WO2024080413A1 - Cooling system of fuel cell construction equipment - Google Patents

Cooling system of fuel cell construction equipment Download PDF

Info

Publication number
WO2024080413A1
WO2024080413A1 PCT/KR2022/015558 KR2022015558W WO2024080413A1 WO 2024080413 A1 WO2024080413 A1 WO 2024080413A1 KR 2022015558 W KR2022015558 W KR 2022015558W WO 2024080413 A1 WO2024080413 A1 WO 2024080413A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
water
radiator
cooling system
condensate
Prior art date
Application number
PCT/KR2022/015558
Other languages
French (fr)
Korean (ko)
Inventor
육욱성
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to PCT/KR2022/015558 priority Critical patent/WO2024080413A1/en
Publication of WO2024080413A1 publication Critical patent/WO2024080413A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids

Definitions

  • This disclosure generally relates to cooling systems for fuel cell construction machinery, and in certain aspects, the present disclosure relates to cooling systems for fuel cell construction machinery using falling water and surface evaporation.
  • the present disclosure more specifically relates to a cooling system for fuel cell construction machinery that uses falling water and surface evaporation of condensate generated through the electrochemical reaction of a fuel cell.
  • the useful work of a fuel cell is usually 52%, assuming that the energy of the fuel, H 2 , is 100%. The remaining 42% of the energy is wasted in the cooling system and 6% as exhaust losses.
  • H 2 the energy of the fuel
  • the existing fossil fuels such as gasoline and diesel (30% expiration date, 30% cooling, 40% exhaust)
  • it has a relatively long expiration date, and above all, it is a complete solution to carbon dioxide, the main culprit of the global greenhouse effect.
  • Battery systems are receiving great attention.
  • the energy wasted in the cooling system is relatively large.
  • the temperature of the coolant flowing into the inlet of the fuel cell stack is required to be 60°C, so the outlet temperature of the radiator must be set to that temperature. This is about 40°C lower than the inlet temperature of 100°C of the existing diesel engine radiator, so if the heat load and atmospheric conditions for cooling are the same, the performance of the heat dissipation system should be relatively increased.
  • construction equipment does not have the RAM (Relative Air Movement) effect, so a heat dissipation system superior to that of cars is required due to the limitation that the cooling air passing through the radiator must be formed entirely through a fan.
  • the performance of the radiator is influenced by the coolant section, such as using the flow rate and flow of the internal coolant or the radiator's fins and tubes, and the cooling air section, such as the use of the air flow path and fan (and shroud) within the radiator fin and tube space. It's crazy.
  • coolant pump capacity to increase the coolant flow rate in the coolant sector or to increase the heat dissipation area of the radiator in the cooling air sector.
  • coolant pumps may fail.
  • increasing the cooling air volume by increasing the fan size and rotation speed. Above all, increasing the power of pumps and fans causes losses due to excessive use of electricity generated by fuel cells. In addition, a large amount of condensate generated through the electrochemical reaction of fuel cells is being discarded.
  • the present disclosure is intended to solve the problems of the prior art described above, and the purpose of the present disclosure is to utilize condensate and surface evaporation of the condensate generated in the fuel cell construction machine to maximize the heat dissipation performance of the radiator of the fuel cell construction machine. It provides a cooling system for fuel cell construction machinery.
  • a first aspect of the present disclosure relates to cooling of fuel cell construction machinery, including a radiator for discharging heat of coolant for a fuel cell stack, and a water dripping device installed on the upper front of the radiator to drip water into the radiator.
  • a radiator for discharging heat of coolant for a fuel cell stack
  • a water dripping device installed on the upper front of the radiator to drip water into the radiator.
  • the water falling from the water dripping device to the radiator may be a cooling system for a fuel cell construction machine, wherein the water is condensed water generated in the fuel cell stack.
  • a condensate storage tank in which condensate generated from the fuel cell stack is stored, a condensate pump for pumping and supplying the condensate, and the condensate stored to supply the condensate to the water dripping device through the condensate pump. It may be a cooling system for a fuel cell construction machine, further comprising a condensate water supply line connected from the tank to the water dripping device.
  • the water dripping device includes a bottom surface inclined downward toward the radiator, and one or more water dripping holes arranged in a row at intervals at the bottom of the bottom surface. It could be a cooling system for construction machinery.
  • the one or more dripping holes may be a cooling system for a fuel cell construction machine, characterized in that each is located on an upper side of one or more tubes of the radiator.
  • it may be a cooling system for a fuel cell construction machine, which is installed to at least partially cover the front of the radiator and further includes a dripping water inflow network including one or more dripping wires.
  • the dripping water inflow network may be a cooling system for a fuel cell construction machine, characterized in that it is in contact with the tube of the radiator or disposed close to the tube of the radiator.
  • the water drop wire may be a cooling system for a fuel cell construction machine, characterized in that it includes one or more vertical wires and one or more inclined wires connecting the one or more vertical wires.
  • the one or more vertical wires may be a cooling system for a fuel cell construction machine, wherein the one or more vertical wires are respectively located below the one or more falling water holes.
  • the outlet of the condensate water supply line may be a cooling system for a fuel cell construction machine, characterized in that it is located in the upper central part of the water dripping device.
  • a cooling system for a fuel cell construction machine may further include a level sensor that detects the level of condensate stored in the water dripping device to control the amount of condensate supplied to the water dripping device. You can.
  • the cooling system for fuel cell construction equipment further comprises a temperature sensor that detects the temperature of the coolant flowing into the fuel cell stack to control the amount of condensate supplied to the water dripping device. It can be.
  • condensed water generated from the fuel cell construction machine is dripped onto a tube of a radiator or a dripping wire of a dripping water inflow network, and surface evaporation of the dripping water is used to cool the radiator.
  • the cooling performance can be further increased.
  • the size of the radiator can be reduced by increasing the efficiency of the radiator, thereby reducing costs. Additionally, if the size of the radiator is kept the same, the number or size of fans can be reduced by increasing the efficiency of the radiator. Furthermore, if the radiator and fan are maintained as is, the rpm and power of the fan can be minimized by increasing the efficiency of the radiator. This can also be expected to have the effect of reducing the use of hydrogen, the fuel for fuel cells.
  • FIG. 1 is a block diagram schematically showing a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
  • Figure 2 is a perspective view of a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
  • Figure 3 is a partial enlarged view of the cooling system of a fuel cell construction machine according to one aspect of the present disclosure.
  • Figure 4 is a side view of a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
  • Figures 5 (a) and (b) are a front view of a dripping water inflow network and a front view of a radiator, respectively, according to one aspect of the present disclosure.
  • Figure 6 is a plan view of a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
  • Figure 7 is a perspective view of a cooling system for a fuel cell construction machine according to a second aspect of the present disclosure.
  • first, second, etc. may be used herein to describe various elements, it will be understood that such elements should not be limited by these terms. These terms are only used to distinguish one element from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • FIG. 1 is a block diagram schematically showing a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
  • the cooling system 10 of a fuel cell construction machine is configured to include a radiator 100 and a water dripping device 200.
  • the radiator 100 is an element for dissipating heat from the coolant for the fuel cell stack 20.
  • the radiator 100 includes an upper tank 110, a lower tank 120, and a heat dissipation structure.
  • the heat dissipation structure is located between the upper tank 110 and the lower tank 120 and includes a plurality of vertical or horizontal tubes 130 that flow heated coolant from the upper tank 110 to the lower tank 120, and a plurality of tubes. (130) is welded to the tube 130 to connect between them, and may include fins that facilitate heat exchange. That is, the radiator 100 releases heat from the coolant through heat exchange in this heat dissipation structure.
  • a cooling fan may be disposed at the rear of the radiator 100, and the cooling fan can achieve a sufficient cooling effect by forcibly ventilating cooling air from the front to the rear of the radiator 100.
  • the fuel cell system includes a coolant pump 23 that generates a flow of coolant, and a 3-way valve 24 that determines the flow direction of the coolant to selectively provide coolant to the radiator 100 according to the temperature of the coolant. may include.
  • the location where the coolant pump 23 or the 3-way valve 24 is installed may be installed in a line that supplies coolant to the fuel cell stack 20.
  • the fuel cell system may further include a heater 25 that raises the temperature of the coolant to warm up the fuel cell stack 20.
  • This fuel cell system supplies air containing oxygen, a reactive gas, to the fuel cell stack 20 through the air supply line 21, and nitrogen accumulated in the fuel cell stack 20 through the air discharge line 22. and discharge water.
  • the cooling system 10 of a fuel cell construction machine cools the coolant by supplying air to the heat dissipation structure of the conventional radiator 100, and cools the radiator 100 through the water dripping device 200. ) Water falls toward the heat dissipation structure. The falling water is transported to the tubes and fins of the radiator by the cooling air flowing into the radiator, and as it evaporates from the surfaces of the tubes and fins, it generates additional cooling due to latent heat.
  • FIG. 2 is a perspective view of a cooling system for a fuel cell construction machine according to an aspect of the present disclosure
  • FIG. 3 is a partial enlarged view of a cooling system for a fuel cell construction machine according to an aspect of the present disclosure
  • FIG. 4 is a view of the cooling system for the fuel cell construction machine according to an aspect of the present disclosure. This is a side view of the cooling system of a fuel cell construction machine according to one aspect of the disclosure.
  • the water dripping device 200 may be installed on the upper front of the radiator 100, preferably on the front of the upper tank 110.
  • the water dripping device 200 has a storage space for storing water inside, and the upper part may be open. At this time, a mesh net may be installed on the top of the water dripping device 200 to prevent foreign substances from entering the water dripping device 200.
  • the water dripping device 200 may include a bottom surface 210 inclined downward toward the radiator 100, and one or more drip holes 220 arranged in a line at intervals at the bottom of the bottom surface 210. there is. Accordingly, the water stored in the water dripping device 200 may move along the inclined floor surface 210 and then fall into the radiator 100 through one or more dripping holes 220.
  • one or more dripping holes 220 may be located on the upper side of one or more tubes 130 of the radiator 100, respectively. Accordingly, the water falling from the water dripping device 100 can more efficiently reach the surface of the tube 130, and the heat dissipation performance of the radiator 100 can be improved.
  • the falling water hole 220 may be formed in a circular shape, preferably in a semi-circular shape. However, it is not limited to this, and the falling water hole 220 may be formed in various shapes to facilitate the falling water into the tube 130.
  • the water falling from the water dripping device 200 to the radiator 100 may be condensation water generated in the fuel cell stack 20 or condensation water generated on the surface of the evaporator of the AC system. .
  • the cooling system 10 for a fuel cell construction machine may further include a condensate storage tank 400, a condensate drain line 410, a condensate supply line 420, and a condensate pump 430. there is.
  • a condensate drain line 410 may be installed in the air discharge line 22 to collect condensate generated from the fuel cell stack 20, and condensate water is stored to store the condensate collected through the condensate drain line 410.
  • a tank 400 may be provided.
  • Condensate stored in the condensate storage tank 400 is supplied to the water dripping device 200 through the condensate supply line 420 and the condensate pump 430 while the fuel cell is operating.
  • the condensate pump 430 is an element for pumping and supplying condensate.
  • the condensate supply line 420 is an element connected from the condensate storage tank 400 to the water dripping device 200 to supply condensed water to the water dripping device 200 through the condensate pump 430.
  • the outlet of the condensate water supply line 420 is configured to be located in the upper central part of the water dripping device 200.
  • the condensate water supply line 420 is located in the upper central part of the water dripping device 200, in the initial situation when condensate water falls from the water dripping device 200, the condensate water falls from the central dripping hole 220. This is to induce evaporative cooling by dropping condensate from the central part of the radiator, which is most affected by the cooling air passing through the radiator 100 during the falling water process, and to ensure improved cooling performance.
  • the cooling system 10 of the fuel cell construction machine has a level for detecting the water level of the condensate stored in the water dripping device 200 in order to control the amount of condensate supplied to the water dripping device 200. It may further include a sensor 230.
  • the control unit (not shown) of the cooling system 10 determines that condensate supply is a necessary condition and pumps condensate water.
  • the condensate supply amount is controlled by operating (430).
  • the cooling system 10 of the fuel cell construction machine includes a temperature sensor 500 that detects the temperature of the coolant flowing into the fuel cell stack 20 to control the amount of condensate supplied to the water dripping device 200. More may be included.
  • the control unit (not shown) of the cooling system 10 determines that condensate supply is necessary and pumps condensate water.
  • the condensate supply amount is controlled by operating (430).
  • the amount of condensed water supplied to the water dripping device 200 can be appropriately adjusted depending on the situation.
  • Figures 5 (a) and (b) are a front view of a dripping water inflow network and a front view of a radiator, respectively, according to an aspect of the present disclosure
  • Figure 6 is a cooling system of a fuel cell construction machine according to an aspect of the present disclosure. This is the floor plan.
  • the cooling system 10 of a fuel cell construction machine includes a dripping water inflow network 300 to ensure that dripping water flows smoothly into the radiator 100. ) may further be included.
  • the falling water inflow network 300 may also perform the function of preventing external foreign substances such as fallen leaves from penetrating into the interior of the radiator 100.
  • the dripping water inlet network 300 is installed to at least partially cover the front of the radiator 100 and includes one or more dripping wires.
  • the dripping water inflow network 300 is in contact with the tube 130 of the radiator 100 or is at least disposed close to the tube 130 of the radiator 100.
  • the falling water inflow network 300 may be formed to have an area that can cover the entire front of the radiator 100. That is, the dripping water inlet network 300 allows the water falling from the water dripping device 200 to cover the entire front of the radiator 100 along the dripping wire and move uniformly to the bottom. The water falling toward the falling wire and tube 130 of the radiator 100 may be transferred to the surface of the falling wire, the surface of the radiator tube 130, and the surface of the radiator fin by the cooling air flowing into the radiator.
  • the falling water wire may include one or more vertical wires 310 and one or more inclined wires 320 connecting between the one or more vertical wires 310 .
  • one or more vertical wires 310 are configured to be positioned below one or more dripping holes 220 of the water dripping device 200.
  • one or more vertical wires 310 are configured to contact or be located in close proximity to one or more radiator tubes 130, respectively.
  • the water stored in the water dripping device 200 may fall onto the vertical wire 310 of the dripping wire or the tube 130 of the radiator through the dripping hole 220, and the water falling on the vertical wire 310 has a zigzag structure. It moves to cover the entire front of the radiator along one or more inclined wires 320 arranged.
  • the diameter of the water drop hole 220 formed in the water drop device 200 is larger than the diameter of the water drop wire so that water flows smoothly along the surface of the tube 130 of the radiator 100. It may be configured to be smaller than the width of (130). Preferably, the diameter of the dripping hole 220 may be less than 1/2 of the width of the tube 130.
  • Coupling holes 331 may be formed on both edges 330 of the falling water inlet network 300, and the falling water inlet network 300 may be formed on the coupling holes 331 and both edges 140 of the radiator 100. It can be bolted through the coupling hole 141. However, it is not limited to this, and of course, various coupling methods that enable the combination of the dripping water inlet network 300 and the radiator 100 can be applied.
  • Figure 7 is a perspective view of a cooling system for a fuel cell construction machine according to a second aspect of the present disclosure.
  • the falling water inlet network 300 may be configured to cover only a portion of the area of the radiator 100 depending on the cooling situation according to the ambient temperature.
  • the dripping water inlet network 300 may be configured to cover only the upper half of the total front area of the radiator 100. More preferably, the dripping water inflow network 300 has a structure in which the dripping water inflow network covering the upper 1/2 area and the dripping water inflow network covering the lower 1/2 area are detachable from each other, so that the cover area can be adjusted depending on the situation. It can be configured so that
  • the falling water inlet network 300 is configured to cover only the upper half of the radiator 100, the evaporative cooling effect can be basically guaranteed in the upper area of the radiator 100 where high-temperature coolant flows in and out.
  • the falling water continues along the tube 130 or fins of the radiator 100, thereby maintaining the effect of the falling water inflow network 300 that covers the entire area of the radiator 100.
  • the cooling system 10 of a fuel cell construction machine can reduce the size of the radiator 100 by increasing the efficiency of the radiator 100, thereby reducing costs. Additionally, if the size of the radiator 100 is kept the same, the number or size of fans can be reduced by increasing the efficiency of the radiator 100. Furthermore, if the radiator 100 and the fan are maintained as is, the rpm and power of the fan can be minimized by increasing the efficiency of the radiator 100. This can also be expected to have the effect of reducing the use of hydrogen, the fuel for fuel cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

