WO2024080212A1 - Method for operating biomass gasifier, and biomass gasifier - Google Patents

Method for operating biomass gasifier, and biomass gasifier Download PDF

Info

Publication number
WO2024080212A1
WO2024080212A1 PCT/JP2023/036292 JP2023036292W WO2024080212A1 WO 2024080212 A1 WO2024080212 A1 WO 2024080212A1 JP 2023036292 W JP2023036292 W JP 2023036292W WO 2024080212 A1 WO2024080212 A1 WO 2024080212A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
biomass
ash melting
ash
biomass fuel
Prior art date
Application number
PCT/JP2023/036292
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 山内
克彦 篠田
佳彦 土山
直樹 安慶
啓吾 松本
直也 松井
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024080212A1 publication Critical patent/WO2024080212A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation

Definitions

  • This disclosure relates to a method for operating a biomass gasification system and a biomass gasification system.
  • the biomass In a gasification system that gasifies biomass fuel, the biomass partially combusts with oxygen in the gasification furnace, generating heat, which is then used to gasify the biomass into steam (see Patent Document 1).
  • the inside of the gasification furnace reaches a high temperature of around 1200°C due to the heat generated by partial combustion.
  • This disclosure has been made in consideration of these circumstances, and aims to provide a method for operating a biomass gasification apparatus and a biomass gasification apparatus that reduces the likelihood of blockage inside the furnace due to ash adhesion to the furnace walls.
  • biomass gasification device operating method and biomass gasification device disclosed herein employ the following measures.
  • the present disclosure provides a method for operating a biomass gasification apparatus equipped with a gasification furnace that gasifies biomass fuel, which acquires the properties of the biomass fuel, calculates an amount of an ash melting point adjuster to be added based on the acquired properties of the biomass fuel, adds the calculated amount of the ash melting point adjuster to the biomass fuel, and supplies the biomass fuel to which the ash melting point adjuster has been added to the gasification furnace.
  • the present disclosure provides a biomass gasification apparatus including a gasification furnace that gasifies biomass fuel, a fuel supply unit that supplies the biomass fuel into the gasification furnace, an adjuster addition unit that adds an ash melting point adjuster to the biomass fuel in the fuel supply unit, and a control unit that calculates an amount of the ash melting point adjuster to be added based on the properties of the biomass fuel and controls the amount added from the adjuster addition unit so that the calculated amount of the ash melting point adjuster is supplied to the biomass fuel.
  • an ash melting point adjuster is added to the biomass fuel before it is fed into the gasification furnace, and the biomass fuel to which the ash melting point adjuster has been added is fed into the gasification furnace, thereby increasing the melting start temperature of the ash produced by gasification of the biomass fuel.
  • the ash does not melt even at the maximum gas temperature inside the gasification furnace, making it less likely for the ash to adhere to the furnace walls and less likely for blockages to occur inside the furnace.
  • FIG. 3 is a flowchart showing the steps of a method for operating a biomass gasification apparatus according to the first embodiment.
  • 1 is a system diagram of a biomass gasification apparatus according to a first embodiment.
  • FIG. FIG. 4 is a diagram showing an example of a temperature distribution in a gasification furnace in the biomass gasification apparatus according to the first embodiment.
  • 10 is a flowchart showing the steps of a method for operating a biomass gasification apparatus according to a second embodiment.
  • FIG. 1 is a diagram showing the effect of adding an ash melting point adjuster (calculated as CaO).
  • FIG. 1 is a diagram showing the effect of adding an ash melting point adjuster (in MgO equivalent).
  • FIG. 1 is a diagram showing the effect of the amount of an ash melting point adjuster (calculated as CaO) added on the melting rate and melting start temperature of ash.
  • FIG. 1 is a diagram showing the effect of the amount of an ash melting point adjuster (calculated as MgO) added on the melting rate and melting start temperature of ash.
  • a biomass gasification system is a device that produces combustible gas by partially burning and gasifying biomass fuel in a gasification furnace.
  • Biomass fuels are organic resources derived from renewable living organisms. Examples of biomass fuels include construction waste, wood pellets, lumber residues, forest residues, herbaceous biomass, agricultural residues, etc.
  • the procedure of the method for operating the biomass gasifier according to this embodiment is shown in Figure 1.
  • the method for operating the biomass gasifier according to this embodiment includes the steps of (S1) acquiring the properties of the biomass fuel, (S2) calculating the amount of ash melting point adjuster to be added, (S3) adding the ash melting point adjuster, and (S4) supplying the biomass fuel.
  • the properties of the biomass fuel used as fuel for the biomass gasification system are acquired.
  • the “properties of the biomass fuel” are the elemental components (C, H, N, O, S, Cl), fixed carbon, volatile matter, ash content, moisture, and ash composition.
  • the “properties of the biomass fuel” are, in particular, the ash content (ash content of the biomass fuel) generated in association with the gasification of the biomass fuel or the composition of the ash.
  • the “properties of the biomass fuel” are, in particular, the content of components that lower the ash melting point contained in the ash.
  • composition of the ash can be determined through chemical analysis, etc.
  • Components that lower the ash melting point include sodium, potassium, silica, alumina, etc.
  • biomass fuel vary depending on factors such as the place of origin (vegetation) and source of emission (waste, such as construction waste). Therefore, when using biomass fuels with different factors, it is necessary to obtain the properties of the biomass fuel. For biomass fuels with the same place of origin and/or source of emission, existing information may be used.
  • the amount of ash melting point adjuster to be added can be calculated using software for thermodynamic equilibrium calculations.
  • software for thermodynamic equilibrium calculations include Factsage (manufactured by Computational Mechanics Research Center, Inc.).
  • the ash melting point adjuster is a material that can adjust the melting point of the ash of the biomass fuel.
  • the ash melting point adjuster is an alkaline earth metal carbonate or an ore containing an alkaline earth metal carbonate.
  • the alkaline earth metal can increase the melting point of the ash.
  • the alkaline earth metal carbonate is, for example, calcium carbonate (CaCO 3 ) and magnesium carbonate (MgCO 3 ).
  • the ash melting point adjuster may include two or more kinds of alkaline earth metal carbonates.
  • the ash melting point adjuster is in the form of a powder.
  • the upper limit for the amount of ash melting point adjuster added is 5% by weight of the biomass fuel, calculated as carbonate.
  • Biomass fuel normally contains about 0.5% to 1.0% by weight of components that lower the ash melting point. If the ash melting point adjuster is added in an amount about five times the amount of the ash melting point lowering components, the effect of the lowering of the ash melting point caused by the inclusion of the ash melting point lowering components can be compensated for.
  • the amount of the ash melting point adjuster added should be, for example, 1.25% by weight or more, calculated as calcium carbonate, relative to the biomass fuel.
  • the amount of the ash melting point adjuster added is, for example, 0.42% by weight or more, preferably 0.63% by weight or more, calculated as magnesium carbonate relative to the biomass fuel.
  • the amount of ash melting point adjuster calculated in S2 above is added to the biomass fuel.
  • the addition is performed before the biomass fuel is supplied to the gasifier.
  • the ash melting point adjuster is added by sprinkling it on the biomass fuel while the biomass fuel is being transported to the gasifier (in the supply line).
  • Biomass fuel to which an ash melting point adjuster has been added is fed into a gasification furnace.
  • a gasifying agent is supplied to the gasifier.
  • the gasifying agent includes oxygen and water vapor.
  • the biomass fuel supplied to the gasifier reacts with oxygen and partially burns.
  • the reaction with oxygen is an exothermic reaction, which causes the temperature inside the gasifier to rise to around 1200°C.
  • This heat causes the biomass fuel to react with water vapor, producing flammable gases whose main components are hydrogen and carbon monoxide.
  • the reaction with water vapor is an endothermic reaction, which causes the outlet temperature of the gasifier to reach around 1000°C.
  • the ash melting point adjuster is supplied to the gasifier together with the biomass fuel and is mixed with the ash produced by the partial combustion of the biomass fuel inside the gasifier, raising the ash melting point. This makes it possible to raise the temperature at which the ash begins to melt higher than the maximum gas temperature inside the gasifier, thereby reducing the amount of ash adhering to the furnace walls inside the gasifier.
  • FIG. 1 An example of a biomass gasification apparatus suitable for carrying out the above-mentioned operating method is shown in FIG.
  • the biomass gasification device 1 is equipped with a gasification furnace 2, a gasification agent supply section 3, a fuel supply section 4, an adjustment material addition section 5, and a control section 6.
  • "M” in the diagram is a motor.
  • the gasification furnace 2 is a reaction section that gasifies biomass fuel.
  • An ash reservoir 7 is connected to the bottom of the gasification furnace 2 via a discharge valve V1.
  • An exhaust pipe 8 is connected to the outlet of the ash reservoir 7 via a discharge valve V2.
  • the ash reservoir 7 receives the ash discharged from the gasification furnace 2 and temporarily stores it there.
  • the ash that has accumulated in the ash reservoir 7 is discharged to the outside through the discharge pipe 8.
  • the gasification agent supply unit 3 is connected to the bottom of the gasification furnace 2 and can supply gasification agent into the gasification furnace 2.
  • the fuel supply unit 4 is connected to the bottom of the gasification furnace 2 and can supply biomass fuel into the gasification furnace 2.
  • the fuel supply unit 4 is positioned above the gasification agent supply unit 3.
  • the fuel supply section 4 includes a fuel supply hopper 11 having a metering feeder 10, a weighing conveyor 12 that receives, weighs and transfers the biomass fuel discharged from the fuel supply hopper 11, and rotary feeders 13a, 13b and a screw feeder 14 that supply the biomass fuel transferred by the weighing conveyor 12 to the gasification furnace 2.
  • the screw feeder 14 is connected downstream of the rotary feeder 13b via a discharge valve V3.
  • the adjusting material adding section 5 can supply an ash melting point adjusting material to the biomass fuel before it is supplied to the gasification furnace 2.
  • the adjusting material adding section 5 is composed of an adjusting material adding hopper 16 having a quantitative feeder 15.
  • the adjusting material adding section 5 is connected to a weighing conveyor 12 so that the ash melting point adjusting material can be added to the biomass fuel being transported in the fuel supply section.
  • the control unit 6 is electrically connected to the adjustment material adding unit 5.
  • the control unit 6 calculates the amount of ash melting point adjustment material to be added based on the properties of the biomass fuel, and can control the amount added from the adjustment material adding unit 5 so that the calculated amount of ash melting point adjustment material is supplied to the biomass fuel.
  • the control unit 6 may be electrically connected to the motor M of the weighing conveyor 12 and the quantitative feeder 10.
  • the control unit 6 includes, for example, a CPU (Central Processing Unit: processor), a main memory, a secondary storage, etc. Furthermore, the control unit 6 may include a communication unit for transmitting and receiving information to and from other devices.
  • the main storage device is composed of writable memory such as cache memory and RAM (Random Access Memory), and is used as a working area for reading execution programs of the CPU and writing processing data by the execution programs.
  • the secondary storage device is a non-transitory computer readable storage medium, such as a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, or a semiconductor memory.
  • a series of processes for realizing various functions is stored in a secondary storage device in the form of a program, and the CPU reads this program into the main storage device and executes information processing and arithmetic processing to realize various functions.
  • the program may be pre-installed in the secondary storage device, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means.
  • Examples of computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, and semiconductor memories.
  • the biomass fuel temporarily stored in the fuel supply hopper 11 is sent in predetermined amounts by the metering feeder 10 to the metering conveyor 12.
  • the predetermined amount can be set according to the demand for the gasification furnace.
  • the ash melting point adjuster that was temporarily stored in the adjuster addition hopper 16 is sent to the weighing conveyor 12 in predetermined amounts by the quantitative feeder 15. This allows the ash melting point adjuster to be added to the biomass fuel being transported.
  • the predetermined amount corresponds to the "predetermined amount" of biomass fuel supplied from the quantitative feeder 10.
  • the control unit 6 calculates the amount of ash melting point adjuster to be added based on the properties of the biomass fuel, and controls the amount added from the adjuster adding unit 5 so that the calculated amount of ash melting point adjuster is supplied to the biomass fuel.
  • the control unit 6 controls the rotation speed of the quantitative feeder 15 (amount of ash melting point adjuster added) according to the rotation speed of the quantitative feeder 10 (amount of fuel supplied).
  • the amount of ash melting point adjuster to be added is calculated by software for thermodynamic equilibrium calculations so that the melting start temperature of the ash of the biomass fuel is equal to or higher than the maximum gas temperature in the gasification furnace.
  • the biomass fuel to which the ash melting point adjuster has been added is transported while being weighed by the weighing conveyor 12, and is supplied to the bottom of the gasification furnace 2 via the rotary feeders 13a, 13b and the screw feeder 14.
  • the gasifying agent is supplied into the gasifier 2 from below the biomass fuel.
  • the biomass fuel reacts with the gasifying agent and is gasified.
  • a gas flow G in the gasifier 2 is formed from below to above.
  • the generated gas is guided to a gas cooler (not shown) and cooled.
  • Figure 3 shows an example of temperature distribution inside a gasifier.
  • the horizontal axis is the gas temperature inside the gasifier (°C)
  • the vertical axis is the height of the gasifier (m). The temperature is highest at the height where the biomass fuel is supplied, and decreases the higher it goes.
  • the biomass fuel supplied to the gasification furnace 2 is partially combusted and its temperature rises.
  • the ash produced by this partial combustion reacts with the ash melting point adjuster that was added to the biomass fuel, thereby raising the melting point of the ash.
