WO2024080027A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024080027A1
WO2024080027A1 PCT/JP2023/031739 JP2023031739W WO2024080027A1 WO 2024080027 A1 WO2024080027 A1 WO 2024080027A1 JP 2023031739 W JP2023031739 W JP 2023031739W WO 2024080027 A1 WO2024080027 A1 WO 2024080027A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reception
information
unit
sbfd
Prior art date
Application number
PCT/JP2023/031739
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
聡 永田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024080027A1 publication Critical patent/WO2024080027A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • SBFD sub-band non-overlapping full duplex
  • one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control UL transmission and DL reception even when subband non-overlapping full duplex (SBFD) is applied.
  • SBFD subband non-overlapping full duplex
  • a terminal has a receiving unit that receives at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex signaling is applied, and a control unit that, when the DL reception and UL transmission instructions are supported for the same time domain to which the subband non-overlapping full-duplex signaling is applied, controls to select and perform either the DL reception or the UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and preset conditions.
  • UL transmission and DL reception can be appropriately controlled.
  • SBFD subband non-overlapping full duplex
  • FIG. 1A and 1B are diagrams showing an example of setting a slot configuration.
  • FIG. 2 is a diagram illustrating an example of the configuration of an SBFD.
  • 3A and 3B are diagrams showing an example of resource configuration in the time domain and the frequency domain when SBFD is applied.
  • FIG. 4 is a diagram showing an example of a UE operation according to the 0th embodiment.
  • FIG. 5 is a diagram showing an example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the first embodiment.
  • FIG. 6 is a diagram showing another example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the first embodiment.
  • FIG. 7 is a diagram showing an example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the second embodiment.
  • FIG. 8 is a diagram showing an example of priorities set for DL reception/UL transmission in the same SBFD symbol/slot according to the second embodiment.
  • FIG. 9 is a diagram showing an example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment.
  • TDD is being considered as the main focus, with FDD also being supported (e.g., migration of LTE bands, etc.).
  • DL reception and UL transmission can be performed simultaneously, which is preferable in terms of reducing delay.
  • the resource ratio between DL and UL is fixed (e.g., 1:1).
  • TDD Time Division Duplex
  • DL and UL resources it is possible to change the ratio of DL and UL resources. For example, in a typical environment where DL traffic is relatively heavy, it is possible to increase the amount of DL resources and improve DL throughput.
  • SBFD may refer to a duplexing method that frequency-division multiplexes DL and UL (allowing simultaneous use of DL and UL) within one component carrier (CC)/band of a TDD band, or across multiple CCs (within the same band).
  • CC component carrier
  • SBFD may refer to a duplexing method that frequency-division multiplexes DL and UL (allowing simultaneous use of DL and UL) within one component carrier (CC)/band of a TDD band, or across multiple CCs (within the same band).
  • the duplexing method When the duplexing method is applied to multiple CCs, it may mean that in a time resource in which DL is available on one CC, UL is available on another CC.
  • FIG. 1A is a diagram showing an example of TDD settings defined in Rel. 16 and earlier.
  • TDD slots/symbols are set for a UE in the bandwidth of one component carrier (CC) (which may also be called a cell or serving cell).
  • CC component carrier
  • the time ratio of DL slots to UL slots is 4:1.
  • FIG. 1B is a diagram showing an example of the configuration of SBFD.
  • the resources used for DL reception and the resources used for UL transmission overlap in time.
  • CC component carrier
  • a guard area may be set at the boundary between the DL resources and the UL resources.
  • Figure 2 shows an example of the SBFD configuration.
  • part of the DL resources of the TDD band is used as UL resources, and the DL and UL are configured to overlap in time.
  • each of the multiple UEs receives the DL channel/signal.
  • one UE receives the DL channel/signal
  • another UE transmits the UL channel/signal.
  • the base station transmits and receives DL and UL simultaneously.
  • each of the multiple UEs transmits an UL channel/signal.
  • the DL frequency resource and the UL frequency resource in the UE carrier are set as the DL Bandwidth Part (BWP) and the UL BWP, respectively.
  • BWP Bandwidth Part
  • the DL/UL frequency resource is switched to another DL/UL frequency resource.
  • multiple BWP settings and a mechanism for BWP adaptation are required.
  • the time resources in the TDD carrier for the UE are set as at least one of DL, UL, and flexible (FL) in the TDD configuration.
  • the method of setting time domain and frequency domain resources when SBFD is used is being considered.
  • the resources during the period when DL and UL overlap in the time domain can be set to the same as the existing DL resources (e.g., while avoiding the use of a portion of the UL resources using frequency domain resource allocation (FDRA)), minimizing the impact on the specifications/UE (see Figure 3A).
  • FDRA frequency domain resource allocation
  • the resources during the period when DL and UL overlap in the time domain can be set to the same as the existing UL resources (e.g., by using Frequency Domain Resource Allocation (FDRA) to avoid using a portion of the DL resources), minimizing the impact on the specifications/UE (see Figure 3B).
  • FDRA Frequency Domain Resource Allocation
  • the problem arises as to how the UE determines the transmission direction for the SBFD symbol/slot (e.g., whether to perform UL transmission in the UL subband or DL reception in the DL subband for the SBFD symbol/slot).
  • the inventors therefore considered a method of controlling SBFD symbols/slots to solve at least one of the above problems 1-3, and came up with the present embodiment.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • DL reception and UL transmission in the same time resource transmission and reception in which DL reception resources and UL transmission resources are frequency division multiplexed (FDM) (in subbands), simultaneous transmission and reception operation, simultaneous transmission and reception, full duplex (FD) communication, SBFD, and SBFD communication may be interpreted as interchangeable.
  • FDM frequency division multiplexed
  • FD full duplex
  • non-SBFD existing (up to Rel. 17), normal, transmission and reception in which DL reception resources and UL transmission resources are not frequency division multiplexed (FDM) (in subbands), etc. may be read as interchangeable.
  • FDM frequency division multiplexed
  • a frequency resource for SBFD may be a frequency resource that is included in a frequency domain in a frequency resource for non-SBFD (e.g., DL/UL BWP) and is time division multiplexed (TDM) with the frequency resource for non-SBFD.
  • SBFD e.g., DL/UL BWP
  • TDM time division multiplexed
  • DL frequency resources for SBFD e.g., DL BWP
  • UL frequency resources for SBFD e.g., UL BWP
  • FDM frequency division multiplexed
  • time domain time resource, slot, subslot, and symbol
  • frequency domain frequency resource, resource block (RB), physical resource block (PRB), BWP, DL BWP, UL BWP, CC, band, and carrier may be interchangeable.
  • the starting position of a frequency resource, the lowest (or highest) RB/PRB in a frequency resource, and the RB/PRB with the lowest (or highest) index in a frequency resource may be interpreted as interchangeable.
  • the end position of a frequency resource, the highest (or lowest) RB/PRB in a frequency resource, and the RB/PRB with the highest (or lowest) index in a frequency resource may be interpreted as interchangeable.
  • Implicit link direction indication for SBFD symbols/slots may be achieved by at least one of DL or UL scheduling/triggering DCI and special channels/signals configured by higher layers (e.g., SSB/Type 0 PDCCH/PRACH).
  • implicit link direction indication may be interpreted as interchangeable.
  • the implicit link direction indication may be achieved by at least one of the following indication methods 1 to 3.
  • a set of symbols of a DL transmission scheduled/triggered by a DCI or a time unit overlapping with that set of symbols may be implicitly denoted as a DL symbol or DL time unit
  • a set of symbols of a UL transmission scheduled/triggered by a DCI or a time unit overlapping with that set of symbols may be implicitly denoted as a UL symbol or UL time unit.
  • the UE action based on the implicit link direction indication may be at least one of the following actions 1 and 2.
  • UL transmissions that overlap an implicitly designated DL time unit or symbol may be specified to be canceled.
  • UL transmissions that overlap an implicitly designated DL time unit or symbol may be specified to be rate matched to the remaining resources, if any, in the UL frequency-time unit (and flexible frequency-time unit) in time units or symbols (UL time units, flexible time units) that are not implicitly designated DL.
  • DL receptions that overlap an implicitly indicated UL time unit or symbol are canceled.
  • DL receptions that overlap an implicitly indicated UL time unit or symbol are rate matched to the remaining resources, if any, in DL frequency-time units (and flexible frequency-time units) in time units or symbols that are not implicitly indicated as UL (DL time units, flexible time units).
  • a DL frequency-time unit may be defined as being available for DL reception on a DL time unit, and a UL frequency-time unit may be defined as being available for UL transmission on a UL time unit.
  • DL receptions that overlap a UL frequency-time unit may be specified to be cancelled.
  • DL receptions that overlap a UL frequency-time unit may be specified to be rate-matched to the remaining resources within the DL frequency-time unit (and flexible frequency-time unit) within the indicated DL time unit (and flexible time unit) or symbol.
  • UL transmissions that overlap a DL frequency-time unit may be specified to be canceled.
  • UL transmissions that overlap a DL frequency-time unit may be specified to be rate-matched to the remaining resources within the UL frequency-time unit (and flexible frequency-time unit) within the indicated UL time unit (and flexible time unit) or symbol.
  • DCI #1 in DL time unit #1 schedules DG PDSCH in SBFD unit #2, which implicitly designates SBFD unit #2 as a DL time unit.
  • DCI #2 in DL time unit #1 schedules DG PUSCH in SBFD unit #3, which implicitly designates SBFD unit #3 as a UL time unit.
  • the DG PDSCH in SBFD unit #2 is received by the UE.
  • the SPS PDSCH in SBFD unit #2 is canceled because it overlaps with the UL frequency-time unit.
  • the SPS PUSCH in SBFD unit #2 is canceled because it overlaps with the DL time unit.
  • the DG PUSCH in SBFD unit #3 is transmitted by the UE.
  • the CG PUSCH in SBFD unit #3 is canceled because it overlaps with the DL frequency-time unit.
  • the SPS PDSCH in SBFD unit #3 is canceled because it overlaps with the UL time unit.
  • An implicit link direction indication may obey at least one of the following constraints 1 to 3.
  • the UE does not assume that resources for UL reception scheduled/triggered by DCI, or resources between the symbols of a valid PRACH occasion and the N_gap symbols preceding that valid PRACH occasion, overlap any frequency-time unit indicated as DL, or overlap any SBFD symbol/slot that contains at least one DL frequency-time unit.
  • the specific UE operation of the channels/signals e.g., PDSCH/PUSCH/PUCCH/CSI-RS/PRS/SRS
  • the channels/signals e.g., PDSCH/PUSCH/PUCCH/CSI-RS/PRS/SRS
  • the UE can appropriately determine the operation in the SBFD symbol/slot.
  • the first embodiment describes an example of a control method when DL reception and UL transmission are dynamically scheduled/triggered by DCI in an SBFD symbol/slot.
  • DL reception may be a DL channel (e.g., PDSCH) or DMRS for PDSCH.
  • UL transmission may be an UL channel (e.g., PUSCH/PUCCH) or DMRS for PUSCH/DMRS for PUCCH.
  • At least one of the following options 1-1 to 1-3 may be applied to dynamically scheduled/triggered DL reception (e.g., in a DL subband) and dynamically scheduled/triggered UL transmission (e.g., in a UL subband) in the same SBFD symbol/slot.
  • DL reception and UL transmission may be scheduled/triggered by different DCIs.
  • this may mean that DL reception in an SBFD symbol/slot is scheduled/triggered/configured in the DL subband, and UL transmission in an SBFD symbol/slot is scheduled/triggered/configured in the UL subband.
  • the UE may not be expected to detect (or monitor) a first DCI that schedules/trigger DL reception for a certain SBFD symbol/slot and a second DCI that schedules/trigger UL transmission for the same SBFD symbol/slot (see FIG. 5).
  • the UE may not be expected to detect a first DCI that schedules/trigger UL transmission for a certain SBFD symbol/slot and a second DCI that schedules/trigger DL reception for the same SBFD symbol/slot.
  • the UE may not assume (or be required) to detect or monitor a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot.
  • the UE may not assume (or be required) to detect or monitor a second DCI that schedules/triggers DL reception for the same SBFD symbol/slot.
  • the first DCI may be a DCI that is transmitted earlier in the time domain (or detected earlier by the UE) than the second DCI.
  • the first DCI/second DCI may be transmitted within an SBFD symbol/slot, or may be transmitted within a symbol/slot other than the SBFD symbol/slot (e.g., a time domain where only DL transmission is set).
  • the UE may not be expected to detect both the first DCI and the second DCI in the SBFD symbol/slot.
  • the UE may not assume that DL reception and UL transmission are scheduled/triggered in the same SBFD symbol/slot.
  • the base station may control not to transmit both a DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a DCI that schedules/triggers UL transmission for the same SBFD symbol/slot (to transmit only one of them).
  • the base station may control not to schedule/trigger DL reception and UL transmission in the same SBFD symbol/slot.
  • the UE may not be expected to detect a first DCI that schedules/trigger DL reception for a first set of SBFD symbols and a second DCI that schedules/trigger UL transmission for a second set of SBFD symbols.
  • the UE may not be expected to detect a first DCI that schedules/trigger UL transmission for the first set of SBFD symbols and a second DCI that schedules/trigger DL reception for the second set of SBFD symbols.
  • the first set of SBFD symbols and the second set of SBFD symbols may be regions separated by a predetermined number of symbols (e.g., N). This creates an offset (or gap) of a predetermined number of symbols when performing DL reception and UL transmission in the SBFD symbol/slot, allowing DL-UL switching to be performed appropriately.
  • N a predetermined number of symbols
  • the UE When the UE detects a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot, the UE controls DL reception/UL transmission based on transmission conditions of the first DCI and the second DCI.
  • the transmission conditions may be at least one of start/end timings of the first DCI and the second DCI and a predetermined timeline.
  • the UE when the UE detects a first DCI that schedules/triggers UL transmission for a certain SBFD symbol/slot and a second DCI that schedules/triggers DL reception for the same SBFD symbol/slot, the UE controls DL reception/UL transmission based on at least one of the start/end timings of the first DCI and the second DCI and a specified timeline.
  • the UE may control to perform UL transmission/DL reception scheduled/triggered by the second DCI (see FIG. 6). For example, if the second DCI that schedules/trigger UL transmission starts/ends after the first DCI that schedules/trigger DL reception starts/ends, the UE controls to perform UL transmission. On the other hand, if the second DCI that schedules/trigger DL reception starts/ends after the first DCI that schedules/trigger UL transmission starts/ends, the UE controls to perform DL reception.
  • the UE may give priority to DL reception/UL transmission scheduled/triggered by a DCI received later in the time domain.
  • the UE may control to perform UL transmission/DL reception scheduled/triggered by a second DCI when a specified timeline is satisfied.
  • Timelines #1 to #3 may be met.
  • Timeline #1 The end (e.g., end symbol) of the second DCI format may be X1 symbols before the start of DL reception/UL transmission scheduled/triggered by the first DCI.
  • X1 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline.
  • the PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17).
  • the UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
  • X1 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
  • the end (e.g., end symbol) of the first DCI format may be X2 symbols before the start of DL reception/UL transmission scheduled/triggered by the first DCI.
  • X2 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline.
  • the PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17).
  • the UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
  • X2 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
  • the end (e.g., end symbol) of the second DCI format may be X3 symbols before the start of DL reception/UL transmission scheduled/triggered by the second DCI.
  • X3 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline.
  • the PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17).
  • the UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
  • X3 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
  • X1, X2, and X3 may be defined to have the same value or different values.
  • the UE may detect a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot, and may determine that an error case exists if a predetermined timeline is not met. Alternatively, if the predetermined timeline is not met, the UE may control to perform DL reception/UL transmission scheduled/triggered by the first DCI.
  • the UE may control to perform UL transmission/DL reception scheduled/triggered by the first DCI.
