WO2024080191A1 - Control device for autonomous vehicle, program, signal control device, traffic signal device, traffic signal system, signal control program, information notification device, and information notification program - Google Patents

Control device for autonomous vehicle, program, signal control device, traffic signal device, traffic signal system, signal control program, information notification device, and information notification program Download PDF

Info

Publication number
WO2024080191A1
WO2024080191A1 PCT/JP2023/036092 JP2023036092W WO2024080191A1 WO 2024080191 A1 WO2024080191 A1 WO 2024080191A1 JP 2023036092 W JP2023036092 W JP 2023036092W WO 2024080191 A1 WO2024080191 A1 WO 2024080191A1
Authority
WO
WIPO (PCT)
Prior art keywords
intersection
information
vehicle
autonomous vehicle
traffic
Prior art date
Application number
PCT/JP2023/036092
Other languages
French (fr)
Japanese (ja)
Inventor
正義 孫
Original Assignee
ソフトバンクグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022172347A external-priority patent/JP2024058513A/en
Application filed by ソフトバンクグループ株式会社 filed Critical ソフトバンクグループ株式会社
Publication of WO2024080191A1 publication Critical patent/WO2024080191A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to a control device, a program, a signal control device, a signal device, a signal system, a signal control program, an information notification device, and an information notification program for an autonomous vehicle.
  • Patent document 1 describes a vehicle with an autonomous driving function.
  • a control device for controlling a vehicle, the control device including an information acquisition unit that acquires a plurality of pieces of information detected by a sensor installed at a traffic light, and a control unit that controls the vehicle using the plurality of pieces of information acquired by the information acquisition unit and a trained model.
  • the control unit may control the vehicle in units of one billionth of a second using the plurality of pieces of information and the trained model.
  • the control unit may control the vehicle using a plurality of pieces of information detected by a sensor installed in the traffic light and the trained model when the vehicle is entering an intersection where the traffic light is installed, and may control the vehicle using a plurality of pieces of information detected by a sensor installed in the vehicle and the trained model when the vehicle is traveling on a road other than the intersection.
  • the control unit may control the vehicle using the multiple pieces of information detected by the sensor installed in the traffic light and the trained model when the vehicle is entering the intersection and the output value of the trained model when multiple pieces of information detected by the sensor installed in the traffic light are input to the trained model matches the output value of the trained model when multiple pieces of information detected by the sensor installed in the vehicle are input to the trained model.
  • a program for causing a computer to function as the information acquisition unit and the control unit.
  • a signal control device includes a first acquisition unit that acquires traffic conditions around the intersection from sensors installed around the intersection, a second acquisition unit that acquires a driving plan of an autonomous vehicle that is scheduled to pass through the intersection, a determination unit that determines whether a delay will occur in the driving plan of the autonomous vehicle when the autonomous vehicle passes through the intersection based on the traffic conditions acquired by the first acquisition unit, and a control unit that controls the traffic lights at the intersection so as to suppress the delay when the determination unit determines that the delay will occur.
  • the control unit may control the traffic lights at the intersection so that they remain green while the autonomous vehicle is passing through the intersection when the determination unit determines that the delay will occur.
  • the traffic lights at the intersection are controlled to suppress delays in the driving plan of the autonomous vehicle by keeping the traffic lights at the intersection green while the autonomous vehicle passes through the intersection. This ensures safety when the autonomous vehicle passes through the intersection while suppressing the time the traffic lights at the intersection are green from becoming longer than necessary, compared to when control is performed such as extending the time the traffic lights at the intersection are green for a certain period of time.
  • the autonomous vehicle in which the control unit controls the traffic lights at the intersection so as to suppress the delay may be an autonomous vehicle with a preset urgency level equal to or greater than a predetermined value.
  • this aspect it is possible to prevent delays in the driving plan for autonomous vehicles with an urgency level equal to or higher than a predetermined value, and by reducing the number of times that traffic lights at an intersection are controlled, it is also possible to reduce the number of vehicles other than autonomous vehicles with an urgency level equal to or higher than a predetermined value, whose driving may be affected by the control of traffic lights at an intersection.
  • the signal control device may further include a cooperative control unit that controls the traffic lights of multiple intersections through which the autonomous vehicle is scheduled to pass in sequence so as to suppress the delay when the determination unit determines that the delay will occur.
  • the traffic lights at multiple intersections that the autonomous vehicle is scheduled to pass through in sequence are each controlled, making it possible to eliminate the delay in the driving plan of the autonomous vehicle while the autonomous vehicle passes through the multiple intersections in sequence.
  • a traffic light device includes the traffic light control device and the traffic light, and is provided at each intersection.
  • the signal control device since the signal control device is included, it is possible to prevent delays in the driving plan of an autonomous vehicle.
  • a traffic light system includes the traffic light devices provided at a plurality of intersections, and a cooperative control device that controls the traffic lights at a plurality of intersections through which the autonomous vehicle is scheduled to pass in sequence, when the determination unit of any of the plurality of traffic light devices determines that the delay will occur, so as to suppress the delay.
  • the cooperative control device since the cooperative control device is included, it is possible to eliminate delays in the driving plan of the autonomous vehicle while the autonomous vehicle passes through the multiple intersections in sequence.
  • a signal control program causes a computer to execute processing including acquiring traffic conditions around an intersection from sensors installed around the intersection, acquiring a driving plan for an autonomous vehicle that is scheduled to pass through the intersection, determining whether or not a delay will occur in the driving plan for the autonomous vehicle when the autonomous vehicle passes through the intersection based on the acquired traffic conditions, and controlling the traffic lights at the intersection to reduce the delay if it is determined that a delay will occur.
  • This aspect makes it possible to prevent delays in the driving plan of an autonomous vehicle.
  • an information notification device includes an acquisition unit that acquires traffic conditions around an intersection from a sensor installed around the intersection, a generation unit that generates notification information for an autonomous vehicle that is about to enter the intersection based on the traffic conditions acquired by the acquisition unit, and a display control unit that displays the notification information generated by the generation unit as code information on a display unit installed around the intersection.
  • traffic conditions around the intersection are obtained from sensors installed around the intersection, and notification information is generated for an autonomous vehicle about to enter the intersection based on the obtained traffic conditions around the intersection.
  • the generated notification information is then displayed as code information on a display unit installed around the intersection. This allows the autonomous vehicle to obtain the notification information by photographing the display unit displaying the code information and decoding the code information contained in the photographed image.
  • notification information can be notified to an autonomous vehicle without using a mobile communications network, so information can be notified to an autonomous vehicle without being affected by the communication conditions of the mobile communications network.
  • the generating unit may generate, as the notification information, information including driving instruction information that instructs each of a plurality of autonomous vehicles that are about to enter the intersection to drive.
  • the notification information includes multiple pieces of driving instruction information that instruct each of the multiple autonomous vehicles about to enter the intersection to drive, and this notification information is displayed as code information on the display unit. In this way, by displaying a single piece of notification information as code information on the display unit, driving instructions can be given to each of the multiple autonomous vehicles about to enter the intersection.
  • the generating unit may generate the driving instruction information taking into consideration traffic conditions in blind spot areas around the intersection that are blind spots for the autonomous vehicle.
  • the traffic conditions in the blind spot area around the intersection that is a blind spot for the autonomous vehicle are taken into consideration. This makes it possible to give driving instructions to the autonomous vehicle that take into account the traffic conditions in the blind spot area that is a blind spot for the autonomous vehicle.
  • the display control unit may cause the display unit to display a two-dimensional barcode as the code information.
  • a two-dimensional code is displayed on the display unit as code information, so the amount of notification information that can be displayed on the display unit as code information can be increased compared to an embodiment in which a one-dimensional code is displayed as code information.
  • a traffic light device includes the information notification device and a traffic light, and is provided at each intersection.
  • information notification device since the information notification device is included, information can be notified to an autonomous vehicle without being affected by the communication conditions of the mobile communication network.
  • an information notification program causes a computer to execute a process including acquiring traffic conditions around an intersection from a sensor installed around the intersection, generating notification information for an autonomous vehicle that is about to enter the intersection based on the acquired traffic conditions, and displaying the generated notification information as code information on a display unit installed around the intersection.
  • information can be sent to autonomous vehicles without being affected by the communication conditions of the mobile communication network.
  • FIG. 2 is a diagram for explaining a blind spot of a vehicle.
  • FIG. 2 is a diagram for explaining a sensor installed in a traffic light.
  • a schematic diagram of Perfect Bell Curves is shown.
  • FIG. 1 A block diagram showing an example of the functional configuration of a Central Brain.
  • FIG. 1 is a diagram for explaining a trained model.
  • This is a block diagram showing an example of the hardware configuration of a computer that functions as a Central Brain and a control device.
  • FIG. 11 is a block diagram showing a schematic configuration of a signal control system according to a second embodiment. 4 is a flowchart showing an example of a signal control process. 5 is a timing chart for explaining the operation of the signal control process. 10 is a flowchart showing another example of the signal control process.
  • FIG. 13 is a block diagram showing a schematic configuration of an information notification system according to a third embodiment.
  • FIG. 11 is a front view showing a traffic light and a display unit according to a third embodiment.
  • Figure 1 shows an overview of the risk prediction capabilities of the AI of the ultra-high performance autonomous driving according to this embodiment.
  • multiple types of sensor information are converted into AI data and stored in the cloud.
  • the AI predicts and judges the best mix of situations every nanosecond, optimizing the operation of the vehicle.
  • FIG. 2 shows a schematic diagram of the Central Brain in the ultra-high performance autonomous driving according to this embodiment.
  • the Central Brain is an example of a control device that controls a Level 6 autonomous vehicle.
  • Level 6 is a level that represents automated driving, and is equivalent to a level higher than Level 5, which represents fully automated driving. Although Level 5 represents fully automated driving, it is at the same level as a human driving, and there is still a chance of accidents occurring. Level 6 represents a level higher than Level 5, and is equivalent to a level where the chance of accidents occurring is lower than at Level 5.
  • examples of sensors installed in the vehicle include radar, LiDAR, high-pixel, telephoto, ultra-wide-angle, 360-degree, high-performance cameras, vision recognition, minute sounds, ultrasound, vibration, infrared rays, ultraviolet rays, electromagnetic waves, temperature, humidity, spot AI weather forecasts, high-precision multi-channel GPS, low-altitude satellite information, and long-tail incident AI data.
  • Long-tail incident AI data is trip data for vehicles that have Level 5 implemented.
  • Sensor information collected from multiple types of sensors includes the shift in the center of gravity of body weight, detection of road material, detection of outside air temperature, detection of outside air humidity, detection of the up, down, side, and diagonal inclination angle of a slope, detection of how frozen the road is, detection of the amount of moisture, detection of the material of each tire, wear condition, detection of air pressure, road width, whether or not overtaking is prohibited, oncoming vehicles, information on the vehicle models in front and behind, the cruising state of those vehicles, and surrounding conditions (birds, animals, soccer balls, wrecked vehicles, earthquakes, housework, wind, typhoons, heavy rain, light rain, blizzards, fog, etc.), and in this embodiment, these detections are performed every nanosecond.
  • the Central Brain may use this information to match the weather forecast with the highest accuracy rate for the entire road + minimum spot by AI.
  • the Central Brain may also use this information to match with the location information of other vehicles.
  • the Central Brain may also use this information to match with the best estimated vehicle type (matching the remaining amount and speed for that journey every nanosecond).
  • the Central Brain may also use this information to match with the mood of the music, etc., that the passengers are listening to.
  • the Central Brain may also use this information to instantly rearrange the conditions to change the desired mood.
  • the Central Brain may, for example, upload AI data to the cloud when the vehicle is charging.
  • a Data Lake may be formed, and the AI may analyze the data and upload it to the cloud in a constantly updated state.
  • a sensor mounted on a vehicle can detect objects such as other vehicles at long distances in a straight line along the direction of travel, but at intersections and other locations there are blind spots where the sensor cannot detect objects.
  • the solid-line rectangle surrounded by the dash-dotted rectangle represents the vehicle on which the sensor is mounted, and the dash-dotted arrow represents the direction of travel of that vehicle.
  • the shaded area represents the blind spot where the sensor mounted on the vehicle cannot detect objects.
  • sensors 110 capable of communicating with the Central Brain of a Level 6 autonomous vehicle are installed at all traffic lights 100 in the city.
  • sensors 110 include radar, LiDAR, and high-pixel, telephoto, ultra-wide-angle, 360-degree, high-performance digital cameras.
  • the sensor 110 is installed at the top of the traffic light 100, but the installation location of the sensor 110 is not limited to the top of the traffic light 100.
  • the sensor 110 may be installed on the side of the traffic light 100 or on the pillar part of the traffic light 100.
  • the sensor 110 collects information detected in areas that are blind spots for autonomous vehicles, and transmits information about road conditions to Level 6 autonomous vehicles via wireless communication.
  • the Central Brain acquires multiple pieces of information detected by sensors 110 installed in the traffic lights 100, and uses the acquired information and AI to control the vehicle.
  • Central Brain may use both software and hardware as a method to optimize vehicle traffic.
  • Central Brain uses AI to best mix multiple pieces of information detected by sensors 110 installed on traffic lights 100, cloud-stored information, and vehicle sensor information, and the AI makes decisions every nanosecond to realize automatic driving that meets the passengers' needs.
  • the vehicle micro-controls the motor's rotation output every 1/1 billion second.
  • the vehicle is equipped with electricity and a motor that can communicate and be controlled in nanoseconds.
  • AI predicts crises, making it possible to make a perfect stop without the need for braking and without spilling a cup of water. It also consumes low power and does not generate brake friction.
  • Figure 5 shows an outline of the Perfect Speed Control achieved by the control of the Central Brain in this embodiment.
  • the principle shown in Figure 5 is an index for calculating the braking distance of the vehicle, and is controlled by this basic equation. In the system in this embodiment, because there is ultra-high performance input data, calculations can be made with a beautiful bell curve.
  • Figure 6 shows a schematic diagram of the Perfect Bell Curves achieved by the control of the Central Brain in this embodiment.
  • the computational speed required to realize ultra-high performance autonomous driving is 1 million TOPS.
  • the Central Brain may realize Perfect Cruise Control.
  • the Central Brain may perform control according to the wishes of the occupants aboard the vehicle. Examples of passenger preferences include “shortest time,” “longest battery remaining,” “I want to avoid car sickness as much as possible,” “I want to feel the most G-forces (safely),” “I want to enjoy the scenery with a mix of the above,” “I want to experience a different scenery than last time,” “For example, I want to retrace the memories of a road I took with someone years ago,” “I want to minimize the chance of an accident,” etc.
  • the Central Brain consults with passengers about various other conditions, and executes the perfect mix with the vehicle based on the number of passengers, weight, position, and shift in the center of gravity of the weight (calculated every nanosecond), detection of the road material every nanosecond, detection of the outside air temperature every nanosecond, detection of the outside air humidity every nanosecond, and the total of the above conditions selected every nanosecond.
  • the central brain may consider and execute things like “up, down, side, and diagonal slope of the road,” “matching with the weather forecast with the highest accuracy rate for the entire route + the smallest spot by AI,” “matching with the location information of other cars every nanosecond,” “matching with the best estimated car model (matching the remaining amount and speed on that route every nanosecond), “matching with the mood of the music the passengers are listening to, etc.,” “instantaneous reconfiguration of conditions when the desired mood changes,” “estimation of the optimal mix of the road's freezing condition, moisture content, wear of the material of each tire (4, 2, 8, 16 tires, etc.), air pressure, and the remaining road,” “lane width, angle, and whether it is a no-passing lane on the road at that time,” “vehicle models in the oncoming lane and in front and behind and the cruising state of those cars (every nanosecond),” and “best mix of all other conditions.”
  • the position that should be taken within the width of each lane is different and not the center. It varies depending on the speed, angle and road information at the time. For example, it performs best probability inference matching of flying birds, animals, oncoming cars, flying soccer balls, children, accident cars, earthquakes, fires, wind, typhoons, heavy rain, light rain, blizzards, fog and other influences every nanosecond.
  • a perfect match is then performed using the capabilities of the current version of the Central Brain and the latest updated information of the brain cloud accumulated up to that point.
  • ultra-high performance autonomous driving requires 1 million TOPs to provide the best battery power management and temperature AI synchronized burst chilling function at that time.
  • Figures 7 to 13 are schematic diagrams of Perfect Cruising.
  • FIG. 14 is a block diagram showing an example of the functional configuration of the Central brain.
  • the Central brain includes an information acquisition unit 30, a judgment unit 32, an inference unit 34, and a control unit 36.
  • a trained model 40 is stored in a storage device included in the Central brain. The trained model 40 realizes the functions of the AI.
  • the trained model 40 receives sensor information detected by various sensors as input, and outputs indexed values (hereinafter referred to as "index values") related to vehicle control as control information for controlling the operation of the vehicle.
  • the trained model 40 is a model obtained by machine learning, more specifically, deep learning.
  • the information acquisition unit 30 acquires multiple pieces of information detected by sensors mounted on the vehicle.
  • the information acquisition unit 30 also acquires multiple pieces of information detected by sensors 110 installed in the traffic lights 100.
  • the determination unit 32 determines whether the vehicle is entering an intersection where a traffic light 100 is installed, or whether the vehicle is traveling on a road other than an intersection. For this determination, the determination unit 32 uses, for example, the position information of the vehicle measured by a GPS device mounted on the vehicle and map information. Note that the determination unit 32 may use, for this determination, an image of the surroundings of the vehicle taken by a digital camera included in the sensor group mounted on the vehicle. Furthermore, the determination unit 32 may determine that the vehicle is entering an intersection when communication with the sensor 110 installed on the traffic light 100 becomes possible.
  • the inference unit 34 inputs the multiple pieces of information detected by the sensor 110 installed on the traffic light 100 acquired by the information acquisition unit 30 to the trained model 40.
  • the inference unit 34 inputs the multiple pieces of information detected by the sensor mounted on the vehicle acquired by the information acquisition unit 30 to the trained model 40.
  • the trained model 40 outputs multiple index values according to the multiple pieces of input information.
  • the index values are an example of output values of the trained model 40.
  • the inference unit 34 infers an index value based on multiple sensor information.
  • This inference unit 34 can obtain an accurate index value by performing multivariate analysis using the integral method shown in formula (1) below (see formula (2)) using the computing power of Level 6 on data collected every nanosecond from a large number of sensor groups, etc. More specifically, while calculating the integral value of the delta values of various Ultra High Resolutions using the computing power of Level 6, it can obtain the indexed value of each variable at the edge level and in real time, and obtain the most probabilistic value of the result that will occur in the next nanosecond.
  • DL indicates deep learning
  • A, B, C, D, ..., N indicate air resistance, road resistance, road elements (e.g., garbage), and slip coefficient, etc.
  • the indexed values of each variable obtained by the inference unit 34 can be further refined by increasing the number of Deep Learning rounds. For example, more accurate index values can be calculated using a huge amount of data such as tires, motor rotation, steering angle, road material, weather, garbage, effects of quadratic deceleration, slippage, and steering and speed control methods for losing balance and regaining balance.
  • the control unit 36 may execute driving control of the vehicle based on the multiple index values identified by the inference unit 34.
  • This control unit 36 may be capable of realizing automatic driving control of the vehicle.
  • the control unit 36 may obtain the most probabilistic value of the result that will occur in the next nanosecond from the multiple index values, and perform driving control of the vehicle taking into consideration the probabilistic value.
  • This control may be performed, for example, using a lookup table in which combinations of multiple index values are associated with control parameters that control the driving of the vehicle.
  • This control may also be performed, for example, using a trained model that uses multiple index values as input and outputs control parameters that control the driving of the vehicle. Examples of the control parameters include parameters that control the speed, acceleration, and traveling direction of the vehicle.
  • the central brain repeatedly executes the flowchart shown in Figure 16.
  • step S10 the determination unit 32 determines whether the vehicle is entering an intersection. If the determination in step S10 is positive, the process proceeds to step S12. In step S12, the information acquisition unit 30 acquires multiple pieces of information detected by the sensor 110 installed in the traffic light 100.
  • step S14 the inference unit 34 infers multiple index values by inputting the multiple pieces of information detected by the sensor 110 installed in the traffic light 100 obtained in step S12 into the trained model 40, as described above.
  • step S16 the control unit 36 executes driving control of the host vehicle based on the multiple index values identified in step S14, as described above.
  • step S10 determines that the vehicle is traveling on a road other than an intersection
  • the determination in step S10 is negative, and the process proceeds to step S18.
  • step S18 the information acquisition unit 30 acquires multiple pieces of information detected by sensors mounted on the vehicle.
  • step S20 the inference unit 34 infers multiple index values by inputting the multiple pieces of information detected by the sensors mounted on the vehicle and acquired in step S18 into the trained model 40, as described above.
  • step S22 the control unit 36 executes driving control of the vehicle based on the multiple index values identified in step S20, as described above.
  • the control unit 36 may control the host vehicle using the multiple pieces of information detected by the sensor 110 installed in the traffic light 100 and the learned model 40. In this case, it is possible to prevent the behavior of the host vehicle from changing suddenly when the host vehicle enters an intersection. If these output values do not match, the control unit 36 continues to control the host vehicle using the multiple pieces of information detected by the sensor mounted on the host vehicle and the learned model 40.
  • sensors 110 capable of communicating with the Central Brain of a Level 6 autonomous vehicle are installed at all traffic lights 100 in the city.
  • the Central Brain of a Level 6 autonomous vehicle can obtain information about blind spots from the sensors 110.
  • FIG. 17 shows a schematic diagram of an example of a hardware configuration of a computer 1200 functioning as a Central Brain, which is an example of a control device.
  • a program installed on the computer 1200 can cause the computer 1200 to function as one or more "parts" of the device according to this embodiment, or to execute operations or one or more "parts” associated with the device according to this embodiment, and/or to execute a process or steps of the process according to this embodiment.
  • Such a program can be executed by the CPU 1212 to cause the computer 1200 to execute specific operations associated with some or all of the blocks of the flowcharts and block diagrams described in this specification.
  • the computer 1200 includes a CPU 1212, a RAM 1214, and a graphics controller 1216, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes input/output units such as a communication interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220.
  • the DVD drive may be a DVD-ROM drive, a DVD-RAM drive, etc.
  • the storage device 1224 may be a hard disk drive, a solid state drive, etc.
  • the computer 1200 also includes a ROM 1230 and a legacy input/output unit such as a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer or the like provided in the RAM 1214 or into itself, and causes the image data to be displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224.
  • the IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.
  • ROM 1230 stores therein a boot program or the like executed by computer 1200 upon activation, and/or a program that depends on the hardware of computer 1200.
  • I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
  • the programs are provided by a computer-readable storage medium such as a DVD-ROM or an IC card.