  • the amount of ash melting point adjuster added is calculated so that the temperature at which the ash of the biomass fuel starts to melt is equal to or higher than the maximum gas temperature in the gasification furnace, so the ash does not substantially melt even at the maximum gas temperature. This makes it less likely for the ash to adhere to the furnace walls, making it less likely for blockages to occur inside the furnace.
  • the procedure of the method for operating the biomass gasifier according to this embodiment is shown in Figure 4.
  • the method for operating the biomass gasifier according to this embodiment includes the steps of (S5) acquiring the state inside the gasifier, (S6) determining whether or not correction is required for the addition of an ash melting point adjuster, and (S7) correcting the amount of the ash melting point adjuster to be added.
  • the internal state (information) of the gasifier is acquired.
  • the internal state is the maximum gas temperature in the gasifier, the furnace wall temperature, and/or the presence or absence of ash adhesion to the furnace wall.
  • the internal condition of the gasification furnace can be obtained by a detection unit (not shown) arranged inside the gasification furnace of the biomass gasification device.
  • the detection unit is, for example, a temperature measurement unit for measuring the gas temperature and/or furnace wall temperature inside the gasification furnace.
  • the temperature measurement unit is a thermocouple or the like.
  • the presence or absence of ash adhesion to the furnace wall is indirectly obtained from the furnace wall temperature.
  • the furnace wall temperature changes accordingly. Therefore, by measuring the furnace wall temperature at any height and checking the temperature change, the presence or absence of ash adhesion to the furnace wall can be indirectly determined. If there is no ash adhesion, the furnace wall temperature will be substantially equal to the maximum gas temperature. Therefore, the presence or absence of ash adhesion to the wall can be indirectly determined from the presence or absence of a temperature difference between the maximum gas temperature and the furnace wall temperature.
  • S6 Determination of necessity of correction of the amount of ash melting point adjuster added
  • S7 Correction of the amount of ash melting point adjuster added
  • S6 Determination of necessity of correction of the amount of ash melting point adjuster added
  • S7 Correction of the amount of ash melting point adjuster added
  • the maximum gas temperature is higher than the ash melting point start temperature assumed in (S2) above, it may be determined that the amount of ash melting point adjuster added needs to be corrected (added). For example, if the maximum gas temperature is lower than the ash melting point start temperature assumed in (S2) above, it may be determined that the amount of ash melting point adjuster added needs to be corrected (reduced). The amount added is corrected while checking the measured value of the maximum gas temperature in the gasification furnace so that the measured value becomes the ash melting point start temperature assumed in (S2) above.
  • the "initial temperature” is the temperature at which the maximum gas temperature inside the gasifier first stabilizes after operation begins.
  • the maximum gas temperature inside the gasifier becomes stable when the heat capacity of the refractory material that makes up the gasifier is reached. For example, the maximum gas temperature can stabilize in about one hour after operation begins.
  • the amount added is corrected so that the measured value of the furnace wall temperature is stabilized while checking the measured value.
  • the amount of ash melting point adjuster added needs to be corrected. For example, if the furnace wall temperature is lower than the measured value of the gas temperature inside the gasification furnace, it can be determined that ash is found adhering to the furnace wall, and it is determined that the amount of ash melting point adjuster added needs to be corrected (added). The correction of the amount added is carried out while checking the measured value of the furnace wall temperature so that the measured value is stabilized.
  • the control unit of the biomass gasification apparatus is electrically connected to the adjustment material addition unit and the detection unit.
  • the control unit of the biomass gasification apparatus may be electrically connected to the weighing conveyor.
  • the control unit can obtain the internal state of the gasification furnace from the detection results of the detection unit.
  • the control unit can determine whether or not the amount of ash melting point adjustment material to be added needs to be corrected based on the internal state of the gasification furnace, and if it determines that correction is necessary, can perform feedback control so that the corrected amount of ash melting point adjustment material is added.
  • the amount of ash melting point adjuster added in (S2) above is calculated based on information before the biomass gasification system is in operation.
  • the amount added is corrected based on information during operation of the biomass gasification system, so it is possible to more accurately derive the amount added that is necessary to raise the ash melting start temperature above the maximum gas temperature of the gasification furnace.
  • FIG. 5 shows the results of thermodynamic equilibrium calculations when calcium carbonate is used as the ash melting point adjuster
  • Figure 6 shows the results when magnesium carbonate is used as the ash melting point adjuster.
  • the horizontal axis is the ash temperature (°C)
  • the vertical axis is the ash melting rate (wt%)
  • the dashed line indicates no ash melting point adjuster added
  • the solid line indicates the addition of an ash melting point adjuster. Since carbonates of alkaline earth metals exist as oxides in the high temperature range, the ash melting point adjusters in the thermodynamic equilibrium calculations were set to CaO and MgO.
  • Figures 7 and 8 show the relationship between ash temperature and melting rate when 0.1% to 2% by weight of an ash melting point adjuster is added in oxide equivalent.
  • Figure 7 shows the results of thermodynamic equilibrium calculations when calcium carbonate is used as the ash melting point adjuster
  • Figure 8 shows the results when magnesium carbonate is used as the ash melting point adjuster.
  • the horizontal axis is ash temperature (°C) and the vertical axis is ash melting rate (wt%). Wood-based construction waste was used as the biomass fuel.
  • the melting start temperature can be raised by adding an ash melting point adjuster to ash that starts to melt at a temperature lower than 1200°C. Since the maximum gas temperature inside a gasification furnace is around 1200°C, it can be said that by adding an ash melting point adjuster, the melting start temperature of biomass fuel ash can be made higher than the maximum gas temperature inside the gasification furnace. This makes it possible to prevent ash from adhering to the furnace walls.
  • biomass gasification apparatus and the method for operating the biomass gasification apparatus described in the above-described embodiment can be understood, for example, as follows.
  • the method of operating a biomass gasification apparatus is a method of operating a biomass gasification apparatus equipped with a gasification furnace for gasifying biomass fuel, which comprises the steps of: (S1) acquiring properties of the biomass fuel; (S2) calculating an amount of ash melting point adjuster to be added based on the acquired properties of the biomass fuel; (S3) adding the calculated amount of the ash melting point adjuster to the biomass fuel; and (S4) supplying the biomass fuel to which the ash melting point adjuster has been added to the gasification furnace.
  • Ash melting point adjusters can adjust the melting point temperature of biomass fuel ash.
  • biomass fuel with added ash melting point adjusters By supplying biomass fuel with added ash melting point adjusters to a gasification furnace, the temperature at which the ash (biomass fuel ash) generated by gasification of biomass fuel begins to melt can be controlled to exceed the maximum gas temperature inside the gasification furnace. This makes it difficult for ash to melt inside the gasification furnace, suppressing ash adhesion to the furnace walls, and ultimately preventing blockage inside the furnace.
  • Biomass fuel is a renewable organic resource derived from living organisms.
  • the properties of biomass fuel vary depending on the place of production and source of emission. By obtaining the properties of biomass fuel and using them as a basis, it is possible to properly calculate the amount of ash melting point adjuster that needs to be added.
  • the property of the biomass fuel may be the composition of ash produced by gasification of the biomass fuel.
  • the raw material for biomass fuel may have components other than organic resources derived from renewable living organisms attached to it.
  • the biomass fuel is waste wood, particularly wood-based construction waste, paint, soil, termite killers, plaster, etc. are attached to it. Paint, soil, termite killers, plaster, etc. contain components that lower the ash melting point, such as sodium and potassium.
  • the original ash melting point of wood is about 1400°C, but the ash melting point of wood-based construction waste to which components that lower the ash melting point are attached may be below 1200°C.
  • the composition of the ash is obtained, and based on that, the necessary amount of ash melting point adjuster to be added can be calculated more accurately. This makes it possible to more reliably control the melting start temperature of the ash of the biomass fuel so that it exceeds the maximum gas temperature in the gasification furnace.
  • the amount of ash melting point adjuster added is calculated based on information about the biomass gasification system before it is in operation. In this embodiment, the amount added is corrected based on the internal state of the biomass gasification system (information about the system during operation), so a more appropriate amount of ash melting point adjuster can be added.
  • the internal condition of the gasification furnace may be the maximum gas temperature within the gasification furnace.
  • the temperature inside the gasifier may fluctuate during operation. If the maximum gas temperature fluctuates to the higher side, an insufficient amount of ash melting point adjuster will be added, causing the ash to melt and increasing the amount of ash adhering to the furnace walls.
  • By obtaining the maximum gas temperature inside the gasifier it is possible to calculate the optimal amount to be added in response to temperature fluctuations inside the gasifier.
  • By using feedback control to add the calculated amount of ash melting point adjuster it is possible to more reliably suppress ash adhering to the furnace walls.
  • the internal condition of the gasification furnace may be the furnace wall temperature within the gasification furnace.
  • the maximum gas temperature inside the gasification furnace is essentially equal to the wall temperature. Therefore, when there is almost no ash adhesion to the furnace walls, the maximum gas temperature can be indirectly known by obtaining the furnace wall temperature.
  • the internal condition of the gasification furnace may be the presence or absence of ash adhesion to the furnace wall inside the gasification furnace.
  • ash melting point adjuster added If the amount of ash melting point adjuster added is small, it will easily adhere to the walls of the gasification furnace. By checking whether or not ash is adhering to the furnace walls, it will be possible to add ash melting point adjuster to make up for any deficiencies.
  • the ash melting point adjuster may be an alkaline earth metal carbonate or an ore containing an alkaline earth metal carbonate.
  • Alkaline earth metal carbonates or ores containing alkaline earth metal carbonates can increase the melting point of the ash produced during the gasification of biomass fuels.
  • the method of operating a biomass gasification apparatus is the seventh aspect, in which the ash melting point adjuster is calcium carbonate or an ore containing calcium carbonate, and the amount of the ash melting point adjuster added may be 1.25% by weight or more and 5% by weight or less in terms of carbonate relative to the biomass fuel.
  • the melting start temperature of the ash generated during gasification of biomass fuel can be raised to 1200°C.
  • the method of operating a biomass gasification apparatus is the seventh aspect, in which the ash melting point adjuster is magnesium carbonate or an ore containing magnesium carbonate, and the amount of the ash melting point adjuster added may be 0.42% by weight or more and 5% by weight or less in terms of carbonate relative to the biomass fuel.
  • the biomass gasification apparatus (1) includes a gasification furnace (2) that gasifies biomass fuel, a fuel supply unit (4) that supplies the biomass fuel into the gasification furnace, an adjustment material addition unit (5) that adds an ash melting point adjuster to the biomass fuel in the fuel supply unit, and a control unit (6) that calculates the amount of the ash melting point adjuster to be added based on the properties of the biomass fuel and controls the amount added from the adjustment material addition unit so that the calculated amount of the ash melting point adjuster is supplied to the biomass fuel.
  • Ash melting point adjusters can adjust the melting point temperature of biomass fuel ash.
  • the melting start temperature of the ash (biomass fuel ash) generated by gasifying biomass fuel can be controlled to exceed the maximum gas temperature inside the gasification furnace. This makes it difficult for ash to melt inside the gasification furnace, suppressing ash adhesion to the furnace walls, and as a result, preventing blockages inside the furnace.
  • the biomass gasification apparatus is the tenth aspect, which is provided with a detection unit (not shown) that detects the internal state of the gasification furnace, and the control unit determines whether or not the amount of the ash melting point adjuster to be added needs to be corrected based on the internal state of the gasification furnace detected by the detection unit, and if it is determined that correction is necessary, feedback control can be performed so that the corrected amount of the ash melting point adjuster is added.
  • a detection unit not shown
  • the control unit determines whether or not the amount of the ash melting point adjuster to be added needs to be corrected based on the internal state of the gasification furnace detected by the detection unit, and if it is determined that correction is necessary, feedback control can be performed so that the corrected amount of the ash melting point adjuster is added.
  • the amount of ash melting point adjuster added is calculated based on information about the biomass gasification device before it is in operation.
  • the amount added is corrected based on the internal state of the biomass gasification device (information about the device during operation), so a more appropriate amount of ash melting point adjuster can be added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present disclosure provides a method for operating a biomass gasifier to avoid furnace clogging due to ash adhesion to the furnace walls, and a biomass gasifier. The method for operating a biomass gasifier according to the present disclosure is a method for operating a biomass gasifier equipped with a gasification furnace that gasifies a biomass fuel and comprises (S1) acquisition of the properties of the biomass fuel, (S2) calculation of the amount of ash melting point-adjusting material to add based on the acquired properties of the biomass fuel, (S3) addition of the calculated amount of ash melting point-adjusting material to the biomass fuel, and (S4) supply of the biomass fuel to which the ash melting point-adjusting material has been added to the gasification furnace.

