WO2024080349A1 - Anisotropic conductive sheet, electrical inspection device, and electrical inspection method - Google Patents

Anisotropic conductive sheet, electrical inspection device, and electrical inspection method Download PDF

Info

Publication number
WO2024080349A1
WO2024080349A1 PCT/JP2023/037132 JP2023037132W WO2024080349A1 WO 2024080349 A1 WO2024080349 A1 WO 2024080349A1 JP 2023037132 W JP2023037132 W JP 2023037132W WO 2024080349 A1 WO2024080349 A1 WO 2024080349A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
elastic modulus
anisotropic conductive
high elastic
conductive sheet
Prior art date
Application number
PCT/JP2023/037132
Other languages
French (fr)
Japanese (ja)
Inventor
克典 西浦
博之 山田
大典 山田
真雄 堀
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024080349A1 publication Critical patent/WO2024080349A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to an anisotropic conductive sheet, an electrical inspection device, and an electrical inspection method.
  • Electrodes such as printed wiring boards mounted on electronic products are usually subjected to electrical testing. Electrical testing is usually performed by electrically contacting a board having electrodes of an electrical testing device with the terminals of the object to be tested, such as a semiconductor device, and reading the current when a specified voltage is applied between the terminals of the object to be tested. In order to ensure electrical contact between the electrodes of the board of the electrical testing device and the terminals of the object to be tested, an anisotropic conductive sheet is placed between the board of the electrical testing device and the object to be tested.
  • Anisotropic conductive sheets are sheets that are conductive in the thickness direction and insulating in the surface direction, and are used as probes (contacts) in electrical testing. Such anisotropic conductive sheets are used by applying a pressing load to ensure a reliable electrical connection between the board of the electrical testing device and the object being tested.
  • FIGs 1A and 1B are schematic diagrams of the anisotropic conductive sheet of Patent Document 1.
  • Patent Document 1 discloses an anisotropic conductive sheet 10 having an insulating layer 11 with a plurality of through holes 12 and a plurality of conductive layers 13 arranged corresponding to each of the plurality of through holes 12 (see Figures 1A and 1B).
  • the insulating layer 11 has an elastomer layer 11A and two heat-resistant resin layers 11B and 11C laminated on both sides of the elastomer layer 11A (see Figures 1A and 1B).
  • anisotropic conductive sheet When conducting electrical testing, the anisotropic conductive sheet is cut to a specified size and placed on the board of an electrical testing device.
  • anisotropic conductive sheets containing multiple layers with significantly different elastic moduli, such as those described above, can sometimes undergo dimensional changes immediately after being cut.
  • the anisotropic conductive sheet has a structure in which multiple layers with significantly different elastic moduli are laminated together.
  • residual stress is likely to occur inside the anisotropic conductive sheet due to the difference in linear thermal expansion coefficients.
  • the internal residual stress is released during cutting, making it prone to dimensional changes. If the dimensional change is large, the distance between the multiple conductive layers will fluctuate, causing poor contact during electrical testing.
  • the present invention was made in consideration of the above problems, and aims to provide an anisotropic conductive sheet, an electrical inspection device, and an electrical inspection method that can reduce dimensional changes, for example, when cut out.
  • An anisotropic conductive sheet including an insulating layer having a first surface on one side in a thickness direction, a second surface on the other side, and a plurality of through holes penetrating from the first surface to the second surface, and a plurality of conductive portions arranged on inner wall surfaces of each of the plurality of through holes, wherein the insulating layer has a first elastomer layer, a second elastomer layer, an intermediate high elastic modulus layer arranged between the first elastomer layer and the second elastomer layer, and at least one first surface high elastic modulus layer arranged on a surface of the first elastomer layer opposite to the intermediate high elastic modulus layer and constituting the first surface, wherein the storage modulus at 25°C of the at least one first surface high elastic modulus layer and the intermediate high elastic modulus layer is higher than the storage modulus at 25°C of the first elastomer layer and the second elastomer layer.
  • the intermediate high elastic modulus layer contains a resin composition having a glass transition temperature of 150° C. or higher.
  • An electrical inspection device comprising: a testing board having a plurality of electrodes; and an anisotropic conductive sheet according to any one of [1] to [11], which is placed on a surface of the testing board on which the plurality of electrodes are arranged.
  • An electrical inspection method comprising the steps of: laminating a testing board having a plurality of electrodes and an object to be inspected having terminals via the anisotropic conductive sheet described in any one of [1] to [11]; and electrically connecting the electrodes of the testing board and the terminals of the object to be inspected via the anisotropic conductive sheet.
  • the present invention provides an anisotropic conductive sheet, an electrical inspection device, and an electrical inspection method that can reduce dimensional changes, for example, when cut out.
  • FIG. 1A and 1B are schematic diagrams of the anisotropic conductive sheet of Patent Document 1.
  • FIG. 2A is a schematic partially enlarged plan view of the anisotropic conductive sheet according to the present embodiment
  • FIG. 2B is a schematic partially enlarged cross-sectional view taken along line 2B-2B in FIG. 2A.
  • 3A and 3B are schematic enlarged plan views showing modified examples of the first conductive layer.
  • 4A to 4F are schematic enlarged partial cross-sectional views showing a method for producing an anisotropic conductive sheet according to the present embodiment.
  • 5A to 5H are schematic enlarged partial cross-sectional views showing a method for producing an anisotropic conductive sheet according to the present embodiment.
  • FIG. 6A and 6B are schematic enlarged partial cross-sectional views showing a method for producing an anisotropic conductive sheet according to the present embodiment.
  • FIG. 7A is a schematic plan view of an anisotropic conductive sheet cut out in this embodiment and fixed to a frame
  • FIG. 7B is a schematic cross-sectional view of the framed anisotropic conductive sheet of FIG. 7A taken along line 7B-7B.
  • FIG. 8 is a schematic cross-sectional view of an electrical inspection device according to this embodiment.
  • FIG. 9 is a graph showing offset values of dimensions of the sheets after cutting out in Example 1 and Comparative Example 1.
  • FIG. 2A is a schematic partially enlarged plan view of an anisotropic conductive sheet 100
  • Fig. 2B is a schematic partially enlarged cross-sectional view of the anisotropic conductive sheet 100 taken along line 2B-2B in Fig. 2A
  • Figs. 3A and 3B are schematic enlarged plan views showing modified examples of the first conductive layer 122A.
  • the anisotropic conductive sheet 100 has an insulating layer 110, a plurality of conductive layers 120, and a plurality of conductive fillers 130.
  • the anisotropic conductive sheet 100 may have one or more regions (electrode regions) in which a plurality of conductive layers 120 and a plurality of conductive fillers 130 are formed in the insulating layer 110.
  • the area surrounding the above region may be a first exposed portion 140a in which the insulating layer 110 is exposed due to the absence of a conductive layer or the like (see FIG. 2A).
  • Insulating layer 110 The insulating layer 110 includes a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, and at least one first surface high elastic modulus layer 113A.
  • the insulating layer 110 includes a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, at least one first surface high elastic modulus layer 113A, at least one second surface high elastic modulus layer 113B, and four primer layers 114.
  • the insulating layer 110 has a first surface 110a on one side in the thickness direction, a second surface 110b on the other side, and a plurality of through holes 115 that penetrate from the first surface 110a to the second surface 110b (see FIG. 2B).
  • the first elastomer layer 111A is a low elastic modulus layer that is easily elastically deformed when pressure is applied in the thickness direction.
  • the first elastomer layer 111A is not particularly limited, but examples thereof include a cross-linked product of a rubber composition including silicone rubber, urethane rubber (urethane polymer), acrylic rubber (acrylic polymer), ethylene-propylene-diene copolymer (EPDM), chloroprene rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polybutadiene rubber, natural rubber, fluorine-based rubber, etc., or a thermoplastic elastomer composition including a polyester-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, etc.
  • a cross-linked product of a rubber composition is preferred, and a cross-linked product of a silicone rubber composition is more preferred.
  • the silicone rubber may be any of addition type, condensation type, and radical type.
  • the rubber composition may further contain a crosslinking agent as necessary.
  • the crosslinking agent may be appropriately selected depending on the type of rubber.
  • examples of crosslinking agents for silicone rubber include addition reaction catalysts such as metals, metal compounds, and metal complexes (platinum, platinum compounds, and complexes thereof) that have catalytic activity for hydrosilylation reactions; and organic peroxides such as benzoyl peroxide, bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide, and di-t-butyl peroxide.
  • crosslinking agents for acrylic rubber include epoxy compounds, melamine compounds, and isocyanate compounds.
  • examples of crosslinked rubber compositions containing silicone rubber include an addition crosslinked product of a composition containing an organopolysiloxane having a hydrosilyl group (SiH group), an organopolysiloxane having a vinyl group, and an addition reaction catalyst; an addition crosslinked product of a composition containing an organopolysiloxane having a vinyl group and an addition reaction catalyst; and a crosslinked product of a composition containing an organopolysiloxane having a SiCH3 group and an organic peroxide curing agent.
  • SiH group hydrosilyl group
  • an organopolysiloxane having a vinyl group and an addition reaction catalyst
  • an addition crosslinked product of a composition containing an organopolysiloxane having a vinyl group and an addition reaction catalyst and a crosslinked product of a composition containing an organopolysiloxane having a SiCH3 group and an organic peroxide curing agent.
  • the rubber composition may further contain other components such as a silane coupling agent and a filler as necessary.
  • the storage modulus of first elastomer layer 111A at 25° C. is lower than the storage modulus of intermediate high elastic modulus layer 112 and first outer high elastic modulus layer 113A at 25° C.
  • the storage modulus of the cross-linked product of the rubber composition constituting first elastomer layer 111A at 25° C. is preferably 1.0 ⁇ 10 7 Pa or less, and more preferably 1.0 ⁇ 10 5 to 9.0 ⁇ 10 6 Pa.
  • the storage modulus of the cross-linked product of the rubber composition can be measured in accordance with JIS K 7244-1:1998/ISO6721-1:1994.
  • the glass transition temperature of the cross-linked product of the rubber composition is not particularly limited, but from the viewpoint of preventing damage to the terminals of the test object, it is preferably -30°C or lower, and more preferably -40°C or lower.
  • the glass transition temperature can be measured in accordance with JIS K 7095:2012.
  • the storage modulus and glass transition temperature of the crosslinked product of the above rubber composition can be adjusted by adjusting the composition of each composition.
  • the first elastomer layer 111A may be composed of one layer (see FIG. 2B), or may be composed of multiple layers with different compositions or physical properties.
  • the storage modulus and glass transition temperature of the first elastomer layer 111A refer to the storage modulus and glass transition temperature of the thickest layer among the multiple layers.
  • the second elastomer layer 111B has the same or similar structure as the first elastomer layer 111A, and detailed description thereof will be omitted. That is, the shape, structure, material, and physical properties of the second elastomer layer 111B may be the same or similar to the shape, structure, material, and physical properties of the first elastomer layer 111A.
  • the composition of the first elastomer layer 111A and the composition of the second elastomer layer 111B may be different. Furthermore, the thickness of the first elastomer layer 111A and the thickness of the second elastomer layer 111B may be different. From the viewpoint of suppressing warping of the anisotropic conductive sheet 100, it is preferable that they are equal, and the ratio of the thickness of the second elastomer layer 111B to the thickness of the first elastomer layer 111A may be, for example, 0.8 to 1.2.
  • the intermediate high elastic modulus layer 112 is a high elastic modulus layer disposed between the first elastomer layer 111A and the second elastomer layer 111B.
  • the storage modulus of the intermediate high elastic modulus layer 112 at 25° C. is higher than the storage modulus of the first elastomer layer 111A and the second elastomer layer 111B at 25° C.
  • the intermediate high elastic modulus layer 112 is one continuous high elastic modulus layer, so that when the sheet is cut out, the residual stress inside the sheet is not excessively released. This can reduce dimensional changes.
  • the storage modulus at 25° C. of the resin composition constituting the intermediate high elastic modulus layer 112 only needs to be higher than the storage modulus at 25° C. of the cross-linked product of the rubber composition constituting the first elastomer layer 111A and the second elastomer layer 111B, and is, for example, preferably 1.0 ⁇ 10 8 to 1.0 ⁇ 10 10 Pa, and more preferably 1.0 ⁇ 10 8 to 8.0 ⁇ 10 9 Pa.
  • the ratio (G2/G1) of the storage modulus at 25° C. G2 of the resin composition constituting the intermediate high elastic modulus layer 112 to the storage modulus at 25° C. G1 of the cross-linked product of the rubber composition constituting the first elastomer layer 111A or the second elastomer layer 111B may be, for example, 100 to 100,000.
  • the linear expansion coefficient of the resin composition is preferably lower than the linear expansion coefficient of the cross-linked product of the rubber composition.
  • the linear expansion coefficient of the resin composition is preferably 60 ppm/K or less, and more preferably 50 ppm/K or less.
  • the glass transition temperature of the resin composition is preferably higher than the glass transition temperature of the cross-linked product of the rubber composition. Specifically, since the electrical testing is performed at approximately -40 to 150°C, the glass transition temperature of the resin composition is preferably 150°C or higher, and more preferably 150 to 500°C. The glass transition temperature can be measured by the same method as described above.
  • the composition of the resin composition is not particularly limited as long as it has at least a storage modulus that satisfies the above range.
  • the resin contained in the resin composition is preferably a heat-resistant resin whose glass transition temperature satisfies the above range, and examples thereof include engineering plastics such as polyamide, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, and polyetherimide, as well as acrylic resins, urethane resins, epoxy resins, and olefin resins.
  • the resin composition may further contain other components such as a filler as necessary.
  • the resin composition may be in the form of a film.
  • the storage modulus, glass transition temperature, and linear expansion coefficient at 25°C of the resin composition constituting the intermediate high elasticity layer 112 may be the same as or different from the storage modulus at 25°C of the resin composition constituting the first surface high elasticity layer 113A.
  • the storage modulus of the resin composition constituting the intermediate high elasticity layer 112 may be higher or lower than the storage modulus of the resin composition constituting the first surface high elasticity layer 113A.
  • the composition of the resin composition constituting the intermediate high elasticity layer 112 may be the same as or different from the composition of the resin composition constituting the first surface high elasticity layer 113A.
  • the thickness of the intermediate high elasticity layer 112 may be the same as or different from the thickness of the first surface high elasticity layer 113A.
  • the thickness of the intermediate high elasticity layer 112 may be thicker than the thickness of the first surface high elasticity layer 113A (see FIG. 2B), or may be thinner.
  • the ratio (T2/T1) of the thickness (T2) of the intermediate high elasticity layer 112 to the thickness (T1) of the first elastomer layer 111A is preferably, for example, 0.01 to 0.15, and more preferably 0.05 to 0.1.
  • the ratio (T2/T) of the thickness (T2) of the intermediate high elastic modulus layer 112 to the thickness (T) of the insulating layer 110 may be 0.005 to 0.1, preferably 0.008 to 0.08.
  • the thickness of the intermediate high elastic modulus layer 112 may be, for example, 5 to 20 ⁇ m.
  • At least one first surface high elastic modulus layer 113A is disposed on the surface of the first elastomer layer 111A opposite to the intermediate high elastic modulus layer 112.
  • the at least one first surface high elastic modulus layer 113A is a plurality of first surface high elastic modulus layers 113A.
  • the plurality of first surface high elastic modulus layers 113A are disposed spaced apart from each other on the first elastomer layer 111A.
  • the first surface high elastic modulus layer 113A constitutes the first surface 110a of the insulating layer 110.
  • the storage modulus of the first surface high elasticity layer 113A at 25°C is higher than the storage modulus of the first elastomer layer 111A and the second elastomer layer 111B at 25°C. Therefore, even when heated during electrical testing, it is possible to suppress thermal fluctuations in the center-to-center distance between the multiple first conductive layers 122A.
  • the multiple first surface high elasticity layers 113A are completely separated by the first groove portion 116a (see FIG. 2B), but the first surface high elasticity layers 113A do not have to be completely separated and may be one continuous layer.
  • the storage modulus, glass transition temperature, and linear expansion coefficient at 25°C of the first surface high elasticity layer 113A may be the same as or similar to the storage modulus, glass transition temperature, and linear expansion coefficient at 25°C of the intermediate high elasticity layer 112.
  • the resin composition constituting the first surface high elasticity layer 113A may be the same as or similar to the resin composition constituting the intermediate high elasticity layer 112.
  • the thickness of the first high elastic modulus surface layer 113A is not particularly limited, but from the viewpoint of making it easier to ensure the elastic deformation of the insulating layer 110, it is preferable that the thickness is thinner than the thickness of the first elastomer layer 111A (see FIG. 2B).
  • the ratio (T3/T1) of the thickness (T3) of the first high elastic modulus surface layer 113A to the thickness (T1) of the first elastomer layer 111A is preferably, for example, 0.01 to 0.2, and more preferably 0.02 to 0.15.
  • the insulating layer 110 can be given an appropriate stiffness without impairing the elastic deformation of the insulating layer 110. This not only improves the handling properties, but also suppresses the fluctuation of the center-to-center distance of the multiple through holes 115 due to heat.
  • At least one second high elastic modulus layer 113B is disposed on the surface of the second elastomer layer 111B opposite to the intermediate high elastic modulus layer 112.
  • at least one second high elastic modulus layer 113B is a plurality of second high elastic modulus layers 113B, and the plurality of second high elastic modulus layers 113B are disposed on the second elastomer layer 111B at a distance from each other.
  • the second high elastic modulus layer 113B constitutes the second surface 110b of the insulating layer 110.
  • the second high elastic modulus layer 113B has the same or similar configuration as the first high elastic modulus layer 113A described above, and detailed description will be omitted. That is, the shape, material, and physical properties of the second high elastic modulus layer 113B may be the same as or similar to the shape, material, and physical properties of the first high elastic modulus layer 113A described above.
  • the composition of the resin composition constituting the first surface high elasticity layer 113A may be different from the composition of the resin composition constituting the second surface high elasticity layer 113B.
  • the thickness of the first surface high elasticity layer 113A may be different from the thickness of the second surface high elasticity layer 113B, but from the viewpoint of suppressing warping of the anisotropic conductive sheet 100, it is preferable that they are equal, and the ratio of the thickness of the second surface high elasticity layer 113B to the thickness of the first surface high elasticity layer 113A may be, for example, 0.8 to 1.2.
  • the primer layer 114 is disposed at least between the intermediate high elastic modulus layer 112 and at least one of the first elastomer layer 111A and the second elastomer layer 111B, and can enhance adhesion therebetween.
  • the primer layer 114 can also be disposed between the first surface high elastic modulus layer 113A and the first elastomer layer 111A, and/or between the second surface high elastic modulus layer 113B and the second elastomer layer 111B.
  • the primer layer 114 is disposed all between the intermediate high elastic modulus layer 112 and the first elastomer layer 111A, between the intermediate high elastic modulus layer 112 and the second elastomer layer 111B, between the first surface high elastic modulus layer 113A and the first elastomer layer 111A, and between the second surface high elastic modulus layer 113B and the second elastomer layer 111B (see FIG. 2B).
  • the primer layer 114 contains a polycondensate of a metal alkoxide.
  • a polycondensate of a metal alkoxide exhibits good affinity to both organic compounds such as heat-resistant resins and inorganic compounds such as silicone compounds. Therefore, the primer layer 114 exhibits good affinity to both the intermediate high elastic modulus layer 112, which contains, for example, a heat-resistant resin, and the first elastomer layer 111, which contains, for example, a cross-linked product of a silicone rubber composition, and can enhance the adhesion between these layers.
  • the primer layer 114 is obtained by polycondensing a metal alkoxide using a sol-gel method in a primer solution containing the metal alkoxide and an organic solvent or water.
  • the metal alkoxide is represented by the following general formula (1).
  • Formula (1) R 1 n M(OR 2 ) m
  • M represents a metal atom.
  • the metal atom include silicon, zirconium, titanium, aluminum, etc., and is preferably silicon.
  • R1 and R2 are each an organic group having a carbon number of 1 to 8. Examples of the organic group include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group.
  • m represents an integer of 1 or more
  • n represents an integer of 0 or more
  • n+m represents the valence of M.
  • metal alkoxides represented by formula (1) include alkoxysilanes such as tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenyltrimethoxysilane, methyl
  • the content of the metal alkoxide can be 50% by mass or more, preferably 70 to 100% by mass, based on the non-volatile components of the primer solution.
  • the organic solvent may be any solvent capable of dispersing or dissolving the above components, and is not particularly limited.
  • examples of the organic solvent include xylene, toluene, benzene, heptane, hexane, trichloroethylene, perchloroethylene, methylene chloride, ethyl acetate, methyl isobutyl ketone, methyl ethyl ketone, ethanol, isopropanol, butanol, cyclohexanone, diethyl ether, rubber volatile oil, silicone solvents, and other organic solvents.
  • the curing accelerator may be an addition reaction catalyst (such as a platinum group metal catalyst) similar to those described above.
  • the solution may further contain other components as necessary, such as a sol-gel catalyst, a silane coupling agent, and a water-soluble resin.
  • sol-gel catalysts include acids and amine-based compounds.
  • the silane coupling agent a known organoalkoxysilane containing an organic reactive group can be used, and examples thereof include silane coupling agents having a vinyl group, silane coupling agents having an amino group (aminopropyltrimethoxysilane, etc.), silane coupling agents having an epoxy group (glycidoxypropyltrimethoxysilane, etc.), and silane coupling agents having a mercapto group (mercaptopropyltrimethoxysilane, etc.).
  • the water-soluble resin includes polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • the thickness of the primer layer 114 is not particularly limited, but is, for example, 0.01 to 5 ⁇ m, and preferably 0.05 to 3 ⁇ m. Whether or not the primer layer 114 is present can be confirmed, for example, by observing the cross section using an electron microscope.
  • compositions and physical properties of the four primer layers 114 may be the same as each other or may be different.
  • thicknesses of the four primer layers 114 may be the same as each other or may be different.
  • the multiple through holes 115 are holes that penetrate from the first surface 110a to the second surface 110b of the insulating layer 110 (see FIG. 2B).
  • the axial direction of the through hole 115 may be approximately parallel to the thickness direction of the insulating layer 110, or may be inclined. Approximately parallel means that the angle with respect to the thickness direction of the insulating layer 110 is 10° or less. Inclined means that the angle with respect to the thickness direction of the insulating layer 110 is more than 10° and 50° or less, preferably 20 to 45°. In this embodiment, the axial direction of the through hole 115 is approximately parallel to the thickness direction of the insulating layer 110 (see Figure 2B). The axial direction refers to the direction of a line connecting the centers of gravity of the opening of the through hole 115 on the first surface 110a side and the opening on the second surface 110b side.
  • the shape of the opening of the through-hole 115 on the first surface 110a is not particularly limited and may be, for example, a circle, a rectangle, or any other polygon.
  • the shape of the opening of the through-hole 115 on the first surface 110a is a circle (see FIG. 2A).
  • the shape of the opening of the through-hole 115 on the first surface 110a side and the shape of the opening on the second surface 110b side may be the same or different, and from the viewpoint of connection stability to the electronic device to be measured, it is preferable that they are the same.
  • the circle-equivalent diameter D of the opening of the through hole 115 on the first surface 110a side is not particularly limited, and is preferably 1 to 330 ⁇ m, more preferably 2 to 200 ⁇ m, and even more preferably 10 to 100 ⁇ m (see FIG. 2B).
  • the circle-equivalent diameter D of the opening of the through hole 115 on the first surface 110a side refers to the circle-equivalent diameter (diameter of a perfect circle equivalent to the area of the opening) of the through hole 115 when viewed along the axial direction of the through hole 115 from the first surface 110a side.
  • the circle-equivalent diameter D of the opening of the through hole 115 on the first surface 110a side and the circle-equivalent diameter D of the opening of the through hole 115 on the second surface 110b side may be the same or different.
  • the center-to-center distance (pitch) p of the openings of the multiple through holes 115 on the first surface 110a side is not particularly limited and can be set appropriately in accordance with the pitch of the terminals of the test object (see FIG. 2B). Since the pitch of the terminals of the HBM (High Bandwidth Memory) as the test object is 55 ⁇ m and the pitch of the terminals of the PoP (Package on Package) is 400 to 650 ⁇ m, the center-to-center distance p of the openings of the multiple through holes 115 can be, for example, 5 to 650 ⁇ m.
  • the center-to-center distance p of the openings of the multiple through holes 115 on the first surface 110a side is 5 to 55 ⁇ m.
  • the center-to-center distance p of the openings of the multiple through holes 115 on the first surface 110a side refers to the minimum value of the center-to-center distance of the openings of the multiple through holes 115 on the first surface 110a side.
  • the center of the opening of the through hole 115 is the center of gravity of the opening.
  • the center-to-center distance between the openings of the multiple through holes 115 on the first surface 110a side and the center-to-center distance between the openings of the multiple through holes 115 on the second surface 110b side may be the same or different.
  • the ratio T/D of the axial length of the through hole 115 (thickness T of the insulating layer 110) to the circular equivalent diameter D of the opening of the through hole 115 on the first surface 110a side is not particularly limited, but is preferably 3 to 40 (see FIG. 2B).
  • the thickness (T) of the insulating layer 110 is not particularly limited as long as it is sufficient to ensure insulation in the non-conductive portions, and may be, for example, 40 to 700 ⁇ m, and preferably 100 to 400 ⁇ m.
  • Conductive layer 120 The conductive layer 120 is disposed corresponding to one or more through holes 115.
  • the conductive layer 120 includes one or more conductive portions 121, a first conductive layer 122A, and a second conductive layer 122B (see FIG. 2B).
  • the conductive portion 121 is disposed on the inner wall surface of the through hole 115.
  • the first conductive layer 122A is disposed on the first surface 110a, i.e., on the first outer high elastic modulus layer 113A, and is connected to one or more conductive portions 121.
  • the multiple first conductive layers 122A are disposed spaced apart from one another via the first groove portions 116a.
  • the second conductive layer 122B is disposed on the second surface 110b, i.e., on the second outer high elastic modulus layer 113B, and is connected to one or more conductive portions 121.
  • the multiple second conductive layers 122B are disposed spaced apart from one another via the second groove portions 116b.
  • the shapes of the first conductive layer 122A and the second conductive layer 122B are not particularly limited and may be any of rectangular, triangular, other polygonal, circular, etc.
  • the shapes of the first conductive layer 122A and the second conductive layer 122B are both rectangular (see FIG. 2A).
  • the shapes and sizes of the multiple first conductive layers 122A are all the same, and the shapes and sizes of the multiple second conductive layers 122B are all the same.
  • one first conductive layer 122A is arranged for each through hole 115, but this is not limited thereto, and one first conductive layer 122A may be arranged for two or more through holes 115 (see FIGS. 3A and 3B).
  • the volume resistivity of the material constituting the conductive layer 120 is not particularly limited as long as sufficient conductivity is obtained, but for example, it is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ m or less, and more preferably 1.0 ⁇ 10 ⁇ 5 to 1.0 ⁇ 10 ⁇ 9 ⁇ m.
  • the volume resistivity can be measured by the method described in ASTM D 991.
  • the material constituting the conductive layer 120 may have a volume resistivity that satisfies the above range.
  • materials constituting the conductive layer 120 include metal materials such as copper, gold, platinum, silver, nickel, tin, iron, or an alloy of one of these metals, and carbon materials such as carbon black.
  • the conductive layer 120 preferably contains one or more selected from the group consisting of gold, silver, and copper as a main component. "Containing as a main component" means, for example, that the conductive layer 120 contains 70% by mass or more, preferably 80% by mass or more.
