WO2024080270A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2024080270A1
WO2024080270A1 PCT/JP2023/036686 JP2023036686W WO2024080270A1 WO 2024080270 A1 WO2024080270 A1 WO 2024080270A1 JP 2023036686 W JP2023036686 W JP 2023036686W WO 2024080270 A1 WO2024080270 A1 WO 2024080270A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion plate
heat
layer
electronic component
conductor
Prior art date
Application number
PCT/JP2023/036686
Other languages
English (en)
French (fr)
Inventor
朗人 内藤
▲高▼志 姫田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024080270A1 publication Critical patent/WO2024080270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to electronic devices.
  • Patent Document 1 discloses a semiconductor device comprising a printed wiring board, a first semiconductor module, a first heat dissipation device, a second semiconductor module, and a second heat dissipation device, the first semiconductor module and the second semiconductor module being arranged to overlap in a planar view, and the second semiconductor module being connected in parallel to the first semiconductor module.
  • the first semiconductor module includes a first package body containing a first semiconductor element, and a first heat dissipation surface provided on one side of the first package body for dissipating heat generated by the first semiconductor element, and another side of the first package body facing the first heat dissipation surface is arranged facing one side of the printed wiring board.
  • the first heat dissipation device is provided on the first heat dissipation surface of the first semiconductor module.
  • the second semiconductor module includes a second package body containing a second semiconductor element and a second heat dissipation surface provided on one side of the second package body to dissipate heat generated by the second semiconductor element, and another side of the second package body facing the second heat dissipation surface is disposed facing the other side of the printed wiring board.
  • the second heat dissipation device is provided on the second heat dissipation surface of the second semiconductor module.
  • Patent Document 1 describes a heat sink as an example of the first heat dissipation device and the second heat dissipation device. According to Patent Document 1, it is possible to provide a low-cost semiconductor device that has a small footprint and improved heat dissipation.
  • the above problem is not limited to semiconductor devices, but is a common problem with electronic devices that have electronic components mounted on both the front and back of a wiring board.
  • the present invention was made to solve the above problems, and aims to provide an electronic device that has excellent thermal conductivity and can be made compact and low-profile.
  • the electronic device of the present invention comprises a wiring board having a first main surface and a second main surface facing each other in a thickness direction, a first electronic component mounted on the first main surface of the wiring board, a second electronic component mounted on the second main surface of the wiring board, a first heat diffusion plate thermally connected to the first electronic component, a second heat diffusion plate thermally connected to the second electronic component, and a thermal conductor disposed to penetrate the wiring board in the thickness direction and thermally connected to the first heat diffusion plate and the second heat diffusion plate.
  • the present invention provides electronic devices that have excellent thermal conductivity and can be made compact and low-profile.
  • FIG. 1 is a cross-sectional view illustrating an example of an electronic device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view taken along line A of the electronic device shown in FIG.
  • FIG. 3 is a perspective view illustrating an example of the first heat diffusion plate, the second heat diffusion plate, and the heat conductor.
  • FIG. 4 is a cross-sectional view showing an example of a connection portion between the second thermal diffusion plate and the thermal conductor.
  • FIG. 5 is a cross-sectional view showing a schematic example of a connection portion between the first thermal diffusion plate and the thermal conductor.
  • FIG. 6 is a cross-sectional view illustrating an example of an electronic device according to a second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating an example of an electronic device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view taken along line A of the electronic device shown in FIG.
  • FIG. 3 is a perspective view illustrating an example of
  • FIG. 7 is a plan view taken along line B of the electronic device shown in FIG.
  • FIG. 8 is a cross-sectional view showing a schematic example of a capacitor element disposed inside a wiring board.
  • FIG. 9 is a plan view taken along line C of the capacitor element shown in FIG.
  • terms indicating the relationship between elements e.g., "perpendicular,” “parallel,” “orthogonal,” etc.
  • terms indicating the shapes of elements are not expressions that express only a strict meaning, but are expressions that include a range of substantial equivalence, for example, differences of about a few percent.
  • FIG. 1 is a cross-sectional view showing an example of an electronic device according to a first embodiment of the present invention
  • Fig. 2 is a plan view taken along line A of the electronic device shown in Fig. 1.
  • the electronic device 1 shown in FIG. 1 includes a wiring board 10, a first electronic component 20, a second electronic component 30, a first heat diffusion plate 40, a second heat diffusion plate 50, and a heat conductor 60. As shown in FIG. 1, the electronic device 1 preferably further includes a heat dissipation fin 70.
  • the wiring board 10 has a first main surface 11 and a second main surface 12 that face each other in the thickness direction (the vertical direction in FIG. 1).
  • the wiring board 10 may be a multilayer board or a single layer board.
  • the wiring board 10 may be a ceramic board or a resin board.
  • the ceramic material constituting the ceramic board may be a low-temperature sintered ceramic material or a high-temperature sintered ceramic material.
  • the resin material constituting the resin board may be a thermosetting resin or a thermoplastic resin, such as glass epoxy resin or liquid crystal polymer.
  • the wiring board 10 is a multilayer board including multiple insulating layers.
  • the wiring board 10 has wiring conductors such as an internal conductor provided between the insulating layers, an external conductor provided on the first main surface 11, an external conductor provided on the second main surface 12, and a via conductor penetrating the insulating layers in the thickness direction, and a specific wiring conductor is electrically connected to the first electronic component 20 or the second electronic component 30.
  • the first electronic component 20 is mounted on the first main surface 11 of the wiring board 10.
  • the first electronic component 20 may be connected to an external conductor provided on the first main surface 11 of the wiring board 10, or may be connected to a via conductor exposed on the first main surface 11 of the wiring board 10.
  • the second electronic component 30 is mounted on the second main surface 12 of the wiring board 10.
  • the second electronic component 30 may be connected to an external conductor provided on the second main surface 12 of the wiring board 10, or may be connected to a via conductor exposed on the second main surface 12 of the wiring board 10.
  • the first electronic component 20 and the second electronic component 30 each have a load that generates heat when a current flows through them.
  • the first electronic component 20 includes a semiconductor element for performing logical operations
  • the second electronic component 30 includes a voltage regulation circuit for supplying power to the semiconductor element of the first electronic component 20.
  • the first heat diffusion plate 40 is thermally connected to the first electronic component 20.
  • the first heat diffusion plate 40 is disposed in a direction along the first main surface 11 of the wiring board 10.
  • the first heat diffusion plate 40 is directly or indirectly connected to the first electronic component 20.
  • the first heat diffusion plate 40 may be connected to the first electronic component 20 via a grease-like or sheet-like TIM (Thermal Interface Material).
  • the surface of the first electronic component 20 that is thermally connected to the first heat diffusion plate 40 is the surface opposite in the thickness direction to the surface where the first electronic component 20 is electrically connected to the wiring board 10.
  • the surface of the first electronic component 20 that is thermally connected to the first heat diffusion plate 40 is the top surface, and the surface where the first electronic component 20 is electrically connected to the wiring board 10 is the bottom surface.
  • the second heat diffusion plate 50 is thermally connected to the second electronic component 30.
  • the second heat diffusion plate 50 is disposed in a direction along the second main surface 12 of the wiring board 10.
  • the second heat diffusion plate 50 is directly or indirectly connected to the second electronic component 30.
  • the second heat diffusion plate 50 may be connected to the second electronic component 30 via a grease-like or sheet-like TIM.
  • the surface of the second electronic component 30 that is thermally connected to the second heat diffusion plate 50 is the surface opposite in the thickness direction to the surface where the second electronic component 30 is electrically connected to the wiring board 10.
  • the surface of the second electronic component 30 that is thermally connected to the second heat diffusion plate 50 is the bottom surface, and the surface where the second electronic component 30 is electrically connected to the wiring board 10 is the top surface.
  • the thermal conductor 60 is provided so as to penetrate the wiring board 10 in the thickness direction, and is thermally connected to the first heat diffusion plate 40 and the second heat diffusion plate 50.
  • the thermal conductor 60 is arranged so as to be inclined with respect to the first main surface 11 and the second main surface 12 of the wiring board 10, and is preferably arranged perpendicular to the first main surface 11 and the second main surface 12 of the wiring board 10.
  • heat conductor 60 Although only one heat conductor 60 may be provided, it is preferable that two or more heat conductors 60 are provided. Three or more heat conductors 60 may be provided, or four or more heat conductors 60 may be provided. When two or more heat conductors 60 are provided, the first heat diffusion plate 40 and the second heat diffusion plate 50 can be arranged flatly. Furthermore, when two or more heat conductors 60 are provided, heat circulation is excellent. In the example shown in FIG. 2, four heat conductors 60 are provided.
  • the heat conductor 60 can thermally couple the heat dissipation structures on both sides of the wiring board 10. Therefore, for example, by concentrating heat on the second main surface 12 side of the wiring board 10 on the first main surface 11 side and dissipating the heat on the first main surface 11 side, the heat dissipation structure on the second main surface 12 side can be made smaller and thinner.
  • At least one of the first heat diffusion plate 40, the second heat diffusion plate 50, and the heat conductor 60 may have a gas-liquid exchange mechanism in the internal space, and all of the first heat diffusion plate 40, the second heat diffusion plate 50, and the heat conductor 60 may have a gas-liquid exchange mechanism in the internal space.
  • the first heat diffusion plate 40 When the first heat diffusion plate 40 has a gas-liquid exchange mechanism in the internal space, it is preferable that the first heat diffusion plate 40 is a vapor chamber. In that case, although not shown in FIG. 1, it is preferable that the first heat diffusion plate 40 includes a capillary structure (wick) disposed in the internal space and a working liquid sealed in the internal space.
  • wick capillary structure
  • the second heat diffusion plate 50 When the second heat diffusion plate 50 has a gas-liquid exchange mechanism in the internal space, it is preferable that the second heat diffusion plate 50 is a vapor chamber. In that case, although not shown in FIG. 1, it is preferable that the second heat diffusion plate 50 includes a capillary structure (wick) disposed in the internal space and a working liquid sealed in the internal space.
  • wick capillary structure
  • the thermal conductor 60 When the thermal conductor 60 has a gas-liquid exchange mechanism in the internal space, the thermal conductor 60 is preferably a heat pipe. In that case, although not shown in FIG. 1, the thermal conductor 60 preferably includes a capillary structure (wick) disposed in the internal space and a working liquid sealed in the internal space.
  • wick capillary structure
  • the internal space of the heat conductor 60 may be connected to the internal space of the first heat diffusion plate 40 or the second heat diffusion plate 50.
  • the internal space of the heat conductor 60 is connected to the internal space of the second heat diffusion plate 50.
  • first heat diffusion plate 40, the second heat diffusion plate 50, and the heat conductor 60 are electrically grounded to the housing (not shown) of the electronic device 1 or the wiring board 10.
  • the electronic device 1 may further include a heat dissipation fin 70 thermally connected to the first heat diffusion plate 40.
  • the heat on the second main surface 12 side of the wiring board 10 can be concentrated on the first main surface 11 side and dissipated on the first main surface 11 side, eliminating the need to place the heat dissipation fin 70 on the second main surface 12 side.
  • the surface of the first heat diffusion plate 40 that is thermally connected to the heat dissipation fins 70 is the surface opposite in the thickness direction to the surface where the first heat diffusion plate 40 is thermally connected to the first electronic component 20.
  • the surface of the first heat diffusion plate 40 that is thermally connected to the heat dissipation fins 70 is the upper surface, and the surface where the first heat diffusion plate 40 is thermally connected to the first electronic component 20 is the lower surface.
  • the heat dissipation path on the first electronic component 20 side is shorter than the heat dissipation path on the second electronic component 30 side. Therefore, it is preferable that the power consumed by passing a current through the load of the first electronic component 20 is greater than the power consumed by passing a current through the load of the second electronic component 30.
  • the internal space of the heat conductor 60 communicates with the internal space of the second heat diffusion plate 50, from the viewpoint of making the heat dissipation path on the first electronic component 20 side shorter than the heat dissipation path on the second electronic component 30 side.