  • the UE may prioritize DL reception/UL transmission scheduled/triggered by the DCI received earlier in the time domain.
  • a UE When a UE detects a first DCI that schedules/trigger DL reception for a certain SBFD symbol/slot and a second DCI that schedules/trigger UL transmission for the same SBFD symbol/slot, the UE controls the DL reception/UL transmission based on at least one of the start/end timing of the DL reception and UL transmission and a specified timeline.
  • the UE when the UE detects a first DCI that schedules/triggers UL transmission for a certain SBFD symbol/slot and a second DCI that schedules/triggers DL reception for the same SBFD symbol/slot, the UE controls DL reception/UL transmission based on at least one of the start/end timing of DL reception and UL transmission and a specified timeline.
  • the UE may be controlled to perform DL reception.
  • the UE may be controlled to perform UL transmission.
  • the UE may be controlled to perform DL reception.
  • the start timing (or end timing) of UL transmission is later than the start timing (or end timing) of DL reception, the UE may be controlled to perform UL transmission.
  • the UE may control whether to perform UL transmission or DL reception based on the start/end timing of DL reception and UL transmission when a specified timeline is met.
  • Timeline #1 to Timeline #2 may be met.
  • Timeline #1 The end (e.g., end symbol) of the first DCI format may be X1 symbols before the start of DL reception/UL transmission scheduled/triggered by the first DCI.
  • X1 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline.
  • the PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17).
  • the UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
  • X1 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
  • the end (e.g., end symbol) of the second DCI format may be X2 symbols before the start of DL reception/UL transmission scheduled/triggered by the second DCI.
  • X2 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline.
  • the PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17).
  • the UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
  • X2 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
  • X1 and X2 may be defined as the same value or different values.
  • the UE may detect a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot, and may determine that an error case exists if a predetermined timeline (e.g., timelines 1 and 2) is not satisfied. Alternatively, if a predetermined timeline (e.g., one of timelines 1 and 2) is not satisfied, the UE may control to perform UL transmission or DL reception that satisfies the timeline.
  • a predetermined timeline e.g., timelines 1 and 2
  • Second Embodiment In the second embodiment, an example of a control method when DL reception and UL transmission are set by higher layer parameters in an SBFD symbol/slot will be described.
  • control may be performed to perform either UL transmission or DL reception based on a predetermined priority.
  • DL reception e.g., in a DL subband
  • UL transmission e.g., in a UL subband
  • at least one of the following options 2-1 to 2-6 may be applied.
  • DL reception and UL transmission may be set by different higher layer parameters.
  • the priority of UL transmission and DL reception may be determined (see FIG. 7).
  • the transmission type may be classified based on at least two of broadcast transmission, group common transmission, and unicast transmission.
  • Channels/signals corresponding to broadcast/group common transmissions configured in a higher layer may be set to a higher priority than channels/signals corresponding to unicast transmissions configured in a higher layer.
  • the UE may be controlled to perform DL reception (e.g., reception of a DL channel/signal). In this case, the UE may be controlled not to perform UL transmission (or the UE may not be required to perform UL transmission).
  • DL reception e.g., reception of a DL channel/signal
  • the UE may be controlled not to perform UL transmission (or the UE may not be required to perform UL transmission).
  • the UE may be controlled to perform UL transmission (e.g., transmission of a UL channel/signal). In this case, the UE may be controlled not to perform DL reception (or the UE may not be required to monitor a DL channel/signal).
  • UL transmission e.g., transmission of a UL channel/signal
  • the UE may be controlled not to perform DL reception (or the UE may not be required to monitor a DL channel/signal).
  • channels/signals corresponding to unicast transmissions set in a higher layer may be set to have a higher priority than channels/signals corresponding to broadcast/group common transmissions set in a higher layer.
  • the priority of UL transmission and DL reception may be determined based on layer 1 priority (eg, L1 priority).
  • Layer 1 priority may be, for example, a priority set for UL transmission/DL reception activated/deactivated by DCI (e.g., semi-persistent DL reception, configuration grant-based UL transmission).
  • DCI e.g., semi-persistent DL reception, configuration grant-based UL transmission.
  • the priority of DL reception and UL transmission may be determined based on the physical priority (e.g., physical priority).
  • the physical priority may be indicated by the DCI that activates DL reception.
  • the DCI may indicate an L1 priority (e.g., HP/LP HARQ-ACK for SPS configuration) indicating the physical priority HP (high)/LP (low).
  • a high priority grant PUSCH without DCI e.g., HP CG PUSCH without DCI
  • a high priority PUCCH without DCI e.g., HP PUCCH without DCI
  • an SPS PDSCH corresponding to a low priority HARQ-ACK are configured in the same SBFD symbol/slot
  • the UE prioritizes UL transmission and does not need to perform DL reception (see Figure 8).
  • a high priority grant PUSCH without DCI or a high priority PUCCH without DCI may be a high priority scheduling request or a high priority SPS HARQ-ACK.
  • the UE prioritizes DJ reception and does not need to perform UL transmission (see Figure 8).
  • the priority of DL reception and UL transmission may be determined based on the physical priority (e.g., physical priority).
  • the physical priority may be indicated by the DCI activating DL reception/DCI activating UL transmission, respectively.
  • the priority of UL transmission and DL reception may be determined based on the starting/ending positions (e.g., starting/ending positions) of DL reception and UL transmission.
  • the UE may determine the priority of UL transmission and DL reception based on the start/end positions of DL reception and UL transmission.
  • the UE may prioritize DL reception (not perform UL transmission).
  • the UE may prioritize UL transmission (not perform DL reception).
  • the UE may prioritize DL reception (not perform UL transmission).
  • the UE may prioritize UL transmission (not perform DL reception).
  • the UE may prioritize DL reception (not perform UL transmission).
  • the UE may prioritize UL transmission (not perform DL reception).
  • the UE may prioritize DL reception (not perform UL transmission).
  • the UE may prioritize UL transmission (not perform DL reception).
  • the priorities of UL transmission and DL reception may be determined, for example, priorities may be defined/set for DL channels/signals and UL channels/signals.
  • At least one of the following priority rules #1 to #3 may be defined/set as a priority rule.
  • the PUCCH is set to have a higher priority than the PDSCH. For example, if the PDSCH (e.g., in a DL subband) and the PUCCH (e.g., in a UL subband) are set to the same SBFD symbol/slot, the UE may be controlled to transmit the PUCCH.
  • the PDCCH is set to have a higher priority than the PUSCH. For example, if the PDCCH (e.g., in a DL subband) and the PUSCH (e.g., in a UL subband) are set to the same SBFD symbol/slot, the UE may be controlled to receive the PDCCH.
  • Priority Rule #3 The priority order between PDCCH/PSSCH/CSI-RS/PUSCH/PUCCH/SRS may be defined in the specifications or may be set from the base station to the UE by higher layer signaling.
  • the priority of UL transmission and DL reception may be determined based on the type of transmission method of the DL reception and the UL transmission, which may be classified as semi-persistent or periodic.
  • channels/signals/reference signals that are transmitted semi-persistently may be set to a higher priority than channels/signals/reference signals that are transmitted periodically.
  • the UE may be controlled to receive the CSI-RS (and not transmit the SRS).
  • the UE may be controlled to transmit the SRS (and not receive the CSI-RS).
  • Option 2-6 Some or all of Option 2-1 to Option 2-5 may be applied in combination. When multiple options are applied in combination, one option may be applied first, and then the other options may be applied. Which option is applied first may be defined in the specification, or may be set in the UE from the base station by higher layer signaling.
  • the UL transmission/DL reception priority rules shown in Options 2-1 to 2-6 may be applied when a dynamically scheduled/triggered DL reception (e.g., in a DL subband) and a higher layer configured UL transmission (e.g., in a UL subband) overlap in the same SBFD symbol/slot.
  • the UL transmission/DL reception priority rules shown in Option 2-1 to Option 2-6 may be applied when DL reception configured by higher layers (e.g., in a DL subband) and dynamically scheduled/triggered UL transmission (e.g., in a UL subband) overlap in the same SBFD symbol/slot.
  • the UL transmission/DL reception priority rules shown in Option 2-1 to Option 2-6 may be applied when a dynamically scheduled/triggered DL reception (e.g., in a DL subband) and a dynamically scheduled/triggered UL transmission (e.g., in a UL subband) overlap in the same SBFD symbol/slot.
  • the third embodiment describes an example of a control method when DL reception and UL transmission are scheduled/triggered/configured in the same SBFD symbol/slot and repetition is applied to at least one of the DL reception and UL transmission.
  • the repetition may be at least one of PDSCH repetition, PUCCH repetition, and PUSCH repetition.
  • FIG. 9 shows a case where repetition is applied to both PDSCH and PUSCH, but the number of repetitions that can be applied is not limited to this.
  • each repetition may be considered as DL reception/UL transmission configured by higher layers.
  • ⁇ Assumption 3-2 ⁇ For repetition (e.g., PDSCH/PUSCH/PUCCH repetition) indicated by a dynamic grant (DG) (e.g., DCI), at least one of the following options 3-1-1 to 3-1-2 may be applied.
  • DG dynamic grant
  • the repetitions indicated by the dynamic grant may be considered as dynamically (eg, by DCI) scheduled DL reception/UL transmission.
  • repetitions indicated by the dynamic grant certain repetitions may be regarded as DL reception/UL transmissions dynamically (e.g., by DCI) scheduled, and other repetitions may be regarded as DL reception/UL transmissions configured by a higher layer.
  • the particular repetition may be the first repetition.
  • the first repetition may be considered as DL reception/UL transmission scheduled dynamically (e.g., by DCI), and the other repetitions (e.g., 2-4) may be considered as DL reception/UL transmission configured by higher layers.
  • Different options may be applied for DL reception/UL transmission. Alternatively, different options may be applied for each channel.
  • the priority of UL transmission and DL reception may be determined based on the repetition condition applied to DL reception/UL transmission.
  • the priority of UL transmission and DL reception may be determined based on at least one of the repetition index (e.g., repetition index) and the total repetition number (e.g., total repetition number). For example, DL reception/UL transmission with a smaller repetition index may be prioritized. Alternatively, DL reception/UL transmission with a larger repetition index may be prioritized. DL reception/UL transmission to which repetition transmission is not applied may be considered to have a repetition index of 1.
  • the repetition index e.g., repetition index
  • the total repetition number e.g., total repetition number
  • PDSCH repetition index #i e.g., in a DL subband
  • PUSCH/PUCCH repetition index #j e.g., in a UL subband
  • the UE may be controlled to receive PDSCH repetition index #i (and not transmit PUSCH/PUCCH repetition index #j).
  • the UE may be controlled to transmit PUSCH/PUCCH repetition index #j (and not to receive PDSCH repetition index #i).
  • PDSCH repetitions e.g., in a DL subband
  • PUSCH/PUCCH repetitions e.g., in a UL subband
  • the UE may be controlled to receive PDSCH repetitions (not to transmit PUSCH/PUCCH repetitions).
  • the UE may be controlled to transmit PUSCH/PUCCH repetitions (not to receive PDSCH repetitions).
  • DL reception/UL transmission where repetition transmission does not apply, may be considered to have a repetition number of 1.
  • the UE may be controlled to receive PDSCH repetitions (not to transmit PUSCH/PUCCH repetitions).
  • the UE may be controlled to transmit PUSCH/PUCCH repetitions (not to receive PDSCH repetitions).
  • PDSCH repetitions e.g., in a DL subband
  • PUSCH/PUCCH repetitions e.g., in a UL subband
  • the UE may be controlled to receive PDSCH repetitions (and not transmit PUSCH/PUCCH repetitions).
  • the UE may be controlled to transmit the PUSCH/PUCCH repetition (not to receive the PDSCH repetition).
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting dynamically scheduled/triggered DL reception (in DL sub-bands) and dynamically scheduled/triggered UL transmission (in UL sub-bands) in the same SBFD symbol/slot; Supporting higher layer configured DL reception (in DL sub-band) and higher layer configured UL transmission (in UL sub-band) in the same SBFD symbol/slot; Supporting dynamically scheduled/triggered DL reception (in DL sub-bands) and higher layer configured UL transmission (in UL sub-bands) in the same SBFD symbol/slot; Supporting higher layer configured DL reception (in DL sub-bands) and dynamically scheduled/triggered UL transmission (in UL sub-bands) in the same SBFD symbol/slot; Supporting DL reception (in DL sub-bands) and UL transmission (in UL sub-bands) with repetition applied in the same SBFD symbol/slot; Support DL reception (in DL sub-band) and UL transmission (in UL sub-
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating that SBFD is enabled, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • a terminal having a receiving unit that receives at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex signaling is applied, and a control unit that, when the instructions for DL reception and UL transmission are supported for the same time domain to which the subband non-overlapping full-duplex signaling is applied, controls to select and perform one of the DL reception and the UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and predetermined conditions.
  • Appendix 2 The terminal described in Appendix 1, wherein, when the first information and the second information are downlink control information, the control unit controls to select and perform one of the DL reception and the UL transmission based on the transmission timing of first downlink control information corresponding to the first information and downlink control information corresponding to the second information.
  • Appendix 3 The terminal according to claim 1 or 2, wherein, when at least one of the first information and the second information is an upper layer parameter, the control unit controls to select and perform one of the DL reception and the UL transmission based on a transmission type of the DL reception and the UL transmission.
  • Appendix 4 A terminal according to any one of Supplementary Note 1 to Supplementary Note 3, wherein when repetition is applied to at least one of the DL reception and the UL transmission, the control unit controls to select and perform one of the DL reception and the UL transmission based on a repetition condition.
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 11 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver 120 may transmit to the terminal at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex transmission is applied.
  • control unit 110 may instruct the terminal to select either DL reception or UL transmission using at least one of the transmission conditions of the first information and the second information, the conditions applied to DL reception and UL transmission, and the conditions set in advance.
  • the user terminal 12 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver unit 220 may receive at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex transmission is applied.
  • control unit 210 may control to select and perform either DL reception or UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to DL reception and UL transmission, and the conditions set in advance.
  • the control unit 210 may control to select and perform either DL reception or UL transmission based on the transmission timing of the first downlink control information corresponding to the first information and the downlink control information corresponding to the second information.
  • control unit 210 may control the selection of either DL reception or UL transmission based on the transmission type of DL reception or UL transmission.
  • control unit 210 may control the selection of either DL reception or UL transmission based on the repetition conditions.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” “panel,” and the like may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 14 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10, user terminal 20, etc.
  • the communication module 60 may be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-Wide Band (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure comprises: a receiving unit that receives at least one among first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full duplex communication is applied; and a control unit that when the DL reception and the UL transmission instructions are supported for the same time domain to which the subband non-overlapping full-duplex communication is applied, controls to select and perform one of the DL reception and the UL transmission on the basis of at least one among transmission conditions for the first information and the second information, conditions applied to the DL reception and the UL transmission, and conditions set in advance.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
 将来の無線通信システム(例えば、NR)において、端末(ユーザ端末(user terminal)、User Equipment(UE))及びネットワーク(NW、例えば、基地局)間の通信において、サブバンド非重複全二重複信(sub-band non-overlapping full duplex(SBFD))が用いられることが検討されている。 In future wireless communication systems (e.g., NR), it is being considered to use sub-band non-overlapping full duplex (SBFD) in communications between terminals (user terminals, User Equipment (UE)) and networks (NW, e.g., base stations).
 しかしながら、SBFDを利用する場合におけるUL送信とDL受信の制御方法について検討が十分でない。この検討が十分でない場合、通信品質の劣化が生じるおそれがある。 However, there has been insufficient consideration given to the method of controlling UL transmission and DL reception when using SBFD. If this consideration is not sufficient, there is a risk of degradation in communication quality.
 そこで、本開示は、サブバンド非重複全二重複信(SBFD)が適用される場合であっても、UL送信及びDL受信を適切に制御することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control UL transmission and DL reception even when subband non-overlapping full duplex (SBFD) is applied.
