this system that are likely applicable to other acoustic-based COVID-19 detection systems and could degrade the system performance when moved out of a research setting, including performance variations with the recording equipment used, presence of background noise, and the natural variation of physiological sounds. It is important to note that the presented work is not intended to be a comprehensive analysis of all the issues concerning deployment of acoustic-based COVID screening systems, but rather propose framework and provide preliminary results to understand deployment challenges that need to be addressed to allow for reliable acoustic-based COVID-19 screening.
[0074] While the results of this study demonstrate the proposed system’s high classification accuracy and outline robustness considerations, the system is limited by the inherent flaws of crowdsourced databases. While some of these limitations were considered in this study with noise, recording device, and confounding factor analyses, some of the largest flaws in crowdsourced databases stems from issues of data reliability with subjects voluntarily reporting unverified information. This introduces the possibility of training models on incorrect labels. Additional data with well-annotated and verified labels is required to fully understand the systems’ biases and address them.
[0075] The system performance was also found to degrade with simulated background noise, but added artificial noise is not a substitute for the dynamic interactions that real-world noise sources produce. Ideally, to address these concerns, training data would be collected that best matches the planned target deployment conditions. However, such an approach could limit the broad use of the system. Noise suppression techniques on the recordings (such as spectral subtraction, least means squared, etc.) or self-adaptation techniques to process the testing data to be more similar to the training data could achieve greater system performance and broad applicability.
[0076] Similar to other classification system using neural networks, the predictions generated in this study lack interpretability and it is unclear what features contribute to the model’s classification decisions. Future work will include feature importance ranking to understand informative acoustic characteristics for COVID-19. [0077] IV. CONCLUSION
[0078] The global disruptions caused by COVID-19 have prompted research on improved test methods that can quickly and accurately identify the disease to prevent transmission. Acoustic-based detection systems offer the promise of scalable, rapid, and high-throughput screening tools. The proposed system demonstrates promising results as indicated by the performance in the Second DiCOVA Challenge where it obtained the highest average AUC- ROC of 0.83 when detecting COVID- 19 subjects using breathing, cough, and speech sounds from the DiCOVA Blind Dataset. Additionally, the proposed system offers the promise of acoustic-based detection on spontaneous speech, which has the potential to allow for unobtrusive and continuous monitoring. However, it is clear that further work is needed in the field to offer clinical decision support and highly reliable diagnostics for at-home use. This study highlights that considerations need to be made for noise contamination, variations in recording equipment, and the inherent variability of physiological sounds when deploying systems in real-world environments, challenges that have not been thoroughly examined to date. A framework for testing the robustness of a system is provided and preliminary results demonstrate pathways the authors plan to use to improve the system’s robustness. Importantly, results from acoustic-based COVID-19 classification can be further applied to acoustic classifications systems that have been proposed for other diseases like asthma, tuberculosis, and pneumonia.
[0079] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the embodiment disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims. APPENDIX- REFERENCES
[1] “Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) Vaccines in Preventing COVID-19 Hospitalizations Among Adults Without Immunocompromising Conditions — United States, March- August 2021,” Morbidity and Mortality Weekly Report, vol. 70, no. 38, pp. 1337-1343, Sep. 2021.
[2] M. A. Johansson et al., “SARS-CoV-2 Transmission From People Without COVID-19 Symptoms,” JAMA Network Open, vol. 4, no. 1, pp. e2 035 057-e2 035 057, 01 2021.
[3] B. J. Tromberg et al., “Rapid scaling up of covid-19 diagnostic testing in the united states — the nih radx initiative,” New England Journal of Medicine, vol. 383, no. 11, pp. 1071-1077, 2020.
[4] N. C. Okoye et al., “Performance characteristics of binaxnow covid-19 antigen card for screening asymptomatic individuals in a university setting,” Journal of Clinical Microbiology, vol. 59, no. 4, pp. e03 282-20, 2021.
[5] L. Ford et al., “Epidemiologic characteristics associated with sars-cov-2 antigen-based test results, rrt-pcr cycle threshold values, subgenomic rna, and viral culture results from university testing,” Clinical infectious diseases, Apr 13, 2021.
[6] “Lab Advisory: SARS-CoV-2 Variant Classification Updates,” Sep. 2021.
[7] J. Laguarta, F. Hueto, and B. Subirana, “Covid-19 artificial intelligence diagnosis using only cough recordings,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, pp. 275-281, 2020.
