WO2024080415A1 - Method for determining type of partial discharge of live-line high-voltage stator winding by applying support vector machine technique to prpd pattern image - Google Patents

Method for determining type of partial discharge of live-line high-voltage stator winding by applying support vector machine technique to prpd pattern image Download PDF

Info

Publication number
WO2024080415A1
WO2024080415A1 PCT/KR2022/015580 KR2022015580W WO2024080415A1 WO 2024080415 A1 WO2024080415 A1 WO 2024080415A1 KR 2022015580 W KR2022015580 W KR 2022015580W WO 2024080415 A1 WO2024080415 A1 WO 2024080415A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
support vector
vector machine
discharge
type
Prior art date
Application number
PCT/KR2022/015580
Other languages
French (fr)
Korean (ko)
Inventor
이상규
김용주
이진
Original Assignee
(주)오앤엠 코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오앤엠 코리아 filed Critical (주)오앤엠 코리아
Publication of WO2024080415A1 publication Critical patent/WO2024080415A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/12Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into phase shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/02Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a PRPD pattern image. More specifically, it relates to internal discharge, surface discharge, single-wire discharge, phase-to-phase discharge and discharge occurring in high-voltage rotating machines such as power plants. This relates to a method of automatically identifying various types of partial discharges, such as slot discharges, through Support Vector Machine (SVM) analysis techniques.
  • SVM Support Vector Machine
  • a live-line partial discharge (PD) diagnostic system is applied to power plants, etc. to prevent early failures due to insulation deterioration of high-voltage stator windings, etc.
  • the partial discharge diagnosis system of Registered Patent Publication No. 2037103 is used.
  • An analysis device and method (hereinafter referred to as 'patent document') is disclosed.
  • the patent document receives a first signal and a second signal for two of the three phases from a first sensor and a second sensor located around the cable junction box, and a third signal that is a differential signal between the first signal and the second signal.
  • a signal acquisition unit that acquires a signal; a partial discharge determination unit that determines the occurrence and location of partial discharge in the junction box based on the obtained partial discharge occurrence pattern and the analyzed waveform targeting the first signal, the second signal, and the differential signal; a pattern acquisition unit that obtains a partial discharge generation pattern by performing PRPD (Phase Resolved Partial Discharge) analysis on the first, second, and third signals; and a waveform analysis unit that analyzes the waveforms of the first signal, the second signal, and the third signal, and the partial discharge determination unit determines whether and where the partial discharge occurs based on the waveform analyzed by the waveform analysis unit.
  • PRPD Phase Resolved Partial Discharge
  • It includes a waveform determination unit that determines, wherein the waveform determination unit compares the polarity of the waveform peaks of the first signal and the second signal to detect a partial discharge due to an external signal or a partial discharge due to noise, The shorter the time interval of the waveform peak between the first signal and the second signal, the closer to the location of the sensors it is determined that partial discharge occurred, and the waveform peaks of the first signal and the second signal are generated by linking them. It is made to determine whether partial discharge has occurred based on the outline shape of the waveform.
  • the present invention was created to solve the problems of the conventional partial discharge diagnosis method as described above.
  • the problem that the present invention aims to solve is to automatically analyze partial discharge patterns occurring in high-voltage rotors of power plants, etc. to determine the type of partial discharge. It provides a method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a discernible PRPD pattern image.
  • the method for determining the partial discharge type of a live stator winding by applying the support vector machine technique to the PRPD pattern image according to the present invention to solve the above problems includes a partial discharge signal detection step of detecting a partial discharge signal from a partial discharge sensor; A signal processing step of removing noise from the signal detected through the partial discharge signal detection step and synchronizing the pulse signal; A partial discharge pattern generating step of generating a partial discharge pattern by accumulating signals synchronized through the signal processing step; A data processing step of dividing the partial discharge pattern generated through the partial discharge pattern generating step into regions by size and phase and processing the data; A multi-class support vector machine application step of applying the data for each image area obtained through the data processing step to a support vector machine (SVM) in which a plurality of partial discharge types are machine-learned; A risk diagnosis step of diagnosing the risk according to the partial discharge type determined through the multi-class support vector machine application step; and an output step that guides the determined partial discharge type and risk through a display.
  • SVM support vector machine
  • the data processing step divides the partial discharge pattern into equal parts 12 to 36 on the Another characteristic is that it is converted into data as an overall pattern.
  • the present invention is to determine the partial discharge type by inputting the data extracted in the data processing step to a support vector machine in which a plurality of partial discharge types are machine-learned as each pattern in the multi-class support vector machine application step. It has other features.
  • the present invention provides partial discharge patterns of internal discharge, mica tape peeling discharge, peeling discharge between conductors and insulators, slot discharge, terminal winding corona discharge, surface discharge, and phase-to-phase discharge in the application step of the multi-class support vector machine. Another characteristic is that it is learned and classified.
  • Another characteristic of risk is that it is divided into five levels: very dangerous, dangerous, average, good, and very good, or four levels: dangerous, bad, good, and very good.
  • the partial discharge pattern is divided into a plurality of regions according to phase and size, the number of occurrences of the partial discharge signal is counted and converted into data, and this partial discharge data is sent to a multi-class support vector machine machine-learned by type. Because it is applied, the type of partial discharge can be accurately determined using artificial intelligence, and at the same time, it has the advantage of diagnosing and guiding the risk of partial discharge based on the size and number of occurrences of the partial discharge signal.
  • FIG. 1 is a flowchart showing an example of a method for determining a live high-voltage stator winding partial discharge type by applying the support vector machine technique to a PRPD pattern image according to the present invention.
  • Figure 2 is a configuration diagram showing an example of a method for determining the type of partial discharge of a live high-voltage stator winding by applying the support vector machine technique to the PRPD pattern image according to the present invention.
  • Figure 3 is a diagram showing an example of data processing steps according to the present invention.
  • Figure 4 is a diagram showing an example of an internal discharge pattern.
  • Figure 5 shows an example of a mica tape peeling discharge pattern.
  • Figure 6 shows an example of a discharge pattern resulting from delamination between a conductor and an insulating material.
  • Figure 7 is a diagram showing an example of a slot discharge pattern.
  • Figure 8 is a diagram showing an example of a terminal winding corona discharge pattern.
  • Figure 9 is a diagram showing an example of a surface discharge pattern.
  • Figure 10 is a diagram showing an example of a phase-to-phase discharge pattern.
  • Figure 11 is a diagram showing an example of a multi-class support vector machine application step according to the present invention.
  • the present invention aims to provide a method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a PRPD pattern image that can automatically analyze the partial discharge pattern occurring in a motor of a power plant, etc. to determine the type of partial discharge.
  • the present invention includes a partial discharge signal detection step (S10), a signal processing step (S20), a partial discharge pattern generation step (S30), a data processing step (S40), and a multi-class support vector machine application step. (S50), a risk diagnosis step (S60), and an output step (S70).
  • the device 2 for determining the partial discharge type of the present invention includes a signal processing unit 10, a partial discharge pattern generation unit 20, a data processing unit 30, and a multi-class SVM application unit ( 40), and includes a risk diagnosis unit 50 and an output unit 60.
  • This step is to detect a partial discharge signal from a motor such as a power plant using a partial discharge sensor.
  • the present invention is configured to detect (acquire) a partial discharge signal using a partial discharge sensor 1 of various known structures. You can.
  • This example may consist of a partial discharge sensor 1 that is directly mounted on the stator winding slot of the motor to detect partial discharge signals more quickly and accurately.
  • the signal detected from the partial discharge sensor 1 is received through the signal processing unit 10, the noise included in the signal is removed through the noise filter 11, and the noise-removed analog signal is converted to A/ It is converted into a digital signal through a D converter (not shown), and the phase of the signal converted into a digital signal is synchronized through the synchronization pulse generation circuit 12 to easily generate a partial discharge pattern, which will be described later.
  • the present invention acquires a signal of 6,000 cycles, which is 100 seconds (1 minute 40 seconds), and synchronizes it to 60 Hz through the synchronization pulse generation circuit 12.
  • This step generates a partial discharge pattern through the partial discharge pattern generator 20 from a signal synchronized to 60 Hz through the signal processing step (S20) above.
  • signals are accumulated on a 360° phase basis (1 cycle). A pattern is formed.
  • the partial discharge pattern generated through the above partial discharge pattern generation step (S30) is divided into regions of a predetermined size and phase through the data processing unit 30, and then the partial discharge signal located in the divided region is generated as a whole.
  • the data is processed according to the pattern.
  • the It can be divided into equal parts to form a total of 432 spaces.
  • an overall partial discharge pattern is formed by detecting the presence or absence of a partial discharge signal in an area divided by phase and size, and the partial discharge pattern formed in this way is described later as a multi-discharge pattern.
  • the partial discharge type is determined through the class support vector machine application step (S50).
  • the partial discharge type is determined through the multi-class SVM application unit (40) of the partial discharge pattern thus generated.
  • the multi-class support vector machine machine learns the partial discharge type and determines a partial discharge pattern with high similarity between the input partial discharge pattern and the previously learned partial discharge pattern.
  • An example of the partial discharge pattern learned for this purpose is Figure 4.
  • multiple types are input as class data and learned repeatedly, and two or more types are compared and classified.
  • the risk according to the size of the partial discharge pattern is diagnosed through the risk diagnosis unit 50.
  • the risk level is determined by detecting the size of the partial discharge pattern divided into size and phase, that is, the number of partial discharge signals present based on the Y axis, and guiding the risk level through this.
  • the diagnosis can be divided into five levels, such as very good.
  • it can be diagnosed in four levels, such as dangerous, bad, good, and very good.
  • the partial discharge type and risk determined through the multi-class support vector machine application step (S50) and the risk diagnosis step (S60) are guided to the worker through the output unit (60, display).
  • the worker checks the type and risk of partial discharge displayed on the display and inspects the motor, etc., as necessary.
  • the partial discharge pattern is divided into a plurality of regions according to phase and size, the number of occurrences of the partial discharge signal is counted and converted into data, and this partial discharge data is machine-learned by type into a multi-class support vector. Since it is applied to machines, it is possible to accurately determine the type of partial discharge using artificial intelligence.
  • the risk of partial discharge is diagnosed and guided based on the size and number of occurrences of the partial discharge signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