 本開示の一態様に係る端末は、サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを受信する受信部と、前記サブバンド非重複全二重複信が適用される同じ時間領域に対して前記DL受信及び前記UL送信の指示がサポートされる場合、前記第1の情報及び前記第2の情報の送信条件、前記DL受信と前記UL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する制御部と、を有する。 A terminal according to one aspect of the present disclosure has a receiving unit that receives at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex signaling is applied, and a control unit that, when the DL reception and UL transmission instructions are supported for the same time domain to which the subband non-overlapping full-duplex signaling is applied, controls to select and perform either the DL reception or the UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and preset conditions.
 本開示の一態様によれば、サブバンド非重複全二重複信(SBFD)が適用される場合であっても、UL送信及びDL受信を適切に制御することができる。 According to one aspect of the present disclosure, even when subband non-overlapping full duplex (SBFD) is applied, UL transmission and DL reception can be appropriately controlled.
図1A及び図1Bは、スロット構成の設定の一例を示す図である。1A and 1B are diagrams showing an example of setting a slot configuration. 図2は、SBFDの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of an SBFD. 図3A及び図3Bは、SBFDが適用される場合の時間ドメイン及び周波数ドメインのリソースの設定の一例を示す図である。3A and 3B are diagrams showing an example of resource configuration in the time domain and the frequency domain when SBFD is applied. 図4は、第0の実施形態に係るUE動作の一例を示す図である。FIG. 4 is a diagram showing an example of a UE operation according to the 0th embodiment. 図5は、第1の実施形態に係る同一SBFDシンボル/スロットにおけるDL受信/UL送信の制御の一例を示す図である。FIG. 5 is a diagram showing an example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the first embodiment. 図6は、第1の実施形態に係る同一SBFDシンボル/スロットにおけるDL受信/UL送信の制御の他の例を示す図である。FIG. 6 is a diagram showing another example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the first embodiment. 図7は、第2の実施形態に係る同一SBFDシンボル/スロットにおけるDL受信/UL送信の制御の一例を示す図である。FIG. 7 is a diagram showing an example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the second embodiment. 図8は、第2の実施形態に係る同一SBFDシンボル/スロットにおけるDL受信/UL送信に設定される優先度の一例を示す図である。FIG. 8 is a diagram showing an example of priorities set for DL reception/UL transmission in the same SBFD symbol/slot according to the second embodiment. 図9は、第3の実施形態に係る同一SBFDシンボル/スロットにおけるDL受信/UL送信の制御の一例を示す図である。FIG. 9 is a diagram showing an example of control of DL reception/UL transmission in the same SBFD symbol/slot according to the third embodiment. 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図11は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図14は、一実施形態に係る車両の一例を示す図である。FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment.
(sub-band non-overlapping full duplex(SBFD))
 Rel.14までのLTEにおいては、周波数分割複信(Frequency Division Duplex(FDD))をメインに実用化され、時分割複信(Time Division Duplex(TDD))もサポートされている。
(sub-band non-overlapping full duplex (SBFD))
In LTE up to Rel. 14, Frequency Division Duplex (FDD) has been mainly put to practical use, and Time Division Duplex (TDD) is also supported.
 一方、Rel.15からのNRにおいては、TDDがメインに検討され、同時にFDDもサポート(例えば、LTEバンドのマイグレーション等)されている。 On the other hand, in NR from Rel. 15 onwards, TDD is being considered as the main focus, with FDD also being supported (e.g., migration of LTE bands, etc.).
 FDDにおいては、DL受信及びUL送信を同時に行うことができ、遅延削減の観点で好ましい。一方で、FDDにおいては、DL及びULのリソース比は固定(例えば、1対1)である。 In FDD, DL reception and UL transmission can be performed simultaneously, which is preferable in terms of reducing delay. On the other hand, in FDD, the resource ratio between DL and UL is fixed (e.g., 1:1).
 TDDにおいては、DL及びULリソースの比率を変更することが可能であり、例えば、DLのトラヒックが相対的に大きい一般的な環境において、DLリソース量を増加させ、DLのスループット向上を図ることが可能である。 In TDD, it is possible to change the ratio of DL and UL resources. For example, in a typical environment where DL traffic is relatively heavy, it is possible to increase the amount of DL resources and improve DL throughput.
 一方で、Rel.16までのTDDによる送受信の時間比を考慮すると、UL信号/チャネルの送信機会が、DL信号/チャネルの受信機会に対して少なくなるケースが考えられる。このようなケースだと、UEは頻繁なUL信号/チャネルの送信を行うことができず、重要なUL信号/チャネルの送信の遅延が発生することが懸念される。また、DL受信機会と比較してUL送信機会が少なくなるため、UL送信機会における信号/チャネルの混雑も懸念される。さらに、TDDではUL信号/チャネルの送信を行うことができる時間リソースが限定されるため、例えば繰り返し送信(repetitionと呼ばれてもよい)によるULカバレッジ拡張技術の適用も限定的となってしまう。 On the other hand, when considering the time ratio of transmission and reception in TDD up to Rel. 16, there may be cases where the transmission opportunities of UL signals/channels are fewer than the reception opportunities of DL signals/channels. In such cases, the UE cannot transmit UL signals/channels frequently, and there is a concern that delays in the transmission of important UL signals/channels may occur. In addition, since there are fewer UL transmission opportunities compared to DL reception opportunities, there is also a concern that signals/channels may become congested during UL transmission opportunities. Furthermore, since the time resources available for transmitting UL signals/channels are limited in TDD, the application of UL coverage extension techniques, for example, by repeated transmission (which may also be called repetition), is also limited.
 将来の無線通信システム(例えば、Rel.18以降)において、UL及びDLに対してTDDと周波数分割複信(Frequency Division Duplex(FDD))とを組み合わせた分割複信方法が導入されることが検討されている。当該分割複信方法は、sub-band non-overlapping full duplex(SBFD)と呼ばれてもよい。 In future wireless communication systems (e.g., Rel. 18 and later), the introduction of a division duplex method that combines TDD and Frequency Division Duplex (FDD) for UL and DL is being considered. This division duplex method may also be called sub-band non-overlapping full duplex (SBFD).
 SBFDは、例えば、TDDバンドの1つのコンポーネントキャリア(CC)/バンド内における、又は、(同一バンド内の)複数のCCにおける、DL及びULを周波数分割多重する(DL及びULを同時に利用可能な)複信方法を意味してもよい。 SBFD may refer to a duplexing method that frequency-division multiplexes DL and UL (allowing simultaneous use of DL and UL) within one component carrier (CC)/band of a TDD band, or across multiple CCs (within the same band).
 当該複信方法が複数のCCに適用される場合、あるCCでDLを利用可能である時間リソースにおいて、別のCCではULを利用可能であることを意味してもよい。 When the duplexing method is applied to multiple CCs, it may mean that in a time resource in which DL is available on one CC, UL is available on another CC.
 図1Aは、Rel.16までに規定されるTDDの設定の一例を示す図である。図1Aに示す例において、UEに対し、1つのコンポーネントキャリア(CC)(セル、サービングセルと呼ばれてもよい)の帯域幅で、TDDのスロット/シンボルの設定が行われる。 Figure 1A is a diagram showing an example of TDD settings defined in Rel. 16 and earlier. In the example shown in Figure 1A, TDD slots/symbols are set for a UE in the bandwidth of one component carrier (CC) (which may also be called a cell or serving cell).
 図1Aに示す例では、DLスロットとULスロットの時間比は、4:1である。このような従来のTDDにおけるスロット/シンボルの設定では、UL時間リソースを十分に確保できず、UL送信遅延の発生やカバレッジ性能低下の恐れがある。 In the example shown in Figure 1A, the time ratio of DL slots to UL slots is 4:1. With such slot/symbol settings in conventional TDD, it is not possible to secure sufficient UL time resources, which may result in UL transmission delays and reduced coverage performance.
 図1Bは、SBFDの構成の一例を示す図である。図1Bの例では、1コンポーネントキャリア(CC)内で、DLの受信に用いられるリソースと、ULの送信に用いられるリソースと、が時間的に重複する。このようなリソースの構成によれば、ULリソースを確保することができ、リソースの利用効率の向上を図ることができる。 FIG. 1B is a diagram showing an example of the configuration of SBFD. In the example of FIG. 1B, within one component carrier (CC), the resources used for DL reception and the resources used for UL transmission overlap in time. With such a resource configuration, it is possible to secure UL resources and improve the resource utilization efficiency.
 例えば、図1Bに示す例のように、1CCにおける周波数領域のうち、両端をDLに構成し、そのDLでULリソースを挟むような構成とすることで、近隣のキャリアとのクロスリンク干渉(Cross Link Interference(CLI))の発生を回避及び緩和することができる。また、DLリソースとULリソースとの境界には、ガードのための領域が設定されてもよい。 For example, as shown in the example of FIG. 1B, by configuring both ends of the frequency domain in one CC as DL and sandwiching UL resources between the DL, it is possible to avoid and mitigate the occurrence of cross link interference (CLI) with neighboring carriers. In addition, a guard area may be set at the boundary between the DL resources and the UL resources.
 自己干渉の処理の複雑さを考慮すると、基地局のみがDLリソース及びULリソースを同時に使用することが考えられる。つまり、DL及びULが時間的に重複しているリソースでは、あるUEがDLリソースを使用し、別のUEがULリソースを使用する構成としてもよい。 Considering the complexity of handling self-interference, it is conceivable that only the base station uses DL and UL resources simultaneously. In other words, in resources where DL and UL overlap in time, one UE may use DL resources and another UE may use UL resources.
 図2は、SBFDの構成の一例を示す図である。図2に示す例では、TDDバンドのDLリソースの一部をULリソースとし、DLとULとが一部時間的に重複する構成としている。 Figure 2 shows an example of the SBFD configuration. In the example shown in Figure 2, part of the DL resources of the TDD band is used as UL resources, and the DL and UL are configured to overlap in time.
 図2に示す例において、DLのみの期間は、複数のUE(図2では、UE#1及びUE#2)のそれぞれがDLチャネル/信号を受信する。 In the example shown in Figure 2, during DL-only periods, each of the multiple UEs (in Figure 2, UE #1 and UE #2) receives the DL channel/signal.
 また、DL及びULが時間的に重複する期間では、あるUE(図2の例では、UE#1)がDLチャネル/信号の受信を行い、別のUE(図2の例では、UE#2)がULチャネル/信号の送信を行う。この期間では、基地局は、DL及びULの同時送受信を行う。 In addition, during the period when DL and UL overlap in time, one UE (UE#1 in the example of FIG. 2) receives the DL channel/signal, and another UE (UE#2 in the example of FIG. 2) transmits the UL channel/signal. During this period, the base station transmits and receives DL and UL simultaneously.
 さらに、ULのみの期間は、複数のUEのそれぞれがULチャネル/信号を送信する。 Furthermore, during UL-only periods, each of the multiple UEs transmits an UL channel/signal.
 既存の(例えば、Rel.15/16までに規定される)NRでは、UE用キャリアにおけるDL周波数リソース及びUL周波数リソースは、それぞれDL帯域幅部分(Bandwidth Part(BWP))及びUL BWPとして設定される。DL/ULの周波数リソースを別のDL/ULの周波数リソースに切り替えるためには、複数のBWPの設定とBWPのアダプテーションのメカニズムとが必要である。 In the existing NR (for example, to be specified by Rel. 15/16), the DL frequency resource and the UL frequency resource in the UE carrier are set as the DL Bandwidth Part (BWP) and the UL BWP, respectively. In order to switch the DL/UL frequency resource to another DL/UL frequency resource, multiple BWP settings and a mechanism for BWP adaptation are required.
 また、既存のNRでは、UE用TDDキャリアにおける時間リソースは、TDD設定において、DL、UL及びフレキシブル(FL)の少なくとも1つとして設定される。 Also, in the existing NR, the time resources in the TDD carrier for the UE are set as at least one of DL, UL, and flexible (FL) in the TDD configuration.
 SBFDが利用される場合の時間ドメイン及び周波数ドメインのリソースの設定方法が、検討されている。例えば、図2のUE#1に対しては、DL及びULが時間ドメインで重複する期間におけるリソースを、既存のDLリソースと同様に設定することで(例えば、周波数ドメインリソース割り当て(FDRA)を用いてULリソースの部分の使用を避けた上で)、仕様/UEへの影響を最小限に抑えることができる(図3A参照)。 The method of setting time domain and frequency domain resources when SBFD is used is being considered. For example, for UE #1 in Figure 2, the resources during the period when DL and UL overlap in the time domain can be set to the same as the existing DL resources (e.g., while avoiding the use of a portion of the UL resources using frequency domain resource allocation (FDRA)), minimizing the impact on the specifications/UE (see Figure 3A).
 また、例えば、図2のUE#2に対しては、DL及びULが時間ドメインで重複する期間におけるリソースを、既存のULリソースと同様に設定することで(例えば、周波数ドメインリソース割り当て(FDRA)を用いてDLリソースの部分の使用を避けた上で)、仕様/UEへの影響を最小限に抑えることができる(図3B参照)。 Also, for example, for UE #2 in Figure 2, the resources during the period when DL and UL overlap in the time domain can be set to the same as the existing UL resources (e.g., by using Frequency Domain Resource Allocation (FDRA) to avoid using a portion of the DL resources), minimizing the impact on the specifications/UE (see Figure 3B).
(分析)
 DLサブバンドとULサブバンドの両方が設定されたSBFDシンボル/スロットについて、当該SBFDシンボル/スロットにおいてDLサブバンドにおけるDL受信とULサブバンドにおけるUL送信の両方があるケースも想定される。かかる場合、UEはどのようにDL受信/UL送信を制御(又は、伝送方向(direction)としてDL受信/UL送信のいずれであるかを決定)するかが問題となる。
(analysis)
For an SBFD symbol/slot in which both a DL subband and a UL subband are set, a case is also assumed in which there is both DL reception in the DL subband and UL transmission in the UL subband in the SBFD symbol/slot. In such a case, the problem arises as to how the UE controls DL reception/UL transmission (or determines whether the transmission direction is DL reception/UL transmission).
 例えば、SBFDシンボル/スロットについて基地局からの明示的な伝送方向の指示(explicit direction indication)がないケースも想定される。かかる場合、UEは、SBFDシンボル/スロットに対する伝送方向(例えば、SBFDシンボル/スロットにおいて、ULサブバンドでUL送信を行うか、DLサブバンドでDL受信を行うか)をどのように決定するかが問題となる。 For example, there may be cases where there is no explicit direction indication from the base station for the SBFD symbol/slot. In such cases, the problem arises as to how the UE determines the transmission direction for the SBFD symbol/slot (e.g., whether to perform UL transmission in the UL subband or DL reception in the DL subband for the SBFD symbol/slot).
[課題1]
 一例として、SBFDシンボル/スロットにおいて、DCIによりDL受信とUL送信の両方のスケジュール/トリガがサポート又は許容される場合の伝送方向の決定をどのように制御するかが問題となる。
[Problem 1]
As an example, the question arises as to how to control the decision of the transmission direction when DCI supports or allows scheduling/triggering of both DL reception and UL transmission in an SBFD symbol/slot.
[課題2]
 あるいは、SBFDシンボル/スロットにおいて、上位レイヤパラメータによりDL受信とUL送信の両方の設定がサポート又は許容される場合の伝送方向の決定をどのように制御するかが問題となる。
[Problem 2]
Alternatively, the question arises as to how to control the decision of the transmission direction when both DL reception and UL transmission settings are supported or permitted by higher layer parameters in an SBFD symbol/slot.
[課題3]
 あるいは、DL受信/UL送信に繰り返し(例えば、repetition)が適用される場合のSBFDシンボル/スロットにおける送受信をどのように制御するかが問題となる。
[Problem 3]
Alternatively, the question arises as to how to control transmission and reception in SBFD symbols/slots when repetition (eg, repetition) is applied to DL reception/UL transmission.