An aspect of the present disclosure provides a cooling system of fuel cell construction equipment, comprising a radiator for discharging heat of cooling water for a fuel cell stack and a water falling device installed to the upper front surface of the radiator to enable falling of water into the radiator.

Description

연료전지 건설기계의 냉각시스템Cooling system for fuel cell construction machinery
본 개시 내용은 일반적으로 연료전지 건설기계의 냉각시스템에 관한 것으로, 특정 측면에서 본 개시 내용은 낙수 및 표면증발을 이용하는 연료전지 건설기계의 냉각시스템에 관한 것이다. 본 개시 내용은 더욱 상세하게는 연료전지의 전기화학반응을 통해 생성되는 응축수의 낙수 및 표면증발을 이용하는 연료전지 건설기계의 냉각시스템에 관한 것이다. This disclosure generally relates to cooling systems for fuel cell construction machinery, and in certain aspects, the present disclosure relates to cooling systems for fuel cell construction machinery using falling water and surface evaporation. The present disclosure more specifically relates to a cooling system for fuel cell construction machinery that uses falling water and surface evaporation of condensate generated through the electrochemical reaction of a fuel cell.
연료전지의 유효일(useful work)은 연료인 H2의 에너지를 100%로 가정할 때, 통상 52%에 해당된다. 에너지의 나머지 42%는 냉각시스템으로, 그리고 6%는 배기손실로 버려지게 된다. 참고로 기존의 화석연료인 가솔린과 디젤의 경우(유효일 30%, 냉각 30%, 배기 40%)와는 달리 상대적으로 많은 유효일을 얻게 되고, 무엇보다도 지구 온실효과의 주범인 이산화탄소의 완전한 해결안으로 최근 연료전지 시스템은 크게 주목받고 있다. 그러나, 냉각시스템으로 버려지는 에너지가 상대적으로 크다는 지적이 계속되어 왔다.The useful work of a fuel cell is usually 52%, assuming that the energy of the fuel, H 2 , is 100%. The remaining 42% of the energy is wasted in the cooling system and 6% as exhaust losses. For reference, unlike the existing fossil fuels such as gasoline and diesel (30% expiration date, 30% cooling, 40% exhaust), it has a relatively long expiration date, and above all, it is a complete solution to carbon dioxide, the main culprit of the global greenhouse effect. Battery systems are receiving great attention. However, it has been pointed out that the energy wasted in the cooling system is relatively large.
여기서, 연료전지의 원활한 운전을 위해 연료전지 스택 입구로 유입되는 냉각수 온도는 60℃로 요구받고 있어 라디에이터의 출구온도를 해당 온도로 맞추어야 한다. 이는 기존 디젤엔진 라디에이터의 유입온도인 100℃에 비해 40℃ 정도 낮은 값이므로 냉각을 위한 열 부하 및 대기조건이 동일한 상황이라면 방열 시스템의 성능은 상대적으로 증대되어야 한다. 아울러, 건설기계는 주행하는 자동차와 달리 RAM(Relative Air Movement) 효과가 없어 라디에이터를 통과시키는 냉각공기를 온전히 팬을 통하여 형성해야 하는 한계상황으로 인해 자동차보다 우수한 방열 시스템이 요구된다. Here, for smooth operation of the fuel cell, the temperature of the coolant flowing into the inlet of the fuel cell stack is required to be 60°C, so the outlet temperature of the radiator must be set to that temperature. This is about 40℃ lower than the inlet temperature of 100℃ of the existing diesel engine radiator, so if the heat load and atmospheric conditions for cooling are the same, the performance of the heat dissipation system should be relatively increased. In addition, unlike driving cars, construction equipment does not have the RAM (Relative Air Movement) effect, so a heat dissipation system superior to that of cars is required due to the limitation that the cooling air passing through the radiator must be formed entirely through a fan.
라디에이터의 성능은 내부 냉각수의 유량과 유동을 이용하거나 라디에이터의 핀과 튜브를 이용하는 등의 냉각수 부문과 라디에이터 핀과 튜브 공간 내 공기 유로와 팬(및 쉬라우드)을 이용하는 등의 냉각공기 부문에 의해 영향을 미친다. The performance of the radiator is influenced by the coolant section, such as using the flow rate and flow of the internal coolant or the radiator's fins and tubes, and the cooling air section, such as the use of the air flow path and fan (and shroud) within the radiator fin and tube space. It's crazy.
여기서, 냉각수 부문에서는 냉각수 유량을 증가시키기 위해 냉각수 펌프 용량을 크게 하거나 냉각공기 부문에서는 라디에이터의 방열 면적을 증가시키는 것은 한계가 존재한다. 특히, 냉각수 펌프는 고장이 일어날 수 있다. 또한, 팬 사이즈와 회전수를 크게 하여 냉각 풍량을 증가시키는 것 역시 한계가 존재한다. 무엇보다도 펌프 및 팬의 동력 증가는 연료전지로 발전한 전기를 과다하게 사용하는 손실이 된다. 아울러, 연료전지의 전기화학반응을 통해 생성되는 응축수는 많은 양이 버려지고 있는 상황이다.Here, there is a limit to increasing the coolant pump capacity to increase the coolant flow rate in the coolant sector or to increase the heat dissipation area of the radiator in the cooling air sector. In particular, coolant pumps may fail. Additionally, there are limits to increasing the cooling air volume by increasing the fan size and rotation speed. Above all, increasing the power of pumps and fans causes losses due to excessive use of electricity generated by fuel cells. In addition, a large amount of condensate generated through the electrochemical reaction of fuel cells is being discarded.
본 개시 내용은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 개시 내용의 목적은 연료전지 건설기계의 라디에이터의 방열 성능을 극대화하기 위해 연료전지 건설기계에서 생성되는 응축수 및 응축수의 표면증발을 이용하는 연료전지 건설기계의 냉각시스템을 제공하는 것이다.The present disclosure is intended to solve the problems of the prior art described above, and the purpose of the present disclosure is to utilize condensate and surface evaporation of the condensate generated in the fuel cell construction machine to maximize the heat dissipation performance of the radiator of the fuel cell construction machine. It provides a cooling system for fuel cell construction machinery.
본 개시 내용의 제 1 측면은 연료전지 스택용 냉각수의 열을 방출하기 위한 라디에이터, 및 상기 라디에이터의 상부 전면에 설치되어 상기 라디에이터로 물을 낙수시키는 물 낙수 장치를 포함하는, 연료전지 건설기계의 냉각시스템을 제공한다.A first aspect of the present disclosure relates to cooling of fuel cell construction machinery, including a radiator for discharging heat of coolant for a fuel cell stack, and a water dripping device installed on the upper front of the radiator to drip water into the radiator. Provides a system.
일 예에 있어서, 상기 물 낙수 장치에서 상기 라디에이터로 낙수되는 물은 상기 연료전지 스택에서 생성되는 응축수인 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템 수 있다.In one example, the water falling from the water dripping device to the radiator may be a cooling system for a fuel cell construction machine, wherein the water is condensed water generated in the fuel cell stack.
일 예에 있어서, 상기 연료전지 스택에서 생성되는 응축수가 저장되는 응축수 저장탱크, 상기 응축수를 펌핑하여 공급시키기 위한 응축수 펌프, 및 상기 응축수 펌프를 통하여 상기 응축수를 상기 물 낙수 장치에 공급하도록 상기 응축수 저장탱크에서 상기 물 낙수 장치까지 연결되는 응축수 공급라인을 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, a condensate storage tank in which condensate generated from the fuel cell stack is stored, a condensate pump for pumping and supplying the condensate, and the condensate stored to supply the condensate to the water dripping device through the condensate pump. It may be a cooling system for a fuel cell construction machine, further comprising a condensate water supply line connected from the tank to the water dripping device.
일 예에 있어서, 상기 물 낙수 장치는, 상기 라디에이터를 향해 하향 경사지게 형성되는 바닥면, 및 상기 바닥면의 최하단에 간격을 두고 일렬로 배치되는 하나 이상의 낙수홀을 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the water dripping device includes a bottom surface inclined downward toward the radiator, and one or more water dripping holes arranged in a row at intervals at the bottom of the bottom surface. It could be a cooling system for construction machinery.
일 예에 있어서, 상기 하나 이상의 낙수홀은 상기 라디에이터의 하나 이상의 튜브의 상측에 각각 위치하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the one or more dripping holes may be a cooling system for a fuel cell construction machine, characterized in that each is located on an upper side of one or more tubes of the radiator.
일 예에 있어서, 상기 라디에이터의 전면을 적어도 부분적으로 커버하도록 설치되며, 하나 이상의 낙수 와이어를 포함하는 낙수 유입망을 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, it may be a cooling system for a fuel cell construction machine, which is installed to at least partially cover the front of the radiator and further includes a dripping water inflow network including one or more dripping wires.
일 예에 있어서, 상기 낙수 유입망은 상기 라디에이터의 튜브와 접촉하거나 상기 라디에이터의 튜브에 근접하여 배치되는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the dripping water inflow network may be a cooling system for a fuel cell construction machine, characterized in that it is in contact with the tube of the radiator or disposed close to the tube of the radiator.