  • FIG. 3 is a perspective view showing an example of a first heat diffusion plate, a second heat diffusion plate, and a heat conductor.
  • FIG. 4 is a cross-sectional view showing an example of a connection portion between the second heat diffusion plate and the heat conductor.
  • FIG. 5 is a cross-sectional view showing an example of a connection portion between the first heat diffusion plate and the heat conductor.
  • the first heat diffusion plate 40, the second heat diffusion plate 50 and the heat conductor 60 all have a gas-liquid exchange mechanism in their internal spaces.
  • the first heat diffusion plate 40 and the second heat diffusion plate 50 are vapor chambers
  • the heat conductor 60 is a heat pipe. Note that the capillary structure (wick) and the working fluid are not shown in Figures 4 and 5.
  • the materials constituting the first heat diffusion plate 40, the second heat diffusion plate 50, and the heat conductor 60 are not particularly limited, but are preferably metals, such as copper, nickel, aluminum, magnesium, titanium, iron, or alloys containing these as main components, and are particularly preferably copper.
  • the materials constituting the first heat diffusion plate 40, the second heat diffusion plate 50, and the heat conductor 60 may be the same or may be partially or entirely different, but are preferably the same.
  • the internal space of the heat conductor 60 is connected to the internal space of the second heat diffusion plate 50.
  • one end of the heat conductor 60 having a hollow structure is inserted into an opening provided in the second heat diffusion plate 50.
  • the second heat diffusion plate 50 and the heat conductor 60 may be connected via solder or the like.
  • a support ring 51 that covers the outer circumferential surface of the heat conductor 60 may be provided at the connection between the second heat diffusion plate 50 and the heat conductor 60.
  • the material that constitutes the support ring 51 may be, for example, a metal or a heat-resistant non-metal.
  • the second heat diffusion plate 50 may have a rim portion 52 on the periphery of the opening.
  • the inner surface of the rim portion 52 contacts the outer peripheral surface of the heat conductor 60.
  • the outer surface of the rim portion 52 contacts the inner surface of the support ring 51.
  • the internal space of the heat conductor 60 is not connected to the internal space of the first heat diffusion plate 40.
  • the thermal conductor 41 is, for example, a heat pipe.
  • the material constituting the thermal conductor 41 may be the same as the material constituting the thermal conductor 60, or may be different.
  • the length of the thermal conductor 41 is shorter than the length of the thermal conductor 60.
  • the diameter of the thermal conductor 41 is larger than the diameter of the thermal conductor 60.
  • the thermal conductor 60 is preferably inserted into the hollow portion of the thermal conductor 41 that is integrated with the first thermal diffusion plate 40. By providing the thermal conductor 41 on the first thermal diffusion plate 40, the thermal contact between the first thermal diffusion plate 40 and the thermal conductor 60 can be improved.
  • a TIM 61 such as thermally conductive grease between the thermal conductor 60 and the thermal conductor 41. This can further improve the thermal contact between the first heat diffusion plate 40 and the thermal conductor 60.
  • the heat conductor 60 may have a screw thread 62 on its outer circumferential surface.
  • the heat conductor 60 can be firmly fixed to the first heat diffusion plate 40 by tightening and pressing a fastener 63 such as a nut onto the screw thread 62.
  • the wiring board 10 is fixed between the first heat diffusion plate 40 and the second heat diffusion plate 50 as shown in FIG. 1.
  • the wiring board 10 can be fixed together with the first electronic component 20 and the second electronic component 30 by the first heat diffusion plate 40 and the second heat diffusion plate 50 by tightening with a fastener 63 such as a nut.
  • the first heat diffusion plate 40 or the second heat diffusion plate 50 may be fixed to the wiring board 10 using a metal screw or the like that is not a thermal conductor 60. Note that in FIG. 1, a part of the thermal conductor 41 (see FIG. 3 and FIG. 5) may be inserted between the wiring board 10 and the thermal conductor 60.
  • the electronic device according to the second embodiment of the present invention further includes a capacitor element disposed inside the wiring board.
  • the thermal conductor is provided so as to penetrate the capacitor element in a thickness direction and is in contact with the capacitor element.
  • FIG. 6 is a cross-sectional view showing a schematic example of an electronic device according to a second embodiment of the present invention.
  • FIG. 7 is a plan view taken along line B of the electronic device shown in FIG. 6.
  • the electronic device 2 shown in FIG. 6 includes a wiring board 10, a first electronic component 20, a second electronic component 30, a first heat diffusion plate 40, a second heat diffusion plate 50, and a heat conductor 60, similar to the electronic device 1 shown in FIG. 1. As shown in FIG. 6, the electronic device 2 preferably further includes a heat dissipation fin 70.
  • the electronic device 2 further includes a capacitor element 80 disposed inside the wiring board 10.
  • the capacitor element 80 includes a first electrode layer, a second electrode layer, and a dielectric layer, and the first electrode layer and the second electrode layer face each other in the thickness direction via the dielectric layer.
  • the arrangement of the capacitor elements 80 inside the wiring board 10 is not particularly limited, but for example, the capacitor elements 80 are arranged in a direction along the first main surface 11 and the second main surface 12 of the wiring board 10.
  • One capacitor element 80 may be arranged inside the wiring board 10, or two or more capacitor elements 80 may be arranged.
  • two or more capacitor elements 80 may be arranged in the thickness direction, or two or more capacitor elements 80 may be arranged in the surface direction.
  • the thermal conductor 60 is arranged to penetrate the capacitor element 80 in the thickness direction and is in contact with the capacitor element 80.
  • thermal conductors 60 When two or more thermal conductors 60 are provided, at least one thermal conductor 60 needs to penetrate the capacitor element 80 in the thickness direction. In the example shown in FIG. 7, four thermal conductors 60 penetrate the capacitor element 80 in the thickness direction.
  • the number of thermal conductors 60 penetrating the capacitor elements 80 may be the same, or some or all of them may be different. In addition, there may be capacitor elements 80 that are not penetrated by thermal conductors 60.
  • thermal conductor 60 by passing thermal conductor 60 through capacitor element 80 arranged inside wiring board 10, there is no interference with the heat dissipation structure on both sides of wiring board 10. Furthermore, heat generated from capacitor element 80 can also be dissipated by thermal conductor 60.
  • the capacitor element 80 by arranging the capacitor element 80 inside the wiring board 10, the number of capacitor elements arranged on the second main surface 12 of the wiring board 10 can be reduced. This makes it possible to further reduce the size and height of the heat dissipation structure on the second main surface 12 side of the wiring board 10.
  • the electronic device 2 may further include a capacitor element 85 disposed inside the first electronic component 20 or the second electronic component 30.
  • the capacitor element 85 may be disposed inside either the first electronic component 20 or the second electronic component 30, or may be disposed inside both.
  • capacitor element 85 includes a first electrode layer, a second electrode layer, and a dielectric layer, and the first electrode layer and the second electrode layer face each other in the thickness direction via the dielectric layer.
  • the configuration of capacitor element 85 may be the same as the configuration of capacitor element 80, or may be different.
  • FIG. 8 is a cross-sectional view showing a schematic example of a capacitor element disposed inside a wiring board.
  • FIG. 9 is a plan view taken along line C of the capacitor element shown in FIG. 8.
  • the capacitor element 80 shown in FIG. 8 includes a capacitor portion 110 and a sealing layer 120 that seals the capacitor portion 110.
  • the capacitor section 110 includes a first electrode layer and a second electrode layer that face each other in the thickness direction via a dielectric layer.
  • the first electrode layer is an anode plate 111
  • the second electrode layer is a cathode layer 112. This makes the capacitor section 110 an electrolytic capacitor.
  • the anode plate 111 has, for example, a core 111A made of metal and a porous portion 111B provided on at least one of the main surfaces of the core 111A.
  • a dielectric layer 113 is provided on the surface of the porous portion 111B, and a cathode layer 112 is provided on the surface of the dielectric layer 113.
  • the cathode layer 112 includes, for example, a solid electrolyte layer 112A provided on the surface of the dielectric layer 113.
  • the cathode layer 112 preferably further includes a conductor layer 112B provided on the surface of the solid electrolyte layer 112A.
  • the conductor layer 112B includes, for example, a carbon layer 112Ba provided on the surface of the solid electrolyte layer 112A, and a copper layer 112Bb provided on the surface of the carbon layer 112Ba.
  • capacitor section 110 is not limited to an electrolytic capacitor such as a solid electrolytic capacitor, and may be, for example, a ceramic capacitor using barium titanate or the like, or a thin film capacitor using silicon nitride (SiN), silicon dioxide (SiO 2 ), hydrogen fluoride (HF), etc.
  • capacitor section 110 be a capacitor using a metal such as aluminum as a base material, and it is more preferable to use an electrolytic capacitor using a metal such as aluminum as a base material.
  • the capacitor element 80 preferably includes a first through-hole conductor 131 that is electrically connected to the first electrode layer (anode plate 111 in the example shown in Figure 8).
  • the capacitor element 80 preferably includes a second through-hole conductor 132 electrically connected to the second electrode layer (cathode layer 112 in the example shown in FIG. 8).
  • the first through-hole conductor 131 is electrically connected at its sidewall to the end face of the first electrode layer (e.g., anode plate 111).
  • the space between the second through-hole conductor 132 and the capacitor section 110 is filled with insulating material 122.
  • a resin-filled portion 124 may be provided on the inside of the first through-hole conductor 131. Similarly, a resin-filled portion 124 may be provided on the inside of the second through-hole conductor 132. Note that the resin-filled portion 124 may be a conductor or an insulator.
  • an insulating layer 126 is preferably provided around the first through-hole conductor 131.
  • an insulating layer 126 is preferably provided around the second through-hole conductor 132.
  • the insulating layer 126 is provided between the first through-hole conductor 131 and the cathode layer 112, or between the second through-hole conductor 132 and the cathode layer 112.
  • the first through-hole conductor 131 is formed, for example, as follows. First, a first through-hole penetrating the capacitor section 110 and the sealing layer 120 in the thickness direction is formed by drilling, laser processing, or the like. Then, the inner wall surface of the first through-hole is metallized with a metal material containing a low-resistance metal such as copper, gold, or silver to form the first through-hole conductor 131. When forming the first through-hole conductor 131, for example, the inner wall surface of the first through-hole is metallized with electroless copper plating, electrolytic copper plating, or the like to facilitate processing.
  • the method of forming the first through-hole conductor 131 may be a method of filling the first through-hole with a metal material, a composite material of metal and resin, or the like, in addition to a method of metallizing the inner wall surface of the first through-hole.
  • the second through-hole conductor 132 is formed, for example, as follows. First, a first through hole penetrating the capacitor section 110 in the thickness direction is formed by drilling, laser processing, etc. Next, the first through hole described above is filled with insulating material 122. A second through hole is formed by drilling, laser processing, etc. on the portion filled with insulating material 122. At this time, the diameter of the second through hole is made smaller than the diameter of the first through hole filled with insulating material 122, so that the insulating material 122 is present between the inner wall surface of the first through hole formed previously and the inner wall surface of the second through hole in the surface direction.
  • the inner wall surface of the second through hole is metallized with a metal material containing a low-resistance metal such as copper, gold, or silver, to form the second through-hole conductor 132.
  • a metal material containing a low-resistance metal such as copper, gold, or silver
  • the inner wall surface of the second through hole is metallized with electroless copper plating, electrolytic copper plating, etc., to facilitate processing.
  • the method of forming the second through-hole conductor 132 may be a method of filling the second through-hole with a metal material, a composite material of metal and resin, or the like, in addition to a method of metallizing the inner wall surface of the second through-hole.
  • the capacitor element 80 may further include a through-hole conductor other than the first through-hole conductor 131 and the second through-hole conductor 132.
  • the capacitor element 80 may further include a through-hole conductor that is not electrically connected to either the first electrode layer or the second electrode layer of the capacitor section 110.