  • the programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212.
  • the information processing described in these programs is read by computer 1200, and brings about cooperation between the programs and the various types of hardware resources described above.
  • An apparatus or method may be constructed by realizing the operation or processing of information according to the use of computer 1200.
  • CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program.
  • communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, a DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.
  • the CPU 1212 may also cause all or a necessary portion of a file or database stored in an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
  • an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc.
  • CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the instruction sequence of the program, and write back the results to RAM 1214.
  • CPU 1212 may also search for information in a file, database, etc. in the recording medium.
  • CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
  • the above-described programs or software modules may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby providing the programs to the computer 1200 via the network.
  • the blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process where an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and “parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium.
  • the dedicated circuitry may include digital and/or analog hardware circuitry and may include integrated circuits (ICs) and/or discrete circuits.
  • the programmable circuitry may include reconfigurable hardware circuitry including AND, OR, XOR, NAND, NOR, and other logical operations, flip-flops, registers, and memory elements, such as, for example, field programmable gate arrays (FPGAs) and programmable logic arrays (PLAs).
  • FPGAs field programmable gate arrays
  • PDAs programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions that are executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon comprises an article of manufacture that includes instructions that can be executed to create means for performing the operations specified in the flowchart or block diagram.
  • Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer-readable storage media may include floppy disks, diskettes, hard disks, random access memories (RAMs), read-only memories (ROMs), erasable programmable read-only memories (EPROMs or flash memories), electrically erasable programmable read-only memories (EEPROMs), static random access memories (SRAMs), compact disk read-only memories (CD-ROMs), digital versatile disks (DVDs), Blu-ray disks, memory sticks, integrated circuit cards, and the like.
  • RAMs random access memories
  • ROMs read-only memories
  • EPROMs or flash memories erasable programmable read-only memories
  • EEPROMs electrically erasable programmable read-only memories
  • SRAMs static random access memories
  • CD-ROMs compact disk read-only memories
  • DVDs digital versatile disks
  • Blu-ray disks memory sticks, integrated circuit cards, and the like.
  • the computer readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • ISA instruction set architecture
  • machine instructions machine-dependent instructions
  • microcode firmware instructions
  • state setting data or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • the computer-readable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, either locally or over a local area network (LAN), a wide area network (WAN) such as the Internet, so that the processor of the general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, executes the computer-readable instructions to generate means for performing the operations specified in the flowcharts or block diagrams.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.
  • FIG. 18 shows a traffic light system 10 according to the second embodiment.
  • the traffic light system 10 includes a plurality of traffic light devices 12 installed at each intersection of roads, a plurality of autonomous vehicles 16, and a traffic light control device 22.
  • the traffic light device 12 includes the traffic light 100 and sensor 110 described in the first embodiment, and a wireless communication unit 14 for wireless communication with the traffic light control device 22.
  • the sensor 110 in the second embodiment is capable of detecting traffic conditions such as an emergency vehicle (e.g., a police vehicle, an ambulance, a fire engine, etc. traveling with a siren sounding) about to pass through the intersection where the traffic light device 12 is installed.
  • an emergency vehicle e.g., a police vehicle, an ambulance, a fire engine, etc. traveling with a siren sounding
  • the autonomous vehicle 16 includes a driving plan creation unit 18 and a wireless communication unit 20 for wireless communication with the signal control device 22.
  • the driving plan creation unit 18 is realized by the Central Brain described in the first embodiment executing a specified program.
  • the driving plan creation unit 18 is triggered when the destination of the autonomous vehicle 16 is set, and performs processing to subdivide the route to the set destination into driving plans such as going straight at intersections and turning right or left, and to create a driving plan that also specifies the scheduled execution time of each driving plan.
  • the Central Brain controls the autonomous vehicle 16 to drive autonomously according to the driving plan created by the driving plan creation unit 18.
  • the signal control device 22 includes a CPU, memories such as ROM and RAM, a non-volatile storage unit such as an HDD and SSD, and a wireless communication unit 43.
  • a signal control program is stored in the storage unit.
  • the signal control device 22 functions as a first acquisition unit 24, a second acquisition unit 26, a determination unit 28, a control unit 41, and a cooperative control unit 42 by the CPU executing the signal control program, and performs the signal control process (FIG. 19) described below.
  • the signal control device 22 is an example of a signal control device in this disclosure.
  • the first acquisition unit 24 acquires traffic conditions around the intersection from sensors 110 installed around the intersection.
  • the second acquisition unit 26 acquires a driving plan for the autonomous vehicle 16 that is scheduled to pass through the intersection.
  • the determination unit 28 determines whether a delay in the driving plan of the autonomous vehicle 16 will occur when the autonomous vehicle 16 passes through the intersection, based on the traffic conditions around the intersection acquired by the first acquisition unit 24.
  • the control unit 41 controls the traffic lights 100 at the intersection so as to suppress delays in the driving plan of the autonomous vehicle 16 when the autonomous vehicle 16 passes through the intersection.
  • the cooperative control unit 42 controls each of the traffic lights 100 at multiple intersections through which the autonomous vehicle 16 is scheduled to pass in sequence so as to suppress delays in the driving plan of the autonomous vehicle 16.
  • the signal control device 22 constantly monitors the position and speed of each autonomous vehicle 16 by periodically communicating with each autonomous vehicle 16 traveling on the road. The signal control device 22 then performs the signal control process shown in FIG. 19 when an autonomous vehicle 16 approaches within a predetermined distance of an intersection where a signal device 12 is installed (hereinafter referred to as the intersection to be controlled).
  • step 50 of the signal control process the first acquisition unit 24 of the signal control device 22 acquires from the sensor 110 the traffic conditions at the intersection to be controlled, such as whether an emergency vehicle is about to pass through the intersection to be controlled.
  • the second acquisition unit 26 acquires a driving plan from the autonomous vehicle 16 that is scheduled to pass through the controlled intersection.
  • the driving plan acquired by the second acquisition unit 26 from the autonomous vehicle 16 includes information on the planned driving (straight ahead/left turn/right turn) of the autonomous vehicle 16 at the controlled intersection and the planned execution time of the driving plan (scheduled time of passing through the controlled intersection).
  • FIG. 20 shows an example of a driving plan for the autonomous vehicle 16 acquired by the second acquisition unit 26, labeled as the "initial driving plan.”
  • This "initial driving plan” is a driving plan that allows the autonomous vehicle 16 to pass through the intersection to be controlled without waiting for the traffic light while the traffic light 100 at the intersection to be controlled is green.
  • step 54 the determination unit 28 calculates the time at which the autonomous vehicle 16 will pass through the intersection to be controlled, based on the traffic conditions at the intersection to be controlled acquired by the first acquisition unit 24 in step 50.
  • step 56 the determination unit 28 determines whether the intersection passing time calculated in step 54 is delayed by a predetermined time or more from the driving plan of the autonomous vehicle 16 (scheduled time to pass through the intersection to be controlled).
  • step 58 is skipped and the signal control process ends.
  • the time required to pass the controlled intersection will include the time to wait for the emergency vehicle to pass and the time to wait for the traffic light, as shown in FIG. 20 as "Actual driving plan estimated from surrounding traffic conditions", as an example.
  • the time calculated in step 54 is delayed by a predetermined time or more with respect to the driving plan of the autonomous vehicle 16 (scheduled time to pass the controlled intersection), and the determination in step 56 is affirmative, and the process proceeds to step 58.
  • step 58 the control unit 41 controls the traffic light 100 at the controlled intersection so that the traffic light 100 at the controlled intersection is kept green while the autonomous vehicle 16 passes through the controlled intersection (see also "traffic light color after control” in FIG. 20), and ends the signal control process.
  • the control unit 41 controls the traffic light 100 at the controlled intersection so that the traffic light 100 at the controlled intersection is kept green while the autonomous vehicle 16 passes through the controlled intersection (see also "traffic light color after control” in FIG. 20), and ends the signal control process.
  • the time required to pass through the controlled intersection is shortened by the time spent waiting for the traffic light (see also “delay suppression (t2)"), and delays in the driving plan of the autonomous vehicle 16 are suppressed.
  • step 60 the cooperative control unit 42 determines whether or not the delay in the travel plan of the autonomous vehicle 16 has been resolved following the control of the traffic light 100 at the intersection to be controlled in step 58. If the determination in step 60 is positive, the signal control process ends.
  • step 60 determines whether the traffic light 100 at the next intersection is maintained at a green light while the autonomous vehicle 16 passes through the next intersection.
  • step 62 the cooperative control unit 42 controls the traffic light 100 at the next intersection so that the traffic light 100 at the next intersection is maintained at a green light while the autonomous vehicle 16 passes through the next intersection.
  • step 62 the process returns to step 60, and steps 60 and 62 are repeated until the determination in step 60 is positive. In this way, the traffic lights 100 at multiple intersections that the autonomous vehicle 16 passes through in sequence are cooperatively controlled so that delays in the driving plan of the autonomous vehicle 16 are eliminated.
  • the first acquisition unit 24 of the signal control device 22 acquires the traffic conditions around the intersection to be controlled from the sensor 110 installed around the intersection to be controlled, and the second acquisition unit 26 acquires the driving plan of the autonomous vehicle 16 that is scheduled to pass through the intersection to be controlled.
  • the determination unit 28 determines whether or not a delay will occur in the driving plan of the autonomous vehicle 16 when the autonomous vehicle 16 passes through the intersection to be controlled, based on the traffic conditions acquired by the first acquisition unit 24. Then, when the determination unit 28 determines that the delay will occur, the control unit 41 controls the traffic light 100 of the intersection to be controlled so that the delay is suppressed. This makes it possible to suppress delays in the driving plan of the autonomous vehicle 16, and to suppress the imposition of a large load, such as re-creating a driving plan, on the on-board computer (Central Brain) that performs autonomous driving control, etc., while driving.
  • a large load such as re-creating a driving plan, on the on-board computer (Central Brain) that performs autonomous driving control, etc.
  • the control unit 41 controls the traffic light 100 at the controlled intersection so that the traffic light 100 at the controlled intersection is maintained at a green light while the autonomous vehicle 16 passes through the controlled intersection. This ensures safety when the autonomous vehicle 16 passes through the controlled intersection, while preventing the traffic light at the controlled intersection from being green for an unnecessarily long time, compared to when control is performed such as extending the time that the traffic light 100 at the controlled intersection is green for a certain period of time.
  • the cooperative control unit 42 controls the traffic lights 100 at multiple intersections through which the autonomous vehicle 16 is scheduled to pass in sequence so as to suppress the delay ( FIG. 21 ). This makes it possible to eliminate delays in the driving plan of the autonomous vehicle 16 while the autonomous vehicle 16 passes through multiple intersections in sequence.
  • the process of controlling the traffic lights 100 at the intersection to be controlled when the driving plan of the autonomous vehicle 16 is delayed is performed for all autonomous vehicles 16 passing through the intersection to be controlled.
  • an urgency level may be set in advance for each autonomous vehicle 16, and the process of controlling the traffic lights 100 at the intersection to be controlled when the driving plan of the autonomous vehicle 16 is delayed may be performed for autonomous vehicles 16 with an urgency level equal to or higher than a predetermined value. In this way, for example, by setting the urgency level of an autonomous vehicle 16 transporting a sick person to a predetermined value or higher, it is possible to preferentially suppress delays in the driving plan of the autonomous vehicle 16.
  • a case where the autonomous vehicle 16 encounters an emergency vehicle at an intersection has been described as an example of a traffic situation in which a delay in the driving plan of the autonomous vehicle 16 occurs.
  • the present disclosure is not limited to this, and other examples of traffic situations in which a delay in the driving plan of the autonomous vehicle 16 occurs include a case where a pedestrian is present that interferes with the autonomous vehicle 16 when the autonomous vehicle 16 turns right or left at an intersection.
  • one signal control device 22 is provided for multiple signal devices 12, but the present disclosure is not limited to this.
  • a signal control device 22 including each functional unit (first acquisition unit 24, second acquisition unit 26, judgment unit 28, and control unit 41) other than the cooperative control unit 42 may be provided for each intersection corresponding to each signal device 12.
  • the device (signal device 12 and signal control device 22) provided for each intersection is an example of a signal device according to the present disclosure.
  • one cooperative control device functioning as the cooperative control unit 42 may be provided for multiple traffic light devices (signal device 12 and signal control device 22).
  • the traffic light system 10 in the embodiment in which this cooperative control device is provided is an example of a traffic light system according to the present disclosure.
  • FIG. 22 shows an information notification system 210 according to the third embodiment.
  • the information notification system 210 includes a plurality of traffic light devices 211 installed at each intersection of a road, and a plurality of autonomous vehicles 224 traveling on the road.
  • the traffic light device 211 includes the traffic light 100 and sensor 110 described in the first embodiment, a display unit 212, and an information notification device 214.
  • the sensor 110 was configured to be capable of wireless communication with the Central Brain of the autonomous vehicle 224, but the sensor 110 in this third embodiment may omit the function of wireless communication with the autonomous vehicle 224, etc.
  • the display unit 212 is installed near the traffic light 100, and has a resolution that allows it to display a specified two-dimensional code. Note that while FIG. 23 shows only one display unit 212, a display unit 212 (and traffic light 100) is provided for each road with a different approach direction to the intersection. For example, as shown in FIG. 24, in the case of an intersection where a road running in an east-west direction intersects with a road running in a north-south direction, a separate display unit 212 is provided for each of the approach directions to the intersection: "E (East)", “W (West)", “S (South)” and "N (North)".
  • the information notification device 214 includes a CPU, memory such as ROM or RAM, and a non-volatile storage unit such as an HDD or SSD, and an information notification program is stored in the storage unit.
  • the information notification device 214 functions as an acquisition unit 216, a generation unit 218, and a display control unit 220 by the CPU executing the information notification program, and performs the information notification process (FIG. 25) described below.
  • the information notification device 214 is an example of an information notification device related to the present disclosure.
  • the acquisition unit 216 acquires traffic conditions around the intersection from sensors 110 installed around the intersection.
  • the generation unit 218 generates notification information for an autonomous vehicle 224 about to enter the intersection based on the traffic conditions around the intersection acquired by the acquisition unit 216.
  • the display control unit 220 then displays the notification information generated by the generation unit 218 as code information (a two-dimensional code in this third embodiment) on a display unit 212 installed around the intersection.
  • the autonomous vehicle 224 includes a camera 226 capable of capturing an image of the display unit 212, and an autonomous driving control unit 228.
  • the autonomous driving control unit 228 is realized by the Central Brain described in the first embodiment executing a predetermined program.
  • the autonomous driving control unit 228 acquires notification information by decoding code information displayed in an area of the image captured by the camera 226 that corresponds to the display unit 212.
  • the autonomous driving control unit 228 (Central Brain) then controls the autonomous vehicle 224 to travel autonomously in accordance with the acquired notification information (more specifically, driving instruction information for the vehicle contained in the notification information).
  • the information notification process shown in FIG. 25 is a process for an autonomous vehicle 224 that enters an intersection from a specific entry direction (hereinafter, referred to as entry direction X), and the information notification device 214 also performs the information notification process of FIG. 25 for entry directions other than entry direction X.
  • step 250 of the information notification process the acquisition unit 216 of the information notification device 214 acquires from the sensor 110 the traffic conditions at the intersection where the traffic light device 211 is installed (hereinafter simply referred to as the "intersection") and its surroundings.
  • the generation unit 218 identifies an autonomous vehicle 224 that is about to enter the intersection from the entry direction X based on the traffic conditions acquired in step 250, and identifies information about each of the identified autonomous vehicles 224 (ID, position, vehicle speed, direction of travel (straight ahead/right turn/left turn), etc.).
  • ID information about each of the identified autonomous vehicles 224
  • the ID of the autonomous vehicle 224 for example, a character string written on the number plate (license plate) can be applied.
  • the direction of travel of the autonomous vehicle 224 can be identified, for example, from whether or not the turn signal lamp is flashing.
  • the autonomous vehicle 224 is provided with a lamp in a position that can be identified from the outside, such as on the roof, and the lamp is turned on when the autonomous driving control unit 228 is performing autonomous driving.
  • the generation unit 218 determines whether or not a lamp is provided on the roof or the like and whether or not this lamp is turned on for each vehicle that is about to enter the intersection from the entry direction X, thereby identifying the autonomous vehicle 224 that is about to enter the intersection from the entry direction X.
  • the generation unit 218 identifies the traffic conditions in a blind spot area (e.g., the area shown by diagonal lines in FIG. 3) that is a blind spot for a vehicle entering the intersection from the approach direction X, based on the traffic conditions acquired in step 250.
  • the traffic conditions in this blind spot area include, for example, information on the presence or absence or number, position, traveling direction, and moving speed of vehicles, pedestrians, and other traffic participants in the blind spot area.
  • step 256 the generation unit 218 generates driving instruction information for each autonomous vehicle 224 based on the information about the autonomous vehicle 224 that is about to enter the intersection from the approach direction X identified in step 252 and the traffic conditions in the blind spot area identified in step 254.
  • the generation unit 218 determines whether or not each of the autonomous vehicles 224 that will soon enter the intersection from the entry direction X and whose traveling direction is "straight ahead" can pass through the intersection while the intersection has a green light when traveling at its current vehicle speed.
  • the generation unit 218 generates driving notification information instructing the first autonomous vehicle 224 to "keep the current vehicle speed while traveling," and for a second autonomous vehicle 224 that has been determined to be unable to pass through the intersection while the intersection has a green light, the generation unit 218 generates driving notification information instructing the second autonomous vehicle 224 to "slow down and stop before the intersection.”
  • the driving notification information for each autonomous vehicle 224 includes the ID of the corresponding autonomous vehicle 224 as information.
  • the generation unit 218 determines whether or not the autonomous vehicles 224 that are about to enter the intersection from the entry direction X and whose travel direction is "turn right” or “turn left” will interfere with pedestrians or the like in a blind spot when turning right or left.
  • the generation unit 218 then generates driving notification information for a third autonomous vehicle 224 that is determined not to interfere with pedestrians or the like in a blind spot when turning right or left, instructing the vehicle to "slowly pass through the crosswalk when turning right or left,” and generates driving notification information for a fourth autonomous vehicle 224 that is determined to interfere with pedestrians or the like in a blind spot when turning right or left, instructing the vehicle to "stop temporarily before the crosswalk when turning right or left.”
  • step 258 the display control unit 220 generates a two-dimensional code that encodes the notification information, including driving instruction information, generated in step 256 for each autonomous vehicle 224 that is about to enter the intersection from the entry direction X. Then, in step 260, the display control unit 220 displays the two-dimensional code generated in step 258 on the display unit 212 for the autonomous vehicle 224 that is about to enter the intersection from the entry direction X, and ends the information notification process.
  • the code information when the code information is displayed on the display unit 212 and notified to the autonomous vehicle 224, if the color of the traffic light 100 changes from blue to yellow to red, the code information is changed to match the color of the traffic light 100.
  • the timing for changing the code information displayed on the display unit 212 may be simultaneous with the color change of the traffic light 100, or may be a predetermined time before the color change of the traffic light 100.
  • the autonomous driving control unit 228 obtains notification information by decoding the code information displayed in the area of the image captured by the camera 226 that corresponds to the display unit 212.
  • the autonomous driving control unit 228 then extracts driving instruction information for the vehicle itself from the ID included in the obtained notification information, and controls the autonomous vehicle 224 to drive autonomously in accordance with the extracted driving instruction information.
  • the first autonomous vehicle 224 described above is controlled to "keep driving at the current vehicle speed" in accordance with the driving instruction information for its own vehicle
  • the second autonomous vehicle 224 described above is controlled to "slow down and stop before the intersection” in accordance with the driving instruction information for its own vehicle.
  • the third autonomous vehicle 224 described above is controlled to "slow down and pass the crosswalk when turning right or left” in accordance with the driving instruction information for its own vehicle
  • the fourth autonomous vehicle 224 described above is controlled to "make a temporary stop before the crosswalk when turning right or left” in accordance with the driving instruction information for its own vehicle.
  • the acquisition unit 216 of the information notification device 214 acquires the traffic conditions around the intersection from the sensors 110 installed around the intersection. Furthermore, the generation unit 218 generates notification information for an autonomous vehicle about to enter the intersection, based on the traffic conditions around the intersection acquired by the acquisition unit 216.
  • the display control unit 220 displays the notification information generated by the generation unit 218 as code information on the display unit 212 installed around the intersection. This makes it possible to notify the autonomous vehicle 224 of the notification information without using a mobile communication network, and therefore makes it possible to notify the autonomous vehicle 224 of information without being affected by the communication conditions of the mobile communication network.
  • the generation unit 218 generates, as notification information, information including driving instruction information that instructs each of the multiple autonomous vehicles 224 about to enter the intersection to drive. In this way, by displaying a single piece of notification information as code information on the display unit 212, driving instructions can be given to each of the multiple autonomous vehicles 224 about to enter the intersection.
  • the generation unit 218 generates driving instruction information taking into consideration the traffic conditions in the blind spot area around the intersection that is a blind spot from the autonomous vehicle 224. This makes it possible to give driving instructions to the autonomous vehicle 224 that take into consideration the traffic conditions in the blind spot area that is a blind spot from the autonomous vehicle 224.
  • the display control unit 220 causes the display unit 212 to display a two-dimensional barcode as code information. This makes it possible to increase the amount of notification information that can be displayed as code information on the display unit 212, compared to a mode in which a one-dimensional code is displayed as code information.
  • a mode of generating driving instruction information taking into account the traffic conditions in the blind spot area has been described, but the present disclosure is not limited to this, and information indicating the condition of the blind spot area may be included in the notification information as blind spot area information.
  • the above blind spot area information may be included in the notification information only for intersections where visibility is poor and blind spots are created by the on-board sensor.
  • the notification information was displayed on the display unit 212 as a two-dimensional code, which is an example of code information in this disclosure, but the code information in this disclosure may be something other than a two-dimensional code, such as a one-dimensional barcode.
  • the information notification device 214 according to the present disclosure is attached to the traffic light 100 to form part of the traffic light device 211, but the present disclosure is not limited to this, and the information notification device 214 according to the present disclosure can also be installed together with the sensor 110 at an intersection where no traffic light 100 is installed, or at a junction where no traffic light 100 is installed and multiple roads merge.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