The present invention relates to a method for determining the type of partial discharge of a live-line high-voltage stator winding by applying a support vector machine technique to a PRPD pattern image, in which a partial discharge pattern generated in a motor of a power plant, etc. is automatically analyzed to enable determination of the type of partial discharge. In order to solve the above problem, the method for determining the type of partial discharge of a live-line high-voltage stator winding by applying a support vector machine technique to a PRPD pattern image, according to the present invention, comprises: a partial discharge signal detection step; a signal processing step; a partial discharge pattern generation step; a data processing step; a multi-class support vector machine application step; a risk diagnosis step; and an output step.

Description

PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법Method for determining live-line high-voltage stator winding partial discharge type by applying support vector machine technique to PRPD pattern image
본 발명은 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법에 관한 것으로, 더욱 상세하게는 발전소 등의 고압 회전기에서 발생하는 내부방전, 표면방전, 소선 방전, 상간방전 및 슬롯방전 등과 같이 다양한 부분방전의 유형을 서포트 벡터 머신(Support Vector Machine, SVM) 분석 기법을 통해 자동으로 판별하는 방법에 관한 것이다.The present invention relates to a method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a PRPD pattern image. More specifically, it relates to internal discharge, surface discharge, single-wire discharge, phase-to-phase discharge and discharge occurring in high-voltage rotating machines such as power plants. This relates to a method of automatically identifying various types of partial discharges, such as slot discharges, through Support Vector Machine (SVM) analysis techniques.
일반적으로 발전소 등에는 고전압 고정자 권선의 절연 열화 등으로 인한 초기 고장을 예방하기 위해 활선 상태의 부분방전(PD) 진단 시스템이 적용되고 있는데, 이러한 목적의 종래 기술로는 등록특허공보 제2037103호의 부분 방전 분석 장치 및 방법(이하 '특허문헌'이라 한다)이 개시되어 있다.In general, a live-line partial discharge (PD) diagnostic system is applied to power plants, etc. to prevent early failures due to insulation deterioration of high-voltage stator windings, etc. As a prior art for this purpose, the partial discharge diagnosis system of Registered Patent Publication No. 2037103 is used. An analysis device and method (hereinafter referred to as 'patent document') is disclosed.
상기 특허문헌은 케이블 접속함 주변에 위치한 제 1 센서 및 제 2 센서로부터 3상 중 2상에 대한 제 1 신호 및 제 2 신호를 수신하고, 상기 제 1 신호와 제 2 신호 간의 차동 신호인 제 3 신호를 획득하는 신호 획득부; 상기 제 1 신호, 제 2 신호 및 상기 차동 신호를 대상으로 하여, 획득된 부분 방전 발생 패턴 및 분석된 파형을 기반으로 상기 접속함의 부분 방전의 발생 및 위치를 판단하는 부분 방전 판단부; 상기 제 1 신호, 제 2 신호 및 제 3 신호를 대상으로 하여 PRPD(Phase Resolved Partial Discharge)분석을 함으로써 부분 방전 발생 패턴을 획득하는 패턴 획득부; 및 상기 제 1 신호, 제 2 신호 및 제 3 신호의 파형을 분석하는 파형 분석부를 포함하고, 상기 부분 방전 판단부는, 상기 파형 분석부로부터 분석된 파형을 기반으로 부분 방전의 발생 여부 및 발생 위치를 판단하는 파형 판단부를 포함하며, 상기 파형 판단부는, 상기 제 1 신호 및 상기 제 2 신호의 파형 피크의 극성을 대비하여, 외부에서 유입되는 신호로 인한 부분 방전 또는 노이즈로 인한 부분 방전을 검출하고, 상기 제 1 신호 및 상기 제 2 신호 간 파형 피크의 시간 간격이 짧을수록 센서들의 위치와 가까운 곳에서 부분 방전이 발생한 것으로 판단하며, 상기 제 1 신호 및 상기 제 2 신호의 파형 피크를 연계하여 생성되는 상기 파형의 윤곽선 모양을 기반으로 부분 방전의 발생 여부를 판단하는 것으로 이루어진다.The patent document receives a first signal and a second signal for two of the three phases from a first sensor and a second sensor located around the cable junction box, and a third signal that is a differential signal between the first signal and the second signal. A signal acquisition unit that acquires a signal; a partial discharge determination unit that determines the occurrence and location of partial discharge in the junction box based on the obtained partial discharge occurrence pattern and the analyzed waveform targeting the first signal, the second signal, and the differential signal; a pattern acquisition unit that obtains a partial discharge generation pattern by performing PRPD (Phase Resolved Partial Discharge) analysis on the first, second, and third signals; and a waveform analysis unit that analyzes the waveforms of the first signal, the second signal, and the third signal, and the partial discharge determination unit determines whether and where the partial discharge occurs based on the waveform analyzed by the waveform analysis unit. It includes a waveform determination unit that determines, wherein the waveform determination unit compares the polarity of the waveform peaks of the first signal and the second signal to detect a partial discharge due to an external signal or a partial discharge due to noise, The shorter the time interval of the waveform peak between the first signal and the second signal, the closer to the location of the sensors it is determined that partial discharge occurred, and the waveform peaks of the first signal and the second signal are generated by linking them. It is made to determine whether partial discharge has occurred based on the outline shape of the waveform.