  • the capacitor element 80 preferably further includes external wiring layers 151 and 152 provided on the surface of the sealing layer 120.
  • the external wiring layers 151 and 152 are preferably provided along a principal surface direction perpendicular to the thickness direction of the capacitor section 110. In the example shown in FIG. 8, the external wiring layers 151 and 152 are provided on both principal surfaces of the capacitor section 110, but may be provided on only one of the principal surfaces.
  • the capacitor element 80 preferably further includes a via conductor 160 provided inside the sealing layer 120.
  • the via conductor 160 is preferably provided along the thickness direction of the capacitor section 110.
  • One end of the via conductor 160 is connected to the second electrode layer (e.g., the cathode layer 112) of the capacitor section 110, and the other end is connected to the external wiring layer 152.
  • the first electrode layer (e.g., anode plate 111) of the capacitor section 110 is electrically connected to the external wiring layer 151 via the first through-hole conductor 131. In this manner, it is preferable that the first electrode layer is electrically drawn out to the surface of the sealing layer 120 via the first through-hole conductor 131.
  • the external wiring layer 151 can function as a connection terminal for the capacitor section 110.
  • the second through-hole conductor 132 is electrically connected to the second electrode layer (e.g., the cathode layer 112) of the capacitor section 110 via the external wiring layer 152 and the via conductor 160.
  • the second through-hole conductor 132 is preferably provided so as to penetrate both the capacitor section 110 and the sealing layer 120 in the thickness direction of the capacitor section 110.
  • the external wiring layer 152 can function as a connection terminal for the capacitor section 110.
  • the anode plate 111 is preferably made of a valve metal that exhibits so-called valve action.
  • valve metals include simple metals such as aluminum, tantalum, niobium, titanium, and zirconium, or alloys containing at least one of these metals. Of these, aluminum or an aluminum alloy is preferred.
  • the anode plate 111 is preferably flat, and more preferably foil-shaped.
  • the anode plate 111 may have a porous portion 111B on at least one main surface of the core portion 111A, and may have a porous portion 111B on both main surfaces of the core portion 111A.
  • the porous portion 111B is preferably a porous layer formed on the surface of the core portion 111A, and more preferably an etched layer.
  • the thickness of the anode plate 111 before the etching process is preferably 60 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the unetched core portion 111A after the etching process is preferably 15 ⁇ m or more and 70 ⁇ m or less.
  • the thickness of the porous portion 111B is designed according to the required withstand voltage and electrostatic capacitance, but it is preferably 10 ⁇ m or more and 180 ⁇ m or less, including the porous portions 111B on both sides of the core portion 111A.
  • the pore diameter of the porous portion 111B is preferably 10 nm or more and 600 nm or less.
  • the pore diameter of the porous portion 111B means the median diameter D50 measured by a mercury porosimeter.
  • the pore diameter of the porous portion 111B can be controlled, for example, by adjusting various etching conditions.
  • the dielectric layer 113 provided on the surface of the porous portion 111B is porous, reflecting the surface condition of the porous portion 111B, and has a finely uneven surface shape.
  • the dielectric layer 113 is preferably made of an oxide film of the valve metal.
  • the dielectric layer 113 made of an oxide film can be formed by anodizing the surface of the aluminum foil in an aqueous solution containing ammonium adipate or the like (also called chemical conversion treatment).
  • the thickness of the dielectric layer 113 is designed according to the required withstand voltage and capacitance, but is preferably 10 nm or more and 100 nm or less.
  • examples of materials constituting the solid electrolyte layer 112A include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among these, polythiophenes are preferred, and poly(3,4-ethylenedioxythiophene), also known as PEDOT, is particularly preferred.
  • the conductive polymer may also include a dopant such as polystyrene sulfonate (PSS).
  • PSS polystyrene sulfonate
  • the solid electrolyte layer 112A preferably includes an inner layer that fills the pores (recesses) of the dielectric layer 113, and an outer layer that covers the dielectric layer 113.
  • the thickness of the solid electrolyte layer 112A from the surface of the porous portion 111B is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the solid electrolyte layer 112A is formed, for example, by a method of forming a polymerized film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer 113 using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene, or by applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer 113 and drying it.
  • the solid electrolyte layer 112A can be formed in a predetermined area by applying the above-mentioned treatment liquid or dispersion liquid to the surface of the dielectric layer 113 by a method such as sponge transfer, screen printing, dispenser application, or inkjet printing.
  • the conductor layer 112B includes at least one of a conductive resin layer and a metal layer.
  • the conductor layer 112B may be only a conductive resin layer or only a metal layer. It is preferable that the conductor layer 112B covers the entire surface of the solid electrolyte layer 112A.
  • the conductive resin layer may be, for example, a conductive adhesive layer containing at least one conductive filler selected from the group consisting of silver filler, copper filler, nickel filler, and carbon filler.
  • the metal layer examples include metal plating films and metal foils.
  • the metal layer is preferably made of at least one metal selected from the group consisting of nickel, copper, silver, and alloys containing these metals as the main components.
  • the term "main component" refers to the elemental component with the largest weight ratio.
  • the carbon layer 112Ba is provided to electrically and mechanically connect the solid electrolyte layer 112A and the copper layer 112Bb.
  • the carbon layer 112Ba can be formed in a predetermined area by applying carbon paste onto the solid electrolyte layer 112A by sponge transfer, screen printing, dispenser application, inkjet printing, or other methods. Note that it is preferable to laminate the copper layer 112Bb in the next process to the carbon layer 112Ba while it is in a viscous state before drying.
  • the thickness of the carbon layer 112Ba is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the copper layer 112Bb can be formed by applying copper paste onto the carbon layer 112Ba by sponge transfer, screen printing, spray application, dispenser application, inkjet printing, or other methods.
  • the thickness of the copper layer 112Bb is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the sealing layer 120 is made of an insulating material. It is preferable that the sealing layer 120 is made of an insulating resin. Examples of the insulating resin that constitutes the sealing layer 120 include epoxy resin and phenol resin. Furthermore, it is preferable that the sealing layer 120 contains a filler. Examples of the filler contained in the sealing layer 120 include inorganic fillers such as silica particles, alumina particles, and metal particles.
  • the sealing layer 120 is provided on both main surfaces of the capacitor section 110, but it may be provided on only one of the main surfaces.
  • the sealing layer 120 provided on one main surface of the capacitor section 110 may be composed of only one layer, or may be composed of two or more layers.
  • the materials constituting each layer may be the same or different.
  • a layer such as a stress relief layer or a moisture-proof film may be provided between the capacitor section 110 and the sealing layer 120.
  • the stress relaxation layer is preferably made of an insulating resin.
  • the insulating resin constituting the stress relaxation layer include epoxy resin, phenolic resin, and silicone resin.
  • the stress relaxation layer preferably contains a filler.
  • the filler contained in the stress relaxation layer include inorganic fillers such as silica particles, alumina particles, and metal particles.
  • the insulating resin constituting the stress relaxation layer is preferably different from the insulating resin constituting the sealing layer 120.
  • the sealing layer 120 is required to have properties such as adhesion to the external electrodes (e.g., external wiring layers 151 and 152) as an exterior body, it is difficult to simply match the linear expansion coefficient with that of the capacitor section 110 or select a resin with an arbitrary elastic modulus. In contrast, by providing a stress relaxation layer, it is possible to adjust the thermal stress design without losing the respective functions of the capacitor section 110 and the sealing layer 120.
  • the stress relaxation layer preferably has lower moisture permeability than the sealing layer 120. In this case, in addition to adjusting the stress, it is possible to reduce the intrusion of moisture into the capacitor section 110.
  • the moisture permeability of the stress relaxation layer can be adjusted by the type of insulating resin that constitutes the stress relaxation layer, the amount of filler contained in the stress relaxation layer, etc.
  • the insulating material 122 filled between the second through-hole conductor 132 and the capacitor section 110 is preferably composed of an insulating resin.
  • the insulating resin constituting the insulating material 122 include epoxy resin and phenolic resin.
  • the insulating material 122 preferably contains a filler.
  • the filler contained in the insulating material 122 include inorganic fillers such as silica particles, alumina particles, and metal particles.
  • the insulating material 122 may be made of the same material as the sealing layer 120.
  • the sealing layer 120 may be filled between the second through-hole conductor 132 and the capacitor section 110.
  • the insulating material 122 may be made of the same material as the stress relief layer described above.
  • the stress relief layer may be filled between the second through-hole conductor 132 and the capacitor portion 110.
  • the insulating material 122 may have a thermal expansion coefficient greater than, less than, or the same as that of the material (e.g., copper) constituting the first through-hole conductor 131 or the second through-hole conductor 132.
  • the material constituting the resin-filled portion 124 may have a thermal expansion coefficient greater than, smaller than, or the same as the material (e.g., copper) constituting the first through-hole conductor 131 or the second through-hole conductor 132.
  • the insulating layer 126 is preferably made of an insulating resin.
  • the insulating resin that constitutes the insulating layer 126 include polyphenylsulfone resin, polyethersulfone resin, cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene-perfluoroalkylvinylether copolymer, etc.), polyimide resin, polyamideimide resin, epoxy resin, and derivatives or precursors thereof.
  • the insulating layer 126 may be made of the same resin as the sealing layer 120. Unlike the sealing layer 120, if the insulating layer 126 contains inorganic filler, this may adversely affect the effective capacitance portion of the capacitor section 110, so it is preferable that the insulating layer 126 is made of a resin alone.
  • the insulating layer 126 can be formed, for example, by applying a mask material, such as a composition containing an insulating resin, to the surface of the porous portion 111B by a method such as sponge transfer, screen printing, dispenser application, or inkjet printing.
  • a mask material such as a composition containing an insulating resin
  • the thickness of the insulating layer 126 from the surface of the porous portion 111B is preferably 20 ⁇ m or less.
  • the thickness of the insulating layer 126 from the surface of the porous portion 111B may be 0 ⁇ m, but is preferably 2 ⁇ m or more.
  • the insulating layer 126 may be filled inside the porous portion 111B and provided on the surface of the porous portion 111B above the filled portion. That is, the thickness of the insulating layer 126 may be greater than the thickness of the porous portion 111B.
  • An anode connection layer may be provided between the first through-hole conductor 131 and the end face of the anode plate 111. That is, the first through-hole conductor 131 may be electrically connected to the end face of the anode plate 111 via the anode connection layer.
  • the anode connection layer functions as a barrier layer for the anode plate 111.
  • the anode connection layer includes, for example, a first anode connection layer mainly made of zinc and a second anode connection layer mainly made of nickel or copper, in that order from the anode plate 111.
  • the second anode connection layer is formed on the first anode connection layer by electroless nickel plating or electroless copper plating. Note that the first anode connection layer may disappear, in which case the anode connection layer may include only the second anode connection layer.
  • an anode connection layer does not have to be provided between the first through-hole conductor 131 and the end surface of the anode plate 111.
  • the first through-hole conductor 131 may be directly connected to the end surface of the anode plate 111.
  • the first through-hole conductor 131 is electrically connected to the end face of the first electrode layer (e.g., anode plate 111) around the entire circumference.
  • the contact area between the first through-hole conductor 131 and the first electrode layer is increased, thereby reducing the connection resistance with the first through-hole conductor 131, and therefore the equivalent series resistance (ESR) of the capacitor element 80 can be lowered.
  • ESR equivalent series resistance
  • the adhesion between the first through-hole conductor 131 and the first electrode layer is increased, making it less likely that problems such as peeling at the connection surface due to thermal stress will occur.
  • the constituent material of the external wiring layers 151 and 152 may be, for example, a low-resistance metal such as silver, gold, or copper.
  • the constituent material of the external wiring layer 151 may be the same as or different from the constituent material of the external wiring layer 152.
  • the external wiring layers 151 and 152 are formed, for example, by a method such as plating.
  • a mixed material of at least one conductive filler selected from the group consisting of silver filler, copper filler, nickel filler, and carbon filler and resin may be provided as a constituent material of the external wiring layers 151 and 152.