일 예에 있어서, 상기 낙수 와이어는, 하나 이상의 수직 와이어, 및 상기 하나 이상의 수직 와이어 사이를 연결하는 하나 이상의 경사 와이어를 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the water drop wire may be a cooling system for a fuel cell construction machine, characterized in that it includes one or more vertical wires and one or more inclined wires connecting the one or more vertical wires.
일 예에 있어서, 상기 하나 이상의 수직 와이어는 상기 하나 이상의 낙수홀의 하측에 각각 위치하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the one or more vertical wires may be a cooling system for a fuel cell construction machine, wherein the one or more vertical wires are respectively located below the one or more falling water holes.
일 예에 있어서, 상기 응축수 공급라인의 배출구는 상기 물 낙수 장치의 상측 중앙부에 위치하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the outlet of the condensate water supply line may be a cooling system for a fuel cell construction machine, characterized in that it is located in the upper central part of the water dripping device.
일 예에 있어서, 상기 물 낙수 장치에 공급되는 응축수의 양을 조절하기 위해 상기 물 낙수 장치에 저장된 응축수의 수위를 검출하는 레벨 센서를 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, a cooling system for a fuel cell construction machine may further include a level sensor that detects the level of condensate stored in the water dripping device to control the amount of condensate supplied to the water dripping device. You can.
일 예에 있어서, 상기 물 낙수 장치에 공급되는 응축수의 양을 조절하기 위해 상기 연료전지 스택으로 유입되는 냉각수의 온도를 검출하는 온도 센서를 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템일 수 있다.In one example, the cooling system for fuel cell construction equipment further comprises a temperature sensor that detects the temperature of the coolant flowing into the fuel cell stack to control the amount of condensate supplied to the water dripping device. It can be.
상기 측면, 청구된 청구범위, 및/또는 본 명세서의 상기 및 이후에 개시되는 예는 당업자에게 명백한 바와 같이 서로 적절하게 조합될 수 있다.The above aspects, claimed claims, and/or examples disclosed hereinafter and herein may be appropriately combined with each other as will be apparent to those skilled in the art.
추가의 특징 및 이점은 하기 설명, 청구범위 및 도면에 개시되어 있고, 부분적으로 그로부터 당업자에게 용이하게 명백하거나 본 명세서에 기재된 바와 같은 개시 내용을 실시함으로써 인식될 것이다.Additional features and advantages are set forth in the following description, claims, and drawings, and in part will be readily apparent to those skilled in the art therefrom or will be recognized by practice of the disclosure as set forth herein.
본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템에 의하면, 연료전지 건설기계에서 생성되는 응축수를 라디에이터의 튜브 또는 낙수 유입망의 낙수 와이어로 낙수시키고, 낙수된 물의 표면증발을 이용함에 따라 라디에이터의 냉각 성능을 더욱 증대시킬 수 있다.According to the cooling system for a fuel cell construction machine according to an aspect of the present disclosure, condensed water generated from the fuel cell construction machine is dripped onto a tube of a radiator or a dripping wire of a dripping water inflow network, and surface evaporation of the dripping water is used to cool the radiator. The cooling performance can be further increased.
본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템에 의하면, 라디에이터의 효율 증가로 라디에이터의 크기를 줄일 수 있어 원가 절감이 가능할 수 있다. 또한, 라디에이터의 크기를 동일하게 유지한다면 라디에이터의 효율 증가로 팬의 개수나 사이즈를 줄일 수 있다. 나아가, 라디에이터와 팬을 그대로 유지한다면 라디에이터의 효율 증가로 팬의 rpm 및 동력을 최소화할 수 있다. 이는 연료전지의 연료인 수소사용을 절감시키는 효과도 기대할 수 있다.According to the cooling system for a fuel cell construction machine according to an aspect of the present disclosure, the size of the radiator can be reduced by increasing the efficiency of the radiator, thereby reducing costs. Additionally, if the size of the radiator is kept the same, the number or size of fans can be reduced by increasing the efficiency of the radiator. Furthermore, if the radiator and fan are maintained as is, the rpm and power of the fan can be minimized by increasing the efficiency of the radiator. This can also be expected to have the effect of reducing the use of hydrogen, the fuel for fuel cells.
본 개시 내용의 효과는 상기한 효과로 한정되는 것은 아니며, 본 개시 내용의 상세한 설명 또는 청구범위에 기재된 개시 내용의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present disclosure are not limited to the effects described above, and should be understood to include all effects that can be inferred from the structure of the disclosure described in the detailed description or claims of the present disclosure.
첨부된 도면을 참조하여, 아래에서 예로서 인용된 본 개시 내용의 양태에 대한 보다 상세한 설명을 따른다.BRIEF DESCRIPTION OF THE DRAWINGS With reference to the accompanying drawings, a more detailed description of aspects of the present disclosure, cited by way of example, follows below.
도 1은 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템을 개략적으로 도시한 블록 구성도이다.1 is a block diagram schematically showing a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
도 2는 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 사시도이다.Figure 2 is a perspective view of a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
도 3은 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 부분 확대도이다.Figure 3 is a partial enlarged view of the cooling system of a fuel cell construction machine according to one aspect of the present disclosure.
도 4는 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 측면도이다.Figure 4 is a side view of a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
도 5의 (a) 및 (b)는 각각 본 개시 내용의 일 측면에 의한 낙수 유입망의 정면도 및 라디에이터의 정면도이다.Figures 5 (a) and (b) are a front view of a dripping water inflow network and a front view of a radiator, respectively, according to one aspect of the present disclosure.
도 6은 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 평면도이다.Figure 6 is a plan view of a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
도 7은 본 개시 내용의 제2 측면에 의한 연료전지 건설기계의 냉각시스템의 사시도이다.Figure 7 is a perspective view of a cooling system for a fuel cell construction machine according to a second aspect of the present disclosure.
이하에서는 첨부한 도면을 참조하여 본 개시 내용을 설명하기로 한다. 그러나 본 개시 내용은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 측면으로 한정되는 것은 아니다. 그리고 도면에서 본 개시 내용을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present disclosure will be described with reference to the attached drawings. However, the present disclosure may be implemented in many different forms and is therefore not limited to the aspects described herein. In order to clearly explain the present disclosure in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
본 명세서에서 사용된 용어는 단지 특정한 양태를 설명하기 위해 사용된 것으로, 본 개시 내용을 한정하려는 의도가 아니다. 본 명세서에 사용된 바와 같이, 단수 형태는 문맥이 명백하게 달리 나타내지 않는 한 복수 형태도 포함하는 것으로 의도된다. 본 명세서에 사용된 바와 같이, "및/또는" 이라는 용어는 관련된 나열된 항목 중 하나 이상의 모든 조합을 포함한다. 본 명세서에서 사용될 때 "포함한다", "포함하는" 이라는 용어는 언급된 특징, 정수, 단계, 동작, 요소 및/또는 구성요소의 존재를 지정하지만, 하나 이상의 다른 기능, 정수, 단계, 작업, 요소, 구성 요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the disclosure. As used herein, the singular forms are intended to include the plural forms unless the context clearly dictates otherwise. As used herein, the term “and/or” includes any combination of one or more of the associated listed items. When used herein, the terms "comprise" and "comprising" designate the presence of a referenced feature, integer, step, operation, element and/or component, but may also include one or more other features, integers, steps, operations, It does not exclude the presence or addition of elements, components and/or groups thereof.
제 1, 제 2 등의 용어가 다양한 요소를 설명하기 위해 본 명세서에서 사용될 수 있지만, 이러한 요소는 이러한 용어에 의해 제한되어서는 안된다는 것이 이해될 것이다. 이러한 용어는 한 요소를 다른 요소와 구별하는 데만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Although the terms first, second, etc. may be used herein to describe various elements, it will be understood that such elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