  • the materials constituting the conductive portion 121, the first conductive layer 122A, and the second conductive layer 122B may be the same or different, but it is preferable that they are the same from the viewpoint of ease of manufacture and easy stability of electrical continuity.
  • the thickness of the conductive layer 120 may be in a range that is sufficient to provide electrical continuity and does not block the through-holes 115, and may be, for example, 0.1 to 5 ⁇ m.
  • the thickness of the conductive portion 121 of the conductive layer 120 is in a direction perpendicular to the thickness direction of the insulating layer 110, and the thicknesses of the first conductive layer 122A and the second conductive layer 122B are in a direction parallel to the thickness direction of the insulating layer 110 (see FIG. 2B).
  • the first groove portion 116a arranged between the multiple first conductive layers 122A is a recessed strip arranged on the first surface 110a.
  • the cross-sectional shape of the first groove portion 116a in a direction perpendicular to the extension direction is not particularly limited, and may be rectangular, semicircular, U-shaped, or V-shaped. In this embodiment, the cross-sectional shape of the first groove portion 116a is rectangular.
  • the width w and depth d of the first groove 116a are preferably set to a range in which the first conductive layer 122A on one side does not come into contact with the first conductive layer 122A on the other side via the first groove 116a when a pressing load is applied (see FIG. 2B).
  • the width w of the first groove portion 116a is the maximum width on the first surface 110a in a direction perpendicular to the direction in which the first groove portion 116a extends (see FIG. 2B).
  • the depth d of the first groove 116a is not particularly limited, but is preferably the same as or greater than the thickness of the first surface high elasticity layer 113A. That is, the deepest part of the first groove 116a can be located on the surface of the first elastomer layer 111A or inside it.
  • the depth d of the first groove 116a refers to the depth from the surface to the deepest part of the first conductive layer 122A in the thickness direction of the insulating layer 110 (see FIG. 2B).
  • the second grooves 116b arranged between the multiple second conductive layers 122B on the second surface 110b may be the same as or similar to the first grooves 116a arranged between the multiple first conductive layers 122A on the first surface 110a.
  • Conductive filler 130 The conductive filler 130 is filled inside the through hole 115, specifically, inside the cavity 115' of the through hole 115 surrounded by the conductive portion 121. This improves the conductivity of the anisotropic conductive sheet 100. This can increase the resistance while suppressing peeling of the conductive portion 121.
  • the conductive filler 130 includes a cross-linked conductive rubber composition that includes conductive particles and a rubber component.
  • the material constituting the conductive particles is not particularly limited, but from the viewpoint of excellent conductivity and flexibility, particles containing one or more selected from the group consisting of gold, silver, and copper are preferred.
  • the type of rubber component is not particularly limited, and may be the same as the rubber component constituting the first elastomer layer 111A and the second elastomer layer 111B (hereinafter, these are also collectively referred to as "elastomer layer 111").
  • the type of rubber component constituting the conductive filler 130 may be the same as the type of rubber component constituting the elastomer layer 111, or may be different. From the viewpoint of flexibility, etc., silicone rubber is preferable.
  • the rubber component content is preferably 5 to 50% by mass based on the total amount of the conductive particles and rubber component. If the rubber component content is 5% by mass or more, it is easy to increase the adhesion of the conductive part 121 to the inner wall surface of the through hole 115, and since the cross-linked product of the conductive rubber composition has sufficient flexibility, it is easy to suppress cracking and peeling of the conductive part 121.
  • the conductive rubber composition may further contain other components such as a cross-linking agent as necessary.
  • a cross-linking agent there are no particular limitations on the type of cross-linking agent, and the same cross-linking agent as that used in the rubber composition constituting the elastomer layer 111 can be used.
  • the storage modulus at 25°C of the cross-linked product of the conductive rubber composition that constitutes the conductive filler 130 is not particularly limited, but is usually likely to be higher than the storage modulus at 25°C of the cross-linked product of the rubber composition that constitutes the elastomer layer 111. However, from the viewpoint of suppressing defects caused by the pressure during pressing being concentrated on the conductive filler 130, it is preferable that it is moderately low.
  • the storage modulus at 25°C of the cross-linked product of the conductive rubber composition is preferably 0.1 to 30 MPa, and more preferably 0.2 to 20 MPa.
  • the storage modulus can be measured in a compression deformation mode using the same method as above.
  • the volume resistivity of the crosslinked product of the conductive rubber composition is preferably 10 ⁇ 2 ⁇ m or less, and more preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 2 ⁇ m.
  • the volume resistivity can be measured by the same method as above.
  • the anisotropic conductive sheet 100 is attached to a frame 200 and set in an electrical inspection device. Therefore, the anisotropic conductive sheet 100 is cut to fit the size of the opening of the frame 200. (Individually divided).
  • the anisotropic conductive sheet 100 of this embodiment has a first exposed portion 140a on the first surface 110a at the outer edge of an area in which a plurality of conductive layers 120 and a plurality of conductive fillings 130 are formed, in which the first conductive layer 122A is not disposed and the insulating layer 110 is exposed (see Figure 2A).
  • the anisotropic conductive sheet 100 has a second exposed portion 140b (not shown) at the outer edge of the area in which the multiple conductive layers 120 and the multiple conductive fillings 130 are formed, where the second conductive layer 122B is not disposed and the insulating layer 110 is exposed.
  • the anisotropic conductive sheet 100 by cutting the anisotropic conductive sheet 100 at the first exposed portion 140a and the second exposed portion 140b when cutting out the anisotropic conductive sheet 100, it is possible to prevent cutting chips of the conductive layer 120 from being mixed in as foreign matter into the anisotropic conductive sheet 100 after cutting.
  • an anisotropic conductive sheet having a laminated structure of multiple layers with significantly different elastic moduli is prone to residual stress due to the difference in linear thermal expansion coefficient between these layers.
  • the first surface high elastic modulus layer 113A and the second surface high elastic modulus layer 113B are divided into multiple first surface high elastic modulus layers 113A and multiple second surface high elastic modulus layers 113B by the first groove portion 116a and the second groove portion 116b, the residual stress inside the sheet is more likely to be released.
  • the residual stress inside is more likely to be released, and dimensional changes are more likely to occur.
  • the anisotropic conductive sheet 100 has an intermediate high elastic modulus layer 112. Since the intermediate high elastic modulus layer 112 is a single continuous layer with a high elastic modulus, it is possible to prevent the residual stress inside the sheet from being released excessively when the sheet is cut out. This makes it possible to reduce dimensional changes.
  • FIGS. 4A to 4F, 5A to 5H, and 6A and 6B are schematic enlarged partial cross-sectional views showing a method for manufacturing the anisotropically conductive sheet 100.
  • FIG. 4A to 4F, 5A to 5H, and 6A and 6B are schematic enlarged partial cross-sectional views showing a method for manufacturing the anisotropically conductive sheet 100.
  • FIG. 4A to 4F, 5A to 5H, and 6A and 6B are schematic enlarged partial cross-sectional views showing a method for manufacturing the anisotropically conductive sheet 100.
  • the anisotropic conductive sheet 100 is 1) A step of obtaining a laminated sheet 150 including at least a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, a first surface high elastic modulus layer 113A, and a second surface high elastic modulus layer 113B (see FIG. 4A ); 2) forming a plurality of through holes 115 in the laminated sheet 150 (see FIG. 4B ); 3) forming one continuous conductive layer 151 in each area of the laminated sheet 150 where the plurality of through holes 115 are formed (see FIG. 4C ); 4) a step of filling the insides of the plurality of through holes 115 with a conductive rubber composition L (see FIG.
  • a laminate sheet 150 is prepared, which includes at least a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, and a first surface high elastic modulus layer 113A.
  • the laminate sheet 150 can be manufactured by any method, and can be manufactured, for example, by the following procedure.
  • the primer layer 114 can be formed by applying a solution containing the above-mentioned metal alkoxide, followed by drying and heating, thereby polycondensing the metal alkoxide by a sol-gel method.
  • the elastomer layer 111-1 can be formed by applying, drying and heating a rubber composition for obtaining the first elastomer layer 111A and the second elastomer layer 111B.
  • the rubber composition is preferably a silicone rubber composition, and examples thereof include two-liquid additive liquid silicone rubber compositions (KE2061-50-A/B, KE2061-70-A/B, etc., manufactured by Shin-Etsu Silicones Co., Ltd.).
  • a primer layer 114 is formed on one side of the first surface high elastic modulus layer 113A (see Figs. 5D and 5E), and then an elastomer layer 111-2 is formed (see Fig. 5F).
  • the elastomer layer 111-2 and an elastomer sheet 111-3 are bonded together to form an elastomer layer 111-4, thereby obtaining a surface sheet S2 (see Figs. 5G and 5H).
  • the bonding can be performed in the same manner as described below.
  • the material of the primer layer 114 of the surface sheet S2 may be the same as the material of the primer layer 114 of the intermediate sheet S1, and the material of the elastomer layer 111-2 and the elastomer sheet 111-3 of the surface sheet S2 may be the same as the material of the elastomer layer 111-1 of the intermediate sheet S1.
  • the thickness of the elastomer layer 111-1 and the elastomer layer 111-2 is usually smaller than the thickness of the elastomer sheet 111-3, for example, 5 ⁇ m or less.
  • the elastomer layer 111-1 of the intermediate sheet S1 prepared above and the elastomer layers 111-4 of the two surface sheets S2 prepared above are bonded together (see FIGS. 6A and 6B).
  • the bonding can be performed by heating the bonded elastomer layers 111-1 and 111-4 with a hot plate or the like.
  • the surfaces of the elastomer layer 111-1 and the elastomer layer 111-4 may be subjected to a surface treatment such as plasma irradiation before bonding.
  • the heating temperature may be any temperature that allows bonding, and may be, for example, a temperature that causes a condensation reaction between silanol groups.
  • the elastomer layer 111-2 (see FIG. 5F), the elastomer sheet 111-3 (see FIG. 5G), and the elastomer layer 111-1 (see FIG. 5C) of the intermediate sheet S1 are joined together to form one first elastomer layer 111A or one second elastomer layer 111B (FIGS. 6A and 6B).
  • the compositions and physical properties of the elastomer layer 111-2 and the elastomer sheet 111-3 of the surface sheet S2, and the elastomer layer 111-1 of the intermediate sheet S1 may be the same or different.
  • the storage modulus of the elastomer layer 111-2 of the surface sheet S2 may be higher than the storage modulus of the elastomer layer 111-1 of the intermediate sheet S1.
  • Figures 5 and 6 show the case where the elastomer layers 111-1, 111-2, and 111-3 have the same composition and physical properties.
  • the elastomer layer 111-2 (see FIG. 5F) is formed on the primer layer 114 of the surface sheet S2
  • the elastomer layer 111-1 (see FIG. 5C) is formed on the primer layer 114 of the intermediate sheet S1, but these can be omitted.
  • a liquid rubber composition can be applied directly onto the primer layer 114 of the intermediate sheet S1, and then cured to form the elastomer layer 111, which can then be directly bonded to the primer layer 114 of the surface sheet S2.
  • the liquid rubber composition can be, for example, a two-liquid addition curing type silicone rubber composition.
  • a plurality of through holes 115 are then formed in a predetermined region of the laminated sheet 150 (see FIG. 4B).
  • the region in which the plurality of through holes 115 are formed may be one or more.
  • the formation of the through holes 115 can be performed by any method.
  • the formation of the through holes 115 can be performed by a method of mechanically forming holes (e.g., pressing, punching) or a laser processing method.
  • the formation of the through holes 115 is more preferably performed by a laser processing method, since it is possible to form the through holes 115 that are fine and have high shape accuracy.
  • the laser can be an excimer laser, a carbon dioxide laser, a YAG laser, or the like, which can drill holes in resin with high precision. Of these, it is preferable to use an excimer laser. There are no particular limitations on the pulse width of the laser, and it may be a microsecond laser, a nanosecond laser, a picosecond laser, or a femtosecond laser. There are also no particular limitations on the wavelength of the laser.
  • one continuous conductive layer 151 is formed in each region of the laminated sheet 150 where the plurality of through holes 115 are formed (see FIG. 4C ). Specifically, the conductive layer 151 is formed continuously on the inner wall surfaces of the plurality of through holes 115 of the laminated sheet 150 and on the first surface 150a and the second surface 150b around the openings of the plurality of through holes 115.
  • the conductive layer 151 can be formed by any method, but is preferably formed by a plating method (e.g., electroless plating or electrolytic plating) since it can be formed thin and with a uniform thickness without blocking the through-hole 115.
  • a plating method e.g., electroless plating or electrolytic plating
  • step 4 next, the inside of the plurality of cavities 115' surrounded by the conductive layer 151 is filled with a conductive rubber composition L (see FIG. 4D).
  • the conductive rubber composition L can be filled, for example, by applying the conductive rubber composition L onto the first surface 150a and then drawing a vacuum inside the cavity 115' from the second surface 150b side. The filled conductive rubber composition L is then crosslinked. If the conductive rubber composition L contains a solvent, it is preferable to further dry it.
  • the first groove 116a and the second groove 116b are formed on the first surface 150a and the second surface 150b of the laminated sheet 150, respectively (see FIGS. 4E and 4F).
  • the portion of the conductive layer 151 on the first surface 150a side is divided into a plurality of first conductive layers 122A
  • the portion of the conductive layer 151 on the second surface 150b side is divided into a plurality of second conductive layers 122B.
  • the first surface high elasticity layer 113A can be divided into a plurality of first surface high elasticity layers 113A
  • the second surface high elasticity layer 113B can be divided into a plurality of second surface high elasticity layers 113B.
  • the formation of the first groove 116a and the second groove 116b can be performed, for example, by a laser processing method.
  • an anisotropic conductive sheet 100 original sheet in which a plurality of through holes 115 and a plurality of conductive layers 120 are formed in the insulating layer 110 can be obtained.
  • the method for manufacturing the anisotropic conductive sheet 100 may further include other steps in addition to those described above, as necessary. For example, a pretreatment may be performed between steps 2) and 3) to facilitate the formation of the conductive layer 151.
  • a desmear process pre-processing
  • the desmear process can be performed by a wet method or a dry method, and either method may be used.
  • wet desmear treatment in addition to alkali treatment, known wet processes such as the sulfuric acid method, chromate method, and permanganate method can be used.
  • a dry desmear process is a plasma process.
  • plasma processing of the sheet not only enables ashing/etching, but also oxidizes the silicone surface to form a silica film.
  • Forming a silica film can facilitate penetration of the plating solution into the through-hole 115 and can increase adhesion between the conductive portion 121 and the inner wall surface of the through-hole 115.
  • the oxygen plasma process can be performed using, for example, a plasma asher, a high-frequency plasma etching device, or a microwave plasma etching device.
  • the anisotropic conductive sheet 100 may be cut to a predetermined size and fixed to the frame 200.
  • FIG. 7A is a schematic plan view of a framed anisotropic conductive sheet 400
  • Fig. 7B is a schematic enlarged cross-sectional view of the framed anisotropic conductive sheet 400 taken along line 7B-7B in Fig. 7A. Note that hatching of the cross section is omitted in Fig. 7B.
  • the framed anisotropic conductive sheet 400 has an anisotropic conductive sheet 100P, a frame 200, and a sealing material 300.
  • the anisotropic conductive sheet 100P protrudes from at least the first surface 200a of the frame 200 when inserted into the opening 210 of the frame 200 (see FIG. 7B).
  • the first surface 200a of the frame 200 and the anisotropic conductive sheet 100P protruding from the first surface 200a are bonded together with a sealing material 300.
  • An object to be inspected is placed on the surface of the anisotropic conductive sheet 100P protruding from the first surface 200a of the frame 200.
  • the first surface 110a side of the insulating layer 110 has a greater protruding length than the second surface 110b side.
  • the protrusion length Ha of the anisotropic conductive sheet 100P from the first surface 200a of the frame 200 is not particularly limited, but is, for example, 100 ⁇ m or more, and preferably 150 to 400 ⁇ m.
  • the protrusion length Hb of the anisotropic conductive sheet 100P from the second surface 200b of the frame 200 is, for example, 30 to 40 ⁇ m, but is not particularly limited. This allows for more reliable electrical contact between the anisotropic conductive sheet 100P and the object to be inspected, or between the electrodes of the inspection board and the anisotropic conductive sheet 100P.
  • the anisotropic conductive sheet 100P is obtained by cutting the above-mentioned anisotropic conductive sheet 100 to the size of the opening 210 of the frame 200.
  • the shape of the anisotropic conductive sheet 100P in a plan view is usually rectangular (including square).
  • the size of the anisotropic conductive sheet 100P in a plan view can be, for example, 1 to 30 mm in the X direction (long side) and 1 to 30 mm in the Y direction (short side).
  • the frame 200 has an opening 210 and a positioning hole 220 (see FIG. 7B).
  • the material constituting the frame 200 is preferably stronger than the material constituting the elastomer layer 111 of the anisotropic conductive sheet 100P.
  • Such materials include metal, glass, ceramics, heat-resistant resin, etc., and preferably metal such as stainless steel (SUS).
  • SUS stainless steel
  • the thickness of the frame 200 is smaller than the thickness of the anisotropic conductive sheet 100P. This allows the anisotropic conductive sheet 100P to protrude from at least the first surface 200a of the frame 200.
  • the openings 210 are through holes provided in the frame 200, into which the anisotropic conductive sheet 100P is inserted.
  • the number of openings 210 is not particularly limited, and may be one, or two or more. In this embodiment, the number of openings 210 is two (see FIG. 7A).
  • the size of the opening 210 only needs to be large enough to allow the anisotropic conductive sheet 100P to be inserted, and is preferably equal to or slightly larger than the size of the anisotropic conductive sheet 100P. That is, there may or may not be a gap between the inner circumferential surface of the opening 210 and the side surface of the anisotropic conductive sheet 100P. Specifically, the gap between the inner circumferential surface of the opening 210 and the side surface of the anisotropic conductive sheet 100P is not particularly limited, but is, for example, 150 ⁇ m or less, and preferably 100 ⁇ m or less.
  • the sealing material 300 has affinity with the material constituting the elastomer layer 111 of the anisotropic conductive sheet 100P. Therefore, it is preferable that the sealing material 300 contains a cross-linked product of a rubber composition.
  • the type of rubber component contained in the sealing material 300 can be the same as the rubber component contained in the elastomer layer 111.
  • the type of rubber component contained in the sealing material 300 may be the same as the rubber component contained in the elastomer layer 111, or may be different. Among them, silicone rubber is preferable.
  • the framed anisotropic conductive sheet 400 can be obtained through the steps of 1) obtaining an anisotropic conductive sheet 100P, 2) inserting the anisotropic conductive sheet 100P into the opening 210 of the frame 200, and 3) forming a sealing material 300 between the first surface 200a of the frame 200 and the anisotropic conductive sheet 100P protruding from the first surface 200a.
  • the anisotropic conductive sheet 100 (original sheet) is cut into a size and shape that fits into the opening 210 of the frame 200 to obtain an anisotropic conductive sheet 100P.
  • Cutting can be done with a laser or ultrasonic cutter.
  • the anisotropic conductive sheet 100P can be obtained by cutting the area where the insulating layer 110 is exposed around the area where the multiple conductive layers 120 are formed. This makes it possible to prevent cutting chips of the conductive layer 120 from being mixed in.
  • step 2 next, the anisotropic conductive sheet 100P is inserted into the opening 210 of the frame 200, and the sheet is positioned relative to the frame 200.
  • a sealing material 300 is then placed between the first surface 200a of the frame 200 and the anisotropic conductive sheet 100P protruding from the first surface 200a.
  • the sealing material 300 is placed on the first surface 200a of the frame 200 so as to fill the periphery of the anisotropic conductive sheet 100P. This makes it possible to fix the anisotropic conductive sheet 100P to the frame 200. This makes it possible to obtain a framed anisotropic conductive sheet 400.
  • FIG. 8 is a schematic cross-sectional view of an electrical inspection device 500 according to this embodiment. In this figure, the dimensions in the thickness direction of the main parts are displayed relatively large.
  • the electrical inspection device 500 is a device that inspects the electrical characteristics (such as continuity) between terminals 521 (between measurement points) of an object to be inspected 520. Note that in the figure, the object to be inspected 520 is also shown in order to explain the electrical inspection method.
  • the electrical testing device 500 has a substrate 510 (test board) having multiple electrodes and a framed anisotropic conductive sheet 400.
  • the substrate 510 has a number of electrodes 511 on the surface facing the test object 520, which face each measurement point of the test object 520.
  • the framed anisotropic conductive sheet 400 is placed on the substrate 510 by inserting the positioning pins 512 of the substrate 510 through the positioning holes 220.
  • the anisotropic conductive sheet 100P is placed on the surface of the substrate 510 on which the electrodes 511 are arranged, and the electrodes 511 of the substrate 510 and the second conductive layer 122B (not shown) of the anisotropic conductive sheet 100P come into contact.
  • the test object 520 is placed on the anisotropic conductive sheet 100P of the framed anisotropic conductive sheet 400.
  • the test object 520 is not particularly limited, but examples include various semiconductor devices (semiconductor packages) such as HBM and PoP, electronic components, and printed circuit boards.
  • the measurement point may be a bump (terminal).
  • the measurement point may be a measurement land or a land for component mounting provided on a conductive pattern.
  • the test object 520 includes, for example, a chip having a total of 264 solder ball electrodes (material: lead-free solder) with a diameter of 0.2 mm and a height of 0.17 mm, arranged at a pitch of 0.3 mm.
  • the electrical inspection method stacks a substrate 510 having electrodes 511 and an object to be inspected 520 via an anisotropic conductive sheet 100P fixed by a frame 200. This electrically connects the electrodes 511 of the substrate 510 and the terminals 521 of the object to be inspected 520 via the anisotropic conductive sheet 100P.
  • the test object 520 may be pressed to apply pressure or brought into contact under a heated atmosphere, as necessary.
  • the anisotropic conductive sheet 100P in the above embodiment has reduced dimensional change when cut out. This reduces the variation in the distance between the multiple conductive layers 120, and prevents poor contact with the object to be inspected.
  • anisotropic conductive sheet 100 has two elastomer layers 111 and one intermediate high elastic modulus layer 112, the present invention is not limited to this and may have three or more elastomer layers 111 and two or more intermediate high elastic modulus layers 112.
  • the primer layer 114 is disposed on all of the intermediate high elasticity layer 112, the first surface high elasticity layer 113A, and the second surface high elasticity layer 113B, but this is not limited thereto, and the primer layer 114 may be omitted depending on the degree of affinity (adhesion) between the intermediate high elasticity layer 112, the first surface high elasticity layer 113A, and the second surface high elasticity layer 113B and the elastomer layer 111.
  • the inside of the through hole 115 is filled with the conductive filler 130, but this is not limited thereto and it does not have to be filled.
  • the conductive layer 120 has the first conductive layer 122A and the second conductive layer 122B, but this is not limited thereto and it does not have to have the first conductive layer 122A and the second conductive layer 122B.
  • the anisotropic conductive sheet 100 has a first exposed portion 140a where the insulating layer 110 is exposed around the area (electrode area) where the multiple conductive layers 120 and multiple conductive fillers 130 are formed, but this is not limited thereto, and a conductive layer 151 may be disposed on the insulating layer 110.
  • Example 1 Preparation of Laminated Sheet (Preparation of Intermediate Sheet S1) A solution containing a metal alkoxide (Primer No. 4, manufactured by Shin-Etsu Silicones) was applied to both sides of a polyimide film (thickness 12.5 ⁇ m, Kapton 50EN (registered trademark) manufactured by DuPont-Toray Co., Ltd., Tg>300° C., storage modulus at 25° C. 5 GPa) (intermediate high elastic modulus layer 112) and dried to form a primer layer (primer layer 114) having a thickness of 0.7 ⁇ m.
  • a metal alkoxide Primary No. 4, manufactured by Shin-Etsu Silicones
  • a two-liquid additive liquid silicone rubber composition (KE2061-50-A/B manufactured by Shin-Etsu Silicones) was further applied onto the primer layer and cured to form a silicone-based elastomer layer 1 (elastomer layer 111-1) having a thickness of 5 ⁇ m.
  • a silicone-based elastomer layer 1 elastomer layer 111-1 having a thickness of 5 ⁇ m.
  • an intermediate sheet S1 having a laminated structure of silicone-based elastomer layer 1 (5 ⁇ m)/primer layer/polyimide film (12.5 ⁇ m)/primer layer/silicone-based elastomer layer 1 (5 ⁇ m) was obtained (see FIGS. 5A to 5C).
  • a primer layer (primer layer 114) having a thickness of 0.7 ⁇ m was formed on one side of a polyimide film (thickness 7.5 ⁇ m, Kapton 30 (registered trademark), Tg>300° C., storage modulus at 25° C. 5 GPa) (surface high elastic modulus layer 113) in the same manner as described above.
  • a two-part additive liquid silicone rubber composition (KE2061-70-A/B manufactured by Shin-Etsu Silicones) was further applied onto the primer layer and cured to form a 5 ⁇ m-thick silicone-based elastomer layer (elastomer layer 111-2).
  • This elastomer layer (elastomer layer 111-2, thickness 5 ⁇ m) and a commercially available silicone rubber sheet (Sirius manufactured by Fuso Rubber Industries Co., Ltd., thickness 150 ⁇ m, storage modulus at 25° C. 1 MPa, elastomer layer 111-3) were each irradiated with plasma.
  • the plasma irradiation was performed under conditions of 800 W, 0.5 L/min, and 1 minute.
  • elastomer layer 111-2 thickness 5 ⁇ m
  • a commercially available silicone rubber sheet elastomer layer 111-3, thickness 150 ⁇ m
  • two surface sheets S2 each having a laminated structure of polyimide film (7.5 ⁇ m)/primer layer/silicone-based elastomer layer 2 (elastomer layer 111-4, thickness 5 ⁇ m+150 ⁇ m) were prepared (see FIGS. 5D to 5H).
  • the plasma-irradiated silicone-based elastomer layers 2 of the two surface sheets S2 were attached to each of the plasma-irradiated surfaces of the silicone-based elastomer layer 1 of the intermediate sheet S1 at normal pressure (see Figure 6A), and bonded by heating on a hot plate at 50°C for 10 minutes, thereby obtaining a laminated sheet 150 having silicone-based elastomer layers A and B (first elastomer layer 111A and second elastomer layer 111B) (see Figure 6B).
  • the storage modulus of the silicone-based elastomer layers A and B at 25° C. was 1 MPa, and the storage modulus of the polyimide film was 5 GPa at 25° C.
  • the storage modulus was measured in accordance with JIS K 7244-1:1998/ISO6721-1:1994.
  • JIS K 7095:2012 no clear glass transition temperature was observed, but a viscoelastic change was observed at 300° C. or higher, and therefore it was determined to be 300° C. or higher.
  • a conductive elastomer composition ThreeBond 3303B (containing Ag particles, silicone rubber and a crosslinking agent, with a volume resistivity of the crosslinked product of 3 ⁇ 10 ⁇ m according to ASTM D 991) manufactured by ThreeBond Co., Ltd., was dropped onto first surface 150a of the obtained sheet, and the composition was introduced and filled into cavity 115′ corresponding to through hole 115 while drawing a vacuum from the second surface 150b side, and the composition was heated at 170° C. to cause crosslinking.
  • ThreeBond 3303B containing Ag particles, silicone rubber and a crosslinking agent, with a volume resistivity of the crosslinked product of 3 ⁇ 10 ⁇ m according to ASTM D 991 manufactured by ThreeBond Co., Ltd.
  • first groove portions 116a and second groove portions 116b were formed in a lattice pattern by laser processing on the first surface 150a and the second surface 150b of the obtained sheet, dividing the sheet into a plurality of first surface high elasticity layers 113A and second surface high elasticity layers 113B, and a plurality of first conductive layers 122A and second conductive layers 122B.
  • the distance between the centers of gravity of the multiple first conductive layers 122A was 300 ⁇ m.
  • a surface sheet 2 having a laminated structure of polyimide film/primer layer/silicone-based elastomer layer (5 ⁇ m + 300 ⁇ m) was prepared in the same manner as the surface sheet S2 of Example 1, except that the commercially available silicone rubber sheet having a thickness of 150 ⁇ m was replaced with a commercially available silicone rubber sheet having a thickness of 300 ⁇ m (storage modulus at 25° C.: 0.4 GPa).
  • anisotropic conductive sheet 100 was obtained in the same manner as in Example 1, except that the laminate sheet prepared above was used.
  • the obtained anisotropic conductive sheet was cut into a size of 15 mm (X direction) x 5 mm (Y direction) using a femtosecond laser.
  • the dimensions of the sheet immediately after cutting were measured using a digital microscope.
  • the offset value was calculated as the deviation from the reference value.
  • Figure 9 is a graph showing the offset values of the dimensions of the sheets after cutting in Example 1 and Comparative Example 1.
  • the sheet of Comparative Example 1 had a maximum offset value of -86 ⁇ m in the X direction and a maximum offset value of -66 ⁇ m in the Y direction, indicating that both dimensions had large changes (see the left side of Figure 9).
  • the sheet of Example 1 has a maximum offset value of -19 ⁇ m in the X direction and -15 ⁇ m in the Y direction, showing that the dimensional change is reduced in both cases (see the right side of Figure 9).
  • the present invention makes it possible to provide an anisotropic conductive sheet that can reduce dimensional changes, for example, when cut out.