  • the via conductor 160 may be made of low-resistance metals such as silver, gold, and copper.
  • the via conductor 160 may be formed by plating, heat treatment of a conductive paste, or other methods.
  • one capacitor section 110 may be arranged inside the sealing layer 120, or multiple capacitor sections 110 may be arranged.
  • adjacent capacitor sections 110 When multiple capacitor sections 110 are arranged inside the sealing layer 120, adjacent capacitor sections 110 only need to be physically separated from each other. Therefore, adjacent capacitor sections 110 may be electrically separated from each other or may be electrically connected to each other. It is preferable that the portion where adjacent capacitor sections 110 are separated from each other is filled with an insulating material such as the sealing layer 120. The distance between adjacent capacitor sections 110 may be constant in the thickness direction or may become smaller in the thickness direction.
  • the multiple capacitor sections 110 When multiple capacitor sections 110 are arranged inside the sealing layer 120, the multiple capacitor sections 110 may be arranged side by side in the planar direction, may be arranged so as to be stacked in the thickness direction, or may be arranged in a combination of both.
  • the multiple capacitor sections 110 may be arranged regularly or irregularly.
  • the size and shape, etc. of the capacitor sections 110 may be the same, or some or all of them may be different. It is preferable that the configuration of each capacitor section 110 is the same, but capacitor sections 110 with different configurations may be included.
  • the capacitor element 80 can be suitably used as a constituent material of a composite electronic component.
  • a composite electronic component includes, for example, the capacitor element 80, external electrodes (e.g., external wiring layers) provided on the outside of the capacitor element 80 (e.g., outside the sealing layer) and electrically connected to the first electrode layer and the second electrode layer of the capacitor element 80, and an electronic component connected to the external electrodes.
  • the electronic component connected to the external electrode may be a passive element or an active element. Both the passive element and the active element may be connected to the external electrode, or either the passive element or the active element may be connected to the external electrode. Also, a composite of a passive element and an active element may be connected to the external electrode.
  • Passive elements include, for example, inductors. Active elements include memory, GPUs (Graphical Processing Units), CPUs (Central Processing Units), MPUs (Micro Processing Units), PMICs (Power Management ICs), etc.
  • the capacitor element 80 has a sheet-like shape overall. Therefore, in a composite electronic component, the capacitor element 80 can be treated like a mounting board, and electronic components can be mounted on the capacitor element 80. Furthermore, by making the electronic components mounted on the capacitor element 80 into a sheet-like shape, it is also possible to connect the capacitor element 80 and the electronic components in the thickness direction via through-hole conductors that penetrate each electronic component in the thickness direction. As a result, the active elements and passive elements can be configured like a single module.
  • a switching regulator can be formed by electrically connecting a capacitor element 80 between a voltage regulator including a semiconductor active element and a load to which the converted DC voltage is supplied.
  • a circuit layer may be formed on one side of a capacitor matrix sheet on which multiple capacitor elements 80 are laid out, and the capacitor elements may then be connected to passive or active elements.
  • the capacitor element 80 may be placed in a cavity provided in advance in the substrate, embedded in resin, and then a circuit layer may be formed on the resin.
  • Another electronic component passive element or active element
  • the capacitor element 80 may be mounted on a smooth carrier such as a wafer or glass, an outer layer made of resin may be formed, a circuit layer may be formed, and the capacitor element 80 may then be connected to a passive or active element.
  • a smooth carrier such as a wafer or glass
  • an outer layer made of resin may be formed
  • a circuit layer may be formed, and the capacitor element 80 may then be connected to a passive or active element.
  • the electronic device of the present invention is not limited to the above-described embodiment, and various applications and modifications can be made within the scope of the present invention with respect to the configuration of the electronic device, manufacturing conditions, and the like.
  • a wiring substrate having a first main surface and a second main surface opposed to each other in a thickness direction; a first electronic component mounted on the first main surface of the wiring board; a second electronic component mounted on the second main surface of the wiring board; a first heat diffusion plate thermally connected to the first electronic component; a second heat spreader plate thermally connected to the second electronic component; a heat conductor provided to penetrate the wiring board in the thickness direction and thermally connected to the first heat diffusion plate and the second heat diffusion plate.
  • ⁇ 2> The electronic device according to ⁇ 1>, wherein at least one of the first heat diffusion plate, the second heat diffusion plate, and the heat conductor has an air-liquid exchange mechanism in an internal space.
  • ⁇ 4> The electronic device according to ⁇ 3>, wherein the internal space of the thermal conductor is in communication with the internal space of the first thermal diffusion plate or the second thermal diffusion plate.
  • ⁇ 5> The electronic device according to any one of ⁇ 1> to ⁇ 4>, further comprising a heat dissipation fin thermally connected to the first heat diffusion plate.
  • ⁇ 6> The electronic device according to ⁇ 5>, wherein power consumed by passing a current through a load of the first electronic component is greater than power consumed by passing a current through a load of the second electronic component.
  • the first heat diffusion plate, the second heat diffusion plate and the heat conductor all have a gas-liquid exchange mechanism in their internal spaces;
  • a surface of the first electronic component that is thermally connected to the first heat diffusion plate is a surface opposite to a surface of the first electronic component that is electrically connected to the wiring board in the thickness direction;