"아래" 또는 "위" 또는 "위쪽" 또는 "아래쪽" 또는 "수평" 또는 "수직"과 같은 상대적인 용어는 도면에 예시된 바와 같이 한 요소와 다른 요소의 관계를 설명하기 위해 본 명세서에서 사용될 수 있다. 이들 용어 및 위에서 논의된 용어는 도면에 도시된 방향에 더하여 장치의 상이한 방향을 포함하도록 의도된다는 것이 이해될 것이다. 구성요소가 다른 구성요소에 "연결된" 또는 "결합된" 것으로 언급될 때, 그것은 다른 구성요소에 직접 연결되거나 결합될 수 있거나, 개재하는 구성요소가 존재할 수 있음을 이해할 것이다. 이와 대조적으로, 어떤 요소가 다른 요소에 "직접 연결된" 또는 "직접 결합된" 것으로 언급되는 경우에는 중간 요소가 존재하지 않는다.Relative terms such as “below” or “above” or “top” or “bottom” or “horizontal” or “vertical” may be used herein to describe the relationship of one element to another as illustrated in the drawings. there is. It will be understood that these terms and the terms discussed above are intended to include different orientations of the device in addition to the orientation shown in the figures. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it may be directly connected or coupled to the other element, or there may be intervening elements present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, no intermediate elements are present.
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어(기술 용어 및 과학 용어 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 것과 동일한 의미를 갖는다. 여기에 사용된 용어는 본 명세서 및 관련 기술의 맥락에서 그 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의되지 않는 한 이상화되거나 지나치게 형식적인 의미로 해석되지 않을 것임을 추가로 이해해야 한다.Unless otherwise defined, all terms (including technical terms and scientific terms) used in this specification have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. It is further understood that terms used herein shall be construed to have meanings consistent with their meanings in the context of this specification and related technology, and will not be construed in an idealized or overly formal sense unless explicitly defined herein. do.
본 개시 내용은 위에서 설명되고 도면에 예시된 양태로 제한되지 않는다는 것을 이해해야 한다. 오히려, 통상의 지식을 가진 자는 본 개시 내용 및 첨부된 청구범위의 범위 내에서 많은 변경 및 수정이 이루어질 수 있음을 인식할 것이다. 도면 및 명세서에서, 제한의 목적이 아닌 단지 예시의 목적으로 양태가 개시되었으며, 본 발명의 개념의 범위는 하기 청구범위에 기재되어 있다.It should be understood that the present disclosure is not limited to the aspects described above and illustrated in the drawings. Rather, those of ordinary skill in the art will recognize that many changes and modifications may be made within the scope of this disclosure and the appended claims. In the drawings and specification, embodiments are disclosed for illustrative purposes only and not for purposes of limitation, and the scope of the inventive concept is set forth in the claims below.
이하, 첨부된 도면을 참고하여 본 개시 내용의 일 측면을 상세히 설명하기로 한다.Hereinafter, one aspect of the present disclosure will be described in detail with reference to the attached drawings.
도 1은 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템을 개략적으로 도시한 블록 구성도이다.1 is a block diagram schematically showing a cooling system for a fuel cell construction machine according to one aspect of the present disclosure.
도 1에 참조된 바와 같이, 본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템(10)은 라디에이터(100) 및 물 낙수 장치(200)를 포함하도록 구성된다.As referenced in FIG. 1 , the cooling system 10 of a fuel cell construction machine according to an aspect of the present disclosure is configured to include a radiator 100 and a water dripping device 200.
라디에이터(100)는 연료전지 스택(20) 용 냉각수의 열을 방출하기 위한 요소이다. The radiator 100 is an element for dissipating heat from the coolant for the fuel cell stack 20.
일 예에 의하면, 라디에이터(100)는 상부 탱크(110), 하부 탱크(120), 및 방열 구조를 포함한다. 방열 구조는 상부 탱크(110)와 하부 탱크(120) 사이에 위치하며 가열된 냉각수를 상부 탱크(110)로부터 하부 탱크(120)로 흐르게 하는 복수개의 수직 또는 수평 튜브(130), 및 복수개의 튜브(130) 사이를 연결하도록 튜브(130)에 용접되며 열 교환이 쉬운 성질을 갖는 핀을 포함할 수 있다. 즉, 라디에이터(100)는 이 방열구조에서 열교환을 통해 냉각수의 열을 방출시키게 된다.According to one example, the radiator 100 includes an upper tank 110, a lower tank 120, and a heat dissipation structure. The heat dissipation structure is located between the upper tank 110 and the lower tank 120 and includes a plurality of vertical or horizontal tubes 130 that flow heated coolant from the upper tank 110 to the lower tank 120, and a plurality of tubes. (130) is welded to the tube 130 to connect between them, and may include fins that facilitate heat exchange. That is, the radiator 100 releases heat from the coolant through heat exchange in this heat dissipation structure.
라디에이터(100)의 후방에는 냉각 팬이 배치될 수 있으며, 냉각 팬은 라디에이터(100)의 전방에서 후방으로 냉각공기를 강제로 통풍시킴으로써 냉각 효과를 충분히 얻도록 할 수 있다.A cooling fan may be disposed at the rear of the radiator 100, and the cooling fan can achieve a sufficient cooling effect by forcibly ventilating cooling air from the front to the rear of the radiator 100.
한편, 연료전지 시스템은 냉각수의 흐름을 발생시키는 냉각수 펌프(23), 및 냉각수의 온도에 따라 선택적으로 냉각수를 라디에이터(100)로 제공하기 위해 냉각수의 흐름 방향을 결정하는 3-웨이 밸브(24)를 포함할 수 있다. 냉각수 펌프(23)나 3-웨이 밸브(24)가 설치되는 위치는 연료전지 스택(20)으로 냉각수를 공급하는 라인에 설치될 수 있다. 또한, 연료전지 시스템은 연료전지 스택(20)의 웜업을 위해 냉각수 온도를 승온시키는 히터(25)를 더 포함할 수 있다.Meanwhile, the fuel cell system includes a coolant pump 23 that generates a flow of coolant, and a 3-way valve 24 that determines the flow direction of the coolant to selectively provide coolant to the radiator 100 according to the temperature of the coolant. may include. The location where the coolant pump 23 or the 3-way valve 24 is installed may be installed in a line that supplies coolant to the fuel cell stack 20. Additionally, the fuel cell system may further include a heater 25 that raises the temperature of the coolant to warm up the fuel cell stack 20.
이러한, 연료전지 시스템은 공기공급라인(21)을 통해 반응기체인 산소를 포함하는 공기를 연료전지 스택(20)으로 공급하며, 공기배출라인(22)을 통해 연료전지 스택(20)에 축적된 질소 및 물을 배출시킨다.This fuel cell system supplies air containing oxygen, a reactive gas, to the fuel cell stack 20 through the air supply line 21, and nitrogen accumulated in the fuel cell stack 20 through the air discharge line 22. and discharge water.
본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템(10)은 종래의 라디에이터(100)의 방열 구조에 공기를 공급하여 냉각수를 냉각하는데 부가하여, 물 낙수 장치(200)를 통해 라디에이터(100)의 방열 구조를 향해 물을 낙수시킨다. 낙수되는 물은 라디에이터 내부로 유입되는 냉각공기에 의해 라디에이터의 튜브 및 핀으로 이송되며, 튜브 및 핀의 표면에서 증발함에 따라 잠열에 의한 냉각을 추가로 발생시키게 된다.The cooling system 10 of a fuel cell construction machine according to an aspect of the present disclosure cools the coolant by supplying air to the heat dissipation structure of the conventional radiator 100, and cools the radiator 100 through the water dripping device 200. ) Water falls toward the heat dissipation structure. The falling water is transported to the tubes and fins of the radiator by the cooling air flowing into the radiator, and as it evaporates from the surfaces of the tubes and fins, it generates additional cooling due to latent heat.
도 2는 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 사시도이고, 도 3은 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 부분 확대도이며, 도 4는 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 측면도이다.FIG. 2 is a perspective view of a cooling system for a fuel cell construction machine according to an aspect of the present disclosure, FIG. 3 is a partial enlarged view of a cooling system for a fuel cell construction machine according to an aspect of the present disclosure, and FIG. 4 is a view of the cooling system for the fuel cell construction machine according to an aspect of the present disclosure. This is a side view of the cooling system of a fuel cell construction machine according to one aspect of the disclosure.
도 2 내지 도 4에 참조된 바와 같이, 물 낙수 장치(200)는 라디에이터(100)의 상부 전면, 바람직하게는 상부 탱크(110)의 전면에 설치될 수 있다.2 to 4, the water dripping device 200 may be installed on the upper front of the radiator 100, preferably on the front of the upper tank 110.
물 낙수 장치(200)는 내부에 물을 저장할 수 있는 저장공간을 구비하며, 상부는 개방된 상태일 수 있다. 이때, 물 낙수 장치(200)에 이물질이 유입되는 것을 방지하기 위해 물 낙수 장치(200)의 상부에는 메쉬망이 설치될 수도 있다.The water dripping device 200 has a storage space for storing water inside, and the upper part may be open. At this time, a mesh net may be installed on the top of the water dripping device 200 to prevent foreign substances from entering the water dripping device 200.
물 낙수 장치(200)는 라디에이터(100)를 향해 하향 경사지게 형성되는 바닥면(210), 및 바닥면(210)의 최하단에 간격을 두고 일렬로 배치되는 하나 이상의 낙수홀(220)을 포함할 수 있다. 따라서, 물 낙수 장치(200)에 저장된 물은 경사진 바닥면(210)을 따라 이동한 후 하나 이상의 낙수홀(220)을 통해 라디에이터(100)로 낙수될 수 있다.The water dripping device 200 may include a bottom surface 210 inclined downward toward the radiator 100, and one or more drip holes 220 arranged in a line at intervals at the bottom of the bottom surface 210. there is. Accordingly, the water stored in the water dripping device 200 may move along the inclined floor surface 210 and then fall into the radiator 100 through one or more dripping holes 220.