Abstract

This anisotropic conductive sheet comprises: an insulating layer which has a plurality of through holes; and a plurality of conductive parts which are respectively disposed to inner walls of the plurality of through holes. The insulating layer has a first elastomer layer, a second elastomer layer, an intermediate high-elastic-modulus layer which is disposed therebetween, and at least one first surface-layer high-elastic-modulus layer which disposed on a surface of the first elastomer layer that is on the opposite side from the intermediate high-elastic-modulus layer and which constitutes a first surface. The storage modulus of the at least one first surface-layer high-elastic-modulus layer and intermediate high-elastic-modulus layer at 25°C is higher than the storage modulus of the first elastomer layer and the second elastomer layer at 25°C.

Description

異方導電性シート、電気検査装置及び電気検査方法Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
 本発明は、異方導電性シート、電気検査装置及び電気検査方法に関する。 The present invention relates to an anisotropic conductive sheet, an electrical inspection device, and an electrical inspection method.
 電子製品に搭載されるプリント配線板等の半導体デバイスは、通常、電気検査に供される。電気検査は、通常、電気検査装置の、電極を有する基板と、半導体デバイス等の検査対象物となる端子とを電気的に接触させ、検査対象物の端子間に所定の電圧を印加したときの電流を読み取ることにより行われる。そして、電気検査装置の基板の電極と、検査対象物の端子との電気的接触を確実に行うために、電気検査装置の基板と検査対象物との間に、異方導電性シートが配置される。 Semiconductor devices such as printed wiring boards mounted on electronic products are usually subjected to electrical testing. Electrical testing is usually performed by electrically contacting a board having electrodes of an electrical testing device with the terminals of the object to be tested, such as a semiconductor device, and reading the current when a specified voltage is applied between the terminals of the object to be tested. In order to ensure electrical contact between the electrodes of the board of the electrical testing device and the terminals of the object to be tested, an anisotropic conductive sheet is placed between the board of the electrical testing device and the object to be tested.
 異方導電性シートは、厚み方向に導電性を有し、面方向に絶縁性を有するシートであり、電気検査におけるプローブ(接触子)として用いられる。このような異方導電性シートは、電気検査装置の基板と検査対象物との間の電気的接続を確実に行うために、押し込み荷重を加えて使用される。 Anisotropic conductive sheets are sheets that are conductive in the thickness direction and insulating in the surface direction, and are used as probes (contacts) in electrical testing. Such anisotropic conductive sheets are used by applying a pressing load to ensure a reliable electrical connection between the board of the electrical testing device and the object being tested.
 そのような異方性導電シートとしては、種々のものが検討されている。図1A及び1Bは、特許文献1の異方導電性シートの模式図である。特許文献1では、複数の貫通孔12を有する絶縁層11と、複数の貫通孔12のそれぞれに対応して配置された複数の導電層13とを有する異方導電性シート10が開示されている(図1A及び1B参照)。絶縁層11は、エラストマー層11Aと、その両面に積層された2つの耐熱性樹脂層11B及び11Cとを有する(図1A及び1B参照)。 Various types of such anisotropic conductive sheets are under consideration. Figures 1A and 1B are schematic diagrams of the anisotropic conductive sheet of Patent Document 1. Patent Document 1 discloses an anisotropic conductive sheet 10 having an insulating layer 11 with a plurality of through holes 12 and a plurality of conductive layers 13 arranged corresponding to each of the plurality of through holes 12 (see Figures 1A and 1B). The insulating layer 11 has an elastomer layer 11A and two heat- resistant resin layers 11B and 11C laminated on both sides of the elastomer layer 11A (see Figures 1A and 1B).
国際公開第2021/100824号International Publication No. 2021/100824
 ところで、電気検査を行う場合、異方性導電シートを所定の大きさに切り出して、電気検査装置の基板上に配置する。しかしながら、上記のような弾性率が大きく異なる複数の層を含む異方導電性シートは、切り出した直後に寸法変化を生じることがあった。 When conducting electrical testing, the anisotropic conductive sheet is cut to a specified size and placed on the board of an electrical testing device. However, anisotropic conductive sheets containing multiple layers with significantly different elastic moduli, such as those described above, can sometimes undergo dimensional changes immediately after being cut.
 即ち、上記異方導電性シートは、弾性率が大きく異なる複数の層が積層された構造を有する。そのため、上記異方導電性シートの内部に、これらの線熱膨張係数差に起因する残留応力が生じやすい。そのような異方導電性シートを切り出すと、切り出し時に内部の残留応力が開放されるため、寸法変化を生じやすい。寸法変化が大きいと、複数の導電層間の距離が変動するため、電気検査時の接触不良を生じる原因となる。 In other words, the anisotropic conductive sheet has a structure in which multiple layers with significantly different elastic moduli are laminated together. As a result, residual stress is likely to occur inside the anisotropic conductive sheet due to the difference in linear thermal expansion coefficients. When such an anisotropic conductive sheet is cut, the internal residual stress is released during cutting, making it prone to dimensional changes. If the dimensional change is large, the distance between the multiple conductive layers will fluctuate, causing poor contact during electrical testing.
 本発明は、上記課題に鑑みてなされたものであり、例えば切り出した時の寸法変化を低減しうる異方導電性シート、電気検査装置及び電気検査方法を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide an anisotropic conductive sheet, an electrical inspection device, and an electrical inspection method that can reduce dimensional changes, for example, when cut out.
 上記課題は、以下の構成によって解決することができる。 The above problem can be solved by the following configuration.
 [1] 厚み方向の一方の側の第1面と、他方の側の第2面と、前記第1面から前記第2面まで貫通する複数の貫通孔とを有する絶縁層と、前記複数の貫通孔のそれぞれの内壁面に配置された複数の導電部と、を含み、前記絶縁層は、第1エラストマー層と、第2エラストマー層と、前記第1エラストマー層と前記第2エラストマー層との間に配置された中間高弾性率層と、前記第1エラストマー層の前記中間高弾性率層とは反対側の面上に配置され、前記第1面を構成する少なくとも1つの第1表層高弾性率層と、を有し、前記少なくとも1つの第1表層高弾性率層及び前記中間高弾性率層の25℃での貯蔵弾性率は、前記第1エラストマー層及び前記第2エラストマー層の25℃での貯蔵弾性率よりも高い、異方導電性シート。
 [2] 前記中間高弾性率層は、ガラス転移温度が150℃以上の樹脂組成物を含む、
 [1]に記載の異方導電性シート。
 [3] 前記中間高弾性率層と、前記第1エラストマー層及び前記第2エラストマー層の少なくとも一方との間に配置され、金属アルコキシドの重縮合体を含むプライマー層をさらに有する、[1]又は[2]に記載の異方導電性シート。
 [4] 前記少なくとも1つの第1表層高弾性率層は、複数の第1表層高弾性率層であり、前記複数の第1表層高弾性率層は、前記第1エラストマー層上に相互に離間して配置されている、[1]~[3]のいずれかに記載の異方導電性シート。
 [5] 前記複数の第1表層高弾性率層上にそれぞれ配置され、1又は2以上の前記導電部と接続された複数の第1導電層をさらに有する、[4]に記載の異方導電性シート。
 [6] 前記中間高弾性率層及び前記少なくとも1つの第1表層高弾性率層の25℃での貯蔵弾性率は、1.0×10~1.0×1010Paである、[1]~[5]のいずれかに記載の異方導電性シート。
 [7] 前記第1エラストマー層及び前記第2エラストマー層は、シリコーンゴム組成物の架橋物を含む、[1]~[6]のいずれかに記載の異方導電性シート。
 [8] 前記絶縁層は、前記第2エラストマー層の前記中間高弾性率層とは反対側の面上に配置され、前記第2面を構成する少なくとも1つの第2表層高弾性率層をさらに有し、前記少なくとも1つの第2表層高弾性率層の25℃での貯蔵弾性率は、前記第1エラストマー層及び前記第2エラストマー層の25℃での貯蔵弾性率よりも高い、[1]~[7]のいずれかに記載の異方導電性シート。
 [9] 前記少なくとも1つの第2表層高弾性率層は、複数の第2表層高弾性率層であり、前記複数の第2表層高弾性率層は、前記第2エラストマー層上に相互に離間して配置されている、[8]に記載の異方導電性シート。
 [10] 前記複数の第2表層高弾性率層上にそれぞれ配置され、1又は2以上の前記導電部と接続された複数の第2導電層をさらに有する、[9]に記載の異方導電性シート。
 [11] 検査対象物の電気検査に用いられる異方導電性シートであって、前記検査対象物は、前記第1面上に配置される、[1]~[10]のいずれかに記載の異方導電性シート。
[1] An anisotropic conductive sheet including an insulating layer having a first surface on one side in a thickness direction, a second surface on the other side, and a plurality of through holes penetrating from the first surface to the second surface, and a plurality of conductive portions arranged on inner wall surfaces of each of the plurality of through holes, wherein the insulating layer has a first elastomer layer, a second elastomer layer, an intermediate high elastic modulus layer arranged between the first elastomer layer and the second elastomer layer, and at least one first surface high elastic modulus layer arranged on a surface of the first elastomer layer opposite to the intermediate high elastic modulus layer and constituting the first surface, wherein the storage modulus at 25°C of the at least one first surface high elastic modulus layer and the intermediate high elastic modulus layer is higher than the storage modulus at 25°C of the first elastomer layer and the second elastomer layer.
[2] The intermediate high elastic modulus layer contains a resin composition having a glass transition temperature of 150° C. or higher.
The anisotropic conductive sheet according to [1].
[3] The anisotropic conductive sheet according to [1] or [2], further comprising a primer layer disposed between the intermediate high elastic modulus layer and at least one of the first elastomer layer and the second elastomer layer, the primer layer containing a polycondensate of a metal alkoxide.
[4] The anisotropic conductive sheet according to any one of [1] to [3], wherein the at least one first surface high elastic modulus layer is a plurality of first surface high elastic modulus layers, and the plurality of first surface high elastic modulus layers are arranged spaced apart from one another on the first elastomer layer.
[5] The anisotropic conductive sheet according to [4], further comprising a plurality of first conductive layers arranged on the plurality of first surface high elastic modulus layers, respectively, and connected to one or more of the conductive portions.
[6] The anisotropic conductive sheet according to any one of [1] to [5], wherein the intermediate high elastic modulus layer and the at least one first surface high elastic modulus layer have a storage modulus of 1.0×10 8 to 1.0×10 10 Pa at 25° C.
[7] The anisotropic conductive sheet according to any one of [1] to [6], wherein the first elastomer layer and the second elastomer layer contain a cross-linked product of a silicone rubber composition.
[8] The anisotropic conductive sheet according to any one of [1] to [7], wherein the insulating layer is disposed on a surface of the second elastomer layer opposite the intermediate high elastic modulus layer and further includes at least one second surface high elastic modulus layer constituting the second surface, and the storage modulus of the at least one second surface high elastic modulus layer at 25°C is higher than the storage moduli of the first elastomer layer and the second elastomer layer at 25°C.
[9] The anisotropic conductive sheet described in [8], wherein the at least one second surface high elasticity layer is a plurality of second surface high elasticity layers, and the plurality of second surface high elasticity layers are arranged spaced apart from each other on the second elastomer layer.
[10] The anisotropic conductive sheet according to [9], further comprising a plurality of second conductive layers arranged on the plurality of second surface high elastic modulus layers, respectively, and connected to one or more of the conductive portions.
[11] An anisotropic conductive sheet used for electrical testing of an object to be tested, the object to be tested being placed on the first surface, the anisotropic conductive sheet according to any one of [1] to [10].
 [12] 複数の電極を有する検査用基板と、前記検査用基板の前記複数の電極が配置された面上に配置された、[1]~[11]のいずれかに記載の異方導電性シートと、を有する、電気検査装置。
 [13] 複数の電極を有する検査用基板と、端子を有する検査対象物とを、[1]~[11]のいずれかに記載の異方導電性シートを介して積層して、前記検査用基板の前記電極と、前記検査対象物の前記端子とを、前記異方導電性シートを介して電気的に接続する工程を有する、電気検査方法。
[12] An electrical inspection device comprising: a testing board having a plurality of electrodes; and an anisotropic conductive sheet according to any one of [1] to [11], which is placed on a surface of the testing board on which the plurality of electrodes are arranged.
[13] An electrical inspection method comprising the steps of: laminating a testing board having a plurality of electrodes and an object to be inspected having terminals via the anisotropic conductive sheet described in any one of [1] to [11]; and electrically connecting the electrodes of the testing board and the terminals of the object to be inspected via the anisotropic conductive sheet.
 本発明によれば、例えば切り出した時の寸法変化を低減しうる異方導電性シート、電気検査装置及び電気検査方法を提供することができる。 The present invention provides an anisotropic conductive sheet, an electrical inspection device, and an electrical inspection method that can reduce dimensional changes, for example, when cut out.
図1A及び1Bは、特許文献1の異方導電性シートの模式図である。1A and 1B are schematic diagrams of the anisotropic conductive sheet of Patent Document 1. 図2Aは、本実施形態に係る異方導電性シートの模式的な部分拡大平面図であり、図2Bは、図2Aの2B-2B線の模式的な部分拡大断面図である。FIG. 2A is a schematic partially enlarged plan view of the anisotropic conductive sheet according to the present embodiment, and FIG. 2B is a schematic partially enlarged cross-sectional view taken along line 2B-2B in FIG. 2A. 図3A及び3Bは、第1導電層の変形例を示す模式的な拡大平面図である。3A and 3B are schematic enlarged plan views showing modified examples of the first conductive layer. 図4A~4Fは、本実施形態に係る異方導電性シートの製造方法を示す模式的な部分拡大断面図である。4A to 4F are schematic enlarged partial cross-sectional views showing a method for producing an anisotropic conductive sheet according to the present embodiment. 図5A~5Hは、本実施形態に係る異方導電性シートの製造方法を示す模式的な部分拡大断面図である。5A to 5H are schematic enlarged partial cross-sectional views showing a method for producing an anisotropic conductive sheet according to the present embodiment. 図6A及び6Bは、本実施形態に係る異方導電性シートの製造方法を示す模式的な部分拡大断面図である。6A and 6B are schematic enlarged partial cross-sectional views showing a method for producing an anisotropic conductive sheet according to the present embodiment. 図7Aは、本実施形態に異方導電性シートを切り出して、フレームに固定した状態の模式的な平面図であり、図7Bは、図7Aのフレーム付き異方導電性シートの7B-7B線の模式的な断面図である。FIG. 7A is a schematic plan view of an anisotropic conductive sheet cut out in this embodiment and fixed to a frame, and FIG. 7B is a schematic cross-sectional view of the framed anisotropic conductive sheet of FIG. 7A taken along line 7B-7B. 図8は、本実施形態に係る電気検査装置の模式的な断面図である。FIG. 8 is a schematic cross-sectional view of an electrical inspection device according to this embodiment. 図9は、実施例1と比較例1の切り出し後のシートの寸法のオフセット値を示すグラフである。FIG. 9 is a graph showing offset values of dimensions of the sheets after cutting out in Example 1 and Comparative Example 1.
 1.異方導電性シート
 図2Aは、異方導電性シート100の模式的な部分拡大平面図であり、図2Bは、図2Aの異方導電性シート100の2B-2B線の模式的な部分拡大断面図である。図3A及び3Bは、第1導電層122Aの変形例を示す模式的な拡大平面図である。
1. Anisotropic conductive sheet Fig. 2A is a schematic partially enlarged plan view of an anisotropic conductive sheet 100, and Fig. 2B is a schematic partially enlarged cross-sectional view of the anisotropic conductive sheet 100 taken along line 2B-2B in Fig. 2A. Figs. 3A and 3B are schematic enlarged plan views showing modified examples of the first conductive layer 122A.
 図2A及び2Bに示されるように、異方導電性シート100は、絶縁層110と、複数の導電層120と、複数の導電性充填物130とを有する。 As shown in Figures 2A and 2B, the anisotropic conductive sheet 100 has an insulating layer 110, a plurality of conductive layers 120, and a plurality of conductive fillers 130.
 なお、異方導電性シート100は、絶縁層110に、複数の導電層120及び複数の導電性充填物130を形成した領域(電極領域)を1以上有していればよい。上記領域の周囲は、導電層等が配置されないことによって絶縁層110が露出した第1露出部140aでありうる(図2A参照)。 The anisotropic conductive sheet 100 may have one or more regions (electrode regions) in which a plurality of conductive layers 120 and a plurality of conductive fillers 130 are formed in the insulating layer 110. The area surrounding the above region may be a first exposed portion 140a in which the insulating layer 110 is exposed due to the absence of a conductive layer or the like (see FIG. 2A).
 1-1.絶縁層110
 絶縁層110は、第1エラストマー層111Aと、第2エラストマー層111Bと、中間高弾性率層112と、少なくとも1つの第1表層高弾性率層113Aとを含む。
1-1. Insulating layer 110
The insulating layer 110 includes a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, and at least one first surface high elastic modulus layer 113A.
 本実施形態では、絶縁層110は、第1エラストマー層111Aと、第2エラストマー層111Bと、中間高弾性率層112と、少なくとも1つの第1表層高弾性率層113Aと、少なくとも1つの第2表層高弾性率層113Bと、4つのプライマー層114とを含む。そして、絶縁層110は、厚み方向の一方の側の第1面110aと、他方の側の第2面110bと、第1面110aから第2面110bまで貫通する複数の貫通孔115とを有する(図2B参照)。 In this embodiment, the insulating layer 110 includes a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, at least one first surface high elastic modulus layer 113A, at least one second surface high elastic modulus layer 113B, and four primer layers 114. The insulating layer 110 has a first surface 110a on one side in the thickness direction, a second surface 110b on the other side, and a plurality of through holes 115 that penetrate from the first surface 110a to the second surface 110b (see FIG. 2B).
 (第1エラストマー層111A)
 第1エラストマー層111Aは、厚み方向に圧力が加わると弾性変形しやすい低弾性率層である。
(First elastomer layer 111A)
The first elastomer layer 111A is a low elastic modulus layer that is easily elastically deformed when pressure is applied in the thickness direction.
 第1エラストマー層111Aは、特に制限されないが、その例には、シリコーンゴム、ウレタンゴム(ウレタン系ポリマー)、アクリル系ゴム(アクリル系ポリマー)、エチレン-プロピレン-ジエン共重合体(EPDM)、クロロプレンゴム、スチレン-ブタジエン共重合体、アクリルニトリル-ブタジエン共重合体、ポリブタジエンゴム、天然ゴム、フッ素系ゴム等を含むゴム組成物の架橋物を含んでもよいし、ポリエステル系熱可塑性エラストマーやオレフィン系熱可塑性エラストマー等を含む熱可塑性エラストマー組成物を含んでもよい。中でも、ゴム組成物の架橋物が好ましく、シリコーンゴム組成物の架橋物が好ましい。シリコーンゴムは、付加型、縮合型、ラジカル型のいずれであってもよい。 The first elastomer layer 111A is not particularly limited, but examples thereof include a cross-linked product of a rubber composition including silicone rubber, urethane rubber (urethane polymer), acrylic rubber (acrylic polymer), ethylene-propylene-diene copolymer (EPDM), chloroprene rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polybutadiene rubber, natural rubber, fluorine-based rubber, etc., or a thermoplastic elastomer composition including a polyester-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, etc. Among these, a cross-linked product of a rubber composition is preferred, and a cross-linked product of a silicone rubber composition is more preferred. The silicone rubber may be any of addition type, condensation type, and radical type.
 ゴム組成物は、必要に応じて架橋剤をさらに含んでもよい。架橋剤は、ゴムの種類に応じて適宜選択されうる。例えば、シリコーンゴムの架橋剤の例には、ヒドロシリル化反応の触媒活性を有する金属、金属化合物、金属錯体等(白金、白金化合物、それらの錯体等)の付加反応触媒や;ベンゾイルパーオキサイド、ビス-2,4-ジクロロベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド等の有機過酸化物が含まれる。アクリル系ゴムの架橋剤の例には、エポキシ化合物、メラミン化合物、イソシアネート化合物等が含まれる。 The rubber composition may further contain a crosslinking agent as necessary. The crosslinking agent may be appropriately selected depending on the type of rubber. For example, examples of crosslinking agents for silicone rubber include addition reaction catalysts such as metals, metal compounds, and metal complexes (platinum, platinum compounds, and complexes thereof) that have catalytic activity for hydrosilylation reactions; and organic peroxides such as benzoyl peroxide, bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide, and di-t-butyl peroxide. Examples of crosslinking agents for acrylic rubber include epoxy compounds, melamine compounds, and isocyanate compounds.
 例えば、シリコーンゴムを含むゴム組成物の架橋物としては、ヒドロシリル基(SiH基)を有するオルガノポリシロキサンと、ビニル基を有するオルガノポリシロキサンと、付加反応触媒とを含む組成物の付加架橋物やビニル基を有するオルガノポリシロキサンと、付加反応触媒とを含む組成物の付加架橋物;SiCH基を有するオルガノポリシロキサンと、有機過酸化物硬化剤とを含む組成物の架橋物等が含まれる。 For example, examples of crosslinked rubber compositions containing silicone rubber include an addition crosslinked product of a composition containing an organopolysiloxane having a hydrosilyl group (SiH group), an organopolysiloxane having a vinyl group, and an addition reaction catalyst; an addition crosslinked product of a composition containing an organopolysiloxane having a vinyl group and an addition reaction catalyst; and a crosslinked product of a composition containing an organopolysiloxane having a SiCH3 group and an organic peroxide curing agent.
 ゴム組成物は、必要に応じてシランカップリング剤、フィラー等の他の成分もさらに含んでもよい。 The rubber composition may further contain other components such as a silane coupling agent and a filler as necessary.
 第1エラストマー層111Aの25℃での貯蔵弾性率は、中間高弾性率層112や第1表層高弾性率層113Aの25℃での貯蔵弾性率よりも低い。第1エラストマー層111Aを構成するゴム組成物の架橋物の25℃での貯蔵弾性率は、1.0×10Pa以下であることが好ましく、1.0×10~9.0×10Paであることがより好ましい。ゴム組成物の架橋物の貯蔵弾性率は、JIS K 7244-1:1998/ISO6721-1:1994に準拠して測定することができる。 The storage modulus of first elastomer layer 111A at 25° C. is lower than the storage modulus of intermediate high elastic modulus layer 112 and first outer high elastic modulus layer 113A at 25° C. The storage modulus of the cross-linked product of the rubber composition constituting first elastomer layer 111A at 25° C. is preferably 1.0×10 7 Pa or less, and more preferably 1.0×10 5 to 9.0×10 6 Pa. The storage modulus of the cross-linked product of the rubber composition can be measured in accordance with JIS K 7244-1:1998/ISO6721-1:1994.
 上記ゴム組成物の架橋物のガラス転移温度は、特に制限されないが、検査対象物の端子に傷を付きにくくする観点では、-30℃以下であることが好ましく、-40℃以下であることがより好ましい。ガラス転移温度は、JIS K 7095:2012に準拠して測定することができる。 The glass transition temperature of the cross-linked product of the rubber composition is not particularly limited, but from the viewpoint of preventing damage to the terminals of the test object, it is preferably -30°C or lower, and more preferably -40°C or lower. The glass transition temperature can be measured in accordance with JIS K 7095:2012.
 上記ゴム組成物の架橋物の貯蔵弾性率やガラス転移温度は、それぞれの組成物の組成により調整されうる。 The storage modulus and glass transition temperature of the crosslinked product of the above rubber composition can be adjusted by adjusting the composition of each composition.
 なお、第1エラストマー層111Aは、1つの層で構成されてもよいし(図2B参照)、組成又は物性が異なる複数の層で構成されてもよい。第1エラストマー層111Aが複数の層で構成される場合、第1エラストマー層111Aの貯蔵弾性率やガラス転移温度は、複数の層のうち最も厚みの大きい層の貯蔵弾性率やガラス転移温度を意味する。 The first elastomer layer 111A may be composed of one layer (see FIG. 2B), or may be composed of multiple layers with different compositions or physical properties. When the first elastomer layer 111A is composed of multiple layers, the storage modulus and glass transition temperature of the first elastomer layer 111A refer to the storage modulus and glass transition temperature of the thickest layer among the multiple layers.
 (第2エラストマー層111B)
 第2エラストマー層111Bは、第1エラストマー層111Aと同一又は同様な構成であり、詳細な説明は省略する。即ち、第2エラストマー層111Bの形状、構成、材質及び物性は、上記第1エラストマー層111Aの形状、構成、材質及び物性と同一又は同様でよい。
(Second elastomer layer 111B)
The second elastomer layer 111B has the same or similar structure as the first elastomer layer 111A, and detailed description thereof will be omitted. That is, the shape, structure, material, and physical properties of the second elastomer layer 111B may be the same or similar to the shape, structure, material, and physical properties of the first elastomer layer 111A.
 なお、第1エラストマー層111Aの組成と、第2エラストマー層111Bの組成とは、異なってもよい。また、第1エラストマー層111Aの厚みと、第2エラストマー層111Bの厚みとは、異なっていてもよい。異方導電性シート100の反りを抑制する観点では、同等であることが好ましく、第1エラストマー層111Aの厚みに対する第2エラストマー層111Bの厚みの比は、例えば0.8~1.2としうる。 The composition of the first elastomer layer 111A and the composition of the second elastomer layer 111B may be different. Furthermore, the thickness of the first elastomer layer 111A and the thickness of the second elastomer layer 111B may be different. From the viewpoint of suppressing warping of the anisotropic conductive sheet 100, it is preferable that they are equal, and the ratio of the thickness of the second elastomer layer 111B to the thickness of the first elastomer layer 111A may be, for example, 0.8 to 1.2.
 (中間高弾性率層112)
 中間高弾性率層112は、第1エラストマー層111Aと第2エラストマー層111Bとの間に配置された高弾性率層である。中間高弾性率層112の25℃での貯蔵弾性率は、第1エラストマー層111A及び第2エラストマー層111Bの25℃での貯蔵弾性率よりも高い。中間高弾性率層112は、1つの連続した高弾性率の層であるため、シートを切り出した時に、シート内部の残留応力が過度には開放されないようにしうる。それにより、寸法変化を低減することができる。
(Intermediate high elastic modulus layer 112)
The intermediate high elastic modulus layer 112 is a high elastic modulus layer disposed between the first elastomer layer 111A and the second elastomer layer 111B. The storage modulus of the intermediate high elastic modulus layer 112 at 25° C. is higher than the storage modulus of the first elastomer layer 111A and the second elastomer layer 111B at 25° C. The intermediate high elastic modulus layer 112 is one continuous high elastic modulus layer, so that when the sheet is cut out, the residual stress inside the sheet is not excessively released. This can reduce dimensional changes.
 上記の通り、中間高弾性率層112を構成する樹脂組成物の25℃での貯蔵弾性率は、第1エラストマー層111A及び第2エラストマー層111Bを構成するゴム組成物の架橋物の25℃での貯蔵弾性率よりも高ければよく、例えば1.0×10~1.0×1010Paであることが好ましく、1.0×10~8.0×10Paであることがより好ましい。また、中間高弾性率層112を構成する樹脂組成物の25℃での貯蔵弾性率G2と、第1エラストマー層111A又は第2エラストマー層111Bを構成するゴム組成物の架橋物の25℃での貯蔵弾性率G1との比(G2/G1)は、例えば100~100000でありうる。 As described above, the storage modulus at 25° C. of the resin composition constituting the intermediate high elastic modulus layer 112 only needs to be higher than the storage modulus at 25° C. of the cross-linked product of the rubber composition constituting the first elastomer layer 111A and the second elastomer layer 111B, and is, for example, preferably 1.0×10 8 to 1.0×10 10 Pa, and more preferably 1.0×10 8 to 8.0×10 9 Pa. In addition, the ratio (G2/G1) of the storage modulus at 25° C. G2 of the resin composition constituting the intermediate high elastic modulus layer 112 to the storage modulus at 25° C. G1 of the cross-linked product of the rubber composition constituting the first elastomer layer 111A or the second elastomer layer 111B may be, for example, 100 to 100,000.
 上記樹脂組成物の線膨脹係数は、上記ゴム組成物の架橋物の線膨脹係数よりも低いことが好ましい。具体的には、上記樹脂組成物の線膨脹係数は、60ppm/K以下であることが好ましく、50ppm/K以下であることがより好ましい。 The linear expansion coefficient of the resin composition is preferably lower than the linear expansion coefficient of the cross-linked product of the rubber composition. Specifically, the linear expansion coefficient of the resin composition is preferably 60 ppm/K or less, and more preferably 50 ppm/K or less.
 上記樹脂組成物のガラス転移温度は、上記ゴム組成物の架橋物のガラス転移温度よりも高いことが好ましい。具体的には、電気検査は、約-40~150℃で行われることから、上記樹脂組成物のガラス転移温度は、150℃以上であることが好ましく、150~500℃であることがより好ましい。ガラス転移温度は、前述と同様の方法で測定することができる。 The glass transition temperature of the resin composition is preferably higher than the glass transition temperature of the cross-linked product of the rubber composition. Specifically, since the electrical testing is performed at approximately -40 to 150°C, the glass transition temperature of the resin composition is preferably 150°C or higher, and more preferably 150 to 500°C. The glass transition temperature can be measured by the same method as described above.
 上記樹脂組成物の組成は、少なくとも貯蔵弾性率が上記範囲を満たすものであればよく、特に制限されない。樹脂組成物に含まれる樹脂は、ガラス転移温度が上記範囲を満たす耐熱性樹脂であることが好ましく、その例には、ポリアミド、ポリカーボネート、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド等のエンジニアリングプラスチック、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、オレフィン樹脂が含まれる。樹脂組成物は、必要に応じてフィラー等の他の成分をさらに含んでもよい。なお、樹脂組成物は、フィルムであってもよい。 The composition of the resin composition is not particularly limited as long as it has at least a storage modulus that satisfies the above range. The resin contained in the resin composition is preferably a heat-resistant resin whose glass transition temperature satisfies the above range, and examples thereof include engineering plastics such as polyamide, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, and polyetherimide, as well as acrylic resins, urethane resins, epoxy resins, and olefin resins. The resin composition may further contain other components such as a filler as necessary. The resin composition may be in the form of a film.