Description

バイオマスガス化装置の運転方法およびバイオマスガス化装置Method for operating a biomass gasifier and biomass gasifier
 本開示は、バイオマスガス化装置の運転方法およびバイオマスガス化装置に関するものである。 This disclosure relates to a method for operating a biomass gasification system and a biomass gasification system.
 バイオマス燃料をガス化するガス化装置では、ガス化炉内でバイオマスが酸素と部分燃焼することで発熱し、その熱でバイオマスを水蒸気ガス化させる(特許文献1参照)。ガス化炉の内部は、部分燃焼による発熱で1200℃程度の高温となる。 In a gasification system that gasifies biomass fuel, the biomass partially combusts with oxygen in the gasification furnace, generating heat, which is then used to gasify the biomass into steam (see Patent Document 1). The inside of the gasification furnace reaches a high temperature of around 1200°C due to the heat generated by partial combustion.
特開2016-190888号公報JP 2016-190888 A
 バイオマス燃料のガス化の際、灰が生じる。灰の融点が低いと、ガス化炉内で灰が軟化・溶融して炉壁に付着し、炉内が閉塞するという問題が生じる。 When biomass fuel is gasified, ash is produced. If the melting point of ash is low, the ash will soften and melt inside the gasification furnace, adhering to the furnace walls and causing blockages inside the furnace.
 本開示は、このような事情に鑑みてなされたものであって、炉壁への灰付着による炉内閉塞を生じ難くするためのバイオマスガス化装置の運転方法およびバイオマスガス化装置を提供することを目的とする。 This disclosure has been made in consideration of these circumstances, and aims to provide a method for operating a biomass gasification apparatus and a biomass gasification apparatus that reduces the likelihood of blockage inside the furnace due to ash adhesion to the furnace walls.
 上記課題を解決するために、本開示のバイオマスガス化装置の運転方法およびバイオマスガス化装置は以下の手段を採用する。 To solve the above problems, the biomass gasification device operating method and biomass gasification device disclosed herein employ the following measures.
 本開示は、バイオマス燃料をガス化するガス化炉を備えたバイオマスガス化装置の運転方法であって、前記バイオマス燃料の性状を取得し、取得した前記バイオマス燃料の性状に基づいて、灰融点調整材の添加量を算出し、算出した前記添加量の前記灰融点調整材を、前記バイオマス燃料に添加し、前記灰融点調整材が添加されたバイオマス燃料を前記ガス化炉に供給するバイオマスガス化装置の運転方法を提供する。 The present disclosure provides a method for operating a biomass gasification apparatus equipped with a gasification furnace that gasifies biomass fuel, which acquires the properties of the biomass fuel, calculates an amount of an ash melting point adjuster to be added based on the acquired properties of the biomass fuel, adds the calculated amount of the ash melting point adjuster to the biomass fuel, and supplies the biomass fuel to which the ash melting point adjuster has been added to the gasification furnace.
 本開示は、バイオマス燃料をガス化するガス化炉と、前記ガス化炉内に前記バイオマス燃料を供給する燃料供給部と、前記燃料供給部の前記バイオマス燃料に灰融点調整材を添加する調整材添加部と、前記バイオマス燃料の性状に基づいて前記灰融点調整材の添加量を算出し、算出した前記添加量の前記灰融点調整材が前記バイオマス燃料に供給されるよう前記調整材添加部からの添加量を制御する制御部と、を備えたバイオマスガス化装置を提供する。 The present disclosure provides a biomass gasification apparatus including a gasification furnace that gasifies biomass fuel, a fuel supply unit that supplies the biomass fuel into the gasification furnace, an adjuster addition unit that adds an ash melting point adjuster to the biomass fuel in the fuel supply unit, and a control unit that calculates an amount of the ash melting point adjuster to be added based on the properties of the biomass fuel and controls the amount added from the adjuster addition unit so that the calculated amount of the ash melting point adjuster is supplied to the biomass fuel.
 本開示のバイオマスガス化装置の運転方法およびバイオマスガス化装置によれば、ガス化炉に供給する前に灰融点調整材をバイオマス燃料に添加し、灰融点調整材が添加されたバイオマス燃料をガス化炉内へ供給することで、バイオマス燃料のガス化により生じる灰の溶融開始温度を上げることができる。これにより、ガス化炉内の最大ガス温度でも灰が溶融しないため、炉壁に灰が付着しにくくなり、炉内閉塞も生じ難くなる。 According to the biomass gasification apparatus and operating method of the present disclosure, an ash melting point adjuster is added to the biomass fuel before it is fed into the gasification furnace, and the biomass fuel to which the ash melting point adjuster has been added is fed into the gasification furnace, thereby increasing the melting start temperature of the ash produced by gasification of the biomass fuel. As a result, the ash does not melt even at the maximum gas temperature inside the gasification furnace, making it less likely for the ash to adhere to the furnace walls and less likely for blockages to occur inside the furnace.
第1実施形態に係るバイオマスガス化装置の運転方法の手順を示すフローチャートである。3 is a flowchart showing the steps of a method for operating a biomass gasification apparatus according to the first embodiment. 第1実施形態に係るバイオマスガス化装置の系統図である。1 is a system diagram of a biomass gasification apparatus according to a first embodiment. FIG. 第1実施形態に係るバイオマスガス化装置におけるガス化炉内の温度分布の一例を示す図である。FIG. 4 is a diagram showing an example of a temperature distribution in a gasification furnace in the biomass gasification apparatus according to the first embodiment. 第2実施形態に係るバイオマスガス化装置の運転方法の手順を示すフローチャートである。10 is a flowchart showing the steps of a method for operating a biomass gasification apparatus according to a second embodiment. 灰融点調整材(CaO換算)を添加した場合の効果を示す図である。FIG. 1 is a diagram showing the effect of adding an ash melting point adjuster (calculated as CaO). 灰融点調整材(MgO換算)を添加した場合の効果を示す図である。FIG. 1 is a diagram showing the effect of adding an ash melting point adjuster (in MgO equivalent). 灰融点調整材(CaO換算)の添加量が灰の溶融率および溶融開始温度に及ぼす影響を示す図である。FIG. 1 is a diagram showing the effect of the amount of an ash melting point adjuster (calculated as CaO) added on the melting rate and melting start temperature of ash. 灰融点調整材(MgO換算)の添加量が灰の溶融率および溶融開始温度に及ぼす影響を示す図である。FIG. 1 is a diagram showing the effect of the amount of an ash melting point adjuster (calculated as MgO) added on the melting rate and melting start temperature of ash.
 バイオマスガス化装置は、ガス化炉でバイオマス燃料を部分燃焼させてガス化することで、可燃性のガスを生成する装置である。 A biomass gasification system is a device that produces combustible gas by partially burning and gasifying biomass fuel in a gasification furnace.
 バイオマス燃料は、再生可能な生物由来の有機性資源である。バイオマス燃料は、建設廃材、木質ペレット、製材残材、林地残材、草本系バイオマス、農業残渣等である。 Biomass fuels are organic resources derived from renewable living organisms. Examples of biomass fuels include construction waste, wood pellets, lumber residues, forest residues, herbaceous biomass, agricultural residues, etc.
 以下に、本開示に係るバイオマスガス化装置の運転方法およびバイオマスガス化装置の一実施形態について、図面を参照して説明する。 Below, an operating method of a biomass gasification apparatus and one embodiment of a biomass gasification apparatus according to the present disclosure will be described with reference to the drawings.
〔第1実施形態〕
(バイオマスガス化装置の運転方法)
 図1に本実施形態に係るバイオマスガス化装置の運転方法の手順を示す。本実施形態に係るバイオマスガス化装置の運転方法は、(S1)バイオマス燃料の性状取得、(S2)灰融点調整材の添加量算出、(S3)灰融点調整材の添加、(S4)バイオマス燃料の供給の工程を含む。
First Embodiment
(Method of operating a biomass gasifier)
The procedure of the method for operating the biomass gasifier according to this embodiment is shown in Figure 1. The method for operating the biomass gasifier according to this embodiment includes the steps of (S1) acquiring the properties of the biomass fuel, (S2) calculating the amount of ash melting point adjuster to be added, (S3) adding the ash melting point adjuster, and (S4) supplying the biomass fuel.
(S1:バイオマス燃料の性状取得)
 バイオマスガス化装置の燃料として用いられるバイオマス燃料の性状を取得する。「バイオマス燃料の性状」は、元素成分(C,H,N,O,S,Cl)と固定炭素、揮発分、灰分、水分,灰組成である。「バイオマス燃料の性状」は、特に、バイオマス燃料のガス化に伴って生じる灰分(バイオマス燃料の灰分)または灰の組成である。「バイオマス燃料の性状」は、特に、灰に含まれる灰融点低下成分の含有量である。
(S1: Acquiring properties of biomass fuel)
The properties of the biomass fuel used as fuel for the biomass gasification system are acquired. The "properties of the biomass fuel" are the elemental components (C, H, N, O, S, Cl), fixed carbon, volatile matter, ash content, moisture, and ash composition. The "properties of the biomass fuel" are, in particular, the ash content (ash content of the biomass fuel) generated in association with the gasification of the biomass fuel or the composition of the ash. The "properties of the biomass fuel" are, in particular, the content of components that lower the ash melting point contained in the ash.
 灰の組成は、化学分析等で得ることができる。 The composition of the ash can be determined through chemical analysis, etc.
 灰融点低下成分は、ナトリウム、カリウム、シリカ、アルミナ等である。 Components that lower the ash melting point include sodium, potassium, silica, alumina, etc.
 バイオマス燃料の性状は、産地(草木系)および排出元(建設廃材等の廃棄物系)などの要素によって変動する。そのため、この要素が異なるバイオマス燃料を用いる場合は、バイオマス燃料の性状を取得する必要がある。産地および/または排出元が共通のバイオマス燃料については、既存の情報を用いてもよい。 The properties of biomass fuel vary depending on factors such as the place of origin (vegetation) and source of emission (waste, such as construction waste). Therefore, when using biomass fuels with different factors, it is necessary to obtain the properties of the biomass fuel. For biomass fuels with the same place of origin and/or source of emission, existing information may be used.
(S2:灰融点調整材の添加量算出)
 上記S1で取得したバイオマス燃料の性状に基づいて、灰融点調整材の添加量を算出する。ここでは、バイオマス燃料の灰の溶融開始温度が、ガス化炉内の最大ガス温度以上となるような灰融点調整材の添加量を算出する。
(S2: Calculation of the amount of ash melting point adjuster added)
Based on the properties of the biomass fuel acquired in S1, the amount of ash melting point adjuster to be added is calculated. Here, the amount of ash melting point adjuster to be added is calculated so that the melting start temperature of the ash of the biomass fuel is equal to or higher than the maximum gas temperature in the gasification furnace.
 灰融点調整材の添加量は、熱力学平衡計算用のソフトウェアを用いて算出できる。熱力学平衡計算用のソフトウェアは、例えば、Factsage(株式会社計算力学研究センター製)等である。 The amount of ash melting point adjuster to be added can be calculated using software for thermodynamic equilibrium calculations. Examples of software for thermodynamic equilibrium calculations include Factsage (manufactured by Computational Mechanics Research Center, Inc.).
 灰融点調整材は、バイオマス燃料の灰の融点を調整できる材料である。灰融点調整材は、アルカリ土類金属の炭酸塩またはアルカリ土類金属の炭酸塩を含む鉱石である。アルカリ土類金属は、灰の融点を高めることができる。アルカリ土類金属の炭酸塩は、例えば、炭酸カルシウム(CaCO)および炭酸マグネシウム(MgCO)である。灰融点調整材は、2種以上のアルカリ土類金属の炭酸塩を含んでもよい。灰融点調整材は、粉末の形態である。 The ash melting point adjuster is a material that can adjust the melting point of the ash of the biomass fuel. The ash melting point adjuster is an alkaline earth metal carbonate or an ore containing an alkaline earth metal carbonate. The alkaline earth metal can increase the melting point of the ash. The alkaline earth metal carbonate is, for example, calcium carbonate (CaCO 3 ) and magnesium carbonate (MgCO 3 ). The ash melting point adjuster may include two or more kinds of alkaline earth metal carbonates. The ash melting point adjuster is in the form of a powder.
