WO2024080244A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2024080244A1
WO2024080244A1 PCT/JP2023/036572 JP2023036572W WO2024080244A1 WO 2024080244 A1 WO2024080244 A1 WO 2024080244A1 JP 2023036572 W JP2023036572 W JP 2023036572W WO 2024080244 A1 WO2024080244 A1 WO 2024080244A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
range
drive
phase
switching
Prior art date
Application number
PCT/JP2023/036572
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 山本
純 山田
健一 大石
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022163875A external-priority patent/JP2024057264A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024080244A1 publication Critical patent/WO2024080244A1/en

Links

Images

Definitions

  • This disclosure relates to a motor control device.
  • Patent Document 1 a disconnection detection circuit is provided in each current carrying line of the winding for each phase to detect disconnection.
  • the purpose of this disclosure is to provide a motor control device that can appropriately switch the detent mechanism even when one phase is broken.
  • the motor control device disclosed herein controls the driving of a motor in a motor driving system that includes a motor having motor windings of three or more phases and a detent mechanism driven by the motor, and includes a driving circuit and a control unit.
  • the driving circuit has switching elements that switch the supply of current to each phase of the motor winding.
  • the control unit has a driving control unit that controls the driving of the motor by feedback control based on the detection value of a rotational position sensor that detects the rotational position of the motor, and an abnormality determination unit that determines a wire breakage fault.
  • the detent mechanism has a detent member in which multiple valleys separated by peaks are formed, an engagement member that can move in the valleys when driven by a motor, and a biasing member that biases the engagement member in a direction that fits into the valleys, and walls that regulate the drive of the engagement member are formed on both sides of the arranged valleys.
  • control unit moves the engaging member with a valley adjacent to the wall as the target valley in normal phase drive, which drives the motor using a normal phase when one phase is broken, it performs feedback control so that the engaging member is between the peaks on either side of the target valley and the wall, and then performs current limit switching control to drive the motor by limiting the current so that the engaging member moves in the direction of the wall. This makes it possible to switch the detent mechanism appropriately even when one phase is broken.
  • FIG. 1 is a perspective view showing a shift-by-wire system according to an embodiment
  • FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to an embodiment
  • FIG. 3 is a schematic diagram illustrating setting of a switching target value based on a wall reference position according to an embodiment
  • FIG. 4 is a schematic diagram illustrating setting of a switching target value based on a valley reference position according to an embodiment
  • FIG. 5 is a flowchart illustrating a range switching process according to an embodiment.
  • FIG. 6 is a time chart illustrating a range switching process according to an embodiment.
  • FIG. 7 is a time chart illustrating a range switching process according to an embodiment.
  • FIG. 8 is a time chart illustrating a range switching process according to an embodiment.
  • FIG. 9 is a time chart illustrating the range switching process according to one embodiment.
  • a shift-by-wire system 1 includes a motor 10, a detent mechanism 20, a parking lock mechanism 30, and an ECU 40 as a motor control device.
  • the motor 10 rotates by receiving power from a battery installed in the vehicle (not shown) and functions as a drive source for the detent mechanism 20.
  • the motor 10 in this embodiment is a switched reluctance motor, a three-phase motor having U-phase, V-phase, and W-phase motor windings wound around a stator (not shown).
  • the encoder 13 which is a rotational position sensor, detects the rotational position of the rotor (not shown) of the motor 10.
  • the encoder 13 is, for example, a magnetic rotary encoder, and is composed of a magnet that rotates together with the rotor, and a Hall IC for magnetic detection.
  • the encoder 13 outputs an encoder signal, which is a pulse signal, for each specified angle in synchronization with the rotation of the rotor.
  • the reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and reduces the rotation of the motor 10 before outputting it to the output shaft 15. This allows the rotation of the motor 10 to be transmitted to the detent mechanism 20.
  • An output shaft sensor 16 that detects the angle of the output shaft 15 is provided on the output shaft 15.
  • the output shaft sensor 16 is, for example, a potentiometer.
  • the detent mechanism 20 includes a detent plate 21, a detent spring 25, and a detent roller 26, and transmits the rotational driving force output from the reduction gear 14 to a manual valve 28 and a parking lock mechanism 30.
  • the detent plate 21 is fixed to the output shaft 15 and driven by the motor 10.
  • the detent plate 21 is provided with a pin 24 that protrudes parallel to the output shaft 15.
  • the pin 24 is connected to a manual valve 28.
  • the manual valve 28 moves back and forth in the axial direction.
  • the detent mechanism 20 converts the rotational motion of the motor 10 into linear motion and transmits it to the manual valve 28.
  • the manual valve 28 is provided in a valve body 29. When the manual valve 28 moves back and forth in the axial direction, the hydraulic supply path to the hydraulic clutch (not shown) is switched, and the engagement state of the hydraulic clutch is switched to change the shift range.
  • valleys 221-224 are formed on the detent spring 25 side of the detent plate 21, corresponding to the P (parking), R (reverse), N (neutral), and D (drive) ranges.
  • a peak 225 is provided between the valley 221 corresponding to the P range and the valley 222 corresponding to the R range.
  • a peak 226 is provided between the valley 222 corresponding to the R range and the valley 223 corresponding to the N range.
  • a peak 227 is provided between the valley 223 corresponding to the N range and the valley 224 corresponding to the D range.
  • a first wall 228 that limits the movement of the detent roller 26 is formed on the opposite side of the peak 225 of the valley 221 corresponding to the P range.
  • a second wall 229 that limits the movement of the detent roller 26 is formed on the opposite side of the peak 227 of the valley 224 corresponding to the D range.
  • the detent spring 25 is an elastically deformable plate-like member, and has a detent roller 26 at its tip.
  • the detent spring 25 biases the detent roller 26 toward the center of rotation of the detent plate 21.
  • the detent spring 25 elastically deforms, and the detent roller 26 moves between the valleys 221-224.
  • the detent roller 26 fits into one of the valleys 221-224, the oscillation of the detent plate 21 is restricted, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and the shift range of the automatic transmission 5 is fixed.
  • the detent roller 26 fits into one of the valleys 221-224 that corresponds to the shift range.
  • the location where the detent roller 26 fits into the bottom of the valleys 221 to 224 due to the spring force of the detent spring 25 according to the shift range is defined as the bottommost part of the valleys 221 to 224.
  • the range in which the detent roller 26 can be dropped into the bottommost part of the valleys 221 to 224 by the spring force is defined as the suction range ⁇ s.
  • the entire range on the wall portions 228 and 229 side of the bottommost parts of the valleys 221 and 224 is set to be included in the suction range ⁇ s.
  • the parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft 34, and a parking gear 35.
  • the parking rod 31 is formed in a roughly L-shape, and one end 311 is fixed to the detent plate 21.
  • the other end 312 of the parking rod 31 is provided with a cone 32.
  • the cone 32 is formed so that its diameter decreases as it approaches the other end 312.
  • the parking lock pole 33 abuts against the conical surface of the cone 32 and is arranged to be swingable around the shaft 34.
  • a protrusion 331 capable of meshing with the parking gear 35 is provided on the parking lock pole 33's parking gear 35 side.
  • the parking gear 35 is mounted on an axle (not shown) and is arranged so that it can mesh with the protrusion 331 of the parking lock pole 33.
  • the rotation of the axle is restricted.
  • the shift range is in a Not P range, which is a range other than the P range, the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not hindered by the parking lock mechanism 30.
  • the shift range is in the P range, the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
  • the ECU 40 includes a drive circuit 41 and a control unit 50.
  • the drive circuit 41 has switching elements (not shown) that correspond to each phase of the motor winding. By switching the switching elements on and off, the current supply to the corresponding phase is switched.
  • the control unit 50 is mainly composed of a microcomputer and includes a CPU, ROM, RAM, I/O, and bus lines connecting these components (none of which are shown in the figure).
  • Each process in the control unit 50 may be software processing in which the CPU executes a program pre-stored in a physical memory device (i.e., a readable non-transitory tangible recording medium) such as a ROM, or it may be hardware processing using a dedicated electronic circuit.
  • the control unit 50 controls the switching of the shift range by controlling the drive of the motor 10 based on a shift signal corresponding to the driver's requested shift range, a signal from the brake switch, the accelerator opening, the vehicle speed, etc.
  • the control unit 50 also controls the switching of the connection and disconnection of the clutch 60 provided between the vehicle's drive source, such as the engine or main motor, and the axle.
  • the control unit 50 has, as functional blocks, a signal acquisition unit 51, an abnormality determination unit 52, a drive control unit 55, and the like.
  • the signal acquisition unit 51 acquires detection signals from the encoder 13, the output shaft sensor 16, a current detection unit and a voltage detection unit (not shown), and the like.
  • the abnormality determination unit 52 determines an abnormality in the shift-by-wire system 1, such as a disconnection abnormality.
  • the drive control unit 55 controls the operation of the drive circuit 41, thereby controlling the drive of the motor 10. In this embodiment, the motor 10 is driven by switching the current phase of the motor winding through feedback control based on the encoder count value.
  • one control unit 50 is shown in FIG. 1, some functions may be provided in an ECU different from the ECU 40.
  • FIG. 3 is a schematic diagram of the detent mechanism 20, with the direction of rotation of the motor 10 and output shaft 15 being the left-right direction on the page.
  • the rotation of the detent plate 21 causes the detent roller 26 to move through the valleys 221-224, but FIG. 3 simply illustrates the movement of the detent roller 26.
  • the reducer 14 is provided between the motor shaft 105 and the output shaft 15, and there is "play" between the motor shaft 105 and the output shaft 15, including gear backlash.
  • the total play between the motor shaft 105 and the output shaft 15 is referred to as the play width ⁇ g.
  • FIG. 3 conceptually illustrates the play, and describes the output shaft 15 and the reducer 14 as being integrated, and the motor shaft 105 as being able to move within the range of the play of the reducer 14, but it is also acceptable to configure the motor shaft 105 and the reducer 14 as being integrated, and for "play" to exist between the reducer 14 and the output shaft 15. The same applies to FIG. 4.
  • the encoder count value when the detent roller 26 is in contact with the wall 228 is learned as the wall position reference value ⁇ r.
  • a switching target value ⁇ * is set based on the learned wall position reference value ⁇ r and the wall valley angle ⁇ rb, and the driving of the motor 10 is controlled by feedback control based on the encoder count value. This makes it possible to accurately drop the detent roller 26 into the valley corresponding to the required shift range.
  • Fig. 3 shows an example in which the wall 228 on the P range side is learned as the reference position, the wall 229 on the D range side may also be learned as the reference position.
  • the detent roller 26 may not fall into the suction range ⁇ s and may not fall into the valleys 221 to 224 corresponding to the required shift range.
  • the valley position reference value ⁇ b is learned as the valley position reference value ⁇ b. If the shift range when the start switch is on is the P range, the valley position reference value ⁇ b is the value when the detent roller 26 is at the bottom of the valley portion 221.
  • the valley position reference value ⁇ b is an encoder count value when the motor shaft 105 is at any position within the backlash, and therefore the value varies by the backlash width ⁇ g. Therefore, when switching to the P range, the motor 10 is driven by feedback control with the valley position reference value ⁇ b as the switching target value ⁇ * , and then current limiting switching control is performed to drive the motor 10 while limiting the current in the direction in which the detent roller 26 moves toward the wall portion 228 so that the detent roller 26 is reliably within the suction range ⁇ s.
  • step S101 the range switching process of this embodiment will be described with reference to the flowchart in FIG. 5. This process is executed at a predetermined cycle by the control unit 50.
  • step S101 the steps will simply be referred to as "S”.
  • control unit 50 determines whether or not there is a request to switch the shift range. If it is determined that there is no request to switch the range (S101: NO), the process from S102 onwards is skipped and the standby mode continues. If it is determined that there is a request to switch the shift range (S101: YES), the process proceeds to S102.
  • control unit 50 determines whether the three-phase current paths are normal. Abnormality determination is performed separately from this process. If it is determined that at least some of the current paths are abnormal (S102: NO), the process proceeds to S107. If it is determined that the three-phase current paths are normal (S102: YES), the process proceeds to S103.
  • the drive control unit 55 sets a switching target value ⁇ * based on the wall position reference.
  • the switching target value ⁇ * is set to a value obtained by adding the wall-valley angle ⁇ rb to the learned wall position reference value ⁇ r, and based on the angle between the wall 228 and the valley corresponding to the required shift range.
  • the drive control unit 55 drives the motor 10 by feedback control based on the encoder count value. In this case, since the three phases are normal, the motor 10 is driven using the three phases.
  • the drive control unit 55 judges whether the rotational position of the motor 10 has reached the set switching target value ⁇ * .