 中間高弾性率層112を構成する樹脂組成物の25℃での貯蔵弾性率やガラス転移温度、線膨張係数は、第1表層高弾性率層113Aを構成する樹脂組成物の25℃での貯蔵弾性率と同じであってもよいし、異なってもよい。例えば、中間高弾性率層112を構成する樹脂組成物の貯蔵弾性率は、第1表層高弾性率層113Aを構成する樹脂組成物の貯蔵弾性率よりも高くてもよいし、低くてもよい。また、中間高弾性率層112を構成する樹脂組成物の組成は、第1表層高弾性率層113Aを構成する樹脂組成物の組成と同じであってもよいし、異なってもよい。 The storage modulus, glass transition temperature, and linear expansion coefficient at 25°C of the resin composition constituting the intermediate high elasticity layer 112 may be the same as or different from the storage modulus at 25°C of the resin composition constituting the first surface high elasticity layer 113A. For example, the storage modulus of the resin composition constituting the intermediate high elasticity layer 112 may be higher or lower than the storage modulus of the resin composition constituting the first surface high elasticity layer 113A. In addition, the composition of the resin composition constituting the intermediate high elasticity layer 112 may be the same as or different from the composition of the resin composition constituting the first surface high elasticity layer 113A.
 中間高弾性率層112の厚みは、第1表層高弾性率層113Aの厚みと同じであってもよいし、異なってもよい。例えば、中間高弾性率層112の厚みは、第1表層高弾性率層113Aの厚みよりも厚くてもよいし(図2B参照)、薄くてもよい。中間高弾性率層112の厚み(T2)の第1エラストマー層111Aの厚み(T1)に対する比(T2/T1)は、例えば0.01~0.15であることが好ましく、0.05~0.1であることがより好ましい。
 中間高弾性率層112の厚み(T2)の絶縁層110の厚み(T)に対する比(T2/T)は、0.005~0.1、好ましくは0.008~0.08としうる。中間高弾性率層112の厚みは、例えば5~20μmでありうる。
The thickness of the intermediate high elasticity layer 112 may be the same as or different from the thickness of the first surface high elasticity layer 113A. For example, the thickness of the intermediate high elasticity layer 112 may be thicker than the thickness of the first surface high elasticity layer 113A (see FIG. 2B), or may be thinner. The ratio (T2/T1) of the thickness (T2) of the intermediate high elasticity layer 112 to the thickness (T1) of the first elastomer layer 111A is preferably, for example, 0.01 to 0.15, and more preferably 0.05 to 0.1.
The ratio (T2/T) of the thickness (T2) of the intermediate high elastic modulus layer 112 to the thickness (T) of the insulating layer 110 may be 0.005 to 0.1, preferably 0.008 to 0.08. The thickness of the intermediate high elastic modulus layer 112 may be, for example, 5 to 20 μm.
 (第1表層高弾性率層113A)
 少なくとも1つの第1表層高弾性率層113Aは、第1エラストマー層111Aの中間高弾性率層112とは反対側の面上に配置されている。本実施形態では、少なくとも1つの第1表層高弾性率層113Aは、複数の第1表層高弾性率層113Aである。複数の第1表層高弾性率層113Aは、第1エラストマー層111A上に、相互に離間して配置されている。第1表層高弾性率層113Aは、絶縁層110の第1面110aを構成する。
(First Outer High Elasticity Layer 113A)
At least one first surface high elastic modulus layer 113A is disposed on the surface of the first elastomer layer 111A opposite to the intermediate high elastic modulus layer 112. In this embodiment, the at least one first surface high elastic modulus layer 113A is a plurality of first surface high elastic modulus layers 113A. The plurality of first surface high elastic modulus layers 113A are disposed spaced apart from each other on the first elastomer layer 111A. The first surface high elastic modulus layer 113A constitutes the first surface 110a of the insulating layer 110.
 そして、第1表層高弾性率層113Aの25℃での貯蔵弾性率は、第1エラストマー層111A及び第2エラストマー層111Bの25℃での貯蔵弾性率よりも高い。そのため、電気検査時に加熱しても、複数の第1導電層122A間の重心間距離の熱による変動を抑制できる。本実施形態では、複数の第1表層高弾性率層113Aは、第1溝部116aによって完全に分断されているが(図2B参照)、第1表層高弾性率層113Aは、完全に分断されていなくてもよく、1つの連続した層であってもよい。 The storage modulus of the first surface high elasticity layer 113A at 25°C is higher than the storage modulus of the first elastomer layer 111A and the second elastomer layer 111B at 25°C. Therefore, even when heated during electrical testing, it is possible to suppress thermal fluctuations in the center-to-center distance between the multiple first conductive layers 122A. In this embodiment, the multiple first surface high elasticity layers 113A are completely separated by the first groove portion 116a (see FIG. 2B), but the first surface high elasticity layers 113A do not have to be completely separated and may be one continuous layer.
 第1表層高弾性率層113Aの25℃での貯蔵弾性率、ガラス転移温度、及び線膨脹係数は、中間高弾性率層112の25℃での貯蔵弾性率、ガラス転移温度、及び線膨脹係数とそれぞれ同一又は同様でありうる。また、第1表層高弾性率層113Aを構成する樹脂組成物は、中間高弾性率層112を構成する樹脂組成物と同一又は同様でありうる。 The storage modulus, glass transition temperature, and linear expansion coefficient at 25°C of the first surface high elasticity layer 113A may be the same as or similar to the storage modulus, glass transition temperature, and linear expansion coefficient at 25°C of the intermediate high elasticity layer 112. In addition, the resin composition constituting the first surface high elasticity layer 113A may be the same as or similar to the resin composition constituting the intermediate high elasticity layer 112.
 第1表層高弾性率層113Aの厚みは、特に制限されないが、絶縁層110の弾性変形しやすさをより確保しやすくする観点では、第1エラストマー層111Aの厚みよりも薄いことが好ましい(図2B参照)。具体的には、第1表層高弾性率層113Aの厚み(T3)の第1エラストマー層111Aの厚み(T1)に対する比(T3/T1)は、例えば0.01~0.2であることが好ましく、0.02~0.15であることがより好ましい。第1表層高弾性率層113Aの厚みの割合が一定以上であると、絶縁層110の弾性変形しやすさを損なわない程度に、絶縁層110に適度なコシを付与できる。それにより、ハンドリング性を高めることができるだけでなく、熱による複数の貫通孔115の中心間距離の変動を抑制できる。 The thickness of the first high elastic modulus surface layer 113A is not particularly limited, but from the viewpoint of making it easier to ensure the elastic deformation of the insulating layer 110, it is preferable that the thickness is thinner than the thickness of the first elastomer layer 111A (see FIG. 2B). Specifically, the ratio (T3/T1) of the thickness (T3) of the first high elastic modulus surface layer 113A to the thickness (T1) of the first elastomer layer 111A is preferably, for example, 0.01 to 0.2, and more preferably 0.02 to 0.15. If the ratio of the thickness of the first high elastic modulus surface layer 113A is equal to or greater than a certain value, the insulating layer 110 can be given an appropriate stiffness without impairing the elastic deformation of the insulating layer 110. This not only improves the handling properties, but also suppresses the fluctuation of the center-to-center distance of the multiple through holes 115 due to heat.
 (第2表層高弾性率層113B)
 少なくとも1つの第2表層高弾性率層113Bは、第2エラストマー層111Bの中間高弾性率層112とは反対側の面上に配置されている。本実施形態では、少なくとも1つの第2表層高弾性率層113Bは、複数の第2表層高弾性率層113Bであり、複数の第2表層高弾性率層113Bは、第2エラストマー層111B上に相互に離間して配置されている。そして、第2表層高弾性率層113Bは、絶縁層110の第2面110bを構成する。本実施形態では、第2表層高弾性率層113Bは、上記した第1表層高弾性率層113Aと同一又は同様な構成であり、詳細な説明は省略する。即ち、第2表層高弾性率層113Bの形状、材質及び物性は、上記した第1表層高弾性率層113Aの形状、材質及び物性と同一又は同様でよい。
(Second Outer High Elasticity Layer 113B)
At least one second high elastic modulus layer 113B is disposed on the surface of the second elastomer layer 111B opposite to the intermediate high elastic modulus layer 112. In this embodiment, at least one second high elastic modulus layer 113B is a plurality of second high elastic modulus layers 113B, and the plurality of second high elastic modulus layers 113B are disposed on the second elastomer layer 111B at a distance from each other. The second high elastic modulus layer 113B constitutes the second surface 110b of the insulating layer 110. In this embodiment, the second high elastic modulus layer 113B has the same or similar configuration as the first high elastic modulus layer 113A described above, and detailed description will be omitted. That is, the shape, material, and physical properties of the second high elastic modulus layer 113B may be the same as or similar to the shape, material, and physical properties of the first high elastic modulus layer 113A described above.
 なお、第1表層高弾性率層113Aを構成する樹脂組成物の組成と、第2表層高弾性率層113Bを構成する樹脂組成物の組成とは、異なってもよい。また、第1表層高弾性率層113Aの厚みと、第2表層高弾性率層113Bの厚みとは、異なっていてもよいが、異方導電性シート100の反りを抑制する観点では、同等であることが好ましく、第1表層高弾性率層113Aの厚みに対する第2表層高弾性率層113Bの厚みの比は、例えば0.8~1.2としうる。 The composition of the resin composition constituting the first surface high elasticity layer 113A may be different from the composition of the resin composition constituting the second surface high elasticity layer 113B. The thickness of the first surface high elasticity layer 113A may be different from the thickness of the second surface high elasticity layer 113B, but from the viewpoint of suppressing warping of the anisotropic conductive sheet 100, it is preferable that they are equal, and the ratio of the thickness of the second surface high elasticity layer 113B to the thickness of the first surface high elasticity layer 113A may be, for example, 0.8 to 1.2.
 (プライマー層114)
 プライマー層114は、少なくとも中間高弾性率層112と、第1エラストマー層111A及び第2エラストマー層111Bの少なくとも一方との間に配置され、これらの密着性を高めうる。また、プライマー層114は、第1表層高弾性率層113Aと第1エラストマー層111Aとの間、及び/又は、第2表層高弾性率層113Bと第2エラストマー層111Bとの間にもさらに配置されうる。本実施形態では、プライマー層114は、中間高弾性率層112と第1エラストマー層111Aとの間、中間高弾性率層112と第2エラストマー層111Bとの間、第1表層高弾性率層113Aと第1エラストマー層111Aとの間、及び、第2表層高弾性率層113Bと第2エラストマー層111Bとの間の全てに配置されている(図2B参照)。
(Primer layer 114)
The primer layer 114 is disposed at least between the intermediate high elastic modulus layer 112 and at least one of the first elastomer layer 111A and the second elastomer layer 111B, and can enhance adhesion therebetween. The primer layer 114 can also be disposed between the first surface high elastic modulus layer 113A and the first elastomer layer 111A, and/or between the second surface high elastic modulus layer 113B and the second elastomer layer 111B. In this embodiment, the primer layer 114 is disposed all between the intermediate high elastic modulus layer 112 and the first elastomer layer 111A, between the intermediate high elastic modulus layer 112 and the second elastomer layer 111B, between the first surface high elastic modulus layer 113A and the first elastomer layer 111A, and between the second surface high elastic modulus layer 113B and the second elastomer layer 111B (see FIG. 2B).
 プライマー層114は、金属アルコキシドの重縮合体を含む。金属アルコキシドの重縮合体は、耐熱性樹脂等の有機物と、シリコーン化合物等の無機化合物の双方に対して良好な親和性を示す。そのため、プライマー層114は、例えば耐熱性樹脂を含む中間高弾性率層112と、例えばシリコーンゴム組成物の架橋物を含む第1エラストマー層111との双方に対して良好な親和性を示し、これらの層間の密着性を高めうる。 The primer layer 114 contains a polycondensate of a metal alkoxide. A polycondensate of a metal alkoxide exhibits good affinity to both organic compounds such as heat-resistant resins and inorganic compounds such as silicone compounds. Therefore, the primer layer 114 exhibits good affinity to both the intermediate high elastic modulus layer 112, which contains, for example, a heat-resistant resin, and the first elastomer layer 111, which contains, for example, a cross-linked product of a silicone rubber composition, and can enhance the adhesion between these layers.
 プライマー層114は、金属アルコキシドと、有機溶剤又は水とを含むプライマー溶液中で、金属アルコキシドをゾルゲル法で重縮合して得られる。 The primer layer 114 is obtained by polycondensing a metal alkoxide using a sol-gel method in a primer solution containing the metal alkoxide and an organic solvent or water.
 金属アルコキシドは、下記一般式(1)で表される。
 式(1):R M(OR
The metal alkoxide is represented by the following general formula (1).
Formula (1): R 1 n M(OR 2 ) m
 式(1)中、
 Mは、金属原子を表す。金属原子の例には、珪素、ジルコニウム、チタン、アルミニウム等が含まれ、好ましくは珪素である。
 R及びRは、それぞれ炭素数1~8の有機基である。有機基の例には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基等のアルキル基が挙げられる。
 mは、1以上の整数を表し、nは、0以上の整数を表し、n+mは、Mの原子価を表す。
In formula (1),
M represents a metal atom. Examples of the metal atom include silicon, zirconium, titanium, aluminum, etc., and is preferably silicon.
R1 and R2 are each an organic group having a carbon number of 1 to 8. Examples of the organic group include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group.
m represents an integer of 1 or more, n represents an integer of 0 or more, and n+m represents the valence of M.
 式(1)で表される金属アルコキシドの例には、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン等のアルコキシシラン類や、これらに対応するアルコキシアルミニウム、アルコキシジルコニウム、アルコキシチタンが含まれる。 Examples of metal alkoxides represented by formula (1) include alkoxysilanes such as tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, p-styryltrimethoxysilane, 3-chloropropyltriethoxysilane, trifluoromethyltrimethoxysilane, and trifluoromethyltriethoxysilane, as well as the corresponding alkoxyaluminum, alkoxyzirconium, and alkoxytitanium.
 金属アルコキシドの含有量は、プライマー溶液の不揮発成分に対して50質量%以上、好ましくは70~100質量%でありうる。 The content of the metal alkoxide can be 50% by mass or more, preferably 70 to 100% by mass, based on the non-volatile components of the primer solution.
 有機溶剤は、上記成分を分散又は溶解させうるものであればよく、特に制限されないが、例えばキシレン、トルエン、ベンゼン、ヘプタン、ヘキサン、トリクロロエチレン、パークロロエチレン、塩化メチレン、酢酸エチル、メチルイソブチルケトン、メチルエチルケトン、エタノール、イソプロパノール、ブタノール、シクロヘキサノン、ジエチルエーテル、ゴム揮発油、シリコーン系溶剤等の有機溶剤が含まれる。硬化促進剤は、前述と同様の付加反応触媒(白金族金属系触媒等)を用いることができる。 The organic solvent may be any solvent capable of dispersing or dissolving the above components, and is not particularly limited. Examples of the organic solvent include xylene, toluene, benzene, heptane, hexane, trichloroethylene, perchloroethylene, methylene chloride, ethyl acetate, methyl isobutyl ketone, methyl ethyl ketone, ethanol, isopropanol, butanol, cyclohexanone, diethyl ether, rubber volatile oil, silicone solvents, and other organic solvents. The curing accelerator may be an addition reaction catalyst (such as a platinum group metal catalyst) similar to those described above.
 上記溶液は、必要に応じて上記以外の成分をさらに含んでもよい。そのような成分としては、ゾルゲル触媒、シランカップリング剤、水溶性樹脂が挙げられる。
 ゾルゲル触媒の例には、酸やアミン系化合物が含まれる。
 シランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができ、ビニル基を有するシランカップリング剤、アミノ基を有するシランカップリング剤(アミノプロピルトリメトキシシラン等)、エポキシ基を有するシランカップリング剤(グリシドキシプロピルトリメトキシシラン等)、メルカプト基を有するシランカップリング剤(メルカプトプロピルトリメトキシシラン等)が挙げられる。
 水溶性樹脂としては、ポリビニルアルコール及びエチレン-ビニルアルコール共重合体等が含まれる。
The solution may further contain other components as necessary, such as a sol-gel catalyst, a silane coupling agent, and a water-soluble resin.
Examples of sol-gel catalysts include acids and amine-based compounds.
As the silane coupling agent, a known organoalkoxysilane containing an organic reactive group can be used, and examples thereof include silane coupling agents having a vinyl group, silane coupling agents having an amino group (aminopropyltrimethoxysilane, etc.), silane coupling agents having an epoxy group (glycidoxypropyltrimethoxysilane, etc.), and silane coupling agents having a mercapto group (mercaptopropyltrimethoxysilane, etc.).
The water-soluble resin includes polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
 プライマー層114の厚みは、特に制限されないが、例えば0.01~5μm、好ましくは0.05~3μmである。プライマー層114があるかどうかは、例えば電子顕微鏡による断面観察により確認することができる。 The thickness of the primer layer 114 is not particularly limited, but is, for example, 0.01 to 5 μm, and preferably 0.05 to 3 μm. Whether or not the primer layer 114 is present can be confirmed, for example, by observing the cross section using an electron microscope.
 4つのプライマー層114の組成や物性は、互いに同じであってもよいし、異なってもよい。例えば、4つのプライマー層114の厚みは、互いに同じであってもよいし、異なってもよい。 The compositions and physical properties of the four primer layers 114 may be the same as each other or may be different. For example, the thicknesses of the four primer layers 114 may be the same as each other or may be different.
 (貫通孔115)
 複数の貫通孔115は、絶縁層110の第1面110aから第2面110bまで貫通する孔である(図2B参照)。
(Through hole 115)
The multiple through holes 115 are holes that penetrate from the first surface 110a to the second surface 110b of the insulating layer 110 (see FIG. 2B).
 貫通孔115の軸方向は、絶縁層110の厚み方向に対して略平行であってもよいし、傾斜していてもよい。略平行とは、絶縁層110の厚み方向に対する角度が10°以下であることをいう。傾斜とは、絶縁層110の厚み方向に対する角度が10°超50°以下、好ましくは20~45°であることをいう。本実施形態では、貫通孔115の軸方向は、絶縁層110の厚み方向に対して略平行である(図2B参照)。軸方向とは、貫通孔115の第1面110a側の開口部と第2面110b側の開口部の重心同士を結ぶ線の方向をいう。 The axial direction of the through hole 115 may be approximately parallel to the thickness direction of the insulating layer 110, or may be inclined. Approximately parallel means that the angle with respect to the thickness direction of the insulating layer 110 is 10° or less. Inclined means that the angle with respect to the thickness direction of the insulating layer 110 is more than 10° and 50° or less, preferably 20 to 45°. In this embodiment, the axial direction of the through hole 115 is approximately parallel to the thickness direction of the insulating layer 110 (see Figure 2B). The axial direction refers to the direction of a line connecting the centers of gravity of the opening of the through hole 115 on the first surface 110a side and the opening on the second surface 110b side.
 第1面110aにおける貫通孔115の開口部の形状は、特に制限されず、例えば円形、四角形、その他の多角形等のいずれであってもよい。本実施形態では、第1面110aにおける貫通孔115の開口部の形状は、円形である(図2A参照)。また、貫通孔115の第1面110a側の開口部の形状と、第2面110b側の開口部の形状とは、同じであってもよいし、異なってもよく、測定対象となる電子デバイスに対する接続安定性の観点では、同じであることが好ましい。 The shape of the opening of the through-hole 115 on the first surface 110a is not particularly limited and may be, for example, a circle, a rectangle, or any other polygon. In this embodiment, the shape of the opening of the through-hole 115 on the first surface 110a is a circle (see FIG. 2A). Furthermore, the shape of the opening of the through-hole 115 on the first surface 110a side and the shape of the opening on the second surface 110b side may be the same or different, and from the viewpoint of connection stability to the electronic device to be measured, it is preferable that they are the same.
 第1面110a側における貫通孔115の開口部の円相当径Dは、特に制限されず、例えば1~330μmであることが好ましく、2~200μmであることがより好ましく、10~100μmであることがさらに好ましい(図2B参照)。第1面110a側における貫通孔115の開口部の円相当径Dとは、第1面110a側から貫通孔115の軸方向に沿って見たときの、貫通孔115の開口部の円相当径(開口部の面積に相当する真円の直径)をいう。第1面110a側における貫通孔115の開口部の円相当径Dと、第2面110b側における貫通孔115の開口部の円相当径Dとは、同じであってもよいし、異なってもよい。 The circle-equivalent diameter D of the opening of the through hole 115 on the first surface 110a side is not particularly limited, and is preferably 1 to 330 μm, more preferably 2 to 200 μm, and even more preferably 10 to 100 μm (see FIG. 2B). The circle-equivalent diameter D of the opening of the through hole 115 on the first surface 110a side refers to the circle-equivalent diameter (diameter of a perfect circle equivalent to the area of the opening) of the through hole 115 when viewed along the axial direction of the through hole 115 from the first surface 110a side. The circle-equivalent diameter D of the opening of the through hole 115 on the first surface 110a side and the circle-equivalent diameter D of the opening of the through hole 115 on the second surface 110b side may be the same or different.
 第1面110a側における複数の貫通孔115の開口部の中心間距離(ピッチ)pは、特に制限されず、検査対象物の端子のピッチに対応して適宜設定されうる(図2B参照)。検査対象物としてのHBM(High Bandwidth Memory)の端子のピッチは55μmであり、PoP(Package on Package)の端子のピッチは400~650μmであることから、複数の貫通孔115の開口部の中心間距離pは、例えば5~650μmでありうる。中でも、アライメントフリーにする観点では、第1面110a側における複数の貫通孔115の開口部の中心間距離pは、5~55μmであることがより好ましい。第1面110a側における、複数の貫通孔115の開口部の中心間距離pとは、第1面110a側における、複数の貫通孔115の開口部の中心間距離のうち最小値をいう。貫通孔115の開口部の中心は、開口部の重心である。第1面110a側における複数の貫通孔115の開口部の中心間距離と、第2面110b側における複数の貫通孔115の開口部の中心間距離とは、同じであってもよいし、異なってもよい。 The center-to-center distance (pitch) p of the openings of the multiple through holes 115 on the first surface 110a side is not particularly limited and can be set appropriately in accordance with the pitch of the terminals of the test object (see FIG. 2B). Since the pitch of the terminals of the HBM (High Bandwidth Memory) as the test object is 55 μm and the pitch of the terminals of the PoP (Package on Package) is 400 to 650 μm, the center-to-center distance p of the openings of the multiple through holes 115 can be, for example, 5 to 650 μm. In particular, from the viewpoint of making it alignment-free, it is more preferable that the center-to-center distance p of the openings of the multiple through holes 115 on the first surface 110a side is 5 to 55 μm. The center-to-center distance p of the openings of the multiple through holes 115 on the first surface 110a side refers to the minimum value of the center-to-center distance of the openings of the multiple through holes 115 on the first surface 110a side. The center of the opening of the through hole 115 is the center of gravity of the opening. The center-to-center distance between the openings of the multiple through holes 115 on the first surface 110a side and the center-to-center distance between the openings of the multiple through holes 115 on the second surface 110b side may be the same or different.
 貫通孔115の軸方向の長さ(絶縁層110の厚みT)と、第1面110a側における貫通孔115の開口部の円相当径Dの比T/Dは、特に制限されないが、3~40であることが好ましい(図2B参照)。 The ratio T/D of the axial length of the through hole 115 (thickness T of the insulating layer 110) to the circular equivalent diameter D of the opening of the through hole 115 on the first surface 110a side is not particularly limited, but is preferably 3 to 40 (see FIG. 2B).
 (共通事項)
 絶縁層110の厚み(T)は、非導通部分での絶縁性を確保できる程度であれば特に制限されず、例えば40~700μm、好ましくは100~400μmでありうる。
(Common subject matter)
The thickness (T) of the insulating layer 110 is not particularly limited as long as it is sufficient to ensure insulation in the non-conductive portions, and may be, for example, 40 to 700 μm, and preferably 100 to 400 μm.
 1-2.導電層120
 導電層120は、1又は2以上の貫通孔115ごとに対応して配置されている。導電層120は、1又は2以上の導電部121と、第1導電層122Aと、第2導電層122Bとを含む(図2B参照)。
1-2. Conductive layer 120
The conductive layer 120 is disposed corresponding to one or more through holes 115. The conductive layer 120 includes one or more conductive portions 121, a first conductive layer 122A, and a second conductive layer 122B (see FIG. 2B).
 導電部121は、貫通孔115の内壁面に配置されている。 The conductive portion 121 is disposed on the inner wall surface of the through hole 115.
 第1導電層122Aは、第1面110a上、即ち、第1表層高弾性率層113A上に配置され、1又は2以上の導電部121と接続されている。複数の第1導電層122Aは、第1溝部116aを介して相互に離間して配置されている。
 第2導電層122Bは、第2面110b上、即ち、第2表層高弾性率層113B上に配置され、1又は2以上の導電部121と接続されている。複数の第2導電層122Bは、第2溝部116bを介して相互に離間して配置されている。
The first conductive layer 122A is disposed on the first surface 110a, i.e., on the first outer high elastic modulus layer 113A, and is connected to one or more conductive portions 121. The multiple first conductive layers 122A are disposed spaced apart from one another via the first groove portions 116a.
The second conductive layer 122B is disposed on the second surface 110b, i.e., on the second outer high elastic modulus layer 113B, and is connected to one or more conductive portions 121. The multiple second conductive layers 122B are disposed spaced apart from one another via the second groove portions 116b.
 絶縁層110の平面視において、第1導電層122A及び第2導電層122Bの形状は、特に制限されず、矩形、三角形、その他の多角形、円形等のいずれであってもよい。本実施形態では、第1導電層122A及び第2導電層122Bの形状は、いずれも矩形である(図2A参照)。また、本実施形態では、複数の第1導電層122Aの形状及び大きさは、いずれも同じであり、複数の第2導電層122Bの形状及び大きさは、いずれも同じである。また、本実施形態では、1つの貫通孔115ごとに1つの第1導電層122Aが配置されているが、これに限らず、2以上の貫通孔115ごとに1つの第1導電層122Aが配置されてもよい(図3A及び3B参照)。 In a plan view of the insulating layer 110, the shapes of the first conductive layer 122A and the second conductive layer 122B are not particularly limited and may be any of rectangular, triangular, other polygonal, circular, etc. In this embodiment, the shapes of the first conductive layer 122A and the second conductive layer 122B are both rectangular (see FIG. 2A). In this embodiment, the shapes and sizes of the multiple first conductive layers 122A are all the same, and the shapes and sizes of the multiple second conductive layers 122B are all the same. In this embodiment, one first conductive layer 122A is arranged for each through hole 115, but this is not limited thereto, and one first conductive layer 122A may be arranged for two or more through holes 115 (see FIGS. 3A and 3B).
 導電層120を構成する材料の体積抵抗率は、それぞれ十分な導通が得られる程度であれば特に制限されないが、例えば1.0×10-4Ω・m以下であることが好ましく、1.0×10-5~1.0×10-9Ω・mであることがより好ましい。体積抵抗率は、ASTM D 991に記載の方法で測定することができる。 The volume resistivity of the material constituting the conductive layer 120 is not particularly limited as long as sufficient conductivity is obtained, but for example, it is preferably 1.0×10 −4 Ω·m or less, and more preferably 1.0×10 −5 to 1.0×10 −9 Ω·m. The volume resistivity can be measured by the method described in ASTM D 991.
 導電層120を構成する材料は、体積抵抗率が上記範囲を満たすものであればよい。導電層120を構成する材料の例には、銅、金、白金、銀、ニッケル、錫、鉄又はこれらのうち1種の合金等の金属材料や、カーボンブラック等のカーボン材料が含まれる。中でも、導電層120は、高い導電性と柔軟性を有する観点から、金、銀及び銅からなる群より選ばれる一以上を主成分として含むことが好ましい。主成分として含むとは、例えば導電層120に対して70質量%以上、好ましくは80質量%以上であることをいう。 The material constituting the conductive layer 120 may have a volume resistivity that satisfies the above range. Examples of materials constituting the conductive layer 120 include metal materials such as copper, gold, platinum, silver, nickel, tin, iron, or an alloy of one of these metals, and carbon materials such as carbon black. In particular, from the viewpoint of having high conductivity and flexibility, the conductive layer 120 preferably contains one or more selected from the group consisting of gold, silver, and copper as a main component. "Containing as a main component" means, for example, that the conductive layer 120 contains 70% by mass or more, preferably 80% by mass or more.
 導電部121、第1導電層122A及び第2導電層122Bを構成する材料は、同じでも、異なってもよいが、製造が簡易で、導通も安定にしやすい観点では、同じであることが好ましい。 The materials constituting the conductive portion 121, the first conductive layer 122A, and the second conductive layer 122B may be the same or different, but it is preferable that they are the same from the viewpoint of ease of manufacture and easy stability of electrical continuity.
 導電層120の厚みは、十分な厚みで導通が得られ、且つ貫通孔115を塞がないような範囲であればよく、例えば0.1~5μmでありうる。導電層120のうち、導電部121の厚みは、絶縁層110の厚み方向に対して直交する方向であり、第1導電層122A及び第2導電層122Bの厚みは、絶縁層110の厚み方向と平行な方向の厚みをいう(図2B参照)。 The thickness of the conductive layer 120 may be in a range that is sufficient to provide electrical continuity and does not block the through-holes 115, and may be, for example, 0.1 to 5 μm. The thickness of the conductive portion 121 of the conductive layer 120 is in a direction perpendicular to the thickness direction of the insulating layer 110, and the thicknesses of the first conductive layer 122A and the second conductive layer 122B are in a direction parallel to the thickness direction of the insulating layer 110 (see FIG. 2B).
 複数の第1導電層122Aの間に配置される第1溝部116aは、第1面110aに配置された凹条である。 The first groove portion 116a arranged between the multiple first conductive layers 122A is a recessed strip arranged on the first surface 110a.
 第1溝部116aの、延設方向に対して直交する方向の断面形状は、特に制限されず、矩形、半円形、U字型、V字型のいずれであってもよい。本実施形態では、第1溝部116aの断面形状は、矩形である。 The cross-sectional shape of the first groove portion 116a in a direction perpendicular to the extension direction is not particularly limited, and may be rectangular, semicircular, U-shaped, or V-shaped. In this embodiment, the cross-sectional shape of the first groove portion 116a is rectangular.
 第1溝部116aの幅w及び深さdは、押し込み荷重をかけたときに、第1溝部116aを介して一方の側の第1導電層122Aと、他方の側の第1導電層122Aとが接触しない範囲に設定されることが好ましい(図2B参照)。 The width w and depth d of the first groove 116a are preferably set to a range in which the first conductive layer 122A on one side does not come into contact with the first conductive layer 122A on the other side via the first groove 116a when a pressing load is applied (see FIG. 2B).
 第1溝部116aの幅wは、第1面110aにおいて、第1溝部116aが延設される方向に対して直交する方向の最大幅である(図2B参照)。 The width w of the first groove portion 116a is the maximum width on the first surface 110a in a direction perpendicular to the direction in which the first groove portion 116a extends (see FIG. 2B).