 灰融点調整材の添加量の上限は、バイオマス燃料に対して、炭酸塩換算で5重量%以下である。バイオマス燃料には、通常、0.5重量%~1.0重量%程度の灰融点低下成分が含まれる。灰融点調整材は、灰融点低下成分の5倍量程度添加すれば、灰融点低下成分が含まれることによる灰融点の低下の影響を補える。 The upper limit for the amount of ash melting point adjuster added is 5% by weight of the biomass fuel, calculated as carbonate. Biomass fuel normally contains about 0.5% to 1.0% by weight of components that lower the ash melting point. If the ash melting point adjuster is added in an amount about five times the amount of the ash melting point lowering components, the effect of the lowering of the ash melting point caused by the inclusion of the ash melting point lowering components can be compensated for.
 灰融点調整材として炭酸カルシウムまたは炭酸カルシウムを含む鉱石を用いる場合、灰融点調整材の添加量は、例えば、バイオマス燃料に対して炭酸カルシウム換算で1.25重量%以上であるとよい。 When calcium carbonate or an ore containing calcium carbonate is used as the ash melting point adjuster, the amount of the ash melting point adjuster added should be, for example, 1.25% by weight or more, calculated as calcium carbonate, relative to the biomass fuel.
 灰融点調整材として炭酸マグネシウムまたは炭酸マグネシウムを含む鉱石を用いる場合、灰融点調整材の添加量は、例えば、バイオマス燃料に対して炭酸マグネシウム換算で0.42重量%以上、好ましくは0.63重量%以上であるとよい。 When magnesium carbonate or an ore containing magnesium carbonate is used as the ash melting point adjuster, the amount of the ash melting point adjuster added is, for example, 0.42% by weight or more, preferably 0.63% by weight or more, calculated as magnesium carbonate relative to the biomass fuel.
(S3:灰融点調整材の添加)
 上記S2で算出した添加量の灰融点調整材をバイオマス燃料に添加する。添加は、バイオマス燃料がガス化炉に供給される前に実施される。例えば、バイオマス燃料がガス化炉に向かって移送される途中(供給ライン)で、バイオマス燃料に振りかけるように灰融点調整材を添加する。
(S3: Addition of ash melting point adjuster)
The amount of ash melting point adjuster calculated in S2 above is added to the biomass fuel. The addition is performed before the biomass fuel is supplied to the gasifier. For example, the ash melting point adjuster is added by sprinkling it on the biomass fuel while the biomass fuel is being transported to the gasifier (in the supply line).
(S4:バイオマス燃料の供給)
 灰融点調整材が添加されたバイオマス燃料をガス化炉内に供給する。
(S4: Supply of biomass fuel)
Biomass fuel to which an ash melting point adjuster has been added is fed into a gasification furnace.
 ガス化炉には、ガス化剤が供給される。ガス化剤は、酸素および水蒸気を含む。 A gasifying agent is supplied to the gasifier. The gasifying agent includes oxygen and water vapor.
 ガス化炉に供給されたバイオマス燃料は、酸素と反応して部分燃焼する。酸素との反応は発熱反応であり、これにより、ガス化炉内の温度は1200℃程度まで上昇する。この熱により、バイオマス燃料と水蒸気との反応が進み、水素および一酸化炭素を主成分とする可燃性ガスが生成される。水蒸気との反応は吸熱反応であり、これにより、ガス化炉の出口温度は、1000℃程度となる。 The biomass fuel supplied to the gasifier reacts with oxygen and partially burns. The reaction with oxygen is an exothermic reaction, which causes the temperature inside the gasifier to rise to around 1200°C. This heat causes the biomass fuel to react with water vapor, producing flammable gases whose main components are hydrogen and carbon monoxide. The reaction with water vapor is an endothermic reaction, which causes the outlet temperature of the gasifier to reach around 1000°C.
 バイオマス燃料と共にガス化炉に供給された灰融点調整材は、バイオマス燃料の部分燃焼により生じた灰とガス化炉内で混合され、灰融点を上げる。これにより、灰の溶融開始温度をガス化炉内の最大ガス温度よりも高くできるため、ガス化炉内での炉壁への灰付着量を低減できる。 The ash melting point adjuster is supplied to the gasifier together with the biomass fuel and is mixed with the ash produced by the partial combustion of the biomass fuel inside the gasifier, raising the ash melting point. This makes it possible to raise the temperature at which the ash begins to melt higher than the maximum gas temperature inside the gasifier, thereby reducing the amount of ash adhering to the furnace walls inside the gasifier.
(バイオマスガス化装置)
 上記運転方法を実施するのに好適なバイオマスガス化装置の一例を図2に示す。
(Biomass gasification equipment)
An example of a biomass gasification apparatus suitable for carrying out the above-mentioned operating method is shown in FIG.
 バイオマスガス化装置1は、ガス化炉2、ガス化剤供給部3、燃料供給部4、調整材添加部5および制御部6を備えている。図中の「M」はモータである。 The biomass gasification device 1 is equipped with a gasification furnace 2, a gasification agent supply section 3, a fuel supply section 4, an adjustment material addition section 5, and a control section 6. "M" in the diagram is a motor.
 ガス化炉2は、バイオマス燃料をガス化させる反応部である。ガス化炉2の底部には、排出弁V1を介して灰溜部7が接続されている。灰溜部7の出口には排出弁V2を介して排出管8が接続されている。灰溜部7は、ガス化炉2から排出された灰を受け入れ、一時的に貯留する。灰溜部7に溜まった灰は排出管8を通って外部に排出される。 The gasification furnace 2 is a reaction section that gasifies biomass fuel. An ash reservoir 7 is connected to the bottom of the gasification furnace 2 via a discharge valve V1. An exhaust pipe 8 is connected to the outlet of the ash reservoir 7 via a discharge valve V2. The ash reservoir 7 receives the ash discharged from the gasification furnace 2 and temporarily stores it there. The ash that has accumulated in the ash reservoir 7 is discharged to the outside through the discharge pipe 8.
 ガス化剤供給部3は、ガス化炉2の下部に接続され、ガス化炉2内にガス化剤を供給できる。 The gasification agent supply unit 3 is connected to the bottom of the gasification furnace 2 and can supply gasification agent into the gasification furnace 2.
 燃料供給部4は、ガス化炉2の下部に接続され、ガス化炉2内にバイオマス燃料を供給できる。燃料供給部4は、ガス化剤供給部3よりも上方に配置される。 The fuel supply unit 4 is connected to the bottom of the gasification furnace 2 and can supply biomass fuel into the gasification furnace 2. The fuel supply unit 4 is positioned above the gasification agent supply unit 3.
 燃料供給部4は、定量フィーダ10を有する燃料供給ホッパ11、燃料供給ホッパ11から排出されたバイオマス燃料を受けて計量し移送する計量コンベア12、計量コンベア12で移送されたバイオマス燃料をガス化炉2に供給するロータリフィーダ13a,13bおよびスクリューフィーダ14を備えている。スクリューフィーダ14は、排出弁V3を介してロータリフィーダ13bの下流側に接続されている。 The fuel supply section 4 includes a fuel supply hopper 11 having a metering feeder 10, a weighing conveyor 12 that receives, weighs and transfers the biomass fuel discharged from the fuel supply hopper 11, and rotary feeders 13a, 13b and a screw feeder 14 that supply the biomass fuel transferred by the weighing conveyor 12 to the gasification furnace 2. The screw feeder 14 is connected downstream of the rotary feeder 13b via a discharge valve V3.
 調整材添加部5は、ガス化炉2に供給される前のバイオマス燃料に灰融点調整材を供給できる。調整材添加部5は、定量フィーダ15を有する調整材添加ホッパ16で構成されている。調整材添加部5は、燃料供給部で移送中のバイオマス燃料に灰融点調整材を添加可能に計量コンベア12に接続されている。 The adjusting material adding section 5 can supply an ash melting point adjusting material to the biomass fuel before it is supplied to the gasification furnace 2. The adjusting material adding section 5 is composed of an adjusting material adding hopper 16 having a quantitative feeder 15. The adjusting material adding section 5 is connected to a weighing conveyor 12 so that the ash melting point adjusting material can be added to the biomass fuel being transported in the fuel supply section.
 制御部6は、調整材添加部5に電気的に接続されている。制御部6は、バイオマス燃料の性状に基づいて灰融点調整材の添加量を算出し、算出した添加量の灰融点調整材がバイオマス燃料に供給されるよう調整材添加部5からの添加量を制御できる。制御部6は、計量コンベア12および定量フィーダ10のモータMに電気的に接続されていてもよい。 The control unit 6 is electrically connected to the adjustment material adding unit 5. The control unit 6 calculates the amount of ash melting point adjustment material to be added based on the properties of the biomass fuel, and can control the amount added from the adjustment material adding unit 5 so that the calculated amount of ash melting point adjustment material is supplied to the biomass fuel. The control unit 6 may be electrically connected to the motor M of the weighing conveyor 12 and the quantitative feeder 10.
 制御部6(Controller)は、例えば、CPU(Central Processing Unit:プロセッサ)、主記憶装置(Main Memory)、二次記憶装置(Secondary storage:メモリ)等を備えている。更に、制御部6は、他の装置と情報の送受信を行うための通信部を備えていてもよい。
 主記憶装置は、例えば、キャッシュメモリ、RAM(Random Access Memory)等の書き込み可能なメモリで構成され、CPUの実行プログラムの読み出し、実行プログラムによる処理データの書き込み等を行う作業領域として利用される。
 二次記憶装置は、非一時的なコンピュータ読み取り可能な記録媒体(non-transitory computer readable storage medium)である。二次記憶装置は、例えば、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリなどである。
 各種機能を実現するための一連の処理は、一例として、プログラムの形式で二次記憶装置に記憶されており、このプログラムをCPUが主記憶装置に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、二次記憶装置に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線または無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
The control unit 6 includes, for example, a CPU (Central Processing Unit: processor), a main memory, a secondary storage, etc. Furthermore, the control unit 6 may include a communication unit for transmitting and receiving information to and from other devices.
The main storage device is composed of writable memory such as cache memory and RAM (Random Access Memory), and is used as a working area for reading execution programs of the CPU and writing processing data by the execution programs.
The secondary storage device is a non-transitory computer readable storage medium, such as a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, or a semiconductor memory.
As an example, a series of processes for realizing various functions is stored in a secondary storage device in the form of a program, and the CPU reads this program into the main storage device and executes information processing and arithmetic processing to realize various functions. Note that the program may be pre-installed in the secondary storage device, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Examples of computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, and semiconductor memories.
 バイオマスガス化装置1では、燃料供給ホッパ11に一次的に貯留されていたバイオマス燃料が、定量フィーダ10により所定量ずつ計量コンベア12に送られる。所定量は、ガス化炉に対するデマンドによって設定され得る。 In the biomass gasification system 1, the biomass fuel temporarily stored in the fuel supply hopper 11 is sent in predetermined amounts by the metering feeder 10 to the metering conveyor 12. The predetermined amount can be set according to the demand for the gasification furnace.