  • the drive control unit 55 judges YES. If it is judged that the rotational position of the motor 10 has not reached the switching target value ⁇ * (S105: NO), the process returns to S104 and continues the feedback control. If it is judged that the rotational position of the motor 10 has reached the switching target value ⁇ * (S105: YES), the process proceeds to S106, where a stop control is performed to stop the motor 10 by applying fixed phase current to two phases according to the encoder count value. Then, the process proceeds to S119.
  • the control unit 50 proceeds to S107, where it determines whether the abnormality is a single-phase break. If it is determined that the abnormality is not a single-phase break (S107: NO), that is, if there are two or more broken phases or there is a short circuit abnormality other than a break, the range cannot be switched in normal two-phase drive, so the processing from S108 onwards is skipped. If it is determined that the abnormality is a single-phase break (S107: YES), it proceeds to S108.
  • the drive control unit 55 sets a switching target value ⁇ * based on the valley position. For example, when switching to the P range, the learned valley position reference value ⁇ b is set as the switching target value ⁇ * . When switching to a range other than the P range, the switching target value ⁇ * is set based on the valley position reference value ⁇ b and the angle between the valley portion 221 and the valley portion corresponding to the requested shift range.
  • the drive control unit 55 performs pre-switching preparation processing.
  • the pre-switching preparation processing aligns the opposing positions of the stator and rotor so that range switching can be started from the opposing state where torque is generated.
  • the energized phases are switched in the order of 1-phase energization ⁇ 2-phase energization ⁇ 1-phase energization.
  • the first 1-phase energization is the phase that is energized before the broken phase, as viewed from the switching order of energized phases according to the direction of rotation.
  • the drive control unit 55 drives the motor 10 using a feedback control unit based on the encoder count value. In this case, because one phase is broken, the motor 10 is driven using the two normal phases.
  • the process of S111 is similar to the process of S105. If it is determined that the motor rotational position has not reached the switching target value ⁇ * (S111: NO), the process returns to S110 and feedback control is continued. If it is determined that the switching target value ⁇ * has been reached (S111: YES), the process proceeds to S112 and stop control is performed to stop the motor 10 by supplying fixed phase current to the two normal phases.
  • control unit 50 determines whether or not the range is to be switched to the R range. If it is determined that the range is to be switched to the R range (S113: YES), the process proceeds to S119. If it is determined that the range is to be switched to a range other than the R range (S113: NO), the process proceeds to S114.
  • the control unit 50 determines whether or not there is a switch to the N range. If it is determined that there is a switch to the N range (S114: YES), the process proceeds to S115, where the clutch 60 is released, and the process proceeds to S119. The process of S115 may be omitted. If it is determined that there is no switch to the N range (S114: NO), that is, if there is a switch to the P range or D range, the process proceeds to S116. Note that a switch to the P range or D range is a switch to a range adjacent to the walls 228, 229, and a switch to the R range or N range can be considered as a switch to an intermediate range that is not adjacent to the walls 228, 229. In addition, the allocation of control based on the range determination may be performed before the start of driving the motor 10, for example, following S107.
  • the control unit 50 performs current limiting control in S116 and wall return control in S117. Details of the current limiting control and wall return control will be described later with reference to the time chart in FIG. 6.
  • the process of S118 is the same as the process of S112.
  • S119 the range switching is completed and the system transitions to standby mode.
  • the horizontal axis represents a common time axis, and from the top, motor control, one-phase open circuit state, shift request, and motor rotation angle are shown.
  • the motor rotation angle is a value that can be converted from the encoder count value, and when the detent roller 26 is at the bottom of the valley portion 224, it is called a "D valley", when it is at the bottom of the valley portion 221, it is called a "P valley”, and when it is in contact with the wall portion 228 without any bending, it is called a "P wall".
  • D valley when it is at the bottom of the valley portion 221, it is called a "P valley"
  • P wall when it is in contact with the wall portion 228 without any bending
  • the switching target value ⁇ * is set based on the learned wall position reference value ⁇ r and wall valley angle ⁇ rb.
  • the drive control unit 55 drives the motor 10 by feedback control so that the encoder count value becomes the switching target value ⁇ * .
  • the switching target value ⁇ * may be set so that the positioning accuracy ⁇ a falls within the suction range ⁇ s, and for example, the median value of the suction range ⁇ s may be set as the switching target value ⁇ * . This allows the detent roller 26 to reliably fall into the valley corresponding to the required range.
  • Figure 7 shows an example of switching from D range to P range when one phase is broken.
  • the area around the P valley is enlarged to explain current limit switching, and the ratio of the PD angle to the P valley wall angle, for example, differs from the actual ratio.
  • the valley position reference value ⁇ b is set as the switching target value ⁇ * , and the motor 10 is driven by feedback control using the normal two phases.
  • stop control is performed.
  • the positioning accuracy ⁇ a is smaller than the range ⁇ rt between the wall portion 228 and the peak 225 of the mountain portion, but is larger than the suction range ⁇ s. In other words, ⁇ s ⁇ a ⁇ rt. If the stopping position at the end of feedback control is outside the suction range ⁇ s, the detent roller 26 cannot drop into the valley portion according to the required range.
  • the switching target value ⁇ * is set to an arbitrary value that is sufficiently behind the wall portion 228 even when taking into account the maximum amount of deflection ⁇ d of the wall portion 228, and the motor 10 is driven so that the detent roller 26 moves toward the wall portion 228.
  • the motor 10 is driven at an arbitrary current limit value that takes into consideration responsiveness and the like so that the current limit value is larger than the driven torque of the motor 10.
  • the current limit value in the current limit switching control is set so that the torque is smaller than the wall contact limit value during wall position reference value learning that is set depending on, for example, the durability of the detent mechanism.
  • the range of positioning accuracy ⁇ a is relatively wide. Therefore, if current limiting switching control is performed in a state where the detent roller 26 has moved from the bottom of the valley portion 221 to the wall portion 228 side by feedback control, there is a possibility that the detent roller 26 may have pushed the wall portion 228 further back than its original position due to the deflection of the detent mechanism 20.
  • the wall portion 228 is pushed toward the rear by the detent roller 26. If the power supply to the motor 10 is turned off in this state, the detent mechanism 20 will return to its original bending, and there is a risk that the detent roller 26 will exceed the suction range ⁇ s and be pushed back to the peak portion 225 side.
  • wall return control is performed to return the maximum amount of deflection ⁇ d of the detent mechanism 20. If the deflection has been returned to eliminate the deflection of the detent mechanism 20, the detent roller 26 will be dropped to the bottom of the valley portion 221 by the spring force of the detent spring 25 and will not exceed the suction range ⁇ s, so there is no need to return the detent roller 26 to the bottom of the valley portion 221 by wall return control.
  • stop control is performed to energize normal two-phase current.
  • the current to the motor 10 is turned off and the system transitions to standby mode.
  • the detent roller 26 is dropped into the valley portion 221 by the spring force of the detent spring 25.
  • the detent roller 26 is driven by the current limit switching control to a position where it bends the wall portion 228, but the purpose of the current limit switching control is not to bring the detent roller 26 into contact with the wall portion 228, but to bring it into the suction range ⁇ s. Therefore, as shown in FIG. 8, depending on the current limit switching control time and the output torque of the current limit switching control, it is not a problem if the detent roller 26 does not reach the wall portion 228.
  • the control from time x30 to time x38 in FIG. 8 corresponds to the control from time x20 to time x28 in FIG. 7.
  • the return amount in the wall return control may be the maximum deflection amount ⁇ d, as in FIG. 7, or the backlash width ⁇ g.
  • the detent roller 26 moves to the bottom of the valley 221 in the wall return control, but the behavior when the power supply to the motor 10 is turned off at time x38 is a matter of chance depending on the stopping position of the detent roller 26.
  • FIG. 9 shows an example of switching from D range to N range when one phase is broken.
  • the horizontal axis represents a common time axis, and from the top, motor control, one phase broken state, shift request, clutch 60 state, and motor rotation angle are shown.
  • the motor rotation angle when the detent roller 26 is at the bottom of the valley portion 223 is defined as "N valley.”
  • the processing from time x40 to time x43 is the same as the processing from time x20 to time x23 in FIG. 2, except that the requested range is N range.
  • a switching target value ⁇ * is set based on the valley position reference value ⁇ b, and the motor 10 is driven by feedback control using the two normal phases.
  • the switching target value ⁇ * is set, in detail, based on the valley position reference value ⁇ b and the angle between the valleys 221 and 223.
  • the suction range ⁇ s_N of the N range is relatively small, and the positioning accuracy ⁇ a_N is larger than the suction range ⁇ s_N.
  • the N range is an intermediate range that is not adjacent to the walls 228, 229, it is not possible to perform current limiting switching control that moves the detent roller 26 toward the wall side as in the case of switching to the P range or D range. Therefore, if the position of the detent roller 26 at the end of the feedback control is outside the suction range ⁇ s_N of the N range, there is a risk that the automatic transmission 5 cannot be correctly put into the neutral state.
  • the ECU 40 controls the driving of the motor 10.
  • the ECU 40 includes a drive circuit 41 and a control unit 50.
  • the drive circuit 41 has a switching element that switches the current supply to each phase of the motor winding.
  • the control unit 50 has a drive control unit 55 that controls the drive of the motor 10 by feedback control based on the detection value of the encoder 13 that detects the rotational position of the motor 10, and an abnormality determination unit 52 that determines whether there is a wire breakage.
  • an "open circuit fault” is a fault that prevents current from being supplied to each phase coil of the motor winding, and includes not only a wire breakage in the motor winding itself, but also a wire breakage in the harness and a switching element stuck off.
  • the detent mechanism 20 has a detent plate 21 on which multiple valleys 221-224 are formed and separated by peaks 225-227, a detent roller 26 that can move between the valleys 221-224 when driven by the motor 10, and a detent spring 25 that urges the detent roller 26 in the direction of fitting into the valleys 221-224.
  • Walls 228, 229 that regulate the drive of the detent roller 26 are formed on both sides of the arranged valleys 221-224.
  • the drive control unit 55 When the drive control unit 55 is in normal phase drive, which drives the motor 10 using a normal phase during one-phase disconnection, and moves the detent roller 26 with the valleys 221, 224 adjacent to the walls 228, 229 as the target valleys, it performs feedback control so that the detent roller 26 is between the peaks on either side of the target valley and the wall, and then performs current limiting switching control to drive the motor 10 with current limiting so that the detent roller 26 moves toward the wall.
  • the target valley is the valley 221
  • the switching target value ⁇ * in the feedback control is set based on the wall position reference value ⁇ r learned in response to the detection value of the encoder 13 when the detent roller 26 is in contact with the wall portion 228.
  • the switching target value ⁇ * is set based on the valley position reference value ⁇ b learned in response to the detection value of the encoder 13 when the detent roller 26 is at the bottom of the valley portion 221. That is, in this embodiment, the method of setting the switching target value ⁇ * in the feedback control is different between when all phases are normal and when one phase is disconnected.
  • the positioning variation is large, so even if the switching target value ⁇ * is set based on the wall position reference value ⁇ r, the detent roller 26 may deviate from the suction range ⁇ s. Also, the variation of the learned wall position reference value ⁇ r is larger than in normal times. Therefore, in normal phase driving, the switching target value ⁇ * is set without using the wall position reference value ⁇ r. This makes it possible to omit wall position learning when one phase is broken.
  • the motor drive system is a shift-by-wire system 1.
  • the control unit 50 When switching the shift range to N range in the event of one-phase disconnection, the control unit 50 performs feedback control with normal phase drive so that the detent roller 26 moves to the valley 223 corresponding to the N range, and then releases the clutch 60 provided between the vehicle's drive source, such as an engine or main motor, and the axle. This makes it possible to cut torque on the automatic transmission 5 side, allowing appropriate neutral control to be performed.
  • the shift-by-wire system 1 corresponds to the "motor drive system”
  • the encoder 13 corresponds to the "rotational position sensor”
  • the detent plate 21 corresponds to the “detent member”
  • the detent spring 25 corresponds to the “biasing member”
  • the detent roller 26 corresponds to the "engagement member”
  • the ECU 40 corresponds to the "motor control device.”
  • the rotation detection unit is an encoder. In other embodiments, a sensor capable of detecting a rotation position other than an encoder, such as a resolver, may be used.
  • the motor is a switched reluctance motor. In other embodiments, the motor may be one other than a switched reluctance motor, such as a DC brushless motor. The number of phases of the motor windings may be four or more.
  • valleys are provided on the detent plate.
  • the number of valleys is not limited to four, and for example, two valleys corresponding to the P range and the notP range may be formed. In this case, current limit switching control can be performed regardless of the required range.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions to be executed by a computer. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms within the scope of its spirit.