 そこで、本発明者らは、上記課題1-3の少なくとも一つを解決するためのSBFDシンボル/スロットにおける制御方法を検討し、本実施の形態を着想した。 The inventors therefore considered a method of controlling SBFD symbols/slots to solve at least one of the above problems 1-3, and came up with the present embodiment.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied independently or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, terms such as notify, activate, deactivate, indicate (or indicate), select, configure, update, and determine may be read as interchangeable. In this disclosure, terms such as support, control, capable of control, operate, and capable of operating may be read as interchangeable.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
 本開示において、同じ時間リソースにおけるDL受信及びUL送信、DL受信リソース及びUL送信リソースが(サブバンドにおいて)周波数分割多重(FDM)される送受信、同時送受信動作、同時送受信、全二重(Full Duplex(FD))通信、SBFD、SBFD通信、は互いに読み替えられてもよい。 In this disclosure, DL reception and UL transmission in the same time resource, transmission and reception in which DL reception resources and UL transmission resources are frequency division multiplexed (FDM) (in subbands), simultaneous transmission and reception operation, simultaneous transmission and reception, full duplex (FD) communication, SBFD, and SBFD communication may be interpreted as interchangeable.
 本開示において、非SBFD(non-SBFD)、既存の(Rel.17までの)、ノーマル、DL受信リソース及びUL送信リソースが(サブバンドにおいて)周波数分割多重(FDM)されない送受信、等は互いに読み替えられてもよい。 In this disclosure, non-SBFD, existing (up to Rel. 17), normal, transmission and reception in which DL reception resources and UL transmission resources are not frequency division multiplexed (FDM) (in subbands), etc. may be read as interchangeable.
 本開示において、SBFD用の周波数リソース(例えば、DL/UL BWP)は、非SBFD用の周波数リソース(例えば、DL/UL BWP)における周波数ドメインに含まれ、かつ、非SBFD用の周波数リソースと時分割多重(TDM)される周波数リソースであってもよい。 In the present disclosure, a frequency resource for SBFD (e.g., DL/UL BWP) may be a frequency resource that is included in a frequency domain in a frequency resource for non-SBFD (e.g., DL/UL BWP) and is time division multiplexed (TDM) with the frequency resource for non-SBFD.
 本開示において、SBFD用のDL周波数リソース(例えば、DL BWP)と、SBFD用のUL周波数リソース(例えば、UL BWP)とは、互いに周波数分割多重(FDM)されてもよい。 In the present disclosure, DL frequency resources for SBFD (e.g., DL BWP) and UL frequency resources for SBFD (e.g., UL BWP) may be frequency division multiplexed (FDM) with each other.
 本開示において、時間ドメイン、時間リソース、スロット、サブスロット、シンボル、は互いに読み替えられてもよい。本開示において、周波数ドメイン、周波数リソース、リソースブロック(RB)、物理リソースブロック(PRB)、BWP、DL BWP、UL BWP、CC、バンド、キャリア、は互いに読み替えられてもよい。 In this disclosure, the terms time domain, time resource, slot, subslot, and symbol may be interchangeable. In this disclosure, the terms frequency domain, frequency resource, resource block (RB), physical resource block (PRB), BWP, DL BWP, UL BWP, CC, band, and carrier may be interchangeable.
 本開示において、周波数リソースの開始位置、周波数リソースにおける最低(又は、最高)のRB/PRB、周波数リソースにおける最低(又は、最高)のインデックスを有するRB/PRB、は互いに読み替えられてもよい。 In the present disclosure, the starting position of a frequency resource, the lowest (or highest) RB/PRB in a frequency resource, and the RB/PRB with the lowest (or highest) index in a frequency resource may be interpreted as interchangeable.
 本開示において、周波数リソースの終了位置、周波数リソースにおける最高(又は、最低)のRB/PRB、周波数リソースにおける最高(又は、最低)のインデックスを有するRB/PRB、は互いに読み替えられてもよい。 In the present disclosure, the end position of a frequency resource, the highest (or lowest) RB/PRB in a frequency resource, and the RB/PRB with the highest (or lowest) index in a frequency resource may be interpreted as interchangeable.
(無線通信方法)
<第0の実施形態>
 DL又はULのスケジューリング/トリガリングのDCIと、上位レイヤによって設定される特別のチャネル/信号(例えば、SSB/タイプ0PDCCH/PRACH)と、の少なくとも1つによって、SBFDシンボル/スロットに対する暗示的リンク方向指示が達成されてもよい。
(Wireless communication method)
<Tenth embodiment>
Implicit link direction indication for SBFD symbols/slots may be achieved by at least one of DL or UL scheduling/triggering DCI and special channels/signals configured by higher layers (e.g., SSB/Type 0 PDCCH/PRACH).
 本開示において、暗示的リンク方向指示、制御情報、DL又はULのスケジューリング/トリガリングのDCI、は互いに読み替えられてもよい。 In this disclosure, the terms implicit link direction indication, control information, and DCI for DL or UL scheduling/triggering may be interpreted as interchangeable.
[暗示的リンク方向指示方法]
 具体的には、暗示的リンク方向指示は、以下の指示方法1から3の少なくとも1つによって達成されてもよい。
[Implicit link direction method]
Specifically, the implicit link direction indication may be achieved by at least one of the following indication methods 1 to 3.
[[指示方法1]]
 DCIによってスケジュール/トリガされるDL送信のシンボルのセット、又は、そのシンボルのセットにオーバーラップする時間ユニットは、DLシンボル又はDL時間ユニットと暗示的に指示されてもよい。DCIによってスケジュール/トリガされるUL送信のシンボルのセット、又は、そのシンボルのセットにオーバーラップする時間ユニットは、ULシンボル又はUL時間ユニットと暗示的に指示されてもよい。
[[Instruction Method 1]]
A set of symbols of a DL transmission scheduled/triggered by a DCI or a time unit overlapping with that set of symbols may be implicitly denoted as a DL symbol or DL time unit, and a set of symbols of a UL transmission scheduled/triggered by a DCI or a time unit overlapping with that set of symbols may be implicitly denoted as a UL symbol or UL time unit.
[[指示方法2]]
 設定されたSSB受信/タイプ0PDCCH受信のシンボルのセット、又は、そのシンボルのセットにオーバーラップする時間ユニットは、DLシンボル又はDL時間ユニットと暗示的に指示される。
[[Instruction Method 2]]
A configured set of symbols for SSB reception/Type 0 PDCCH reception, or a time unit that overlaps with that set of symbols, is implicitly designated as a DL symbol or DL time unit.
[[指示方法3]]
 有効なPRACHオケージョンのシンボルのセットと、その有効なPRACHオケージョンの前のN_gapシンボルのセットと、又は、そのシンボルのセットにオーバーラップする時間ユニットは、ULシンボル又はUL時間ユニットと暗示的に指示される。
[[Instruction Method 3]]
The set of symbols of a valid PRACH occasion and the set of N_gap symbols preceding that valid PRACH occasion, or a time unit that overlaps that set of symbols, is implicitly designated as a UL symbol or a UL time unit.
[UE動作]
 暗示的リンク方向指示に基づくUE動作は、以下の動作1及び2の少なくとも1つであってもよい。
UE Operation
The UE action based on the implicit link direction indication may be at least one of the following actions 1 and 2.
[[動作1]]
 暗示的に指示されたDL時間ユニット又はシンボル内にUL周波数-時間ユニットがある場合であっても、そのDL時間ユニット又はシンボル上の全てのリソースは、UL送信に利用不可能である、と規定されてもよい。暗示的に指示されたUL時間ユニット又はシンボル内にDL周波数-時間ユニットがある場合であっても、そのUL時間ユニット又はシンボル上の全てのリソースは、DL受信に利用不可能である、と規定されてもよい。
Action 1
Even if a UL frequency-time unit is within an implicitly indicated DL time unit or symbol, all resources on that DL time unit or symbol may be specified as unavailable for UL transmission. Even if a DL frequency-time unit is within an implicitly indicated UL time unit or symbol, all resources on that UL time unit or symbol may be specified as unavailable for DL reception.
 暗示的に指示されたDL時間ユニット又はシンボルにオーバーラップするUL送信は、キャンセルされる、と規定されてもよい。暗示的に指示されたDL時間ユニット又はシンボルにオーバーラップするUL送信は、暗示的にDLと指示されていない時間ユニット又はシンボル(UL時間ユニット、フレキシブル時間ユニット)内のUL周波数-時間ユニット(及びフレキシブル周波数-時間ユニット)内の残りのリソースがもしあれば、そのリソースにレートマッチされる、と規定されてもよい。 UL transmissions that overlap an implicitly designated DL time unit or symbol may be specified to be canceled. UL transmissions that overlap an implicitly designated DL time unit or symbol may be specified to be rate matched to the remaining resources, if any, in the UL frequency-time unit (and flexible frequency-time unit) in time units or symbols (UL time units, flexible time units) that are not implicitly designated DL.
 暗示的に指示されたUL時間ユニット又はシンボルにオーバーラップするDL受信は、キャンセルされる、と規定されてもよい。暗示的に指示されたUL時間ユニット又はシンボルにオーバーラップするDL受信は、暗示的にULと指示されていない時間ユニット又はシンボル(DL時間ユニット、フレキシブル時間ユニット)内のDL周波数-時間ユニット(及びフレキシブル周波数-時間ユニット)内の残りのリソースがもしあれば、そのリソースにレートマッチされる、と規定されてもよい。 It may be specified that DL receptions that overlap an implicitly indicated UL time unit or symbol are canceled. DL receptions that overlap an implicitly indicated UL time unit or symbol are rate matched to the remaining resources, if any, in DL frequency-time units (and flexible frequency-time units) in time units or symbols that are not implicitly indicated as UL (DL time units, flexible time units).
[[動作2]]
 DL周波数-時間ユニットは、DL時間ユニット上のDL受信に利用可能である、と規定されてもよい。UL周波数-時間ユニットは、UL時間ユニット上のUL送信に利用可能である、と規定されてもよい。
Action 2
A DL frequency-time unit may be defined as being available for DL reception on a DL time unit, and a UL frequency-time unit may be defined as being available for UL transmission on a UL time unit.
 UL周波数-時間ユニットにオーバーラップするDL受信は、キャンセルされる、と規定されてもよい。UL周波数-時間ユニットにオーバーラップするDL受信は、指示されたDL時間ユニット(及びフレキシブル時間ユニット)又はシンボル内のDL周波数-時間ユニット(及びフレキシブル周波数-時間ユニット)内の残りのリソースにレートマッチされる、と規定されてもよい。 DL receptions that overlap a UL frequency-time unit may be specified to be cancelled. DL receptions that overlap a UL frequency-time unit may be specified to be rate-matched to the remaining resources within the DL frequency-time unit (and flexible frequency-time unit) within the indicated DL time unit (and flexible time unit) or symbol.
 DL周波数-時間ユニットにオーバーラップするUL送信は、キャンセルされる、と規定されてもよい。DL周波数-時間ユニットにオーバーラップするUL送信は、指示されたUL時間ユニット(及びフレキシブル時間ユニット)又はシンボル内のUL周波数-時間ユニット(及びフレキシブル周波数-時間ユニット)内の残りのリソースにレートマッチされる、と規定されてもよい。 UL transmissions that overlap a DL frequency-time unit may be specified to be canceled. UL transmissions that overlap a DL frequency-time unit may be specified to be rate-matched to the remaining resources within the UL frequency-time unit (and flexible frequency-time unit) within the indicated UL time unit (and flexible time unit) or symbol.
 図4の例において、DL時間ユニット#1内のDCI#1が、SBFDユニット#2内のDG PDSCHをスケジュールすることによって、SBFDユニット#2はDL時間ユニットと暗示的に指示される。DL時間ユニット#1内のDCI#2が、SBFDユニット#3内のDG PUSCHをスケジュールすることによって、SBFDユニット#3はUL時間ユニットと暗示的に指示される。 In the example of FIG. 4, DCI #1 in DL time unit #1 schedules DG PDSCH in SBFD unit #2, which implicitly designates SBFD unit #2 as a DL time unit. DCI #2 in DL time unit #1 schedules DG PUSCH in SBFD unit #3, which implicitly designates SBFD unit #3 as a UL time unit.
 SBFDユニット#2内のDG PDSCHは、UEによって受信される。SBFDユニット#2内のSPS PDSCHは、UL周波数-時間ユニットにオーバーラップするため、キャンセルされる。SBFDユニット#2内のSPS PUSCHは、DL時間ユニットにオーバーラップするため、キャンセルされる。SBFDユニット#3内のDG PUSCHは、UEによって送信される。SBFDユニット#3内のCG PUSCHは、DL周波数-時間ユニットにオーバーラップするため、キャンセルされる。SBFDユニット#3内のSPS PDSCHは、UL時間ユニットにオーバーラップするため、キャンセルされる。 The DG PDSCH in SBFD unit #2 is received by the UE. The SPS PDSCH in SBFD unit #2 is canceled because it overlaps with the UL frequency-time unit. The SPS PUSCH in SBFD unit #2 is canceled because it overlaps with the DL time unit. The DG PUSCH in SBFD unit #3 is transmitted by the UE. The CG PUSCH in SBFD unit #3 is canceled because it overlaps with the DL frequency-time unit. The SPS PDSCH in SBFD unit #3 is canceled because it overlaps with the UL time unit.
[制限(エラーケース)]
 暗示的リンク方向指示は、以下の制限1から3の少なくとも1つに従ってもよい。
[Limits (Error cases)]
An implicit link direction indication may obey at least one of the following constraints 1 to 3.
[[制限1]]
 UEが、シンボル又は時間ユニットが、同時にDL及びULの両方に暗示的に指示されると想定しない、と規定されてもよい。
[[Restriction 1]]
It may be specified that the UE does not assume that a symbol or time unit is implicitly indicated to both DL and UL at the same time.
[[制限2]]
 UEが、DCIによってスケジュール/トリガされるDL受信のリソース、又は、設定されたSSB受信/タイプ0PDCCH受信のリソースが、ULと指示された任意の周波数-時間ユニットにオーバーラップする、又は、少なくとも1つのUL周波数-時間ユニットを含む任意のSBFDシンボル/スロットにオーバーラップする、と想定しない、と規定されてもよい。
[[Restriction 2]]
It may be specified that the UE does not assume that DL reception resources scheduled/triggered by DCI or configured SSB reception/Type 0 PDCCH reception resources overlap any frequency-time unit indicated as UL or overlap any SBFD symbol/slot containing at least one UL frequency-time unit.
[[制限3]]
 UEが、DCIによってスケジュール/トリガされるUL受信のリソース、又は、有効なPRACHオケージョンのシンボルと、その有効なPRACHオケージョンの前のN_gapシンボルと、のリソースが、DLと指示された任意の周波数-時間ユニットにオーバーラップする、又は、少なくとも1つのDL周波数-時間ユニットを含む任意のSBFDシンボル/スロットにオーバーラップする、と想定しない、と規定されてもよい。
[[Restriction 3]]
It may also be specified that the UE does not assume that resources for UL reception scheduled/triggered by DCI, or resources between the symbols of a valid PRACH occasion and the N_gap symbols preceding that valid PRACH occasion, overlap any frequency-time unit indicated as DL, or overlap any SBFD symbol/slot that contains at least one DL frequency-time unit.
 暗示的リンク方向指示のケースにおいて、上位レイヤによって設定されるチャネル/信号(例えば、PDSCH/PUSCH/PUCCH/CSI-RS/PRS/SRS)の具体的なUE動作は、第3の実施形態において述べる。 In the case of implicit link direction indication, the specific UE operation of the channels/signals (e.g., PDSCH/PUSCH/PUCCH/CSI-RS/PRS/SRS) configured by higher layers is described in the third embodiment.