그러나 부분방전은 다양한 패턴이 존재하고, 이러한 패턴에 따라 부분방전의 위험도와 부분방전의 유형 등에 차이가 있는 것이나, 종래의 부분방전 진단 시스템의 경우 시스템을 통해 부분방전으로 진단되더라도 작업자가 부분방전 패턴을 따로 확인하여 경험적으로 부분방전의 유형을 추가로 판별하여야 하므로 부분방전 유형을 신속하고 정확하게 판별하는 데에 많은 어려움이 있다.However, there are various patterns of partial discharge, and depending on these patterns, there are differences in the risk of partial discharge and the type of partial discharge. However, in the case of the conventional partial discharge diagnosis system, even if a partial discharge is diagnosed through the system, the operator must determine the partial discharge pattern. Since the type of partial discharge must be additionally determined empirically by checking separately, there are many difficulties in quickly and accurately determining the type of partial discharge.
따라서 부분 방전 패턴을 분석하여 부분 방전의 유형을 검출하여 진단할 수 있도록 개선된 부분 방전 진단 방법의 개발이 요구된다.Therefore, there is a need for the development of an improved partial discharge diagnosis method that can detect and diagnose the type of partial discharge by analyzing the partial discharge pattern.
본 발명은 상기와 같은 종래의 부분방전 진단 방법이 가지는 문제점을 해결하기 위해 안출된 것으로, 본 발명이 해결하고자 하는 과제는 발전소의 고압 회전기 등에서 발생하는 부분방전 패턴을 자동 분석하여 부분방전의 유형을 판별할 수 있는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법을 제공하는 것이다.The present invention was created to solve the problems of the conventional partial discharge diagnosis method as described above. The problem that the present invention aims to solve is to automatically analyze partial discharge patterns occurring in high-voltage rotors of power plants, etc. to determine the type of partial discharge. It provides a method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a discernible PRPD pattern image.
상기의 과제를 해결하기 위한 본 발명에 따른 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고정자 권선 부분 방전 유형의 판별 방법은, 부분방전 센서로부터 부분방전신호를 검출하는 부분방전 신호 검출 단계; 상기 부분방전 신호 검출 단계를 통해 검출되는 신호로부터 노이즈를 제거하고, 펄스신호를 동기화하는 신호처리 단계; 상기 신호처리 단계를 통해 동기화된 신호를 누적하여 부분방전 패턴을 생성하는 부분방전 패턴 생성 단계; 상기 부분방전 패턴 생성 단계를 통해 생성된 부분방전 패턴을 크기와 위상으로 영역을 분할하여 데이터 처리하는 데이터 처리 단계; 상기 데이터 처리 단계를 통해 획득된 이미지 영역별 데이터를 복수의 부분방전 유형이 기계 학습된 서포트 벡터 머신(SVM)에 적용하는 멀티 클래스 서포트 벡터 머신 적용 단계; 상기 멀티 클래스 서포트 벡터 머신 적용 단계를 통해 판별된 부분방전 유형에 따른 위험도를 진단하는 위험도 진단 단계; 및 판별된 부분방전 유형과 위험도를 디스플레이를 통해 안내하는 출력 단계로 이루어지는 것을 특징으로 한다.The method for determining the partial discharge type of a live stator winding by applying the support vector machine technique to the PRPD pattern image according to the present invention to solve the above problems includes a partial discharge signal detection step of detecting a partial discharge signal from a partial discharge sensor; A signal processing step of removing noise from the signal detected through the partial discharge signal detection step and synchronizing the pulse signal; A partial discharge pattern generating step of generating a partial discharge pattern by accumulating signals synchronized through the signal processing step; A data processing step of dividing the partial discharge pattern generated through the partial discharge pattern generating step into regions by size and phase and processing the data; A multi-class support vector machine application step of applying the data for each image area obtained through the data processing step to a support vector machine (SVM) in which a plurality of partial discharge types are machine-learned; A risk diagnosis step of diagnosing the risk according to the partial discharge type determined through the multi-class support vector machine application step; and an output step that guides the determined partial discharge type and risk through a display.
그리고 본 발명은 상기 데이터 처리 단계가 부분방전 패턴을 X축 12~36으로 등분하고, Y축을 3~12로 등분하여 영역을 분할한 다음, 총 36 ~ 432개로 분할된 영역 내에 위치하는 부분방전 신호를 전체적인 하나의 패턴으로 데이터화하는 것을 또 다른 특징으로 한다.In the present invention, the data processing step divides the partial discharge pattern into equal parts 12 to 36 on the Another characteristic is that it is converted into data as an overall pattern.
또한, 본 발명은 상기 멀티 클래스 서포트 벡터 머신 적용 단계에서 복수 개의 부분방전 유형이 각각의 패턴으로 기계 학습된 서포트 벡터 머신에 상기 데이터 처리 단계에서 추출된 데이터가 입력되어 부분방전 유형이 판별되는 것을 또 다른 특징으로 한다.In addition, the present invention is to determine the partial discharge type by inputting the data extracted in the data processing step to a support vector machine in which a plurality of partial discharge types are machine-learned as each pattern in the multi-class support vector machine application step. It has other features.
이에 더해 본 발명은 상기 멀티 클래스 서포트 벡터 머신 적용 단계에서 내부방전, 마이카 테이프 박리 방전, 도체와 절연물 사이의 박리 방전, 슬롯방전, 단말 권선 코로나 방전, 표면방전 및 상간방전 유형의 부분방전 패턴이 기계 학습되어 분류되는 것을 또 다른 특징으로 한다.In addition, the present invention provides partial discharge patterns of internal discharge, mica tape peeling discharge, peeling discharge between conductors and insulators, slot discharge, terminal winding corona discharge, surface discharge, and phase-to-phase discharge in the application step of the multi-class support vector machine. Another characteristic is that it is learned and classified.
그리고 본 발명은 상기 위험도 진단 단계에서 등분된 이미지상의 전체 부분방전 신호의 수 대비 Y축을 기준으로 높은 위치에 부분방전 신호의 수가 많을수록 위험도가 높고, 낮은 위치에 부분방전 신호가 많을수록 위험도가 낮으며, 위험도는 매우위험, 위험, 보통, 좋음, 매우좋음의 5단계 또는 위험, 나쁨, 좋음, 매우좋음의 4단계로 구분되는 것을 또 다른 특징으로 한다.In addition, in the present invention, the greater the number of partial discharge signals at higher positions relative to the Y-axis compared to the total number of partial discharge signals on the image divided in the risk diagnosis step, the higher the risk, and the greater the number of partial discharge signals at low positions, the lower the risk, Another characteristic of risk is that it is divided into five levels: very dangerous, dangerous, average, good, and very good, or four levels: dangerous, bad, good, and very good.