 計量コンベア12には、調整材添加ホッパ16に一次的に貯留されていた灰融点調整材が、定量フィーダ15により所定量ずつ計量コンベア12に送られる。これにより、移送中のバイオマス燃料に灰融点調整材が添加される。所定量は、定量フィーダ10から供給されるバイオマス燃料の「所定量」に対応した量である。 The ash melting point adjuster that was temporarily stored in the adjuster addition hopper 16 is sent to the weighing conveyor 12 in predetermined amounts by the quantitative feeder 15. This allows the ash melting point adjuster to be added to the biomass fuel being transported. The predetermined amount corresponds to the "predetermined amount" of biomass fuel supplied from the quantitative feeder 10.
 制御部6は、バイオマス燃料の性状に基づいて灰融点調整材の添加量を算出し、算出した添加量の灰融点調整材がバイオマス燃料に供給されるよう調整材添加部5からの添加量を制御する。制御部6は、定量フィーダ10の回転数(燃料供給量)に応じて、定量フィーダ15の回転数(灰融点調整材添加量)を制御する。灰融点調整材の添加量は、バイオマス燃料の灰の溶融開始温度がガス化炉内の最大ガス温度以上となるように熱力学平衡計算用のソフトウェアによって算出される。 The control unit 6 calculates the amount of ash melting point adjuster to be added based on the properties of the biomass fuel, and controls the amount added from the adjuster adding unit 5 so that the calculated amount of ash melting point adjuster is supplied to the biomass fuel. The control unit 6 controls the rotation speed of the quantitative feeder 15 (amount of ash melting point adjuster added) according to the rotation speed of the quantitative feeder 10 (amount of fuel supplied). The amount of ash melting point adjuster to be added is calculated by software for thermodynamic equilibrium calculations so that the melting start temperature of the ash of the biomass fuel is equal to or higher than the maximum gas temperature in the gasification furnace.
 灰融点調整材が添加されたバイオマス燃料は、計量コンベア12で計量されながら移送され、ロータリフィーダ13a,13bおよびスクリューフィーダ14を介してガス化炉2の下部に供給される。 The biomass fuel to which the ash melting point adjuster has been added is transported while being weighed by the weighing conveyor 12, and is supplied to the bottom of the gasification furnace 2 via the rotary feeders 13a, 13b and the screw feeder 14.
 ガス化剤は、バイオマス燃料よりも下方からガス化炉2内に供給される。ガス化炉2内では、バイオマス燃料がガス化剤と反応しガス化される。ガス化炉2内のガス流れGは、下方から上方へ向かうように形成される。生成されたガスは、図示しないガスクーラへ導かれ、冷却される。 The gasifying agent is supplied into the gasifier 2 from below the biomass fuel. In the gasifier 2, the biomass fuel reacts with the gasifying agent and is gasified. A gas flow G in the gasifier 2 is formed from below to above. The generated gas is guided to a gas cooler (not shown) and cooled.
 図3にガス化炉内の温度分布の一例を示す。同図において、横軸はガス化炉内のガス温度(℃)、縦軸はガス化炉高さ(m)である。バイオマス燃料が供給される高さで温度が最も高くなり、上方へいくほど温度が低くなる。 Figure 3 shows an example of temperature distribution inside a gasifier. In this figure, the horizontal axis is the gas temperature inside the gasifier (℃), and the vertical axis is the height of the gasifier (m). The temperature is highest at the height where the biomass fuel is supplied, and decreases the higher it goes.
 バイオマス燃料が供給される高さでは、ガス化炉2に供給されたバイオマス燃料が部分燃焼されて温度が高くなる。この部分燃焼により生じた灰は、バイオマス燃料に添加されていた灰融点調整材と反応し、これにより灰の融点が上がる。灰融点調整材の添加量は、バイオマス燃料の灰の溶融開始温度がガス化炉内の最大ガス温度以上となるように算出されているため、最大ガス温度であっても、灰は実質的に溶融しない。これにより、灰が炉壁に付着しにくくなるため、炉内閉塞も生じ難くなる。 At the height at which the biomass fuel is supplied, the biomass fuel supplied to the gasification furnace 2 is partially combusted and its temperature rises. The ash produced by this partial combustion reacts with the ash melting point adjuster that was added to the biomass fuel, thereby raising the melting point of the ash. The amount of ash melting point adjuster added is calculated so that the temperature at which the ash of the biomass fuel starts to melt is equal to or higher than the maximum gas temperature in the gasification furnace, so the ash does not substantially melt even at the maximum gas temperature. This makes it less likely for the ash to adhere to the furnace walls, making it less likely for blockages to occur inside the furnace.
〔第2実施形態〕
 図4に本実施形態に係るバイオマスガス化装置の運転方法の手順を示す。本実施形態に係るバイオマスガス化装置の運転方法は、第1実施形態の(S1)~(S4)に加え、(S5)ガス化炉内の状態取得、(S6)灰融点調整材の添加用の補正の要否判定、および(S7)灰融点調整材添加量の補正の工程を含む。
Second Embodiment
The procedure of the method for operating the biomass gasifier according to this embodiment is shown in Figure 4. In addition to (S1) to (S4) of the first embodiment, the method for operating the biomass gasifier according to this embodiment includes the steps of (S5) acquiring the state inside the gasifier, (S6) determining whether or not correction is required for the addition of an ash melting point adjuster, and (S7) correcting the amount of the ash melting point adjuster to be added.
(S5:ガス化炉内の状態取得)
 第1実施形態と同様にS1~S4を実施した後、ガス化炉の内部の状態(情報)を取得する。内部の状態は、ガス化炉内の最大ガス温度、炉壁温度および/または炉壁への灰付着の有無である。
(S5: Acquire status inside the gasification furnace)
After steps S1 to S4 are performed in the same manner as in the first embodiment, the internal state (information) of the gasifier is acquired. The internal state is the maximum gas temperature in the gasifier, the furnace wall temperature, and/or the presence or absence of ash adhesion to the furnace wall.
 ガス化炉の内部の状態は、バイオマスガス化装置のガス化炉内に配置された検出部(不図示)により取得できる。検出部は、例えば、ガス化炉内のガス温度および/または炉壁温度を計測するための温度計測部である。温度計測部は、熱電対等である。 The internal condition of the gasification furnace can be obtained by a detection unit (not shown) arranged inside the gasification furnace of the biomass gasification device. The detection unit is, for example, a temperature measurement unit for measuring the gas temperature and/or furnace wall temperature inside the gasification furnace. The temperature measurement unit is a thermocouple or the like.
 炉壁への灰付着の有無は、炉壁温度から間接的に取得する。炉壁に灰が付着すると、それに伴って炉壁温度が変化する。よって、任意の高さの炉壁温度を計測し、その温度変化を確認することで、間接的に炉壁への灰付着の有無を判断する。灰付着が無い場合、炉壁温度は最大ガス温度と実質的に等しくなる。よって、最大ガス温度と炉壁温度との温度差の有無から、間接的に壁への灰付着の有無を判断する。 The presence or absence of ash adhesion to the furnace wall is indirectly obtained from the furnace wall temperature. When ash adheres to the furnace wall, the furnace wall temperature changes accordingly. Therefore, by measuring the furnace wall temperature at any height and checking the temperature change, the presence or absence of ash adhesion to the furnace wall can be indirectly determined. If there is no ash adhesion, the furnace wall temperature will be substantially equal to the maximum gas temperature. Therefore, the presence or absence of ash adhesion to the wall can be indirectly determined from the presence or absence of a temperature difference between the maximum gas temperature and the furnace wall temperature.
(S6:灰融点調整材の添加量の補正の要否判定、S7:灰融点調整材添加量の補正)
 上記S5で取得したガス化炉の内部の状態に基づいて、灰融点調整材の添加量の補正の要否を判定する(S6)。補正が必要であると判定された場合(S6:YES)、灰融点調整材の添加量を補正し、補正された添加量の前記灰融点調整材が添加されるようフィードバック制御する(S7)。補正が必要ないと判定された場合(S6:NO)、フィードバック制御は行わず、上記S5に戻り、運転停止または補正が必要と判定されるまで、継続的または断続的にガス化炉内の状態を取得する。
(S6: Determination of necessity of correction of the amount of ash melting point adjuster added; S7: Correction of the amount of ash melting point adjuster added)
Based on the internal state of the gasifier acquired in S5, it is determined whether or not the amount of ash melting point adjuster added needs to be corrected (S6). If it is determined that correction is necessary (S6: YES), the amount of ash melting point adjuster added is corrected, and feedback control is performed so that the corrected amount of ash melting point adjuster is added (S7). If it is determined that correction is not necessary (S6: NO), feedback control is not performed, and the process returns to S5, and the internal state of the gasifier is continuously or intermittently acquired until it is determined that operation is stopped or correction is necessary.
 例えば、最大ガス温度が上記(S2)で想定した灰の溶融開始温度より高い場合、灰融点調整材の添加量を補正(追加)する必要があると判定される。例えば、最大ガス温度が上記(S2)で想定した灰の融点開始温度よりも低い場合、灰融点調整材の添加量を補正(低減)する必要があると判定されてもよい。添加量の補正は、ガス化炉内の最大ガス温度の計測値を確認しながら、該計測値が上記(S2)で想定した灰の溶融開始温度となるよう実施される。 For example, if the maximum gas temperature is higher than the ash melting point start temperature assumed in (S2) above, it may be determined that the amount of ash melting point adjuster added needs to be corrected (added). For example, if the maximum gas temperature is lower than the ash melting point start temperature assumed in (S2) above, it may be determined that the amount of ash melting point adjuster added needs to be corrected (reduced). The amount added is corrected while checking the measured value of the maximum gas temperature in the gasification furnace so that the measured value becomes the ash melting point start temperature assumed in (S2) above.
 例えば、ガス温度が最大となる高さ領域(すなわち、燃料供給部付近)の炉壁温度が、初期温度から低下する傾向を示した場合、灰融点調整材の添加量を補正(追加)する必要があると判定される。「初期温度」は、運転開始後、ガス化炉内の最大ガス温度が最初に安定した時点の温度である。ガス化炉内の最大ガス温度は、ガス化炉を構成する耐火材の熱容量が満たされたときに安定となる。例えば、運転開始後、1時間程度で最大ガス温度は安定化されうる。添加量の補正は、炉壁温度の計測値を確認しながら、該計測値が安定化されるよう実施される。 For example, if the furnace wall temperature in the height region where the gas temperature is maximum (i.e., near the fuel supply section) shows a tendency to decrease from the initial temperature, it is determined that the amount of ash melting point adjuster added needs to be corrected (added). The "initial temperature" is the temperature at which the maximum gas temperature inside the gasifier first stabilizes after operation begins. The maximum gas temperature inside the gasifier becomes stable when the heat capacity of the refractory material that makes up the gasifier is reached. For example, the maximum gas temperature can stabilize in about one hour after operation begins. The amount added is corrected so that the measured value of the furnace wall temperature is stabilized while checking the measured value.
 例えば、炉壁に灰が付着している場合、灰融点調整材の添加量を補正する必要があると判定される。例えば、炉壁温度がガス化炉内のガス温度の計測値より低い場合には炉壁に灰が付着していると判断できるため、灰融点調整材の添加量を補正(追加)する必要があると判定される。添加量の補正は、炉壁温度の計測値を確認しながら、該計測値が安定化されるよう実施される。 For example, if ash is found adhering to the furnace wall, it is determined that the amount of ash melting point adjuster added needs to be corrected. For example, if the furnace wall temperature is lower than the measured value of the gas temperature inside the gasification furnace, it can be determined that ash is found adhering to the furnace wall, and it is determined that the amount of ash melting point adjuster added needs to be corrected (added). The correction of the amount added is carried out while checking the measured value of the furnace wall temperature so that the measured value is stabilized.