바람직하게는, 하나 이상의 낙수홀(220)은 라디에이터(100)의 하나 이상의 튜브(130)의 상측에 각각 위치할 수 있다. 이로써, 물 낙수 장치(100)로부터 낙수되는 물은 보다 효율적으로 튜브(130)의 표면에 도달할 수 있게 되며, 라디에이터(100)의 방열 성능이 향상될 수 있다.Preferably, one or more dripping holes 220 may be located on the upper side of one or more tubes 130 of the radiator 100, respectively. Accordingly, the water falling from the water dripping device 100 can more efficiently reach the surface of the tube 130, and the heat dissipation performance of the radiator 100 can be improved.
낙수홀(220)은 원형, 바람직하게는 반원형으로 형성될 수 있다. 다만, 이에 한정되는 것은 아니며, 낙수홀(220)은 튜브(130)로의 낙수를 원활하게 하는 다양한 형상으로 형성될 수 있음은 물론이다. The falling water hole 220 may be formed in a circular shape, preferably in a semi-circular shape. However, it is not limited to this, and the falling water hole 220 may be formed in various shapes to facilitate the falling water into the tube 130.
한편, 도 1에 참조된 바와 같이, 물 낙수 장치(200)에서 라디에이터(100)로 낙수되는 물은 연료전지 스택(20)에서 생성되는 응축수 또는 AC 시스템의 증발기 표면에서 생성되는 응측수일 수 있다. Meanwhile, as referred to in FIG. 1, the water falling from the water dripping device 200 to the radiator 100 may be condensation water generated in the fuel cell stack 20 or condensation water generated on the surface of the evaporator of the AC system. .
본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템(10)은 응축수 저장탱크(400), 응축수 드레인라인(410), 응축수 공급라인(420), 및 응축수 펌프(430)를 더 포함할 수 있다.The cooling system 10 for a fuel cell construction machine according to aspects of the present disclosure may further include a condensate storage tank 400, a condensate drain line 410, a condensate supply line 420, and a condensate pump 430. there is.
공기배출라인(22)에는 연료전지 스택(20)에서 발생하는 응축수를 포집하기 위한 응축수 드레인라인(410)이 설치될 수 있으며, 응축수 드레인라인(410)을 통해 포집된 응축수를 저장하기 위해 응축수 저장탱크(400)가 마련될 수 있다.A condensate drain line 410 may be installed in the air discharge line 22 to collect condensate generated from the fuel cell stack 20, and condensate water is stored to store the condensate collected through the condensate drain line 410. A tank 400 may be provided.
응축수 저장탱크(400)에 저장된 응축수는 연료전지가 가동되는 동안에 응축수 공급라인(420) 및 응축수 펌프(430)를 통해 물 낙수 장치(200)로 공급된다. Condensate stored in the condensate storage tank 400 is supplied to the water dripping device 200 through the condensate supply line 420 and the condensate pump 430 while the fuel cell is operating.
이때, 응축수 펌프(430)는 응축수를 펌핑하여 공급시키기 위한 요소이다. 또한, 응축수 공급라인(420)은 응축수 펌프(430)를 통하여 응축수를 물 낙수 장치(200)에 공급하도록 응축수 저장탱크(400)에서 물 낙수 장치(200)까지 연결되는 요소이다.At this time, the condensate pump 430 is an element for pumping and supplying condensate. In addition, the condensate supply line 420 is an element connected from the condensate storage tank 400 to the water dripping device 200 to supply condensed water to the water dripping device 200 through the condensate pump 430.
바람직하게는, 응축수 공급라인(420)의 배출구는 물 낙수 장치(200)의 상측 중앙부에 위치하도록 구성된다. Preferably, the outlet of the condensate water supply line 420 is configured to be located in the upper central part of the water dripping device 200.
응축수 공급라인(420)을 물 낙수 장치(200)의 상측 중앙부에 위치시키면 물 낙수 장치(200)로부터 응축수가 낙수되는 초기 상황에서 중앙부 낙수홀(220)에서부터 응축수의 낙수가 실시되게 된다. 이는, 낙수 과정에서 라디에이터(100)를 통과하는 냉각공기의 영향을 가장 많이 받는 라디에이터의 중앙부부터 응축수를 낙수시켜 증발 냉각을 유도하고, 향상된 냉각 성능을 보장하기 위함이다.If the condensate water supply line 420 is located in the upper central part of the water dripping device 200, in the initial situation when condensate water falls from the water dripping device 200, the condensate water falls from the central dripping hole 220. This is to induce evaporative cooling by dropping condensate from the central part of the radiator, which is most affected by the cooling air passing through the radiator 100 during the falling water process, and to ensure improved cooling performance.
도 1에 참조된 바와 같이, 연료전지 건설기계의 냉각시스템(10)은 물 낙수 장치(200)에 공급되는 응축수의 양을 조절하기 위해 물 낙수 장치(200)에 저장된 응축수의 수위를 검출하는 레벨 센서(230)를 더 포함할 수 있다. As referenced in FIG. 1, the cooling system 10 of the fuel cell construction machine has a level for detecting the water level of the condensate stored in the water dripping device 200 in order to control the amount of condensate supplied to the water dripping device 200. It may further include a sensor 230.
냉각시스템(10)의 제어유닛(미도시)은 연료전지 작동 중에 물 낙수 장치(200)에 공급된 응축수의 수위가 미리 설정된 기준수위에 도달하지 못하면, 응축수 공급이 필요한 조건인 것으로 판단하여 응축수 펌프(430)를 작동시킴으로써 응축수 공급량을 제어한다. If the level of condensate supplied to the water dripping device 200 does not reach the preset standard level during fuel cell operation, the control unit (not shown) of the cooling system 10 determines that condensate supply is a necessary condition and pumps condensate water. The condensate supply amount is controlled by operating (430).
또한, 연료전지 건설기계의 냉각시스템(10)은 물 낙수 장치(200)에 공급되는 응축수의 양을 조절하기 위해 연료전지 스택(20)으로 유입되는 냉각수의 온도를 검출하는 온도 센서(500)를 더 포함할 수 있다. In addition, the cooling system 10 of the fuel cell construction machine includes a temperature sensor 500 that detects the temperature of the coolant flowing into the fuel cell stack 20 to control the amount of condensate supplied to the water dripping device 200. More may be included.
냉각시스템(10)의 제어유닛(미도시)은 연료전지 작동 중에 연료전지 스택(20)으로 유입되는 냉각수 온도가 상승하여 미리 설정된 기준온도에 도달하면, 응축수 공급이 필요한 조건인 것으로 판단하여 응축수 펌프(430)를 작동시킴으로써 응축수 공급량을 제어한다.When the temperature of the coolant flowing into the fuel cell stack 20 increases during fuel cell operation and reaches a preset reference temperature, the control unit (not shown) of the cooling system 10 determines that condensate supply is necessary and pumps condensate water. The condensate supply amount is controlled by operating (430).
이처럼, 물 낙수 장치(200)로 공급되는 응축수의 양은 상황에 따라 적절하게 조절될 수 있다.In this way, the amount of condensed water supplied to the water dripping device 200 can be appropriately adjusted depending on the situation.
도 5의 (a) 및 (b)는 각각 본 개시 내용의 일 측면에 의한 낙수 유입망의 정면도 및 라디에이터의 정면도이고, 도 6은 본 개시 내용의 일 측면에 의한 연료전지 건설기계의 냉각시스템의 평면도이다.Figures 5 (a) and (b) are a front view of a dripping water inflow network and a front view of a radiator, respectively, according to an aspect of the present disclosure, and Figure 6 is a cooling system of a fuel cell construction machine according to an aspect of the present disclosure. This is the floor plan.
도 1내지 도 6에 참조된 바와 같이, 본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템(10)은 낙수되는 물의 라디에이터(100)로의 유입이 원활하게 이루어지도록 하기 위한 낙수 유입망(300)을 더 포함할 수 있다.1 to 6, the cooling system 10 of a fuel cell construction machine according to an aspect of the present disclosure includes a dripping water inflow network 300 to ensure that dripping water flows smoothly into the radiator 100. ) may further be included.
낙수 유입망(300)은 낙엽 등 외부 이물질이 라디에이터(100)의 내부로 침투하는 것을 방지하는 기능도 수행할 수 있다.The falling water inflow network 300 may also perform the function of preventing external foreign substances such as fallen leaves from penetrating into the interior of the radiator 100.
낙수 유입망(300)은 라디에이터(100)의 전면을 적어도 부분적으로 커버하도록 설치되며, 하나 이상의 낙수 와이어를 포함하여 구성된다. 바람직하게는, 낙수 유입망(300)은 라디에이터(100)의 튜브(130)와 접촉하거나 적어도 라디에이터(100)의 튜브(130)에 근접하여 배치된다. The dripping water inlet network 300 is installed to at least partially cover the front of the radiator 100 and includes one or more dripping wires. Preferably, the dripping water inflow network 300 is in contact with the tube 130 of the radiator 100 or is at least disposed close to the tube 130 of the radiator 100.