[8] A. Imran et al., “AI4COVID-19: Al enabled preliminary diagnosis for COVID-19 from cough samples via an app,” Informatics in Medicine Unlocked, vol. 20, p. 100378, 2020.
[9] M. Pahar, M. Klopper, R. Warren, and T. Niesler, “COVID-19 Detection in Cough, Breath and Speech using Deep Transfer Learning and Bottleneck Features,” arXiv:2104.02477 [cs, eess], Aug. 2021, arXiv: 2104.02477.
[10] G. Pinkas et al., “SARS-CoV-2 Detection From Voice,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, pp. 268-274, 2020, conference Name: IEEE Open Journal of Engineering in Medicine and Biology.
[11] N. Sharma et al., “Coswara-a database of breathing, cough, and voice sounds for covid- 19 diagnosis,” arXiv preprint arXiv:2005.10548, 2020.
[12] A. Muguli et al., “Dicova challenge: Dataset, task, and baseline system for covid-19 diagnosis using acoustics,” arXiv preprint arXiv:2103.09148, 2021.
[13] T. Xia, D. Spathis, J. Ch, A. Grammenos, J. Han, A. Hasthanasombat, E. Bondareva, T. Dang, A. Floto, P. Cicuta et al., “Covid-19 sounds: A large-scale audio dataset for digital respiratory screening,” in Thirtyfifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. [14] L. Orlandic, T. Teijeiro, and D. Atienza, “The coughvid crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms,” Scientific Data, vol. 8, no. 1, pp. 1-10, 2021.
[15] E. A. Mohammed, M. Keyhani, A. Sanati-Nezhad, S. H. Hejazi, and B. H. Far, “An ensemble learning approach to digital corona virus preliminary screening from cough sounds,” Scientific Reports, vol. 11, no. 1, pp. 1-11, 2021.
[16] M. Aly, K. H. Rahouma, and S. M. Ramzy, “Pay attention to the speech: Covid-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings,” Alexandria Engineering Journal, vol. 61, no. 5, pp. 3487-3500, 2022.
[17] A. Fathan, J. Alam, and W. H. Kang, “An ensemble approach for the diagnosis of covid- 19 from speech and cough sounds,” in International Conference on Speech and Computer. Springer, 2021, pp. 190-201.
[18] P. Mouawad, T. Dubnov, and S. Dubnov, “Robust detection of covid-19 in cough sounds,” SN Computer Science, vol. 2, no. 1, pp. 1-13, 2021.
[19] D. Grant, I. McLane, and J. West, “Rapid and scalable covid- 19 screening using speech, breath, and cough recordings,” in 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), 2021, pp. 1-6.
[20] N. K. Sharma et al., “The second dicova challenge: Dataset and performance analysis for covid- 19 diagnosis using acoustics,” 2021.
[21] W. Zhao and R. Singh, “Speech-Based Parameter Estimation of an Asymmetric Vocal Fold Oscillation Model and its Application in Discriminating Vocal Fold Pathologies,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 7344-7348, iSSN: 2379-190X.
[22] M. Al Ismail, S. Deshmukh, and R. Singh, “Detection of covid-19 through the analysis of vocal fold oscillations,” in ICASSP 2021- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 1035-1039.
[23] “Coronavirus: Covid-19 detecting apps face teething problems,” BBC News, Apr.
2020.
[24] T. Keating, “Results from Data Confirmation Study.”
[25] A. Khanzada, S. Hegde, S. Sreeram, G. Bower, W. Wang, R. P. Mediratta, K. D. Meister, and A. Rameau, “Challenges and opportunities in deploying covid- 19 cough ai systems,” Journal of Voice, 2021.
[26] H. Coppock, L. Jones, I. Kiskin, and B. Schuller, “Covid-19 detection from audio: seven grains of salt,” The Lancet Digital Health, vol. 3, no. 9, pp. e537-e538, 2021.
[27] J. Han, T. Xia, D. Spathis, E. Bondareva, C. Brown, J. Chauhan, T. Dang, A. Grammenos, A. Hasthanasombat, A. Floto et al., “Sounds of covid- 19: exploring realistic performance of audio-based digital testing,” arXiv preprint arXiv:2106.15523,
2021. [28] G. Sharma, K. Umapathy, and S. Krishnan, “Trends in audio signal feature extraction methods,” Applied Acoustics, vol. 158, p. 107020, 2020.
[29] C. Brown et al., “Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound data,” pp. 3474-3484, Aug 23, 2020.