 バイオマスガス化装置の制御部は、調整材添加部および検出部に電気的に接続されている。バイオマスガス化装置の制御部は、計量コンベアに電気的に接続されていてもよい。制御部は、検出部での検出結果からガス化炉の内部の状態を取得できる。制御部は、ガス化炉の内部の状態に基づいて灰融点調整材の添加量の補正の要否を判定し、補正が必要だと判定したされた場合に、補正された添加量の灰融点調整材が添加されるようフィードバック制御できる。 The control unit of the biomass gasification apparatus is electrically connected to the adjustment material addition unit and the detection unit. The control unit of the biomass gasification apparatus may be electrically connected to the weighing conveyor. The control unit can obtain the internal state of the gasification furnace from the detection results of the detection unit. The control unit can determine whether or not the amount of ash melting point adjustment material to be added needs to be corrected based on the internal state of the gasification furnace, and if it determines that correction is necessary, can perform feedback control so that the corrected amount of ash melting point adjustment material is added.
 上記(S2)での灰融点調整材の添加量は、バイオマスガス化装置の運転前の情報に基づいて算出される。本実施形態の(S5)~(S7)では、バイオマスガス化装置の運転中の情報に基づいて添加量を補正するため、灰の溶融開始温度がガス化炉の最大ガス温度よりも高くするのに必要な添加量をより正確に導き出すことができる。 The amount of ash melting point adjuster added in (S2) above is calculated based on information before the biomass gasification system is in operation. In (S5) to (S7) of this embodiment, the amount added is corrected based on information during operation of the biomass gasification system, so it is possible to more accurately derive the amount added that is necessary to raise the ash melting start temperature above the maximum gas temperature of the gasification furnace.
〔灰融点調整材の効果〕
 図5,6に、灰融点調整材の効果を示す。図5は灰融点調整材として炭酸カルシウムを用いた場合、図6は灰融点調整材として炭酸マグネシウムを用いた場合の熱力学平衡計算の結果である。図5,6において、横軸は灰の温度(℃)、縦軸は灰の溶融率(重量%)、破線は灰融点調整材無添加、実線は灰融点調整材添加である。アルカリ土類金属の炭酸塩は高温域で酸化物として存在するため、熱力学平衡計算では、灰融点調整材をCaO、MgOとした。
[Effect of ash melting point adjuster]
The effect of the ash melting point adjuster is shown in Figures 5 and 6. Figure 5 shows the results of thermodynamic equilibrium calculations when calcium carbonate is used as the ash melting point adjuster, and Figure 6 shows the results when magnesium carbonate is used as the ash melting point adjuster. In Figures 5 and 6, the horizontal axis is the ash temperature (°C), the vertical axis is the ash melting rate (wt%), the dashed line indicates no ash melting point adjuster added, and the solid line indicates the addition of an ash melting point adjuster. Since carbonates of alkaline earth metals exist as oxides in the high temperature range, the ash melting point adjusters in the thermodynamic equilibrium calculations were set to CaO and MgO.
 図5,6に示されるように、灰融点調整材を添加しない場合、900℃程度から灰が溶けだし、1050℃~1100℃くらいで6割程度が溶融し、1250℃で略完全に溶けた状態となった。このような性状の灰に灰融点調整材を添加すると、灰の溶融開始温度は上昇した。炭酸カルシウムを添加した場合、灰の溶融開始温度は1200℃になった。炭酸マグネシウムを添加した場合、灰の溶融開始温度は1300℃になった。 As shown in Figures 5 and 6, when no ash melting point adjuster was added, the ash began to melt at around 900°C, about 60% melted at around 1050°C to 1100°C, and was almost completely melted at 1250°C. When an ash melting point adjuster was added to ash with these properties, the temperature at which the ash began to melt increased. When calcium carbonate was added, the temperature at which the ash began to melt became 1200°C. When magnesium carbonate was added, the temperature at which the ash began to melt became 1300°C.
〔灰融点調整材の添加量〕
 図7,8に、灰融点調整材を酸化物換算で0.1重量%~2重量添加した場合の、灰の温度と溶融率との関係を示す。図7は灰融点調整材として炭酸カルシウムを用いた場合、図8は灰融点調整材として炭酸マグネシウムを用いた場合の熱力学平衡計算の結果である。図7,8において、横軸は灰の温度(℃)、縦軸は灰の溶融率(重量%)である。バイオマス燃料には、木質系の建設廃材(建廃)を用いた。
[Amount of ash melting point adjuster added]
Figures 7 and 8 show the relationship between ash temperature and melting rate when 0.1% to 2% by weight of an ash melting point adjuster is added in oxide equivalent. Figure 7 shows the results of thermodynamic equilibrium calculations when calcium carbonate is used as the ash melting point adjuster, and Figure 8 shows the results when magnesium carbonate is used as the ash melting point adjuster. In Figures 7 and 8, the horizontal axis is ash temperature (°C) and the vertical axis is ash melting rate (wt%). Wood-based construction waste was used as the biomass fuel.
 図7,8によれば、灰融点調整材を添加しなかった場合、850℃を超えると灰の溶融が開始された。灰融点調整材の添加により灰の溶融開始温度は高くなった。添加量が少ないうちは灰融点調整材の添加量の増加に伴い、灰の溶融開始温度も上昇した。添加量CaO0.7重量%(CaCO換算で1.25重量%)、MgO0.2重量%(MgCO換算0.42重量%)以上で灰の溶融開始温度は1200℃以上になった。炭酸マグネシウムを添加する場合、添加量MgO0.3重量(MgCO換算0.63重量%)以上で灰の溶融開始温度は1300℃になった。 According to Figures 7 and 8, when no ash melting point adjuster was added, ash started to melt when the temperature exceeded 850°C. The addition of an ash melting point adjuster increased the ash melting start temperature. When the amount of ash melting point adjuster added was small, the ash melting start temperature also increased with an increase in the amount of ash melting point adjuster added. When the amount of added CaO was 0.7 wt% (1.25 wt% in terms of CaCO3 ) or MgO was 0.2 wt% (0.42 wt% in terms of MgCO3 ) or more, the ash melting start temperature was 1200°C or more. When magnesium carbonate was added, the ash melting start temperature was 1300°C when the amount of added MgO was 0.3 wt% (0.63 wt% in terms of MgCO3 ) or more.
 添加量CaO0.7重量%、MgO0.3重量%以上では、添加量が多いほど灰の溶融率は低下したが、灰の溶融開始温度は変わらなかった。 When the amount of CaO added was 0.7% by weight or more and MgO was 0.3% by weight or more, the melting rate of the ash decreased as the amount of added increased, but the temperature at which the ash began to melt did not change.
 上記結果によれば、1200℃よりも低い温度で溶融が開始される灰に、灰融点調整材を添加することで、溶融開始温度を引き上げられることが確認された。ガス化炉内の最大ガス温度は1200℃程度であるから、灰融点調整材の添加によってバイオマス燃料の灰の溶融開始温度をガス化炉内の最大ガス温度以上にできるといえる。これにより、炉壁への灰付着を防止できる。 The above results confirm that the melting start temperature can be raised by adding an ash melting point adjuster to ash that starts to melt at a temperature lower than 1200°C. Since the maximum gas temperature inside a gasification furnace is around 1200°C, it can be said that by adding an ash melting point adjuster, the melting start temperature of biomass fuel ash can be made higher than the maximum gas temperature inside the gasification furnace. This makes it possible to prevent ash from adhering to the furnace walls.
〈付記〉
 以上説明した実施形態に記載のバイオマスガス化装置の運転方法およびバイオマスガス化装置は、例えば以下のように把握される。
<Additional Notes>
The biomass gasification apparatus and the method for operating the biomass gasification apparatus described in the above-described embodiment can be understood, for example, as follows.
 本開示の第1態様に係るバイオマスガス化装置の運転方法は、バイオマス燃料をガス化するガス化炉を備えたバイオマスガス化装置の運転方法であって、(S1)前記バイオマス燃料の性状を取得し、(S2)取得した前記バイオマス燃料の性状に基づいて、灰融点調整材の添加量を算出し、(S3)算出した前記添加量の前記灰融点調整材を、前記バイオマス燃料に添加し、(S4)前記灰融点調整材が添加されたバイオマス燃料を前記ガス化炉に供給する。 The method of operating a biomass gasification apparatus according to the first aspect of the present disclosure is a method of operating a biomass gasification apparatus equipped with a gasification furnace for gasifying biomass fuel, which comprises the steps of: (S1) acquiring properties of the biomass fuel; (S2) calculating an amount of ash melting point adjuster to be added based on the acquired properties of the biomass fuel; (S3) adding the calculated amount of the ash melting point adjuster to the biomass fuel; and (S4) supplying the biomass fuel to which the ash melting point adjuster has been added to the gasification furnace.
 灰融点調整材は、バイオマス燃料の灰の融点温度を調整できる。灰融点調整材が添加されたバイオマス燃料をガス化炉に供給することで、バイオマス燃料のガス化により生じる灰(バイオマス燃料の灰)の溶融開始温度が、ガス化炉内の最大ガス温度を超えるよう制御できる。これにより、ガス化炉内で灰が溶融しにくくなり、炉壁への灰付着が抑制されるため、結果として炉内閉塞を防止できる。 Ash melting point adjusters can adjust the melting point temperature of biomass fuel ash. By supplying biomass fuel with added ash melting point adjusters to a gasification furnace, the temperature at which the ash (biomass fuel ash) generated by gasification of biomass fuel begins to melt can be controlled to exceed the maximum gas temperature inside the gasification furnace. This makes it difficult for ash to melt inside the gasification furnace, suppressing ash adhesion to the furnace walls, and ultimately preventing blockage inside the furnace.
 バイオマス燃料は、再生可能な生物由来の有機性資源である。バイオマス燃料の性状は、産地および排出元によって異なる。バイオマス燃料の性状を取得し、それに基づくことで、適切に灰融点調整材の必要添加量を算出できる。 Biomass fuel is a renewable organic resource derived from living organisms. The properties of biomass fuel vary depending on the place of production and source of emission. By obtaining the properties of biomass fuel and using them as a basis, it is possible to properly calculate the amount of ash melting point adjuster that needs to be added.
 本開示の第2態様に係るバイオマスガス化装置の運転方法は、上記第1態様において、前記バイオマス燃料の性状が前記バイオマス燃料のガス化に伴って生じる灰の組成であってよい。 In the method of operating a biomass gasification apparatus according to the second aspect of the present disclosure, in the first aspect described above, the property of the biomass fuel may be the composition of ash produced by gasification of the biomass fuel.
 バイオマス燃料の原料には、再生可能な生物由来の有機性資源以外の成分が付着していることがある。例えば、バイオマス燃料が廃材、特に木質系の建設廃材である場合、塗料、土、シロアリ駆除剤、漆喰などが付着している。塗料、土、シロアリ駆除剤、漆喰などには、ナトリウムおよびカリウムなどの灰融点を低下させる成分が含まれている。木材の本来の灰融点は1400℃程度であるが、灰融点を低下させる成分が付着した木質系の建設廃材の灰融点は1200℃を下回ることがある。本態様によれば、灰の組成を取得し、それに基づくことで、より正確に灰融点調整材の必要添加量を算出できる。これにより、より確実にバイオマス燃料の灰の溶融開始温度を、ガス化炉内の最大ガス温度を超えるよう制御できる。 The raw material for biomass fuel may have components other than organic resources derived from renewable living organisms attached to it. For example, when the biomass fuel is waste wood, particularly wood-based construction waste, paint, soil, termite killers, plaster, etc. are attached to it. Paint, soil, termite killers, plaster, etc. contain components that lower the ash melting point, such as sodium and potassium. The original ash melting point of wood is about 1400°C, but the ash melting point of wood-based construction waste to which components that lower the ash melting point are attached may be below 1200°C. According to this embodiment, the composition of the ash is obtained, and based on that, the necessary amount of ash melting point adjuster to be added can be calculated more accurately. This makes it possible to more reliably control the melting start temperature of the ash of the biomass fuel so that it exceeds the maximum gas temperature in the gasification furnace.