Abstract

A motor control device (40) includes a drive circuit (41) and a control unit (50). The control unit (50) includes: a drive control unit (55) that controls driving of a motor (10) by feedback control based on the detected values from a rotational position sensor (13) that detects a rotation position of the motor (10); and an abnormality determination unit (52) that determines a disconnection failure. At the time of a one-phase disconnection, if an engaging member (26) is caused to move with, as a target valley portion, a valley portion (221, 224) adjacent to a wall portion (228, 229) in normal phase driving for driving the motor (10) using a normal phase, the drive control unit (55): performs feedback control such that the engaging member (26) is between the wall portion and mountain portions located on both sides of the target valley portion; and thereafter performs current limit switching control for applying a current limit to drive the motor (10) such that the engaging member (26) moves in the direction to the wall portion.

Description

モータ制御装置Motor Control Device 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2022年10月12日に出願された特許出願番号2022-163875号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2022-163875, filed on October 12, 2022, the contents of which are incorporated herein by reference.
 本開示は、モータ制御装置に関する。 This disclosure relates to a motor control device.
 従来、モータの駆動を制御するモータ制御装置が知られている。例えば特許文献1では、各相の巻線の通電ラインにそれぞれ断線検出回路を設け、断線を検出している。  There are known motor control devices that control the drive of a motor. For example, in Patent Document 1, a disconnection detection circuit is provided in each current carrying line of the winding for each phase to detect disconnection.
特開2004-129450号公報JP 2004-129450 A
 1相に断線が生じていても、断線が生じている相である断線相をイナーシャで通過できれば、モータを駆動することができる。しかしながら、1相断線時は、正常時と比較して位置決めのばらつきが大きくなる。本開示の目的は、1相断線時においても適切にディテント機構を切り替え可能なモータ制御装置を提供することにある。 Even if one phase is broken, the motor can be driven if inertia can pass through the broken phase where the break occurs. However, when one phase is broken, there is greater variation in positioning compared to normal times. The purpose of this disclosure is to provide a motor control device that can appropriately switch the detent mechanism even when one phase is broken.
 本開示のモータ制御装置は、3相以上のモータ巻線を有するモータと、モータにより駆動されるディテント機構と、を備えるモータ駆動システムにおいて、モータの駆動を制御するものであって、駆動回路と、制御部と、を備える。駆動回路は、モータ巻線の各相への通電を切り替えるスイッチング素子を有する。制御部は、モータの回転位置を検出する回転位置センサの検出値に基づくフィードバック制御によりモータの駆動を制御する駆動制御部、および、断線故障を判定する異常判定部を有する。 The motor control device disclosed herein controls the driving of a motor in a motor driving system that includes a motor having motor windings of three or more phases and a detent mechanism driven by the motor, and includes a driving circuit and a control unit. The driving circuit has switching elements that switch the supply of current to each phase of the motor winding. The control unit has a driving control unit that controls the driving of the motor by feedback control based on the detection value of a rotational position sensor that detects the rotational position of the motor, and an abnormality determination unit that determines a wire breakage fault.
 ディテント機構は、山部にて隔てられる複数の谷部が形成されるディテント部材、モータの駆動により谷部を移動可能である係合部材、および、係合部材を谷部に嵌まり込む方向に付勢する付勢部材を有し、配列される谷部の両側に、係合部材の駆動を規制する壁部が形成されている。 The detent mechanism has a detent member in which multiple valleys separated by peaks are formed, an engagement member that can move in the valleys when driven by a motor, and a biasing member that biases the engagement member in a direction that fits into the valleys, and walls that regulate the drive of the engagement member are formed on both sides of the arranged valleys.
 制御部は、1相断線時において、正常相を用いてモータを駆動する正常相駆動にて壁部に隣接する谷部を目標谷部として係合部材を移動させる場合、係合部材が目標谷部の両側にある山部と壁部との間となるようにフィードバック制御を行った後、係合部材が壁部の方向に移動するように電流制限をかけてモータを駆動する電流制限切替制御を行う。これにより、1相断線時においても適切にディテント機構を切り替え可能である。 When the control unit moves the engaging member with a valley adjacent to the wall as the target valley in normal phase drive, which drives the motor using a normal phase when one phase is broken, it performs feedback control so that the engaging member is between the peaks on either side of the target valley and the wall, and then performs current limit switching control to drive the motor by limiting the current so that the engaging member moves in the direction of the wall. This makes it possible to switch the detent mechanism appropriately even when one phase is broken.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態によるシフトバイワイヤシステムを示す斜視図であり、 図2は、一実施形態によるシフトバイワイヤシステムを示す概略構成図であり、 図3は、一実施形態による壁基準位置に基づく切替目標値の設定を説明する模式図であり、 図4は、一実施形態による谷基準位置に基づく切替目標値の設定を説明する模式図であり、 図5は、一実施形態によるレンジ切替処理を説明するフローチャートであり、 図6は、一実施形態によるレンジ切替処理を説明するタイムチャートであり、 図7は、一実施形態によるレンジ切替処理を説明するタイムチャートであり、 図8は、一実施形態によるレンジ切替処理を説明するタイムチャートであり、 図9は、一実施形態によるレンジ切替処理を説明するタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a perspective view showing a shift-by-wire system according to an embodiment; FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to an embodiment; FIG. 3 is a schematic diagram illustrating setting of a switching target value based on a wall reference position according to an embodiment; FIG. 4 is a schematic diagram illustrating setting of a switching target value based on a valley reference position according to an embodiment; FIG. 5 is a flowchart illustrating a range switching process according to an embodiment. FIG. 6 is a time chart illustrating a range switching process according to an embodiment. FIG. 7 is a time chart illustrating a range switching process according to an embodiment. FIG. 8 is a time chart illustrating a range switching process according to an embodiment. FIG. 9 is a time chart illustrating the range switching process according to one embodiment.
   (一実施形態)
 以下、本開示によるモータ制御装置を図面に基づいて説明する。一実施形態を図1~図9に示す。図1および図2に示すように、シフトバイワイヤシステム1は、モータ10、ディテント機構20、パーキングロック機構30、および、モータ制御装置としてのECU40等を備える。
(One embodiment)
A motor control device according to the present disclosure will be described below with reference to the drawings. One embodiment is shown in Figures 1 to 9. As shown in Figures 1 and 2, a shift-by-wire system 1 includes a motor 10, a detent mechanism 20, a parking lock mechanism 30, and an ECU 40 as a motor control device.
 モータ10は、図示しない車両に搭載されるバッテリから電力が供給されることで回転し、ディテント機構20の駆動源として機能する。本実施形態のモータ10は、スイッチトリラクタンスモータであって、図示しないステータに巻回されるU相、V相およびW相のモータ巻線を有する3相モータである。 The motor 10 rotates by receiving power from a battery installed in the vehicle (not shown) and functions as a drive source for the detent mechanism 20. The motor 10 in this embodiment is a switched reluctance motor, a three-phase motor having U-phase, V-phase, and W-phase motor windings wound around a stator (not shown).
 図2に示すように、回転位置センサであるエンコーダ13は、モータ10の図示しないロータの回転位置を検出する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転する磁石と、磁気検出用のホールIC等により構成される。エンコーダ13は、ロータの回転に同期して、所定の角度ごとにパルス信号であるエンコーダ信号を出力する。 As shown in FIG. 2, the encoder 13, which is a rotational position sensor, detects the rotational position of the rotor (not shown) of the motor 10. The encoder 13 is, for example, a magnetic rotary encoder, and is composed of a magnet that rotates together with the rotor, and a Hall IC for magnetic detection. The encoder 13 outputs an encoder signal, which is a pulse signal, for each specified angle in synchronization with the rotation of the rotor.
 減速機14は、モータ10のモータ軸と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がディテント機構20に伝達される。出力軸15には、出力軸15の角度を検出する出力軸センサ16が設けられる。出力軸センサ16は、例えばポテンショメータである。 The reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and reduces the rotation of the motor 10 before outputting it to the output shaft 15. This allows the rotation of the motor 10 to be transmitted to the detent mechanism 20. An output shaft sensor 16 that detects the angle of the output shaft 15 is provided on the output shaft 15. The output shaft sensor 16 is, for example, a potentiometer.
 図1に示すように、ディテント機構20は、ディテントプレート21、ディテントスプリング25、および、ディテントローラ26等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。 As shown in FIG. 1, the detent mechanism 20 includes a detent plate 21, a detent spring 25, and a detent roller 26, and transmits the rotational driving force output from the reduction gear 14 to a manual valve 28 and a parking lock mechanism 30.
 ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、ディテント機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。 The detent plate 21 is fixed to the output shaft 15 and driven by the motor 10. The detent plate 21 is provided with a pin 24 that protrudes parallel to the output shaft 15. The pin 24 is connected to a manual valve 28. When the detent plate 21 is driven by the motor 10, the manual valve 28 moves back and forth in the axial direction. In other words, the detent mechanism 20 converts the rotational motion of the motor 10 into linear motion and transmits it to the manual valve 28. The manual valve 28 is provided in a valve body 29. When the manual valve 28 moves back and forth in the axial direction, the hydraulic supply path to the hydraulic clutch (not shown) is switched, and the engagement state of the hydraulic clutch is switched to change the shift range.
 図3に模式的に示すように、ディテントプレート21のディテントスプリング25側には、P(パーキング)、R(リバース)、N(ニュートラル)、D(ドライブ)の各レンジに対応する4つの谷部221~224が形成される。また、Pレンジに対応する谷部221とRレンジに対応する谷部222との間には、山部225が設けられる。Rレンジに対応する谷部222とNレンジに対応する谷部223との間には、山部226が設けられる。Nレンジに対応する谷部223とDレンジに対応する谷部224との間には、山部227が設けられる。Pレンジに対応する谷部221の山部225と反対側には、ディテントローラ26の移動を制限する第1壁部228が形成される。Dレンジに対応する谷部224の山部227と反対側には、ディテントローラ26の移動を制限する第2壁部229が形成される。 As shown in FIG. 3, four valleys 221-224 are formed on the detent spring 25 side of the detent plate 21, corresponding to the P (parking), R (reverse), N (neutral), and D (drive) ranges. A peak 225 is provided between the valley 221 corresponding to the P range and the valley 222 corresponding to the R range. A peak 226 is provided between the valley 222 corresponding to the R range and the valley 223 corresponding to the N range. A peak 227 is provided between the valley 223 corresponding to the N range and the valley 224 corresponding to the D range. A first wall 228 that limits the movement of the detent roller 26 is formed on the opposite side of the peak 225 of the valley 221 corresponding to the P range. A second wall 229 that limits the movement of the detent roller 26 is formed on the opposite side of the peak 227 of the valley 224 corresponding to the D range.
 図1に示すように、ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が谷部221~224間を移動する。ディテントローラ26が谷部221~224のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。ディテントローラ26は、シフトレンジに応じた谷部221~224に嵌まり合う。 As shown in FIG. 1, the detent spring 25 is an elastically deformable plate-like member, and has a detent roller 26 at its tip. The detent spring 25 biases the detent roller 26 toward the center of rotation of the detent plate 21. When a rotational force of a predetermined magnitude or more is applied to the detent plate 21, the detent spring 25 elastically deforms, and the detent roller 26 moves between the valleys 221-224. When the detent roller 26 fits into one of the valleys 221-224, the oscillation of the detent plate 21 is restricted, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and the shift range of the automatic transmission 5 is fixed. The detent roller 26 fits into one of the valleys 221-224 that corresponds to the shift range.
 本実施形態では、シフトレンジに応じ、ディテントスプリング25のスプリング力にてディテントローラ26が嵌まり込む箇所を、谷部221~224の最底部とする。また、ディテントローラ26をスプリング力にて谷部221~224の最底部に落とし込むことが可能な範囲を、吸い込み範囲θsとする。なお、谷部221、224の最底部よりも壁部228、229側の範囲は、全て吸い込み範囲θsに含まれるように設定されている。 In this embodiment, the location where the detent roller 26 fits into the bottom of the valleys 221 to 224 due to the spring force of the detent spring 25 according to the shift range is defined as the bottommost part of the valleys 221 to 224. The range in which the detent roller 26 can be dropped into the bottommost part of the valleys 221 to 224 by the spring force is defined as the suction range θs. The entire range on the wall portions 228 and 229 side of the bottommost parts of the valleys 221 and 224 is set to be included in the suction range θs.
 パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。 The parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft 34, and a parking gear 35. The parking rod 31 is formed in a roughly L-shape, and one end 311 is fixed to the detent plate 21. The other end 312 of the parking rod 31 is provided with a cone 32. The cone 32 is formed so that its diameter decreases as it approaches the other end 312.
 パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる。パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21の回転により円錐体32がP方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、円錐体32がNotP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。 The parking lock pole 33 abuts against the conical surface of the cone 32 and is arranged to be swingable around the shaft 34. A protrusion 331 capable of meshing with the parking gear 35 is provided on the parking lock pole 33's parking gear 35 side. When the cone 32 moves in the P direction due to the rotation of the detent plate 21, the parking lock pole 33 is pushed up and the protrusion 331 meshes with the parking gear 35. On the other hand, when the cone 32 moves in the NotP direction, the meshing between the protrusion 331 and the parking gear 35 is released.
 パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがPレンジ以外のレンジであるNotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。 The parking gear 35 is mounted on an axle (not shown) and is arranged so that it can mesh with the protrusion 331 of the parking lock pole 33. When the parking gear 35 meshes with the protrusion 331, the rotation of the axle is restricted. When the shift range is in a Not P range, which is a range other than the P range, the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not hindered by the parking lock mechanism 30. Also, when the shift range is in the P range, the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
 図2に示すように、ECU40は、駆動回路41、および、制御部50等を備える。駆動回路41は、モータ巻線の各相に対応する図示しないスイッチング素子を有する。スイッチング素子のオンオフを切り替えることで、対応する相の通電を切り替える。 As shown in FIG. 2, the ECU 40 includes a drive circuit 41 and a control unit 50. The drive circuit 41 has switching elements (not shown) that correspond to each phase of the motor winding. By switching the switching elements on and off, the current supply to the corresponding phase is switched.
 制御部50は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。 The control unit 50 is mainly composed of a microcomputer and includes a CPU, ROM, RAM, I/O, and bus lines connecting these components (none of which are shown in the figure). Each process in the control unit 50 may be software processing in which the CPU executes a program pre-stored in a physical memory device (i.e., a readable non-transitory tangible recording medium) such as a ROM, or it may be hardware processing using a dedicated electronic circuit.
 制御部50は、ドライバ要求シフトレンジに応じたシフト信号、ブレーキスイッチからの信号、アクセル開度および車速等に基づいてモータ10の駆動を制御することで、シフトレンジの切り替え等を制御する。また、制御部50は、エンジンや主機モータ等の車両の駆動源と車軸との間に設けられるクラッチ60の断接の切り替えを制御する。 The control unit 50 controls the switching of the shift range by controlling the drive of the motor 10 based on a shift signal corresponding to the driver's requested shift range, a signal from the brake switch, the accelerator opening, the vehicle speed, etc. The control unit 50 also controls the switching of the connection and disconnection of the clutch 60 provided between the vehicle's drive source, such as the engine or main motor, and the axle.
 制御部50は、機能ブロックとして、信号取得部51、異常判定部52、および、駆動制御部55等を有する。信号取得部51は、エンコーダ13、出力軸センサ16、図示しない電流検出部および電圧検出部等からの検出信号を取得する。異常判定部52は、断線異常等のシフトバイワイヤシステム1の異常を判定する。駆動制御部55は、駆動回路41の作動を制御することで、モータ10の駆動を制御する。本実施形態では、エンコーダカウント値に基づくフィードバック制御により、モータ巻線の通電相を切り替えることでモータ10を駆動する。図1では、1つの制御部50を記載しているが、一部の機能がECU40とは異なるECUに設けられていてもよい。 The control unit 50 has, as functional blocks, a signal acquisition unit 51, an abnormality determination unit 52, a drive control unit 55, and the like. The signal acquisition unit 51 acquires detection signals from the encoder 13, the output shaft sensor 16, a current detection unit and a voltage detection unit (not shown), and the like. The abnormality determination unit 52 determines an abnormality in the shift-by-wire system 1, such as a disconnection abnormality. The drive control unit 55 controls the operation of the drive circuit 41, thereby controlling the drive of the motor 10. In this embodiment, the motor 10 is driven by switching the current phase of the motor winding through feedback control based on the encoder count value. Although one control unit 50 is shown in FIG. 1, some functions may be provided in an ECU different from the ECU 40.
 図3は、モータ10および出力軸15の回転方向を紙面左右方向とし、ディテント機構20を模式的に示した図である。実際には、ディテントプレート21が回転することでディテントローラ26が谷部221~224を移動するが、図3では、単にディテントローラ26が移動するように図示した。 FIG. 3 is a schematic diagram of the detent mechanism 20, with the direction of rotation of the motor 10 and output shaft 15 being the left-right direction on the page. In reality, the rotation of the detent plate 21 causes the detent roller 26 to move through the valleys 221-224, but FIG. 3 simply illustrates the movement of the detent roller 26.
 モータ軸105と出力軸15との間には、減速機14が設けられており、モータ軸105と出力軸15との間のギアバックラッシュを含む「遊び」が存在している。以下、モータ軸105と出力軸15との間の遊びの合計を、ガタ幅θgとする。図3は、ガタを概念的に示しており、出力軸15と減速機14とが一体となっており、モータ軸105が減速機14の遊びの範囲で移動可能であるものとして記載しているが、モータ軸105と減速機14とが一体となっており、減速機14と出力軸15との間に「遊び」が存在しているように構成しても差し支えない。図4についても同様である。 The reducer 14 is provided between the motor shaft 105 and the output shaft 15, and there is "play" between the motor shaft 105 and the output shaft 15, including gear backlash. Hereinafter, the total play between the motor shaft 105 and the output shaft 15 is referred to as the play width θg. FIG. 3 conceptually illustrates the play, and describes the output shaft 15 and the reducer 14 as being integrated, and the motor shaft 105 as being able to move within the range of the play of the reducer 14, but it is also acceptable to configure the motor shaft 105 and the reducer 14 as being integrated, and for "play" to exist between the reducer 14 and the output shaft 15. The same applies to FIG. 4.
 図3に示すように、正常時において、ディテントローラ26が壁部228に当接しているときのエンコーダカウント値を壁位置基準値θrとして学習する。シフトレンジ切替時には、学習された壁位置基準値θrと壁谷間角度θrbとに基づいて切替目標値θ*を設定し、エンコーダカウント値に基づくフィードバック制御によりモータ10の駆動を制御する。これにより、精度よく、ディテントローラ26を要求シフトレンジに応じた谷部に落とし込むことができる。図3では、Pレンジ側の壁部228を基準位置として学習する例を示しているが、Dレンジ側の壁部229を基準位置として学習してもよい。 As shown in Fig. 3, under normal circumstances, the encoder count value when the detent roller 26 is in contact with the wall 228 is learned as the wall position reference value θr. When the shift range is switched, a switching target value θ * is set based on the learned wall position reference value θr and the wall valley angle θrb, and the driving of the motor 10 is controlled by feedback control based on the encoder count value. This makes it possible to accurately drop the detent roller 26 into the valley corresponding to the required shift range. Although Fig. 3 shows an example in which the wall 228 on the P range side is learned as the reference position, the wall 229 on the D range side may also be learned as the reference position.
 例えばU相に断線故障が生じた場合、正常時にU相のみに通電される領域においてトルクが発生しないが、イナーシャでこの領域を通過させることでモータ10の駆動を継続可能である。本実施形態では、1相断線時は、正常2相に通電することでモータ10を駆動する正常2相駆動により、シフトレンジを切り替える。 For example, if a wire breakage occurs in the U-phase, no torque is generated in the region where only the U-phase is energized under normal circumstances, but the motor 10 can continue to be driven by passing through this region using inertia. In this embodiment, when one phase is broken, the shift range is switched by normal two-phase drive, which drives the motor 10 by energizing the two normal phases.
 正常2相駆動では、トルクのばらつきが大きいため、壁当てによる基準位置学習を行った場合、学習値のばらつきが大きくなってしまう。そのため、正常2相駆動で学習された基準位置に基づいて切替目標値θ*を設定してレンジ切り替えを行うと、吸い込み範囲θsに入らず、要求シフトレンジに応じた谷部221~224にディテントローラ26を落とし込めない虞がある。 In normal two-phase driving, the torque varies widely, so when reference position learning is performed by hitting against a wall, the learned value varies widely. Therefore, if the switching target value θ * is set based on the reference position learned in normal two-phase driving and range switching is performed, the detent roller 26 may not fall into the suction range θs and may not fall into the valleys 221 to 224 corresponding to the required shift range.
 そこで、図4に示すように、壁位置基準値θrに基づく精度のよい制御が困難である1相断線時には、壁位置学習を省略し、谷位置基準での制御を行う。詳細には、1相断線時には、イグニッションスイッチ等である車両の始動スイッチがオンされ、ロータとエンコーダ13の相対位置を対応させるための通電処理である初期駆動完了時のエンコーダカウント値を、谷位置基準値θbとして学習する。始動スイッチオン時のシフトレンジがPレンジであれば、谷位置基準値θbは、ディテントローラ26が谷部221の最底部にあるときの値となる。 As shown in FIG. 4, when one phase is disconnected, where accurate control based on the wall position reference value θr is difficult, wall position learning is omitted and control is performed based on the valley position reference. In detail, when one phase is disconnected, the vehicle start switch, such as an ignition switch, is turned on, and the encoder count value at the completion of the initial drive, which is a current application process for matching the relative positions of the rotor and encoder 13, is learned as the valley position reference value θb. If the shift range when the start switch is on is the P range, the valley position reference value θb is the value when the detent roller 26 is at the bottom of the valley portion 221.
 谷位置基準値θbは、モータ軸105がガタ内のいずれかの位置にあるときのエンコーダカウント値となるため、ガタ幅θgの分、値がばらつく。そのため、Pレンジへの切替時において、谷位置基準値θbを切替目標値θ*としてフィードバック制御にてモータ10を駆動した後、ディテントローラ26が確実に吸い込み範囲θs内となるように、ディテントローラ26が壁部228へ向かう方向へ電流制限をかけてモータ10を駆動する電流制限切替制御を行う。また、Dレンジへの切替時において、谷位置基準値θbと谷部221、224間の角度とに基づいて切替目標値θ*を設定してフィードバック制御を行った後、ディテントローラ26が壁部229へ向かう方向へ電流制限をかけてモータ10を駆動する電流制限切替制御を行う。 The valley position reference value θb is an encoder count value when the motor shaft 105 is at any position within the backlash, and therefore the value varies by the backlash width θg. Therefore, when switching to the P range, the motor 10 is driven by feedback control with the valley position reference value θb as the switching target value θ * , and then current limiting switching control is performed to drive the motor 10 while limiting the current in the direction in which the detent roller 26 moves toward the wall portion 228 so that the detent roller 26 is reliably within the suction range θs. When switching to the D range, feedback control is performed by setting the switching target value θ * based on the valley position reference value θb and the angle between the valley portions 221 and 224, and then current limiting switching control is performed to drive the motor 10 while limiting the current in the direction in which the detent roller 26 moves toward the wall portion 229.
 本実施形態のレンジ切替処理を図5のフローチャートに基づいて説明する。この処理は、制御部50にて所定の周期で実行される。以下、ステップS101等の「ステップ」を省略し、単に記号「S」と記す。 The range switching process of this embodiment will be described with reference to the flowchart in FIG. 5. This process is executed at a predetermined cycle by the control unit 50. Hereinafter, the "step" such as step S101 will be omitted, and the steps will simply be referred to as "S".
 S101では、制御部50は、シフトレンジ切替要求があるか否か判断する。レンジ切替要求がないと判断された場合(S101:NO)、S102以降の処理をスキップし、スタンバイモードを継続する。シフトレンジ切替要求があると判断された場合(S101:YES)、S102へ移行する。 In S101, the control unit 50 determines whether or not there is a request to switch the shift range. If it is determined that there is no request to switch the range (S101: NO), the process from S102 onwards is skipped and the standby mode continues. If it is determined that there is a request to switch the shift range (S101: YES), the process proceeds to S102.
 S102では、制御部50は、3相の通電経路が正常か否か判断する。異常判定は、本処理とは別途に行われているものとする。少なくとも一部の通電経路が正常でないと判断された場合(S102:NO)、S107へ移行する。3相の通電経路が正常であると判断された場合(S102:YES)、S103へ移行する。 In S102, the control unit 50 determines whether the three-phase current paths are normal. Abnormality determination is performed separately from this process. If it is determined that at least some of the current paths are abnormal (S102: NO), the process proceeds to S107. If it is determined that the three-phase current paths are normal (S102: YES), the process proceeds to S103.
 S103では、駆動制御部55は、壁位置基準で切替目標値θ*を設定する。例えばPレンジへの切り替えであれば、学習された壁位置基準値θrに壁谷間角度θrbを加算した値とするといった具合に、壁位置基準値θrと、壁部228と要求シフトレンジに応じた谷部との間の角度とに基づき、切替目標値θ*を設定する。 In S103, the drive control unit 55 sets a switching target value θ * based on the wall position reference. For example, in the case of switching to the P range, the switching target value θ* is set to a value obtained by adding the wall-valley angle θrb to the learned wall position reference value θr, and based on the angle between the wall 228 and the valley corresponding to the required shift range.
 S104では、駆動制御部55は、エンコーダカウント値に基づくフィードバック制御によりモータ10を駆動する。ここでは、3相が正常であるので、3相を用いてモータ10を駆動する。 In S104, the drive control unit 55 drives the motor 10 by feedback control based on the encoder count value. In this case, since the three phases are normal, the motor 10 is driven using the three phases.
 S105では、駆動制御部55は、モータ10の回転位置が設定された切替目標値θ*に到達したか否か判断する。ここでは、エンコーダカウント値が設定された切替目標値θ*を含む所定範囲内である場合、肯定判断する。モータ10の回転位置が切替目標値θ*に到達していないと判断された場合(S105:NO)、S104へ戻り、フィードバック制御を継続する。モータ10の回転位置が切替目標値θ*に到達したと判断された場合(S105:YES)、S106へ移行し、エンコーダカウント値に応じた2相への固定相通電により、モータ10を停止させる停止制御を行う。そして、S119へ移行する。 In S105, the drive control unit 55 judges whether the rotational position of the motor 10 has reached the set switching target value θ * . Here, if the encoder count value is within a predetermined range including the set switching target value θ * , the drive control unit 55 judges YES. If it is judged that the rotational position of the motor 10 has not reached the switching target value θ * (S105: NO), the process returns to S104 and continues the feedback control. If it is judged that the rotational position of the motor 10 has reached the switching target value θ * (S105: YES), the process proceeds to S106, where a stop control is performed to stop the motor 10 by applying fixed phase current to two phases according to the encoder count value. Then, the process proceeds to S119.
 少なくとも一部の通電経路が正常でないと判断された場合(S102:NO)に移行するS107では、制御部50は、生じている異常が1相断線か否か判断する。生じている異常が1相断線ではないと判断された場合(S107:NO)、すなわち断線相が2相以上の場合や断線以外の短絡異常等の場合は、正常2相駆動でのレンジ切り替えができないので、S108以降の処理をスキップする。生じている異常が1相断線であると判断された場合(S107:YES)、S108へ移行する。 If it is determined that at least some of the current paths are not normal (S102: NO), the control unit 50 proceeds to S107, where it determines whether the abnormality is a single-phase break. If it is determined that the abnormality is not a single-phase break (S107: NO), that is, if there are two or more broken phases or there is a short circuit abnormality other than a break, the range cannot be switched in normal two-phase drive, so the processing from S108 onwards is skipped. If it is determined that the abnormality is a single-phase break (S107: YES), it proceeds to S108.