[30] E. Yumoto,W. Gould, and T. Baer, “Harmonics-to-noise ratio as an index of the degree of hoarseness,” The Journal of the Acoustical Society of America, vol. 71, pp. 1544-9, 07 1982.
[31] A. I. Al-Shoshan, “Speech and music classification and separation: A review,” Journal of King Saud University - Engineering Sciences, vol. 19, no. 1, pp. 95-132, 2006.
[32] H. Hermansky, J. R. Cohen, and R. M. Stem, “Perceptual properties of current speech recognition technology,” Proceedings of the IEEE, vol. 101, no. 9, pp. 1968-1985, 2013.
[33] P. Taylor, Text-to- Speech Synthesis. Cambridge: Cambridge University Press, Feb 19,
2009.
[34] D. Mitrovi'c, M. Zeppelzauer, and C. Breiteneder, “Chapter 3 - features for contentbased audio retrieval,” in Advances in Computers: Improving the Web, ser. Advances in Computers. Elsevier, 2010, vol. 78, pp. 71- 150.
[35] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental sound recognition with timefrequency audio features,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, no. 6, pp. 1142-1158, 2009.
[36] S. Nakagawa, L. Wang, and S. Ohtsuka, “Speaker identification and verification by combining mfcc and phase information,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 4, pp. 1085-1095, 2012.
[37] A. A. M. Abushariah, T. S. Gunawan, O. O. Khalifa, and M. A. M. Abushariah, “English digits speech recognition system based on hidden markov models,” in International Conference on Computer and Communication Engineering (ICCCE’ 10),
2010, pp. 1-5.
[38] J. Martinez, H. Perez, E. Escamilla, and M. M. Suzuki, “Speaker recognition using mel frequency cepstral coefficients (mfcc) and vector quantization (vq) techniques,” in CONIELECOMP 2012, 22nd International Conference on Electrical Communications and Computers, 2012, pp. 248-251.
[39] H. Hermansky and N. Morgan, “Rasta processing of speech,” IEEE Transactions on Speech and Audio Processing, vol. 2, no. 4, pp. 578- 589, 1994.
[40] D. D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials, vol. 7, pp. 29-32, 1988.
[41] F. Pedregosa et al., “S ci kit-1 earn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011. [42] H. K. Vydana and A. K. Vuppala, “Investigative study of various activation functions for speech recognition,” in 2017 Twenty -third National Conference on Communications (NCC), 2017, pp. 1-5.
[43] X. Bouthillier et al., “Accounting for Variance in Machine Learning Benchmarks,” in Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp. 747-769.
[44] C. M. Florkowski, “Sensitivity, specificity, receiver-operating characteristic (roc) curves and likelihood ratios: communicating the performance of diagnostic tests,” Clinical biochemist reviews, vol. 29 Suppl 1, no. Suppl 1, pp. S83-S87, Aug 2008.
[45] R. Parikh, A. Mathai, S. Parikh, G. Chandra Sekhar, and R. Thomas, “Understanding and using sensitivity, specificity and predictive values,” Indian journal of ophthalmology, vol. 56, no. 1, pp. 45-50, Jan 2008.
[46] P. A. Flach, ROC Analysis. Boston, MA: Springer US, 2010, pp. 869- 875.
[47] G. Menardi and N. Torelli, “Training and assessing classification rules with imbalanced data,” Data mining and knowledge discovery, vol. 28, no. 1, pp. 92-122, Oct 30, 2012.
[48] K. Hajian-Tilaki, “Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation,” Caspian journal of internal medicine, vol. 4, no. 2, pp. 627- 635, 2013.
[49] E. Pellegrino et al., “Machine learning random forest for predicting oncosomatic variant ngs analysis,” Scientific reports, vol. 11, no. 1, p. 21820, Nov 8, 2021.
[50] R. Fluss, D. Faraggi, and B. Reiser, “Estimation of the youden index and its associated cutoff point,” Biometrical journal, vol. 47, no. 4, pp. 458-472, Aug 2005.
[51] C. K. Reddy, E. Beyrami, J. Pool, R. Cutler, S. Srinivasan, and J. Gehrke, “A scalable noisy speech dataset and online subjective test framework,” arXiv preprint arXiv: 1909.08050, 2019.
[52] I. McLane, D. Emmanouilidou, J. E. West, and M. Elhilali, “Design and comparative performance of a robust lung auscultation system for noisy clinical settings,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 7, pp. 2583-2594, 2021.
[53] K. Kirchhoff and J. Bilmes, “Statistical acoustic indications of coarticulation,” 102001.