 この実施形態によれば、UEは、SBFDシンボル/スロットにおける動作を適切に決定できる。 According to this embodiment, the UE can appropriately determine the operation in the SBFD symbol/slot.
<第1の実施形態>
 第1の実施形態は、SBFDシンボル/スロットにおいて、DCIによりDL受信とUL送信が動的にスケジュール/トリガされる場合の制御方法の一例について説明する。
First Embodiment
The first embodiment describes an example of a control method when DL reception and UL transmission are dynamically scheduled/triggered by DCI in an SBFD symbol/slot.
 本開示において、DL受信は、DLチャネル(例えば、PDSCH)、PDSCH用DMRSであってもよい。UL送信は、ULチャネル(例えば、PUSCH/PUCCH)、PUSCH用DMRS/PUCCH用DMRSであってもよい。 In this disclosure, DL reception may be a DL channel (e.g., PDSCH) or DMRS for PDSCH. UL transmission may be an UL channel (e.g., PUSCH/PUCCH) or DMRS for PUSCH/DMRS for PUCCH.
 同じSBFDシンボル/スロットにおいて、動的にスケジュール/トリガされるDL受信(例えば、DLサブバンド内)と、動的にスケジュール/トリガされるUL送信(例えば、ULサブバンド内)と、に対して、以下のオプション1-1~オプション1-3の少なくとも一つが適用されてもよい。 At least one of the following options 1-1 to 1-3 may be applied to dynamically scheduled/triggered DL reception (e.g., in a DL subband) and dynamically scheduled/triggered UL transmission (e.g., in a UL subband) in the same SBFD symbol/slot.
 DL受信とUL送信は、それぞれ異なるDCIによりスケジュール/トリガされてもよい。本開示において、SBFDシンボル/スロットにおけるDL受信はDLサブバンド内にスケジュール/トリガ/設定され、SBFDシンボル/スロットにおけるUL送信はULサブバンド内にスケジュール/トリガ/設定されることを意味してもよい。 DL reception and UL transmission may be scheduled/triggered by different DCIs. In this disclosure, this may mean that DL reception in an SBFD symbol/slot is scheduled/triggered/configured in the DL subband, and UL transmission in an SBFD symbol/slot is scheduled/triggered/configured in the UL subband.
[オプション1-1]
 UEは、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第1のDCI、及び、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第2のDCI、を検出(又は、モニタ)することを想定しなくてもよい(図5参照)。あるいは、UEは、あるSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第1のDCI、及び、同じSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第2のDCI、を検出することを想定しなくてもよい。
[Option 1-1]
The UE may not be expected to detect (or monitor) a first DCI that schedules/trigger DL reception for a certain SBFD symbol/slot and a second DCI that schedules/trigger UL transmission for the same SBFD symbol/slot (see FIG. 5). Alternatively, the UE may not be expected to detect a first DCI that schedules/trigger UL transmission for a certain SBFD symbol/slot and a second DCI that schedules/trigger DL reception for the same SBFD symbol/slot.
 例えば、UEは、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第1のDCIを検出した場合、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第2のDCIを検出又はモニタすることを想定しなくてもよい(あるいは、要求されなくてもよい)。あるいは、UEは、あるSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第1のDCIを検出した場合、同じSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第2のDCIを検出又はモニタすることを想定しなくてもよい(あるいは、要求されなくてもよい)。 For example, when a UE detects a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot, the UE may not assume (or be required) to detect or monitor a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot. Alternatively, when a UE detects a first DCI that schedules/triggers UL transmission for a certain SBFD symbol/slot, the UE may not assume (or be required) to detect or monitor a second DCI that schedules/triggers DL reception for the same SBFD symbol/slot.
 本開示において、第1のDCIは、第2のDCIより時間領域において早く送信(又は、UEが先に検出)されるDCIであってもよい。本開示において、第1のDCI/第2のDCIは、SBFDシンボル/スロット内で送信されてもよいし、SBFDシンボル/スロット以外のシンボル/スロット内(例えば、DL伝送のみ設定される時間領域)で送信されてもよい。あるいは、UEは、SBFDシンボル/スロットにおいて、第1のDCI及び第2のDCIの両方を検出することを想定しなくてもよい。 In the present disclosure, the first DCI may be a DCI that is transmitted earlier in the time domain (or detected earlier by the UE) than the second DCI. In the present disclosure, the first DCI/second DCI may be transmitted within an SBFD symbol/slot, or may be transmitted within a symbol/slot other than the SBFD symbol/slot (e.g., a time domain where only DL transmission is set). Alternatively, the UE may not be expected to detect both the first DCI and the second DCI in the SBFD symbol/slot.
 あるいは、UEは、同じSBFDシンボル/スロットにおいて、DL受信とUL送信がスケジュール/トリガされることを想定しなくてもよい。 Alternatively, the UE may not assume that DL reception and UL transmission are scheduled/triggered in the same SBFD symbol/slot.
 基地局は、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガするDCIと、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガするDCIと、の両方を送信しないように(いずれか一方のみ送信するように)制御してもよい。あるいは、基地局は、同じSBFDシンボル/スロットにおいて、DL受信とUL送信をスケジュール/トリガしないように制御してもよい。 The base station may control not to transmit both a DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a DCI that schedules/triggers UL transmission for the same SBFD symbol/slot (to transmit only one of them). Alternatively, the base station may control not to schedule/trigger DL reception and UL transmission in the same SBFD symbol/slot.
《バリエーション》
 UEは、SBFDシンボルの第1のセットに対するDL受信をスケジュール/トリガする第1のDCI、及び、SBFDシンボルの第2のセットに対するUL送信をスケジュール/トリガする第2のDCI、を検出することを想定しなくてもよい。あるいは、UEは、SBFDシンボルの第1のセットに対するUL送信をスケジュール/トリガする第1のDCI、及び、SBFDシンボルの第2のセットに対するDL受信をスケジュール/トリガする第2のDCI、を検出することを想定しなくてもよい。
"variation"
The UE may not be expected to detect a first DCI that schedules/trigger DL reception for a first set of SBFD symbols and a second DCI that schedules/trigger UL transmission for a second set of SBFD symbols. Alternatively, the UE may not be expected to detect a first DCI that schedules/trigger UL transmission for the first set of SBFD symbols and a second DCI that schedules/trigger DL reception for the second set of SBFD symbols.
 SBFDシンボルの第1のセットとSBFDシンボルの第2のセットは、所定(例えば、N)シンボル数だけ離れた領域であってもよい。これにより、SBFDシンボル/スロットにおいて、DL受信とUL送信を行う場合に、所定シンボル数のオフセット(又は、ギャップ)が形成されるため、DL-ULスイッチングを適切に行うことができる。 The first set of SBFD symbols and the second set of SBFD symbols may be regions separated by a predetermined number of symbols (e.g., N). This creates an offset (or gap) of a predetermined number of symbols when performing DL reception and UL transmission in the SBFD symbol/slot, allowing DL-UL switching to be performed appropriately.
[オプション1-2]
 UEは、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第1のDCIと、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第2のDCIと、を検出した場合、第1のDCIと第2のDCIの送信条件に基づいて、DL受信/UL送信を制御する。送信条件は、第1のDCIと第2のDCIの開始/終了タイミング、及び所定のタイムラインの少なくとも一つであってもよい。
[Option 1-2]
When the UE detects a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot, the UE controls DL reception/UL transmission based on transmission conditions of the first DCI and the second DCI. The transmission conditions may be at least one of start/end timings of the first DCI and the second DCI and a predetermined timeline.
 あるいは、UEは、あるSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第1のDCIと、同じSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第2のDCIと、を検出した場合、第1のDCIと第2のDCIの開始/終了タイミング、及び所定のタイムラインの少なくとも一つに基づいて、DL受信/UL送信を制御する。 Alternatively, when the UE detects a first DCI that schedules/triggers UL transmission for a certain SBFD symbol/slot and a second DCI that schedules/triggers DL reception for the same SBFD symbol/slot, the UE controls DL reception/UL transmission based on at least one of the start/end timings of the first DCI and the second DCI and a specified timeline.
 例えば、第1のDCIの開始/終了よりも後に第2のDCIが開始/終了する場合、UEは、第2のDCIによりスケジュール/トリガされたUL送信/DL受信を行うように制御してもよい(図6参照)。例えば、DL受信をスケジュール/トリガする第1のDCIの開始/終了よりも後に、UL送信をスケジュール/トリガする第2のDCIが開始/終了する場合、UEはUL送信を行うように制御する。一方で、UL送信をスケジュール/トリガする第1のDCIの開始/終了よりも後に、DL受信をスケジュール/トリガする第2のDCIが開始/終了する場合、UEはDL受信を行うように制御する。 For example, if the second DCI starts/ends after the first DCI starts/ends, the UE may control to perform UL transmission/DL reception scheduled/triggered by the second DCI (see FIG. 6). For example, if the second DCI that schedules/trigger UL transmission starts/ends after the first DCI that schedules/trigger DL reception starts/ends, the UE controls to perform UL transmission. On the other hand, if the second DCI that schedules/trigger DL reception starts/ends after the first DCI that schedules/trigger UL transmission starts/ends, the UE controls to perform DL reception.
 つまり、UEは、時間領域において後に受信したDCIでスケジュール/トリガされるDL受信/UL送信を優先して適用してもよい。なお、UEは、所定のタイムラインを満たす場合に、第2のDCIによりスケジュール/トリガされたUL送信/DL受信を行うように制御してもよい。 In other words, the UE may give priority to DL reception/UL transmission scheduled/triggered by a DCI received later in the time domain. Note that the UE may control to perform UL transmission/DL reception scheduled/triggered by a second DCI when a specified timeline is satisfied.
 所定のライムラインを満たす場合は、以下のタイムライン#1~タイムライン#3の少なくとも一つ(又は、全て)を満たす場合であってもよい。 When a specified timeline is met, at least one (or all) of the following Timelines #1 to #3 may be met.
・タイムライン#1
 第2のDCIフォーマットの終了(例えば、終了シンボル)が、第1のDCIによりスケジュール/トリガされるDL受信/UL送信の開始前のX1シンボルより前となることであってもよい。X1は、PDSCH/PUSCHの処理時間/ULキャンセルタイムラインに依存して決定されてもよい。PDSCH/PUSCHの処理時間は、既存システム(例えば、Rel.17以前)で定義されている期間(NPDSCH、Tproc,2等)に基づいて定義されてもよい。ULキャンセルタイムラインは、既存システム(例えば、Rel.17以前)で定義されている期間(Tmux proc,1、Tmux proc,2、Tmux proc,release等)に基づいて定義されてもよい。
Timeline #1
The end (e.g., end symbol) of the second DCI format may be X1 symbols before the start of DL reception/UL transmission scheduled/triggered by the first DCI. X1 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline. The PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17). The UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
 あるいは、X1は、UE能力に基づいて決定されてもよいし、基地局からUEに上位レイヤパラメータ等により設定されてもよい。 Alternatively, X1 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
・タイムライン#2
 第1のDCIフォーマットの終了(例えば、終了シンボル)が、第1のDCIによりスケジュール/トリガされるDL受信/UL送信の開始前のX2シンボルより前となることであってもよい。X2は、PDSCH/PUSCHの処理時間/ULキャンセルタイムラインに依存して決定されてもよい。PDSCH/PUSCHの処理時間は、既存システム(例えば、Rel.17以前)で定義されている期間(NPDSCH、Tproc,2等)に基づいて定義されてもよい。ULキャンセルタイムラインは、既存システム(例えば、Rel.17以前)で定義されている期間(Tmux proc,1、Tmux proc,2、Tmux proc,release等)に基づいて定義されてもよい。
Timeline #2
The end (e.g., end symbol) of the first DCI format may be X2 symbols before the start of DL reception/UL transmission scheduled/triggered by the first DCI. X2 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline. The PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17). The UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
 あるいは、X2は、UE能力に基づいて決定されてもよいし、基地局からUEに上位レイヤパラメータ等により設定されてもよい。 Alternatively, X2 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
・タイムライン#3
 第2のDCIフォーマットの終了(例えば、終了シンボル)が、第2のDCIによりスケジュール/トリガされるDL受信/UL送信の開始前のX3シンボルより前となることであってもよい。X3は、PDSCH/PUSCHの処理時間/ULキャンセルタイムラインに依存して決定されてもよい。PDSCH/PUSCHの処理時間は、既存システム(例えば、Rel.17以前)で定義されている期間(NPDSCH、Tproc,2等)に基づいて定義されてもよい。ULキャンセルタイムラインは、既存システム(例えば、Rel.17以前)で定義されている期間(Tmux proc,1、Tmux proc,2、Tmux proc,release等)に基づいて定義されてもよい。
Timeline #3
The end (e.g., end symbol) of the second DCI format may be X3 symbols before the start of DL reception/UL transmission scheduled/triggered by the second DCI. X3 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline. The PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17). The UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
 あるいは、X3は、UE能力に基づいて決定されてもよいし、基地局からUEに上位レイヤパラメータ等により設定されてもよい。 Alternatively, X3 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
 X1、X2、X3は、同じ値で定義されてもよいし、異なる値で定義されてもよい。 X1, X2, and X3 may be defined to have the same value or different values.
 UEは、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第1のDCIと、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第2のDCIと、を検出し、所定のタイムラインを満たさない場合、エラーケースと判断してもよい。あるいは、所定タイムラインを満たさない場合、UEは、第1のDCIでスケジュール/トリガされたDL受信/UL送信を行うように制御してもよい。 The UE may detect a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot, and may determine that an error case exists if a predetermined timeline is not met. Alternatively, if the predetermined timeline is not met, the UE may control to perform DL reception/UL transmission scheduled/triggered by the first DCI.
 あるいは、第1のDCIの開始/終了よりも後に第2のDCIが開始/終了する場合、UEは、第1のDCIによりスケジュール/トリガされたUL送信/DL受信を行うように制御してもよい。つまり、UEは、時間領域において先に受信したDCIでスケジュール/トリガされるDL受信/UL送信を優先して適用してもよい。 Alternatively, if the second DCI starts/ends after the first DCI starts/ends, the UE may control to perform UL transmission/DL reception scheduled/triggered by the first DCI. In other words, the UE may prioritize DL reception/UL transmission scheduled/triggered by the DCI received earlier in the time domain.
[オプション1-3]
 UEは、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第1のDCIと、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第2のDCIと、を検出した場合、DL受信とUL送信の開始/終了タイミング、及び所定のタイムラインの少なくとも一つに基づいて、DL受信/UL送信を制御する。
[Option 1-3]
When a UE detects a first DCI that schedules/trigger DL reception for a certain SBFD symbol/slot and a second DCI that schedules/trigger UL transmission for the same SBFD symbol/slot, the UE controls the DL reception/UL transmission based on at least one of the start/end timing of the DL reception and UL transmission and a specified timeline.
 あるいは、UEは、あるSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第1のDCIと、同じSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第2のDCIと、を検出した場合、DL受信とUL送信の開始/終了タイミング、及び所定のタイムラインの少なくとも一つに基づいて、DL受信/UL送信を制御する。 Alternatively, when the UE detects a first DCI that schedules/triggers UL transmission for a certain SBFD symbol/slot and a second DCI that schedules/triggers DL reception for the same SBFD symbol/slot, the UE controls DL reception/UL transmission based on at least one of the start/end timing of DL reception and UL transmission and a specified timeline.
 例えば、DL受信の開始タイミング(又は、終了タイミング)がUL送信の開始タイミング(又は、終了タイミング)より早い場合、UEは、DL受信を行うように制御してもよい。あるいは、UL送信の開始タイミング(又は、終了タイミング)がDL受信の開始タイミング(又は、終了タイミング)より早い場合、UEは、UL送信を行うように制御してもよい。 For example, if the start timing (or end timing) of DL reception is earlier than the start timing (or end timing) of UL transmission, the UE may be controlled to perform DL reception. Alternatively, if the start timing (or end timing) of UL transmission is earlier than the start timing (or end timing) of DL reception, the UE may be controlled to perform UL transmission.