 S108では、駆動制御部55は、谷位置基準で切替目標値θ*を設定する。例えばPレンジへの切り替えであれば、学習された谷位置基準値θbを切替目標値θ*とする。また、Pレンジ以外への切替の場合、谷位置基準値θbと、谷部221と要求シフトレンジに応じた谷部との間の角度とに基づき、切替目標値θ*を設定する。 In S108, the drive control unit 55 sets a switching target value θ * based on the valley position. For example, when switching to the P range, the learned valley position reference value θb is set as the switching target value θ * . When switching to a range other than the P range, the switching target value θ * is set based on the valley position reference value θb and the angle between the valley portion 221 and the valley portion corresponding to the requested shift range.
 S109では、駆動制御部55は、切替前準備処理を行う。正常2相駆動では、断線相に対応する領域をイナーシャで通過させる必要がある。そこで、トルクが発生するステータとロータの対向状態からレンジ切り替えを開始できるように、切替前準備処理により対向位置を合わせる。 In S109, the drive control unit 55 performs pre-switching preparation processing. In normal two-phase driving, it is necessary to pass through the area corresponding to the broken phase with inertia. Therefore, the pre-switching preparation processing aligns the opposing positions of the stator and rotor so that range switching can be started from the opposing state where torque is generated.
 本実施形態では、切替前準備処理として、1相通電→2相通電→1相通電の順に通電相を切り替える。最初の1相通電は、回転方向に応じた通電相の切替順序からみて、断線相の前に通電される相である。例えば、正常時にモータ10を正転させる場合の通電順が、U相→UV相→V相→VW相→W相→WU相である1-2相励磁方式の場合であって、U相断線の正転時には、切替前準備処理として、W相→VW相→V相通電を行い、V相の突極とロータの突極とが対向する、所謂「1相1歯」の状態からレンジ切り替えを開始する。 In this embodiment, as pre-switching preparation processing, the energized phases are switched in the order of 1-phase energization → 2-phase energization → 1-phase energization. The first 1-phase energization is the phase that is energized before the broken phase, as viewed from the switching order of energized phases according to the direction of rotation. For example, in the case of a 1-2 phase excitation method in which the energization order when rotating the motor 10 forward under normal conditions is U phase → UV phase → V phase → VW phase → W phase → WU phase, during forward rotation with U phase disconnection, as pre-switching preparation processing, energization is performed in W phase → VW phase → V phase, and range switching begins from the so-called "1 phase 1 tooth" state in which the salient pole of the V phase faces the salient pole of the rotor.
 S110では、駆動制御部55は、エンコーダカウント値に基づくフィードバック制御部によりモータ10を駆動する。ここでは、1相断線が生じているので、正常な2相を用いてモータ10を駆動する。 In S110, the drive control unit 55 drives the motor 10 using a feedback control unit based on the encoder count value. In this case, because one phase is broken, the motor 10 is driven using the two normal phases.
 S111の処理は、S105の処理と同様であり、モータ回転位置が切替目標値θ*に到達していないと判断された場合(S111:NO)、S110に戻り、フィードバック制御を継続し、切替目標値θ*に到達したと判断された場合(S111:YES)、S112へ移行し、正常2相への固定相通電により、モータ10を停止させる停止制御を行う。 The process of S111 is similar to the process of S105. If it is determined that the motor rotational position has not reached the switching target value θ * (S111: NO), the process returns to S110 and feedback control is continued. If it is determined that the switching target value θ * has been reached (S111: YES), the process proceeds to S112 and stop control is performed to stop the motor 10 by supplying fixed phase current to the two normal phases.
 S113では、制御部50は、Rレンジへの切り替えか否か判断する。Rレンジへの切り替えであると判断された場合(S113:YES)、S119へ移行する。Rレンジ以外への切り替えであると判断された場合(S113:NO)、S114へ移行する。 In S113, the control unit 50 determines whether or not the range is to be switched to the R range. If it is determined that the range is to be switched to the R range (S113: YES), the process proceeds to S119. If it is determined that the range is to be switched to a range other than the R range (S113: NO), the process proceeds to S114.
 S114では、制御部50は、Nレンジへの切り替えか否か判断する。Nレンジへの切り替えであると判断された場合(S114:YES)、S115へ移行してクラッチ60を開放し、S119へ移行する。S115の処理は省略してもよい。Nレンジへの切り替えではないと判断された場合(S114:NO)、すなわちPレンジまたはDレンジへの切り替えである場合、S116へ移行する。なお、PレンジまたはDレンジへの切り替えは、壁部228、229に隣接するレンジへの切り替えであり、RレンジまたはNレンジへの切り替えは、壁部228、229に隣接しない中間レンジへの切り替えと捉えることができる。また、レンジ判定による制御の振り分けは、例えばS107に続いて実施する等、モータ10の駆動開始前に実施してもよい。 In S114, the control unit 50 determines whether or not there is a switch to the N range. If it is determined that there is a switch to the N range (S114: YES), the process proceeds to S115, where the clutch 60 is released, and the process proceeds to S119. The process of S115 may be omitted. If it is determined that there is no switch to the N range (S114: NO), that is, if there is a switch to the P range or D range, the process proceeds to S116. Note that a switch to the P range or D range is a switch to a range adjacent to the walls 228, 229, and a switch to the R range or N range can be considered as a switch to an intermediate range that is not adjacent to the walls 228, 229. In addition, the allocation of control based on the range determination may be performed before the start of driving the motor 10, for example, following S107.
 制御部50は、S116にて電流制限制御を行い、S117にて壁戻し制御を行う。電流制限制御および壁戻し制御の詳細は、図6のタイムチャートに基づいて後述する。S118の処理は、S112の処理と同様である。S119では、レンジ切り替えを完了し、スタンバイモードに移行する。 The control unit 50 performs current limiting control in S116 and wall return control in S117. Details of the current limiting control and wall return control will be described later with reference to the time chart in FIG. 6. The process of S118 is the same as the process of S112. In S119, the range switching is completed and the system transitions to standby mode.
 本実施形態のレンジ切替処理を図6~図9のタイムチャートに基づいて説明する。図6では、共通時間軸を横軸とし、上段から、モータ制御、1相断線状態、シフト要求、モータ回転角を示している。モータ回転角は、エンコーダカウント値から換算可能な値であって、ディテントローラ26が谷部224の最底部にあるときを「D谷」、谷部221の最底部にあるときを「P谷」、撓み等がない状態にて壁部228に当接しているときを「P壁」とした。図7および図8も同様である。 The range switching process of this embodiment will be explained based on the time charts in Figures 6 to 9. In Figure 6, the horizontal axis represents a common time axis, and from the top, motor control, one-phase open circuit state, shift request, and motor rotation angle are shown. The motor rotation angle is a value that can be converted from the encoder count value, and when the detent roller 26 is at the bottom of the valley portion 224, it is called a "D valley", when it is at the bottom of the valley portion 221, it is called a "P valley", and when it is in contact with the wall portion 228 without any bending, it is called a "P wall". The same is true for Figures 7 and 8.
 図6は、3相正常時であって、DレンジからPレンジへ切り替える例である。時刻x10にて、3相正常が確定している状態にて、時刻x11にてPレンジへのシフト切替要求が取得されると、学習された壁位置基準値θrおよび壁谷間角度θrbに基づき、切替目標値θ*を設定する。駆動制御部55は、エンコーダカウント値が切替目標値θ*となるように、フィードバック制御によりモータ10を駆動する。 6 shows an example of switching from the D range to the P range when the three phases are normal. When the three phases are confirmed to be normal at time x10 and a request to shift to the P range is acquired at time x11, the switching target value θ * is set based on the learned wall position reference value θr and wall valley angle θrb. The drive control unit 55 drives the motor 10 by feedback control so that the encoder count value becomes the switching target value θ * .
 時刻x12にて、エンコーダカウント値が切替目標値θ*に到達すると、停止制御を行い、停止制御時間が経過した時刻x13にて、モータ10への通電をオフにし、スタンバイモードへ移行する。 When the encoder count value reaches the switching target value θ * at time x12, stop control is performed, and at time x13 when the stop control time has elapsed, power supply to the motor 10 is turned off and the mode transitions to the standby mode.
 3相正常時は、位置決め精度θaは、吸い込み範囲θsより小さいため、切替目標値θ*は、位置決め精度θaが吸い込み範囲θsに収まるように設定すればよく、例えば吸い込み範囲θsの中央値を切替目標値θ*に設定するようにしてもよい。これにより、要求レンジに応じた谷部にディテントローラ26を確実に落とし込むことができる。 Since the positioning accuracy θa is smaller than the suction range θs when the three phases are normal, the switching target value θ * may be set so that the positioning accuracy θa falls within the suction range θs, and for example, the median value of the suction range θs may be set as the switching target value θ * . This allows the detent roller 26 to reliably fall into the valley corresponding to the required range.
 図7は、1相断線時であって、DレンジからPレンジへ切り替える例である。図7等では、電流制限切替等の説明のため、P谷付近を拡大して記載しており、例えばPD間角度とP谷壁間角度の比率等は実際とは異なっている。 Figure 7 shows an example of switching from D range to P range when one phase is broken. In Figure 7 and other figures, the area around the P valley is enlarged to explain current limit switching, and the ratio of the PD angle to the P valley wall angle, for example, differs from the actual ratio.
 時刻x20にて1相断線が生じ、時刻x21にて1相断線が確定し、時刻x22にてレンジ切替要求が取得されると、正常2相駆動の切替前準備処理を行う。図7の例では、DレンジからPレンジへの切り替えであって、モータ10を逆転方向に駆動するため、U相断線であれば、切替前準備処理として、V相→VW相→W相への通電を行い、W相対向の1相1歯の状態とする。 When a one-phase break occurs at time x20, the one-phase break is confirmed at time x21, and a range switch request is obtained at time x22, pre-switch preparation processing for normal two-phase drive is performed. In the example of FIG. 7, the range is switched from D range to P range, and the motor 10 is driven in the reverse direction. If there is a U-phase break, current is applied from V phase to VW phase to W phase as pre-switch preparation processing, resulting in a one-phase, one-tooth state with the W phase facing each other.
 時刻x23にて、切替前準備処理が完了すると、谷位置基準値θbを切替目標値θ*とし、正常2相を用いたフィードバック制御によりモータ10を駆動する。時刻x24にて、エンコーダカウント値が切替目標値θ*に到達すると、停止制御を行う。 At time x23, when the pre-switching preparation process is completed, the valley position reference value θb is set as the switching target value θ * , and the motor 10 is driven by feedback control using the normal two phases. At time x24, when the encoder count value reaches the switching target value θ * , stop control is performed.
 1相断線時の正常2相駆動では、位置決め精度θaは、壁部228と山部の頂点225との範囲θrtより小さいものの、吸い込み範囲θsより大きい。すなわち、θs<θa<θrtである。フィードバック制御終了時の停止位置が吸い込み範囲θsの外側にあると、要求レンジに応じた谷部にディテントローラ26を落とし込めない。 In normal two-phase drive when one phase is broken, the positioning accuracy θa is smaller than the range θrt between the wall portion 228 and the peak 225 of the mountain portion, but is larger than the suction range θs. In other words, θs<θa<θrt. If the stopping position at the end of feedback control is outside the suction range θs, the detent roller 26 cannot drop into the valley portion according to the required range.
 そこで本実施形態では、要求レンジが壁部228、229に隣接するレンジであるPレンジまたはDレンジである場合、フィードバック制御終了後に、ディテントローラ26を吸い込み範囲θsに入れるための電流制限切替制御を行う。 In this embodiment, when the requested range is the P range or D range, which is the range adjacent to the walls 228, 229, after feedback control ends, current limit switching control is performed to place the detent roller 26 in the suction range θs.
 Pレンジ切替時の電流制限切替制御では、切替目標値θ*を壁部228の撓み最大量θdを加味しても壁部228よりも十分に奥側となる任意の値に設定し、ディテントローラ26が壁部228側へ移動するようにモータ10を駆動する。電流制限切替制御では、モータ10の被駆動トルクより大きくなるように、応答性等を考慮した任意の電流制限値でモータ10を駆動する。電流制限切替制御における電流制限値は、例えばディテント機構の耐久性等に応じて設定される壁位置基準値学習時の壁当て制限値より小さいトルクとなるように設定される。 In the current limit switching control when switching to the P range, the switching target value θ * is set to an arbitrary value that is sufficiently behind the wall portion 228 even when taking into account the maximum amount of deflection θd of the wall portion 228, and the motor 10 is driven so that the detent roller 26 moves toward the wall portion 228. In the current limit switching control, the motor 10 is driven at an arbitrary current limit value that takes into consideration responsiveness and the like so that the current limit value is larger than the driven torque of the motor 10. The current limit value in the current limit switching control is set so that the torque is smaller than the wall contact limit value during wall position reference value learning that is set depending on, for example, the durability of the detent mechanism.
 正常2相駆動では、位置決め精度θaの範囲が比較的広い。そのため、フィードバック制御にてディテントローラ26が谷部221の最底部よりも壁部228側まで移動している状態から電流制限切替制御を行うと、ディテント機構20の撓みの分、ディテントローラ26が壁部228を本来の位置よりも奥側まで押し込んでいる可能性がある。 In normal two-phase drive, the range of positioning accuracy θa is relatively wide. Therefore, if current limiting switching control is performed in a state where the detent roller 26 has moved from the bottom of the valley portion 221 to the wall portion 228 side by feedback control, there is a possibility that the detent roller 26 may have pushed the wall portion 228 further back than its original position due to the deflection of the detent mechanism 20.
 電流制限切替時間が経過した時刻x26では、壁部228は、ディテントローラ26により奥側に押し込まれた状態となっている。この状態にて、モータ10への通電をオフにすると、ディテント機構20の撓みが戻ることで、ディテントローラ26が吸い込み範囲θsを越えて山部225側まで押し戻される虞がある。 At time x26 when the current limit switching time has elapsed, the wall portion 228 is pushed toward the rear by the detent roller 26. If the power supply to the motor 10 is turned off in this state, the detent mechanism 20 will return to its original bending, and there is a risk that the detent roller 26 will exceed the suction range θs and be pushed back to the peak portion 225 side.
 そこで、電流制限切替制御後に、ディテント機構20の撓み最大量θd分を戻す壁戻し制御を行う。ディテント機構20の撓みを解消すべく撓み分が戻っていれば、ディテントローラ26はディテントスプリング25のスプリング力により谷部221の最底部に落とし込まれ、吸い込み範囲θsを越えることはないため、壁戻し制御にてディテントローラ26を谷部221の最底部まで戻す必要はない。 Therefore, after the current limit switching control, wall return control is performed to return the maximum amount of deflection θd of the detent mechanism 20. If the deflection has been returned to eliminate the deflection of the detent mechanism 20, the detent roller 26 will be dropped to the bottom of the valley portion 221 by the spring force of the detent spring 25 and will not exceed the suction range θs, so there is no need to return the detent roller 26 to the bottom of the valley portion 221 by wall return control.
 壁戻し制御が完了した時刻x27では、正常2相通電に通電する停止制御を行う。時刻x28にてモータ10への通電をオフにし、スタンバイモードに移行する。モータ10への通電をオフにすると、ディテントローラ26は、ディテントスプリング25のスプリング力にて谷部221に落としこまれる。 At time x27 when the wall return control is completed, stop control is performed to energize normal two-phase current. At time x28, the current to the motor 10 is turned off and the system transitions to standby mode. When the current to the motor 10 is turned off, the detent roller 26 is dropped into the valley portion 221 by the spring force of the detent spring 25.