  • ⁇ 9> The electronic device according to any one of ⁇ 1> to ⁇ 8>, wherein two or more thermal conductors are provided.
  • thermo conductor has a screw thread on an outer peripheral surface.
  • ⁇ 11> The electronic device according to any one of ⁇ 1> to ⁇ 10>, wherein the first heat diffusion plate, the second heat diffusion plate, and the heat conductor are electrically grounded to a housing of the electronic device or the wiring board.
  • the first electronic component includes a semiconductor element for performing a logical operation
  • the second electronic component includes a voltage regulation circuit for supplying power to the semiconductor element of the first electronic component.
  • a capacitor element is further provided inside the wiring board.
  • the capacitor element includes a first electrode layer, a second electrode layer, and a dielectric layer, the first electrode layer and the second electrode layer facing each other in the thickness direction via the dielectric layer,
  • the electronic device according to any one of ⁇ 1> to ⁇ 12>, wherein the thermal conductor is provided so as to penetrate the capacitor element in the thickness direction and is in contact with the capacitor element.
  • the first electrode layer is an anode plate having a core portion made of a metal and a porous portion provided on at least one main surface of the core portion, the dielectric layer is provided on a surface of the porous portion,

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

電子機器1は、厚さ方向に相対する第1の主面11及び第2の主面12を有する配線基板10と、配線基板10の第1の主面11に実装された第1の電子部品20と、配線基板10の第2の主面12に実装された第2の電子部品30と、第1の電子部品20に熱的に接続された第1の熱拡散板40と、第2の電子部品30に熱的に接続された第2の熱拡散板50と、配線基板10を厚さ方向に貫通するように設けられ、第1の熱拡散板40及び第2の熱拡散板50に熱的に接続された熱伝導体60と、を備える。

Description

電子機器
 本発明は、電子機器に関する。
 特許文献1には、プリント配線基板と、第1半導体モジュールと、第1放熱装置と、第2半導体モジュールと、第2放熱装置と、を備え、上記第1半導体モジュールと上記第2半導体モジュールとは、平面視において重なって配置され、上記第2半導体モジュールは、上記第1半導体モジュールに並列接続される半導体装置が開示されている。上記第1半導体モジュールは、第1半導体素子を内包する第1パッケージ本体と、上記第1パッケージ本体の一面に設けられ上記第1半導体素子にて発生する熱を放熱する第1放熱面とを含み、上記第1放熱面に対面する上記第1パッケージ本体の別の一面が上記プリント配線基板の一方面に対面して配置される。上記第1放熱装置は、上記第1半導体モジュールの上記第1放熱面に設けられる。上記第2半導体モジュールは、第2半導体素子を内包する第2パッケージ本体と、上記第2パッケージ本体の一面に設けられ上記第2半導体素子にて発生する熱を放熱する第2放熱面とを含み、上記第2放熱面に対面する上記第2パッケージ本体の別の一面が上記プリント配線基板の他方面に対面して配置される。上記第2放熱装置は、上記第2半導体モジュールの上記第2放熱面に設けられる。
米国特許出願公開第2019/0157177号明細書
 特許文献1には、第1放熱装置及び第2放熱装置の例として、ヒートシンクが記載されえている。特許文献1によれば、占有面積が小型化し、かつ、放熱性が向上した低コストな半導体装置の提供が可能であるとされている。
 しかしながら、特許文献1に記載の半導体装置のように、プリント配線基板の表裏両側にそれぞれ設けられた半導体モジュールに対して放熱装置が別個に設けられている場合、熱伝導という観点から改善の余地がある。また、プリント配線基板の両側に放熱装置が設けられていることで、半導体装置全体が大型化及び高背化してしまう。さらに、近年、半導体装置を含むデバイスに対して小型化及び軽量化が要求されており、例えば、プリント配線基板の片側に十分なスペースがない場合、プリント配線基板の両側に放熱装置を配置することが困難である。
 なお、上記の問題は、半導体装置に限らず、配線基板の表裏両側に電子部品が実装された電子機器に共通する問題である。
 本発明は、上記の問題を解決するためになされたものであり、熱伝導に優れ、かつ、小型化及び低背化が可能な電子機器を提供することを目的とする。
 本発明の電子機器は、厚さ方向に相対する第1の主面及び第2の主面を有する配線基板と、上記配線基板の上記第1の主面に実装された第1の電子部品と、上記配線基板の上記第2の主面に実装された第2の電子部品と、上記第1の電子部品に熱的に接続された第1の熱拡散板と、上記第2の電子部品に熱的に接続された第2の熱拡散板と、上記配線基板を上記厚さ方向に貫通するように設けられ、上記第1の熱拡散板及び上記第2の熱拡散板に熱的に接続された熱伝導体と、を備える。
 本発明によれば、熱伝導に優れ、かつ、小型化及び低背化が可能な電子機器を提供することができる。
図1は、本発明の第1実施形態に係る電子機器の一例を模式的に示す断面図である。 図2は、図1に示す電子機器のA線に沿った平面図である。 図3は、第1の熱拡散板、第2の熱拡散板及び熱伝導体の一例を模式的に示す斜視図である。 図4は、第2の熱拡散板と熱伝導体との接続部分の一例を模式的に示す断面図である。 図5は、第1の熱拡散板と熱伝導体との接続部分の一例を模式的に示す断面図である。 図6は、本発明の第2実施形態に係る電子機器の一例を模式的に示す断面図である。 図7は、図6に示す電子機器のB線に沿った平面図である。 図8は、配線基板の内部に配置されるコンデンサ素子の一例を模式的に示す断面図である。 図9は、図8に示すコンデンサ素子のC線に沿った平面図である。
 以下、本発明の電子機器について説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の電子機器」という。
 本明細書において、要素間の関係性を示す用語(例えば「垂直」、「平行」、「直交」等)及び要素の形状を示す用語は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。
[第1実施形態]
 図1は、本発明の第1実施形態に係る電子機器の一例を模式的に示す断面図である。図2は、図1に示す電子機器のA線に沿った平面図である。
 図1に示す電子機器1は、配線基板10と、第1の電子部品20と、第2の電子部品30と、第1の熱拡散板40と、第2の熱拡散板50と、熱伝導体60と、を備える。図1に示すように、電子機器1は、放熱フィン70をさらに備えることが好ましい。
 配線基板10は、厚さ方向(図1では上下方向)に相対する第1の主面11及び第2の主面12を有する。
 配線基板10は、多層基板でもよいし、単層基板でもよい。また、配線基板10は、セラミック基板でもよいし、樹脂基板でもよい。セラミック基板を構成するセラミック材料は、低温焼結セラミック材料でも高温焼結セラミック材料でもよい。樹脂基板を構成する樹脂材料は、熱硬化性樹脂でも熱可塑性樹脂でもよく、例えば、ガラスエポキシ樹脂、液晶ポリマー等が挙げられる。
 図1に示す例では、配線基板10は、複数の絶縁層を含む多層基板である。配線基板10は、絶縁層の間に設けられた内部導体、第1の主面11に設けられた外部導体、第2の主面12に設けられた外部導体、絶縁層を厚さ方向に貫通するビア導体等の配線導体を有しており、特定の配線導体が第1の電子部品20又は第2の電子部品30と電気的に接続されている。
 第1の電子部品20は、配線基板10の第1の主面11に実装されている。例えば、第1の電子部品20は、配線基板10の第1の主面11に設けられた外部導体と接続されていてもよいし、配線基板10の第1の主面11に露出するビア導体と接続されていてもよい。
 第2の電子部品30は、配線基板10の第2の主面12に実装されている。例えば、第2の電子部品30は、配線基板10の第2の主面12に設けられた外部導体と接続されていてもよいし、配線基板10の第2の主面12に露出するビア導体と接続されていてもよい。
 第1の電子部品20及び第2の電子部品30は、各々、電流を流すことによって発熱する負荷を有する。
 例えば、第1の電子部品20は、論理演算を実行するための半導体素子を含み、第2の電子部品30は、第1の電子部品20の半導体素子に電力を供給するための電圧レギュレーション回路を含む。
 第1の熱拡散板40は、第1の電子部品20に熱的に接続されている。例えば、第1の熱拡散板40は、配線基板10の第1の主面11に沿った方向に配置されている。
 第1の熱拡散板40は、第1の電子部品20と直接的又は間接的に接続されている。例えば、第1の熱拡散板40は、グリース状又はシート状のTIM(Thermal Interface Material)を介して第1の電子部品20と接続されていてもよい。
 図1に示すように、第1の熱拡散板40に熱的に接続されている第1の電子部品20の面は、第1の電子部品20が配線基板10に電気的に接続されている面とは厚さ方向において反対側の面であることが好ましい。図1に示す例では、第1の熱拡散板40に熱的に接続されている第1の電子部品20の面は上面であり、第1の電子部品20が配線基板10に電気的に接続されている面は下面である。
 第2の熱拡散板50は、第2の電子部品30に熱的に接続されている。例えば、第2の熱拡散板50は、配線基板10の第2の主面12に沿った方向に配置されている。
 第2の熱拡散板50は、第2の電子部品30と直接的又は間接的に接続されている。例えば、第2の熱拡散板50は、グリース状又はシート状のTIMを介して第2の電子部品30と接続されていてもよい。
 図1に示すように、第2の熱拡散板50に熱的に接続されている第2の電子部品30の面は、第2の電子部品30が配線基板10に電気的に接続されている面とは厚さ方向において反対側の面であることが好ましい。図1に示す例では、第2の熱拡散板50に熱的に接続されている第2の電子部品30の面は下面であり、第2の電子部品30が配線基板10に電気的に接続されている面は上面である。
 熱伝導体60は、配線基板10を厚さ方向に貫通するように設けられ、第1の熱拡散板40及び第2の熱拡散板50に熱的に接続されている。熱伝導体60は、配線基板10の第1の主面11及び第2の主面12に対して傾きを持つように、好ましくは、配線基板10の第1の主面11及び第2の主面12に対して垂直に配置されている。
 熱伝導体60は、1本のみ設けられていてもよいが、2本以上設けられていることが好ましい。熱伝導体60は、3本以上設けられていてもよく、4本以上設けられていてもよい。熱伝導体60が2本以上設けられていると、第1の熱拡散板40及び第2の熱拡散板50を平坦に配置することができる。また、熱伝導体60が2本以上設けられていると、熱循環に優れる。図2に示す例では、4本の熱伝導体60が設けられている。
 電子機器1では、熱伝導体60によって、配線基板10の両側の放熱構造を熱結合させることができる。そのため、例えば、配線基板10の第2の主面12側の熱を第1の主面11側に集約させて第1の主面11側で放熱することで、第2の主面12側の放熱構造を小型化及び低背化することができる。
 例えば、第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60の少なくとも1つは、内部空間に気液交換機構を有してもよく、第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60の全ては、内部空間に気液交換機構を有してもよい。
 第1の熱拡散板40が内部空間に気液交換機構を有する場合、第1の熱拡散板40は、ベーパーチャンバーであることが好ましい。その場合、図1には示されていないが、第1の熱拡散板40は、内部空間に配置される毛細管構造体(ウィック)と、内部空間に封入される作動液と、を含むことが好ましい。
 第2の熱拡散板50が内部空間に気液交換機構を有する場合、第2の熱拡散板50は、ベーパーチャンバーであることが好ましい。その場合、図1には示されていないが、第2の熱拡散板50は、内部空間に配置される毛細管構造体(ウィック)と、内部空間に封入される作動液と、を含むことが好ましい。
 熱伝導体60が内部空間に気液交換機構を有する場合、熱伝導体60は、ヒートパイプであることが好ましい。その場合、図1には示されていないが、熱伝導体60は、内部空間に配置される毛細管構造体(ウィック)と、内部空間に封入される作動液と、を含むことが好ましい。
 第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60の全てが内部空間に気液交換機構を有する場合、熱伝導体60の内部空間は、第1の熱拡散板40又は第2の熱拡散板50の内部空間と連通していてもよい。図1に示す例では、熱伝導体60の内部空間は、第2の熱拡散板50の内部空間と連通している。
 図1には示されていないが、第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60は、電子機器1の筐体(図示せず)又は配線基板10に電気的に接地されていることが好ましい。
 電子機器1は、図1に示すように、第1の熱拡散板40に熱的に接続された放熱フィン70をさらに備えてもよい。この場合、配線基板10の第2の主面12側の熱を第1の主面11側に集約させて第1の主面11側で放熱することができるため、第2の主面12側に放熱フィン70を配置する必要がなくなる。