본 발명에 따르면, 부분방전 발생시 부분방전 패턴이 위상과 크기별로 복수 개의 영역으로 구분되어 부분방전 신호의 발생 횟수가 카운트되어 데이터화되고, 이러한 부분방전 데이터가 유형별로 기계 학습된 멀티 클래스 서포트 벡터 머신에 적용되므로 인공지능으로 부분방전 유형이 정확하게 판별될 수 있으며, 이와 동시에 부분방전 신호의 크기와 발생 횟수로 부분방전의 위험도가 진단되어 안내되는 장점이 있다.According to the present invention, when a partial discharge occurs, the partial discharge pattern is divided into a plurality of regions according to phase and size, the number of occurrences of the partial discharge signal is counted and converted into data, and this partial discharge data is sent to a multi-class support vector machine machine-learned by type. Because it is applied, the type of partial discharge can be accurately determined using artificial intelligence, and at the same time, it has the advantage of diagnosing and guiding the risk of partial discharge based on the size and number of occurrences of the partial discharge signal.
도 1은 본 발명에 따른 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법의 예를 보인 순서도.1 is a flowchart showing an example of a method for determining a live high-voltage stator winding partial discharge type by applying the support vector machine technique to a PRPD pattern image according to the present invention.
도 2는 본 발명에 따른 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법의 예를 보인 구성도.Figure 2 is a configuration diagram showing an example of a method for determining the type of partial discharge of a live high-voltage stator winding by applying the support vector machine technique to the PRPD pattern image according to the present invention.
도 3은 본 발명에 따른 데이터 처리 단계의 예를 보인 도면.Figure 3 is a diagram showing an example of data processing steps according to the present invention.
도 4는 내부방전 패턴의 예를 보인 도면.Figure 4 is a diagram showing an example of an internal discharge pattern.
도 5는 마이카 테이프 박리 방전 패턴의 예를 보인 도면.Figure 5 shows an example of a mica tape peeling discharge pattern.
도 6은 도체와 절연물 사이의 박리로 인한 방전 패턴의 예를 보인 도면.Figure 6 shows an example of a discharge pattern resulting from delamination between a conductor and an insulating material.
도 7은 슬롯방전 패턴의 예를 보인 도면.Figure 7 is a diagram showing an example of a slot discharge pattern.
도 8은 단말 권선 코로나방전 패턴의 예를 보인 도면.Figure 8 is a diagram showing an example of a terminal winding corona discharge pattern.
도 9는 표면방전 패턴의 예를 보인 도면.Figure 9 is a diagram showing an example of a surface discharge pattern.
도 10은 상간방전 패턴의 예를 보인 도면.Figure 10 is a diagram showing an example of a phase-to-phase discharge pattern.
도 11은 본 발명에 따른 멀티 클래스 서포트 벡터 머신 적용 단계의 예를 보인 도면.Figure 11 is a diagram showing an example of a multi-class support vector machine application step according to the present invention.
[부호의 설명][Explanation of symbols]
1: 부분방전 센서 2: 부분방전 판별장치1: Partial discharge sensor 2: Partial discharge identification device
10: 신호처리부 11: 노이즈 필터10: signal processing unit 11: noise filter
12: 동기펄스 발생회로 20: 부분방전 패턴 생성부12: synchronous pulse generation circuit 20: partial discharge pattern generation unit
30: 데이터 처리부 40: 멀티 클래스 SVM 적용부30: Data processing unit 40: Multi-class SVM application unit
50: 위험도 진단부 60: 출력부50: Risk diagnosis unit 60: Output unit
이하에서는 본 발명의 바람직한 실시예를 도시한 첨부도면에 따라 상세하게 설명한다.Hereinafter, the present invention will be described in detail according to the accompanying drawings showing preferred embodiments.
본 발명은 발전소의 모터 등에서 발생하는 부분방전 패턴을 자동 분석하여 부분방전의 유형을 판별할 수 있는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법을 제공하고자 하는 것으로, 이러한 본 발명은 도 1에 도시된 바와 같이 부분방전 신호 검출 단계(S10), 신호처리 단계(S20), 부분방전 패턴 생성 단계(S30), 데이터 처리 단계(S40), 멀티 클래스 서포트 벡터 머신 적용 단계(S50), 위험도 진단 단계(S60) 및 출력 단계(S70)로 이루어진다.The present invention aims to provide a method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a PRPD pattern image that can automatically analyze the partial discharge pattern occurring in a motor of a power plant, etc. to determine the type of partial discharge. As shown in FIG. 1, the present invention includes a partial discharge signal detection step (S10), a signal processing step (S20), a partial discharge pattern generation step (S30), a data processing step (S40), and a multi-class support vector machine application step. (S50), a risk diagnosis step (S60), and an output step (S70).
또한, 본 발명의 부분 방전 유형 판별을 위한 장치(2)는 도 2에 도시된 바와 같이 신호처리부(10), 부분방전 패턴 생성부(20), 데이터 처리부(30), 멀티 클래스 SVM 적용부(40), 위험도 진단부(50) 및 출력부(60)를 포함한다.In addition, as shown in FIG. 2, the device 2 for determining the partial discharge type of the present invention includes a signal processing unit 10, a partial discharge pattern generation unit 20, a data processing unit 30, and a multi-class SVM application unit ( 40), and includes a risk diagnosis unit 50 and an output unit 60.
(1) 부분방전 신호 검출 단계(S10)(1) Partial discharge signal detection step (S10)
이 단계는 부분방전 센서를 이용하여 발전소 등의 모터로부터 부분방전 신호를 검출하는 것으로, 본 발명은 공지된 다양한 구조의 부분방전 센서(1)를 사용하여 부분방전 신호를 검출(취득)하도록 구성될 수 있다.This step is to detect a partial discharge signal from a motor such as a power plant using a partial discharge sensor. The present invention is configured to detect (acquire) a partial discharge signal using a partial discharge sensor 1 of various known structures. You can.