This control device controls a vehicle and comprises: an information acquisition unit that acquires a plurality of pieces of information detected by a sensor installed on a traffic signal; and a control unit that controls the vehicle using a trained model and the plurality of pieces of information acquired by the information acquisition unit.

Description

自動運転車両の制御装置、プログラム、信号制御装置、信号機装置、信号機システム、信号制御プログラム、情報通知装置、及び情報通知プログラムControl device, program, signal control device, signal device, signal system, signal control program, information notification device, and information notification program for autonomous driving vehicle
 本開示は、自動運転車両の制御装置、プログラム、信号制御装置、信号機装置、信号機システム、信号制御プログラム、情報通知装置、及び情報通知プログラムに関する。 This disclosure relates to a control device, a program, a signal control device, a signal device, a signal system, a signal control program, an information notification device, and an information notification program for an autonomous vehicle.
 特許文献1には、自動運転機能を有する車両について記載されている。 Patent document 1 describes a vehicle with an autonomous driving function.
特開2022-035198号公報JP 2022-035198 A
 本開示の一実施態様によれば、車両を制御する制御装置であって、信号機に設置されたセンサにより検出された複数の情報を取得する情報取得部と、前記情報取得部が取得した前記複数の情報と学習済みモデルを用いて、前記車両を制御する制御部を備える制御装置が提供される。前記制御部は、前記複数の情報と学習済みモデルを用いて、10億分の1秒単位で前記車両を制御してもよい。 According to one embodiment of the present disclosure, there is provided a control device for controlling a vehicle, the control device including an information acquisition unit that acquires a plurality of pieces of information detected by a sensor installed at a traffic light, and a control unit that controls the vehicle using the plurality of pieces of information acquired by the information acquisition unit and a trained model. The control unit may control the vehicle in units of one billionth of a second using the plurality of pieces of information and the trained model.
 前記制御部は、前記車両が、前記信号機が設置された交差点に進入している場合、前記信号機に設置されたセンサにより検出された複数の情報と前記学習済みモデルを用いて前記車両を制御し、前記車両が前記交差点以外の走行路を走行している場合、前記車両に搭載されたセンサにより検出された複数の情報と前記学習済みモデルを用いて前記車両を制御してもよい。 The control unit may control the vehicle using a plurality of pieces of information detected by a sensor installed in the traffic light and the trained model when the vehicle is entering an intersection where the traffic light is installed, and may control the vehicle using a plurality of pieces of information detected by a sensor installed in the vehicle and the trained model when the vehicle is traveling on a road other than the intersection.
 前記制御部は、前記車両が前記交差点に進入している場合で、かつ前記信号機に設置されたセンサにより検出された複数の情報を前記学習済みモデルに入力した場合の前記学習済みモデルの出力値と、前記車両に搭載されたセンサにより検出された複数の情報を前記学習済みモデルに入力した場合の前記学習済みモデルの出力値とが一致する場合、前記信号機に設置されたセンサにより検出された複数の情報と前記学習済みモデルを用いて前記車両を制御してもよい。 The control unit may control the vehicle using the multiple pieces of information detected by the sensor installed in the traffic light and the trained model when the vehicle is entering the intersection and the output value of the trained model when multiple pieces of information detected by the sensor installed in the traffic light are input to the trained model matches the output value of the trained model when multiple pieces of information detected by the sensor installed in the vehicle are input to the trained model.
 本開示の一実施態様によれば、コンピュータを、前記情報取得部及び前記制御部として機能させるためのプログラムが提供される。 According to one embodiment of the present disclosure, a program is provided for causing a computer to function as the information acquisition unit and the control unit.
 本開示の一実施態様によれば、信号制御装置が提供される。前記信号制御装置は、交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得する第1取得部と、前記交差点の通過を予定している自動運転車両の走行計画を取得する第2取得部と、前記第1取得部によって取得された前記交通状況に基づき、前記自動運転車両が前記交差点を通過する際に前記自動運転車両の走行計画の遅延が発生するか否かを判定する判定部と、前記判定部によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように前記交差点の信号機を制御する制御部と、を含んでいる。 According to one embodiment of the present disclosure, a signal control device is provided. The signal control device includes a first acquisition unit that acquires traffic conditions around the intersection from sensors installed around the intersection, a second acquisition unit that acquires a driving plan of an autonomous vehicle that is scheduled to pass through the intersection, a determination unit that determines whether a delay will occur in the driving plan of the autonomous vehicle when the autonomous vehicle passes through the intersection based on the traffic conditions acquired by the first acquisition unit, and a control unit that controls the traffic lights at the intersection so as to suppress the delay when the determination unit determines that the delay will occur.
 この態様では、交差点の周辺に設けられたセンサから取得した交差点の周辺の交通状況に基づき、前記交差点の通過を予定している自動運転車両が前記交差点を通過する際に自動運転車両の走行計画の遅延が発生するか否かを判定する。そして、この態様では、自動運転車両の走行計画の遅延が発生すると判定した場合に、自動運転車両の走行計画の遅延が抑制されるように前記交差点の信号機を制御する。これにより、自動運転車両の走行計画に遅延が生ずることを抑制することができ、自動運転制御などを行う車載のコンピュータに、走行計画の再作成などの大きな負荷が走行中に加わることを抑制することができる。 In this aspect, a determination is made as to whether or not a delay in the driving plan of the autonomous vehicle will occur when the autonomous vehicle that is scheduled to pass through the intersection passes through the intersection, based on traffic conditions around the intersection obtained from sensors installed around the intersection. Then, in this aspect, if it is determined that a delay in the driving plan of the autonomous vehicle will occur, the traffic lights at the intersection are controlled so that the delay in the driving plan of the autonomous vehicle is suppressed. This makes it possible to suppress delays in the driving plan of the autonomous vehicle, and to suppress the imposition of a large load, such as re-creating a driving plan, on the on-board computer that performs autonomous driving control, etc., while driving.
 前記制御部は、前記判定部によって前記遅延が発生すると判定された場合に、前記自動運転車両が前記交差点を通過している間、前記交差点の信号機が青信号で維持されるように前記交差点の信号機を制御してもよい。 The control unit may control the traffic lights at the intersection so that they remain green while the autonomous vehicle is passing through the intersection when the determination unit determines that the delay will occur.
 この態様では、自動運転車両の走行計画の遅延が抑制されるように交差点の信号機を制御することを、自動運転車両が交差点を通過している間、交差点の信号機を青信号に維持させることにより実現する。これにより、交差点の信号機が青信号になっている時間を一定時間長くするなどの制御を行う場合と比較して、自動運転車両が交差点を通過する際の安全性を確保しつつ、交差点の信号機が青信号になっている時間が必要以上に長くなることを抑制することができる。 In this aspect, the traffic lights at the intersection are controlled to suppress delays in the driving plan of the autonomous vehicle by keeping the traffic lights at the intersection green while the autonomous vehicle passes through the intersection. This ensures safety when the autonomous vehicle passes through the intersection while suppressing the time the traffic lights at the intersection are green from becoming longer than necessary, compared to when control is performed such as extending the time the traffic lights at the intersection are green for a certain period of time.
 前記遅延が抑制されるように前記制御部が前記交差点の信号機を制御する自動運転車両は、予め設定された緊急度が所定値以上の自動運転車両であってもよい。 The autonomous vehicle in which the control unit controls the traffic lights at the intersection so as to suppress the delay may be an autonomous vehicle with a preset urgency level equal to or greater than a predetermined value.
 この態様によれば、緊急度が所定値以上の自動運転車両について走行計画の遅延が生ずることを抑制できると共に、交差点の信号機を制御する回数が抑制されることで、交差点の信号機の制御に伴って走行が影響を受ける可能性のある、緊急度が所定値以上の自動運転車両以外の他車両の台数も抑制することができる。 According to this aspect, it is possible to prevent delays in the driving plan for autonomous vehicles with an urgency level equal to or higher than a predetermined value, and by reducing the number of times that traffic lights at an intersection are controlled, it is also possible to reduce the number of vehicles other than autonomous vehicles with an urgency level equal to or higher than a predetermined value, whose driving may be affected by the control of traffic lights at an intersection.
 前記信号制御装置は、前記判定部によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように、前記自動運転車両が順次通過することを予定している複数の交差点の信号機を各々制御する協調制御部をさらに含んでいてもよい。 The signal control device may further include a cooperative control unit that controls the traffic lights of multiple intersections through which the autonomous vehicle is scheduled to pass in sequence so as to suppress the delay when the determination unit determines that the delay will occur.
 この態様では、自動運転車両の走行計画の遅延が発生すると判定した場合に、自動運転車両が順次通過することを予定している複数の交差点の信号機を各々制御するので、前記自動運転車両が前記複数の交差点を順次通過する間に、自動運転車両の走行計画の遅延を解消させることが可能となる。 In this aspect, if it is determined that a delay will occur in the driving plan of the autonomous vehicle, the traffic lights at multiple intersections that the autonomous vehicle is scheduled to pass through in sequence are each controlled, making it possible to eliminate the delay in the driving plan of the autonomous vehicle while the autonomous vehicle passes through the multiple intersections in sequence.
 本開示の一実施態様によれば、信号機装置が提供される。前記信号機装置は、前記信号制御装置と、前記信号機と、を含み、交差点毎に設けられる。 According to one embodiment of the present disclosure, a traffic light device is provided. The traffic light device includes the traffic light control device and the traffic light, and is provided at each intersection.
 この態様では、前記信号制御装置を含んでいるので、自動運転車両の走行計画に遅延が生ずることを抑制することができる。 In this embodiment, since the signal control device is included, it is possible to prevent delays in the driving plan of an autonomous vehicle.
 本開示の一実施態様によれば、信号機システムが提供される。前記信号機システムは、複数の交差点に各々設けられた前記信号機装置と、複数の信号機装置のうちの何れかの前記判定部によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように、前記自動運転車両が順次通過することを予定している複数の交差点の信号機を各々制御する協調制御装置と、を含んでいる。 According to one embodiment of the present disclosure, a traffic light system is provided. The traffic light system includes the traffic light devices provided at a plurality of intersections, and a cooperative control device that controls the traffic lights at a plurality of intersections through which the autonomous vehicle is scheduled to pass in sequence, when the determination unit of any of the plurality of traffic light devices determines that the delay will occur, so as to suppress the delay.
 この態様では、前記協調制御装置を含んでいるので、自動運転車両が前記複数の交差点を順次通過する間に、自動運転車両の走行計画の遅延を解消させることが可能となる。 In this embodiment, since the cooperative control device is included, it is possible to eliminate delays in the driving plan of the autonomous vehicle while the autonomous vehicle passes through the multiple intersections in sequence.
 本開示の一実施態様によれば、信号制御プログラムが提供される。前記信号制御プログラムは、コンピュータに、交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得すると共に、前記交差点の通過を予定している自動運転車両の走行計画を取得し、取得した前記交通状況に基づき、前記自動運転車両が前記交差点を通過する際に前記自動運転車両の走行計画の遅延が発生するか否かを判定し、前記遅延が発生すると判定した場合に、前記遅延が抑制されるように前記交差点の信号機を制御することを含む処理を実行させる。 According to one embodiment of the present disclosure, a signal control program is provided. The signal control program causes a computer to execute processing including acquiring traffic conditions around an intersection from sensors installed around the intersection, acquiring a driving plan for an autonomous vehicle that is scheduled to pass through the intersection, determining whether or not a delay will occur in the driving plan for the autonomous vehicle when the autonomous vehicle passes through the intersection based on the acquired traffic conditions, and controlling the traffic lights at the intersection to reduce the delay if it is determined that a delay will occur.
 この態様によれば、自動運転車両の走行計画に遅延が生ずることを抑制することができる。 This aspect makes it possible to prevent delays in the driving plan of an autonomous vehicle.
 本開示の一実施態様によれば、情報通知装置が提供される。前記情報通知装置は、交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得する取得部と、前記取得部によって取得された前記交通状況に基づき、これから前記交差点に進入する自動運転車両への通知情報を生成する生成部と、前記生成部によって生成された通知情報を、前記交差点の周辺に設けられた表示部にコード情報として表示させる表示制御部と、を含んでいる。 According to one embodiment of the present disclosure, an information notification device is provided. The information notification device includes an acquisition unit that acquires traffic conditions around an intersection from a sensor installed around the intersection, a generation unit that generates notification information for an autonomous vehicle that is about to enter the intersection based on the traffic conditions acquired by the acquisition unit, and a display control unit that displays the notification information generated by the generation unit as code information on a display unit installed around the intersection.
 この態様では、交差点の周辺に設けられたセンサから交差点の周辺の交通状況を取得し、取得した交差点の周辺の交通状況に基づき、これから交差点に進入する自動運転車両への通知情報を生成する。そして、生成した通知情報を、交差点の周辺に設けられた表示部にコード情報として表示させる。これにより、自動運転車両は、コード情報が表示された表示部を撮影し、撮影した画像に含まれるコード情報をデコードすることで、通知情報を取得できる。このように、この態様では、移動通信網を用いることなく自動運転車両へ通知情報を通知できるので、移動通信網の通信状況の影響を受けることなく自動運転車両へ情報を通知することができる。 In this aspect, traffic conditions around the intersection are obtained from sensors installed around the intersection, and notification information is generated for an autonomous vehicle about to enter the intersection based on the obtained traffic conditions around the intersection. The generated notification information is then displayed as code information on a display unit installed around the intersection. This allows the autonomous vehicle to obtain the notification information by photographing the display unit displaying the code information and decoding the code information contained in the photographed image. In this way, in this aspect, notification information can be notified to an autonomous vehicle without using a mobile communications network, so information can be notified to an autonomous vehicle without being affected by the communication conditions of the mobile communications network.
 前記生成部は、前記通知情報として、これから前記交差点に進入する複数台の自動運転車両の各々に対して走行を指示する走行指示情報を含む情報を生成してもよい。 The generating unit may generate, as the notification information, information including driving instruction information that instructs each of a plurality of autonomous vehicles that are about to enter the intersection to drive.
 この態様では、通知情報に、これから交差点に進入する複数台の自動運転車両の各々に対して走行を指示する複数の走行指示情報が含まれており、この通知情報が表示部にコード情報として表示される。これにより、単一の通知情報を表示部にコード情報として表示させることで、これから交差点に進入する複数台の自動運転車両に対して走行指示を各々与えることができる。 In this embodiment, the notification information includes multiple pieces of driving instruction information that instruct each of the multiple autonomous vehicles about to enter the intersection to drive, and this notification information is displayed as code information on the display unit. In this way, by displaying a single piece of notification information as code information on the display unit, driving instructions can be given to each of the multiple autonomous vehicles about to enter the intersection.
 前記生成部は、前記交差点の周辺のうち前記自動運転車両から死角となる死角領域の交通状況を考慮して、前記走行指示情報を生成してもよい。 The generating unit may generate the driving instruction information taking into consideration traffic conditions in blind spot areas around the intersection that are blind spots for the autonomous vehicle.
 この態様では、走行指示情報の生成に際し、交差点の周辺のうち自動運転車両から死角となる死角領域の交通状況が考慮される。これにより、自動運転車両に対し、当該自動運転車両から死角となる死角領域の交通状況を考慮した走行指示を与えることができる。 In this aspect, when generating driving instruction information, the traffic conditions in the blind spot area around the intersection that is a blind spot for the autonomous vehicle are taken into consideration. This makes it possible to give driving instructions to the autonomous vehicle that take into account the traffic conditions in the blind spot area that is a blind spot for the autonomous vehicle.
 前記表示制御部は、前記コード情報として2次元バーコードを前記表示部に表示させてもよい。 The display control unit may cause the display unit to display a two-dimensional barcode as the code information.
 この態様では、コード情報として2次元コードを表示部に表示させるので、コード情報として1次元のコードを表示させるなどの態様と比較して、表示部にコード情報として表示可能な通知情報の情報量を増大させることができる。 In this embodiment, a two-dimensional code is displayed on the display unit as code information, so the amount of notification information that can be displayed on the display unit as code information can be increased compared to an embodiment in which a one-dimensional code is displayed as code information.
 本開示の一実施態様によれば、信号機装置が提供される。前記信号機装置は、前記情報通知装置と、信号機と、を含み、交差点毎に設けられる。 According to one embodiment of the present disclosure, a traffic light device is provided. The traffic light device includes the information notification device and a traffic light, and is provided at each intersection.
 この態様では、前記情報通知装置を含んでいるので、移動通信網の通信状況の影響を受けることなく自動運転車両へ情報を通知することができる。 In this embodiment, since the information notification device is included, information can be notified to an autonomous vehicle without being affected by the communication conditions of the mobile communication network.
 本開示の一実施態様によれば、情報通知プログラムが提供される。前記情報通知プログラムは、コンピュータに、交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得し、取得した前記交通状況に基づき、これから前記交差点に進入する自動運転車両への通知情報を生成し、生成した通知情報を前記交差点の周辺に設けられた表示部にコード情報として表示させることを含む処理を実行させる。 According to one embodiment of the present disclosure, an information notification program is provided. The information notification program causes a computer to execute a process including acquiring traffic conditions around an intersection from a sensor installed around the intersection, generating notification information for an autonomous vehicle that is about to enter the intersection based on the acquired traffic conditions, and displaying the generated notification information as code information on a display unit installed around the intersection.
 この態様によれば、移動通信網の通信状況の影響を受けることなく自動運転車両へ情報を通知することができる。 According to this embodiment, information can be sent to autonomous vehicles without being affected by the communication conditions of the mobile communication network.
 なお、上記の開示の概要は、本開示の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、開示となりうる。 Note that the above summary of the disclosure does not list all of the necessary features of this disclosure. Subcombinations of these features may also be disclosed.
超高性能自動運転のAIの危険予測能力について概略的に示す。This provides an overview of the hazard prediction capabilities of AI in ultra-high performance autonomous driving. 超高性能自動運転におけるCentral Brainについて概略的に示す。This shows an overview of the Central Brain in ultra-high performance autonomous driving. 車両の死角を説明するための図である。FIG. 2 is a diagram for explaining a blind spot of a vehicle. 信号機に設置されるセンサを説明するための図である。FIG. 2 is a diagram for explaining a sensor installed in a traffic light. Perfect Speed Controlについて概略的に示す。This shows an overview of Perfect Speed Control. Perfect Bell Curvesについて概略的に示す。A schematic diagram of Perfect Bell Curves is shown. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. パーフェクトクルージングの概要図である。This is an overview diagram of Perfect Cruising. Central Brainの機能的な構成の一例を示すブロック図である。A block diagram showing an example of the functional configuration of a Central Brain. 学習済みモデルを説明するための図である。FIG. 1 is a diagram for explaining a trained model. Central Brainによって実行される処理ルーチンの一例を示すフローチャートである。A flowchart showing an example of a processing routine executed by the Central Brain. Central Brain、制御装置として機能するコンピュータのハードウェア構成の一例を概略的に示すブロック図である。This is a block diagram showing an example of the hardware configuration of a computer that functions as a Central Brain and a control device. 第2実施形態に係る信号制御システムの概略構成を示すブロック図である。FIG. 11 is a block diagram showing a schematic configuration of a signal control system according to a second embodiment. 信号制御処理の一例を示すフローチャートである。4 is a flowchart showing an example of a signal control process. 信号制御処理の作用を説明するためのタイミングチャートである。5 is a timing chart for explaining the operation of the signal control process. 信号制御処理の他の例を示すフローチャートである。10 is a flowchart showing another example of the signal control process. 第3実施形態に係る情報通知システムの概略構成を示すブロック図である。FIG. 13 is a block diagram showing a schematic configuration of an information notification system according to a third embodiment. 第3実施形態に係る信号機および表示部を示す正面図である。FIG. 11 is a front view showing a traffic light and a display unit according to a third embodiment. 第3実施形態における信号機および表示部の配置を示す平面図である。FIG. 13 is a plan view showing the arrangement of traffic lights and display units in the third embodiment. 情報通知処理の一例を示すフローチャートである。13 is a flowchart illustrating an example of an information notification process.