 図1に示すように、放熱フィン70に熱的に接続されている第1の熱拡散板40の面は、第1の熱拡散板40が第1の電子部品20に熱的に接続されている面とは厚さ方向において反対側の面であることが好ましい。図1に示す例では、放熱フィン70に熱的に接続されている第1の熱拡散板40の面は上面であり、第1の熱拡散板40が第1の電子部品20に熱的に接続されている面は下面である。
 放熱フィン70が第1の熱拡散板40に熱的に接続されている場合、第1の電子部品20側の放熱経路は、第2の電子部品30側の放熱経路よりも短くなる。そのため、第1の電子部品20が有する負荷に電流を流すことにより消費される電力は、第2の電子部品30が有する負荷に電流を流すことにより消費される電力よりも大きいことが好ましい。
 特に、第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60の全てが内部空間に気液交換機構を有する場合には、第1の電子部品20側の放熱経路を第2の電子部品30側の放熱経路よりも短くする観点から、熱伝導体60の内部空間が第2の熱拡散板50の内部空間と連通していることが好ましい。
 図3は、第1の熱拡散板、第2の熱拡散板及び熱伝導体の一例を模式的に示す斜視図である。図4は、第2の熱拡散板と熱伝導体との接続部分の一例を模式的に示す断面図である。図5は、第1の熱拡散板と熱伝導体との接続部分の一例を模式的に示す断面図である。
 図3、図4及び図5に示す例では、第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60の全ては、内部空間に気液交換機構を有している。具体的には、第1の熱拡散板40及び第2の熱拡散板50はベーパーチャンバーであり、熱伝導体60はヒートパイプである。なお、図4及び図5には、毛細管構造体(ウィック)及び作動液は示されていない。
 第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60を構成する材料は特に限定されないが、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、又は、それらを主成分とする合金等であり、特に好ましくは銅である。第1の熱拡散板40、第2の熱拡散板50及び熱伝導体60を構成する材料は、それぞれ同じであってもよく、一部又は全部が異なっていてもよいが、好ましくは同じである。
 図3、図4及び図5に示す例では、熱伝導体60の内部空間は、第2の熱拡散板50の内部空間と連通している。例えば、第2の熱拡散板50に設けられた開口に、中空構造を有する熱伝導体60の一方の端部が挿入されている。第2の熱拡散板50と熱伝導体60との接続部分では、第2の熱拡散板50と熱伝導体60とが半田等を介して接続されていてもよい。
 図3及び図4に示すように、第2の熱拡散板50と熱伝導体60との接続部分には、熱伝導体60の外周面を覆う支持リング51が設けられていてもよい。その場合、支持リング51を構成する材料は、例えば、金属であってもよく、耐熱性を有する非金属であってもよい。
 図3及び図4に示すように、第2の熱拡散板50は、開口の周縁にリム部52を有してもよい。その場合、リム部52の内面は、熱伝導体60の外周面に接する。また、支持リング51が設けられている場合、リム部52の外面は、支持リング51の内面に接する。
 図3、図4及び図5に示す例では、熱伝導体60の内部空間は、第1の熱拡散板40の内部空間と連通していない。例えば、第1の熱拡散板40に設けられた開口には、中空構造を有する熱伝導体41の一方の端部が挿入されていることが好ましい。
 熱伝導体41は、例えば、ヒートパイプである。熱伝導体41を構成する材料は、熱伝導体60を構成する材料と同じであってもよく、異なっていてもよい。
 熱伝導体41の長さは、熱伝導体60の長さよりも短い。一方、熱伝導体41の径は、熱伝導体60の径よりも大きい。
 熱伝導体60は、第1の熱拡散板40と一体化された熱伝導体41の中空部分に挿入されることが好ましい。第1の熱拡散板40に熱伝導体41を設けることで、第1の熱拡散板40と熱伝導体60との間の熱接触を向上させることができる。
 図5に示すように、熱伝導体60と熱伝導体41との間には、熱伝導グリース等のTIM61が設けられていることが好ましい。これにより、第1の熱拡散板40と熱伝導体60との間の熱接触をさらに向上させることができる。
 図3及び図5に示すように、熱伝導体60は、ねじ山62を外周面に有してもよい。その場合、ナット等の固定具63をねじ山62へ締めて押圧することで、熱伝導体60を第1の熱拡散板40に強固に固定することができる。
 以上により、図1に示すように、第1の熱拡散板40と第2の熱拡散板50との間で配線基板10が固定される。例えば、ナット等の固定具63で締め上げることにより、第1の熱拡散板40及び第2の熱拡散板50で配線基板10を第1の電子部品20及び第2の電子部品30ごと固定することができる。あるいは、熱伝導体60ではない金属ねじ等を用いて、第1の熱拡散板40又は第2の熱拡散板50を配線基板10に固定してもよい。なお、図1においては、熱伝導体41(図3及び図5参照)の一部が配線基板10と熱伝導体60との間に入り込んでいてもよい。
[第2実施形態]
 本発明の第2実施形態に係る電子機器は、配線基板の内部に配置されたコンデンサ素子をさらに備える。本発明の第2実施形態に係る電子機器では、熱伝導体は、コンデンサ素子を厚さ方向に貫通するように設けられ、かつ、コンデンサ素子と接している。
 図6は、本発明の第2実施形態に係る電子機器の一例を模式的に示す断面図である。図7は、図6に示す電子機器のB線に沿った平面図である。
 図6に示す電子機器2は、図1に示す電子機器1と同様、配線基板10と、第1の電子部品20と、第2の電子部品30と、第1の熱拡散板40と、第2の熱拡散板50と、熱伝導体60と、を備える。図6に示すように、電子機器2は、放熱フィン70をさらに備えることが好ましい。
 電子機器2は、配線基板10の内部に配置されたコンデンサ素子80をさらに備える。後述するように、コンデンサ素子80は、第1電極層と第2電極層と誘電体層とを含み、第1電極層及び第2電極層が誘電体層を介して厚さ方向に対向している。
 配線基板10の内部におけるコンデンサ素子80の配置は特に限定されないが、例えば、コンデンサ素子80は、配線基板10の第1の主面11及び第2の主面12に沿った方向に配置されている。配線基板10の内部には、1個のコンデンサ素子80が配置されていてもよく、2個以上のコンデンサ素子80が配置されていてもよい。例えば、厚さ方向に2個以上のコンデンサ素子80が配置されていてもよく、面方向に2個以上のコンデンサ素子80が配置されていてもよい。
 熱伝導体60は、コンデンサ素子80を厚さ方向に貫通するように設けられ、かつ、コンデンサ素子80と接している。
 熱伝導体60が2本以上設けられている場合、少なくとも1本の熱伝導体60がコンデンサ素子80を厚さ方向に貫通していればよい。図7に示す例では、4本の熱伝導体60がコンデンサ素子80を厚さ方向に貫通している。
 2個以上のコンデンサ素子80が配線基板10の内部に配置されている場合、コンデンサ素子80を貫通する熱伝導体60の本数は、同じであってもよく、一部又は全部が異なっていてもよい。また、熱伝導体60が貫通しないコンデンサ素子80が含まれていてもよい。
 電子機器2では、配線基板10の内部に配置されたコンデンサ素子80に熱伝導体60を貫通させることで、配線基板10の両側の放熱構造に干渉することがない。さらに、熱伝導体60によって、コンデンサ素子80から発生する熱を放熱することもできる。
 また、配線基板10の内部にコンデンサ素子80を配置することで、配線基板10の第2の主面12に配置されるコンデンサ素子を削減できる。そのため、配線基板10の第2の主面12側において、放熱構造の更なる小型化及び低背化が可能になる。
 図6に示すように、電子機器2は、第1の電子部品20又は第2の電子部品30の内部に配置されたコンデンサ素子85をさらに備えてもよい。コンデンサ素子85は、第1の電子部品20及び第2の電子部品30のいずれか一方の内部に配置されていてもよく、両方の内部に配置されていてもよい。
 コンデンサ素子80と同様、コンデンサ素子85は、第1電極層と第2電極層と誘電体層とを含み、第1電極層及び第2電極層が誘電体層を介して厚さ方向に対向している。コンデンサ素子85の構成は、コンデンサ素子80の構成と同じであってもよく、異なっていてもよい。
 図8は、配線基板の内部に配置されるコンデンサ素子の一例を模式的に示す断面図である。図9は、図8に示すコンデンサ素子のC線に沿った平面図である。
 図8に示すコンデンサ素子80は、コンデンサ部110と、コンデンサ部110を封止する封止層120と、を備える。
 コンデンサ部110は、誘電体層を介して厚さ方向に対向する第1の電極層及び第2の電極層を含む。
 図8に示す例では、第1の電極層は陽極板111であり、第2の電極層は陰極層112である。これにより、コンデンサ部110は、電解コンデンサを構成する。
 陽極板111は、例えば、金属からなる芯部111Aと、芯部111Aの少なくとも一方の主面に設けられた多孔質部111Bと、を有する。多孔質部111Bの表面には誘電体層113が設けられており、誘電体層113の表面には陰極層112が設けられている。
 陰極層112は、例えば、誘電体層113の表面に設けられた固体電解質層112Aを含む。陰極層112は、さらに、固体電解質層112Aの表面に設けられた導電体層112Bを含むことが好ましい。導電体層112Bは、例えば、固体電解質層112Aの表面に設けられたカーボン層112Baと、カーボン層112Baの表面に設けられた銅層112Bbとを含む。
 なお、コンデンサ部110は、固体電解コンデンサ等の電解コンデンサに限らず、例えば、チタン酸バリウム等を用いたセラミックコンデンサ、あるいは、窒化ケイ素(SiN)、二酸化ケイ素(SiO)、フッ化水素(HF)等を用いた薄膜コンデンサ等のコンデンサを構成してもよい。しかしながら、より薄型で比較的大きな面積のコンデンサ部110を形成できること、及び、コンデンサ素子80の剛性及び柔軟性のような機械特性の観点から、コンデンサ部110は、アルミニウム等の金属を基材とするコンデンサを構成することが好ましく、アルミニウム等の金属を基材とする電解コンデンサを構成することがより好ましい。
 図8及び図9に示すように、コンデンサ素子80は、第1の電極層(図8に示す例では陽極板111)と電気的に接続される第1のスルーホール導体131を備えることが好ましい。
 また、コンデンサ素子80は、第2の電極層(図8に示す例では陰極層112)と電気的に接続される第2のスルーホール導体132を備えることが好ましい。
 図8及び図9に示す例では、第1のスルーホール導体131は、その側壁で第1の電極層(例えば陽極板111)の端面と電気的に接続されている。第2のスルーホール導体132とコンデンサ部110との間は絶縁材料122で充填されている。
 第1のスルーホール導体131の内側には、樹脂充填部124が設けられていてもよい。同様に、第2のスルーホール導体132の内側には、樹脂充填部124が設けられていてもよい。なお、樹脂充填部124は、導体であってもよく、絶縁体であってもよい。
 図8及び図9に示すように、第1のスルーホール導体131の周囲には、絶縁層126が設けられていることが好ましい。同様に、第2のスルーホール導体132の周囲には、絶縁層126が設けられていることが好ましい。図8及び図9に示す例では、絶縁層126は、第1のスルーホール導体131と陰極層112との間、又は、第2のスルーホール導体132と陰極層112との間に設けられている。
 第1のスルーホール導体131は、例えば、以下のようにして形成される。まず、ドリル加工、レーザー加工等を行うことにより、コンデンサ部110及び封止層120を厚さ方向に貫通する第1貫通孔を形成する。そして、第1貫通孔の内壁面を、銅、金、銀等の低抵抗の金属を含有する金属材料でメタライズすることにより、第1のスルーホール導体131を形成する。第1のスルーホール導体131を形成する際、例えば、第1貫通孔の内壁面を、無電解銅めっき処理、電解銅めっき処理等でメタライズすることにより、加工が容易になる。なお、第1のスルーホール導体131を形成する方法については、第1貫通孔の内壁面をメタライズする方法以外に、金属材料、金属と樹脂との複合材料等を第1貫通孔に充填する方法であってもよい。
 第2のスルーホール導体132は、例えば、以下のようにして形成される。まず、ドリル加工、レーザー加工等を行うことにより、コンデンサ部110を厚さ方向に貫通する第1貫通孔を形成する。次に、上述した第1貫通孔に絶縁材料122を充填する。絶縁材料122が充填された部分に対して、ドリル加工、レーザー加工等を行うことにより、第2貫通孔を形成する。この際、絶縁材料122を充填した第1貫通孔の直径よりも第2貫通孔の直径を小さくすることにより、面方向において、先に形成された第1貫通孔の内壁面と第2貫通孔の内壁面との間に絶縁材料122が存在する状態にする。その後、第2貫通孔の内壁面を、銅、金、銀等の低抵抗の金属を含有する金属材料でメタライズすることにより、第2のスルーホール導体132を形成する。第2のスルーホール導体132を形成する際、例えば、第2貫通孔の内壁面を、無電解銅めっき処理、電解銅めっき処理等でメタライズすることにより、加工が容易になる。なお、第2のスルーホール導体132を形成する方法については、第2貫通孔の内壁面をメタライズする方法以外に、金属材料、金属と樹脂との複合材料等を第2貫通孔に充填する方法であってもよい。
 図8には示されていないが、コンデンサ素子80は、第1のスルーホール導体131及び第2のスルーホール導体132以外のスルーホール導体をさらに備えてもよい。例えば、コンデンサ素子80は、コンデンサ部110の第1の電極層及び第2の電極層のいずれにも電気的に接続されていないスルーホール導体をさらに備えてもよい。
 コンデンサ素子80は、封止層120の表面に設けられた外部配線層151及び152をさらに備えることが好ましい。外部配線層151及び152は、コンデンサ部110の厚さ方向に直交する主面方向に沿って設けられていることが好ましい。図8に示す例では、外部配線層151及び152は、コンデンサ部110の両方の主面側に設けられているが、いずれか一方の主面側にのみ設けられていてもよい。
 コンデンサ素子80は、封止層120の内部に設けられたビア導体160をさらに備えることが好ましい。ビア導体160は、コンデンサ部110の厚さ方向に沿って設けられていることが好ましい。ビア導体160の一端はコンデンサ部110の第2の電極層(例えば陰極層112)に接続され、他端は外部配線層152に接続されている。
 図8に示す例では、コンデンサ部110の第1の電極層(例えば陽極板111)は、第1のスルーホール導体131を介して、外部配線層151と電気的に接続されている。このように、第1のスルーホール導体131を介して、第1の電極層が封止層120の表面に電気的に引き出されていることが好ましい。外部配線層151は、コンデンサ部110の接続端子として機能できる。
 図8に示す例では、第2のスルーホール導体132は、外部配線層152及びビア導体160を介して、コンデンサ部110の第2の電極層(例えば陰極層112)と電気的に接続されている。このように、第2のスルーホール導体132は、コンデンサ部110の厚さ方向に、コンデンサ部110及び封止層120の両方を貫通するように設けられていることが好ましい。外部配線層152は、コンデンサ部110の接続端子として機能できる。