일 예의 의하면, 낙수 유입망(300)은 라디에이터(100) 전면을 전부 커버할 수 있는 면적으로 형성될 수 있다. 즉, 낙수 유입망(300)은 물 낙수 장치(200)로부터 낙수되는 물이 낙수 와이어를 따라 라디에이터(100)의 전면 전체를 커버하면서 하부까지 균일하게 이동할 수 있도록 한다. 낙수 와이어 및 라디에이터(100)의 튜브(130)를 향해 낙수되는 물은 라디에이터 내부로 유입되는 냉각공기에 의해 낙수 와이어의 표면, 라디에이터 튜브(130)의 표면 및 라디에이터 핀의 표면으로 이송될 수 있다. According to one example, the falling water inflow network 300 may be formed to have an area that can cover the entire front of the radiator 100. That is, the dripping water inlet network 300 allows the water falling from the water dripping device 200 to cover the entire front of the radiator 100 along the dripping wire and move uniformly to the bottom. The water falling toward the falling wire and tube 130 of the radiator 100 may be transferred to the surface of the falling wire, the surface of the radiator tube 130, and the surface of the radiator fin by the cooling air flowing into the radiator.
이처럼, 라디에이터 튜브(130)의 표면 및 라디에이터 핀의 표면에서의 물의 표면 증발은 냉각공기를 사용하는 라디에이터의 냉각 성능을 더욱 향상시킨다. In this way, surface evaporation of water on the surface of the radiator tube 130 and the surface of the radiator fin further improves the cooling performance of the radiator using cooling air.
한편, 도 5 및 도 6에 참조된 바와 같이, 낙수 와이어는 하나 이상의 수직 와이어(310), 및 상기 하나 이상의 수직 와이어(310) 사이를 연결하는 하나 이상의 경사 와이어(320)를 포함할 수 있다.Meanwhile, as referred to in FIGS. 5 and 6 , the falling water wire may include one or more vertical wires 310 and one or more inclined wires 320 connecting between the one or more vertical wires 310 .
이때, 일 예의 의하면, 하나 이상의 수직 와이어(310)는 물 낙수 장치(200)의 하나 이상의 낙수홀(220)의 하측에 각각 위치하도록 구성된다. 또한, 하나 이상의 수직 와이어(310)는 하나 이상의 라디에이터 튜브(130)에 각각 접촉하거나 거의 근접하여 위치하도록 구성된다. At this time, according to one example, one or more vertical wires 310 are configured to be positioned below one or more dripping holes 220 of the water dripping device 200. In addition, one or more vertical wires 310 are configured to contact or be located in close proximity to one or more radiator tubes 130, respectively.
물 낙수 장치(200)에 저장된 물은 낙수홀(220)을 통해 낙수 와이어의 수직 와이어(310) 또는 라디에이터의 튜브(130)로 낙수될 수 있으며, 수직 와이어(310)로 낙수되는 물은 지그재그 구조로 배치된 하나 이상의 경사 와이어(320)를 따라 라디에이터의 전면을 전체적으로 커버하도록 이동하게 된다. The water stored in the water dripping device 200 may fall onto the vertical wire 310 of the dripping wire or the tube 130 of the radiator through the dripping hole 220, and the water falling on the vertical wire 310 has a zigzag structure. It moves to cover the entire front of the radiator along one or more inclined wires 320 arranged.
도 6에 참조된 바와 같이, 물 낙수 장치(200)에 형성된 낙수홀(220)의 직경은 라디에이터(100)의 튜브(130) 표면을 따라 낙수가 원활하게 이루어지도록 낙수 와이어의 직경 보다는 크되, 튜브(130)의 폭 보다는 작도록 구성될 수 있다. 바람직하게는, 낙수홀(220)의 직경은 튜브(130) 폭의 1/2 이하로 구성될 수 있다.As shown in FIG. 6, the diameter of the water drop hole 220 formed in the water drop device 200 is larger than the diameter of the water drop wire so that water flows smoothly along the surface of the tube 130 of the radiator 100. It may be configured to be smaller than the width of (130). Preferably, the diameter of the dripping hole 220 may be less than 1/2 of the width of the tube 130.
낙수 유입망(300)의 양측 테두리(330)에는 결합홀(331)이 형성될 수 있으며, 낙수 유입망(300)은 상기 결합홀(331)과 라디에이터(100)의 양측 테두리(140)에 형성된 결합홀(141)을 통해 볼트 결합될 수 있다. 다만, 이에 한정되는 것은 아니며, 낙수 유입망(300)과 라디에이터(100)의 결합을 가능하게 하는 다양한 결합 방식이 적용될 수 있음은 물론이다. Coupling holes 331 may be formed on both edges 330 of the falling water inlet network 300, and the falling water inlet network 300 may be formed on the coupling holes 331 and both edges 140 of the radiator 100. It can be bolted through the coupling hole 141. However, it is not limited to this, and of course, various coupling methods that enable the combination of the dripping water inlet network 300 and the radiator 100 can be applied.
도 7은 본 개시 내용의 제2 측면에 의한 연료전지 건설기계의 냉각시스템의 사시도이다.Figure 7 is a perspective view of a cooling system for a fuel cell construction machine according to a second aspect of the present disclosure.
도 7에 참조된 바와 같이, 낙수 유입망(300)은 대기 온도에 따른 냉각 상황에 따라 라디에이터(100)의 일부 면적만 커버하도록 구성될 수 있다. 바람직하게는, 낙수 유입망(300)은 라디에이터(100)의 전면 전체 면적의 상부 1/2 면적만 커버하도록 구성될 수 있다. 보다 바람직하게는, 낙수 유입망(300)은 상측 1/2 면적을 커버하는 낙수 유입망과 하측 1/2 면적을 커버하는 낙수 유입망이 서로 탈착 가능한 구조로 이루어져 상황에 따라 커버 면적을 조절할 수 있도록 구성될 수 있다.As referenced in FIG. 7 , the falling water inlet network 300 may be configured to cover only a portion of the area of the radiator 100 depending on the cooling situation according to the ambient temperature. Preferably, the dripping water inlet network 300 may be configured to cover only the upper half of the total front area of the radiator 100. More preferably, the dripping water inflow network 300 has a structure in which the dripping water inflow network covering the upper 1/2 area and the dripping water inflow network covering the lower 1/2 area are detachable from each other, so that the cover area can be adjusted depending on the situation. It can be configured so that
라디에이터(100)의 상부 1/2 면적만 커버하도록 낙수 유입망(300)을 구성하는 경우에도, 고온의 냉각수가 유입 및 하강하는 라디에이터(100)의 상부 영역에서 증발 냉각 효과를 기본적으로 보장할 수 있으며, 낙수는 라디에이터(100)의 튜브(130)나 핀을 따라 계속 진행되어 라디에이터(100)의 전체 면적을 커버하는 낙수 유입망(300)의 효과를 유지할 수 있을 것이다.Even when the falling water inlet network 300 is configured to cover only the upper half of the radiator 100, the evaporative cooling effect can be basically guaranteed in the upper area of the radiator 100 where high-temperature coolant flows in and out. In addition, the falling water continues along the tube 130 or fins of the radiator 100, thereby maintaining the effect of the falling water inflow network 300 that covers the entire area of the radiator 100.
이처럼, 본 개시 내용의 측면에 따른 연료전지 건설기계의 냉각시스템(10)은 라디에이터(100)의 효율 증가로 라디에이터(100)의 크기를 줄일 수 있어 원가 절감이 가능할 수 있다. 또한, 라디에이터(100)의 크기를 동일하게 유지한다면 라디에이터(100)의 효율 증가로 팬의 개수나 사이즈를 줄일 수 있다. 나아가, 라디에이터(100)와 팬을 그대로 유지한다면 라디에이터(100)의 효율 증가로 팬의 rpm 및 동력을 최소화할 수 있다. 이는 연료전지의 연료인 수소사용을 절감시키는 효과도 기대할 수 있다.In this way, the cooling system 10 of a fuel cell construction machine according to aspects of the present disclosure can reduce the size of the radiator 100 by increasing the efficiency of the radiator 100, thereby reducing costs. Additionally, if the size of the radiator 100 is kept the same, the number or size of fans can be reduced by increasing the efficiency of the radiator 100. Furthermore, if the radiator 100 and the fan are maintained as is, the rpm and power of the fan can be minimized by increasing the efficiency of the radiator 100. This can also be expected to have the effect of reducing the use of hydrogen, the fuel for fuel cells.
전술한 본 개시 내용의 설명은 예시를 위한 것이며, 본 개시 내용이 속하는 기술분야의 통상의 지식을 가진 자는 본 개시 내용의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 측면들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present disclosure described above is for illustrative purposes, and those skilled in the art will recognize that the present disclosure can be easily transformed into another specific form without changing the technical idea or essential features of the present disclosure. You will understand. Therefore, the aspects described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.
본 개시 내용의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 개시 내용의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present disclosure is indicated by the claims described below, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present disclosure.
부호의 설명Description of the sign
10 연료전지 건설기계의 냉각시스템10 Cooling system for fuel cell construction machinery
20 연료전지 스택20 Fuel cell stack
21 공기공급라인21 Air supply line
22 공기배출라인22 Air discharge line
23 냉각수 펌프23 Coolant pump
24 3-웨이 밸브24 3-way valve
25 히터25 heater
100 라디에이터100 radiator
110 상부 탱크110 upper tank
120 하부 탱크120 lower tank
130 튜브130 tube
140 테두리부140 border
141 결합홀141 coupling hole
200 물 낙수 장치200 water dripping device
210 바닥면210 bottom surface
220 낙수홀220 Naksu Hall
230 레벨 센서230 level sensor
300 낙수 유입망300 dripping water inlet network
310 수직 와이어310 vertical wire
320 경사 와이어320 inclined wire
330 테두리부330 border
331 결합홀331 coupling hole
400 응축수 저장탱크400 Condensate storage tank
410 응축수 드레인라인410 Condensate drain line
420 응축수 공급라인420 Condensate supply line
430 응축수 펌프430 condensate pump
500 온도 센서500 temperature sensor