 第1溝部116aの深さdは、特に制限されないが、第1表層高弾性率層113Aの厚みと同じか、それよりも大きいことが好ましい。即ち、第1溝部116aの最深部は、第1エラストマー層111Aの表面又はその内部に位置しうる。第1溝部116aの深さdは、絶縁層110の厚み方向において、第1導電層122Aの表面から最深部までの深さをいう(図2B参照)。第1溝部116aによって複数の第1表層高弾性率層113Aに分断されることで、検査対象物520を載せて押し込んだ時に、周囲の導電層120も一緒に押し込まれないようにすることができる。 The depth d of the first groove 116a is not particularly limited, but is preferably the same as or greater than the thickness of the first surface high elasticity layer 113A. That is, the deepest part of the first groove 116a can be located on the surface of the first elastomer layer 111A or inside it. The depth d of the first groove 116a refers to the depth from the surface to the deepest part of the first conductive layer 122A in the thickness direction of the insulating layer 110 (see FIG. 2B). By dividing the first groove 116a into multiple first surface high elasticity layers 113A, it is possible to prevent the surrounding conductive layer 120 from being pressed in when the test object 520 is placed on it and pressed in.
 第2面110bにおいて、複数の第2導電層122B間に配置された第2溝部116bは、第1面110aにおいて、複数の第1導電層122A間に配置された第1溝部116aと同一又は同様であってよい。 The second grooves 116b arranged between the multiple second conductive layers 122B on the second surface 110b may be the same as or similar to the first grooves 116a arranged between the multiple first conductive layers 122A on the first surface 110a.
 1-3.導電性充填物130
 導電性充填物130は、貫通孔115の内部、具体的には導電部121で囲まれた貫通孔115の空洞115’内に充填されている。それにより、異方導電性シート100の導電性を高めつつ、導電部121の剥がれを抑制しうる。
1-3. Conductive filler 130
The conductive filler 130 is filled inside the through hole 115, specifically, inside the cavity 115' of the through hole 115 surrounded by the conductive portion 121. This improves the conductivity of the anisotropic conductive sheet 100. This can increase the resistance while suppressing peeling of the conductive portion 121.
 導電性充填物130は、導電性粒子と、ゴム成分とを含む導電性ゴム組成物の架橋物を含む。 The conductive filler 130 includes a cross-linked conductive rubber composition that includes conductive particles and a rubber component.
 導電性粒子を構成する材料は、特に制限されないが、導電性に優れ、かつ柔軟性を有する観点では、金、銀、及び銅からなる群より選ばれる一以上を含む粒子が好ましい。 The material constituting the conductive particles is not particularly limited, but from the viewpoint of excellent conductivity and flexibility, particles containing one or more selected from the group consisting of gold, silver, and copper are preferred.
 ゴム成分の種類は、特に制限されず、第1エラストマー層111Aや第2エラストマー層111B(以下、これらをまとめて「エラストマー層111」ともいう)を構成するゴム成分と同様のものを使用できる。導電性充填物130を構成するゴム成分の種類は、エラストマー層111を構成するゴム成分の種類と同じであってもよいし、異なってもよい。柔軟性の観点等では、シリコーンゴムが好ましい。 The type of rubber component is not particularly limited, and may be the same as the rubber component constituting the first elastomer layer 111A and the second elastomer layer 111B (hereinafter, these are also collectively referred to as "elastomer layer 111"). The type of rubber component constituting the conductive filler 130 may be the same as the type of rubber component constituting the elastomer layer 111, or may be different. From the viewpoint of flexibility, etc., silicone rubber is preferable.
 ゴム成分の含有割合は、導電性粒子とゴム成分の合計量に対して5~50質量%であることが好ましい。ゴム成分の含有割合が5質量%以上であると、導電部121の貫通孔115の内壁面との密着性を高めやすく、且つ導電性ゴム組成物の架橋物が十分な柔軟性を有するため、導電部121のクラックや剥がれを抑制しやすい。 The rubber component content is preferably 5 to 50% by mass based on the total amount of the conductive particles and rubber component. If the rubber component content is 5% by mass or more, it is easy to increase the adhesion of the conductive part 121 to the inner wall surface of the through hole 115, and since the cross-linked product of the conductive rubber composition has sufficient flexibility, it is easy to suppress cracking and peeling of the conductive part 121.
 導電性ゴム組成物は、必要に応じて架橋剤等の他の成分をさらに含んでもよい。架橋剤の種類は、特に制限されず、エラストマー層111を構成するゴム組成物に使用される架橋剤と同様のものを使用できる。 The conductive rubber composition may further contain other components such as a cross-linking agent as necessary. There are no particular limitations on the type of cross-linking agent, and the same cross-linking agent as that used in the rubber composition constituting the elastomer layer 111 can be used.
 導電性充填物130を構成する導電性ゴム組成物の架橋物の25℃での貯蔵弾性率は、特に制限されないが、通常、エラストマー層111を構成するゴム組成物の架橋物の25℃での貯蔵弾性率よりも高くなりやすい。ただし、押し込み時の圧力が導電性充填物130に集中することによる不具合を抑制する観点では、適度に低いことが好ましい。具体的には、導電性ゴム組成物の架橋物の25℃での貯蔵弾性率は、0.1~30MPaであることが好ましく、0.2~20MPaであることがより好ましい。貯蔵弾性率は、上記と同様の方法で、圧縮変形モードで測定することができる。 The storage modulus at 25°C of the cross-linked product of the conductive rubber composition that constitutes the conductive filler 130 is not particularly limited, but is usually likely to be higher than the storage modulus at 25°C of the cross-linked product of the rubber composition that constitutes the elastomer layer 111. However, from the viewpoint of suppressing defects caused by the pressure during pressing being concentrated on the conductive filler 130, it is preferable that it is moderately low. Specifically, the storage modulus at 25°C of the cross-linked product of the conductive rubber composition is preferably 0.1 to 30 MPa, and more preferably 0.2 to 20 MPa. The storage modulus can be measured in a compression deformation mode using the same method as above.
 導電性ゴム組成物の架橋物の体積抵抗率は、10―2Ω・m以下であることが好ましく、1×10-8~1×10-2Ω・mであることがより好ましい。体積抵抗率は、上記と同様の方法で測定できる。 The volume resistivity of the crosslinked product of the conductive rubber composition is preferably 10 −2 Ω·m or less, and more preferably 1×10 −8 to 1×10 −2 Ω·m. The volume resistivity can be measured by the same method as above.
 1-4.第1露出部140a、第2露出部140b
 異方導電性シート100は、後述するように、フレーム200に取り付けた状態で電気検査装置にセットされる。そのため、異方導電性シート100は、フレーム200の開口部のサイズに合わせて切り出される(個片化される)。
1-4. First exposed portion 140a, second exposed portion 140b
As described later, the anisotropic conductive sheet 100 is attached to a frame 200 and set in an electrical inspection device. Therefore, the anisotropic conductive sheet 100 is cut to fit the size of the opening of the frame 200. (Individually divided).
 本実施形態に係る異方導電性シート100は、第1面110aにおいて、複数の導電層120及び複数の導電性充填物130が形成された領域の外周縁部に、第1導電層122Aが配置されずに絶縁層110が露出した第1露出部140aを有する(図2A参照)。
 同様に、異方導電性シート100は、第2面110bにおいて、複数の導電層120及び複数の導電性充填物130が形成された領域の外周縁部に、第2導電層122Bが配置されずに絶縁層110が露出した第2露出部140bを有する(不図示)。
The anisotropic conductive sheet 100 of this embodiment has a first exposed portion 140a on the first surface 110a at the outer edge of an area in which a plurality of conductive layers 120 and a plurality of conductive fillings 130 are formed, in which the first conductive layer 122A is not disposed and the insulating layer 110 is exposed (see Figure 2A).
Similarly, on the second surface 110b, the anisotropic conductive sheet 100 has a second exposed portion 140b (not shown) at the outer edge of the area in which the multiple conductive layers 120 and the multiple conductive fillings 130 are formed, where the second conductive layer 122B is not disposed and the insulating layer 110 is exposed.
 そして、異方導電性シート100の切り出し時に、第1露出部140aと第2露出部140bで切断することで、切り出した後の異方導電性シート100に導電層120の切り屑が異物として混入するのを抑制できる。 Furthermore, by cutting the anisotropic conductive sheet 100 at the first exposed portion 140a and the second exposed portion 140b when cutting out the anisotropic conductive sheet 100, it is possible to prevent cutting chips of the conductive layer 120 from being mixed in as foreign matter into the anisotropic conductive sheet 100 after cutting.
 1-5.作用
 上記の通り、弾性率が大きく異なる複数の層の積層構造を有する異方導電性シートは、これらの層の線熱膨張係数差により残留応力が生じやすい。特に、第1表層高弾性率層113Aや第2表層高弾性率層113Bが、第1溝部116aや第2溝部116bによって複数の第1表層高弾性率層113Aや複数の第2表層高弾性率層113Bに分断されていると、当該シート内部の残留応力がより開放されやすい。その結果、シートの切り出し時に、内部の残留応力が開放されやすいため、寸法変化を生じやすい。
1-5. Function As described above, an anisotropic conductive sheet having a laminated structure of multiple layers with significantly different elastic moduli is prone to residual stress due to the difference in linear thermal expansion coefficient between these layers. In particular, if the first surface high elastic modulus layer 113A and the second surface high elastic modulus layer 113B are divided into multiple first surface high elastic modulus layers 113A and multiple second surface high elastic modulus layers 113B by the first groove portion 116a and the second groove portion 116b, the residual stress inside the sheet is more likely to be released. As a result, when the sheet is cut out, the residual stress inside is more likely to be released, and dimensional changes are more likely to occur.
 これに対し、上記実施形態に係る異方導電性シート100は、中間高弾性率層112を有する。中間高弾性率層112は、1つの連続した高弾性率の層であるため、シートを切り出した時に、シート内部の残留応力が過度には開放されないようにしうる。それにより、寸法変化を低減することができる。 In contrast, the anisotropic conductive sheet 100 according to the above embodiment has an intermediate high elastic modulus layer 112. Since the intermediate high elastic modulus layer 112 is a single continuous layer with a high elastic modulus, it is possible to prevent the residual stress inside the sheet from being released excessively when the sheet is cut out. This makes it possible to reduce dimensional changes.
 2.異方導電性シートの製造方法
 図4A~4F、図5A~5H、及び図6Aおよび6Bは、異方導電性シート100の製造方法を示す模式的な部分拡大断面図である。
2. Method for Manufacturing Anisotropically Conductive Sheet FIGS. 4A to 4F, 5A to 5H, and 6A and 6B are schematic enlarged partial cross-sectional views showing a method for manufacturing the anisotropically conductive sheet 100. FIG.
 異方導電性シート100は、
 1)少なくとも第1エラストマー層111Aと、第2エラストマー層111Bと、中間高弾性率層112と、第1表層高弾性率層113Aと、第2表層高弾性率層113Bとを含む積層シート150を得る工程(図4A参照)、
 2)積層シート150に複数の貫通孔115を形成する工程(図4B参照)、
 3)積層シート150の複数の貫通孔115が形成された領域ごとに、1つの連続した導電層151を形成する工程(図4C参照)、
 4)複数の貫通孔115の内部に導電性ゴム組成物Lを充填する工程(図4D参照)、及び
 5)積層シート150の第1面150a及び第2面150bに、第1溝部116a及び第2溝部116bを形成して、導電層151の第1面150a側の部分を複数の第1導電層122Aに、第2面150b側の部分を複数の第2導電層122Bに、それぞれ分割する工程(図4E及び4F参照)
 を経て製造することができる。
The anisotropic conductive sheet 100 is
1) A step of obtaining a laminated sheet 150 including at least a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, a first surface high elastic modulus layer 113A, and a second surface high elastic modulus layer 113B (see FIG. 4A );
2) forming a plurality of through holes 115 in the laminated sheet 150 (see FIG. 4B );
3) forming one continuous conductive layer 151 in each area of the laminated sheet 150 where the plurality of through holes 115 are formed (see FIG. 4C );
4) a step of filling the insides of the plurality of through holes 115 with a conductive rubber composition L (see FIG. 4D ); and 5) a step of forming a first groove portion 116a and a second groove portion 116b on the first surface 150a and the second surface 150b of the laminated sheet 150 to divide the portion of the conductive layer 151 on the first surface 150a side into a plurality of first conductive layers 122A and the portion on the second surface 150b side into a plurality of second conductive layers 122B (see FIGS. 4E and 4F ).
It can be manufactured through the following steps.
 1)の工程について
 まず、第1エラストマー層111Aと、第2エラストマー層111Bと、中間高弾性率層112と、第1表層高弾性率層113Aとを少なくとも含む積層シート150を準備する。積層シート150は、任意の方法で製造することができ、例えば以下の手順で製造することができる。
Regarding step 1), first, a laminate sheet 150 is prepared, which includes at least a first elastomer layer 111A, a second elastomer layer 111B, an intermediate high elastic modulus layer 112, and a first surface high elastic modulus layer 113A. The laminate sheet 150 can be manufactured by any method, and can be manufactured, for example, by the following procedure.
 (中間シートS1の作製)
 中間高弾性率層112の少なくとも一方の面(図5Bでは両面)に、プライマー層114を形成した後、エラストマー層111-1を形成する。それにより、中間シートS1を得る(図5A~5C参照)。
(Preparation of intermediate sheet S1)
After forming a primer layer 114 on at least one surface (both surfaces in FIG. 5B) of the intermediate high elastic modulus layer 112, an elastomer layer 111-1 is formed, thereby obtaining an intermediate sheet S1 (see FIGS. 5A to 5C).
 プライマー層114は、上記金属アルコキシドを含む溶液を塗布、乾燥及び加熱して形成することができる。それにより、金属アルコキシドをゾルゲル法で重縮合させる。
 エラストマー層111-1は、上記第1エラストマー層111Aや第2エラストマー層111Bを得るためのゴム組成物を塗布し、乾燥及び加熱して形成することができる。ゴム組成物は、好ましくはシリコーンゴム組成物であり、その例には、2液付加型の液状シリコーンゴム組成物(信越シリコーン社製のKE2061-50-A/B、KE2061-70-A/B等)が挙げられる。
The primer layer 114 can be formed by applying a solution containing the above-mentioned metal alkoxide, followed by drying and heating, thereby polycondensing the metal alkoxide by a sol-gel method.
The elastomer layer 111-1 can be formed by applying, drying and heating a rubber composition for obtaining the first elastomer layer 111A and the second elastomer layer 111B. The rubber composition is preferably a silicone rubber composition, and examples thereof include two-liquid additive liquid silicone rubber compositions (KE2061-50-A/B, KE2061-70-A/B, etc., manufactured by Shin-Etsu Silicones Co., Ltd.).
 (表層シートS2の作製)
 上記と同様に、第1表層高弾性率層113Aの一方の面上にプライマー層114を形成した後(図5D及び5E参照)、エラストマー層111-2を形成する(図5F参照)。次いで、エラストマー層111-2とエラストマーシート111-3とを貼り合わせて接合し、エラストマー層111-4を形成し、表層シートS2を得る(図5G及び5H参照)。接合は、後述する方法と同様としうる。
 表層シートS2のプライマー層114の材料は、中間シートS1のプライマー層114の材料と同様であってよく;表層シートS2のエラストマー層111-2、エラストマーシート111-3の材料は、中間シートS1のエラストマー層111-1の材料と同様であってよい。なお、エラストマー層111-1やエラストマー層111-2の厚みは、エラストマーシート111-3の厚みよりも通常小さく、例えば5μm以下である。
(Preparation of surface sheet S2)
As described above, a primer layer 114 is formed on one side of the first surface high elastic modulus layer 113A (see Figs. 5D and 5E), and then an elastomer layer 111-2 is formed (see Fig. 5F). Next, the elastomer layer 111-2 and an elastomer sheet 111-3 are bonded together to form an elastomer layer 111-4, thereby obtaining a surface sheet S2 (see Figs. 5G and 5H). The bonding can be performed in the same manner as described below.
The material of the primer layer 114 of the surface sheet S2 may be the same as the material of the primer layer 114 of the intermediate sheet S1, and the material of the elastomer layer 111-2 and the elastomer sheet 111-3 of the surface sheet S2 may be the same as the material of the elastomer layer 111-1 of the intermediate sheet S1. The thickness of the elastomer layer 111-1 and the elastomer layer 111-2 is usually smaller than the thickness of the elastomer sheet 111-3, for example, 5 μm or less.
 (接合)
 上記作製した中間シートS1のエラストマー層111-1と、上記作製した2つの表層シートS2のエラストマー層111-4とを貼り合わせて接合する(図6A及び6B参照)。接合は、エラストマー層111-1と111-4とを貼り合わせたものを、ホットプレート等で加熱して行うことができる。
 このとき、接合強度を高める観点から、貼り合わせる前に、エラストマー層111-1とエラストマー層111-4の表面に、プラズマ照射等の表面処理を施してもよい。例えばエラストマー層111-1及び111-4がシリコーンゴム組成物の硬化物を含む場合、プラズマ照射によりシラノール基(Si-OH)が生成する。このシラノール基同士の縮合反応によって、良好に接合することができる。その場合、加熱温度は、接合可能な温度であればよく、例えばシラノール基同士の縮合反応が生じる温度でありうる。
(Joining)
The elastomer layer 111-1 of the intermediate sheet S1 prepared above and the elastomer layers 111-4 of the two surface sheets S2 prepared above are bonded together (see FIGS. 6A and 6B). The bonding can be performed by heating the bonded elastomer layers 111-1 and 111-4 with a hot plate or the like.
At this time, in order to increase the bonding strength, the surfaces of the elastomer layer 111-1 and the elastomer layer 111-4 may be subjected to a surface treatment such as plasma irradiation before bonding. For example, when the elastomer layers 111-1 and 111-4 contain a cured product of a silicone rubber composition, silanol groups (Si-OH) are generated by plasma irradiation. The condensation reaction between these silanol groups allows for good bonding. In this case, the heating temperature may be any temperature that allows bonding, and may be, for example, a temperature that causes a condensation reaction between silanol groups.
 なお、本実施形態では、上記の通り、表層シートS2のエラストマー層111-2(図5F参照)と、エラストマーシート111-3(図5G参照)と、中間シートS1のエラストマー層111-1(図5C参照)とを接合して、1つの第1エラストマー層111A又は第2エラストマー層111Bを形成している(図6Aおよび6B)。ここで、表層シートS2のエラストマー層111-2、エラストマーシート111-3、及び中間シートS1のエラストマー層111-1の組成及び物性は、同じであってもよいし、異なってもよい。例えば、表層シートS2のエラストマー層111-2の貯蔵弾性率は、中間シートS1のエラストマー層111-1の貯蔵弾性率よりも高くてもよい。なお、図5及び図6では、便宜上、各エラストマー層111-1、111-2及び111-3の組成及び物性が同じである場合を示している。 In this embodiment, as described above, the elastomer layer 111-2 (see FIG. 5F), the elastomer sheet 111-3 (see FIG. 5G), and the elastomer layer 111-1 (see FIG. 5C) of the intermediate sheet S1 are joined together to form one first elastomer layer 111A or one second elastomer layer 111B (FIGS. 6A and 6B). Here, the compositions and physical properties of the elastomer layer 111-2 and the elastomer sheet 111-3 of the surface sheet S2, and the elastomer layer 111-1 of the intermediate sheet S1 may be the same or different. For example, the storage modulus of the elastomer layer 111-2 of the surface sheet S2 may be higher than the storage modulus of the elastomer layer 111-1 of the intermediate sheet S1. For the sake of convenience, Figures 5 and 6 show the case where the elastomer layers 111-1, 111-2, and 111-3 have the same composition and physical properties.
 また、本実施形態では、エラストマーシート111-3を用いる関係上、表層シートS2のプライマー層114上にエラストマー層111-2(図5F参照)、中間シートS1のプライマー層114上にエラストマー層111-1(図5C参照)をそれぞれ形成しているが、これらは省略することもできる。例えば、中間シートS1のプライマー層114上に、直接、液状ゴム組成物を塗布した後、硬化させてエラストマー層111を形成した後、表層シートS2のプライマー層114と、直接接合してもよい。液状ゴム組成物は、例えば2液付加硬化型のシリコーンゴム組成物でありうる。 In addition, in this embodiment, since the elastomer sheet 111-3 is used, the elastomer layer 111-2 (see FIG. 5F) is formed on the primer layer 114 of the surface sheet S2, and the elastomer layer 111-1 (see FIG. 5C) is formed on the primer layer 114 of the intermediate sheet S1, but these can be omitted. For example, a liquid rubber composition can be applied directly onto the primer layer 114 of the intermediate sheet S1, and then cured to form the elastomer layer 111, which can then be directly bonded to the primer layer 114 of the surface sheet S2. The liquid rubber composition can be, for example, a two-liquid addition curing type silicone rubber composition.
 2)の工程について
 次いで、積層シート150の所定の領域に、複数の貫通孔115を形成する(図4B参照)。複数の貫通孔115を形成する領域は、1つであってもよいし、複数あってもよい。貫通孔115の形成は、任意の方法で行うことができる。例えば、機械的に孔を形成する方法(例えばプレス加工、パンチ加工)や、レーザー加工法などにより行うことができる。中でも、微細で、かつ形状精度の高い貫通孔115の形成が可能である点から、貫通孔115の形成は、レーザー加工法によって行うことがより好ましい。
Regarding step 2), a plurality of through holes 115 are then formed in a predetermined region of the laminated sheet 150 (see FIG. 4B). The region in which the plurality of through holes 115 are formed may be one or more. The formation of the through holes 115 can be performed by any method. For example, the formation of the through holes 115 can be performed by a method of mechanically forming holes (e.g., pressing, punching) or a laser processing method. Among them, the formation of the through holes 115 is more preferably performed by a laser processing method, since it is possible to form the through holes 115 that are fine and have high shape accuracy.
 レーザーは、樹脂を精度良く穿孔できるエキシマレーザーや炭酸ガスレーザー、YAGレーザーなどを用いることができる。中でも、エキシマレーザーを用いることが好ましい。レーザーのパルス幅は、特に制限されず、マイクロ秒レーザー、ナノ秒レーザー、ピコ秒レーザー、フェムト秒レーザーのいずれであってもよい。また、レーザーの波長も、特に制限されない。 The laser can be an excimer laser, a carbon dioxide laser, a YAG laser, or the like, which can drill holes in resin with high precision. Of these, it is preferable to use an excimer laser. There are no particular limitations on the pulse width of the laser, and it may be a microsecond laser, a nanosecond laser, a picosecond laser, or a femtosecond laser. There are also no particular limitations on the wavelength of the laser.
 3)の工程について
 次いで、積層シート150の複数の貫通孔115が形成された領域ごとに、1つの連続した導電層151を形成する(図4C参照)。具体的には、積層シート150の、複数の貫通孔115の内壁面と、その開口部の周囲の第1面150a及び第2面150bとに連続して導電層151を形成する。
Regarding step 3), next, one continuous conductive layer 151 is formed in each region of the laminated sheet 150 where the plurality of through holes 115 are formed (see FIG. 4C ). Specifically, the conductive layer 151 is formed continuously on the inner wall surfaces of the plurality of through holes 115 of the laminated sheet 150 and on the first surface 150a and the second surface 150b around the openings of the plurality of through holes 115.
 導電層151の形成は、任意の方法で行うことができるが、貫通孔115を塞ぐことなく、薄く、かつ均一な厚みに形成しうる点から、めっき法(例えば無電解めっき法や電解めっき法)で行うことが好ましい。 The conductive layer 151 can be formed by any method, but is preferably formed by a plating method (e.g., electroless plating or electrolytic plating) since it can be formed thin and with a uniform thickness without blocking the through-hole 115.
 4)の工程について
 次いで、導電層151で囲まれた複数の空洞115’の内部に、導電性ゴム組成物Lを充填する(図4D参照)。
Regarding step 4), next, the inside of the plurality of cavities 115' surrounded by the conductive layer 151 is filled with a conductive rubber composition L (see FIG. 4D).
 導電性ゴム組成物Lの充填は、例えば第1面150a上に導電性ゴム組成物Lを付与した状態で、第2面150b側から空洞115’内を真空引きして行うことができる。そして、充填した導電性ゴム組成物Lを架橋させる。導電性ゴム組成物Lが溶剤を含む場合は、さらに乾燥させることが好ましい。 The conductive rubber composition L can be filled, for example, by applying the conductive rubber composition L onto the first surface 150a and then drawing a vacuum inside the cavity 115' from the second surface 150b side. The filled conductive rubber composition L is then crosslinked. If the conductive rubber composition L contains a solvent, it is preferable to further dry it.
 5)の工程について
 次いで、積層シート150の第1面150a及び第2面150bに、第1溝部116a及び第2溝部116bをそれぞれ形成する(図4E及び4F参照)。それにより、導電層151の第1面150a側の部分を複数の第1導電層122Aに分割し、導電層151の第2面150b側の部分を、複数の第2導電層122Bに分割する。さらに、本実施形態では、第1表層高弾性率層113Aを複数の第1表層高弾性率層113Aに分割し、第2表層高弾性率層113Bを複数の第2表層高弾性率層113Bに分割しうる。第1溝部116a及び第2溝部116bの形成は、例えばレーザー加工法により行うことができる。それにより、絶縁層110に、複数の貫通孔115及び複数の導電層120が形成された異方導電性シート100(原シート)を得ることができる。
Regarding step 5), the first groove 116a and the second groove 116b are formed on the first surface 150a and the second surface 150b of the laminated sheet 150, respectively (see FIGS. 4E and 4F). As a result, the portion of the conductive layer 151 on the first surface 150a side is divided into a plurality of first conductive layers 122A, and the portion of the conductive layer 151 on the second surface 150b side is divided into a plurality of second conductive layers 122B. Furthermore, in this embodiment, the first surface high elasticity layer 113A can be divided into a plurality of first surface high elasticity layers 113A, and the second surface high elasticity layer 113B can be divided into a plurality of second surface high elasticity layers 113B. The formation of the first groove 116a and the second groove 116b can be performed, for example, by a laser processing method. As a result, an anisotropic conductive sheet 100 (original sheet) in which a plurality of through holes 115 and a plurality of conductive layers 120 are formed in the insulating layer 110 can be obtained.
 異方導電性シート100の製造方法は、必要に応じて上記以外の他の工程をさらに含んでもよい。例えば、2)の工程と3)の工程の間に、導電層151を形成しやすくするための前処理を行ってもよい。 The method for manufacturing the anisotropic conductive sheet 100 may further include other steps in addition to those described above, as necessary. For example, a pretreatment may be performed between steps 2) and 3) to facilitate the formation of the conductive layer 151.
 例えば、複数の貫通孔115が形成された積層シート150について、導電層151を形成しやすくするためのデスミア処理(前処理)を行うことが好ましい。デスミア処理は、湿式法と乾式法があり、いずれの方法を用いてもよい。 For example, it is preferable to perform a desmear process (pre-processing) on the laminated sheet 150 in which a plurality of through holes 115 are formed, in order to facilitate the formation of the conductive layer 151. The desmear process can be performed by a wet method or a dry method, and either method may be used.
 湿式法のデスミア処理としては、アルカリ処理のほか、硫酸法、クロム酸法、過マンガン酸塩法等、公知の湿式プロセスが採用されうる。 As a wet desmear treatment, in addition to alkali treatment, known wet processes such as the sulfuric acid method, chromate method, and permanganate method can be used.
 乾式法のデスミア処理としては、プラズマ処理が挙げられる。例えば積層シート150が、シリコーンゴム組成物の架橋物で構成されている場合、当該シートをプラズマ処理することで、アッシング/エッチングが可能であるだけでなく、シリコーンの表面を酸化し、シリカ膜を形成することができる。シリカ膜を形成することで、めっき液が貫通孔115内に浸入しやすくなったり、導電部121と貫通孔115の内壁面との密着性を高めたりしうる。酸素プラズマ処理は、例えばプラズマアッシャーや高周波プラズマエッチング装置、マイクロ波プラズマエッチング装置を用いて行うことができる。 An example of a dry desmear process is a plasma process. For example, if the laminate sheet 150 is made of a cross-linked silicone rubber composition, plasma processing of the sheet not only enables ashing/etching, but also oxidizes the silicone surface to form a silica film. Forming a silica film can facilitate penetration of the plating solution into the through-hole 115 and can increase adhesion between the conductive portion 121 and the inner wall surface of the through-hole 115. The oxygen plasma process can be performed using, for example, a plasma asher, a high-frequency plasma etching device, or a microwave plasma etching device.
 異方導電性シート100は、所定の大きさに切り出されて、フレーム200に固定されてもよい。 The anisotropic conductive sheet 100 may be cut to a predetermined size and fixed to the frame 200.
 3.フレーム付き異方導電性シート
 図7Aは、フレーム付き異方導電性シート400の模式的な平面図であり、図7Bは、図7Aのフレーム付き異方導電性シート400の7B-7B線の模式的な拡大断面図である。なお、図7Bは、断面のハッチングを省略している。
3. Framed anisotropic conductive sheet Fig. 7A is a schematic plan view of a framed anisotropic conductive sheet 400, and Fig. 7B is a schematic enlarged cross-sectional view of the framed anisotropic conductive sheet 400 taken along line 7B-7B in Fig. 7A. Note that hatching of the cross section is omitted in Fig. 7B.
 図7A及び7Bに示されるように、フレーム付き異方導電性シート400は、異方導電性シート100Pと、フレーム200と、シーリング材300とを有する。 As shown in Figures 7A and 7B, the framed anisotropic conductive sheet 400 has an anisotropic conductive sheet 100P, a frame 200, and a sealing material 300.
 本実施形態では、異方導電性シート100Pは、フレーム200の開口部210に挿入された状態で、フレーム200の少なくとも第1表面200aから突出している(図7B参照)。フレーム200の第1表面200aと、該第1表面200aから突出した異方導電性シート100Pとの間は、シーリング材300で接着されている。そして、フレーム200の第1表面200aから突出した異方導電性シート100Pの表面に、検査対象物が配置される。本実施形態では、絶縁層110の第1面110a側が、第2面110b側よりも突出長が大きくなっている。 In this embodiment, the anisotropic conductive sheet 100P protrudes from at least the first surface 200a of the frame 200 when inserted into the opening 210 of the frame 200 (see FIG. 7B). The first surface 200a of the frame 200 and the anisotropic conductive sheet 100P protruding from the first surface 200a are bonded together with a sealing material 300. An object to be inspected is placed on the surface of the anisotropic conductive sheet 100P protruding from the first surface 200a of the frame 200. In this embodiment, the first surface 110a side of the insulating layer 110 has a greater protruding length than the second surface 110b side.
 異方導電性シート100Pのフレーム200の第1表面200aからの突出長Haは、特に制限されないが、例えば100μm以上であり、好ましくは150~400μmである。異方導電性シート100Pのフレーム200の第2表面200bからの突出長Hbは、特に制限されないが、例えば30~40μmである。それにより、異方導電性シート100Pと検査対象物との電気的接触、又は、検査基板の電極と異方導電性シート100Pとの電気的接触をより確実に接触させることができる。 The protrusion length Ha of the anisotropic conductive sheet 100P from the first surface 200a of the frame 200 is not particularly limited, but is, for example, 100 μm or more, and preferably 150 to 400 μm. The protrusion length Hb of the anisotropic conductive sheet 100P from the second surface 200b of the frame 200 is, for example, 30 to 40 μm, but is not particularly limited. This allows for more reliable electrical contact between the anisotropic conductive sheet 100P and the object to be inspected, or between the electrodes of the inspection board and the anisotropic conductive sheet 100P.
 異方導電性シート100Pは、上記異方導電性シート100を、フレーム200の開口部210の大きさに切り出したものである。異方導電性シート100Pの平面視の形状は、通常、矩形(正方形を含む)である。異方導電性シート100Pの平面視のサイズは、例えばX方向(長辺)が1~30mm、Y方向(短辺)が1~30mmでありうる。 The anisotropic conductive sheet 100P is obtained by cutting the above-mentioned anisotropic conductive sheet 100 to the size of the opening 210 of the frame 200. The shape of the anisotropic conductive sheet 100P in a plan view is usually rectangular (including square). The size of the anisotropic conductive sheet 100P in a plan view can be, for example, 1 to 30 mm in the X direction (long side) and 1 to 30 mm in the Y direction (short side).