이러한 예로 부분방전 신호를 더욱 빠르고 정확하게 검출하기 위해 모터의 고정자 권선 슬롯에 직접 장착되는 부분방전 센서(1)로 구성될 수 있다.This example may consist of a partial discharge sensor 1 that is directly mounted on the stator winding slot of the motor to detect partial discharge signals more quickly and accurately.
(2) 신호처리 단계(S20)(2) Signal processing step (S20)
이 단계는 부분방전 센서(1)로부터 검출되는 신호를 신호처리부(10)를 통해 수신한 다음, 노이즈 필터(11)를 통해 신호에 포함된 잡음을 제거하고, 이렇게 잡음 제거된 아날로그 신호를 A/D 컨버터(도시하지 않음)를 통해 디지털 신호로 변환하며, 디지털 신호로 변환된 신호를 동기펄스 발생회로(12)를 통해 위상을 동기화하여 후술되는 부분방전 패턴을 쉽게 생성할 수 있도록 하는 것이다.In this step, the signal detected from the partial discharge sensor 1 is received through the signal processing unit 10, the noise included in the signal is removed through the noise filter 11, and the noise-removed analog signal is converted to A/ It is converted into a digital signal through a D converter (not shown), and the phase of the signal converted into a digital signal is synchronized through the synchronization pulse generation circuit 12 to easily generate a partial discharge pattern, which will be described later.
이때 본 발명은 부분방전 패턴을 충분히 획득하기 위해 100초(1분 40초)인 6,000cycle의 신호를 취득하고, 동기펄스 발생회로(12)를 통해 60㎐로 동기화 시키게 된다.At this time, in order to sufficiently obtain a partial discharge pattern, the present invention acquires a signal of 6,000 cycles, which is 100 seconds (1 minute 40 seconds), and synchronizes it to 60 Hz through the synchronization pulse generation circuit 12.
(3) 부분방전 패턴 생성 단계(S30)(3) Partial discharge pattern generation step (S30)
이 단계는 위 신호처리 단계(S20)를 통해 60㎐로 동기화된 신호로부터 부분방전 패턴 생성부(20)를 통해 부분방전 패턴을 생성하는 것으로, 이를 위해 360° 위상 기준(1cycle)으로 신호가 누적되어 하나의 패턴이 형성되게 된다.This step generates a partial discharge pattern through the partial discharge pattern generator 20 from a signal synchronized to 60 Hz through the signal processing step (S20) above. For this purpose, signals are accumulated on a 360° phase basis (1 cycle). A pattern is formed.
(4) 데이터 처리 단계(S40)(4) Data processing step (S40)
이 단계는 위 부분방전 패턴 생성 단계(S30)를 통해 생성된 부분방전 패턴을 데이터 처리부(30)를 통해 소정 크기와 위상으로 영역을 분할한 다음, 분할된 영역 내에 위치된 부분방전 신호를 전체적으로 하나의 패턴으로 데이터 처리하는 것이다.In this step, the partial discharge pattern generated through the above partial discharge pattern generation step (S30) is divided into regions of a predetermined size and phase through the data processing unit 30, and then the partial discharge signal located in the divided region is generated as a whole. The data is processed according to the pattern.
이때 데이터 처리되는 부분방전 패턴의 X축은 위상을 나타내는 것으로 분할된 1칸당 10°의 위상을 나타내도록 36칸으로 등분되고, Y축은 신호의 크기를 나타내는 것으로 신호의 크기가 12단계로 구분되도록 12칸으로 등분되어 총 432칸을 이루도록 구성될 수 있다.At this time, the It can be divided into equal parts to form a total of 432 spaces.
또 다르게는 X축으로 분할된 1칸당 30°의 위상을 나타내도록 12칸으로 등분되고, Y축은 신호의 크기에 따라 3단계로 구분되도록 3칸으로 등분되어 총 36칸을 이루도록 구성될 수 있다.Alternatively, each space divided on the
위와 같이 복수 사이클의 부분방전 신호를 누적시킨 상태에서 위상과 크기로 분할된 영역 내에 부분방전 신호의 유무를 검출하는 것으로 전체적인 하나의 부분방전 패턴을 형성하게 되고, 이렇게 형성된 부분방전 패턴은 후술되는 멀티 클래스 서포트 벡터 머신 적용 단계(S50)를 통해 부분방전 유형이 판별되게 된다.As described above, with multiple cycles of partial discharge signals accumulated, an overall partial discharge pattern is formed by detecting the presence or absence of a partial discharge signal in an area divided by phase and size, and the partial discharge pattern formed in this way is described later as a multi-discharge pattern. The partial discharge type is determined through the class support vector machine application step (S50).
(5) 멀티 클래스 서포트 벡터 머신 적용 단계(S50)(5) Multi-class support vector machine application step (S50)
이 단계는 데이터 처리 단계(S40)에서 하나의 부분방전 패턴이 생성되고 나면, 이렇게 생성된 부분방전 패턴을 멀티 클래스 SVM 적용부(40)를 통해 부분방전 유형을 판별하는 것이다.In this step, after one partial discharge pattern is generated in the data processing step (S40), the partial discharge type is determined through the multi-class SVM application unit (40) of the partial discharge pattern thus generated.
이때 멀티 클래스 서포트 백터 머신은 부분방전 유형이 기계 학습되어 입력되는 부분방전 패턴과 미리 학습된 부분방전 패턴 간의 유사성이 높은 부분방전 패턴을 판별하게 되는데, 이를 위해 학습되는 부분방전 패턴의 예로는 도 4에 도시된 바와 같이 내부방전 패턴과, 도 5에 도시된 바와 같이 마이카 테이프 박리 방전 패턴과, 도 6에 도시된 바와 같이 도체와 절연물 사이의 박리로 인한 방전 패턴과, 도 7에 도시된 바와 같이 슬롯방전 패턴과, 도 8에 도시된 바와 같이 단말 권선 코로나방전 패턴과, 도 9에 도시된 바와 같이 표면방전 패턴 및 도 10에 도시된 바와 같이 상간방전 패턴을 포함할 수 있고, 이를 통해 생성된 부분방전 패턴으로부터 내부방전, 마이카 테이프 박리 방전, 도체와 절연물 사이의 박리 방전, 슬롯방전, 단말 권선 코로나 방전, 표면방전 및 상간방전 여부가 판별되게 된다.At this time, the multi-class support vector machine machine learns the partial discharge type and determines a partial discharge pattern with high similarity between the input partial discharge pattern and the previously learned partial discharge pattern. An example of the partial discharge pattern learned for this purpose is Figure 4. An internal discharge pattern as shown in, a mica tape peeling discharge pattern as shown in FIG. 5, a discharge pattern due to peeling between a conductor and an insulating material as shown in FIG. 6, and a discharge pattern as shown in FIG. 7. It may include a slot discharge pattern, a terminal winding corona discharge pattern as shown in FIG. 8, a surface discharge pattern as shown in FIG. 9, and a phase-to-phase discharge pattern as shown in FIG. 10, and the generated From the partial discharge pattern, internal discharge, mica tape peeling discharge, peeling discharge between conductor and insulating material, slot discharge, terminal winding corona discharge, surface discharge, and interphase discharge are determined.