 以下、開示の実施の形態を通じて本開示を説明するが、以下の実施形態は特許請求の範囲にかかる開示を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが開示の解決手段に必須であるとは限らない。 Below, the present disclosure will be explained through the disclosed embodiments, but the following embodiments do not limit the disclosure as defined by the claims. Furthermore, not all of the combinations of features described in the embodiments are necessarily essential to the disclosed solution.
[第1実施形態]
 図1は、本実施形態に係る超高性能自動運転のAIの危険予測の能力について概略的に示す。本実施形態においては、複数種類のセンサ情報をAIデータ化してクラウドに蓄積する。AIがナノセカンドごとに状況のベストミックスを予測、判断し、車両の運行を最適化する。
[First embodiment]
Figure 1 shows an overview of the risk prediction capabilities of the AI of the ultra-high performance autonomous driving according to this embodiment. In this embodiment, multiple types of sensor information are converted into AI data and stored in the cloud. The AI predicts and judges the best mix of situations every nanosecond, optimizing the operation of the vehicle.
 図2は、本実施形態に係る超高性能自動運転におけるCentral Brainについて概略的に示す。Central Brainは、Level6の自動運転車両を制御する制御装置の一例である。 FIG. 2 shows a schematic diagram of the Central Brain in the ultra-high performance autonomous driving according to this embodiment. The Central Brain is an example of a control device that controls a Level 6 autonomous vehicle.
 なお、Level6とは自動運転を表すレベルであり、完全自動運転を表すLevel5よりも更に上のレベルに相当する。Level5は完全自動運転を表すものの、それは人が運転するのと同等のレベルであり、それでも未だ事故等が発生する確率はある。Level6とは、Level5よりも上のレベルを表すものであり、Level5よりも事故が発生する確率が低いレベルに相当する。 Level 6 is a level that represents automated driving, and is equivalent to a level higher than Level 5, which represents fully automated driving. Although Level 5 represents fully automated driving, it is at the same level as a human driving, and there is still a chance of accidents occurring. Level 6 represents a level higher than Level 5, and is equivalent to a level where the chance of accidents occurring is lower than at Level 5.
 本実施形態において車両に搭載されるセンサの例として、レーダー、LiDAR、高画素・望遠・超広角・360度・高性能カメラ、ビジョン認識、微細音、超音波、振動、赤外線、紫外線、電磁波、温度、湿度、スポットAI天気予報、高精度マルチチャネルGPS、低高度衛星情報、ロングテールインシデントAI data等が挙げられる。ロングテールインシデントAI dataとはLevel5の実装した自動車のTripデータである。 In this embodiment, examples of sensors installed in the vehicle include radar, LiDAR, high-pixel, telephoto, ultra-wide-angle, 360-degree, high-performance cameras, vision recognition, minute sounds, ultrasound, vibration, infrared rays, ultraviolet rays, electromagnetic waves, temperature, humidity, spot AI weather forecasts, high-precision multi-channel GPS, low-altitude satellite information, and long-tail incident AI data. Long-tail incident AI data is trip data for vehicles that have Level 5 implemented.
 複数種類のセンサから取り入れるセンサ情報として、体重の重心移動、道路の材質の検知、外気温度の検知、外気湿度の検知、坂道の上下横斜め傾き角度の検知、道路の凍り方、水分量の検知、それぞれのタイヤの材質、摩耗状況、空気圧の検知、道路幅、追い越し禁止有無、対向車、前後車両の車種情報、それらの車のクルージング状態、周囲の状況(鳥、動物、サッカーボール、事故車、地震、家事、風、台風、大雨、小雨、吹雪、霧、など)等が挙げられ、本実施形態では、これらの検知をナノ秒毎に実施する。 Sensor information collected from multiple types of sensors includes the shift in the center of gravity of body weight, detection of road material, detection of outside air temperature, detection of outside air humidity, detection of the up, down, side, and diagonal inclination angle of a slope, detection of how frozen the road is, detection of the amount of moisture, detection of the material of each tire, wear condition, detection of air pressure, road width, whether or not overtaking is prohibited, oncoming vehicles, information on the vehicle models in front and behind, the cruising state of those vehicles, and surrounding conditions (birds, animals, soccer balls, wrecked vehicles, earthquakes, housework, wind, typhoons, heavy rain, light rain, blizzards, fog, etc.), and in this embodiment, these detections are performed every nanosecond.
 本実施形態においては、Central Brainは、これらの情報から、道路全体+AIによる最小スポット毎の最も正解率の高い天気予報とのマッチングを実行してよい。また、Central Brainは、これらの情報から、他の車の位置情報とのマッチングを実行してよい。また、Central Brainは、これらの情報から、ベスト推定車種とのマッチング(その道程での残量、スピードのナノ秒毎のマッチング)を実行してよい。また、Central Brainは、これらの情報から、乗客が聞いている音楽等のムードとのマッチングを実行してよい。また、Central Brainは、これらの情報から、要望の気分を変更した瞬時の条件組み直しを実行してよい。 In this embodiment, the Central Brain may use this information to match the weather forecast with the highest accuracy rate for the entire road + minimum spot by AI. The Central Brain may also use this information to match with the location information of other vehicles. The Central Brain may also use this information to match with the best estimated vehicle type (matching the remaining amount and speed for that journey every nanosecond). The Central Brain may also use this information to match with the mood of the music, etc., that the passengers are listening to. The Central Brain may also use this information to instantly rearrange the conditions to change the desired mood.
 Central Brainは、例えば、車両充電時にAIデータをクラウドにアップロードしてもよい。Data Lakeを形成し、AIが分析して常に最新状態にアップロードしてもよい。 The Central Brain may, for example, upload AI data to the cloud when the vehicle is charging. A Data Lake may be formed, and the AI may analyze the data and upload it to the cloud in a constantly updated state.
 図3に示すように、車両に搭載されたセンサでは、進行方向に沿った直線上では、他の車両等の物体を長距離でも検知することが可能であるが、交差点等では、センサでは物体を検知できない死角の領域が存在する。図3の例では、一点鎖線の矩形で囲まれた実線の矩形が、センサが搭載された車両を表し、一点鎖線の矢印がその車両の進行方向を表している。また、斜線の領域がその車両に搭載されたセンサでは物体を検知できない死角の領域を表している。 As shown in Figure 3, a sensor mounted on a vehicle can detect objects such as other vehicles at long distances in a straight line along the direction of travel, but at intersections and other locations there are blind spots where the sensor cannot detect objects. In the example of Figure 3, the solid-line rectangle surrounded by the dash-dotted rectangle represents the vehicle on which the sensor is mounted, and the dash-dotted arrow represents the direction of travel of that vehicle. The shaded area represents the blind spot where the sensor mounted on the vehicle cannot detect objects.
 この場合、車両にとって死角の領域が存在することによって、交通事故のリスクがある。 In this case, there is a risk of a traffic accident due to the presence of blind spots for the vehicle.
 そこで、図4に示すように、本実施形態では、街中の全ての信号機100へLevel6の自動運転車両のCentral Brainと通信が可能なセンサ110が設置される。センサ110の例としては、レーダー、LiDAR、及び高画素・望遠・超広角・360度・高性能デジタルカメラ等が挙げられる。図4の例では、センサ110が信号機100の上部に設置されているが、センサ110の設置場所は信号機100の上部に限定されない。センサ110は、信号機100の側面に設置されてもよいし、信号機100の柱部分に設置されてもよい。 Therefore, as shown in FIG. 4, in this embodiment, sensors 110 capable of communicating with the Central Brain of a Level 6 autonomous vehicle are installed at all traffic lights 100 in the city. Examples of sensors 110 include radar, LiDAR, and high-pixel, telephoto, ultra-wide-angle, 360-degree, high-performance digital cameras. In the example of FIG. 4, the sensor 110 is installed at the top of the traffic light 100, but the installation location of the sensor 110 is not limited to the top of the traffic light 100. The sensor 110 may be installed on the side of the traffic light 100 or on the pillar part of the traffic light 100.
 各信号機100において、センサ110によって自動運転車両にとって死角となる領域において検知された情報を収集し、Level6の自動運転車両へ無線通信で道路状況の情報を送信する。 At each traffic light 100, the sensor 110 collects information detected in areas that are blind spots for autonomous vehicles, and transmits information about road conditions to Level 6 autonomous vehicles via wireless communication.
 Central Brainは、信号機100に設置されたセンサ110により検出された複数の情報を取得し、取得した複数の情報とAIを用いて、車両を制御する。 The Central Brain acquires multiple pieces of information detected by sensors 110 installed in the traffic lights 100, and uses the acquired information and AI to control the vehicle.
 Central Brainは、車両の通行を最適化する方法として、ソフト面とハード面の両方を用いてよい。ソフト面では、Central Brainは、信号機100に設置されたセンサ110により検出された複数の情報と、クラウド蓄積情報と、車両のセンサ情報の全てをAIでベストミックスさせ、ナノセカンド毎にAIが判断し、乗客の要望にあった自動運転を実現する。ハード面では、車両が、1/1 billion second(ナノセカンド)毎にモータの回転出力をマイクロコントロールする。車両は、ナノセカンドで通信しコントロールする事の可能な電気とモータを備える。Central Brainによれば、AIが危機を予知するため、ブレーキ不要でコップの水をこぼすこともなくパーフェクトストップが可能になる。また、消費電力も低く、ブレーキ摩擦も生じない。 Central Brain may use both software and hardware as a method to optimize vehicle traffic. On the software side, Central Brain uses AI to best mix multiple pieces of information detected by sensors 110 installed on traffic lights 100, cloud-stored information, and vehicle sensor information, and the AI makes decisions every nanosecond to realize automatic driving that meets the passengers' needs. On the hardware side, the vehicle micro-controls the motor's rotation output every 1/1 billion second. The vehicle is equipped with electricity and a motor that can communicate and be controlled in nanoseconds. According to Central Brain, AI predicts crises, making it possible to make a perfect stop without the need for braking and without spilling a cup of water. It also consumes low power and does not generate brake friction.
 図5は、本実施形態に係るCentral Brainによる制御によって実現されるPerfect Speed Controlについて概略的に示す。図5に示す原理は、車両の制動距離を算出する指標となるが、この基本的な方程式で制御する。本実施形態に係るシステムにおいては、超高性能入力データがあるので、きれいなベルカーブで計算することができる。 Figure 5 shows an outline of the Perfect Speed Control achieved by the control of the Central Brain in this embodiment. The principle shown in Figure 5 is an index for calculating the braking distance of the vehicle, and is controlled by this basic equation. In the system in this embodiment, because there is ultra-high performance input data, calculations can be made with a beautiful bell curve.
 図6は、本実施形態に係るCentral Brainによる制御によって実現されるPerfect Bell Curvesについて概略的に示す。 Figure 6 shows a schematic diagram of the Perfect Bell Curves achieved by the control of the Central Brain in this embodiment.
 超高性能自動運転を実現するときの演算速度として、1Million TOPSで実現できる。 The computational speed required to realize ultra-high performance autonomous driving is 1 million TOPS.
 上述したように、本実施形態において、Central Brainは、Perfect Cruise Controlを実現してよい。Central Brainは、車両に乗車している乗員の希望に応じた制御を実行してよい。乗員の希望の例として、「shortest時間」、「longestバッテリー持ち残量」、「車酔いを最も避けたい」、「最もGを感じたい(安全に)」、「上記等のミックスで最も景観を感じたい」、「前回とは異なった景観を感じたい」、「たとえば、何年前に誰かと来た道の思い出をたどりたい」、「最も事故の確率を避けたい」、等があり、その他さまざまな条件を乗客にCentral brainが相談して、Central brainが、乗客の人数、重さ、位置、体重の重心移動(ナノ秒毎の計算)、ナノ秒毎の道路の材質の検知、ナノ秒毎の外気の温度の検知、ナノ秒毎の外気の湿度の検知、ナノ秒毎のトータルの上記の条件選択による車両とのパーフェクトミックスを実行する。 As described above, in this embodiment, the Central Brain may realize Perfect Cruise Control. The Central Brain may perform control according to the wishes of the occupants aboard the vehicle. Examples of passenger preferences include "shortest time," "longest battery remaining," "I want to avoid car sickness as much as possible," "I want to feel the most G-forces (safely)," "I want to enjoy the scenery with a mix of the above," "I want to experience a different scenery than last time," "For example, I want to retrace the memories of a road I took with someone years ago," "I want to minimize the chance of an accident," etc. The Central Brain consults with passengers about various other conditions, and executes the perfect mix with the vehicle based on the number of passengers, weight, position, and shift in the center of gravity of the weight (calculated every nanosecond), detection of the road material every nanosecond, detection of the outside air temperature every nanosecond, detection of the outside air humidity every nanosecond, and the total of the above conditions selected every nanosecond.
 Central brainは、「道路の坂道の上、下、横、斜め傾き角度」、「道程全体+AIによる最小スポット毎の最も正解率の高い天気予報とのマッチング」、「ナノ秒毎の他の車の位置情報とのマッチング」、「それらのベスト推定車種とのマッチング(その道程での残量、スピードのナノ秒毎のマッチング」、「乗客が聞いている音楽等のムードとのマッチング」、「要望の気分を変更した瞬時の条件組み直し」、「そのナノ秒毎の道路の凍り方、水分量、4本、2本、8本、16本等のそれぞれのタイヤの材質の摩耗、空気圧、と道路の残りの最適ミックスの推定」、「その時々の道路の車線幅、角度、追い越し禁止車線かどうか?」、「対向車線、前後車線の車種とその車のクルージング状態(ナノ秒毎の)」、「その他全ての条件のベストミックス」といったものを、考慮、実行してよい。 The central brain may consider and execute things like "up, down, side, and diagonal slope of the road," "matching with the weather forecast with the highest accuracy rate for the entire route + the smallest spot by AI," "matching with the location information of other cars every nanosecond," "matching with the best estimated car model (matching the remaining amount and speed on that route every nanosecond), "matching with the mood of the music the passengers are listening to, etc.," "instantaneous reconfiguration of conditions when the desired mood changes," "estimation of the optimal mix of the road's freezing condition, moisture content, wear of the material of each tire (4, 2, 8, 16 tires, etc.), air pressure, and the remaining road," "lane width, angle, and whether it is a no-passing lane on the road at that time," "vehicle models in the oncoming lane and in front and behind and the cruising state of those cars (every nanosecond)," and "best mix of all other conditions."
 それぞれの車線の巾の中で真ん中ではなく取るべき場所は、全て異なる。その時のスピードや角度や道路情報によって異なる。たとえば、飛んで来る鳥や、動物や、対向車や、飛び込んで来るサッカーボールや子供や事故車や地震、火事、風、台風、大雨、小雨、吹雪、霧、その他のナノ秒毎の影響のベストな確率の推論のマッチングを実行する。 The position that should be taken within the width of each lane is different and not the center. It varies depending on the speed, angle and road information at the time. For example, it performs best probability inference matching of flying birds, animals, oncoming cars, flying soccer balls, children, accident cars, earthquakes, fires, wind, typhoons, heavy rain, light rain, blizzards, fog and other influences every nanosecond.
 それらをその時点のCentral brainのバージョンの能力と、その時点までに蓄積されたbrain cloudの最新にupdateされた情報を用いてパーフェクトマッチングを実行する。 A perfect match is then performed using the capabilities of the current version of the Central Brain and the latest updated information of the brain cloud accumulated up to that point.
 これを超高性能自動運転のパーフェクトクルージングと定義してよい。その為に超高性能自動運転には、1million TOPSがその時点のベストなバッテリーのパワーマネジメントと温度のAI synchronizedバースト チリング機能が必要となる。 This can be defined as perfect cruising in ultra-high performance autonomous driving. For this, ultra-high performance autonomous driving requires 1 million TOPs to provide the best battery power management and temperature AI synchronized burst chilling function at that time.
 図7~図13は、パーフェクトクルージングの概要図である。 Figures 7 to 13 are schematic diagrams of Perfect Cruising.
 次に、Central brainによる車両の制御の具体例を説明する。以下では、Central brainが制御対象とする車両であって、Central brain自身が搭載されている車両を「自車両」という。 Next, we will explain a specific example of vehicle control by the Central Brain. In the following, the vehicle that is the subject of control by the Central Brain and on which the Central Brain itself is mounted is referred to as the "own vehicle."
 図14は、Central brainの機能的な構成の一例を示すブロック図である。図14に示すように、Central brainは、情報取得部30、判定部32、推論部34、及び制御部36を備えている。また、Central brainが備える記憶装置には、学習済みモデル40が記憶される。学習済みモデル40によってAIの機能が実現される。 FIG. 14 is a block diagram showing an example of the functional configuration of the Central brain. As shown in FIG. 14, the Central brain includes an information acquisition unit 30, a judgment unit 32, an inference unit 34, and a control unit 36. In addition, a trained model 40 is stored in a storage device included in the Central brain. The trained model 40 realizes the functions of the AI.
 一例として、図15に示すように、学習済みモデル40は、各種のセンサにより検出されたセンサ情報を入力とし、車両の運転を制御するための制御情報として、車両の制御に関連するインデックス化された値(以下、「インデックス値」という)を出力する。学習済みモデル40は、機械学習、より詳しくは深層学習(Deep Learning)によって得られるモデルである。 As an example, as shown in FIG. 15, the trained model 40 receives sensor information detected by various sensors as input, and outputs indexed values (hereinafter referred to as "index values") related to vehicle control as control information for controlling the operation of the vehicle. The trained model 40 is a model obtained by machine learning, more specifically, deep learning.
 情報取得部30は、自車両に搭載されたセンサにより検出された複数の情報を取得する。また、情報取得部30は、信号機100に設置されたセンサ110により検出された複数の情報を取得する。 The information acquisition unit 30 acquires multiple pieces of information detected by sensors mounted on the vehicle. The information acquisition unit 30 also acquires multiple pieces of information detected by sensors 110 installed in the traffic lights 100.
 判定部32は、自車両が、信号機100が設置された交差点に進入しているか、又は自車両が交差点以外の走行路を走行しているかを判定する。判定部32は、この判定に、例えば、自車両に搭載されたGPS装置により測位された自車両の位置情報及び地図情報を用いる。なお、判定部32は、この判定に、自車両に搭載されたセンサ群に含まれるデジタルカメラにより撮影された自車両周辺の画像を用いてもよい。また、判定部32は、信号機100に設置されたセンサ110と通信可能になった場合に、自車両が交差点に進入していると判定してもよい。 The determination unit 32 determines whether the vehicle is entering an intersection where a traffic light 100 is installed, or whether the vehicle is traveling on a road other than an intersection. For this determination, the determination unit 32 uses, for example, the position information of the vehicle measured by a GPS device mounted on the vehicle and map information. Note that the determination unit 32 may use, for this determination, an image of the surroundings of the vehicle taken by a digital camera included in the sensor group mounted on the vehicle. Furthermore, the determination unit 32 may determine that the vehicle is entering an intersection when communication with the sensor 110 installed on the traffic light 100 becomes possible.
 推論部34は、判定部32により自車両が交差点に進入していると判定された場合、情報取得部30により取得された信号機100に設置されたセンサ110により検出された複数の情報を学習済みモデル40に入力する。また、推論部34は、判定部32により自車両が交差点以外の走行路を走行していると判定された場合、情報取得部30により取得された自車両に搭載されたセンサにより検出された複数の情報を学習済みモデル40に入力する。学習済みモデル40は、入力された複数の情報に応じて複数のインデックス値を出力する。インデックス値は、学習済みモデル40の出力値の一例である。 When the judgment unit 32 judges that the vehicle is entering an intersection, the inference unit 34 inputs the multiple pieces of information detected by the sensor 110 installed on the traffic light 100 acquired by the information acquisition unit 30 to the trained model 40. When the judgment unit 32 judges that the vehicle is traveling on a road other than the intersection, the inference unit 34 inputs the multiple pieces of information detected by the sensor mounted on the vehicle acquired by the information acquisition unit 30 to the trained model 40. The trained model 40 outputs multiple index values according to the multiple pieces of input information. The index values are an example of output values of the trained model 40.
 以上のように推論部34は、複数のセンサ情報に基づいて、インデックス値を推論する。この推論部34は、多くのセンサ群等で収集したナノ秒毎のデータを、Level6の計算力を用い、下記式(1)に示すような積分法による多変量解析(例えば式(2)参照)を行うことで、正確なインデックス(index)値を求め得る。より詳しくは、Level6の計算力で各種Ultra High Resolutionのデルタ値の積分値を求めながら、エッジレベルで且つリアルタイムで各変数のインデックス化された値を求め、次のナノ秒に発生する結果を最も高い確率論値を取得し得る。 As described above, the inference unit 34 infers an index value based on multiple sensor information. This inference unit 34 can obtain an accurate index value by performing multivariate analysis using the integral method shown in formula (1) below (see formula (2)) using the computing power of Level 6 on data collected every nanosecond from a large number of sensor groups, etc. More specifically, while calculating the integral value of the delta values of various Ultra High Resolutions using the computing power of Level 6, it can obtain the indexed value of each variable at the edge level and in real time, and obtain the most probabilistic value of the result that will occur in the next nanosecond.