 図7では、電流制限切替制御により、ディテントローラ26が壁部228を撓ませる位置まで駆動されているが、電流制限切替制御は、ディテントローラ26を壁部228に当接させることが目的ではなく、吸い込み範囲θsに入れることが目的である。そのため、図8に示すように、電流制限切替制御時間や電流制限切替制御の出力トルクによっては、ディテントローラ26が壁部228に到達しなくても差し支えない。 In FIG. 7, the detent roller 26 is driven by the current limit switching control to a position where it bends the wall portion 228, but the purpose of the current limit switching control is not to bring the detent roller 26 into contact with the wall portion 228, but to bring it into the suction range θs. Therefore, as shown in FIG. 8, depending on the current limit switching control time and the output torque of the current limit switching control, it is not a problem if the detent roller 26 does not reach the wall portion 228.
 図8中の時刻x30~時刻x38の制御は、図7中の時刻x20~時刻x28の制御に対応している。ディテントローラ26が壁部228に到達していない場合、壁戻し制御における戻し量は、図7と同様、撓み最大量θdとしてもよいし、ガタ幅θgとしてもよい。また、図8の例では、壁戻し制御にて、ディテントローラ26が谷部221の最底部に移動しているが、時刻x38にてモータ10への通電をオフにしたときの挙動は、ディテントローラ26の停止位置によりなりゆきである。すなわち、壁戻し制御終了時のディテントローラ26の位置が谷部221の最底部からずれている場合、モータ10への通電オフにより、ディテントスプリング25のスプリング力にて、ディテントローラ26が谷部221へ移動する。 The control from time x30 to time x38 in FIG. 8 corresponds to the control from time x20 to time x28 in FIG. 7. If the detent roller 26 has not reached the wall 228, the return amount in the wall return control may be the maximum deflection amount θd, as in FIG. 7, or the backlash width θg. Also, in the example in FIG. 8, the detent roller 26 moves to the bottom of the valley 221 in the wall return control, but the behavior when the power supply to the motor 10 is turned off at time x38 is a matter of chance depending on the stopping position of the detent roller 26. In other words, if the position of the detent roller 26 at the end of the wall return control is deviated from the bottom of the valley 221, the detent roller 26 moves to the valley 221 due to the spring force of the detent spring 25 when the power supply to the motor 10 is turned off.
 図9は、1相断線時であって、DレンジからNレンジへ切り替える例である。図9では、共通時間軸を横軸とし、上段からモータ制御、1相断線状態、シフト要求、クラッチ60の状態、モータ回転角を示している。モータ回転角は、ディテントローラ26が谷部223の最底部にあるときを「N谷」とした。時刻x40~時刻x43の処理は、要求レンジがNレンジである点を除き、図2中の時刻x20~時刻x23の処理と同様である。 FIG. 9 shows an example of switching from D range to N range when one phase is broken. In FIG. 9, the horizontal axis represents a common time axis, and from the top, motor control, one phase broken state, shift request, clutch 60 state, and motor rotation angle are shown. The motor rotation angle when the detent roller 26 is at the bottom of the valley portion 223 is defined as "N valley." The processing from time x40 to time x43 is the same as the processing from time x20 to time x23 in FIG. 2, except that the requested range is N range.
 時刻x43にて、切替前準備処理が完了すると、谷位置基準値θbに基づいて切替目標値θ*を設定し、正常2相を用いたフィードバック制御により、モータ10を駆動する。切替目標値θ*は、詳細には、谷位置基準値θbと、谷部221、223間の角度とに基づいて設定される。 At time x43, when the pre-switching preparation process is completed, a switching target value θ * is set based on the valley position reference value θb, and the motor 10 is driven by feedback control using the two normal phases. The switching target value θ * is set, in detail, based on the valley position reference value θb and the angle between the valleys 221 and 223.
 時刻x44にて、エンコーダカウント値が切替目標値θ*に到達すると、停止制御を行う。ここで、Nレンジの吸い込み範囲θs_Nは相対的に小さく、位置決め精度θa_Nは吸い込み範囲θs_Nより大きい。また、Nレンジは壁部228、229に隣接していない中間レンジであるため、PレンジまたはDレンジへの切替時のように壁側にディテントローラ26を移動させる電流制限切替制御を行うことができない。そのため、フィードバック制御終了時におけるディテントローラ26の位置がNレンジの吸い込み範囲θs_Nの外側であると、自動変速機5を正しくニュートラル状態にできない虞がある。 At time x44, when the encoder count value reaches the switching target value θ * , stop control is performed. Here, the suction range θs_N of the N range is relatively small, and the positioning accuracy θa_N is larger than the suction range θs_N. In addition, since the N range is an intermediate range that is not adjacent to the walls 228, 229, it is not possible to perform current limiting switching control that moves the detent roller 26 toward the wall side as in the case of switching to the P range or D range. Therefore, if the position of the detent roller 26 at the end of the feedback control is outside the suction range θs_N of the N range, there is a risk that the automatic transmission 5 cannot be correctly put into the neutral state.
 そこで本実施形態では、1相断線時に正常2相駆動によりシフトレンジをNレンジに切り替える場合、フィードバック制御が終了した時刻x44にて、自動変速機5側でのトルクカットを行う。具体的には、クラッチ60を開放することで、車軸側に動力が伝達されないようにする。時刻x45では、モータ10への通電をオフにし、スタンバイモードに移行する。 In this embodiment, when the shift range is switched to N range by normal two-phase drive in the event of one-phase disconnection, torque is cut on the automatic transmission 5 side at time x44 when feedback control ends. Specifically, the clutch 60 is released so that power is not transmitted to the axle side. At time x45, power to the motor 10 is turned off and the system transitions to standby mode.
 以上説明したように、ECU40は、3相以上のモータ巻線を有するモータ10と、モータ10により駆動されるディテント機構20と、を備えるシフトバイワイヤシステム1において、モータ10の駆動を制御する。ECU40は、駆動回路41と、制御部50と、を備える。 As described above, in a shift-by-wire system 1 that includes a motor 10 having motor windings with three or more phases and a detent mechanism 20 driven by the motor 10, the ECU 40 controls the driving of the motor 10. The ECU 40 includes a drive circuit 41 and a control unit 50.
 駆動回路41は、モータ巻線の各相への通電を切り替えるスイッチング素子を有する。制御部50は、モータ10の回転位置を検出するエンコーダ13の検出値に基づくフィードバック制御によりモータ10の駆動を制御する駆動制御部55、および、断線故障を判定する異常判定部52を有する。ここで、「断線故障」は、モータ巻線の各相コイルに通電できない故障であって、モータ巻線そのものの断線に限らず、ハーネスの断線や、スイッチング素子のオフ固着等が含まれる。 The drive circuit 41 has a switching element that switches the current supply to each phase of the motor winding. The control unit 50 has a drive control unit 55 that controls the drive of the motor 10 by feedback control based on the detection value of the encoder 13 that detects the rotational position of the motor 10, and an abnormality determination unit 52 that determines whether there is a wire breakage. Here, an "open circuit fault" is a fault that prevents current from being supplied to each phase coil of the motor winding, and includes not only a wire breakage in the motor winding itself, but also a wire breakage in the harness and a switching element stuck off.
 ディテント機構20は、山部225~227にて隔てられる複数の谷部221~224が形成されるディテントプレート21、モータ10の駆動により谷部221~224を移動可能であるディテントローラ26、および、ディテントローラ26を谷部221~224に嵌まり込む方向に付勢するディテントスプリング25を有し、配列される谷部221~224の両側に、ディテントローラ26の駆動を規制する壁部228、229が形成されている。 The detent mechanism 20 has a detent plate 21 on which multiple valleys 221-224 are formed and separated by peaks 225-227, a detent roller 26 that can move between the valleys 221-224 when driven by the motor 10, and a detent spring 25 that urges the detent roller 26 in the direction of fitting into the valleys 221-224. Walls 228, 229 that regulate the drive of the detent roller 26 are formed on both sides of the arranged valleys 221-224.
 駆動制御部55は、1相断線時において、正常相を用いてモータ10を駆動する正常相駆動にて、壁部228、229に隣接する谷部221、224を目標谷部としてディテントローラ26を移動させる場合、ディテントローラ26が目標谷部の両側にある山部と壁部との間となるようにフィードバック制御を行った後、ディテントローラ26が壁部の方向に移動するように、電流制限をかけてモータ10を駆動する電流制限切替制御を行う。目標谷部が谷部221の場合、ディテントローラ26が谷部221の両側となる山部225と壁部228との間となるようにフィードバック制御を行った後、ディテントローラ26が壁部228の方向に移動するように電流制限切替制御を行う。 When the drive control unit 55 is in normal phase drive, which drives the motor 10 using a normal phase during one-phase disconnection, and moves the detent roller 26 with the valleys 221, 224 adjacent to the walls 228, 229 as the target valleys, it performs feedback control so that the detent roller 26 is between the peaks on either side of the target valley and the wall, and then performs current limiting switching control to drive the motor 10 with current limiting so that the detent roller 26 moves toward the wall. When the target valley is the valley 221, it performs feedback control so that the detent roller 26 is between the peaks 225 on either side of the valley 221 and the wall 228, and then performs current limiting switching control so that the detent roller 26 moves toward the wall 228.
 1相断線での正常相駆動の場合、全相が正常である場合と比較し、位置決めのばらつきが大きくなるため、エンコーダカウント値が切替目標値θ*となるように制御したとしても、吸い込み範囲θsから外れる虞がある。そこで本実施形態では、1相断線での正常相駆動時には、フィードバック制御の後に電流制限切替制御を行うことで、確実にディテントローラ26が吸い込み範囲θs内となるように制御することができる。これにより、1相断線時においても適切にディテント機構20を切替可能である。 In the case of normal phase drive with one broken phase, the positioning variation is larger than when all phases are normal, so even if the encoder count value is controlled to be the switching target value θ * , there is a risk that it will fall outside the suction range θs. Therefore, in this embodiment, during normal phase drive with one broken phase, feedback control is followed by current limit switching control, so that the detent roller 26 can be reliably controlled to be within the suction range θs. This makes it possible to appropriately switch the detent mechanism 20 even when one phase is broken.
 全相が正常である場合、フィードバック制御における切替目標値θ*は、ディテントローラ26が壁部228に当接しているときのエンコーダ13の検出値に応じて学習される壁位置基準値θrに基づいて設定される。一方、1相断線にて正常相駆動を行う場合、切替目標値θ*は、ディテントローラ26が谷部221の最底部にあるときのエンコーダ13の検出値に応じて学習される谷位置基準値θbに基づいて設定される。すなわち本実施形態では、全相正常時と1相断線時とで、フィードバック制御における切替目標値θ*の設定方法を異ならせている。 When all phases are normal, the switching target value θ * in the feedback control is set based on the wall position reference value θr learned in response to the detection value of the encoder 13 when the detent roller 26 is in contact with the wall portion 228. On the other hand, when normal phase drive is performed with one phase disconnection, the switching target value θ * is set based on the valley position reference value θb learned in response to the detection value of the encoder 13 when the detent roller 26 is at the bottom of the valley portion 221. That is, in this embodiment, the method of setting the switching target value θ * in the feedback control is different between when all phases are normal and when one phase is disconnected.
 上述の通り、1相断線時の正常相駆動では、位置決めのばらつきが大きいため、壁位置基準値θrに基づいて切替目標値θ*を設定しても、ディテントローラ26が吸い込み範囲θsから外れる可能性がある。また、学習される壁位置基準値θrのばらつきが正常時より大きくなる。そのため、正常相駆動では、壁位置基準値θrを用いずに切替目標値θ*を設定する。これにより、1相断線時における壁位置学習を省略可能である。 As described above, in normal phase driving when one phase is broken, the positioning variation is large, so even if the switching target value θ * is set based on the wall position reference value θr, the detent roller 26 may deviate from the suction range θs. Also, the variation of the learned wall position reference value θr is larger than in normal times. Therefore, in normal phase driving, the switching target value θ * is set without using the wall position reference value θr. This makes it possible to omit wall position learning when one phase is broken.
 モータ駆動システムは、シフトバイワイヤシステム1である。制御部50は、1相断線時において、シフトレンジをNレンジに切り替える場合、ディテントローラ26がNレンジに対応する谷部223に移動するように正常相駆動にてフィードバック制御を行った後、エンジンや主機モータ等である車両の駆動源と車軸との間に設けられるクラッチ60を開放する。これにより、自動変速機5側でのトルクカットが可能であり、適切にニュートラル制御を行うことができる。 The motor drive system is a shift-by-wire system 1. When switching the shift range to N range in the event of one-phase disconnection, the control unit 50 performs feedback control with normal phase drive so that the detent roller 26 moves to the valley 223 corresponding to the N range, and then releases the clutch 60 provided between the vehicle's drive source, such as an engine or main motor, and the axle. This makes it possible to cut torque on the automatic transmission 5 side, allowing appropriate neutral control to be performed.
 実施形態では、シフトバイワイヤシステム1が「モータ駆動システム」、エンコーダ13が「回転位置センサ」、ディテントプレート21が「ディテント部材」、ディテントスプリング25が「付勢部材」、ディテントローラ26が「係合部材」、ECU40が「モータ制御装置」に対応する。 In this embodiment, the shift-by-wire system 1 corresponds to the "motor drive system," the encoder 13 corresponds to the "rotational position sensor," the detent plate 21 corresponds to the "detent member," the detent spring 25 corresponds to the "biasing member," the detent roller 26 corresponds to the "engagement member," and the ECU 40 corresponds to the "motor control device."
   (他の実施形態)
 上記実施形態では、回転検出部はエンコーダである。他の実施形態では、例えばレゾルバ等のエンコーダ以外の回転位置を検出可能なセンサ等を用いてもよい。上記実施形態では、モータは、スイッチトリラクタンスモータである。他の実施形態では、モータは、スイッチトリラクタンスモータ以外のもの、例えばDCブラシレスモータ等であってもよい。また、モータ巻線の相数は、4相以上であってもよい。
Other Embodiments
In the above embodiment, the rotation detection unit is an encoder. In other embodiments, a sensor capable of detecting a rotation position other than an encoder, such as a resolver, may be used. In the above embodiment, the motor is a switched reluctance motor. In other embodiments, the motor may be one other than a switched reluctance motor, such as a DC brushless motor. The number of phases of the motor windings may be four or more.
 上記実施形態では、ディテントプレートには4つの谷部が設けられる。他の実施形態では、谷部の数は、4つに限らず、例えばPレンジとnotPレンジに対応する2つの谷部が形成されていてもよい。この場合、要求レンジによらず、電流制限切替制御を実施可能である。 In the above embodiment, four valleys are provided on the detent plate. In other embodiments, the number of valleys is not limited to four, and for example, two valleys corresponding to the P range and the notP range may be formed. In this case, current limit switching control can be performed regardless of the required range.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 The control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits. In addition, the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions to be executed by a computer. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms within the scope of its spirit.
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described with reference to an embodiment. However, this disclosure is not limited to the embodiment and structure. This disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one, or less than one, are within the scope and spirit of this disclosure.