 コンデンサ部110が陽極板111及び陰極層112を含む場合、陽極板111は、いわゆる弁作用を示す弁作用金属からなることが好ましい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、又は、これらの金属を少なくとも1種含む合金等が挙げられる。これらの中では、アルミニウム又はアルミニウム合金が好ましい。
 陽極板111の形状は、平板状であることが好ましく、箔状であることがより好ましい。陽極板111は、芯部111Aの少なくとも一方の主面に多孔質部111Bを有していればよく、芯部111Aの両方の主面に多孔質部111Bを有していてもよい。多孔質部111Bは、芯部111Aの表面に形成された多孔質層であることが好ましく、エッチング層であることがより好ましい。
 エッチング処理前の陽極板111の厚さは、60μm以上、200μm以下であることが好ましい。エッチング処理後にエッチングされていない芯部111Aの厚さは、15μm以上、70μm以下であることが好ましい。多孔質部111Bの厚さは要求される耐電圧、静電容量に合わせて設計されるが、芯部111Aの両側の多孔質部111Bを合わせて10μm以上、180μm以下であることが好ましい。
 多孔質部111Bの孔径は、10nm以上、600nm以下であることが好ましい。なお、多孔質部111Bの孔径とは、水銀ポロシメータにより測定されるメジアン径D50を意味する。多孔質部111Bの孔径は、例えばエッチングにおける各種条件を調整することにより制御することができる。
 多孔質部111Bの表面に設けられる誘電体層113は、多孔質部111Bの表面状態を反映して多孔質になっており、微細な凹凸状の表面形状を有している。誘電体層113は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、陽極板111としてアルミニウム箔が用いられる場合、アジピン酸アンモニウム等を含む水溶液中でアルミニウム箔の表面に対して陽極酸化処理(化成処理ともいう)を行うことにより、酸化皮膜からなる誘電体層113を形成することができる。
 誘電体層113の厚さは要求される耐電圧、静電容量に合わせて設計されるが、10nm以上、100nm以下であることが好ましい。
 陰極層112が固体電解質層112Aを含む場合、固体電解質層112Aを構成する材料としては、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子等が挙げられる。これらの中では、ポリチオフェン類が好ましく、PEDOTと呼ばれるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、上記導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいてもよい。なお、固体電解質層112Aは、誘電体層113の細孔(凹部)を充填する内層と、誘電体層113を被覆する外層とを含むことが好ましい。
 多孔質部111Bの表面からの固体電解質層112Aの厚さは、2μm以上、20μm以下であることが好ましい。
 固体電解質層112Aは、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層113の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体層113の表面に塗布して乾燥させる方法等によって形成される。
 固体電解質層112Aは、上記の処理液又は分散液を、スポンジ転写、スクリーン印刷、ディスペンサ塗布、インクジェット印刷等の方法によって誘電体層113の表面に塗布することにより、所定の領域に形成することができる。
 陰極層112が導電体層112Bを含む場合、導電体層112Bは、導電性樹脂層及び金属層のうち、少なくとも1層を含む。導電体層112Bは、導電性樹脂層のみでもよく、金属層のみでもよい。導電体層112Bは、固体電解質層112Aの全面を被覆することが好ましい。
 導電性樹脂層としては、例えば、銀フィラー、銅フィラー、ニッケルフィラー及びカーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーを含む導電性接着剤層等が挙げられる。
 金属層としては、例えば、金属めっき膜、金属箔等が挙げられる。金属層は、ニッケル、銅、銀及びこれらの金属を主成分とする合金からなる群より選択される少なくとも一種の金属からなることが好ましい。なお、「主成分」とは、重量割合が最も大きい元素成分をいう。
 導電体層112Bがカーボン層112Ba及び銅層112Bbを含む場合、カーボン層112Baは、固体電解質層112Aと銅層112Bbとを電気的に及び機械的に接続させるために設けられている。カーボン層112Baは、カーボンペーストをスポンジ転写、スクリーン印刷、ディスペンサ塗布、インクジェット印刷等の方法によって固体電解質層112A上に塗布することにより、所定の領域に形成することができる。なお、カーボン層112Baは、乾燥前の粘性のある状態で、次工程の銅層112Bbを積層することが好ましい。カーボン層112Baの厚さは、2μm以上、20μm以下であることが好ましい。
 導電体層112Bがカーボン層112Ba及び銅層112Bbを含む場合、銅層112Bbは、銅ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷等の方法によってカーボン層112Ba上に塗布することにより形成することができる。銅層112Bbの厚さは、2μm以上、20μm以下であることが好ましい。
 封止層120は、絶縁材料から構成される。封止層120は、絶縁性樹脂から構成されることが好ましい。封止層120を構成する絶縁性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。さらに、封止層120は、フィラーを含むことが好ましい。封止層120に含まれるフィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等の無機フィラーが挙げられる。
 図8に示す例では、封止層120は、コンデンサ部110の両方の主面側に設けられているが、いずれか一方の主面側にのみ設けられていてもよい。コンデンサ部110の一方の主面側に設けられる封止層120は、1層のみから構成されてもよいし、2層以上から構成されてもよい。封止層120が2層以上から構成される場合、各層を構成する材料は、それぞれ同じでもよく、異なっていてもよい。
 コンデンサ部110と封止層120との間には、例えば、応力緩和層、防湿膜等の層が設けられていてもよい。
 応力緩和層は、絶縁性樹脂から構成されることが好ましい。応力緩和層を構成する絶縁性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等が挙げられる。さらに、応力緩和層は、フィラーを含むことが好ましい。応力緩和層に含まれるフィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等の無機フィラーが挙げられる。応力緩和層を構成する絶縁性樹脂は、封止層120を構成する絶縁性樹脂と異なることが好ましい。
 封止層120には、外装体として外部電極(例えば、外部配線層151及び152)との密着性等の特性が要求されるため、一概にコンデンサ部110と線膨張係数を合わせたり任意の弾性率の樹脂を選択したりすることは難しい。これに対し、応力緩和層を設けることにより、コンデンサ部110及び封止層120のそれぞれの機能を失うことなく熱応力設計の調整を行うことができる。
 応力緩和層は、封止層120よりも透湿性が低いことが好ましい。この場合、応力の調整に加えて、コンデンサ部110への水分の浸入を低減することができる。応力緩和層の透湿性は、応力緩和層を構成する絶縁性樹脂の種類、応力緩和層に含まれるフィラーの量等によって調整することができる。
 第2のスルーホール導体132とコンデンサ部110との間に充填される絶縁材料122は、絶縁性樹脂から構成されることが好ましい。絶縁材料122を構成する絶縁性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。さらに、絶縁材料122は、フィラーを含むことが好ましい。絶縁材料122に含まれるフィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等の無機フィラーが挙げられる。
 絶縁材料122は、封止層120と同じ材料から構成されてもよい。例えば、図8に示すように、第2のスルーホール導体132とコンデンサ部110との間に封止層120が充填されていてもよい。
 あるいは、絶縁材料122は、上述の応力緩和層と同じ材料から構成されてもよい。例えば、コンデンサ素子80が応力緩和層を備える場合、第2のスルーホール導体132とコンデンサ部110との間に応力緩和層が充填されていてもよい。
 絶縁材料122は、第1のスルーホール導体131又は第2のスルーホール導体132を構成する材料(例えば銅)よりも熱膨張率が大きくてもよく、小さくてもよく、同じでもよい。
 第1のスルーホール導体131又は第2のスルーホール導体132の内側に樹脂充填部124が設けられる場合、樹脂充填部124を構成する材料は、第1のスルーホール導体131又は第2のスルーホール導体132を構成する材料(例えば銅)よりも熱膨張率が大きくてもよく、小さくてもよく、同じでもよい。
 第1のスルーホール導体131又は第2のスルーホール導体132の周囲に絶縁層126が設けられる場合、絶縁層126は、絶縁性樹脂から構成されることが好ましい。絶縁層126を構成する絶縁性樹脂としては、例えば、ポリフェニルスルホン樹脂、ポリエーテルスルホン樹脂、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、ポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、及び、それらの誘導体又は前駆体等が挙げられる。
 絶縁層126は、封止層120と同じ樹脂で構成されていてもよい。封止層120と異なり、絶縁層126に無機フィラーが含まれるとコンデンサ部110の容量有効部に悪影響を及ぼすおそれがあるため、絶縁層126は樹脂単独の系からなることが好ましい。
 絶縁層126は、例えば、絶縁性樹脂を含む組成物等のマスク材を、スポンジ転写、スクリーン印刷、ディスペンサ塗布、インクジェット印刷等の方法によって多孔質部111Bの表面に塗布することにより形成することができる。
 多孔質部111Bの表面からの絶縁層126の厚みは、20μm以下であることが好ましい。多孔質部111Bの表面からの絶縁層126の厚みは、0μmでもよいが、2μm以上であることが好ましい。
 絶縁層126は、多孔質部111Bの内部に充填され、かつ、充填部分の上の多孔質部111Bの表面に設けられていてもよい。すなわち、絶縁層126の厚さは、多孔質部111Bの厚さよりも大きくてもよい。
 第1のスルーホール導体131と陽極板111の端面との間には陽極接続層が設けられていてもよい。すなわち、陽極接続層を介して第1のスルーホール導体131が陽極板111の端面と電気的に接続されていてもよい。第1のスルーホール導体131と陽極板111の端面との間に陽極接続層が設けられている場合、陽極接続層が陽極板111に対するバリア層として機能する。その結果、外部配線層151等の配線層を形成するための薬液処理時に生じる陽極板111の溶解を抑制することで、コンデンサ部110への薬液の浸入を防止できるため、コンデンサ素子80の信頼性が向上する。
 第1のスルーホール導体131と陽極板111の端面との間に陽極接続層が設けられている場合、陽極接続層は、例えば、陽極板111から順に、亜鉛を主たる材料とする第1陽極接続層と、ニッケル又は銅を主たる材料とする第2陽極接続層と、を含む。例えば、ジンケート処理により亜鉛を置換析出させて陽極板111の端面に第1陽極接続層を形成した後、無電解ニッケルめっき処理又は無電解銅めっき処理により、第1陽極接続層上に第2陽極接続層を形成する。なお、第1陽極接続層は消失する場合もあり、この場合、陽極接続層は、第2陽極接続層のみを含んでもよい。
 なお、第1のスルーホール導体131と陽極板111の端面との間には陽極接続層が設けられていなくてもよい。この場合、第1のスルーホール導体131は、陽極板111の端面と直に接続されてもよい。
 図9に示すように、第1のスルーホール導体131は、全周にわたって第1の電極層(例えば陽極板111)の端面と電気的に接続されていることが好ましい。この場合、第1のスルーホール導体131と第1の電極層との接触面積が大きくなることにより、第1のスルーホール導体131との接続抵抗が低減するため、コンデンサ素子80の等価直列抵抗(ESR)を低くすることができる。さらに、第1のスルーホール導体131と第1の電極層との密着性が高くなるため、熱応力による接続面での剥がれ等の不具合が生じにくくなる。
 外部配線層151及び152の構成材料としては、例えば、銀、金、銅等の低抵抗の金属が挙げられる。外部配線層151の構成材料は、外部配線層152の構成材料と同じでもよく、異なってもよい。外部配線層151及び152は、例えば、めっき処理等の方法により形成される。
 外部配線層151又は152と他の部材との間の密着性、例えば、外部配線層151と第1のスルーホール導体131との間の密着性又は外部配線層152と第2のスルーホール導体132との間の密着性を向上させるために、外部配線層151及び152の構成材料として、銀フィラー、銅フィラー、ニッケルフィラー及びカーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーと樹脂との混合材料が設けられてもよい。
 ビア導体160の構成材料としては、例えば、銀、金、銅等の低抵抗の金属が挙げられる。ビア導体160は、例えば、めっき処理、導電性ペーストの熱処理等の方法により形成される。
 コンデンサ素子80では、封止層120の内部に、1個のコンデンサ部110が配置されていてもよく、複数個のコンデンサ部110が配置されていてもよい。
 封止層120の内部に複数個のコンデンサ部110が配置されている場合、隣り合うコンデンサ部110同士は、物理的に分断されていればよい。したがって、隣り合うコンデンサ部110同士は、電気的に分断されていてもよく、電気的に接続されていてもよい。隣り合うコンデンサ部110同士が分断された部分には、封止層120等の絶縁性材料が充填されていることが好ましい。隣り合うコンデンサ部110同士の間隔は、厚さ方向に一定でもよく、厚さ方向に小さくなってもよい。
 封止層120の内部に複数個のコンデンサ部110が配置されている場合、複数個のコンデンサ部110は、面方向に並ぶように配置されていてもよく、厚さ方向に積層するように配置されていてもよく、両者を組み合わせて配置されていてもよい。複数個のコンデンサ部110は、規則的に配置されていてもよく、不規則に配置されていてもよい。コンデンサ部110の大きさ及び形状等は、それぞれ同じでもよく、一部又は全部が異なってもよい。コンデンサ部110の構成は、それぞれ同じであることが好ましいが、構成の異なるコンデンサ部110が含まれていてもよい。