 なお、式中のDLは深層学習を示し、A,B,C,D,…,Nは、空気抵抗、道路抵抗、道路要素(例えばゴミ)及び滑り係数等を示す。

In the formula, DL indicates deep learning, and A, B, C, D, ..., N indicate air resistance, road resistance, road elements (e.g., garbage), and slip coefficient, etc.
 推論部34にて得られた各変数のインデックス化された値は、Deep Learningの回数を増加させることによりさらに精緻化させ得る。例えば、タイヤや、モータの回転、ステアリング角度や、道路の材質、天気、ごみや二次曲線的減速時における影響、スリップ、バランス崩壊や再獲得のためのステアリングやスピードコントロールの仕方等の膨大なデータを用いてより正確なインデックス値を算出することができる。 The indexed values of each variable obtained by the inference unit 34 can be further refined by increasing the number of Deep Learning rounds. For example, more accurate index values can be calculated using a huge amount of data such as tires, motor rotation, steering angle, road material, weather, garbage, effects of quadratic deceleration, slippage, and steering and speed control methods for losing balance and regaining balance.
 制御部36は、推論部34にて特定された複数のインデックス値に基づいて自車両の運転制御を実行するものであってよい。この制御部36は、自車両の自動運転制御を実現することが可能なものであってよい。詳しくは、複数のインデックス値から次のナノ秒に発生する結果を最も高い確率論値を取得し、当該確率論値を考慮した車両の運転制御を実施することができる。この制御は、例えば、複数のインデックス値の組合せと車両の運転を制御する制御パラメータが対応付けられたルックアップテーブルを用いて行われてもよい。また、この制御は、例えば、複数のインデックス値を入力とし、車両の運転を制御する制御パラメータを出力とする学習済みモデルを用いて行われてもよい。制御パラメータの例としては、車両の速度、加速度、及び進行方向等を制御するパラメータが挙げられる。 The control unit 36 may execute driving control of the vehicle based on the multiple index values identified by the inference unit 34. This control unit 36 may be capable of realizing automatic driving control of the vehicle. In detail, the control unit 36 may obtain the most probabilistic value of the result that will occur in the next nanosecond from the multiple index values, and perform driving control of the vehicle taking into consideration the probabilistic value. This control may be performed, for example, using a lookup table in which combinations of multiple index values are associated with control parameters that control the driving of the vehicle. This control may also be performed, for example, using a trained model that uses multiple index values as input and outputs control parameters that control the driving of the vehicle. Examples of the control parameters include parameters that control the speed, acceleration, and traveling direction of the vehicle.
 Central brainは、図16に示されているフローチャートを繰り返し実行する。 The central brain repeatedly executes the flowchart shown in Figure 16.
 ステップS10において、判定部32は、自車両が交差点に進入しているか否かを判定する。ステップS10の判定が肯定判定となった場合、処理はステップS12に移行する。ステップS12において、情報取得部30は、信号機100に設置されたセンサ110により検出された複数の情報を取得する。 In step S10, the determination unit 32 determines whether the vehicle is entering an intersection. If the determination in step S10 is positive, the process proceeds to step S12. In step S12, the information acquisition unit 30 acquires multiple pieces of information detected by the sensor 110 installed in the traffic light 100.
 ステップS14において、推論部34は、前述したように、ステップS12で取得された信号機100に設置されたセンサ110により検出された複数の情報を学習済みモデル40に入力することによって、複数のインデックス値を推論する。ステップS16において、制御部36は、前述したように、ステップS14で特定された複数のインデックス値に基づいて自車両の運転制御を実行する。ステップS16の処理が終了すると、フローチャートの処理が終了する。 In step S14, the inference unit 34 infers multiple index values by inputting the multiple pieces of information detected by the sensor 110 installed in the traffic light 100 obtained in step S12 into the trained model 40, as described above. In step S16, the control unit 36 executes driving control of the host vehicle based on the multiple index values identified in step S14, as described above. When the processing of step S16 ends, the processing of the flowchart ends.
 一方、判定部32が、自車両が交差点以外の走行路を走行していると判定した場合、ステップS10の判定が否定判定となり、処理はステップS18に移行する。ステップS18において、情報取得部30は、自車両に搭載されたセンサにより検出された複数の情報を取得する。 On the other hand, if the determination unit 32 determines that the vehicle is traveling on a road other than an intersection, the determination in step S10 is negative, and the process proceeds to step S18. In step S18, the information acquisition unit 30 acquires multiple pieces of information detected by sensors mounted on the vehicle.
 ステップS20において、推論部34は、前述したように、ステップS18で取得された自車両に搭載されたセンサにより検出された複数の情報を学習済みモデル40に入力することによって、複数のインデックス値を推論する。ステップS22において、制御部36は、前述したように、ステップS20で特定された複数のインデックス値に基づいて自車両の運転制御を実行する。ステップS22の処理が終了すると、フローチャートの処理が終了する。 In step S20, the inference unit 34 infers multiple index values by inputting the multiple pieces of information detected by the sensors mounted on the vehicle and acquired in step S18 into the trained model 40, as described above. In step S22, the control unit 36 executes driving control of the vehicle based on the multiple index values identified in step S20, as described above. When the processing of step S22 ends, the processing of the flowchart ends.
 なお、制御部36は、判定部32により自車両が交差点に進入していると判定された場合で、かつ信号機100に設置されたセンサ110により検出された複数の情報を学習済みモデル40に入力した場合の学習済みモデル40の出力値と、自車両に搭載されたセンサにより検出された複数の情報を学習済みモデル40に入力した場合の学習済みモデル40の出力値とが一致する場合、信号機100に設置されたセンサ110により検出された複数の情報と学習済みモデル40を用いて自車両を制御してもよい。この場合、自車両が交差点に進入した場合における自車両の挙動が急激に変化することを抑制することができる。これらの出力値が一致しない場合、制御部36は、継続して、自車両に搭載されたセンサにより検出された複数の情報と学習済みモデル40を用いて自車両を制御する。 In addition, when the determination unit 32 determines that the host vehicle is entering an intersection, and the output value of the learned model 40 when the multiple pieces of information detected by the sensor 110 installed in the traffic light 100 are input to the learned model 40 matches the output value of the learned model 40 when the multiple pieces of information detected by the sensor mounted on the host vehicle are input to the learned model 40, the control unit 36 may control the host vehicle using the multiple pieces of information detected by the sensor 110 installed in the traffic light 100 and the learned model 40. In this case, it is possible to prevent the behavior of the host vehicle from changing suddenly when the host vehicle enters an intersection. If these output values do not match, the control unit 36 continues to control the host vehicle using the multiple pieces of information detected by the sensor mounted on the host vehicle and the learned model 40.
 以上説明したように、本実施形態によれば、街中の全ての信号機100へLevel6の自動運転車両のCentral Brainと通信が可能なセンサ110が設置される。Level6の自動運転車両のCentral Brainは、死角の領域の情報をセンサ110から取得することができる。 As described above, according to this embodiment, sensors 110 capable of communicating with the Central Brain of a Level 6 autonomous vehicle are installed at all traffic lights 100 in the city. The Central Brain of a Level 6 autonomous vehicle can obtain information about blind spots from the sensors 110.
 従って、自動運転車両からは検知できない死角の領域の情報を取得することができるため、交通事故のリスクを低減させることができる。自動運転車両は、赤信号の場合でも交差点に進入することが可能となり、ハイスピードで正確な運行が可能となるため、街全体の交通量を10倍等に増加させることができる。これらの結果として、GDPが大幅に上昇する。 As a result, it will be possible to obtain information about blind spots that cannot be detected by autonomous vehicles, reducing the risk of traffic accidents. Autonomous vehicles will be able to enter intersections even when the light is red, enabling them to operate accurately at high speeds, which could increase traffic volume throughout the city by tenfold, etc. As a result of these factors, GDP will rise significantly.
 図17は、制御装置の一例であるCentral Brainとして機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。 FIG. 17 shows a schematic diagram of an example of a hardware configuration of a computer 1200 functioning as a Central Brain, which is an example of a control device. A program installed on the computer 1200 can cause the computer 1200 to function as one or more "parts" of the device according to this embodiment, or to execute operations or one or more "parts" associated with the device according to this embodiment, and/or to execute a process or steps of the process according to this embodiment. Such a program can be executed by the CPU 1212 to cause the computer 1200 to execute specific operations associated with some or all of the blocks of the flowcharts and block diagrams described in this specification.
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。 The computer 1200 according to this embodiment includes a CPU 1212, a RAM 1214, and a graphics controller 1216, which are connected to each other by a host controller 1210. The computer 1200 also includes input/output units such as a communication interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220. The DVD drive may be a DVD-ROM drive, a DVD-RAM drive, etc. The storage device 1224 may be a hard disk drive, a solid state drive, etc. The computer 1200 also includes a ROM 1230 and a legacy input/output unit such as a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。 The CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit. The graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer or the like provided in the RAM 1214 or into itself, and causes the image data to be displayed on the display device 1218.
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。 The communication interface 1222 communicates with other electronic devices via a network. The storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200. The DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224. The IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。 ROM 1230 stores therein a boot program or the like executed by computer 1200 upon activation, and/or a program that depends on the hardware of computer 1200. I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
 プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。 The programs are provided by a computer-readable storage medium such as a DVD-ROM or an IC card. The programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212. The information processing described in these programs is read by computer 1200, and brings about cooperation between the programs and the various types of hardware resources described above. An apparatus or method may be constructed by realizing the operation or processing of information according to the use of computer 1200.
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。 For example, when communication is performed between computer 1200 and an external device, CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program. Under the control of CPU 1212, communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, a DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.
 また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 The CPU 1212 may also cause all or a necessary portion of a file or database stored in an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information, such as various types of programs, data, tables, and databases, may be stored on the recording medium and may undergo information processing. CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the instruction sequence of the program, and write back the results to RAM 1214. CPU 1212 may also search for information in a file, database, etc. in the recording medium. For example, if multiple entries each having an attribute value of a first attribute associated with an attribute value of a second attribute are stored in the recording medium, CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。 The above-described programs or software modules may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200. In addition, a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby providing the programs to the computer 1200 via the network.
 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 The blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process where an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and "parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium. The dedicated circuitry may include digital and/or analog hardware circuitry and may include integrated circuits (ICs) and/or discrete circuits. The programmable circuitry may include reconfigurable hardware circuitry including AND, OR, XOR, NAND, NOR, and other logical operations, flip-flops, registers, and memory elements, such as, for example, field programmable gate arrays (FPGAs) and programmable logic arrays (PLAs).
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 A computer-readable storage medium may include any tangible device capable of storing instructions that are executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon comprises an article of manufacture that includes instructions that can be executed to create means for performing the operations specified in the flowchart or block diagram. Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media may include floppy disks, diskettes, hard disks, random access memories (RAMs), read-only memories (ROMs), erasable programmable read-only memories (EPROMs or flash memories), electrically erasable programmable read-only memories (EEPROMs), static random access memories (SRAMs), compact disk read-only memories (CD-ROMs), digital versatile disks (DVDs), Blu-ray disks, memory sticks, integrated circuit cards, and the like.
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。 The computer readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 The computer-readable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, either locally or over a local area network (LAN), a wide area network (WAN) such as the Internet, so that the processor of the general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, executes the computer-readable instructions to generate means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.
[第2実施形態]
 次に本開示の第2実施形態について説明する。なお、第1実施形態と同一の部分には同一の符号を付し、説明を省略する。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described. Note that the same parts as those in the first embodiment are given the same reference numerals, and the description thereof will be omitted.
 図18には、第2実施形態に係る信号機システム10が示されている。信号機システム10は、道路の交差点毎に設置された複数の信号装置12、複数台の自動運転車両16および信号制御装置22を含んでいる。信号装置12は、第1実施形態で説明した信号機100およびセンサ110と、信号制御装置22と無線通信を行うための無線通信部14と、を含んでいる。なお、第2実施形態におけるセンサ110は、例えば、信号装置12が設置された交差点を緊急車両(例えばサイレンを鳴らして走行している警察車両、救急車、消防車など)が通過しようとしている、などの交通状況を検出可能とされている。 FIG. 18 shows a traffic light system 10 according to the second embodiment. The traffic light system 10 includes a plurality of traffic light devices 12 installed at each intersection of roads, a plurality of autonomous vehicles 16, and a traffic light control device 22. The traffic light device 12 includes the traffic light 100 and sensor 110 described in the first embodiment, and a wireless communication unit 14 for wireless communication with the traffic light control device 22. The sensor 110 in the second embodiment is capable of detecting traffic conditions such as an emergency vehicle (e.g., a police vehicle, an ambulance, a fire engine, etc. traveling with a siren sounding) about to pass through the intersection where the traffic light device 12 is installed.
 自動運転車両16は、走行計画作成部18と、信号制御装置22と無線通信を行うための無線通信部20と、を含んでいる。走行計画作成部18は、第1実施形態で説明したCentral Brainが所定のプログラムを実行することにより実現される。走行計画作成部18は、自動運転車両16の目的地が設定されたことをトリガとして、設定された目的地までの経路を交差点の直進や右左折などの走行予定に細分化すると共に、個々の走行予定の実行予定時刻も定めた走行計画を作成する処理を行う。Central Brainは、走行計画作成部18が作成した走行計画に従って、自動運転により自動運転車両16を走行させる制御を行う。 The autonomous vehicle 16 includes a driving plan creation unit 18 and a wireless communication unit 20 for wireless communication with the signal control device 22. The driving plan creation unit 18 is realized by the Central Brain described in the first embodiment executing a specified program. The driving plan creation unit 18 is triggered when the destination of the autonomous vehicle 16 is set, and performs processing to subdivide the route to the set destination into driving plans such as going straight at intersections and turning right or left, and to create a driving plan that also specifies the scheduled execution time of each driving plan. The Central Brain controls the autonomous vehicle 16 to drive autonomously according to the driving plan created by the driving plan creation unit 18.
 信号制御装置22は、CPU、ROMやRAMなどのメモリ、HDDやSSDなどの不揮発性の記憶部および無線通信部43を含んでいる。記憶部には信号制御プログラムが記憶されている。信号制御装置22は、CPUが信号制御プログラムを実行することで第1取得部24、第2取得部26、判定部28、制御部41および協調制御部42として機能し、後述する信号制御処理(図19)を行う。なお、信号制御装置22は本開示における信号制御装置の一例である。 The signal control device 22 includes a CPU, memories such as ROM and RAM, a non-volatile storage unit such as an HDD and SSD, and a wireless communication unit 43. A signal control program is stored in the storage unit. The signal control device 22 functions as a first acquisition unit 24, a second acquisition unit 26, a determination unit 28, a control unit 41, and a cooperative control unit 42 by the CPU executing the signal control program, and performs the signal control process (FIG. 19) described below. Note that the signal control device 22 is an example of a signal control device in this disclosure.
 第1取得部24は、交差点の周辺に設けられたセンサ110から交差点の周辺の交通状況を取得する。第2取得部26は、交差点の通過を予定している自動運転車両16の走行計画を取得する。判定部28は、第1取得部24によって取得された交差点の周辺の交通状況に基づき、自動運転車両16が交差点を通過する際に自動運転車両16の走行計画の遅延が発生するか否かを判定する。 The first acquisition unit 24 acquires traffic conditions around the intersection from sensors 110 installed around the intersection. The second acquisition unit 26 acquires a driving plan for the autonomous vehicle 16 that is scheduled to pass through the intersection. The determination unit 28 determines whether a delay in the driving plan of the autonomous vehicle 16 will occur when the autonomous vehicle 16 passes through the intersection, based on the traffic conditions around the intersection acquired by the first acquisition unit 24.
 制御部41は、判定部28によって自動運転車両16が交差点を通過する際に自動運転車両16の走行計画の遅延が発生すると判定された場合に、自動運転車両16が交差点を通過する際に自動運転車両16の走行計画の遅延が抑制されるように、交差点の信号機100を制御する。協調制御部42は、判定部28によって自動運転車両16の走行計画の遅延が発生すると判定された場合に、自動運転車両16の走行計画の遅延が抑制されるように、自動運転車両16が順次通過することを予定している複数の交差点の信号機100を各々制御する。 When the determination unit 28 determines that a delay in the driving plan of the autonomous vehicle 16 will occur when the autonomous vehicle 16 passes through an intersection, the control unit 41 controls the traffic lights 100 at the intersection so as to suppress delays in the driving plan of the autonomous vehicle 16 when the autonomous vehicle 16 passes through the intersection. When the determination unit 28 determines that a delay in the driving plan of the autonomous vehicle 16 will occur, the cooperative control unit 42 controls each of the traffic lights 100 at multiple intersections through which the autonomous vehicle 16 is scheduled to pass in sequence so as to suppress delays in the driving plan of the autonomous vehicle 16.