 本開示の第3態様に係るバイオマスガス化装置の運転方法は、第1態様において、(S5)前記ガス化炉の内部の状態を取得し、(S6)該内部の状態に基づいて前記灰融点調整材の添加量の補正の要否を判定し、(S7)補正が必要だと判定された場合に、補正された添加量の前記灰融点調整材が添加されるようフィードバック制御できる。 In the first aspect of the biomass gasification apparatus operating method according to the third aspect of the present disclosure, (S5) the internal state of the gasification furnace is acquired, (S6) based on the internal state, a determination is made as to whether or not a correction is required for the amount of the ash melting point adjuster to be added, and (S7) if a correction is determined to be required, feedback control is performed so that the corrected amount of the ash melting point adjuster is added.
 第1態様における灰融点調整材の添加量は、バイオマスガス化装置の運転前の情報に基づいて算出される。本態様では、バイオマスガス化装置の内部の状態(運転中の情報)に基づいて添加量を補正するため、より適切な量の灰融点調整材を添加できる。 In the first embodiment, the amount of ash melting point adjuster added is calculated based on information about the biomass gasification system before it is in operation. In this embodiment, the amount added is corrected based on the internal state of the biomass gasification system (information about the system during operation), so a more appropriate amount of ash melting point adjuster can be added.
 本開示の第4態様に係るバイオマスガス化装置の運転方法は、第1態様において、前記ガス化炉の内部の状態は、前記ガス化炉内における最大ガス温度であってよい。 In the first aspect of the method for operating a biomass gasification apparatus according to the fourth aspect of the present disclosure, the internal condition of the gasification furnace may be the maximum gas temperature within the gasification furnace.
 ガス化炉内の温度は運転中に変動する可能性がある。最大ガス温度が高い方に変動すると、灰融点調整材の添加量が足りずに灰が溶融し炉壁への灰付着量の増加につながる。ガス化炉内の最大ガス温度を取得することで、ガス化炉内の温度変動に対応した最適な添加量を算出できる。算出した添加量で灰融点調整材が添加されるようフィードバック制御することで、炉壁への灰付着をより確実に抑制できる。 The temperature inside the gasifier may fluctuate during operation. If the maximum gas temperature fluctuates to the higher side, an insufficient amount of ash melting point adjuster will be added, causing the ash to melt and increasing the amount of ash adhering to the furnace walls. By obtaining the maximum gas temperature inside the gasifier, it is possible to calculate the optimal amount to be added in response to temperature fluctuations inside the gasifier. By using feedback control to add the calculated amount of ash melting point adjuster, it is possible to more reliably suppress ash adhering to the furnace walls.
 本開示の第5態様に係るバイオマスガス化装置の運転方法は、第1態様において、前記ガス化炉の内部の状態は、前記ガス化炉内における炉壁温度であってよい。 In the first aspect of the method for operating a biomass gasification apparatus according to the fifth aspect of the present disclosure, the internal condition of the gasification furnace may be the furnace wall temperature within the gasification furnace.
 炉壁への灰付着が殆どない状態において、ガス化炉内の最大ガス温度は、実質的に壁温度と等しい。よって、炉壁への灰付着が殆どない状態では、炉壁温度を取得することで、間接的に最大ガス温度を知ることができる。 When there is almost no ash adhesion to the furnace walls, the maximum gas temperature inside the gasification furnace is essentially equal to the wall temperature. Therefore, when there is almost no ash adhesion to the furnace walls, the maximum gas temperature can be indirectly known by obtaining the furnace wall temperature.
 本開示の第6態様に係るバイオマスガス化装置の運転方法は、第1態様において、前記ガス化炉の内部の状態は、前記ガス化炉内における炉壁への灰付着の有無であってよい。 In the first aspect of the method for operating a biomass gasification apparatus according to the sixth aspect of the present disclosure, the internal condition of the gasification furnace may be the presence or absence of ash adhesion to the furnace wall inside the gasification furnace.
 灰融点調整材の添加量が少ない場合、ガス化炉内の炉壁に付着しやすくなる。炉壁への灰の付着の有無を確認することで、不足分を補うよう灰融点調整材を添加できるようになる。 If the amount of ash melting point adjuster added is small, it will easily adhere to the walls of the gasification furnace. By checking whether or not ash is adhering to the furnace walls, it will be possible to add ash melting point adjuster to make up for any deficiencies.
 本開示の第7態様に係るバイオマスガス化装置の運転方法は、第1態様から第6態様において、前記灰融点調整材が、アルカリ土類金属の炭酸塩またはアルカリ土類金属の炭酸塩を含む鉱石であってよい。 In the method of operating a biomass gasification apparatus according to the seventh aspect of the present disclosure, in the first to sixth aspects, the ash melting point adjuster may be an alkaline earth metal carbonate or an ore containing an alkaline earth metal carbonate.
 アルカリ土類金属の炭酸塩またはアルカリ土類金属の炭酸塩を含む鉱石は、バイオマス燃料をガス化する際に生じる灰の融点を上げることができる。 Alkaline earth metal carbonates or ores containing alkaline earth metal carbonates can increase the melting point of the ash produced during the gasification of biomass fuels.
 本開示の第8態様に係るバイオマスガス化装置の運転方法は、第7態様において、前記灰融点調整材が炭酸カルシウムまたは炭酸カルシウムを含む鉱石であり、前記灰融点調整材の添加量は、前記バイオマス燃料に対して、炭酸塩換算で1.25重量%以上5重量%以下であってよい。 The method of operating a biomass gasification apparatus according to the eighth aspect of the present disclosure is the seventh aspect, in which the ash melting point adjuster is calcium carbonate or an ore containing calcium carbonate, and the amount of the ash melting point adjuster added may be 1.25% by weight or more and 5% by weight or less in terms of carbonate relative to the biomass fuel.
 灰融点調整材が炭酸塩換算で1.25重量%以上添加されることで、バイオマス燃料をガス化する際に生じる灰の溶融開始温度を1200℃まで上げることができる。 By adding 1.25% or more by weight of ash melting point adjuster in carbonate equivalent, the melting start temperature of the ash generated during gasification of biomass fuel can be raised to 1200°C.
 本開示の第9態様に係るバイオマスガス化装置の運転方法は、第7態様において、前記灰融点調整材が炭酸マグネシウムまたは炭酸マグネシウムを含む鉱石であり、前記灰融点調整材の添加量は、前記バイオマス燃料に対して、炭酸塩換算で0.42重量%以上5重量%以下であってよい。 The method of operating a biomass gasification apparatus according to the ninth aspect of the present disclosure is the seventh aspect, in which the ash melting point adjuster is magnesium carbonate or an ore containing magnesium carbonate, and the amount of the ash melting point adjuster added may be 0.42% by weight or more and 5% by weight or less in terms of carbonate relative to the biomass fuel.
 本開示の第10態様に係るバイオマスガス化装置(1)は、バイオマス燃料をガス化するガス化炉(2)と、前記ガス化炉内に前記バイオマス燃料を供給する燃料供給部(4)と、前記燃料供給部の前記バイオマス燃料に灰融点調整材を添加する調整材添加部(5)と、前記バイオマス燃料の性状に基づいて前記灰融点調整材の添加量を算出し、算出した前記添加量の前記灰融点調整材が前記バイオマス燃料に供給されるよう前記調整材添加部からの添加量を制御する制御部(6)と、を備えている。 The biomass gasification apparatus (1) according to the tenth aspect of the present disclosure includes a gasification furnace (2) that gasifies biomass fuel, a fuel supply unit (4) that supplies the biomass fuel into the gasification furnace, an adjustment material addition unit (5) that adds an ash melting point adjuster to the biomass fuel in the fuel supply unit, and a control unit (6) that calculates the amount of the ash melting point adjuster to be added based on the properties of the biomass fuel and controls the amount added from the adjustment material addition unit so that the calculated amount of the ash melting point adjuster is supplied to the biomass fuel.
 灰融点調整材は、バイオマス燃料の灰の融点温度を調整できる。燃料供給部に灰融点調整材を添加する調整材添加部を備えることで、バイオマス燃料のガス化により生じる灰(バイオマス燃料の灰)の溶融開始温度がガス化炉内の最大ガス温度を超えるよう制御できる。これにより、ガス化炉内で灰が溶融しにくくなり、炉壁への灰付着が抑制されるため、結果として炉内の閉塞を防止できる。 Ash melting point adjusters can adjust the melting point temperature of biomass fuel ash. By providing an adjuster addition section for adding ash melting point adjusters to the fuel supply section, the melting start temperature of the ash (biomass fuel ash) generated by gasifying biomass fuel can be controlled to exceed the maximum gas temperature inside the gasification furnace. This makes it difficult for ash to melt inside the gasification furnace, suppressing ash adhesion to the furnace walls, and as a result, preventing blockages inside the furnace.
 バイオマス燃料の性状を取得し、それに基づいて灰融点調整材の添加量を算出して、記調整材添加部からの添加量を制御することで、より確実にバイオマス燃料の灰の溶融開始温度を、ガス化炉の最大ガス温度以上にできる。 By acquiring the properties of the biomass fuel, calculating the amount of ash melting point adjuster to be added based on those properties, and controlling the amount added from the adjuster addition section, it is possible to more reliably ensure that the temperature at which the ash of the biomass fuel begins to melt is equal to or higher than the maximum gas temperature of the gasification furnace.
 本開示の第11態様に係るバイオマスガス化装置は、第10態様において、前記ガス化炉の内部の状態を検出する検出部(不図示)を備え、前記制御部は、前記検出部で検出した前記ガス化炉の内部の状態に基づいて、前記灰融点調整材の添加量の補正の要否を判定し、補正が必要だと判定したされた場合に、補正された添加量の前記灰融点調整材が添加されるようフィードバック制御し得る。 The biomass gasification apparatus according to the eleventh aspect of the present disclosure is the tenth aspect, which is provided with a detection unit (not shown) that detects the internal state of the gasification furnace, and the control unit determines whether or not the amount of the ash melting point adjuster to be added needs to be corrected based on the internal state of the gasification furnace detected by the detection unit, and if it is determined that correction is necessary, feedback control can be performed so that the corrected amount of the ash melting point adjuster is added.
 第10態様における灰融点調整材の添加量は、バイオマスガス化装置の運転前の情報に基づいて算出される。本態様の制御部では、バイオマスガス化装置の内部の状態(運転中の情報)に基づいて添加量を補正するため、より適切な量の灰融点調整材を添加できる。 In the tenth embodiment, the amount of ash melting point adjuster added is calculated based on information about the biomass gasification device before it is in operation. In the control unit of this embodiment, the amount added is corrected based on the internal state of the biomass gasification device (information about the device during operation), so a more appropriate amount of ash melting point adjuster can be added.
1 バイオマスガス化装置
2 ガス化炉
3 ガス化剤供給部
4 燃料供給部
5 調整材添加部
6 制御部
7 灰溜部
8 排出管
10 (燃料供給部の)定量フィーダ
11 燃料供給ホッパ
12 計量コンベア
13a,13b ロータリフィーダ
14 スクリューフィーダ
15 (調整材添加部の)定量フィーダ
16 調整材添加ホッパ
 