Claims (3)

  1.  3相以上のモータ巻線を有するモータ(10)と、前記モータにより駆動されるディテント機構(20)と、を備えるモータ駆動システム(1)において、前記モータの駆動を制御するモータ制御装置であって、
     前記モータ巻線の各相への通電を切り替えるスイッチング素子を有する駆動回路(41)と、
     前記モータの回転位置を検出する回転位置センサ(13)の検出値に基づくフィードバック制御により前記モータの駆動を制御する駆動制御部(55)、および、断線故障を判定する異常判定部(52)を有する制御部(50)と、
     を備え、
     前記ディテント機構は、山部(225~227)にて隔てられる複数の谷部(221~224)が形成されるディテント部材(21)、前記モータの駆動により前記谷部を移動可能である係合部材(26)、および、前記係合部材を前記谷部に嵌まり込む方向に付勢する付勢部材(25)を有し、配列される前記谷部の両側に、前記係合部材の駆動を規制する壁部(228、229)が形成されており、
     前記駆動制御部は、
     1相断線時において、正常相を用いて前記モータを駆動する正常相駆動にて前記壁部に隣接する前記谷部(221、224)を目標谷部として前記係合部材を移動させる場合、前記係合部材が前記目標谷部の両側にある前記山部と前記壁部との間となるようにフィードバック制御を行った後、前記係合部材が前記壁部の方向に移動するように電流制限をかけて前記モータを駆動する電流制限切替制御を行うモータ制御装置。
    A motor control device for controlling driving of a motor in a motor drive system (1) including a motor (10) having motor windings of three or more phases and a detent mechanism (20) driven by the motor, comprising:
    A drive circuit (41) having a switching element for switching the energization of each phase of the motor winding;
    a control unit (50) having a drive control unit (55) that controls the drive of the motor by feedback control based on a detection value of a rotational position sensor (13) that detects the rotational position of the motor, and an abnormality determination unit (52) that determines a wire breakage fault;
    Equipped with
    The detent mechanism includes a detent member (21) in which a plurality of valleys (221-224) separated by peaks (225-227) are formed, an engagement member (26) that is movable in the valleys by driving the motor, and a biasing member (25) that biases the engagement member in a direction in which the engagement member fits into the valleys, and wall portions (228, 229) that regulate the drive of the engagement member are formed on both sides of the arranged valleys.
    The drive control unit is
    When one phase is broken, in normal phase drive in which the motor is driven using a normal phase, and the engaging member is moved with the valley portion (221, 224) adjacent to the wall portion as the target valley portion, feedback control is performed so that the engaging member is between the peak portions on either side of the target valley portion and the wall portion, and then current limiting switching control is performed to drive the motor by applying current limiting so that the engaging member moves in the direction of the wall portion.
  2.  全相が正常である場合、フィードバック制御における切替目標値は、前記係合部材が前記壁部に当接しているときの前記回転位置センサの検出値に応じて学習される壁位置基準値に基づいて設定され、
     前記正常相駆動を行う場合、前記切替目標値は、前記係合部材が前記谷部の最底部にあるときの前記回転位置センサの検出値に応じて学習される谷位置基準値に基づいて設定される請求項1に記載のモータ制御装置。
    when all phases are normal, a switching target value in the feedback control is set based on a wall position reference value learned in response to a detection value of the rotational position sensor when the engagement member is in contact with the wall portion,
    2. The motor control device according to claim 1, wherein, when the normal phase drive is performed, the switching target value is set based on a valley position reference value that is learned in response to a detection value of the rotational position sensor when the engagement member is at the bottom of the valley portion.
  3.  前記モータ駆動システムは、シフトバイワイヤシステムであって、
     前記制御部は、1相断線時において、シフトレンジをNレンジに切り替える場合、前記係合部材がNレンジに対応する前記谷部(223)に移動するように前記正常相駆動にてフィードバック制御を行った後、車両の駆動源と車軸との間に設けられるクラッチ(60)を開放する請求項1または2に記載のモータ制御装置。
    The motor drive system is a shift-by-wire system,
    3. The motor control device according to claim 1, wherein when the shift range is switched to N range in the event of one phase disconnection, the control unit performs feedback control using the normal phase drive so that the engagement member moves to the valley portion corresponding to the N range, and then releases a clutch provided between a drive source and an axle of the vehicle.
PCT/JP2023/036572 2022-10-12 2023-10-06 Motor control device WO2024080244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163875A JP2024057264A (en) 2022-10-12 Motor Control Device
JP2022-163875 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024080244A1 true WO2024080244A1 (en) 2024-04-18