 あるいは、DL受信の開始タイミング(又は、終了タイミング)がUL送信の開始タイミング(又は、終了タイミング)より遅い場合、UEは、DL受信を行うように制御してもよい。あるいは、UL送信の開始タイミング(又は、終了タイミング)がDL受信の開始タイミング(又は、終了タイミング)より遅い場合、UEは、UL送信を行うように制御してもよい。 Alternatively, if the start timing (or end timing) of DL reception is later than the start timing (or end timing) of UL transmission, the UE may be controlled to perform DL reception. Alternatively, if the start timing (or end timing) of UL transmission is later than the start timing (or end timing) of DL reception, the UE may be controlled to perform UL transmission.
 UEは、所定のタイムラインを満たす場合に、DL受信とUL送信の開始/終了タイミングに基づいてUL送信とDL受信のいずれかを行うように制御してもよい。 The UE may control whether to perform UL transmission or DL reception based on the start/end timing of DL reception and UL transmission when a specified timeline is met.
 所定のライムラインを満たす場合は、以下のタイムライン#1~タイムライン#2の少なくとも一つ(又は、全て)を満たす場合であってもよい。 When a specified timeline is met, at least one (or all) of the following Timeline #1 to Timeline #2 may be met.
・タイムライン#1
 第1のDCIフォーマットの終了(例えば、終了シンボル)が、第1のDCIによりスケジュール/トリガされるDL受信/UL送信の開始前のX1シンボルより前となることであってもよい。X1は、PDSCH/PUSCHの処理時間/ULキャンセルタイムラインに依存して決定されてもよい。PDSCH/PUSCHの処理時間は、既存システム(例えば、Rel.17以前)で定義されている期間(NPDSCH、Tproc,2等)に基づいて定義されてもよい。ULキャンセルタイムラインは、既存システム(例えば、Rel.17以前)で定義されている期間(Tmux proc,1、Tmux proc,2、Tmux proc,release等)に基づいて定義されてもよい。
Timeline #1
The end (e.g., end symbol) of the first DCI format may be X1 symbols before the start of DL reception/UL transmission scheduled/triggered by the first DCI. X1 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline. The PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17). The UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
 あるいは、X1は、UE能力に基づいて決定されてもよいし、基地局からUEに上位レイヤパラメータ等により設定されてもよい。 Alternatively, X1 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
・タイムライン#2
 第2のDCIフォーマットの終了(例えば、終了シンボル)が、第2のDCIによりスケジュール/トリガされるDL受信/UL送信の開始前のX2シンボルより前となることであってもよい。X2は、PDSCH/PUSCHの処理時間/ULキャンセルタイムラインに依存して決定されてもよい。PDSCH/PUSCHの処理時間は、既存システム(例えば、Rel.17以前)で定義されている期間(NPDSCH、Tproc,2等)に基づいて定義されてもよい。ULキャンセルタイムラインは、既存システム(例えば、Rel.17以前)で定義されている期間(Tmux proc,1、Tmux proc,2、Tmux proc,release等)に基づいて定義されてもよい。
Timeline #2
The end (e.g., end symbol) of the second DCI format may be X2 symbols before the start of DL reception/UL transmission scheduled/triggered by the second DCI. X2 may be determined depending on the PDSCH/PUSCH processing time/UL cancellation timeline. The PDSCH/PUSCH processing time may be defined based on a period (e.g., N PDSCH , T proc,2 , etc.) defined in a legacy system (e.g., before Rel. 17). The UL cancellation timeline may be defined based on a period (e.g., T mux proc,1 , T mux proc,2 , T mux proc,release , etc.) defined in a legacy system (e.g., before Rel. 17).
 あるいは、X2は、UE能力に基づいて決定されてもよいし、基地局からUEに上位レイヤパラメータ等により設定されてもよい。 Alternatively, X2 may be determined based on UE capabilities, or may be set by the base station to the UE using higher layer parameters, etc.
 X1、X2は、同じ値で定義されてもよいし、異なる値で定義されてもよい。 X1 and X2 may be defined as the same value or different values.
 UEは、あるSBFDシンボル/スロットに対するDL受信をスケジュール/トリガする第1のDCIと、同じSBFDシンボル/スロットに対するUL送信をスケジュール/トリガする第2のDCIと、を検出し、所定のタイムライン(例えば、タイムライン1及び2)を満たさない場合、エラーケースと判断してもよい。あるいは、所定タイムライン(例えば、タイムライン1と2の一方)を満たさない場合、UEは、タイムラインを満たすUL送信又はDL受信を行うように制御してもよい。 The UE may detect a first DCI that schedules/triggers DL reception for a certain SBFD symbol/slot and a second DCI that schedules/triggers UL transmission for the same SBFD symbol/slot, and may determine that an error case exists if a predetermined timeline (e.g., timelines 1 and 2) is not satisfied. Alternatively, if a predetermined timeline (e.g., one of timelines 1 and 2) is not satisfied, the UE may control to perform UL transmission or DL reception that satisfies the timeline.
<第2の実施形態>
 第2の実施形態は、SBFDシンボル/スロットにおいて、上位レイヤパラメータによりDL受信とUL送信が設定される場合の制御方法の一例について説明する。
Second Embodiment
In the second embodiment, an example of a control method when DL reception and UL transmission are set by higher layer parameters in an SBFD symbol/slot will be described.
 同じSBFDシンボル/スロットにおいて、上位レイヤで設定されるDL受信(例えば、DLサブバンド内)と、上位レイヤで設定されるUL送信(例えば、ULサブバンド内)と、に対して、所定の優先度に基づいて、UL送信とDL受信の一方を行うように制御してもよい。具体的には、同じSBFDシンボル/スロットにおいて、上位レイヤで設定されるDL受信(例えば、DLサブバンド内)と、上位レイヤで設定されるUL送信(例えば、ULサブバンド内)と、に対して、以下のオプション2-1~オプション2-6の少なくとも一つが適用されてもよい。DL受信とUL送信は、それぞれ異なる上位レイヤパラメータにより設定されてもよい。 In the same SBFD symbol/slot, for DL reception (e.g., in a DL subband) set in a higher layer and UL transmission (e.g., in a UL subband) set in a higher layer, control may be performed to perform either UL transmission or DL reception based on a predetermined priority. Specifically, for DL reception (e.g., in a DL subband) set in a higher layer and UL transmission (e.g., in a UL subband) set in a higher layer in the same SBFD symbol/slot, at least one of the following options 2-1 to 2-6 may be applied. DL reception and UL transmission may be set by different higher layer parameters.
[オプション2-1]
 UL送信/DL受信の送信タイプに基づいて、UL送信とDL受信の優先度が決定されてもよい(図7参照)。送信タイプは、ブロードキャスト送信、グループコモン送信、及びユニキャスト送信の少なくとも2つに基づいて分類されてもよい。
[Option 2-1]
Based on the transmission type of UL transmission/DL reception, the priority of UL transmission and DL reception may be determined (see FIG. 7). The transmission type may be classified based on at least two of broadcast transmission, group common transmission, and unicast transmission.
 上位レイヤで設定されるブロードキャスト/グループコモン送信に対応するチャネル/信号は、上位レイヤで設定されるユニキャスト送信に対応するチャネル/信号より優先順位が高く設定されてもよい。 Channels/signals corresponding to broadcast/group common transmissions configured in a higher layer may be set to a higher priority than channels/signals corresponding to unicast transmissions configured in a higher layer.
 上位レイヤで設定されたブロードキャスト/グループコモン送信に対応するDL受信と、上位レイヤで設定されたユニキャスト送信に対応するUL送信と、が同じSBFDシンボル/スロットに設定される場合、UEは、DL受信(例えば、DLチャネル/信号の受信)を行うように制御してもよい。この場合、UEは、UL送信を行わないように制御してもよい(又は、UEはUL送信が要求されなくてもよい)。 If DL reception corresponding to broadcast/group common transmission configured by a higher layer and UL transmission corresponding to unicast transmission configured by a higher layer are configured in the same SBFD symbol/slot, the UE may be controlled to perform DL reception (e.g., reception of a DL channel/signal). In this case, the UE may be controlled not to perform UL transmission (or the UE may not be required to perform UL transmission).
 あるいは、上位レイヤで設定されたブロードキャスト/グループコモン送信に対応するUL送信と、上位レイヤで設定されたユニキャスト送信に対応するDL受信と、が同じSBFDシンボル/スロットに設定される場合、UEは、UL送信(例えば、ULチャネル/信号の送信)を行うように制御してもよい。この場合、UEはDL受信を行わないように制御してもよい(又は、UEはDLチャネル/信号のモニタが要求されなくてもよい)。 Alternatively, if UL transmission corresponding to broadcast/group common transmission configured by a higher layer and DL reception corresponding to unicast transmission configured by a higher layer are configured in the same SBFD symbol/slot, the UE may be controlled to perform UL transmission (e.g., transmission of a UL channel/signal). In this case, the UE may be controlled not to perform DL reception (or the UE may not be required to monitor a DL channel/signal).
 なお、上位レイヤで設定されるユニキャスト送信に対応するチャネル/信号は、上位レイヤで設定されるブロードキャスト/グループコモン送信に対応するチャネル/信号より優先順位が高く設定されてもよい。 In addition, channels/signals corresponding to unicast transmissions set in a higher layer may be set to have a higher priority than channels/signals corresponding to broadcast/group common transmissions set in a higher layer.
[オプション2-2]
 レイヤ1の優先度(例えば、L1優先度)に基づいて、UL送信とDL受信の優先度が決定されてもよい。
[Option 2-2]
The priority of UL transmission and DL reception may be determined based on layer 1 priority (eg, L1 priority).
 レイヤ1の優先度は、例えば、DCIでアクティブ化/ディアクティブ化されるUL送信/DL受信(例えば、セミパーシステントのDL受信、設定グラントベースのUL送信)に設定される優先度であってもよい。 Layer 1 priority may be, for example, a priority set for UL transmission/DL reception activated/deactivated by DCI (e.g., semi-persistent DL reception, configuration grant-based UL transmission).
 DCIフォーマットでアクティブ化されるDL受信(例えば、SPS PDSCH)と、上位レイヤで設定されるUL送信(例えば、設定グラントベースのPUSCH、PUCCH)と、が同じSBFDシンボル/スロットに設定される場合、物理優先度(例えば、physical priority)に基づいて、DL受信とUL送信の優先度が決定されてもよい。物理優先度は、DL受信をアクティブ化するDCIで指示されてもよい。例えば、DCIにより物理的優先度のHP(high)/LP(low)を示すL1優先度(例えば、SPS設定に対するHP/LP HARQ-ACK)が指示されてもよい。 When DL reception (e.g., SPS PDSCH) activated by the DCI format and UL transmission (e.g., configuration grant-based PUSCH, PUCCH) configured by a higher layer are configured in the same SBFD symbol/slot, the priority of DL reception and UL transmission may be determined based on the physical priority (e.g., physical priority). The physical priority may be indicated by the DCI that activates DL reception. For example, the DCI may indicate an L1 priority (e.g., HP/LP HARQ-ACK for SPS configuration) indicating the physical priority HP (high)/LP (low).
 DCIなしの高優先度設定グラントPUSCH(例えば、HP CG PUSCH without DCI)又はDCIなしの高優先度PUCCH(例えば、HP PUCCH without DCI)と、低優先度HARQ-ACKに対応するSPS PDSCHと、が同じSBFDシンボル/スロットに設定される場合、UEは、UL送信を優先し、DL受信を行わなくてもよい(図8参照)。DCIなしの高優先度設定グラントPUSCH、又はDCIなしの高優先度PUCCHは、高優先度のスケジューリングリクエスト、高優先度のSPS HARQ-ACKであってもよい。 When a high priority grant PUSCH without DCI (e.g., HP CG PUSCH without DCI) or a high priority PUCCH without DCI (e.g., HP PUCCH without DCI) and an SPS PDSCH corresponding to a low priority HARQ-ACK are configured in the same SBFD symbol/slot, the UE prioritizes UL transmission and does not need to perform DL reception (see Figure 8). A high priority grant PUSCH without DCI or a high priority PUCCH without DCI may be a high priority scheduling request or a high priority SPS HARQ-ACK.
 DCIなしの低優先度設定グラントPUSCH(例えば、LP CG PUSCH without DCI)又はDCIなしの低優先度PUCCH(例えば、LP PUCCH without DCI)と、高優先度HARQ-ACKに対応するSPS PDSCHと、が同じSBFDシンボル/スロットに設定される場合、UEは、DJ受信を優先し、UL送信を行わなくてもよい(図8参照)。 When a low-priority grant PUSCH without DCI (e.g., LP CG PUSCH without DCI) or a low-priority PUCCH without DCI (e.g., LP PUCCH without DCI) and an SPS PDSCH corresponding to a high-priority HARQ-ACK are configured in the same SBFD symbol/slot, the UE prioritizes DJ reception and does not need to perform UL transmission (see Figure 8).
 DCIフォーマットでアクティブ化されるDL受信(例えば、SPS PDSCH)と、DCIフォーマットでアクティブ化されるUL送信(例えば、設定グラントベース(例えば、タイプ2)のPUSCH、PUCCH)と、が同じSBFDシンボル/スロットに設定される場合、物理優先度(例えば、physical priority)に基づいて、DL受信とUL送信の優先度が決定されてもよい。物理優先度は、DL受信をアクティブ化するDCI/UL送信をアクティブ化するDCIでそれぞれ指示されてもよい。 When DL reception (e.g., SPS PDSCH) activated by DCI format and UL transmission (e.g., PUSCH, PUCCH based on configuration grant (e.g., type 2)) activated by DCI format are configured in the same SBFD symbol/slot, the priority of DL reception and UL transmission may be determined based on the physical priority (e.g., physical priority). The physical priority may be indicated by the DCI activating DL reception/DCI activating UL transmission, respectively.
[オプション2-3]
 DL受信とUL送信の開始位置/終了位置(例えば、starting/ending position)に基づいて、UL送信とDL受信の優先度が決定されてもよい。
[Option 2-3]
The priority of UL transmission and DL reception may be determined based on the starting/ending positions (e.g., starting/ending positions) of DL reception and UL transmission.
 上位レイヤで設定されるDL受信と、上位レイヤで設定されるUL送信と、が同じSBFDシンボル/スロットに設定される場合、UEは、DL受信とUL送信の開始位置/終了位置に基づいて、UL送信とDL受信の優先度を判断してもよい。 If DL reception configured by a higher layer and UL transmission configured by a higher layer are set to the same SBFD symbol/slot, the UE may determine the priority of UL transmission and DL reception based on the start/end positions of DL reception and UL transmission.
 例えば、上位レイヤで設定されたDL受信の開始タイミングが、上位レイヤで設定されたUL送信の開始タイミングより早い場合、UEは、DL受信を優先してもよい(UL送信を行わない)。あるいは、上位レイヤで設定されたUL送信の開始タイミングが、上位レイヤで設定されたDL受信の開始タイミングより早い場合、UEは、UL送信を優先してもよい(DL受信を行わない)。 For example, if the start timing of DL reception set by the higher layer is earlier than the start timing of UL transmission set by the higher layer, the UE may prioritize DL reception (not perform UL transmission). Alternatively, if the start timing of UL transmission set by the higher layer is earlier than the start timing of DL reception set by the higher layer, the UE may prioritize UL transmission (not perform DL reception).
 あるいは、上位レイヤで設定されたDL受信の開始タイミングが、上位レイヤで設定されたUL送信の開始タイミングより遅い場合、UEは、DL受信を優先してもよい(UL送信を行わない)。あるいは、上位レイヤで設定されたUL送信の開始タイミングが、上位レイヤで設定されたDL受信の開始タイミングより遅い場合、UEは、UL送信を優先してもよい(DL受信を行わない)。 Alternatively, if the start timing of DL reception set by the higher layer is later than the start timing of UL transmission set by the higher layer, the UE may prioritize DL reception (not perform UL transmission). Alternatively, if the start timing of UL transmission set by the higher layer is later than the start timing of DL reception set by the higher layer, the UE may prioritize UL transmission (not perform DL reception).