위와 같이 멀티 클래스 서포트 백터 머신은 도 11에 도시된 바와 같이 복수 개의 유형이 클래스 데이터로 입력되어 반복 학습되는 것으로, 2개 이상 복수 개의 유형을 비교하여 분류하게 된다.As shown above, in the multi-class support vector machine, as shown in FIG. 11, multiple types are input as class data and learned repeatedly, and two or more types are compared and classified.
(6) 위험도 진단 단계(S60)(6) Risk diagnosis step (S60)
이 단계는 위 멀티 클래스 서포트 벡터 머신 적용 단계(S50)를 통해 부분방전 유형이 판별되고 나면, 위험도 진단부(50)를 통해 부분방전 패턴의 크기에 따른 위험도를 진단하는 것이다.In this step, after the partial discharge type is determined through the above multi-class support vector machine application step (S50), the risk according to the size of the partial discharge pattern is diagnosed through the risk diagnosis unit 50.
이때 위험도는 크기와 위상으로 등분된 부분방전 패턴의 크기 즉, Y축을 기준으로 부분방전의 신호가 존재하는 수를 검출하고, 이를 통해 위험도를 안내하게 된다.At this time, the risk level is determined by detecting the size of the partial discharge pattern divided into size and phase, that is, the number of partial discharge signals present based on the Y axis, and guiding the risk level through this.
이러한 예로 도 3에 도시된 바와 같이 Y축을 기준으로 D영역(높은 위치)에 부분방전 신호의 수가 많을수록 위험도가 높고, A영역(낮은 위치)에 부분방전 신호가 많을수록 위험도가 낮으며, 전체영역(A, B, C, D)에 부분방전 신호의 수가 많을수록 위험도가 높고, 전체영역(A, B, C, D)에 신호가 적을수록 위험도가 낮게 진단될 수 있고, 이에 더해 부분방전신호가 검출되지 않은 경우에는 위험도가 가장 낮게 진단될 수 있다.For this example, as shown in FIG. 3, the greater the number of partial discharge signals in area D (high position) based on the Y axis, the higher the risk, the greater the number of partial discharge signals in area A (low position), the lower the risk, and the overall area ( The greater the number of partial discharge signals in the area (A, B, C, D), the higher the risk, and the fewer signals in the entire area (A, B, C, D), the lower the risk can be diagnosed, and in addition, partial discharge signals can be detected. If not, the risk may be diagnosed as lowest.
또한, D영역에 부분방전 신호가 많은 경우에는 매우위험, C영역에 부분방전 신호가 많은 경우에는 위험, B영역에 부분방전 신호가 많은 경우에는 보통, A영역에 부분방전 신호가 많은 경우에는 좋음, 부분방전 신호가 검출되지 않은 경우에는 매우좋음 등과 같이 5단계로 구분되어 진단될 수 있다.Also, if there are many partial discharge signals in area D, it is very dangerous, if there are many partial discharge signals in area C, it is dangerous, if there are many partial discharge signals in area B, it is normal, and if there are many partial discharge signals in area A, it is good. , if no partial discharge signal is detected, the diagnosis can be divided into five levels, such as very good.
또 다르게는 위험, 나쁨, 좋음, 매우좋음 등과 같이 4단계로 구분되어 진단될 수 있다.Alternatively, it can be diagnosed in four levels, such as dangerous, bad, good, and very good.
(7) 출력 단계(S70)(7) Output stage (S70)
이 단계는 멀티 클래스 서포트 벡터 머신 적용 단계(S50)와 위험도 진단 단계(S60)를 통해 판별된 부분방전 유형과 위험도를 출력부(60, 디스플레이)를 통해 작업자에게 안내하는 것이다.In this step, the partial discharge type and risk determined through the multi-class support vector machine application step (S50) and the risk diagnosis step (S60) are guided to the worker through the output unit (60, display).
작업자는 디스플레이를 통해 출력되는 부분방전 유형과 위험도를 확인하여 필요에 따라 모터 등의 점검 등을 수행하게 된다.The worker checks the type and risk of partial discharge displayed on the display and inspects the motor, etc., as necessary.
이상 설명한 바와 같이 본 발명은 부분방전 발생시 부분방전 패턴이 위상과 크기별로 복수 개의 영역으로 구분되어 부분방전 신호의 발생 횟수가 카운트되어 데이터화되고, 이러한 부분방전 데이터가 유형별로 기계 학습된 멀티 클래스 서포트 벡터 머신에 적용되므로 인공지능으로 부분방전 유형을 정확하게 판별할 수 있게 된다.As described above, in the present invention, when a partial discharge occurs, the partial discharge pattern is divided into a plurality of regions according to phase and size, the number of occurrences of the partial discharge signal is counted and converted into data, and this partial discharge data is machine-learned by type into a multi-class support vector. Since it is applied to machines, it is possible to accurately determine the type of partial discharge using artificial intelligence.
또한, 부분방전 신호의 크기와 발생 횟수로 부분방전의 위험도가 진단되어 안내되게 된다.In addition, the risk of partial discharge is diagnosed and guided based on the size and number of occurrences of the partial discharge signal.
위에서는 설명의 편의를 위해 바람직한 실시예를 도시한 도면과 도면에 나타난 구성에 도면부호와 명칭을 부여하여 설명하였으나, 이는 본 발명에 따른 하나의 실시예로서 도면상에 나타난 형상과 부여된 명칭에 국한되어 그 권리범위가 해석되어서는 안 될 것이며, 발명의 설명으로부터 예측 가능한 다양한 형상으로의 변경과 동일한 작용을 하는 구성으로의 단순 치환은 통상의 기술자가 용이하게 실시하기 위해 변경 가능한 범위 내에 있음은 지극히 자명하다고 볼 것이다.Above, for convenience of explanation, reference numerals and names have been given to the drawings showing preferred embodiments and the configurations shown in the drawings. However, this is an embodiment according to the present invention, and the shapes shown in the drawings and the names given are The scope of the rights should not be construed as limited, and changes to various shapes predictable from the description of the invention and simple substitution with a configuration that performs the same function are within the scope of changes that can be easily carried out by a person skilled in the art. You will see this as extremely self-evident.