Family

ID=90669286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036572 WO2024080244A1 (en) 2022-10-12 2023-10-06 Motor control device

Country Status (1)

Country Link
WO (1) WO2024080244A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080455A1 (en) * 2018-10-18 2020-04-23 株式会社デンソー Shift range control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080455A1 (en) * 2018-10-18 2020-04-23 株式会社デンソー Shift range control device

Similar Documents

Publication Publication Date Title
JP4302039B2 (en) Motor control device
CN111344508B (en) Shift gear control device
US10844952B2 (en) Shift range control apparatus
US9671014B2 (en) Control apparatus and shift-by-wire system having the same
US20150160639A1 (en) Control apparatus and shift-by-wire system having the same
WO2019098313A1 (en) Shift range switching system
JP7009936B2 (en) Shift range controller
US20080129236A1 (en) Motor control device
CN111512074B (en) Shift gear control device
JP6838533B2 (en) Shift range controller
CN113039380B (en) Shift gear control device
WO2024080244A1 (en) Motor control device
US20220360207A1 (en) Motor control device
WO2020080455A1 (en) Shift range control device
US11828362B2 (en) Shift range control device
US11894792B2 (en) Motor control device
US11316464B2 (en) Shift range control device
JP2024057264A (en) Motor Control Device
JP7287330B2 (en) motor controller
JP7067382B2 (en) Shift range controller
CN114746675A (en) Motor control device