[54] E. ZWICKER and U. T. ZWICKER, “Audio engineering and psychoacoustics: Matching signals to the final receiver, the human auditory system,” in Readings in Multimedia Computing and Networking, ser. The Morgan Kaufmann Series in Multimedia Information and Systems, K. Jeffay and H. Zhang, Eds. San Francisco: Morgan Kaufmann, 2002, pp. 11-22.
[55] R. Fern andez Pozo et al., “Assessment of severe apnoea through voice analysis, automatic speech, and speaker recognition techniques,” EURASIP journal on advances in signal processing, vol. 2009, no. 1, pp. 1-11, Jun 14, 2009. [56] B. Stasak, Z. Huang, S. Razavi, D. Joachim, and J. Epps, “Automatic detection of covid- 19 based on short-duration acoustic smartphone speech analysis,” Journal of healthcare informatics research, vol. 5, no. 2, pp. 201-217, Mar 11, 2021.
[57] D. Stowell et al., “Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge,” Methods in Ecology and Evolution, vol. 10, no. 3, pp. 368-380, Mar 2019.
[58] A. Mallol-Ragolta, H. Cuesta, E. G omez, and B. W. Schuller, “Eihwmtg: Second dicova challenge system report,” Oct 18, 2021.
[59] P. Bagad et al., “Cough against covid: Evidence of covid-19 signature in cough sounds,” arXiv preprint arXiv:2009.08790, 2020.
[60] D. S. Mouliou and K. I. Gourgoulianis, “False-positive and falsenegative covid-19 cases: respiratory prevention and management strategies, vaccination, and further perspectives,” Expert review of respiratory medicine, vol. 15, no. 8, pp. 993-1002, Aug 3, 2021.
[61] S. Graf, T. Herbig, M. Buck, and G. Schmidt, “Features for voice activity detection: a comparative analysis,” EURASIP Journal on Advances in Signal Processing, vol. 2015, no. 1, pp. 1-15, Nov 11, 2015.
[62] L. LEE, R. G. LOUDON, B. H. JACOBSON, and R. STUBBING, “Speech breathing in patients with lung disease,” The American review of respiratory disease, vol. 147, no. 5, pp. 1199-1206, 1993.

Claims

WHAT IS CLAIMED IS:
1. A method of forming a classification model associated with a respiratory disease based on training audio data, wherein the training audio data is characterized by a preexisting correlation with the respiratory disease, the method comprising: normalizing the training audio data; removing portions of the training audio data below an audio energy threshold to produce thresholded audio data; segmenting the thresholded audio data into uniform time segments; extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded audio data; generating a feature matrix using the MFCC coefficients and RASTA-PLP coefficients; classifying the feature matrix based on the pre-existing correlation to form the classification model using at least one of: a random forest technique, a multilayer perceptron technique, and a logistic regression technique.
2. The method of claim 1, wherein said classifying the feature matrix based on the preexisting correlation to form the classification model uses the multilayer perceptron technique.
3. The method of claim 2, wherein the MFCC coefficients comprise: MFCC, MFCC-A, and MFCC-AA coefficients.
4. The method of claim 2, wherein the MFCC coefficients comprise: MFCC and MFCC- A coefficients. The method of claim 2, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 25, 20, and 22. The method of claim 2, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 25. The method of claim 2, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 20. The method of claim 2, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 22. A method of generating a probability of a diagnosis based on acquired audio data, the method comprising: forming the classification model of claim 1; normalizing the acquired audio data; removing portions of the acquired audio data below the audio energy threshold to produce thresholded acquired audio data; segmenting the thresholded acquired audio data into uniform time segments; extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; generating an acquired feature matrix using the MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; using the classification model and the acquired feature matrix to generate the probability of the diagnosis of the respiratory disease. The method of claim 9, wherein said classifying the feature matrix based on the preexisting correlation to form the classification model uses the multilayer perceptron technique. The method of claim 10, wherein the MFCC coefficients comprise: MFCC, MFCC-A, and MFCC-A A coefficients. The method of claim 10, wherein the MFCC coefficients comprise: MFCC and MFCC-A coefficients. The method of claim 10, wherein the RASTA-PLP coefficients comprise RASTA- PLP coefficients of model order 25, 20, and 22. The method of claim 10, wherein the RASTA-PLP coefficients comprise RASTA- PLP coefficients of model order 25. The method of claim 10, wherein the RASTA-PLP coefficients comprise RASTA- PLP coefficients of model order 20. The method of claim 10, wherein the RASTA-PLP coefficients comprise RASTA-