Claims (5)

  1. 부분방전 센서로부터 부분방전신호를 검출하는 부분방전 신호 검출 단계(S10);A partial discharge signal detection step (S10) of detecting a partial discharge signal from a partial discharge sensor;
    상기 부분방전 신호 검출 단계(S10)를 통해 검출되는 신호로부터 노이즈를 제거하고, 펄스신호를 동기화하는 신호처리 단계(S20);A signal processing step (S20) of removing noise from the signal detected through the partial discharge signal detection step (S10) and synchronizing the pulse signal;
    상기 신호처리 단계(S20)를 통해 동기화된 신호를 누적하여 부분방전 패턴을 생성하는 부분방전 패턴 생성 단계(S30);A partial discharge pattern generation step (S30) of generating a partial discharge pattern by accumulating signals synchronized through the signal processing step (S20);
    상기 부분방전 패턴 생성 단계(S30)를 통해 생성된 부분방전 패턴을 크기와 위상으로 영역을 분할하여 데이터 처리하는 데이터 처리 단계(S40);A data processing step (S40) of dividing the partial discharge pattern generated through the partial discharge pattern generating step (S30) into regions by size and phase and processing the data;
    상기 데이터 처리 단계(S40)를 통해 획득된 이미지 영역별 데이터를 복수의 부분방전 유형이 기계 학습된 서포트 벡터 머신(SVM)에 적용하는 멀티 클래스 서포트 벡터 머신 적용 단계(S50);A multi-class support vector machine application step (S50) of applying the data for each image area obtained through the data processing step (S40) to a support vector machine (SVM) in which a plurality of partial discharge types are machine-learned;
    상기 멀티 클래스 서포트 벡터 머신 적용 단계(S50)를 통해 판별된 부분방전 유형에 따른 위험도를 진단하는 위험도 진단 단계(S60); 및A risk diagnosis step (S60) of diagnosing the risk according to the partial discharge type determined through the multi-class support vector machine application step (S50); and
    판별된 부분방전 유형과 위험도를 디스플레이를 통해 안내하는 출력 단계(S70);An output step (S70) that guides the identified partial discharge type and risk through a display;
    로 이루어지는 것을 특징으로 하는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법.A method for determining the type of partial discharge in a live high-voltage stator winding by applying a support vector machine technique to a PRPD pattern image, characterized in that it consists of:
  2. 청구항 1에 있어서,In claim 1,
    상기 데이터 처리 단계(S40)는,The data processing step (S40) is,
    부분방전 패턴을 X축 12~36으로 등분하고, Y축을 3~12로 등분하여 영역을 분할한 다음, 총 36 ~ 432개로 분할된 영역 내에 위치하는 부분방전 신호를 전체적인 하나의 패턴으로 데이터화하는 것을 특징으로 하는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법.The partial discharge pattern is divided into 12~36 on the A method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to the characteristic PRPD pattern image.
  3. 청구항 2에 있어서,In claim 2,
    상기 멀티 클래스 서포트 벡터 머신 적용 단계(S50)에서는,In the multi-class support vector machine application step (S50),
    복수 개의 부분방전 유형이 각각의 패턴으로 기계 학습된 서포트 벡터 머신에 상기 데이터 처리 단계(S40)에서 추출된 데이터가 입력되어 부분방전 유형이 판별되는 것을 특징으로 하는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법.The data extracted in the data processing step (S40) is input to a support vector machine in which a plurality of partial discharge types are machine-learned as respective patterns, and the partial discharge type is determined by applying the support vector machine technique to the PRPD pattern image. Method for determining the type of partial discharge in the applied live high-voltage stator winding.
  4. 청구항 3에 있어서,In claim 3,
    상기 멀티 클래스 서포트 벡터 머신 적용 단계(S50)에서는,In the multi-class support vector machine application step (S50),
    내부방전, 마이카 테이프 박리 방전, 도체와 절연물 사이의 박리 방전, 슬롯방전, 단말 권선 코로나 방전, 표면방전 및 상간방전 유형의 부분방전 패턴이 기계 학습되어 분류되는 것을 특징으로 하는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법.Support vector for PRPD pattern image, characterized in that partial discharge patterns of internal discharge, mica tape peeling discharge, peeling discharge between conductor and insulating material, slot discharge, terminal winding corona discharge, surface discharge, and phase-to-phase discharge are classified through machine learning. A method for determining the type of partial discharge in live high-voltage stator windings using machine techniques.
  5. 청구항 2에 있어서,In claim 2,
    상기 위험도 진단 단계(S60)에서는,In the risk diagnosis step (S60),
    등분된 이미지상의 전체 부분방전 신호의 수 대비 Y축을 기준으로 높은 위치에 부분방전 신호의 수가 많을수록 위험도가 높고, 낮은 위치에 부분방전 신호가 많을수록 위험도가 낮으며, 위험도는 매우위험, 위험, 보통, 좋음, 매우좋음의 5단계 또는 위험, 나쁨, 좋음, 매우좋음의 4단계로 구분되는 것을 특징으로 하는 PRPD 패턴 이미지에 서포트 벡터 머신 기법을 적용한 활선 고전압 고정자 권선 부분 방전 유형 판별 방법.Compared to the total number of partial discharge signals in the divided image, the more partial discharge signals there are at higher positions relative to the Y-axis, the higher the risk, and the more partial discharge signals there are at low positions, the lower the risk. The risk levels are very dangerous, dangerous, normal, A method for determining the type of partial discharge in a live high-voltage stator winding by applying the support vector machine technique to a PRPD pattern image characterized by 5 levels of good, very good, or 4 levels of dangerous, bad, good, and very good.
PCT/KR2022/015580 2022-10-12 2022-10-14 Method for determining type of partial discharge of live-line high-voltage stator winding by applying support vector machine technique to prpd pattern image WO2024080415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0130847 2022-10-12
KR1020220130847A KR102518013B1 (en) 2022-10-12 2022-10-12 On-line Method for Classifying the Partial Discharge types in High Voltage Stator Winding by Applying a Support Vector Machine Technique to a PRPD Pattern Image