 次に第2実施形態の作用を説明する。第2実施形態において、信号制御装置22は、道路を走行している個々の自動運転車両16と定期的に通信を行うことで、個々の自動運転車両16の位置や車速などを常時把握している。そして信号制御装置22は、何れかの自動運転車両16が、信号装置12が設置された交差点(以下、制御対象の交差点という)から所定距離以内に接近したことをトリガとして、図19に示す信号制御処理を行う。 Next, the operation of the second embodiment will be described. In the second embodiment, the signal control device 22 constantly monitors the position and speed of each autonomous vehicle 16 by periodically communicating with each autonomous vehicle 16 traveling on the road. The signal control device 22 then performs the signal control process shown in FIG. 19 when an autonomous vehicle 16 approaches within a predetermined distance of an intersection where a signal device 12 is installed (hereinafter referred to as the intersection to be controlled).
 信号制御処理のステップ50において、信号制御装置22の第1取得部24は、制御対象の交差点における交通状況、例えば制御対象の交差点を緊急車両が通過しようとしているかなどの交通状況をセンサ110から取得する。 In step 50 of the signal control process, the first acquisition unit 24 of the signal control device 22 acquires from the sensor 110 the traffic conditions at the intersection to be controlled, such as whether an emergency vehicle is about to pass through the intersection to be controlled.
 また、ステップ52において、第2取得部26は、制御対象の交差点を通過予定の自動運転車両16から走行計画を取得する。ここで、第2取得部26が自動運転車両16から取得する走行計画には、制御対象の交差点での自動運転車両16の走行予定(直進/左折/右折)と、当該走行予定の実行予定時刻(制御対象の交差点の通過予定時刻)と、の各情報が含まれている。 In addition, in step 52, the second acquisition unit 26 acquires a driving plan from the autonomous vehicle 16 that is scheduled to pass through the controlled intersection. Here, the driving plan acquired by the second acquisition unit 26 from the autonomous vehicle 16 includes information on the planned driving (straight ahead/left turn/right turn) of the autonomous vehicle 16 at the controlled intersection and the planned execution time of the driving plan (scheduled time of passing through the controlled intersection).
 例として図20には、第2取得部26によって取得される自動運転車両16の走行計画の一例を「当初の走行計画」と表記して示す。この「当初の走行計画」では、制御対象の交差点の信号機100が青信号となっている間に、信号待ちの時間無しで制御対象の交差点を通過できる走行計画になっている。 As an example, FIG. 20 shows an example of a driving plan for the autonomous vehicle 16 acquired by the second acquisition unit 26, labeled as the "initial driving plan." This "initial driving plan" is a driving plan that allows the autonomous vehicle 16 to pass through the intersection to be controlled without waiting for the traffic light while the traffic light 100 at the intersection to be controlled is green.
 ステップ54において、判定部28は、ステップ50で第1取得部24が取得した制御対象の交差点における交通状況に基づき、自動運転車両16が制御対象の交差点を通過する時刻を演算する。ステップ56において、判定部28は、ステップ54で演算した交差点通過時刻が、自動運転車両16の走行計画(制御対象の交差点の通過予定時刻)より所定時間以上遅延するか否かを判定する。 In step 54, the determination unit 28 calculates the time at which the autonomous vehicle 16 will pass through the intersection to be controlled, based on the traffic conditions at the intersection to be controlled acquired by the first acquisition unit 24 in step 50. In step 56, the determination unit 28 determines whether the intersection passing time calculated in step 54 is delayed by a predetermined time or more from the driving plan of the autonomous vehicle 16 (scheduled time to pass through the intersection to be controlled).
 例えば、制御対象の交差点を通過しようとしている緊急車両が存在していないなどの場合には、ステップ54で演算される時刻の、自動運転車両16の走行計画(制御対象の交差点の通過予定時刻)に対する時刻差が所定時間未満となることで、ステップ56の判定が否定される。この場合はステップ58をスキップして信号制御処理を終了する。 For example, if there is no emergency vehicle attempting to pass through the intersection to be controlled, the time difference between the time calculated in step 54 and the driving plan of the autonomous vehicle 16 (the planned time to pass through the intersection to be controlled) is less than a predetermined time, and the determination in step 56 is negative. In this case, step 58 is skipped and the signal control process ends.
 一方、制御対象の交差点を通過しようとしている緊急車両が存在しているなどの場合には、一例として、図20に「周辺の交通状況より推定される実際の走行予定」と表記して示すように、制御対象の交差点の通過に要する時間に、緊急車両の通過待ちの時間や信号待ちの時間が加わる。これにより、図20に「遅延t1」と表記して示すように、ステップ54で演算される時刻が、自動運転車両16の走行計画(制御対象の交差点の通過予定時刻)に対して所定時間以上遅延することで、ステップ56の判定が肯定されてステップ58へ移行する。 On the other hand, if there is an emergency vehicle attempting to pass the controlled intersection, the time required to pass the controlled intersection will include the time to wait for the emergency vehicle to pass and the time to wait for the traffic light, as shown in FIG. 20 as "Actual driving plan estimated from surrounding traffic conditions", as an example. As a result, as shown in FIG. 20 as "Delay t1", the time calculated in step 54 is delayed by a predetermined time or more with respect to the driving plan of the autonomous vehicle 16 (scheduled time to pass the controlled intersection), and the determination in step 56 is affirmative, and the process proceeds to step 58.
 ステップ58において、制御部41は、自動運転車両16が制御対象の交差点を通過する間、制御対象の交差点の信号機100が青信号で維持されるように、制御対象の交差点の信号機100を制御し(図20に示す「制御後の信号機の色」も参照)、信号制御処理を終了する。これにより、一例として図20に「制御後の信号機の色の下での走行予定」と表記して示すように、制御対象の交差点の通過に要する時間が信号待ちの時間分だけ短くなり(「遅延抑制(t2)」も参照)、自動運転車両16の走行計画に遅延が生ずることが抑制される。 In step 58, the control unit 41 controls the traffic light 100 at the controlled intersection so that the traffic light 100 at the controlled intersection is kept green while the autonomous vehicle 16 passes through the controlled intersection (see also "traffic light color after control" in FIG. 20), and ends the signal control process. As a result, as shown as an example in FIG. 20 labeled "driving plan under traffic light color after control," the time required to pass through the controlled intersection is shortened by the time spent waiting for the traffic light (see also "delay suppression (t2)"), and delays in the driving plan of the autonomous vehicle 16 are suppressed.
 続いて図21を参照し、信号制御装置22によって実行される信号制御処理の他の例を説明する。図21に示す信号制御処理は、ステップ58の処理を行った後、ステップ60へ移行する。ステップ60において、協調制御部42は、ステップ58における制御対象の交差点の信号機100の制御に伴って、自動運転車両16の走行計画の遅延が解消されたか否か判定する。ステップ60の判定が肯定された場合は信号制御処理を終了する。 Next, referring to FIG. 21, another example of the signal control process executed by the signal control device 22 will be described. The signal control process shown in FIG. 21 proceeds to step 60 after performing the process of step 58. In step 60, the cooperative control unit 42 determines whether or not the delay in the travel plan of the autonomous vehicle 16 has been resolved following the control of the traffic light 100 at the intersection to be controlled in step 58. If the determination in step 60 is positive, the signal control process ends.
 一方、ステップ60の判定が否定された場合はステップ62へ移行する。ステップ62において、協調制御部42は、自動運転車両16が次の交差点を通過する間、次の交差点の信号機100が青信号で維持されるように、次の交差点の信号機100を制御する。ステップ62の処理を行うとステップ60に戻り、ステップ60の判定が肯定される迄、ステップ60,62を繰り返す。これにより、自動運転車両16の走行計画の遅延が解消されるように、自動運転車両16が順次通過する複数の交差点の信号機100が協調制御されることになる。 On the other hand, if the determination in step 60 is negative, the process proceeds to step 62. In step 62, the cooperative control unit 42 controls the traffic light 100 at the next intersection so that the traffic light 100 at the next intersection is maintained at a green light while the autonomous vehicle 16 passes through the next intersection. After processing step 62, the process returns to step 60, and steps 60 and 62 are repeated until the determination in step 60 is positive. In this way, the traffic lights 100 at multiple intersections that the autonomous vehicle 16 passes through in sequence are cooperatively controlled so that delays in the driving plan of the autonomous vehicle 16 are eliminated.
 以上説明したように、第2実施形態では、信号制御装置22の第1取得部24が制御対象の交差点の周辺に設けられたセンサ110から制御対象の交差点の周辺の交通状況を取得し、第2取得部26が制御対象の交差点の通過を予定している自動運転車両16の走行計画を取得する。また、判定部28は、第1取得部24によって取得された前記交通状況に基づき、自動運転車両16が制御対象の交差点を通過する際に自動運転車両16の走行計画の遅延が発生するか否かを判定する。そして制御部41は、判定部28によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように制御対象の交差点の信号機100を制御する。これにより、自動運転車両16の走行計画に遅延が生ずることを抑制することができ、自動運転制御などを行う車載のコンピュータ(Central Brain)に、走行計画の再作成などの大きな負荷が走行中に加わることを抑制することができる。 As described above, in the second embodiment, the first acquisition unit 24 of the signal control device 22 acquires the traffic conditions around the intersection to be controlled from the sensor 110 installed around the intersection to be controlled, and the second acquisition unit 26 acquires the driving plan of the autonomous vehicle 16 that is scheduled to pass through the intersection to be controlled. In addition, the determination unit 28 determines whether or not a delay will occur in the driving plan of the autonomous vehicle 16 when the autonomous vehicle 16 passes through the intersection to be controlled, based on the traffic conditions acquired by the first acquisition unit 24. Then, when the determination unit 28 determines that the delay will occur, the control unit 41 controls the traffic light 100 of the intersection to be controlled so that the delay is suppressed. This makes it possible to suppress delays in the driving plan of the autonomous vehicle 16, and to suppress the imposition of a large load, such as re-creating a driving plan, on the on-board computer (Central Brain) that performs autonomous driving control, etc., while driving.
 また、第2実施形態において、制御部41は、判定部28によって前記遅延が発生すると判定された場合に、自動運転車両16が制御対象の交差点を通過している間、制御対象の交差点の信号機100が青信号で維持されるように制御対象の交差点の信号機100を制御する。これにより、制御対象の交差点の信号機100が青信号になっている時間を一定時間長くするなどの制御を行う場合と比較して、自動運転車両16が制御対象の交差点を通過する際の安全性を確保しつつ、制御対象の交差点の信号機が青信号になっている時間が必要以上に長くなることを抑制することができる。 In addition, in the second embodiment, when the determination unit 28 determines that the delay will occur, the control unit 41 controls the traffic light 100 at the controlled intersection so that the traffic light 100 at the controlled intersection is maintained at a green light while the autonomous vehicle 16 passes through the controlled intersection. This ensures safety when the autonomous vehicle 16 passes through the controlled intersection, while preventing the traffic light at the controlled intersection from being green for an unnecessarily long time, compared to when control is performed such as extending the time that the traffic light 100 at the controlled intersection is green for a certain period of time.
 また、第2実施形態において、協調制御部42は、判定部28によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように、自動運転車両16が順次通過することを予定している複数の交差点の信号機100を各々制御する(図21)。これにより、自動運転車両16が複数の交差点を順次通過する間に、自動運転車両16の走行計画の遅延を解消させることができる。 In addition, in the second embodiment, when the determination unit 28 determines that the delay will occur, the cooperative control unit 42 controls the traffic lights 100 at multiple intersections through which the autonomous vehicle 16 is scheduled to pass in sequence so as to suppress the delay ( FIG. 21 ). This makes it possible to eliminate delays in the driving plan of the autonomous vehicle 16 while the autonomous vehicle 16 passes through multiple intersections in sequence.
 なお、第2実施形態では、自動運転車両16の走行計画の遅延が生ずる場合に制御対象の交差点の信号機100を制御する処理を、制御対象の交差点を通過する全ての自動運転車両16を対象として行う態様を説明したが、本開示はこれに限定されるものではない。例えば、個々の自動運転車両16に対して緊急度を予め設定しておき、自動運転車両16の走行計画の遅延が生ずる場合に制御対象の交差点の信号機100を制御する処理を、緊急度が所定値以上の自動運転車両16を対象として行うようにしてもよい。これにより、例えば病人を搬送している自動運転車両16などの緊急度を所定値以上に設定しておくことで、当該自動運転車両16について走行計画の遅延が生ずることを優先的に抑制することができる。また、制御対象の交差点の信号機100を制御する回数が抑制されることで、制御対象の交差点の信号機100の制御に伴って走行が影響を受ける可能性のある、緊急度が所定値以上の自動運転車両16以外の他車両の台数も抑制することができる。 In the second embodiment, the process of controlling the traffic lights 100 at the intersection to be controlled when the driving plan of the autonomous vehicle 16 is delayed is performed for all autonomous vehicles 16 passing through the intersection to be controlled. However, the present disclosure is not limited to this. For example, an urgency level may be set in advance for each autonomous vehicle 16, and the process of controlling the traffic lights 100 at the intersection to be controlled when the driving plan of the autonomous vehicle 16 is delayed may be performed for autonomous vehicles 16 with an urgency level equal to or higher than a predetermined value. In this way, for example, by setting the urgency level of an autonomous vehicle 16 transporting a sick person to a predetermined value or higher, it is possible to preferentially suppress delays in the driving plan of the autonomous vehicle 16. In addition, by suppressing the number of times that the traffic lights 100 at the intersection to be controlled are controlled, it is also possible to suppress the number of other vehicles other than the autonomous vehicle 16 with an urgency level equal to or higher than a predetermined value, whose driving may be affected by the control of the traffic lights 100 at the intersection to be controlled.
 また、第2実施形態では、自動運転車両16の走行計画の遅延が生ずる交通状況の一例として、自動運転車両16が交差点で緊急車両と遭遇した場合を説明した。しかし、本開示はこれに限定されるものではなく、自動運転車両16の走行計画の遅延が生ずる交通状況の他の例として、自動運転車両16が交差点を右左折する際に自動運転車両16と干渉する歩行者が存在している場合などが挙げられる。 In the second embodiment, a case where the autonomous vehicle 16 encounters an emergency vehicle at an intersection has been described as an example of a traffic situation in which a delay in the driving plan of the autonomous vehicle 16 occurs. However, the present disclosure is not limited to this, and other examples of traffic situations in which a delay in the driving plan of the autonomous vehicle 16 occurs include a case where a pedestrian is present that interferes with the autonomous vehicle 16 when the autonomous vehicle 16 turns right or left at an intersection.
 また、第2実施形態では、複数の信号装置12に対して信号制御装置22を1台設けた態様を説明したが、本開示はこれに限定されるものではない。例えば、協調制御部42を除く各機能部(第1取得部24、第2取得部26、判定部28および制御部41)を備えた信号制御装置22を、個々の信号装置12に対応して個々の交差点毎に設けてもよい。この態様において、個々の交差点毎に設けられる装置(信号装置12および信号制御装置22)は、本開示に係る信号機装置の一例である。また、この態様において、複数の信号機100の協調制御を行う場合には、協調制御部42として機能する協調制御装置を、複数の信号機装置(信号装置12および信号制御装置22)に対して1台設けてもよい。この協調制御装置を設けた態様における信号機システム10は、本開示に係る信号機システムの一例である。 In the second embodiment, one signal control device 22 is provided for multiple signal devices 12, but the present disclosure is not limited to this. For example, a signal control device 22 including each functional unit (first acquisition unit 24, second acquisition unit 26, judgment unit 28, and control unit 41) other than the cooperative control unit 42 may be provided for each intersection corresponding to each signal device 12. In this embodiment, the device (signal device 12 and signal control device 22) provided for each intersection is an example of a signal device according to the present disclosure. In this embodiment, when cooperative control of multiple traffic lights 100 is performed, one cooperative control device functioning as the cooperative control unit 42 may be provided for multiple traffic light devices (signal device 12 and signal control device 22). The traffic light system 10 in the embodiment in which this cooperative control device is provided is an example of a traffic light system according to the present disclosure.
[第3実施形態]
 次に本開示の第3実施形態について説明する。なお、第1実施形態と同一の部分には同一の符号を付し、説明を省略する。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described. Note that the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図22には、第3実施形態に係る情報通知システム210が示されている。情報通知システム210は、道路の交差点毎に設置された複数の信号機装置211と、道路を走行する複数台の自動運転車両224と、を含んでいる。信号機装置211は、第1実施形態で説明した信号機100およびセンサ110と、表示部212と、情報通知装置214と、を含んでいる。なお、第1実施形態では、センサ110を、自動運転車両224のCentral Brainと無線通信が可能な構成としていたが、本第3実施形態におけるセンサ110は、自動運転車両224などと無線通信を行う機能が省略されていてもよい。 FIG. 22 shows an information notification system 210 according to the third embodiment. The information notification system 210 includes a plurality of traffic light devices 211 installed at each intersection of a road, and a plurality of autonomous vehicles 224 traveling on the road. The traffic light device 211 includes the traffic light 100 and sensor 110 described in the first embodiment, a display unit 212, and an information notification device 214. Note that, in the first embodiment, the sensor 110 was configured to be capable of wireless communication with the Central Brain of the autonomous vehicle 224, but the sensor 110 in this third embodiment may omit the function of wireless communication with the autonomous vehicle 224, etc.
 図23に示すように、表示部212は信号機100の近傍に設置されており、所定の2次元コードを表示可能な解像度とされている。なお、図23では表示部212を1つのみ示しているが、表示部212(および信号機100)は、交差点への進入方向の異なる道路毎に設けられている。例えば、図24に示すように、東西方向に延びる道路と南北方向に延びる道路とが交差している交差点の場合、交差点への進入方向が「E(東)」「W(西)」「S(南)」および「N(北)」の各方向毎に別々の表示部212が設けられている。 As shown in FIG. 23, the display unit 212 is installed near the traffic light 100, and has a resolution that allows it to display a specified two-dimensional code. Note that while FIG. 23 shows only one display unit 212, a display unit 212 (and traffic light 100) is provided for each road with a different approach direction to the intersection. For example, as shown in FIG. 24, in the case of an intersection where a road running in an east-west direction intersects with a road running in a north-south direction, a separate display unit 212 is provided for each of the approach directions to the intersection: "E (East)", "W (West)", "S (South)" and "N (North)".
 情報通知装置214は、CPUと、ROMやRAMなどのメモリと、HDDやSSDなどの不揮発性の記憶部と、を含み、記憶部には情報通知プログラムが記憶されている。情報通知装置214は、CPUが情報通知プログラムを実行することで取得部216、生成部218および表示制御部220として機能し、後述する情報通知処理(図25)を行う。なお、情報通知装置214は本開示に係る情報通知装置の一例である。 The information notification device 214 includes a CPU, memory such as ROM or RAM, and a non-volatile storage unit such as an HDD or SSD, and an information notification program is stored in the storage unit. The information notification device 214 functions as an acquisition unit 216, a generation unit 218, and a display control unit 220 by the CPU executing the information notification program, and performs the information notification process (FIG. 25) described below. Note that the information notification device 214 is an example of an information notification device related to the present disclosure.
 取得部216は、交差点の周辺に設けられたセンサ110から交差点の周辺の交通状況を取得する。生成部218は、取得部216によって取得された交差点の周辺の交通状況に基づき、これから交差点に進入する自動運転車両224への通知情報を生成する。そして表示制御部220は、生成部218によって生成された通知情報を、交差点の周辺に設けられた表示部212にコード情報(本第3実施形態では2次元コード)として表示させる。 The acquisition unit 216 acquires traffic conditions around the intersection from sensors 110 installed around the intersection. The generation unit 218 generates notification information for an autonomous vehicle 224 about to enter the intersection based on the traffic conditions around the intersection acquired by the acquisition unit 216. The display control unit 220 then displays the notification information generated by the generation unit 218 as code information (a two-dimensional code in this third embodiment) on a display unit 212 installed around the intersection.