 フレーム200は、開口部210と、位置決め孔220とを有する(図7B参照)。フレーム200を構成する材料は、異方導電性シート100Pのエラストマー層111を構成する材料よりも強度が高い材料が好ましい。そのような材料としては、金属、ガラス、セラミックス、耐熱性樹脂等が挙げられ、好ましくはステンレス(SUS)等の金属である。なお、フレーム200が金属で構成される場合、フレーム200の第1表面200aとは反対側の第2表面200bには、絶縁層等が配置される。 The frame 200 has an opening 210 and a positioning hole 220 (see FIG. 7B). The material constituting the frame 200 is preferably stronger than the material constituting the elastomer layer 111 of the anisotropic conductive sheet 100P. Such materials include metal, glass, ceramics, heat-resistant resin, etc., and preferably metal such as stainless steel (SUS). When the frame 200 is made of metal, an insulating layer or the like is disposed on the second surface 200b of the frame 200 opposite the first surface 200a.
 フレーム200の厚みは、異方導電性シート100Pの厚みよりも小さい。それにより、フレーム200の少なくとも第1表面200aから、異方導電性シート100Pを突出させることができる。 The thickness of the frame 200 is smaller than the thickness of the anisotropic conductive sheet 100P. This allows the anisotropic conductive sheet 100P to protrude from at least the first surface 200a of the frame 200.
 開口部210は、フレーム200に設けられた貫通孔であり、異方導電性シート100Pが挿入される。開口部210の数は、特に制限されず、1つであってもよいし、2つ以上であってもよい。本実施形態では、開口部210の数は2つである(図7A参照)。 The openings 210 are through holes provided in the frame 200, into which the anisotropic conductive sheet 100P is inserted. The number of openings 210 is not particularly limited, and may be one, or two or more. In this embodiment, the number of openings 210 is two (see FIG. 7A).
 開口部210の大きさは、異方導電性シート100Pが挿入可能な大きさであればよく、異方導電性シート100Pの大きさと同等か、それよりも若干大きいことが好ましい。即ち、開口部210の内周面と異方導電性シート100Pの側面との間に間隙がなくてもよいし、あってもよい。具体的には、開口部210の内周面と異方導電性シート100Pの側面との間の隙間は、特に制限されないが、例えば150μm以下であり、好ましくは100μm以下である。 The size of the opening 210 only needs to be large enough to allow the anisotropic conductive sheet 100P to be inserted, and is preferably equal to or slightly larger than the size of the anisotropic conductive sheet 100P. That is, there may or may not be a gap between the inner circumferential surface of the opening 210 and the side surface of the anisotropic conductive sheet 100P. Specifically, the gap between the inner circumferential surface of the opening 210 and the side surface of the anisotropic conductive sheet 100P is not particularly limited, but is, for example, 150 μm or less, and preferably 100 μm or less.
 シーリング材300は、異方導電性シート100Pのエラストマー層111を構成する材料との親和性を有するものであることが好ましい。そのため、シーリング材300は、ゴム組成物の架橋物を含むことが好ましい。シーリング材300に含まれるゴム成分の種類は、エラストマー層111に含まれるゴム成分と同様のものを使用できる。シーリング材300に含まれるゴム成分の種類は、エラストマー層111に含まれるゴム成分と同じであってもよいし、異なってもよい。中でも、シリコーンゴムが好ましい。 It is preferable that the sealing material 300 has affinity with the material constituting the elastomer layer 111 of the anisotropic conductive sheet 100P. Therefore, it is preferable that the sealing material 300 contains a cross-linked product of a rubber composition. The type of rubber component contained in the sealing material 300 can be the same as the rubber component contained in the elastomer layer 111. The type of rubber component contained in the sealing material 300 may be the same as the rubber component contained in the elastomer layer 111, or may be different. Among them, silicone rubber is preferable.
 上記フレーム付き異方導電性シート400は、1)異方導電性シート100Pを得る工程と、2)異方導電性シート100Pをフレーム200の開口部210に挿入する工程と、3)フレーム200の第1表面200aと、該第1表面200aから突出した異方導電性シート100Pとの間にシーリング材300を形成する工程と、を経て得ることができる。 The framed anisotropic conductive sheet 400 can be obtained through the steps of 1) obtaining an anisotropic conductive sheet 100P, 2) inserting the anisotropic conductive sheet 100P into the opening 210 of the frame 200, and 3) forming a sealing material 300 between the first surface 200a of the frame 200 and the anisotropic conductive sheet 100P protruding from the first surface 200a.
 1)の工程について
 異方導電性シート100(原シート)から、フレーム200の開口部210に収まる大きさ、形状に切り出して、異方導電性シート100Pを得る。
Regarding step 1), the anisotropic conductive sheet 100 (original sheet) is cut into a size and shape that fits into the opening 210 of the frame 200 to obtain an anisotropic conductive sheet 100P.
 切り出しは、レーザー又は超音波カッターで行うことができる。本実施形態では、複数の導電層120が形成された領域の周囲の、絶縁層110が露出した領域を切断して、異方導電性シート100Pを得ることができる。それにより、導電層120の切り屑等が混入するのを抑制できる。 Cutting can be done with a laser or ultrasonic cutter. In this embodiment, the anisotropic conductive sheet 100P can be obtained by cutting the area where the insulating layer 110 is exposed around the area where the multiple conductive layers 120 are formed. This makes it possible to prevent cutting chips of the conductive layer 120 from being mixed in.
 2)の工程について
 次いで、フレーム200の開口部210に異方導電性シート100Pを挿入し、当該シートをフレーム200に対して位置決めする。
Regarding step 2), next, the anisotropic conductive sheet 100P is inserted into the opening 210 of the frame 200, and the sheet is positioned relative to the frame 200.
 3)の工程について
 そして、フレーム200の第1表面200aと、該第1表面200aから突出した異方導電性シート100Pとの間にシーリング材300を配置する。本実施形態では、フレーム200の第1表面200a上において、異方導電性シート100Pの周囲を埋めるように、上記シーリング材300を配置する。それにより、異方導電性シート100Pをフレーム200に固定することができる。それにより、フレーム付き異方導電性シート400を得ることができる。
Regarding step 3), a sealing material 300 is then placed between the first surface 200a of the frame 200 and the anisotropic conductive sheet 100P protruding from the first surface 200a. In this embodiment, the sealing material 300 is placed on the first surface 200a of the frame 200 so as to fill the periphery of the anisotropic conductive sheet 100P. This makes it possible to fix the anisotropic conductive sheet 100P to the frame 200. This makes it possible to obtain a framed anisotropic conductive sheet 400.
 4.電気検査装置及び電気検査方法
 図8は、本実施形態に係る電気検査装置500の模式的な断面図である。同図では、要部の厚み方向の寸法を相対的に大きく表示している。
4. Electrical Inspection Device and Electrical Inspection Method Fig. 8 is a schematic cross-sectional view of an electrical inspection device 500 according to this embodiment. In this figure, the dimensions in the thickness direction of the main parts are displayed relatively large.
 電気検査装置500は、検査対象物520の端子521間(測定点間)の電気的特性(導通等)を検査する装置である。なお、同図では、電気検査方法を説明する観点から、検査対象物520も併せて図示している。 The electrical inspection device 500 is a device that inspects the electrical characteristics (such as continuity) between terminals 521 (between measurement points) of an object to be inspected 520. Note that in the figure, the object to be inspected 520 is also shown in order to explain the electrical inspection method.
 図8に示されるように、電気検査装置500は、複数の電極を有する基板510(テストボード)と、フレーム付き異方導電性シート400とを有する。 As shown in FIG. 8, the electrical testing device 500 has a substrate 510 (test board) having multiple electrodes and a framed anisotropic conductive sheet 400.
 基板510は、検査対象物520に対向する面に、検査対象物520の各測定点に対向する複数の電極511を有する。 The substrate 510 has a number of electrodes 511 on the surface facing the test object 520, which face each measurement point of the test object 520.
 フレーム付き異方導電性シート400は、位置決め孔220に基板510の位置決めピン512を挿通させることで、基板510上に配置される。それにより、異方導電性シート100Pは、基板510の電極511が配置された面上に配置され、基板510の電極511と、異方導電性シート100Pの第2導電層122B(不図示)とが接する。 The framed anisotropic conductive sheet 400 is placed on the substrate 510 by inserting the positioning pins 512 of the substrate 510 through the positioning holes 220. As a result, the anisotropic conductive sheet 100P is placed on the surface of the substrate 510 on which the electrodes 511 are arranged, and the electrodes 511 of the substrate 510 and the second conductive layer 122B (not shown) of the anisotropic conductive sheet 100P come into contact.
 そして、フレーム付き異方導電性シート400の異方導電性シート100P上に検査対象物520が配置される。検査対象物520は、特に制限されないが、例えばHBMやPoPなどの各種半導体装置(半導体パッケージ)又は電子部品、プリント基板が挙げられる。検査対象物520が半導体パッケージである場合、測定点は、バンプ(端子)でありうる。また、検査対象物520がプリント基板である場合、測定点は、導電パターンに設けられる測定用ランドや部品実装用のランドでありうる。検査対象物520としては、例えば、直径0.2mm、高さ0.17mmのハンダボール電極(材質:鉛フリーハンダ)を合計で264個有し、0.3mmのピッチで配列されたチップが含まれる。 Then, the test object 520 is placed on the anisotropic conductive sheet 100P of the framed anisotropic conductive sheet 400. The test object 520 is not particularly limited, but examples include various semiconductor devices (semiconductor packages) such as HBM and PoP, electronic components, and printed circuit boards. When the test object 520 is a semiconductor package, the measurement point may be a bump (terminal). When the test object 520 is a printed circuit board, the measurement point may be a measurement land or a land for component mounting provided on a conductive pattern. The test object 520 includes, for example, a chip having a total of 264 solder ball electrodes (material: lead-free solder) with a diameter of 0.2 mm and a height of 0.17 mm, arranged at a pitch of 0.3 mm.
 次に、電気検査装置500を用いた電気検査方法について説明する。 Next, we will explain the electrical inspection method using the electrical inspection device 500.
 図8に示されるように、本実施形態に係る電気検査方法は、電極511を有する基板510と、検査対象物520とを、フレーム200で固定された異方導電性シート100Pを介して積層する。それにより、基板510の電極511と、検査対象物520の端子521とを、異方導電性シート100Pを介して電気的に接続する。 As shown in Figure 8, the electrical inspection method according to this embodiment stacks a substrate 510 having electrodes 511 and an object to be inspected 520 via an anisotropic conductive sheet 100P fixed by a frame 200. This electrically connects the electrodes 511 of the substrate 510 and the terminals 521 of the object to be inspected 520 via the anisotropic conductive sheet 100P.
 上記工程を行う際、基板510の電極511と検査対象物520の端子521とを、異方導電性シート100Pを介して十分に導通させやすくする観点から、必要に応じて、検査対象物520を押圧して加圧したり、加熱雰囲気下で接触させたりしてもよい。 When carrying out the above process, in order to facilitate sufficient electrical continuity between the electrodes 511 of the substrate 510 and the terminals 521 of the test object 520 via the anisotropic conductive sheet 100P, the test object 520 may be pressed to apply pressure or brought into contact under a heated atmosphere, as necessary.
 上記実施形態における異方導電性シート100Pは、切り出し時の寸法変化が低減されている。そのため、複数の導電層120間の距離の変動を少なくすることができ、検査対象物との接触不良を抑制することができる。 The anisotropic conductive sheet 100P in the above embodiment has reduced dimensional change when cut out. This reduces the variation in the distance between the multiple conductive layers 120, and prevents poor contact with the object to be inspected.
 5.変形例
 なお、上記実施形態に係る異方導電性シート100では、エラストマー層111が2つ、中間高弾性率層112が1つであるが、これに限定されず、エラストマー層111が3つ以上あってもよいし、中間高弾性率層112が2つ以上あってもよい。
5. Modifications Although the anisotropic conductive sheet 100 according to the above embodiment has two elastomer layers 111 and one intermediate high elastic modulus layer 112, the present invention is not limited to this and may have three or more elastomer layers 111 and two or more intermediate high elastic modulus layers 112.
 また、上記実施形態に係る異方導電性シート100では、中間高弾性率層112、第1表層高弾性率層113A及び第2表層高弾性率層113B上の全てにプライマー層114が配置されているが、これに限らず、中間高弾性率層112、第1表層高弾性率層113A及び第2表層高弾性率層113Bとエラストマー層111との親和性(密着性)の程度に応じて、プライマー層114を省略してもよい。 In addition, in the anisotropic conductive sheet 100 according to the above embodiment, the primer layer 114 is disposed on all of the intermediate high elasticity layer 112, the first surface high elasticity layer 113A, and the second surface high elasticity layer 113B, but this is not limited thereto, and the primer layer 114 may be omitted depending on the degree of affinity (adhesion) between the intermediate high elasticity layer 112, the first surface high elasticity layer 113A, and the second surface high elasticity layer 113B and the elastomer layer 111.
 また、上記実施形態に係る異方導電性シート100では、貫通孔115の内部が導電性充填物130で充填されているが、これに限らず、充填されていなくてもよい。また、導電層120が第1導電層122A及び第2導電層122Bを有しているが、これに限らず、第1導電層122A及び第2導電層122Bを有さなくてもよい。 In addition, in the anisotropic conductive sheet 100 according to the above embodiment, the inside of the through hole 115 is filled with the conductive filler 130, but this is not limited thereto and it does not have to be filled. In addition, the conductive layer 120 has the first conductive layer 122A and the second conductive layer 122B, but this is not limited thereto and it does not have to have the first conductive layer 122A and the second conductive layer 122B.
 また、上記実施形態に係る異方導電性シート100は、複数の導電層120及び複数の導電性充填物130を形成した領域(電極領域)の周囲に、絶縁層110が露出した第1露出部140aを有しているが、これに限らず、絶縁層110上に導電層151が配置されていてもよい。 In addition, the anisotropic conductive sheet 100 according to the above embodiment has a first exposed portion 140a where the insulating layer 110 is exposed around the area (electrode area) where the multiple conductive layers 120 and multiple conductive fillers 130 are formed, but this is not limited thereto, and a conductive layer 151 may be disposed on the insulating layer 110.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these.
 [実施例1]
 (1)積層シートの作製
 (中間シートS1の作製)
 ポリイミドフィルム(厚み12.5μm、東レ・デュポン社製カプトン50EN(登録商標)、Tg>300℃、25℃での貯蔵弾性率5GPa)(中間高弾性率層112)の両面に、金属アルコキシドを含む溶液(信越シリコーン社製、プライマーNo.4)をそれぞれ塗布し、乾燥させて、厚み0.7μmのプライマー層(プライマー層114)を形成した。
 次いで、当該プライマー層上に、2液付加型の液状シリコーンゴム組成物(信越シリコーン社製KE2061-50-A/B)をさらに塗布し、硬化させて、厚み5μmのシリコーン系エラストマー層1(エラストマー層111-1)を形成した。
 それにより、シリコーン系エラストマー層1(5μm)/プライマー層/ポリイミドフィルム(12.5μm)/プライマー層/シリコーン系エラストマー層1(5μm)の積層構造を有する中間シートS1を得た(図5A~5C参照)。
[Example 1]
(1) Preparation of Laminated Sheet (Preparation of Intermediate Sheet S1)
A solution containing a metal alkoxide (Primer No. 4, manufactured by Shin-Etsu Silicones) was applied to both sides of a polyimide film (thickness 12.5 μm, Kapton 50EN (registered trademark) manufactured by DuPont-Toray Co., Ltd., Tg>300° C., storage modulus at 25° C. 5 GPa) (intermediate high elastic modulus layer 112) and dried to form a primer layer (primer layer 114) having a thickness of 0.7 μm.
Next, a two-liquid additive liquid silicone rubber composition (KE2061-50-A/B manufactured by Shin-Etsu Silicones) was further applied onto the primer layer and cured to form a silicone-based elastomer layer 1 (elastomer layer 111-1) having a thickness of 5 μm.
As a result, an intermediate sheet S1 having a laminated structure of silicone-based elastomer layer 1 (5 μm)/primer layer/polyimide film (12.5 μm)/primer layer/silicone-based elastomer layer 1 (5 μm) was obtained (see FIGS. 5A to 5C).
 (表層シートS2の作製)
 ポリイミドフィルム(厚み7.5μm、カプトン30(登録商標)、Tg>300℃、25℃での貯蔵弾性率5GPa)(表層高弾性率層113)の片面に、上記と同様に、厚み0.7μmのプライマー層(プライマー層114)を形成した。
 次いで、当該プライマー層上に、2液付加型の液状シリコーンゴム組成物(信越シリコーン社製KE2061-70-A/B)をさらに塗布し、硬化させて、厚み5μmのシリコーン系エラストマー層(エラストマー層111-2)を形成した。
 このエラストマー層(エラストマー層111-2、厚み5μm)と、市販のシリコーンゴムシート(扶桑ゴム産業社製シリウス)、厚み150μm、25℃での貯蔵弾性率1MPa、エラストマー層111-3)とにそれぞれプラズマ照射した。プラズマ照射は、800W、0.5L/分、1分間の条件で行った。
 その後、上記エラストマー層(エラストマー層111-2、厚み5μm)と、市販のシリコーンゴムシート(エラストマー層111-3、厚み150μm)のプラズマ照射面同士を常圧で貼り合わせ、ホットプレートで50℃10分間加熱して接合し、シリコーン系エラストマー層2(エラストマー層111-4)とした。
 それにより、ポリイミドフィルム(7.5μm)/プライマー層/シリコーン系エラストマー層2(エラストマー層111-4、厚み5μm+150μm)の積層構造を有する表層シートS2を2つ準備した(図5D~5H参照)。
(Preparation of surface sheet S2)
A primer layer (primer layer 114) having a thickness of 0.7 μm was formed on one side of a polyimide film (thickness 7.5 μm, Kapton 30 (registered trademark), Tg>300° C., storage modulus at 25° C. 5 GPa) (surface high elastic modulus layer 113) in the same manner as described above.
Next, a two-part additive liquid silicone rubber composition (KE2061-70-A/B manufactured by Shin-Etsu Silicones) was further applied onto the primer layer and cured to form a 5 μm-thick silicone-based elastomer layer (elastomer layer 111-2).
This elastomer layer (elastomer layer 111-2, thickness 5 μm) and a commercially available silicone rubber sheet (Sirius manufactured by Fuso Rubber Industries Co., Ltd., thickness 150 μm, storage modulus at 25° C. 1 MPa, elastomer layer 111-3) were each irradiated with plasma. The plasma irradiation was performed under conditions of 800 W, 0.5 L/min, and 1 minute.
Thereafter, the above-mentioned elastomer layer (elastomer layer 111-2, thickness 5 μm) and a commercially available silicone rubber sheet (elastomer layer 111-3, thickness 150 μm) were bonded together at their plasma-irradiated surfaces at normal pressure and heated on a hot plate at 50° C. for 10 minutes to form a silicone-based elastomer layer 2 (elastomer layer 111-4).
As a result, two surface sheets S2 each having a laminated structure of polyimide film (7.5 μm)/primer layer/silicone-based elastomer layer 2 (elastomer layer 111-4, thickness 5 μm+150 μm) were prepared (see FIGS. 5D to 5H).
 (積層シートの作製)
 準備した中間シートS1のシリコーン系エラストマー層1(エラストマー層111-1)と、2つの表層シートS2のシリコーン系エラストマー層2(エラストマー層111-4)のそれぞれにプラズマを照射した。プラズマ照射は上記と同様の条件で行った。
 そして、中間シートS1のシリコーン系エラストマー層1のプラズマ照射面のそれぞれに、2つの表層シートS2のプラズマ照射したシリコーン系エラストマー層2を常圧で貼り合わせて(図6A参照)、ホットプレートで50℃10分間加熱して接合し、シリコーン系エラストマー層A及びB(第1エラストマー層111A及び第2エラストマー層111B)を有する積層シート150を得た(図6B参照)。
(Preparation of Laminated Sheet)
The silicone-based elastomer layer 1 (elastomer layer 111-1) of the intermediate sheet S1 and the silicone-based elastomer layer 2 (elastomer layer 111-4) of each of the two surface sheets S2 were irradiated with plasma under the same conditions as above.
Then, the plasma-irradiated silicone-based elastomer layers 2 of the two surface sheets S2 were attached to each of the plasma-irradiated surfaces of the silicone-based elastomer layer 1 of the intermediate sheet S1 at normal pressure (see Figure 6A), and bonded by heating on a hot plate at 50°C for 10 minutes, thereby obtaining a laminated sheet 150 having silicone-based elastomer layers A and B (first elastomer layer 111A and second elastomer layer 111B) (see Figure 6B).
 (貯蔵弾性率及びTgの測定)
 シリコーン系エラストマー層A及びBの25℃での貯蔵弾性率は、1MPaであり、ポリイミドフィルムの25℃での貯蔵弾性率は5GPaであった。貯蔵弾性率は、JIS K 7244-1:1998/ISO6721-1:1994に準拠して測定した。また、ポリイミドフィルムのTgをJIS K 7095:2012に準拠して測定したところ、明確なガラス転移温度を示さなかったが、300℃以上で粘弾性的な変化を示したため300℃以上と判断した。
(Measurement of storage modulus and Tg)
The storage modulus of the silicone-based elastomer layers A and B at 25° C. was 1 MPa, and the storage modulus of the polyimide film was 5 GPa at 25° C. The storage modulus was measured in accordance with JIS K 7244-1:1998/ISO6721-1:1994. In addition, when the Tg of the polyimide film was measured in accordance with JIS K 7095:2012, no clear glass transition temperature was observed, but a viscoelastic change was observed at 300° C. or higher, and therefore it was determined to be 300° C. or higher.
 (2)異方導電性シートの作製
 得られた積層シートの積層方向(厚み方向)に、複数の貫通孔115(第1面150a側における複数の貫通孔115の開口部の円相当径85μm)を形成した後、当該積層シートの表面(貫通孔115の内壁面、第1面150a及び第2面150b)に、めっき法により連続した金(Au)層を形成した。
 次いで、得られたシートの第1面150a上に、導電性エラストマー組成物としてスリーボンド社製ThreeBond 3303B(Ag粒子、シリコーンゴム及び架橋剤含有、ASTM D 991による架橋物の体積抵抗率3×10―5Ω・m)を滴下し、貫通孔115に対応する空洞115’内に、第2面150b側から真空引きしながら当該組成物を導入及び充填し、170℃で加熱して架橋させた。
 次いで、得られたシートの第1面150a及び第2面150bに、複数の第1溝部116a及び第2溝部116bをレーザー加工により格子状に形成し、複数の第1表層高弾性率層113A及び第2表層高弾性率層113B、複数の第1導電層122A及び第2導電層122Bに分割した。
 それにより、ポリイミドフィルム(7.5μm)/プライマー層/シリコーン系エラストマー層A(5μm+150μm+5μm)/プライマー層/ポリイミドフィルム(12.5μm)/シリコーン系エラストマー層B(5μm+150μm+5μm)/プライマー層/ポリイミドフィルム(7.5μm)の積層構造を有する異方導電性シート100を得た(図2A及び2B参照)。複数の第1導電層122Aの重心間距離は、300μmであった。
(2) Preparation of anisotropic conductive sheet After forming a plurality of through holes 115 (the openings of the plurality of through holes 115 on the first surface 150a side have a circle equivalent diameter of 85 μm) in the stacking direction (thickness direction) of the obtained laminated sheet, a continuous gold (Au) layer was formed by plating on the surface of the laminated sheet (the inner wall surfaces of the through holes 115, the first surface 150a and the second surface 150b).
Next, a conductive elastomer composition, ThreeBond 3303B (containing Ag particles, silicone rubber and a crosslinking agent, with a volume resistivity of the crosslinked product of 3× 10 Ω·m according to ASTM D 991) manufactured by ThreeBond Co., Ltd., was dropped onto first surface 150a of the obtained sheet, and the composition was introduced and filled into cavity 115′ corresponding to through hole 115 while drawing a vacuum from the second surface 150b side, and the composition was heated at 170° C. to cause crosslinking.
Next, a plurality of first groove portions 116a and second groove portions 116b were formed in a lattice pattern by laser processing on the first surface 150a and the second surface 150b of the obtained sheet, dividing the sheet into a plurality of first surface high elasticity layers 113A and second surface high elasticity layers 113B, and a plurality of first conductive layers 122A and second conductive layers 122B.
As a result, an anisotropic conductive sheet 100 having a laminated structure of polyimide film (7.5 μm)/primer layer/silicone-based elastomer layer A (5 μm+150 μm+5 μm)/primer layer/polyimide film (12.5 μm)/silicone-based elastomer layer B (5 μm+150 μm+5 μm)/primer layer/polyimide film (7.5 μm) was obtained (see FIGS. 2A and 2B). The distance between the centers of gravity of the multiple first conductive layers 122A was 300 μm.
 [比較例1]
 (表層シート1の作製)
 ポリイミドフィルム(厚み7.5μm、カプトン30(登録商標)、Tg>300℃、25℃での貯蔵弾性率5GPa)の片面に、上記と同様に、厚み0.7μmのプライマー層を形成した。
 次いで、当該プライマー層上に、2液付加型の液状シリコーンゴム組成物(信越シリコーン社製KE2061-70-A/B)をさらに塗布し、硬化させて、厚み5μmのシリコーン系エラストマー層を形成した。
 それにより、ポリイミドフィルム(7.5μm)/プライマー層/シリコーン系エラストマー層(5μm)の積層構造を有する表層シート1とした。
[Comparative Example 1]
(Preparation of surface sheet 1)
A primer layer having a thickness of 0.7 μm was formed on one surface of a polyimide film (thickness 7.5 μm, Kapton 30 (registered trademark), Tg>300° C., storage modulus at 25° C. 5 GPa) in the same manner as above.
Next, a two-liquid additive liquid silicone rubber composition (KE2061-70-A/B manufactured by Shin-Etsu Silicones) was further applied onto the primer layer and cured to form a silicone-based elastomer layer having a thickness of 5 μm.
As a result, a surface sheet 1 having a laminated structure of polyimide film (7.5 μm)/primer layer/silicone-based elastomer layer (5 μm) was obtained.
 (表層シート2の作製)
 厚み150μmの市販のシリコーンゴムシートを、厚み300μmの市販のシリコーンゴムシート(25℃での貯蔵弾性率0.4GPa)に変更した以外は実施例1の表層シートS2と同様にして、ポリイミドフィルム/プライマー層/シリコーン系エラストマー層(5μm+300μm)の積層構造を有する表層シート2を準備した。
(Preparation of surface sheet 2)
A surface sheet 2 having a laminated structure of polyimide film/primer layer/silicone-based elastomer layer (5 μm + 300 μm) was prepared in the same manner as the surface sheet S2 of Example 1, except that the commercially available silicone rubber sheet having a thickness of 150 μm was replaced with a commercially available silicone rubber sheet having a thickness of 300 μm (storage modulus at 25° C.: 0.4 GPa).
 (積層シートの作製)
 準備した表層シート1と2のシリコーン系エラストマー層にそれぞれプラズマを照射しし、貼り合わせた。それにより、ポリイミドフィルム(7.5μm)/プライマー層/シリコーン系エラストマー層(5μm+300μm+5μm)/プライマー層/ポリイミドフィルム(7.5μm)の積層構造を有する積層シートを得た。
(Preparation of Laminated Sheet)
The silicone-based elastomer layers of the prepared surface sheets 1 and 2 were irradiated with plasma and then bonded together to obtain a laminated sheet having a laminated structure of polyimide film (7.5 μm)/primer layer/silicone-based elastomer layer (5 μm+300 μm+5 μm)/primer layer/polyimide film (7.5 μm).
 (異方導電性シートの作製)
 上記作製した積層シートを用いた以外は実施例1と同様にして異方導電性シート100を得た。
(Preparation of anisotropic conductive sheet)
An anisotropic conductive sheet 100 was obtained in the same manner as in Example 1, except that the laminate sheet prepared above was used.
 [評価]
 得られた異方導電性シートをフェムト秒レーザーにより、15mm(X方向)×5mm(Y方向)の大きさに切り出した。切り出した直後のシートの寸法をデジタルマイクロスコープにより測定した。そして、基準値からのズレ量をオフセット値として求めた。なお、シートの切り出しは25℃で行い、n=2の平均値として求めた。
[evaluation]
The obtained anisotropic conductive sheet was cut into a size of 15 mm (X direction) x 5 mm (Y direction) using a femtosecond laser. The dimensions of the sheet immediately after cutting were measured using a digital microscope. The offset value was calculated as the deviation from the reference value. The sheet was cut at 25°C, and the average value of n = 2 was calculated.
 評価結果を表1及び図9に示す。図9は、実施例1と比較例1の切り出し後のシートの寸法のオフセット値を示すグラフである。 The evaluation results are shown in Table 1 and Figure 9. Figure 9 is a graph showing the offset values of the dimensions of the sheets after cutting in Example 1 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、比較例1のシートは、X方向の最大オフセット値が-86μm、Y方向の最大オフセット値が-66μmであり、いずれも寸法変化が大きいことがわかる(図9の左側参照)。 As shown in Table 1, the sheet of Comparative Example 1 had a maximum offset value of -86 μm in the X direction and a maximum offset value of -66 μm in the Y direction, indicating that both dimensions had large changes (see the left side of Figure 9).
 これに対し、実施例1のシートは、X方向の最大オフセット値が-19μm、Y方向の最大オフセット値が-15μmであり、いずれも寸法変化が低減されることがわかる(図9の右側参照)。 In contrast, the sheet of Example 1 has a maximum offset value of -19 μm in the X direction and -15 μm in the Y direction, showing that the dimensional change is reduced in both cases (see the right side of Figure 9).
 これらのことから、中間高弾性率層を設けることで、寸法変化を良好に低減できることがわかる。 From these findings, it can be seen that the provision of an intermediate high elastic modulus layer can effectively reduce dimensional change.
 本出願は、2022年10月14日出願の特願2022-165712に基づく優先権を主張する。当該出願明細書及び図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority from Japanese Patent Application No. 2022-165712, filed on October 14, 2022. The contents of the specification and drawings of that application are incorporated herein by reference in their entirety.
 本発明によれば、例えば切り出した時の寸法変化を低減しうる異方導電性シートを提供することができる。 The present invention makes it possible to provide an anisotropic conductive sheet that can reduce dimensional changes, for example, when cut out.
 100 異方導電性シート
 100P (個片化された)異方導電性シート
 110 絶縁層
 110a (絶縁層の)第1面
 110b (絶縁層の)第2面
 111A 第1エラストマー層
 111B 第2エラストマー層
 112 中間高弾性率層
 113A 第1表層高弾性率層
 113B 第2表層高弾性率層
 114 プライマー層
 115 貫通孔
 115’ 空洞
 116a 第1溝部
 116b 第2溝部
 120 導電層
 121 導電部
 122A 第1導電層
 122B 第2導電層
 130 導電性充填物
 140a 第1露出部
 140b 第2露出部
 150 積層シート
 151 導電層
 200 フレーム
 200a (フレームの)第1表面
 200b (フレームの)第2表面
 201 基材層
 202 フレーム絶縁層
 210 開口部
 300 シーリング材
 400 フレーム付き異方導電性シート
 500 電気検査装置
 510 基板
 511 電極
 512 位置決めピン
 520 検査対象物
 521 端子
100 Anisotropic conductive sheet 100P (individually cut) anisotropic conductive sheet 110 Insulating layer 110a First surface (of insulating layer) 110b Second surface (of insulating layer) 111A First elastomer layer 111B Second elastomer layer 112 Intermediate high elastic modulus layer 113A First surface high elastic modulus layer 113B Second surface high elastic modulus layer 114 Primer layer 115 Through hole 115' Cavity 116a First groove portion 116b Second groove portion 120 Conductive layer 121 Conductive portion 122A First conductive layer 122B Second conductive layer 130 Conductive filler 140a First exposed portion 140b Second exposed portion 150 Laminated sheet 151 Conductive layer 200 Frame 200a First surface (of frame) 200b Second surface (of frame) 201 Base material layer 202 Frame insulating layer 210 Opening 300 Sealing material 400 Framed anisotropic conductive sheet 500 Electrical inspection device 510 Substrate 511 Electrode 512 Positioning pin 520 Inspection target 521 Terminal