Publications (1)

Publication Number Publication Date
WO2024080415A1 true WO2024080415A1 (en) 2024-04-18

Family

ID=85884738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015580 WO2024080415A1 (en) 2022-10-12 2022-10-14 Method for determining type of partial discharge of live-line high-voltage stator winding by applying support vector machine technique to prpd pattern image

Country Status (2)

Country Link
KR (1) KR102518013B1 (en)
WO (1) WO2024080415A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088658A (en) * 1997-04-11 2000-07-11 General Electric Company Statistical pattern analysis methods of partial discharge measurements in high voltage insulation
US20120330871A1 (en) * 2011-06-27 2012-12-27 Asiri Yahya Ahmed Using values of prpd envelope to classify single and multiple partial discharge (pd) defects in hv equipment
CN105938177A (en) * 2016-06-23 2016-09-14 西安西热节能技术有限公司 Feature extraction and identification method based on partial discharge statistical amount
JP2019200068A (en) * 2018-05-14 2019-11-21 日新電機株式会社 Partial discharge diagnostic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037103B1 (en) 2013-09-30 2019-11-26 한국전력공사 Apparatus and method for monitoring partial discharge
KR102244716B1 (en) 2014-10-17 2021-04-28 한국전력공사 Apparatus for analyzing pattern of partial discharge and detecting location of partial discharge
KR102378902B1 (en) 2020-05-13 2022-03-28 한국전력공사 Partial Discharge Pattern Analysis Method and Device for HVDC cables
KR20220071497A (en) 2020-11-24 2022-05-31 (주)엔키아 Apparatus and method for visualizing temporal pattern and auto-detecting pattern of partial discharge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088658A (en) * 1997-04-11 2000-07-11 General Electric Company Statistical pattern analysis methods of partial discharge measurements in high voltage insulation
US20120330871A1 (en) * 2011-06-27 2012-12-27 Asiri Yahya Ahmed Using values of prpd envelope to classify single and multiple partial discharge (pd) defects in hv equipment
CN105938177A (en) * 2016-06-23 2016-09-14 西安西热节能技术有限公司 Feature extraction and identification method based on partial discharge statistical amount
JP2019200068A (en) * 2018-05-14 2019-11-21 日新電機株式会社 Partial discharge diagnostic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBLES GUILLERMO; PARRADO-HERNANDEZ EMILIO; ARDILA-REY JORGE; MARTINEZ-TARIFA JUAN MANUEL: "Multiple partial discharge source discrimination with multiclass support vector machines", EXPERT SYSTEMS WITH APPLICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 55, 24 February 2016 (2016-02-24), AMSTERDAM, NL, pages 417 - 428, XP029492129, ISSN: 0957-4174, DOI: 10.1016/j.eswa.2016.02.014 *

Also Published As

Publication number Publication date
KR102518013B1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2010008168A2 (en) Apparatus for removing the partial discharge noise of an electrical power facility and apparatus for detecting a partial discharge generated section
WO2018079912A1 (en) Reflected-wave processing apparatus
WO2013015556A2 (en) Method for detecting an abnormality of a switchgear having a self-diagnosis function
EP2579056A2 (en) Novel method for real time tests and diagnosis of the sources of partial discharge in high voltage equipment and installations, which are in service or not in service, and physical system for the practical use of the method
WO2022145519A1 (en) Electrocardiogram visualization method and device using deep learning
WO2014163318A1 (en) Interference compensating single point detecting current sensor for a multiplex busbar
WO2012015102A1 (en) Device and method for finding cable fault points
WO2020060305A1 (en) Apparatus for detecting fault location of underground cable, and method therefor
KR101350529B1 (en) Partial dischange decision apparatus and method having noise rejection function
WO2020138623A1 (en) Switchboard monitoring system and operation method of same
WO2019240340A1 (en) Speeding guide device capable of measuring speed of vehicle by using camera, and operation method therefor
WO2020242101A1 (en) Noninvasive/non-contact device and method for detecting and diagnosing sleep apnea by using ir-uwb radar
CN1040684A (en) The monitoring of high-tension switch gear and emergency protection
WO2012002615A1 (en) Power quality monitoring system and method thereof
CN111610418A (en) GIS partial discharge positioning method based on intelligent ultrahigh frequency sensor
WO2024080415A1 (en) Method for determining type of partial discharge of live-line high-voltage stator winding by applying support vector machine technique to prpd pattern image
WO2023128669A1 (en) Partial discharge monitoring system and partial discharge monitoring method
WO2011040663A1 (en) Electric power quality monitoring system and electric power quality measuring method
WO2014077461A1 (en) Method for testing partial discharge detection device using three-dimensional pattern
WO2017116090A1 (en) Gas insulated switchgear partial discharge diagnosis method and device
WO2023234572A1 (en) Apparatus and method for diagnosing abnormality of battery cell
US20210405106A1 (en) Method for Detecting an Electrical Discharge in an Electrical Apparatus and a System Therefor
WO2015072601A1 (en) Apparatus and method for determining partial discharge
WO2023113166A1 (en) System for estimating partial discharge occurrence location based on precision time-synchronization protocol (ptp)
JP2005283489A (en) Partial discharge detecting method for cable way

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962165

Country of ref document: EP

Kind code of ref document: A1