 あるいは、上位レイヤで設定されたDL受信の終了タイミングが、上位レイヤで設定されたUL送信の終了タイミングより早い場合、UEは、DL受信を優先してもよい(UL送信を行わない)。あるいは、上位レイヤで設定されたUL送信の終了タイミングが、上位レイヤで設定されたDL受信の終了タイミングより早い場合、UEは、UL送信を優先してもよい(DL受信を行わない)。 Alternatively, if the end timing of DL reception set by the higher layer is earlier than the end timing of UL transmission set by the higher layer, the UE may prioritize DL reception (not perform UL transmission). Alternatively, if the end timing of UL transmission set by the higher layer is earlier than the end timing of DL reception set by the higher layer, the UE may prioritize UL transmission (not perform DL reception).
 あるいは、上位レイヤで設定されたDL受信の終了タイミングが、上位レイヤで設定されたUL送信の終了タイミングより遅い場合、UEは、DL受信を優先してもよい(UL送信を行わない)。あるいは、上位レイヤで設定されたUL送信の終了タイミングが、上位レイヤで設定されたDL受信の終了タイミングより遅い場合、UEは、UL送信を優先してもよい(DL受信を行わない)。 Alternatively, if the end timing of DL reception set by the higher layer is later than the end timing of UL transmission set by the higher layer, the UE may prioritize DL reception (not perform UL transmission). Alternatively, if the end timing of UL transmission set by the higher layer is later than the end timing of DL reception set by the higher layer, the UE may prioritize UL transmission (not perform DL reception).
[オプション2-4]
 あらかじめ定義された優先度に基づいて、UL送信とDL受信の優先度が決定されてもよい。例えば、DLチャネル/信号と、ULチャネル/信号とに対して、優先度が定義/設定されてもよい。
[Option 2-4]
Based on predefined priorities, the priorities of UL transmission and DL reception may be determined, for example, priorities may be defined/set for DL channels/signals and UL channels/signals.
 優先度ルールとして、以下の優先度ルール#1~ルール#3の少なくとも一つが定義/設定されてもよい。 At least one of the following priority rules #1 to #3 may be defined/set as a priority rule.
《優先度ルール#1》
 PUCCHはPDSCHよりも優先度が高く設定される。例えば、PDSCH(例えば、DLサブバンド内)とPUCCH(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットに設定される場合、UEは、PUCCHを送信するように制御してもよい。
Priority Rule #1
The PUCCH is set to have a higher priority than the PDSCH. For example, if the PDSCH (e.g., in a DL subband) and the PUCCH (e.g., in a UL subband) are set to the same SBFD symbol/slot, the UE may be controlled to transmit the PUCCH.
《優先度ルール#2》
 PDCCHはPUSCHよりも優先度が高く設定される。例えば、PDCCH(例えば、DLサブバンド内)とPUSCH(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットに設定される場合、UEは、PDCCHを受信するように制御してもよい。
Priority Rule #2
The PDCCH is set to have a higher priority than the PUSCH. For example, if the PDCCH (e.g., in a DL subband) and the PUSCH (e.g., in a UL subband) are set to the same SBFD symbol/slot, the UE may be controlled to receive the PDCCH.
《優先度ルール#3》
 PDCCH/PSSCH/CSI-RS/PUSCH/PUCCH/SRS間の優先順位は、仕様で定義されてもよいし、上位レイヤシグナリングにより基地局からUEに設定されてもよい。
Priority Rule #3
The priority order between PDCCH/PSSCH/CSI-RS/PUSCH/PUCCH/SRS may be defined in the specifications or may be set from the base station to the UE by higher layer signaling.
[オプション2-5]
 DL受信とUL送信の送信方法のタイプに基づいて、UL送信とDL受信の優先度が決定されてもよい。送信方法のタイプは、セミパーシステント(例えば、semi-persistent)と、周期的(例えば、periodic)と、により分類されてもよい。
[Option 2-5]
The priority of UL transmission and DL reception may be determined based on the type of transmission method of the DL reception and the UL transmission, which may be classified as semi-persistent or periodic.
 例えば、セミパーシステントに送信されるチャネル/信号/参照信号は、周期的に送信されるチャネル/信号/参照信号より優先度が高く設定されてもよい。 For example, channels/signals/reference signals that are transmitted semi-persistently may be set to a higher priority than channels/signals/reference signals that are transmitted periodically.
 例えば、セミパーシステントに送信されるCSI-RS(例えば、DLサブバンド内)と周期的に送信されるSRS(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットに設定される場合、UEは、CSI-RSの受信を行う(SRSの送信を行わない)ように制御してもよい。 For example, if the semi-persistently transmitted CSI-RS (e.g., in the DL subband) and the periodically transmitted SRS (e.g., in the UL subband) are set to the same SBFD symbol/slot, the UE may be controlled to receive the CSI-RS (and not transmit the SRS).
 あるいは、セミパーシステントに送信されるSRS(例えば、ULサブバンド内)と周期的CSI-RS(例えば、DLサブバンド内)に送信されると、が同じSBFDシンボル/スロットに設定される場合、UEは、SRSの送信を行う(CSI-RSの受信を行わない)ように制御してもよい。 Alternatively, if the semi-persistent SRS (e.g., in the UL subband) and the periodic CSI-RS (e.g., in the DL subband) are set to the same SBFD symbol/slot, the UE may be controlled to transmit the SRS (and not receive the CSI-RS).
[オプション2-6]
 オプション2-1~オプション2-5の一部又は全部は、組み合わせて適用されてもよい。複数のオプションを組み合わせて適用する場合、あるオプションを先に適用し、その後に他のオプションが適用されてもよい。いずれのオプションを先に適用するかについては、仕様で定義されてもよいし、上位レイヤシグナリングで基地局からUEに設定されてもよい。
[Option 2-6]
Some or all of Option 2-1 to Option 2-5 may be applied in combination. When multiple options are applied in combination, one option may be applied first, and then the other options may be applied. Which option is applied first may be defined in the specification, or may be set in the UE from the base station by higher layer signaling.
[バリエーション]
 オプション2-1~オプション2-6で示したUL送信/DL受信の優先度のルールは、動的にスケジュール/トリガされたDL受信(例えば、DLサブバンド内)と、上位レイヤで設定されたUL送信(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットでオーバーラップする場合に適用されてもよい。
[variation]
The UL transmission/DL reception priority rules shown in Options 2-1 to 2-6 may be applied when a dynamically scheduled/triggered DL reception (e.g., in a DL subband) and a higher layer configured UL transmission (e.g., in a UL subband) overlap in the same SBFD symbol/slot.
 あるいは、オプション2-1~オプション2-6で示したUL送信/DL受信の優先度のルールは、上位レイヤで設定されたDL受信(例えば、DLサブバンド内)と、動的にスケジュール/トリガされたUL送信(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットでオーバーラップする場合に適用されてもよい。 Alternatively, the UL transmission/DL reception priority rules shown in Option 2-1 to Option 2-6 may be applied when DL reception configured by higher layers (e.g., in a DL subband) and dynamically scheduled/triggered UL transmission (e.g., in a UL subband) overlap in the same SBFD symbol/slot.
 あるいは、オプション2-1~オプション2-6で示したUL送信/DL受信の優先度のルールは、動的にスケジュール/トリガされたDL受信(例えば、DLサブバンド内)と、動的にスケジュール/トリガされたUL送信(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットでオーバーラップする場合に適用されてもよい。 Alternatively, the UL transmission/DL reception priority rules shown in Option 2-1 to Option 2-6 may be applied when a dynamically scheduled/triggered DL reception (e.g., in a DL subband) and a dynamically scheduled/triggered UL transmission (e.g., in a UL subband) overlap in the same SBFD symbol/slot.
<第3の実施形態>
 第3の実施形態は、同じSBFDシンボル/スロットにおいて、DL受信とUL送信がスケジュール/トリガ/設定され、DL受信とUL送信の少なくとも一つに繰り返し(repetition)が適用される場合の制御方法の一例について説明する。
Third Embodiment
The third embodiment describes an example of a control method when DL reception and UL transmission are scheduled/triggered/configured in the same SBFD symbol/slot and repetition is applied to at least one of the DL reception and UL transmission.
 繰り返し(repetition)は、PDSCH繰り返し、PUCCH繰り返し、PUSCH繰り返しの少なくとも一つであってもよい。 The repetition may be at least one of PDSCH repetition, PUCCH repetition, and PUSCH repetition.
 同じSBFDシンボル/スロットにおいて、DL受信とUL送信がスケジュール/トリガ/設定され、DL受信とUL送信の少なくとも一つに繰り返し(repetition)が適用される場合(図9参照)、以下のオプション3-1~オプション3-3の少なくとも一つが適用されてもよい。図9は、PDSCHとPUSCHの両方に繰り返しが適用される場合を示しているが、適用可能な繰り返し回数等はこれに限られない。 When DL reception and UL transmission are scheduled/triggered/configured in the same SBFD symbol/slot, and repetition is applied to at least one of DL reception and UL transmission (see FIG. 9), at least one of the following options 3-1 to 3-3 may be applied. FIG. 9 shows a case where repetition is applied to both PDSCH and PUSCH, but the number of repetitions that can be applied is not limited to this.
[オプション3-1]
 以下の想定3-1及び3-2の少なくとも一つを想定して、第0の実施形態/第1の実施形態/第2の実施形態の少なくとも一つが適用(又は、リユース)されてもよい。
[Option 3-1]
Assuming at least one of the following scenarios 3-1 and 3-2, at least one of the 0th embodiment, the first embodiment, and the second embodiment may be applied (or reused).
《想定3-1》
 上位レイヤにより設定された繰り返し(例えば、PDSCH/PUSCH/PUCCH繰り返し)について、各繰り返しは、上位レイヤで設定されたDL受信/UL送信とみなされてもよい。
《Assumption 3-1》
For repetitions configured by higher layers (e.g. PDSCH/PUSCH/PUCCH repetitions), each repetition may be considered as DL reception/UL transmission configured by higher layers.
《想定3-2》
 ダイナミックグラント(DG)(例えば、DCI)により指示される繰り返し(例えば、PDSCH/PUSCH/PUCCH繰り返し)について、以下のオプション3-1-1~オプション3-1-2の少なくとも一つが適用されてもよい。
《Assumption 3-2》
For repetition (e.g., PDSCH/PUSCH/PUCCH repetition) indicated by a dynamic grant (DG) (e.g., DCI), at least one of the following options 3-1-1 to 3-1-2 may be applied.
[[オプション3-1-1]]
 ダイナミックグラントにより指示される繰り返しは、動的に(例えば、DCIにより)スケジュールされたDL受信/UL送信とみなされてもよい。
[Option 3-1-1]
The repetitions indicated by the dynamic grant may be considered as dynamically (eg, by DCI) scheduled DL reception/UL transmission.
[[オプション3-1-2]]
 ダイナミックグラントにより指示される繰り返しのうち特定の繰り返しは、動的に(例えば、DCIにより)スケジュールされたDL受信/UL送信とみなし、それ以外の繰り返しは、上位レイヤで設定されたDL受信/UL送信とみなしてもよい。
[Option 3-1-2]
Among the repetitions indicated by the dynamic grant, certain repetitions may be regarded as DL reception/UL transmissions dynamically (e.g., by DCI) scheduled, and other repetitions may be regarded as DL reception/UL transmissions configured by a higher layer.
 特定の繰り返しは、最初の繰り返しであってもよい。例えば、繰り返し数が4の場合、最初の繰り返しは、動的に(例えば、DCIにより)スケジュールされたDL受信/UL送信とみなし、それ以外の繰り返し(例えば、2-4)は、上位レイヤで設定されたDL受信/UL送信とみなしてもよい。 The particular repetition may be the first repetition. For example, if the number of repetitions is 4, the first repetition may be considered as DL reception/UL transmission scheduled dynamically (e.g., by DCI), and the other repetitions (e.g., 2-4) may be considered as DL reception/UL transmission configured by higher layers.
 DL受信/UL送信毎に異なるオプションが適用されてもよい。あるいは、チャネル毎に異なるオプションが適用されてもよい。 Different options may be applied for DL reception/UL transmission. Alternatively, different options may be applied for each channel.
[オプション3-2]
 DL受信/UL送信に適用される繰り返し条件に基づいて、UL送信とDL受信の優先度が決定されてもよい。
[Option 3-2]
The priority of UL transmission and DL reception may be determined based on the repetition condition applied to DL reception/UL transmission.
 繰り返しインデックス(例えば、repetition index)、及びトータル繰り返し数(例えば、total repetition number)の少なくとも一つに基づいて、UL送信とDL受信の優先度が決定されてもよい。例えば、繰り返しインデックスが小さいDL受信/UL送信が優先されてもよい。あるいは、繰り返しインデックスが大きいDL受信/UL送信が優先されてもよい。繰り返し送信が適用されないDL受信/UL送信は、繰り返しインデックス1とみなされてもよい。 The priority of UL transmission and DL reception may be determined based on at least one of the repetition index (e.g., repetition index) and the total repetition number (e.g., total repetition number). For example, DL reception/UL transmission with a smaller repetition index may be prioritized. Alternatively, DL reception/UL transmission with a larger repetition index may be prioritized. DL reception/UL transmission to which repetition transmission is not applied may be considered to have a repetition index of 1.
 PDSCH繰り返しインデックス#i(例えば、DLサブバンド内)と、PUSCH/PUCCH繰り返しインデックス#j(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットにスケジュール/トリガ/設定される場合を想定する。i≦j(又は、i<j)の場合、UEは、PDSCH繰り返しインデックス#iを受信するように(PUSCH/PUCCH繰り返しインデックス#jを送信しないように)制御してもよい。 Assume that PDSCH repetition index #i (e.g., in a DL subband) and PUSCH/PUCCH repetition index #j (e.g., in a UL subband) are scheduled/triggered/configured in the same SBFD symbol/slot. If i≦j (or i<j), the UE may be controlled to receive PDSCH repetition index #i (and not transmit PUSCH/PUCCH repetition index #j).
 あるいは、i≦j(又は、i<j)の場合、UEは、PUSCH/PUCCH繰り返しインデックス#jを送信するように(PDSCH繰り返しインデックス#iを受信しないように)制御してもよい。 Alternatively, if i≦j (or i<j), the UE may be controlled to transmit PUSCH/PUCCH repetition index #j (and not to receive PDSCH repetition index #i).
 PDSCH繰り返し(例えば、DLサブバンド内)と、PUSCH/PUCCH繰り返し(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットにスケジュール/トリガ/設定される場合を想定する。PDSCHの繰り返し数の合計がPUSCH/PUCCH繰り返し数の合計より少ない場合、UEは、PDSCH繰り返しを受信するように(PUSCH/PUCCH繰り返しを送信しないように)制御してもよい。あるいは、PDSCHの繰り返し数の合計がPUSCH/PUCCH繰り返し数の合計より少ない場合、UEは、PUSCH/PUCCH繰り返しを送信するように(PDSCH繰り返しを受信しないように)制御してもよい。繰り返し送信が適用されないDL受信/UL送信は、繰り返し数が1とみなされてもよい。 Assume that PDSCH repetitions (e.g., in a DL subband) and PUSCH/PUCCH repetitions (e.g., in a UL subband) are scheduled/triggered/configured in the same SBFD symbol/slot. If the total number of PDSCH repetitions is less than the total number of PUSCH/PUCCH repetitions, the UE may be controlled to receive PDSCH repetitions (not to transmit PUSCH/PUCCH repetitions). Alternatively, if the total number of PDSCH repetitions is less than the total number of PUSCH/PUCCH repetitions, the UE may be controlled to transmit PUSCH/PUCCH repetitions (not to receive PDSCH repetitions). DL reception/UL transmission, where repetition transmission does not apply, may be considered to have a repetition number of 1.