Claims (12)

  1. 연료전지 스택용 냉각수의 열을 방출하기 위한 라디에이터; 및A radiator to dissipate heat from the coolant for the fuel cell stack; and
    상기 라디에이터의 상부 전면에 설치되어 상기 라디에이터로 물을 낙수시키는 물 낙수 장치를 포함하는, 연료전지 건설기계의 냉각시스템.A cooling system for a fuel cell construction machine, including a water dripping device installed on the upper front of the radiator to drip water into the radiator.
  2. 제1항에 있어서,According to paragraph 1,
    상기 물 낙수 장치에서 상기 라디에이터로 낙수되는 물은 상기 연료전지 스택에서 생성되는 응축수인 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, characterized in that the water falling from the water dripping device to the radiator is condensation water generated in the fuel cell stack.
  3. 제2항에 있어서,According to paragraph 2,
    상기 연료전지 스택에서 생성되는 응축수가 저장되는 응축수 저장탱크;A condensate storage tank that stores condensate generated from the fuel cell stack;
    상기 응축수를 펌핑하여 순환시키기 위한 응축수 펌프; 및A condensate pump for pumping and circulating the condensate; and
    상기 응축수 펌프를 통하여 상기 응축수를 상기 물 낙수 장치에 공급하도록 상기 응축수 저장탱크에서 상기 물 낙수 장치까지 연결되는 응축수 공급라인을 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.The cooling system for fuel cell construction equipment further comprises a condensate water supply line connected from the condensate storage tank to the water dripping device to supply the condensate to the water dripping device through the condensate pump.
  4. 제1항에 있어서,According to paragraph 1,
    상기 물 낙수 장치는,The water dripping device,
    상기 라디에이터를 향해 하향 경사지게 형성되는 바닥면; 및a bottom surface inclined downward toward the radiator; and
    상기 바닥면의 최하단에 간격을 두고 일렬로 배치되는 하나 이상의 낙수홀을 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, comprising one or more dripping holes arranged in a row at intervals at the bottom of the floor.
  5. 제4항에 있어서,According to paragraph 4,
    상기 하나 이상의 낙수홀은 상기 라디에이터의 하나 이상의 튜브의 상측에 각각 위치하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, characterized in that the one or more dripping holes are respectively located on the upper side of one or more tubes of the radiator.
  6. 제4항에 있어서,According to paragraph 4,
    상기 라디에이터의 전면을 적어도 부분적으로 커버하도록 설치되며, 하나 이상의 낙수 와이어를 포함하는 낙수 유입망을 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템. The cooling system for fuel cell construction equipment is installed to at least partially cover the front of the radiator, and further includes a dripping water inflow network including one or more dripping wires.
  7. 제6항에 있어서,According to clause 6,
    상기 낙수 유입망은 상기 라디에이터의 튜브와 접촉하거나 상기 라디에이터의 튜브에 근접하여 배치되는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.The cooling system for fuel cell construction equipment, characterized in that the dripping water inflow network is in contact with the tube of the radiator or disposed close to the tube of the radiator.
  8. 제6항에 있어서,According to clause 6,
    상기 낙수 와이어는, The dripping wire is,
    하나 이상의 수직 와이어; 및 one or more vertical wires; and
    상기 하나 이상의 수직 와이어 사이를 연결하는 하나 이상의 경사 와이어를 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, comprising one or more inclined wires connecting the one or more vertical wires.
  9. 제8항에 있어서,According to clause 8,
    상기 하나 이상의 수직 와이어는 상기 하나 이상의 낙수홀의 하측에 각각 위치하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.The cooling system for fuel cell construction equipment, wherein the one or more vertical wires are respectively located below the one or more falling water holes.
  10. 제3항에 있어서,According to paragraph 3,
    상기 응축수 공급라인의 배출구는 상기 물 낙수 장치의 상측 중앙부에 위치하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, characterized in that the outlet of the condensate water supply line is located in the upper central part of the water dripping device.
  11. 제3항에 있어서,According to paragraph 3,
    상기 물 낙수 장치에 공급되는 응축수의 양을 조절하기 위해 상기 물 낙수 장치에 저장된 응축수의 수위를 검출하는 레벨 센서를 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, further comprising a level sensor that detects the level of condensate stored in the water dripping device to control the amount of condensate supplied to the water dripping device.
  12. 제3항에 있어서,According to paragraph 3,
    상기 물 낙수 장치에 공급되는 응축수의 양을 조절하기 위해 상기 연료전지 스택으로 유입되는 냉각수의 온도를 검출하는 온도 센서를 더 포함하는 것을 특징으로 하는, 연료전지 건설기계의 냉각시스템.A cooling system for fuel cell construction equipment, further comprising a temperature sensor that detects the temperature of coolant flowing into the fuel cell stack to control the amount of condensate supplied to the water dripping device.
PCT/KR2022/015558 2022-10-14 2022-10-14 Cooling system of fuel cell construction equipment WO2024080413A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/015558 WO2024080413A1 (en) 2022-10-14 2022-10-14 Cooling system of fuel cell construction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/015558 WO2024080413A1 (en) 2022-10-14 2022-10-14 Cooling system of fuel cell construction equipment