 自動運転車両224は、表示部212を撮影可能なカメラ226と、自動運転制御部228と、を含んでいる。自動運転制御部228は、第1実施形態で説明したCentral Brainが所定のプログラムを実行することにより実現される。自動運転制御部228は、カメラ226によって撮影された画像のうち表示部212に対応する領域に表示されているコード情報をデコードすることで、通知情報を取得する。そして自動運転制御部228(Central Brain)は、取得した通知情報(より詳しくは、通知情報に含まれる自車両向けの走行指示情報)に従って、自動運転により自動運転車両224を走行させる制御を行う。 The autonomous vehicle 224 includes a camera 226 capable of capturing an image of the display unit 212, and an autonomous driving control unit 228. The autonomous driving control unit 228 is realized by the Central Brain described in the first embodiment executing a predetermined program. The autonomous driving control unit 228 acquires notification information by decoding code information displayed in an area of the image captured by the camera 226 that corresponds to the display unit 212. The autonomous driving control unit 228 (Central Brain) then controls the autonomous vehicle 224 to travel autonomously in accordance with the acquired notification information (more specifically, driving instruction information for the vehicle contained in the notification information).
 次に第3実施形態の作用として、情報通知装置214によって所定時間周期で繰り返し実行される情報通知処理について、図25を参照して説明する。なお、図25に示す情報通知処理は、特定の進入方向(以下、進入方向Xという)から交差点へ進入する自動運転車両224向けの処理であり、情報通知装置214は、進入方向X以外の進入方向についても図25の情報通知処理を各々行う。 Next, as an operation of the third embodiment, the information notification process that is repeatedly executed at a predetermined time interval by the information notification device 214 will be described with reference to FIG. 25. Note that the information notification process shown in FIG. 25 is a process for an autonomous vehicle 224 that enters an intersection from a specific entry direction (hereinafter, referred to as entry direction X), and the information notification device 214 also performs the information notification process of FIG. 25 for entry directions other than entry direction X.
 情報通知処理のステップ250において、情報通知装置214の取得部216は、信号機装置211が設置された交差点(以下、単に「交差点」という)およびその周辺における交通状況をセンサ110から取得する。 In step 250 of the information notification process, the acquisition unit 216 of the information notification device 214 acquires from the sensor 110 the traffic conditions at the intersection where the traffic light device 211 is installed (hereinafter simply referred to as the "intersection") and its surroundings.
 また、ステップ252において、生成部218は、ステップ250で取得された交通状況に基づき、進入方向Xよりこれから交差点に進入する自動運転車両224を特定し、特定した自動運転車両224の各々の情報(ID、位置、車速、進行方向(直進/右折/左折)など)を特定する。自動運転車両224のIDとしては、例えばナンバープレート(ライセンスプレート)に記載されている文字列などを適用することができる。また、自動運転車両224の進行方向は、例えば、ウインカーランプの点滅の有無などから特定することができる。 In addition, in step 252, the generation unit 218 identifies an autonomous vehicle 224 that is about to enter the intersection from the entry direction X based on the traffic conditions acquired in step 250, and identifies information about each of the identified autonomous vehicles 224 (ID, position, vehicle speed, direction of travel (straight ahead/right turn/left turn), etc.). As the ID of the autonomous vehicle 224, for example, a character string written on the number plate (license plate) can be applied. In addition, the direction of travel of the autonomous vehicle 224 can be identified, for example, from whether or not the turn signal lamp is flashing.
 なお、本第3実施形態において、自動運転車両224は、例えば屋根部など外から識別可能な位置にランプが設けられており、自動運転制御部228が自動運転を行っている場合には前記ランプを点灯させる構成となっている。ステップ252では、生成部218は、進入方向Xよりこれから交差点に進入する個々の車両に対し、屋根部などにランプが設けられ、かつこのランプが点灯されているか否かを各々判定することで、進入方向Xよりこれから交差点に進入する自動運転車両224の特定を行う。 In the third embodiment, the autonomous vehicle 224 is provided with a lamp in a position that can be identified from the outside, such as on the roof, and the lamp is turned on when the autonomous driving control unit 228 is performing autonomous driving. In step 252, the generation unit 218 determines whether or not a lamp is provided on the roof or the like and whether or not this lamp is turned on for each vehicle that is about to enter the intersection from the entry direction X, thereby identifying the autonomous vehicle 224 that is about to enter the intersection from the entry direction X.
 ステップ254において、生成部218は、ステップ250で取得された交通状況に基づき、進入方向Xより交差点に進入する車両から死角となる死角領域(例えば図3に斜線で示す領域)における交通状況を特定する。この死角領域の交通状況は、例えば、死角領域における車両、歩行者などの交通参加者の有無または数、位置、進行方向、移動速度などの情報を含む。 In step 254, the generation unit 218 identifies the traffic conditions in a blind spot area (e.g., the area shown by diagonal lines in FIG. 3) that is a blind spot for a vehicle entering the intersection from the approach direction X, based on the traffic conditions acquired in step 250. The traffic conditions in this blind spot area include, for example, information on the presence or absence or number, position, traveling direction, and moving speed of vehicles, pedestrians, and other traffic participants in the blind spot area.
 ステップ256において、生成部218は、ステップ252で特定した進入方向Xよりこれから交差点に進入する自動運転車両224の情報と、ステップ254で特定した死角領域の交通状況と、に基づき、個々の自動運転車両224への走行指示情報を生成する。 In step 256, the generation unit 218 generates driving instruction information for each autonomous vehicle 224 based on the information about the autonomous vehicle 224 that is about to enter the intersection from the approach direction X identified in step 252 and the traffic conditions in the blind spot area identified in step 254.
 一例として、生成部218は、進入方向Xよりこれから交差点に進入する個々の自動運転車両224のうち進行方向が「直進」の自動運転車両224について、現在の車速のまま走行したときに、交差点が青信号となっている期間内に交差点を通過できるか否か判定する。そして、生成部218は、交差点が青信号となっている期間内に交差点を通過できると判定した第1の自動運転車両224に対しては、「現在の車速を維持したまま走行すること」を指示する走行通知情報を生成し、交差点が青信号となっている期間内に交差点を通過できないと判定した第2の自動運転車両224に対しては、「減速して交差点手前で停止すること」を指示する走行通知情報を生成する。なお、個々の自動運転車両224に対する走行通知情報には、対応する自動運転車両224のIDが情報として含まれている。 As an example, the generation unit 218 determines whether or not each of the autonomous vehicles 224 that will soon enter the intersection from the entry direction X and whose traveling direction is "straight ahead" can pass through the intersection while the intersection has a green light when traveling at its current vehicle speed. Then, for a first autonomous vehicle 224 that has been determined to be able to pass through the intersection while the intersection has a green light, the generation unit 218 generates driving notification information instructing the first autonomous vehicle 224 to "keep the current vehicle speed while traveling," and for a second autonomous vehicle 224 that has been determined to be unable to pass through the intersection while the intersection has a green light, the generation unit 218 generates driving notification information instructing the second autonomous vehicle 224 to "slow down and stop before the intersection." The driving notification information for each autonomous vehicle 224 includes the ID of the corresponding autonomous vehicle 224 as information.
 また一例として、生成部218は、進入方向Xよりこれから交差点に進入する個々の自動運転車両224のうち、進行方向が「右折」または「左折」の自動運転車両224について、右左折の際に死角領域に存在する歩行者などと干渉しないか否かを判定する。そして生成部218は、右左折の際に死角領域に存在する歩行者などと干渉しないと判定した第3の自動運転車両224に対しては、「右左折の際に横断歩道を徐行して通過すること」を指示する走行通知情報を生成し、右左折の際に死角領域に存在する歩行者などと干渉すると判定した第4の自動運転車両224に対しては、「右左折の際に横断歩道の手前で一時停止すること」を指示する走行通知情報を生成する。 As another example, the generation unit 218 determines whether or not the autonomous vehicles 224 that are about to enter the intersection from the entry direction X and whose travel direction is "turn right" or "turn left" will interfere with pedestrians or the like in a blind spot when turning right or left. The generation unit 218 then generates driving notification information for a third autonomous vehicle 224 that is determined not to interfere with pedestrians or the like in a blind spot when turning right or left, instructing the vehicle to "slowly pass through the crosswalk when turning right or left," and generates driving notification information for a fourth autonomous vehicle 224 that is determined to interfere with pedestrians or the like in a blind spot when turning right or left, instructing the vehicle to "stop temporarily before the crosswalk when turning right or left."
 ステップ258において、表示制御部220は、ステップ256で生成された、進入方向Xよりこれから交差点に進入する各自動運転車両224への走行指示情報を含む通知情報をコード化した2次元コードを生成する。そしてステップ260において、表示制御部220は、ステップ258で生成した2次元コードを、進入方向Xより交差点に進入する自動運転車両224向けの表示部212に表示させ、情報通知処理を終了する。 In step 258, the display control unit 220 generates a two-dimensional code that encodes the notification information, including driving instruction information, generated in step 256 for each autonomous vehicle 224 that is about to enter the intersection from the entry direction X. Then, in step 260, the display control unit 220 displays the two-dimensional code generated in step 258 on the display unit 212 for the autonomous vehicle 224 that is about to enter the intersection from the entry direction X, and ends the information notification process.
 なお、上述した情報通知処理において、コード情報を表示部212に表示させて自動運転車両224へ通知する際、信号機100の色が青色から黄色を経て赤色に切り替わる場合に、信号機100の色に合わせてコード情報が変化される。また、表示部212に表示させるコード情報を変化させるタイミングは、信号機100の色が変わるのと同時であってもよいし、信号機100の色が変わるよりも所定時間前のタイミングであってもよい。 In the above-mentioned information notification process, when the code information is displayed on the display unit 212 and notified to the autonomous vehicle 224, if the color of the traffic light 100 changes from blue to yellow to red, the code information is changed to match the color of the traffic light 100. In addition, the timing for changing the code information displayed on the display unit 212 may be simultaneous with the color change of the traffic light 100, or may be a predetermined time before the color change of the traffic light 100.
 一方、これから交差点に進入する自動運転車両224において、自動運転制御部228は、カメラ226によって撮影された画像のうち表示部212に対応する領域に表示されているコード情報をデコードすることで、通知情報を取得する。そして自動運転制御部228は、取得した通知情報に含まれるIDから自車両向けの走行指示情報を抽出し、抽出した走行指示情報に従って自動運転により自動運転車両224を走行させる制御を行う。 Meanwhile, in the autonomous vehicle 224 about to enter the intersection, the autonomous driving control unit 228 obtains notification information by decoding the code information displayed in the area of the image captured by the camera 226 that corresponds to the display unit 212. The autonomous driving control unit 228 then extracts driving instruction information for the vehicle itself from the ID included in the obtained notification information, and controls the autonomous vehicle 224 to drive autonomously in accordance with the extracted driving instruction information.
 これにより、例えば、前述の第1の自動運転車両224においては、自車両向けの走行指示情報に従い「現在の車速を維持したまま走行する」ように制御され、前述の第2の自動運転車両224においては、自車両向けの走行指示情報に従い「減速して交差点手前で停止する」ように制御される。また、例えば、前述の第3の自動運転車両224においては、自車両向けの走行指示情報に従い「右左折の際に横断歩道を徐行して通過する」ように制御され、前述の第4の自動運転車両224においては、自車両向けの走行指示情報に従い「右左折の際に横断歩道の手前で一時停止する」ように制御される。 As a result, for example, the first autonomous vehicle 224 described above is controlled to "keep driving at the current vehicle speed" in accordance with the driving instruction information for its own vehicle, and the second autonomous vehicle 224 described above is controlled to "slow down and stop before the intersection" in accordance with the driving instruction information for its own vehicle. Also, for example, the third autonomous vehicle 224 described above is controlled to "slow down and pass the crosswalk when turning right or left" in accordance with the driving instruction information for its own vehicle, and the fourth autonomous vehicle 224 described above is controlled to "make a temporary stop before the crosswalk when turning right or left" in accordance with the driving instruction information for its own vehicle.
 以上説明したように、第3実施形態では、情報通知装置214の取得部216が、交差点の周辺に設けられたセンサ110から交差点の周辺の交通状況を取得する。また、生成部218は、取得部216によって取得された交差点の周辺の交通状況に基づき、これから交差点に進入する自動運転車両への通知情報を生成する。表示制御部220は、生成部218によって生成された通知情報を、交差点の周辺に設けられた表示部212にコード情報として表示させる。これにより、移動通信網を用いることなく自動運転車両224へ通知情報を通知することができるので、移動通信網の通信状況の影響を受けることなく自動運転車両224へ情報を通知することができる。 As described above, in the third embodiment, the acquisition unit 216 of the information notification device 214 acquires the traffic conditions around the intersection from the sensors 110 installed around the intersection. Furthermore, the generation unit 218 generates notification information for an autonomous vehicle about to enter the intersection, based on the traffic conditions around the intersection acquired by the acquisition unit 216. The display control unit 220 displays the notification information generated by the generation unit 218 as code information on the display unit 212 installed around the intersection. This makes it possible to notify the autonomous vehicle 224 of the notification information without using a mobile communication network, and therefore makes it possible to notify the autonomous vehicle 224 of information without being affected by the communication conditions of the mobile communication network.
 また、第3実施形態において、生成部218は、通知情報として、これから交差点に進入する複数台の自動運転車両224の各々に対して走行を指示する走行指示情報を含む情報を生成する。これにより、単一の通知情報を表示部212にコード情報として表示させることで、これから交差点に進入する複数台の自動運転車両224に対して走行指示を各々与えることができる。 In addition, in the third embodiment, the generation unit 218 generates, as notification information, information including driving instruction information that instructs each of the multiple autonomous vehicles 224 about to enter the intersection to drive. In this way, by displaying a single piece of notification information as code information on the display unit 212, driving instructions can be given to each of the multiple autonomous vehicles 224 about to enter the intersection.
 また、第3実施形態において、生成部218は、交差点の周辺のうち自動運転車両224から死角となる死角領域の交通状況を考慮して、走行指示情報を生成する。これにより、自動運転車両224に対し、当該自動運転車両224から死角となる死角領域の交通状況を考慮した走行指示を与えることができる。 In addition, in the third embodiment, the generation unit 218 generates driving instruction information taking into consideration the traffic conditions in the blind spot area around the intersection that is a blind spot from the autonomous vehicle 224. This makes it possible to give driving instructions to the autonomous vehicle 224 that take into consideration the traffic conditions in the blind spot area that is a blind spot from the autonomous vehicle 224.
 また、第3実施形態において、表示制御部220は、コード情報として2次元バーコードを表示部212に表示させる。これにより、コード情報として1次元のコードを表示させるなどの態様と比較して、表示部212にコード情報として表示可能な通知情報の情報量を増大させることができる。 Furthermore, in the third embodiment, the display control unit 220 causes the display unit 212 to display a two-dimensional barcode as code information. This makes it possible to increase the amount of notification information that can be displayed as code information on the display unit 212, compared to a mode in which a one-dimensional code is displayed as code information.
 なお、上記の第3実施形態では、死角領域の交通状況を考慮した走行指示情報を生成する態様を説明したが、本開示はこれに限定されるものではなく、死角領域の状況を示す情報を死角領域情報として通知情報に含めてもよい。また、上記の死角領域情報は、見通しが悪く車載のセンサでは死角領域が生ずる交差点についてのみ通知情報に含めるようにしてもよい。 In the above third embodiment, a mode of generating driving instruction information taking into account the traffic conditions in the blind spot area has been described, but the present disclosure is not limited to this, and information indicating the condition of the blind spot area may be included in the notification information as blind spot area information. In addition, the above blind spot area information may be included in the notification information only for intersections where visibility is poor and blind spots are created by the on-board sensor.
 また、上記の第3実施形態では、通知情報を、本開示におけるコード情報の一例である2次元コードとして表示部212へ表示させる態様を説明したが、本開示におけるコード情報は、2次元コード以外、例えば1次元のバーコードなどであってもよい。 In the above third embodiment, a mode was described in which the notification information was displayed on the display unit 212 as a two-dimensional code, which is an example of code information in this disclosure, but the code information in this disclosure may be something other than a two-dimensional code, such as a one-dimensional barcode.
 また、上記の第3実施形態では、本開示に係る情報通知装置214が信号機100に併設されて信号機装置211の一部を構成する態様を説明したが、本開示はこれに限定されるものではなく、本開示に係る情報通知装置214は、信号機100が設置されていない交差点や、信号機100が設置されておらず複数の道路が合流している合流地点などに、センサ110と共に設置することも可能である。 In addition, in the above third embodiment, an aspect has been described in which the information notification device 214 according to the present disclosure is attached to the traffic light 100 to form part of the traffic light device 211, but the present disclosure is not limited to this, and the information notification device 214 according to the present disclosure can also be installed together with the sensor 110 at an intersection where no traffic light 100 is installed, or at a junction where no traffic light 100 is installed and multiple roads merge.
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本開示の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The present disclosure has been described above using embodiments, but the technical scope of the present disclosure is not limited to the scope described in the above embodiments. It will be clear to those skilled in the art that various modifications and improvements can be made to the above embodiments. It is clear from the claims that forms incorporating such modifications or improvements can also be included in the technical scope of the present disclosure.
 特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that the processes may be performed in any order, unless the output of a previous process is used in a later process. Even if the operational flow in the claims, specifications, and drawings is explained using "first," "next," etc. for convenience, it does not mean that it is necessary to perform the processes in that order.
 2022年10月14日に出願された日本国特許出願2022-165875号の開示、2022年10月27日に出願された日本国特許出願2022-172347号の開示、2023年3月9日に出願された日本国特許出願2023-036942号の開示、及び2023年3月15日に出願された日本国特許出願2023-041210号の開示は、その全体が参照により本明細書に取り込まれる。 The disclosures of Japanese Patent Application No. 2022-165875 filed on October 14, 2022, Japanese Patent Application No. 2022-172347 filed on October 27, 2022, Japanese Patent Application No. 2023-036942 filed on March 9, 2023, and Japanese Patent Application No. 2023-041210 filed on March 15, 2023 are incorporated herein by reference in their entirety.
10 信号制御システム、12 信号装置、16 自動運転車両、18 走行計画作成部、22 信号制御装置、24 第1取得部、26 第2取得部、28 判定部、30 情報取得部、32 判定部、34 推論部、36 制御部、40 学習済みモデル、41 制御部、42 協調制御部、100 信号機、110 センサ、210 情報通知システム、211 信号機装置、212 表示部、216 取得部、218 生成部、220 表示制御部、224 自動運転車両、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ 10 Signal control system, 12 Signal device, 16 Autonomous vehicle, 18 Travel plan creation unit, 22 Signal control device, 24 First acquisition unit, 26 Second acquisition unit, 28 Judgment unit, 30 Information acquisition unit, 32 Judgment unit, 34 Inference unit, 36 Control unit, 40 Learned model, 41 Control unit, 42 Cooperative control unit, 100 Signal, 110 Sensor, 210 Information notification system, 211 Signal device, 212 Display unit, 216 Acquisition unit, 218 Generation unit, 220 Display control unit, 224 Autonomous vehicle, 1200 Computer, 1210 Host controller, 1212 CPU, 1214 RAM, 1216 Graphic controller, 1218 Display device, 1220 Input/output controller, 1222 Communication interface, 1224 Storage device, 1230 ROM, 1240 Input/output chip