Claims (13)

  1.  厚み方向の一方の側の第1面と、他方の側の第2面と、前記第1面から前記第2面まで貫通する複数の貫通孔とを有する絶縁層と、
     前記複数の貫通孔のそれぞれの内壁面に配置された複数の導電部と、
     を含み、
     前記絶縁層は、
     第1エラストマー層と、
     第2エラストマー層と、
     前記第1エラストマー層と前記第2エラストマー層との間に配置された中間高弾性率層と、
     前記第1エラストマー層の前記中間高弾性率層とは反対側の面上に配置され、前記第1面を構成する少なくとも1つの第1表層高弾性率層と、
     を有し、
     前記少なくとも1つの第1表層高弾性率層及び前記中間高弾性率層の25℃での貯蔵弾性率は、前記第1エラストマー層及び前記第2エラストマー層の25℃での貯蔵弾性率よりも高い、
     異方導電性シート。
    an insulating layer having a first surface on one side in a thickness direction, a second surface on the other side, and a plurality of through holes penetrating from the first surface to the second surface;
    A plurality of conductive portions disposed on inner wall surfaces of the plurality of through holes;
    Including,
    The insulating layer is
    A first elastomeric layer; and
    A second elastomeric layer; and
    an intermediate high modulus layer disposed between the first elastomeric layer and the second elastomeric layer;
    At least one first surface high elastic modulus layer is disposed on a surface of the first elastomer layer opposite to the intermediate high elastic modulus layer and constitutes the first surface;
    having
    The storage modulus at 25° C. of the at least one first surface high elastic modulus layer and the intermediate high elastic modulus layer is higher than the storage modulus at 25° C. of the first elastomer layer and the second elastomer layer.
    Anisotropic conductive sheet.
  2.  前記中間高弾性率層は、ガラス転移温度が150℃以上の樹脂組成物を含む、
     請求項1に記載の異方導電性シート。
    The intermediate high elastic modulus layer contains a resin composition having a glass transition temperature of 150° C. or higher.
    The anisotropic conductive sheet according to claim 1 .
  3.  前記中間高弾性率層と、前記第1エラストマー層及び前記第2エラストマー層の少なくとも一方との間に配置され、金属アルコキシドの重縮合体を含むプライマー層をさらに有する、
     請求項1に記載の異方導電性シート。
    a primer layer disposed between the intermediate high elastic modulus layer and at least one of the first elastomer layer and the second elastomer layer, the primer layer including a polycondensate of a metal alkoxide;
    The anisotropic conductive sheet according to claim 1 .
  4.  前記少なくとも1つの第1表層高弾性率層は、複数の第1表層高弾性率層であり、
     前記複数の第1表層高弾性率層は、前記第1エラストマー層上に相互に離間して配置されている、
     請求項1に記載の異方導電性シート。
    the at least one first surface high elastic modulus layer is a plurality of first surface high elastic modulus layers,
    The plurality of first surface high elastic modulus layers are disposed on the first elastomer layer at intervals from each other.
    The anisotropic conductive sheet according to claim 1 .
  5.  前記複数の第1表層高弾性率層上にそれぞれ配置され、1又は2以上の前記導電部と接続された複数の第1導電層をさらに有する、
     請求項4に記載の異方導電性シート。
    The conductive layer further includes a plurality of first conductive layers disposed on the plurality of first surface high elastic modulus layers, respectively, and connected to one or more of the conductive portions.
    The anisotropic conductive sheet according to claim 4 .
  6.  前記中間高弾性率層及び前記少なくとも1つの第1表層高弾性率層の25℃での貯蔵弾性率は、1.0×10~1.0×1010Paである、
     請求項1に記載の異方導電性シート。
    the intermediate high elastic modulus layer and the at least one first outer high elastic modulus layer have a storage modulus of 1.0×10 8 to 1.0×10 10 Pa at 25° C.;
    The anisotropic conductive sheet according to claim 1 .
  7.  前記第1エラストマー層及び前記第2エラストマー層は、シリコーンゴム組成物の架橋物を含む、
     請求項1に記載の異方導電性シート。
    the first elastomer layer and the second elastomer layer contain a cross-linked product of a silicone rubber composition;
    The anisotropic conductive sheet according to claim 1 .
  8.  前記絶縁層は、
     前記第2エラストマー層の前記中間高弾性率層とは反対側の面上に配置され、前記第2面を構成する少なくとも1つの第2表層高弾性率層をさらに有し、
     前記少なくとも1つの第2表層高弾性率層の25℃での貯蔵弾性率は、前記第1エラストマー層及び前記第2エラストマー層の25℃での貯蔵弾性率よりも高い、
     請求項1に記載の異方導電性シート。
    The insulating layer is
    the second elastomer layer is disposed on a surface opposite to the intermediate high elastic modulus layer, and the second surface includes at least one second surface high elastic modulus layer;
    The storage modulus of the at least one second surface high elastic modulus layer at 25° C. is higher than the storage modulus of the first elastomer layer and the second elastomer layer at 25° C.
    The anisotropic conductive sheet according to claim 1 .
  9.  前記少なくとも1つの第2表層高弾性率層は、複数の第2表層高弾性率層であり、
     前記複数の第2表層高弾性率層は、前記第2エラストマー層上に相互に離間して配置されている、
     請求項8に記載の異方導電性シート。
    the at least one second surface high elastic modulus layer is a plurality of second surface high elastic modulus layers,
    The plurality of second surface high elastic modulus layers are disposed on the second elastomer layer at intervals from each other.
    The anisotropic conductive sheet according to claim 8 .
  10.  前記複数の第2表層高弾性率層上にそれぞれ配置され、1又は2以上の前記導電部と接続された複数の第2導電層をさらに有する、
     請求項9に記載の異方導電性シート。
    The second conductive layer is disposed on each of the second high elastic modulus layers and connected to one or more of the conductive portions.
    The anisotropic conductive sheet according to claim 9 .
  11.  検査対象物の電気検査に用いられる異方導電性シートであって、
     前記検査対象物は、前記第1面上に配置される、
     請求項1に記載の異方導電性シート。
    An anisotropic conductive sheet used for electrical testing of an object to be tested,
    The inspection object is placed on the first surface.
    The anisotropic conductive sheet according to claim 1 .
  12.  複数の電極を有する検査用基板と、
     前記検査用基板の前記複数の電極が配置された面上に配置された、請求項1~11のいずれか一項に記載の異方導電性シートと、を有する、
     電気検査装置。
    A testing substrate having a plurality of electrodes;
    and an anisotropic conductive sheet according to any one of claims 1 to 11, which is disposed on a surface of the testing board on which the plurality of electrodes are disposed.
    Electrical testing equipment.
  13.  複数の電極を有する検査用基板と、端子を有する検査対象物とを、請求項1~11のいずれか一項に記載の異方導電性シートを介して積層して、前記検査用基板の前記電極と、前記検査対象物の前記端子とを、前記異方導電性シートを介して電気的に接続する工程を有する、
     電気検査方法。
    The method includes a step of stacking a testing substrate having a plurality of electrodes and a test object having terminals via the anisotropic conductive sheet according to any one of claims 1 to 11, and electrically connecting the electrodes of the testing substrate and the terminals of the test object via the anisotropic conductive sheet.
    Electrical testing methods.
PCT/JP2023/037132 2022-10-14 2023-10-13 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method WO2024080349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022165712 2022-10-14
JP2022-165712 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080349A1 true WO2024080349A1 (en) 2024-04-18