PLP coefficients of model order 22. The method of claim 10, wherein the respiratory disease is COVID-19. The method of claim 10, wherein at least a portion of said acquired audio data is stored; wherein said at least a portion of said acquired audio data is further characterized by additional data establishing an additional correlation between the stored acquired audio data and the respiratory disease; wherein said classifying the feature matrix based on the pre-existing correlation to form the classification model further comprises classifying the feature matrix based on the pre-existing correlation and said additional correlation to form said classification model. The method of claim 18, wherein at least a portion of said training audio data and/or said acquired audio data is obtained through telephonic, video-conferencing, or computer-network-based communications. The method of claim 19, wherein said telephonic communications comprises toll-free communications. The method of claim 19, wherein said at least a portion of said training audio data and/or said acquired audio data is stored on a server. A system for forming a classification model associated with a respiratory disease based on training audio data, wherein the training audio data is characterized by a preexisting correlation with the respiratory disease, said system comprising: at least one computer; at least one storage device; said at least one storage device storing instructions that, when executed by the at least one computer, cause the at least one computer to perform a method of forming said classification model, said method comprising: normalizing the training audio data; removing portions of the training audio data below an audio energy threshold to produce thresholded audio data; segmenting the thresholded audio data into uniform time segments; extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded audio data; generating a feature matrix using the MFCC coefficients and RASTA-PLP coefficients; classifying the feature matrix based on the pre-existing correlation to form the classification model using at least one of: a random forest technique, a multilayer perceptron technique, and a logistic regression technique. The system of claim 22, wherein said classifying the feature matrix based on the preexisting correlation to form the classification model uses the multilayer perceptron technique. The system of claim 23, wherein the MFCC coefficients comprise: MFCC, MFCC-A, and MFCC-A A coefficients. The system of claim 23, wherein the MFCC coefficients comprise: MFCC and MFCC-A coefficients. The system of claim 23, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 25, 20, and 22. The system of claim 23, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 25. The system of claim 23, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 20. The system of claim 23 wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 22. A system for generating a probability of a diagnosis based on acquired audio data, the system comprising the system for forming the classification model of claim 22, wherein the instructions further comprise additional instructions such that, when said instructions are executed by said at least one computer, said at least one computer performs the method of generating the probability of a diagnosis, said method comprising: forming the classification model; normalizing the acquired audio data; removing portions of the acquired audio data below the audio energy threshold to produce thresholded acquired audio data; segmenting the thresholded acquired audio data into uniform time segments; extracting MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; generating an acquired feature matrix using the MFCC coefficients and RASTA-PLP coefficients from the segmented thresholded acquired audio data; using the classification model and the acquired feature matrix to generate the probability of the diagnosis of the respiratory disease. The system of claim 30, wherein said classifying the feature matrix based on the preexisting correlation to form the classification model uses the multilayer perceptron technique. The system of claim 31, wherein the MFCC coefficients comprise: MFCC, MFCC-A, and MFCC-A A coefficients. The system of claim 31, wherein the MFCC coefficients comprise: MFCC and MFCC-A coefficients. The system of claim 31, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 25, 20, and 22. The system of claim 31, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 25. The system of claim 31, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 20. The system of claim 31, wherein the RASTA-PLP coefficients comprise RASTA-PLP coefficients of model order 22. The system of claim 31, wherein the respiratory disease is COVID-19. The system of claim 31, wherein at least a portion of said acquired audio data is stored; wherein said at least a portion of said acquired audio data is further characterized by additional data establishing an additional correlation between the stored acquired audio data and the respiratory disease; wherein said classifying the feature matrix based on the pre-existing correlation to form the classification model further comprises classifying the feature matrix based on the pre-existing correlation and said additional correlation to form said classification model. The system of claim 39, wherein at least a portion of said training audio data and/or said acquired audio data is obtained through telephonic, video-conferencing, or computer-network-based communications. The system of claim 40, wherein said telephonic communications comprises toll-free communications. The system of claim 40, wherein said at least a portion of said training audio data and/or said acquired audio data is stored on a server communicative coupled to said at least one computer.