Publications (1)

Publication Number Publication Date
WO2024080413A1 true WO2024080413A1 (en) 2024-04-18

Family

ID=90669721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015558 WO2024080413A1 (en) 2022-10-14 2022-10-14 Cooling system of fuel cell construction equipment

Country Status (1)

Country Link
WO (1) WO2024080413A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134241A (en) * 2005-11-11 2007-05-31 Nissan Motor Co Ltd Fuel cell cooling system
KR20090091388A (en) * 2008-02-25 2009-08-28 현대자동차주식회사 Evaporative cooling type fuel cell system and stack cooling method for the same
KR20150090390A (en) * 2014-01-29 2015-08-06 현대자동차주식회사 Temperature management system of fuel cell vehicle
KR20160026212A (en) * 2014-08-29 2016-03-09 한온시스템 주식회사 Cooling system and method for fuel cell vehicle
KR20210130542A (en) * 2020-04-22 2021-11-01 주식회사 스탠더드시험연구소 Thermal control unit of multi-channel liquid drop cooling for electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134241A (en) * 2005-11-11 2007-05-31 Nissan Motor Co Ltd Fuel cell cooling system
KR20090091388A (en) * 2008-02-25 2009-08-28 현대자동차주식회사 Evaporative cooling type fuel cell system and stack cooling method for the same
KR20150090390A (en) * 2014-01-29 2015-08-06 현대자동차주식회사 Temperature management system of fuel cell vehicle
KR20160026212A (en) * 2014-08-29 2016-03-09 한온시스템 주식회사 Cooling system and method for fuel cell vehicle
KR20210130542A (en) * 2020-04-22 2021-11-01 주식회사 스탠더드시험연구소 Thermal control unit of multi-channel liquid drop cooling for electronic devices

Similar Documents

Publication Publication Date Title
WO2012148160A2 (en) Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
WO2012148111A2 (en) Apparatus and method for evaporation cooling a cooling fluid
WO2015163561A1 (en) Method for manufacturing server room cooling apparatus and air conditioning system for data center provided with same
WO2015102247A1 (en) Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
WO2024106748A1 (en) High-efficiency integrated absorption cooling system using fuel cell arrangement
WO2020246792A1 (en) Heat management system
WO2020139004A1 (en) Cooling tower for reducing white smoke
CN114421054B (en) Liquid cooling energy storage device
WO2022085879A1 (en) Heat exchanger for exhaust heat recovery in integrated ghp
CN110571453A (en) Cooling device of air-cooled fuel cell stack
WO2010053278A2 (en) Vertical and horizontal integrated heat exchange units equipped with a waste heat recovery system
WO2024080413A1 (en) Cooling system of fuel cell construction equipment
CN107768767A (en) The water cooling system and its application method of a kind of battery system
WO2022265140A1 (en) Localized data center cooling system provided with free cooling chiller
CN217881677U (en) Energy storage battery and thermal management system thereof
WO2010134719A2 (en) Vehicle air-conditioning apparatus comprising a thermoelectric module
CN216793846U (en) Battery cabinet
CN219506251U (en) Unmanned aerial vehicle basic station and unmanned aerial vehicle system
CN114583293B (en) Liquid cooling energy storage device
CN216488242U (en) Battery pack heat dissipation mechanism for wind power generation
CN108550959A (en) New energy welding battery pack liquid constant temperature system
KR101773288B1 (en) Energy managent system for controlling heat transfer
CN210443624U (en) Cooling device of air-cooled fuel cell stack
CN209845615U (en) Temperature control device and system
CN113991209A (en) Temperature control system and temperature control method for power battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962163

Country of ref document: EP

Kind code of ref document: A1