Family

ID=90669805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037132 WO2024080349A1 (en) 2022-10-14 2023-10-13 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method

Country Status (1)

Country Link
WO (1) WO2024080349A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025351A (en) * 2000-07-10 2002-01-25 Jsr Corp Anisotropic conduction sheet and manufacturing method of the same, and electric inspection device for circuit device
WO2021100824A1 (en) * 2019-11-22 2021-05-27 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device and electrical inspection method
WO2022009942A1 (en) * 2020-07-10 2022-01-13 三井化学株式会社 Anisotropic conductive sheet, anisotropic conductive sheet manufacturing method, electrical inspection device, and electrical inspection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025351A (en) * 2000-07-10 2002-01-25 Jsr Corp Anisotropic conduction sheet and manufacturing method of the same, and electric inspection device for circuit device
WO2021100824A1 (en) * 2019-11-22 2021-05-27 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device and electrical inspection method
WO2022009942A1 (en) * 2020-07-10 2022-01-13 三井化学株式会社 Anisotropic conductive sheet, anisotropic conductive sheet manufacturing method, electrical inspection device, and electrical inspection method

Similar Documents

Publication Publication Date Title
US11921132B2 (en) Anisotropic conductive sheet, electrical inspection device and electrical inspection method
TWI765020B (en) Electrical connector and manufacturing method thereof
TW202019021A (en) Electric connector and manufacturing method thereof
WO2021100825A1 (en) Sheet connector, sheet set, electrical inspection device, and electrical inspection method
WO2024080349A1 (en) Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
JP2022020327A (en) Anisotropic conductive sheet, manufacturing method of anisotropic conductive sheet, electric inspection device, and electric inspection method
TW202243337A (en) Anisotropic conductive sheet and electrical inspection method
CN113168935B (en) Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electrical inspection device, and electrical inspection method
WO2023008083A1 (en) Anisotropic electroconductive sheet, method for producing same, electrical inspection device, and electrical inspection method
WO2021241654A1 (en) Anisotropic conductive sheet, method for manufacturing anisotropic conductive sheet, electric inspection device, and electric inspection method
CN115552732A (en) Anisotropic conductive sheet, method for producing anisotropic conductive sheet, electrical inspection device, and electrical inspection method
WO2023074760A1 (en) Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
WO2024048439A1 (en) Framed anisotropic conductive sheet, manufacturing method for framed anisoptropic conductive sheet, and electrical inspection device
KR102637066B1 (en) Anisotropic conductive sheet, electrical inspection device and electrical inspection method
JP2020027725A (en) Electric connector and manufacturing method thereof
JP2023167905A (en) electrical connector
JP2022047035A (en) Electrical connector and manufacturing method of the same
JP2020088012A (en) Wiring sheet and manufacturing method thereof