Reference Signs List 1 Biomass gasification apparatus 2 Gasification furnace 3 Gasification agent supply section 4 Fuel supply section 5 Adjustment material addition section 6 Control section 7 Ash bin section 8 Discharge pipe 10 (Fuel supply section) fixed quantity feeder 11 Fuel supply hopper 12 Weighing conveyors 13a, 13b Rotary feeder 14 Screw feeder 15 (Adjustment material addition section) fixed quantity feeder 16 Adjustment material addition hopper

Claims (11)

  1.  バイオマス燃料をガス化するガス化炉を備えたバイオマスガス化装置の運転方法であって、
     前記バイオマス燃料の性状を取得し、
     取得した前記バイオマス燃料の性状に基づいて、灰融点調整材の添加量を算出し、
     算出した前記添加量の前記灰融点調整材を、前記バイオマス燃料に添加し、
     前記灰融点調整材が添加されたバイオマス燃料を前記ガス化炉に供給するバイオマスガス化装置の運転方法。
    A method for operating a biomass gasification apparatus equipped with a gasification furnace for gasifying biomass fuel, comprising:
    Obtaining the properties of the biomass fuel;
    Calculate the amount of ash melting point adjuster to be added based on the obtained properties of the biomass fuel;
    Adding the calculated amount of the ash melting point adjuster to the biomass fuel;
    A method for operating a biomass gasification system, comprising the steps of: supplying the biomass fuel to which the ash melting point adjuster has been added to the gasification furnace.
  2.  前記バイオマス燃料の性状は、前記バイオマス燃料のガス化に伴って生じる灰の組成である請求項1に記載のバイオマスガス化装置の運転方法。 The method for operating a biomass gasification system according to claim 1, wherein the property of the biomass fuel is the composition of ash produced by gasifying the biomass fuel.
  3.  前記ガス化炉の内部の状態を取得し、該内部の状態に基づいて前記灰融点調整材の添加量の補正の要否を判定し、補正が必要だと判定された場合に、補正された添加量の前記灰融点調整材が添加されるようフィードバック制御する請求項1に記載のバイオマスガス化装置の運転方法。 The method for operating a biomass gasification system according to claim 1, which obtains the internal state of the gasification furnace, judges whether or not the amount of the ash melting point adjuster needs to be corrected based on the internal state, and, if it is judged that correction is necessary, performs feedback control so that the corrected amount of the ash melting point adjuster is added.
  4.  前記ガス化炉の内部の状態は、前記ガス化炉内における最大ガス温度である請求項3に記載のバイオマスガス化装置の運転方法。 The method for operating a biomass gasification apparatus according to claim 3, wherein the internal condition of the gasification furnace is the maximum gas temperature within the gasification furnace.
  5.  前記ガス化炉の内部の状態は、前記ガス化炉内における炉壁温度である請求項3に記載のバイオマスガス化装置の運転方法。 The method for operating a biomass gasification apparatus according to claim 3, wherein the internal condition of the gasification furnace is the furnace wall temperature within the gasification furnace.
  6.  前記ガス化炉の内部の状態は、前記ガス化炉内における炉壁への灰付着の有無である請求項3に記載のバイオマスガス化装置の運転方法。 The method for operating a biomass gasification apparatus according to claim 3, wherein the internal condition of the gasification furnace is the presence or absence of ash adhesion to the furnace wall inside the gasification furnace.
  7.  前記灰融点調整材は、アルカリ土類金属の炭酸塩またはアルカリ土類金属の炭酸塩を含む鉱石である請求項1に記載のバイオマスガス化装置の運転方法。 The method for operating a biomass gasification system according to claim 1, wherein the ash melting point adjuster is an alkaline earth metal carbonate or an ore containing an alkaline earth metal carbonate.
  8.  前記灰融点調整材が炭酸カルシウムまたは炭酸カルシウムを含む鉱石であり、
     前記灰融点調整材の添加量は、前記バイオマス燃料に対して、炭酸塩換算で1.25重量%以上5重量%以下である請求項7に記載のバイオマスガス化装置の運転方法。
    The ash melting point adjuster is calcium carbonate or an ore containing calcium carbonate,
    8. The method for operating a biomass gasification system according to claim 7, wherein the amount of the ash melting point adjuster added is 1.25% by weight or more and 5% by weight or less in terms of carbonate relative to the biomass fuel.
  9.  前記灰融点調整材が炭酸マグネシウムまたは炭酸マグネシウムを含む鉱石であり、
     前記灰融点調整材の添加量は、前記バイオマス燃料に対して、炭酸塩換算で0.42重量%以上5重量%以下である請求項7に記載のバイオマスガス化装置の運転方法。
    The ash melting point adjuster is magnesium carbonate or an ore containing magnesium carbonate,
    8. The method for operating a biomass gasification system according to claim 7, wherein the amount of the ash melting point adjuster added is 0.42% by weight or more and 5% by weight or less in terms of carbonate relative to the biomass fuel.
  10.  バイオマス燃料をガス化するガス化炉と、
     前記ガス化炉内に前記バイオマス燃料を供給する燃料供給部と、
     前記燃料供給部の前記バイオマス燃料に灰融点調整材を添加する調整材添加部と、
     前記バイオマス燃料の性状に基づいて前記灰融点調整材の添加量を算出し、算出した前記添加量の前記灰融点調整材が前記バイオマス燃料に供給されるよう前記調整材添加部からの添加量を制御する制御部と、
    を備えたバイオマスガス化装置。
    a gasification furnace for gasifying biomass fuel;
    a fuel supply unit for supplying the biomass fuel into the gasification furnace;
    an adjuster adding unit that adds an ash melting point adjuster to the biomass fuel of the fuel supply unit;
    A control unit that calculates an amount of the ash melting point adjuster to be added based on the properties of the biomass fuel, and controls the amount of the ash melting point adjuster added from the adjuster adding unit so that the calculated amount of the ash melting point adjuster is supplied to the biomass fuel;
    A biomass gasification system equipped with:
  11.  前記ガス化炉の内部の状態を検出する検出部を備え、
     前記制御部は、前記検出部で検出した前記ガス化炉の内部の状態の情報に基づいて、前記灰融点調整材の添加量の補正の要否を判定し、補正が必要だと判定したされた場合に、補正された添加量の前記灰融点調整材が添加されるようフィードバック制御する請求項10に記載のバイオマスガス化装置。
     
    A detection unit for detecting an internal state of the gasification furnace is provided,
    The biomass gasification apparatus of claim 10, wherein the control unit determines whether or not the amount of ash melting point adjuster added needs to be corrected based on information about the internal state of the gasification furnace detected by the detection unit, and when it is determined that correction is necessary, performs feedback control so that the corrected amount of ash melting point adjuster is added.
PCT/JP2023/036292 2022-10-11 2023-10-04 Method for operating biomass gasifier, and biomass gasifier WO2024080212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163180A JP2024056361A (en) 2022-10-11 2022-10-11 Method for operating a biomass gasifier and biomass gasifier
JP2022-163180 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080212A1 true WO2024080212A1 (en) 2024-04-18

Family

ID=90669203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036292 WO2024080212A1 (en) 2022-10-11 2023-10-04 Method for operating biomass gasifier, and biomass gasifier

Country Status (2)

Country Link
JP (1) JP2024056361A (en)
WO (1) WO2024080212A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528399A (en) * 2000-12-21 2004-09-16 ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー Biomass gasification system and method
JP2008081638A (en) * 2006-09-28 2008-04-10 Tsukishima Kikai Co Ltd Method for gasifying woody biomass
JP2013103965A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Gasifier
JP2019138517A (en) * 2018-02-08 2019-08-22 三菱日立パワーシステムズ株式会社 Apparatus of determining condition controlling depositing amount of ash in combustion furnace, combustion system, and method of determining condition controlling depositing amount of ash
JP2021011566A (en) * 2019-07-05 2021-02-04 シン・エナジー株式会社 Molded fuel, and method of production and gasification of molded fuel
CN115466632A (en) * 2022-07-15 2022-12-13 陈松涛 Production method for increasing and homogenizing temperature of material bed by fixed bed high material bed continuous gasification furnace
WO2023095579A1 (en) * 2021-11-29 2023-06-01 三菱重工業株式会社 Combustion control method, combustion control device and combustion control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528399A (en) * 2000-12-21 2004-09-16 ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー Biomass gasification system and method
JP2008081638A (en) * 2006-09-28 2008-04-10 Tsukishima Kikai Co Ltd Method for gasifying woody biomass
JP2013103965A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Gasifier
JP2019138517A (en) * 2018-02-08 2019-08-22 三菱日立パワーシステムズ株式会社 Apparatus of determining condition controlling depositing amount of ash in combustion furnace, combustion system, and method of determining condition controlling depositing amount of ash
JP2021011566A (en) * 2019-07-05 2021-02-04 シン・エナジー株式会社 Molded fuel, and method of production and gasification of molded fuel
WO2023095579A1 (en) * 2021-11-29 2023-06-01 三菱重工業株式会社 Combustion control method, combustion control device and combustion control program
CN115466632A (en) * 2022-07-15 2022-12-13 陈松涛 Production method for increasing and homogenizing temperature of material bed by fixed bed high material bed continuous gasification furnace

Also Published As

Publication number Publication date
JP2024056361A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
Elled et al. Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels: Experimental data in comparison with predictions by a thermodynamic equilibrium model
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP5374453B2 (en) Boiler ash adhesion suppression method and ash adhesion suppression device
JP5255510B2 (en) Waste melting treatment method and waste melting treatment apparatus
WO2024080212A1 (en) Method for operating biomass gasifier, and biomass gasifier
JP2015075245A (en) Waste gasification melting furnace and waste gasification melting furnace operation method
JP4256378B2 (en) Control method and control apparatus for gasifier
JP4299841B2 (en) Coke dry fire extinguishing method and apparatus
TW397867B (en) Method for controlling a smelting reduction process
KR102144168B1 (en) Method for predicting injection effect of furnace pulverized coal
Ryabov et al. A study into the influence of different factors on the behavior of alkaline element concentrations that cause bed agglomeration
JP2015075246A (en) Waste gasification melting furnace and waste gasification melting furnace operation method
JPH0256566B2 (en)
JP2006125687A (en) Multiple-fuel combustion method and device
JP6299467B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
KR20000065241A (en) Control method of combustion of waste incinerator
JP3869669B2 (en) Coke dry fire extinguishing method and apparatus
JP7265162B2 (en) Method for reducing NOx in sintering exhaust gas
JP7477200B2 (en) Combustion system and combustion method
JP4366711B2 (en) Bubbling fluidized bed combustion furnace and its temperature control method
JP6965842B2 (en) Waste incinerator and waste incinerator method
JP3621805B2 (en) Combustion control method in fluidized bed incinerator
JP6299466B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JPH11101421A (en) Method of controlling waste feed speed of waste incinerator and waste incinerator
JPH0260928B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877217

Country of ref document: EP

Kind code of ref document: A1