PCT/US2023/034997 2022-10-14 2023-10-12 Systems and methods for acoustic-based diagnosis WO2024081343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263416298P 2022-10-14 2022-10-14
US63/416,298 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024081343A1 true WO2024081343A1 (en) 2024-04-18

Family

ID=90670080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2023/034997 WO2024081343A1 (en) 2022-10-14 2023-10-12 Systems and methods for acoustic-based diagnosis

Country Status (1)

Country Link
WO (1) WO2024081343A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080051638A1 (en) * 1993-12-29 2008-02-28 Clinical Decision Support, Llc Computerized medical diagnostic and treatment advice system including network access
US20150073306A1 (en) * 2012-03-29 2015-03-12 The University Of Queensland Method and apparatus for processing patient sounds
US20190080803A1 (en) * 2015-10-08 2019-03-14 Cordio Medical Ltd. Assessment of a Pulmonary Condition by Speech Analysis
US20200337648A1 (en) * 2019-04-24 2020-10-29 GE Precision Healthcare LLC Medical machine time-series event data processor
US20210338103A1 (en) * 2020-05-13 2021-11-04 Ali IMRAN Screening of individuals for a respiratory disease using artificial intelligence
US20220037022A1 (en) * 2020-08-03 2022-02-03 Virutec, PBC Ensemble machine-learning models to detect respiratory syndromes
WO2022091062A1 (en) * 2020-11-02 2022-05-05 Dzhekiev Igor Automatic detection of disease-associated respiratory sounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080051638A1 (en) * 1993-12-29 2008-02-28 Clinical Decision Support, Llc Computerized medical diagnostic and treatment advice system including network access
US20150073306A1 (en) * 2012-03-29 2015-03-12 The University Of Queensland Method and apparatus for processing patient sounds
US20190080803A1 (en) * 2015-10-08 2019-03-14 Cordio Medical Ltd. Assessment of a Pulmonary Condition by Speech Analysis
US20200337648A1 (en) * 2019-04-24 2020-10-29 GE Precision Healthcare LLC Medical machine time-series event data processor
US20210338103A1 (en) * 2020-05-13 2021-11-04 Ali IMRAN Screening of individuals for a respiratory disease using artificial intelligence
US20220037022A1 (en) * 2020-08-03 2022-02-03 Virutec, PBC Ensemble machine-learning models to detect respiratory syndromes
WO2022091062A1 (en) * 2020-11-02 2022-05-05 Dzhekiev Igor Automatic detection of disease-associated respiratory sounds

Similar Documents

Publication Publication Date Title
EP3762942B1 (en) System and method for generating diagnostic health information using deep learning and sound understanding
Huang et al. Depression Detection from Short Utterances via Diverse Smartphones in Natural Environmental Conditions.
CN102498485B (en) System and method for expressive language, developmental disorder, and emotion assessment
Joshy et al. Automated dysarthria severity classification: A study on acoustic features and deep learning techniques
AU2016201436A1 (en) Emotional and/or psychiatric state detection
Fraile et al. Automatic detection of laryngeal pathologies in records of sustained vowels by means of mel-frequency cepstral coefficient parameters and differentiation of patients by sex
US10548534B2 (en) System and method for anhedonia measurement using acoustic and contextual cues
Kim et al. Automatic estimation of parkinson's disease severity from diverse speech tasks.
Hlavnička et al. Acoustic tracking of pitch, modal, and subharmonic vibrations of vocal folds in Parkinson’s disease and parkinsonism
Stolar et al. Detection of adolescent depression from speech using optimised spectral roll-off parameters
Ganchev Speaker recognition
Tsao et al. Robust S1 and S2 heart sound recognition based on spectral restoration and multi-style training
Joshy et al. Dysarthria severity classification using multi-head attention and multi-task learning
Whitehill et al. Whosecough: In-the-wild cougher verification using multitask learning
Karthikeyan Adaptive boosted random forest-support vector machine based classification scheme for speaker identification
Valenti et al. A neural network approach for sound event detection in real life audio
Ankışhan Classification of acoustic signals with new feature: Fibonacci space (FSp)
Feng Toward knowledge-driven speech-based models of depression: Leveraging spectrotemporal variations in speech vowels
Romero et al. Exploring transformer-based language recognition using phonotactic information
Zhou et al. Speaker diarization system for autism children's real-life audio data
WO2024081343A1 (en) Systems and methods for acoustic-based diagnosis
Khanum et al. Speech based gender identification using feed forward neural networks
Hong Speaker gender recognition system
Tippannavar et al. Text Independent Speaker Recognition and Classification using KNN Algorithm
Grant et al. Considerations and Challenges for Real-World Deployment of an Acoustic-Based COVID-19 Screening System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877987

Country of ref document: EP

Kind code of ref document: A1