Claims (18)

  1.  車両を制御する制御装置であって、
     信号機に設置されたセンサにより検出された複数の情報を取得する情報取得部と、
     前記情報取得部が取得した前記複数の情報と学習済みモデルを用いて、前記車両を制御する制御部
     を備える制御装置。
    A control device for controlling a vehicle,
    An information acquisition unit that acquires a plurality of pieces of information detected by a sensor installed in a traffic light;
    a control unit that controls the vehicle using the plurality of pieces of information acquired by the information acquisition unit and a trained model.
  2.  前記制御部は、前記複数の情報と前記学習済みモデルを用いて、10億分の1秒単位で前記車両を制御する
     請求項1に記載の制御装置。
    The control device according to claim 1 , wherein the control unit controls the vehicle in units of one billionth of a second by using the plurality of pieces of information and the trained model.
  3.  前記制御部は、前記車両が、前記信号機が設置された交差点に進入している場合、前記信号機に設置されたセンサにより検出された複数の情報と前記学習済みモデルを用いて前記車両を制御し、
     前記車両が前記交差点以外の走行路を走行している場合、前記車両に搭載されたセンサにより検出された複数の情報と前記学習済みモデルを用いて前記車両を制御する
     請求項1又は請求項2に記載の制御装置。
    The control unit, when the vehicle is entering an intersection at which a traffic light is installed, controls the vehicle using a plurality of pieces of information detected by a sensor installed at the traffic light and the trained model;
    3. The control device according to claim 1, wherein when the vehicle is traveling on a road other than the intersection, the vehicle is controlled using a plurality of pieces of information detected by sensors mounted on the vehicle and the trained model.
  4.  前記制御部は、前記車両が前記交差点に進入している場合で、かつ前記信号機に設置されたセンサにより検出された複数の情報を前記学習済みモデルに入力した場合の前記学習済みモデルの出力値と、前記車両に搭載されたセンサにより検出された複数の情報を前記学習済みモデルに入力した場合の前記学習済みモデルの出力値とが一致する場合、前記信号機に設置されたセンサにより検出された複数の情報と前記学習済みモデルを用いて前記車両を制御する
     請求項3に記載の制御装置。
    The control device according to claim 3, wherein when the vehicle is entering the intersection and an output value of the trained model when a plurality of pieces of information detected by a sensor installed in the traffic light are input to the trained model matches an output value of the trained model when a plurality of pieces of information detected by a sensor installed in the vehicle are input to the trained model, the control unit controls the vehicle using the plurality of pieces of information detected by a sensor installed in the traffic light and the trained model.
  5.  コンピュータを、請求項1又は請求項2に記載の情報取得部及び制御部として機能させるためのプログラム。 A program for causing a computer to function as the information acquisition unit and control unit described in claim 1 or claim 2.
  6.  交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得する第1取得部と、
     前記交差点の通過を予定している自動運転車両の走行計画を取得する第2取得部と、
     前記第1取得部によって取得された前記交通状況に基づき、前記自動運転車両が前記交差点を通過する際に前記自動運転車両の走行計画の遅延が発生するか否かを判定する判定部と、
     前記判定部によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように前記交差点の信号機を制御する制御部と、
     を含む信号制御装置。
    a first acquisition unit that acquires a traffic condition around the intersection from a sensor provided around the intersection;
    A second acquisition unit that acquires a driving plan of an autonomous vehicle that is scheduled to pass through the intersection;
    a determination unit that determines whether a delay in a travel plan of the autonomous vehicle will occur when the autonomous vehicle passes through the intersection, based on the traffic conditions acquired by the first acquisition unit; and
    a control unit that controls a traffic light at the intersection so as to suppress the delay when the determination unit determines that the delay will occur;
    A signal control device comprising:
  7.  前記制御部は、前記判定部によって前記遅延が発生すると判定された場合に、前記自動運転車両が前記交差点を通過している間、前記交差点の信号機が青信号で維持されるように前記交差点の信号機を制御する請求項6記載の信号制御装置。 The signal control device according to claim 6, wherein the control unit controls the traffic light at the intersection so that the traffic light at the intersection is kept green while the autonomous vehicle is passing through the intersection when the determination unit determines that the delay will occur.
  8.  前記遅延が抑制されるように前記制御部が前記交差点の信号機を制御する自動運転車両は、予め設定された緊急度が所定値以上の自動運転車両である請求項6記載の信号制御装置。 The signal control device according to claim 6, wherein the autonomous vehicle in which the control unit controls the traffic lights at the intersection so as to suppress the delay is an autonomous vehicle with a preset urgency level equal to or greater than a predetermined value.
  9.  前記判定部によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように、前記自動運転車両が順次通過することを予定している複数の交差点の信号機を各々制御する協調制御部をさらに含む請求項6記載の信号制御装置。 The signal control device according to claim 6, further comprising a cooperative control unit that controls the traffic lights of a plurality of intersections through which the autonomous vehicle is scheduled to pass in sequence so as to suppress the delay when the determination unit determines that the delay will occur.
  10.  請求項6~請求項8の何れか1項記載の信号制御装置と、
     前記信号機と、
     を含み、交差点毎に設けられる信号機装置。
    A signal control device according to any one of claims 6 to 8,
    The traffic light;
    A traffic light device provided at each intersection.
  11.  複数の交差点に各々設けられた請求項10記載の信号機装置と、
     複数の信号機装置のうちの何れかの前記判定部によって前記遅延が発生すると判定された場合に、前記遅延が抑制されるように、前記自動運転車両が順次通過することを予定している複数の交差点の信号機を各々制御する協調制御装置と、
     を含む信号機システム。
    A traffic light device according to claim 10, which is provided at each of a plurality of intersections;
    a cooperative control device that, when it is determined by the determination unit of any of a plurality of traffic light devices that the delay will occur, controls the traffic lights of a plurality of intersections through which the autonomous vehicle is scheduled to pass in sequence so as to suppress the delay; and
    A traffic light system including
  12.  コンピュータに、
     交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得すると共に、前記交差点の通過を予定している自動運転車両の走行計画を取得し、
     取得した前記交通状況に基づき、前記自動運転車両が前記交差点を通過する際に前記自動運転車両の走行計画の遅延が発生するか否かを判定し、
     前記遅延が発生すると判定した場合に、前記遅延が抑制されるように前記交差点の信号機を制御することを含む処理を実行させるための信号制御プログラム。
    On the computer,
    acquiring a traffic condition around the intersection from a sensor installed around the intersection, and acquiring a driving plan of an autonomous vehicle that is scheduled to pass through the intersection;
    Based on the acquired traffic conditions, determine whether a delay in a driving plan of the autonomous vehicle will occur when the autonomous vehicle passes through the intersection;
    A signal control program for executing a process including controlling a traffic light at the intersection so as to suppress the delay when it is determined that the delay will occur.
  13.  交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得する取得部と、
     前記取得部によって取得された前記交通状況に基づき、これから前記交差点に進入する自動運転車両への通知情報を生成する生成部と、
     前記生成部によって生成された通知情報を、前記交差点の周辺に設けられた表示部にコード情報として表示させる表示制御部と、
     を含む情報通知装置。
    an acquisition unit that acquires traffic conditions around an intersection from a sensor installed around the intersection;
    a generation unit that generates notification information for an autonomous vehicle that is about to enter the intersection based on the traffic conditions acquired by the acquisition unit; and
    a display control unit that displays the notification information generated by the generation unit as code information on a display unit provided in the periphery of the intersection;
    An information notification device comprising:
  14.  前記生成部は、前記通知情報として、これから前記交差点に進入する複数台の自動運転車両の各々に対して走行を指示する複数の走行指示情報を含む情報を生成する請求項13記載の情報通知装置。 The information notification device according to claim 13, wherein the generating unit generates, as the notification information, information including a plurality of driving instruction information instructing each of a plurality of autonomous vehicles that are about to enter the intersection to drive.
  15.  前記生成部は、前記交差点の周辺のうち前記自動運転車両から死角となる死角領域の交通状況を考慮して、前記走行指示情報を生成する請求項14記載の情報通知装置。 The information notification device according to claim 14, wherein the generating unit generates the driving instruction information taking into consideration traffic conditions in a blind spot area around the intersection that is a blind spot for the autonomous vehicle.
  16.  前記表示制御部は、前記コード情報として2次元コードを前記表示部に表示させる請求項13記載の情報通知装置。 The information notification device according to claim 13, wherein the display control unit causes the display unit to display a two-dimensional code as the code information.
  17.  請求項13~請求項16の何れか1項記載の情報通知装置と、
     信号機と、
     を含み、交差点毎に設けられる信号機装置。
    An information notification device according to any one of claims 13 to 16,
    Traffic lights and
    A traffic light device provided at each intersection.
  18.  コンピュータに、
     交差点の周辺に設けられたセンサから前記交差点の周辺の交通状況を取得し、
     取得した前記交通状況に基づき、これから前記交差点に進入する自動運転車両への通知情報を生成し、
     生成した通知情報を前記交差点の周辺に設けられた表示部にコード情報として表示させる
     ことを含む処理を実行させるための情報通知プログラム。
    On the computer,
    acquiring traffic conditions around an intersection from sensors installed around the intersection;
    generating notification information for an autonomous vehicle that is about to enter the intersection based on the acquired traffic conditions;
    An information notification program for executing a process including displaying the generated notification information as code information on a display unit provided in the vicinity of the intersection.
PCT/JP2023/036092 2022-10-14 2023-10-03 Control device for autonomous vehicle, program, signal control device, traffic signal device, traffic signal system, signal control program, information notification device, and information notification program WO2024080191A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022165875 2022-10-14
JP2022-165875 2022-10-14
JP2022-172347 2022-10-27
JP2022172347A JP2024058513A (en) 2022-10-14 2022-10-27 Control apparatus and program of autonomous vehicle
JP2023-036942 2023-03-09
JP2023036942A JP2024058543A (en) 2022-10-14 2023-03-09 Signal control device, traffic light device, system and program
JP2023041210A JP2024058545A (en) 2022-10-14 2023-03-15 Information notification device, signal device and program
JP2023-041210 2023-03-15

Publications (1)

Publication Number Publication Date
WO2024080191A1 true WO2024080191A1 (en) 2024-04-18

Family

ID=90669180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036092 WO2024080191A1 (en) 2022-10-14 2023-10-03 Control device for autonomous vehicle, program, signal control device, traffic signal device, traffic signal system, signal control program, information notification device, and information notification program

Country Status (1)

Country Link
WO (1) WO2024080191A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077685A1 (en) * 2017-10-17 2019-04-25 本田技研工業株式会社 Running model generation system, vehicle in running model generation system, processing method, and program
JP2020535572A (en) * 2017-09-25 2020-12-03 コンチネンタル オートモーティブ システムズ インコーポレイテッドContinental Automotive Systems, Inc. Infrastructure sensor self-calibration system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535572A (en) * 2017-09-25 2020-12-03 コンチネンタル オートモーティブ システムズ インコーポレイテッドContinental Automotive Systems, Inc. Infrastructure sensor self-calibration system and method
WO2019077685A1 (en) * 2017-10-17 2019-04-25 本田技研工業株式会社 Running model generation system, vehicle in running model generation system, processing method, and program

Similar Documents

Publication Publication Date Title
US11755025B2 (en) Guiding vehicles through vehicle maneuvers using machine learning models
CN110641472B (en) Safety monitoring system for autonomous vehicle based on neural network
US12001958B2 (en) Future trajectory predictions in multi-actor environments for autonomous machine
US20230418299A1 (en) Controlling autonomous vehicles using safe arrival times
US10810872B2 (en) Use sub-system of autonomous driving vehicles (ADV) for police car patrol
CN111247495B (en) Pedestrian interaction system for low-speed scene of automatic driving vehicle
US10606270B2 (en) Controlling an autonomous vehicle using cost maps
CN111328411B (en) Pedestrian probability prediction system for autonomous vehicle
CN111380534B (en) ST-chart-based learning method for automatically driving vehicle
CN111476079B (en) Comprehensive and efficient method of merging map features for object detection with LIDAR
CN111076732A (en) Track marking and high-definition map generation marking scheme based on vehicle running
CN110621541B (en) Method and system for generating trajectories for operating an autonomous vehicle
WO2018232681A1 (en) Traffic prediction based on map images for autonomous driving
JP2018116705A (en) Method for holding distance between automatic driving vehicle and following vehicle by using brake light
CN109085818B (en) Method and system for controlling door lock of autonomous vehicle based on lane information
CN112149487A (en) Method for determining anchor frame for training neural network object detection model for automatic driving
CN111857118A (en) Segmenting parking trajectory to control autonomous vehicle parking
CN111259712B (en) Representation of compression environment characteristics for vehicle behavior prediction
CN112041773A (en) Communication protocol between planning and control of autonomous vehicles
WO2020132938A1 (en) Methods for obstacle filtering for non-nudge planning system in autonomous driving vehicle
US20220333950A1 (en) System and methods for updating high definition maps
US11899697B2 (en) Information processing server, processing method for information processing server, and non-transitory storage medium
WO2024080191A1 (en) Control device for autonomous vehicle, program, signal control device, traffic signal device, traffic signal system, signal control program, information notification device, and information notification program
JP2024058543A (en) Signal control device, traffic light device, system and program
WO2024075657A1 (en) Perfect cruise control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877196

Country of ref document: EP

Kind code of ref document: A1