 コンデンサ素子80は、複合電子部品の構成材料として好適に使用することができる。このような複合電子部品は、例えば、コンデンサ素子80と、コンデンサ素子80の外側(例えば、封止層の外側)に設けられ、コンデンサ素子80の第1の電極層及び第2の電極層のそれぞれに電気的に接続された外部電極(例えば、外部配線層)と、上記外部電極に接続された電子部品とを備える。
 複合電子部品において、外部電極に接続される電子部品としては、受動素子でもよく、能動素子でもよい。受動素子及び能動素子の両方が外部電極に接続されてもよく、受動素子及び能動素子のいずれか一方が外部電極に接続されてもよい。また、受動素子及び能動素子の複合体が外部電極に接続されてもよい。
 受動素子としては、例えば、インダクタ等が挙げられる。能動素子としては、メモリ、GPU(Graphical Processing Unit)、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、PMIC(Power Management IC)等が挙げられる。
 コンデンサ素子80は、全体としてシート状の形状を有している。したがって、複合電子部品においては、コンデンサ素子80を実装基板のように扱うことができ、コンデンサ素子80上に電子部品を実装することができる。さらに、コンデンサ素子80に実装する電子部品の形状をシート状にすることにより、各電子部品を厚さ方向に貫通するスルーホール導体を介して、コンデンサ素子80と電子部品とを厚さ方向に接続することも可能である。その結果、能動素子及び受動素子を一括のモジュールのように構成することができる。
 例えば、半導体アクティブ素子を含むボルテージレギュレータと、変換された直流電圧が供給される負荷との間にコンデンサ素子80を電気的に接続し、スイッチングレギュレータを形成することができる。
 複合電子部品においては、コンデンサ素子80がさらに複数個レイアウトされたコンデンサマトリクスシートのいずれかの一方の面に回路層を形成した上で、受動素子又は能動素子に接続されていてもよい。
 また、予め基板に設けたキャビティ部にコンデンサ素子80を配置し、樹脂で埋め込んだ後、その樹脂上に回路層を形成してもよい。同基板の別のキャビティ部には、別の電子部品(受動素子又は能動素子)が搭載されていてもよい。
 あるいは、コンデンサ素子80をウエハ又はガラス等の平滑なキャリアの上に実装し、樹脂による外層部を形成した後、回路層を形成した上で、受動素子又は能動素子に接続されていてもよい。
[その他の実施形態]
 本発明の電子機器は、上記実施形態に限定されるものではなく、電子機器の構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
 本明細書には、以下の内容が開示されている。
<1>
 厚さ方向に相対する第1の主面及び第2の主面を有する配線基板と、
 上記配線基板の上記第1の主面に実装された第1の電子部品と、
 上記配線基板の上記第2の主面に実装された第2の電子部品と、
 上記第1の電子部品に熱的に接続された第1の熱拡散板と、
 上記第2の電子部品に熱的に接続された第2の熱拡散板と、
 上記配線基板を上記厚さ方向に貫通するように設けられ、上記第1の熱拡散板及び上記第2の熱拡散板に熱的に接続された熱伝導体と、を備える、電子機器。
<2>
 上記第1の熱拡散板、上記第2の熱拡散板及び上記熱伝導体の少なくとも1つは、内部空間に気液交換機構を有する、<1>に記載の電子機器。
<3>
 上記第1の熱拡散板、上記第2の熱拡散板及び上記熱伝導体の全ては、内部空間に気液交換機構を有する、<1>又は<2>に記載の電子機器。
<4>
 上記熱伝導体の上記内部空間は、上記第1の熱拡散板又は上記第2の熱拡散板の上記内部空間と連通している、<3>に記載の電子機器。
<5>
 上記第1の熱拡散板に熱的に接続された放熱フィンをさらに備える、<1>~<4>のいずれか1つに記載の電子機器。
<6>
 上記第1の電子部品が有する負荷に電流を流すことにより消費される電力は、上記第2の電子部品が有する負荷に電流を流すことにより消費される電力よりも大きい、<5>に記載の電子機器。
<7>
 上記第1の熱拡散板、上記第2の熱拡散板及び上記熱伝導体の全ては、内部空間に気液交換機構を有し、
 上記熱伝導体の上記内部空間は、上記第2の熱拡散板の上記内部空間と連通している、<5>又は<6>に記載の電子機器。
<8>
 上記第1の熱拡散板に熱的に接続されている上記第1の電子部品の面は、上記第1の電子部品が上記配線基板に電気的に接続されている面とは上記厚さ方向において反対側の面であり、
 上記第2の熱拡散板に熱的に接続されている上記第2の電子部品の面は、上記第2の電子部品が上記配線基板に電気的に接続されている面とは上記厚さ方向において反対側の面である、<1>~<7>のいずれか1つに記載の電子機器。
<9>
 上記熱伝導体は、2本以上設けられている、<1>~<8>のいずれか1つに記載の電子機器。
<10>
 上記熱伝導体は、ねじ山を外周面に有する、<1>~<9>のいずれか1つに記載の電子機器。
<11>
 上記第1の熱拡散板、上記第2の熱拡散板及び上記熱伝導体は、上記電子機器の筐体又は上記配線基板に電気的に接地されている、<1>~<10>のいずれか1つに記載の電子機器。
<12>
 上記第1の電子部品は、論理演算を実行するための半導体素子を含み、
 上記第2の電子部品は、上記第1の電子部品の上記半導体素子に電力を供給するための電圧レギュレーション回路を含む、<1>~<11>のいずれか1つに記載の電子機器。
<13>
 上記配線基板の内部に配置されたコンデンサ素子をさらに備え、
 上記コンデンサ素子は、第1電極層と第2電極層と誘電体層とを含み、上記第1電極層及び上記第2電極層が上記誘電体層を介して上記厚さ方向に対向しており、
 上記熱伝導体は、上記コンデンサ素子を上記厚さ方向に貫通するように設けられ、かつ、上記コンデンサ素子と接している、<1>~<12>のいずれか1つに記載の電子機器。
<14>
 上記第1電極層は、金属からなる芯部と、上記芯部の少なくとも一方の主面に設けられた多孔質部と、を有する陽極板であり、
 上記誘電体層は、上記多孔質部の表面に設けられ、
 上記第2電極層は、上記誘電体層の表面に設けられた陰極層である、<13>に記載の電子機器。
 1、2 電子機器
 10 配線基板
 11 第1の主面
 12 第2の主面
 20 第1の電子部品
 30 第2の電子部品
 40 第1の熱拡散板
 41 熱伝導体
 50 第2の熱拡散板
 51 支持リング
 52 リム部
 60 熱伝導体
 61 TIM
 62 ねじ山
 63 固定具
 70 放熱フィン
 80、85 コンデンサ素子
 110 コンデンサ部
 111 陽極板
 111A 芯部
 111B 多孔質部
 112 陰極層
 112A 固体電解質層
 112B 導電体層
 112Ba カーボン層
 112Bb 銅層
 113 誘電体層
 120 封止層
 122 絶縁材料
 124 樹脂充填部
 126 絶縁層
 131 第1のスルーホール導体
 132 第2のスルーホール導体
 151、152 外部配線層
 160 ビア導体

Claims (14)

  1.  厚さ方向に相対する第1の主面及び第2の主面を有する配線基板と、
     前記配線基板の前記第1の主面に実装された第1の電子部品と、
     前記配線基板の前記第2の主面に実装された第2の電子部品と、
     前記第1の電子部品に熱的に接続された第1の熱拡散板と、
     前記第2の電子部品に熱的に接続された第2の熱拡散板と、
     前記配線基板を前記厚さ方向に貫通するように設けられ、前記第1の熱拡散板及び前記第2の熱拡散板に熱的に接続された熱伝導体と、を備える、電子機器。
  2.  前記第1の熱拡散板、前記第2の熱拡散板及び前記熱伝導体の少なくとも1つは、内部空間に気液交換機構を有する、請求項1に記載の電子機器。
  3.  前記第1の熱拡散板、前記第2の熱拡散板及び前記熱伝導体の全ては、内部空間に気液交換機構を有する、請求項1又は2に記載の電子機器。
  4.  前記熱伝導体の前記内部空間は、前記第1の熱拡散板又は前記第2の熱拡散板の前記内部空間と連通している、請求項3に記載の電子機器。
  5.  前記第1の熱拡散板に熱的に接続された放熱フィンをさらに備える、請求項1~4のいずれか1項に記載の電子機器。
  6.  前記第1の電子部品が有する負荷に電流を流すことにより消費される電力は、前記第2の電子部品が有する負荷に電流を流すことにより消費される電力よりも大きい、請求項5に記載の電子機器。
  7.  前記第1の熱拡散板、前記第2の熱拡散板及び前記熱伝導体の全ては、内部空間に気液交換機構を有し、
     前記熱伝導体の前記内部空間は、前記第2の熱拡散板の前記内部空間と連通している、請求項5又は6に記載の電子機器。
  8.  前記第1の熱拡散板に熱的に接続されている前記第1の電子部品の面は、前記第1の電子部品が前記配線基板に電気的に接続されている面とは前記厚さ方向において反対側の面であり、
     前記第2の熱拡散板に熱的に接続されている前記第2の電子部品の面は、前記第2の電子部品が前記配線基板に電気的に接続されている面とは前記厚さ方向において反対側の面である、請求項1~7のいずれか1項に記載の電子機器。
  9.  前記熱伝導体は、2本以上設けられている、請求項1~8のいずれか1項に記載の電子機器。
  10.  前記熱伝導体は、ねじ山を外周面に有する、請求項1~9のいずれか1項に記載の電子機器。
  11.  前記第1の熱拡散板、前記第2の熱拡散板及び前記熱伝導体は、前記電子機器の筐体又は前記配線基板に電気的に接地されている、請求項1~10のいずれか1項に記載の電子機器。
  12.  前記第1の電子部品は、論理演算を実行するための半導体素子を含み、
     前記第2の電子部品は、前記第1の電子部品の前記半導体素子に電力を供給するための電圧レギュレーション回路を含む、請求項1~11のいずれか1項に記載の電子機器。
  13.  前記配線基板の内部に配置されたコンデンサ素子をさらに備え、
     前記コンデンサ素子は、第1電極層と第2電極層と誘電体層とを含み、前記第1電極層及び前記第2電極層が前記誘電体層を介して前記厚さ方向に対向しており、
     前記熱伝導体は、前記コンデンサ素子を前記厚さ方向に貫通するように設けられ、かつ、前記コンデンサ素子と接している、請求項1~12のいずれか1項に記載の電子機器。
  14.  前記第1電極層は、金属からなる芯部と、前記芯部の少なくとも一方の主面に設けられた多孔質部と、を有する陽極板であり、
     前記誘電体層は、前記多孔質部の表面に設けられ、
     前記第2電極層は、前記誘電体層の表面に設けられた陰極層である、請求項13に記載の電子機器。
PCT/JP2023/036686 2022-10-14 2023-10-10 電子機器 WO2024080270A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165507 2022-10-14
JP2022165507 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080270A1 true WO2024080270A1 (ja) 2024-04-18

Family

ID=90669593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036686 WO2024080270A1 (ja) 2022-10-14 2023-10-10 電子機器

Country Status (1)

Country Link
WO (1) WO2024080270A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165175A (ja) * 2004-12-06 2006-06-22 Alps Electric Co Ltd 回路部品モジュールおよび電子回路装置並びに回路部品モジュールの製造方法
JP2012169330A (ja) * 2011-02-10 2012-09-06 Renesas Electronics Corp 電子装置
JP2017011006A (ja) * 2015-06-18 2017-01-12 株式会社日立製作所 半導体ユニット
JP2022053057A (ja) * 2020-09-24 2022-04-05 株式会社オートネットワーク技術研究所 基板ユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165175A (ja) * 2004-12-06 2006-06-22 Alps Electric Co Ltd 回路部品モジュールおよび電子回路装置並びに回路部品モジュールの製造方法
JP2012169330A (ja) * 2011-02-10 2012-09-06 Renesas Electronics Corp 電子装置
JP2017011006A (ja) * 2015-06-18 2017-01-12 株式会社日立製作所 半導体ユニット
JP2022053057A (ja) * 2020-09-24 2022-04-05 株式会社オートネットワーク技術研究所 基板ユニット

Similar Documents

Publication Publication Date Title
TWI711062B (zh) 電容器陣列及複合電子零件
TWI829265B (zh) 電容器元件
JP7151764B2 (ja) コンデンサアレイ、複合電子部品、コンデンサアレイの製造方法、及び、複合電子部品の製造方法
US11670462B2 (en) Capacitor array and composite electronic component
WO2024080270A1 (ja) 電子機器
WO2024070529A1 (ja) コンデンサ素子
WO2024070531A1 (ja) コンデンサ素子
WO2023218801A1 (ja) コンデンサ
TWI852528B (zh) 電容器
WO2024181042A1 (ja) コンデンサアレイ
TW202349427A (zh) 電容器陣列
US20240242892A1 (en) Capacitor element, module, and semiconductor composite device
WO2024214424A1 (ja) コンデンサ素子
JP7294563B1 (ja) コンデンサアレイ及びコンデンサアレイ集合体
WO2023238528A1 (ja) コンデンサアレイ
WO2023157705A1 (ja) 固体電解コンデンサ及びコンデンサアレイ
WO2023228872A1 (ja) 固体電解コンデンサ及びコンデンサアレイ
TWI827035B (zh) 電容器陣列
WO2024106239A1 (ja) コンデンサ素子
WO2023238527A1 (ja) コンデンサアレイ
WO2024019144A1 (ja) コンデンサ素子
TWI831226B (zh) 電容器
WO2023234172A1 (ja) コンデンサアレイ
WO2024185587A1 (ja) コンデンサ内蔵基板
WO2024185585A1 (ja) コンデンサ内蔵基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877273

Country of ref document: EP

Kind code of ref document: A1