 あるいは、PDSCHの繰り返し数の合計がPUSCH/PUCCH繰り返し数の合計より多い場合、UEは、PDSCH繰り返しを受信するように(PUSCH/PUCCH繰り返しを送信しないように)制御してもよい。あるいは、PDSCHの繰り返し数の合計がPUSCH/PUCCH繰り返し数の合計より多い場合、UEは、PUSCH/PUCCH繰り返しを送信するように(PDSCH繰り返しを受信しないように)制御してもよい。 Alternatively, if the total number of PDSCH repetitions is greater than the total number of PUSCH/PUCCH repetitions, the UE may be controlled to receive PDSCH repetitions (not to transmit PUSCH/PUCCH repetitions). Alternatively, if the total number of PDSCH repetitions is greater than the total number of PUSCH/PUCCH repetitions, the UE may be controlled to transmit PUSCH/PUCCH repetitions (not to receive PDSCH repetitions).
[オプション3-3]
 DL受信/UL送信に適用される最初の繰り返しの開始(又は、最後の繰り返しの終了)に基づいて、UL送信とDL受信の優先度が決定されてもよい。
[Option 3-3]
Based on the start of the first iteration (or the end of the last iteration) applied to DL reception/UL transmission, the priority of UL transmission and DL reception may be determined.
 PDSCH繰り返し(例えば、DLサブバンド内)と、PUSCH/PUCCH繰り返し(例えば、ULサブバンド内)と、が同じSBFDシンボル/スロットにスケジュール/トリガ/設定される場合を想定する。PDSCHの繰り返しの最初の繰り返し(例えば、N回繰り返し(Rep#1-Rep#N)のRep#1)が、PUSCH/PUCCH繰り返し(例えば、M回繰り返し(Rep#1-Rep#M)のRep#1)よりも前である場合、UEは、PDSCH繰り返しを受信するように(PUSCH/PUCCH繰り返しを送信しないように)制御してもよい。 Assume that PDSCH repetitions (e.g., in a DL subband) and PUSCH/PUCCH repetitions (e.g., in a UL subband) are scheduled/triggered/configured in the same SBFD symbol/slot. If the first repetition of PDSCH repetitions (e.g., Rep#1 of N repetitions (Rep#1-Rep#N)) precedes PUSCH/PUCCH repetitions (e.g., Rep#1 of M repetitions (Rep#1-Rep#M)), the UE may be controlled to receive PDSCH repetitions (and not transmit PUSCH/PUCCH repetitions).
 あるいは、PDSCHの繰り返しの最初の繰り返し(例えば、N回繰り返し(Rep#1-Rep#N)のRep#1)が、PUSCH/PUCCH繰り返し(例えば、M回繰り返し(Rep#1-Rep#M)のRep#1)よりも前である場合、UEは、PUSCH/PUCCH繰り返しを送信するように(PDSCH繰り返しを受信しないように)制御してもよい。 Alternatively, if the first repetition of the PDSCH repetition (e.g., Rep#1 of N repetitions (Rep#1-Rep#N)) precedes the PUSCH/PUCCH repetition (e.g., Rep#1 of M repetitions (Rep#1-Rep#M)), the UE may be controlled to transmit the PUSCH/PUCCH repetition (not to receive the PDSCH repetition).
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
<Additional Information>
[Notification of information to UE]
In the above-described embodiments, any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Information notification from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・同じSBFDシンボル/スロットにおいて動的にスケジュール/トリガされるDL受信(DLサブバンド内)と動的にスケジュール/トリガされるUL送信(ULサブバンド内)をサポートすること、
 ・同じSBFDシンボル/スロットにおいて上位レイヤで設定されるDL受信(DLサブバンド内)と上位レイヤで設定されるUL送信(ULサブバンド内)をサポートすること、
 ・同じSBFDシンボル/スロットにおいて動的にスケジュール/トリガされるDL受信(DLサブバンド内)と上位レイヤで設定されるUL送信(ULサブバンド内)をサポートすること、
 ・同じSBFDシンボル/スロットにおいて上位レイヤで設定されるDL受信(DLサブバンド内)と動的にスケジュール/トリガされるUL送信(ULサブバンド内)をサポートすること、
 ・同じSBFDシンボル/スロットにおいて繰り返しが適用されるDL受信(DLサブバンド内)とUL送信(ULサブバンド内)をサポートすること、
 ・同じSBFDシンボル/スロットにおいてDL受信(DLサブバンド内)と繰り返しが適用されるUL送信(ULサブバンド内)をサポートすること。
The specific UE capabilities may indicate at least one of the following:
Supporting dynamically scheduled/triggered DL reception (in DL sub-bands) and dynamically scheduled/triggered UL transmission (in UL sub-bands) in the same SBFD symbol/slot;
Supporting higher layer configured DL reception (in DL sub-band) and higher layer configured UL transmission (in UL sub-band) in the same SBFD symbol/slot;
Supporting dynamically scheduled/triggered DL reception (in DL sub-bands) and higher layer configured UL transmission (in UL sub-bands) in the same SBFD symbol/slot;
Supporting higher layer configured DL reception (in DL sub-bands) and dynamically scheduled/triggered UL transmission (in UL sub-bands) in the same SBFD symbol/slot;
Supporting DL reception (in DL sub-bands) and UL transmission (in UL sub-bands) with repetition applied in the same SBFD symbol/slot;
Support DL reception (in DL sub-band) and UL transmission (in UL sub-band) with repetition in the same SBFD symbol/slot.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 The specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、SBFDを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating that SBFD is enabled, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may, for example, apply Rel. 15/16 operations.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを受信する受信部と、前記サブバンド非重複全二重複信が適用される同じ時間領域に対して前記DL受信及び前記UL送信の指示がサポートされる場合、前記第1の情報及び前記第2の情報の送信条件、前記DL受信と前記UL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する制御部と、を有する端末。
[付記2]
 前記第1の情報と前記第2の情報が下り制御情報である場合、前記制御部は、前記第1の情報に対応する第1の下り制御情報と前記第2の情報に対応する下り制御情報の送信タイミングに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する付記1に記載の端末。
[付記3]
 前記第1の情報と前記第2の情報の少なくとも一つが上位レイヤパラメータである場合、前記制御部は、前記DL受信と前記UL送信の送信タイプに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する付記1又は付記2に記載の端末。
[付記4]
 前記DL受信と前記UL送信の少なくとも一つに繰り返しが適用される場合、前記制御部は、繰り返しの条件に基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する付記1から付記3のいずれかに記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
A terminal having a receiving unit that receives at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex signaling is applied, and a control unit that, when the instructions for DL reception and UL transmission are supported for the same time domain to which the subband non-overlapping full-duplex signaling is applied, controls to select and perform one of the DL reception and the UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and predetermined conditions.
[Appendix 2]
The terminal described in Appendix 1, wherein, when the first information and the second information are downlink control information, the control unit controls to select and perform one of the DL reception and the UL transmission based on the transmission timing of first downlink control information corresponding to the first information and downlink control information corresponding to the second information.
[Appendix 3]
The terminal according to claim 1 or 2, wherein, when at least one of the first information and the second information is an upper layer parameter, the control unit controls to select and perform one of the DL reception and the UL transmission based on a transmission type of the DL reception and the UL transmission.
[Appendix 4]
A terminal according to any one of Supplementary Note 1 to Supplementary Note 3, wherein when repetition is applied to at least one of the DL reception and the UL transmission, the control unit controls to select and perform one of the DL reception and the UL transmission based on a repetition condition.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1. A user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the multiple base stations 10. The user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 In addition, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which corresponds to the upper station, may be called an Integrated Access Backhaul (IAB) donor, and base station 12, which corresponds to a relay station, may be called an IAB node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10. The core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 The core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. In addition, communication with an external network (e.g., the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The radio access method may also be called a waveform. In the wireless communication system 1, other radio access methods (e.g., other single-carrier transmission methods, other multi-carrier transmission methods) may be used for the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In addition, in the wireless communication system 1, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted. In the wireless communication system 1, as the DL-RS, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, the SS, SSB, etc. may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), etc. may be transmitted as an uplink reference signal (UL-RS). Note that the DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
11 is a diagram showing an example of a configuration of a base station according to an embodiment. The base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc. The control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc. The control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120. The control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 120 (transmission processor 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal. The measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
 送受信部120は、サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを端末に送信してもよい。 The transceiver 120 may transmit to the terminal at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex transmission is applied.
 制御部110は、サブバンド非重複全二重複信が適用される同じ時間領域に対してDL受信及びUL送信の指示がサポートされる場合、第1の情報及び第2の情報の送信条件、DL受信とUL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つを利用して、DL受信とUL送信の一方を選択するように端末に指示してもよい。 When DL reception and UL transmission instructions are supported for the same time region to which subband non-overlapping full duplex transmission is applied, the control unit 110 may instruct the terminal to select either DL reception or UL transmission using at least one of the transmission conditions of the first information and the second information, the conditions applied to DL reception and UL transmission, and the conditions set in advance.
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
12 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal. The measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 In addition, the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 送受信部220は、サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを受信してもよい。 The transceiver unit 220 may receive at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full-duplex transmission is applied.
 制御部210は、サブバンド非重複全二重複信が適用される同じ時間領域に対してDL受信及びUL送信の指示がサポートされる場合、第1の情報及び第2の情報の送信条件、DL受信とUL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つに基づいて、DL受信とUL送信の一方を選択して行うように制御してもよい。 When DL reception and UL transmission instructions are supported for the same time region to which subband non-overlapping full duplex transmission is applied, the control unit 210 may control to select and perform either DL reception or UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to DL reception and UL transmission, and the conditions set in advance.
 第1の情報と第2の情報が下り制御情報である場合、制御部210は、第1の情報に対応する第1の下り制御情報と第2の情報に対応する下り制御情報の送信タイミングに基づいて、DL受信とUL送信の一方を選択して行うように制御してもよい。 If the first information and the second information are downlink control information, the control unit 210 may control to select and perform either DL reception or UL transmission based on the transmission timing of the first downlink control information corresponding to the first information and the downlink control information corresponding to the second information.
 第1の情報と第2の情報の少なくとも一つが上位レイヤパラメータである場合、制御部210は、DL受信とUL送信の送信タイプに基づいて、DL受信とUL送信の一方を選択して行うように制御してもよい。 If at least one of the first information and the second information is an upper layer parameter, the control unit 210 may control the selection of either DL reception or UL transmission based on the transmission type of DL reception or UL transmission.
 DL受信とUL送信の少なくとも一つに繰り返しが適用される場合、制御部210は、繰り返しの条件に基づいて、DL受信とUL送信の一方を選択して行うように制御してもよい。 When repetition is applied to at least one of DL reception and UL transmission, the control unit 210 may control the selection of either DL reception or UL transmission based on the repetition conditions.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 13 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In addition, in this disclosure, the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable. The hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be multiple processors. Furthermore, processing may be performed by one processor, or processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Furthermore, the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, at least a portion of the above-mentioned control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above embodiments. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium. Storage 1003 may also be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 A radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal. A different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively. Note that the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. The RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc. The MAC signaling may be notified, for example, using a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding," "precoder," "weight (precoding weight)," "Quasi-Co-Location (QCL)," "Transmission Configuration Indication state (TCI state)," "spatial relation," "spatial domain filter," "transmit power," "phase rotation," "antenna port," "antenna port group," "layer," "number of layers," "rank," "resource," "resource set," "resource group," "beam," "beam width," "beam angle," "antenna," "antenna element," "panel," and the like may be used interchangeably.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図14は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 14 is a diagram showing an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example. The steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle. The electronic control unit 49 may also be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices. The information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices. The driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the above-mentioned base station 10, user terminal 20, etc. Furthermore, the communication module 60 may be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle. The information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the user terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink"). For example, the uplink channel, downlink channel, etc. may be read as the sidelink channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the base station 10 may be configured to have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-Wide Band (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 "Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 "Judgment" may also be considered to mean "deciding" to resolve, select, choose, establish, compare, etc. In other words, "judgment" may also be considered to mean "deciding" to take some kind of action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be interpreted as "assuming," "expecting," "considering," etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "accessed."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。  The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The invention disclosed herein can be implemented in modified and altered forms without departing from the spirit and scope of the invention as defined by the claims. Therefore, the description of the disclosure is intended as an illustrative example and does not impose any limiting meaning on the invention disclosed herein.
 本出願は、2022年10月13日出願の特願2022-165013に基づく。この内容は、全てここに含めておく。
 
This application is based on Japanese Patent Application No. 2022-165013 filed on October 13, 2022, the contents of which are incorporated herein in their entirety.

Claims (6)

  1.  サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを受信する受信部と、
     前記サブバンド非重複全二重複信が適用される同じ時間領域に対して前記DL受信及び前記UL送信の指示がサポートされる場合、前記第1の情報及び前記第2の情報の送信条件、前記DL受信と前記UL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する制御部と、を有する端末。
    A receiving unit that receives at least one of first information instructing DL reception and second information instructing UL transmission in a time domain to which subband non-overlapping full duplex transmission is applied;
    A terminal having a control unit that, when instructions for DL reception and UL transmission are supported for the same time domain to which the subband non-overlapping full duplex signaling is applied, controls to select and perform one of the DL reception and the UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and pre-set conditions.
  2.  前記第1の情報と前記第2の情報が下り制御情報である場合、前記制御部は、前記第1の情報に対応する第1の下り制御情報と前記第2の情報に対応する下り制御情報の送信タイミングに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する請求項1に記載の端末。 The terminal according to claim 1, wherein, when the first information and the second information are downlink control information, the control unit controls to select and perform one of the DL reception and the UL transmission based on the transmission timing of the first downlink control information corresponding to the first information and the downlink control information corresponding to the second information.
  3.  前記第1の情報と前記第2の情報の少なくとも一つが上位レイヤパラメータである場合、前記制御部は、前記DL受信と前記UL送信の送信タイプに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する請求項1に記載の端末。 The terminal according to claim 1, wherein when at least one of the first information and the second information is an upper layer parameter, the control unit controls to select and perform one of the DL reception and the UL transmission based on the transmission type of the DL reception and the UL transmission.
  4.  前記DL受信と前記UL送信の少なくとも一つに繰り返しが適用される場合、前記制御部は、繰り返しの条件に基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する請求項1に記載の端末。 The terminal according to claim 1, wherein when repetition is applied to at least one of the DL reception and the UL transmission, the control unit controls to select and perform one of the DL reception and the UL transmission based on the repetition conditions.
  5.  サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを受信する工程と、
     前記サブバンド非重複全二重複信が適用される同じ時間領域に対して前記DL受信及び前記UL送信の指示がサポートされる場合、前記第1の情報及び前記第2の情報の送信条件、前記DL受信と前記UL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つに基づいて、前記DL受信と前記UL送信の一方を選択して行うように制御する工程と、を有する端末の無線通信方法。
    receiving at least one of first information instructing DL reception and second information instructing UL transmission in a time domain in which subband non-overlapping full duplex transmission is applied;
    A wireless communication method for a terminal comprising: when instructions for DL reception and UL transmission are supported for the same time domain to which the subband non-overlapping full duplex signaling is applied, a control step of selecting and performing one of the DL reception and the UL transmission based on at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and predetermined conditions.
  6.  サブバンド非重複全二重複信が適用される時間領域におけるDL受信を指示する第1の情報及びUL送信を指示する第2の情報の少なくとも一つを端末に送信する送信部と、
     前記サブバンド非重複全二重複信が適用される同じ時間領域に対して前記DL受信及び前記UL送信の指示がサポートされる場合、前記第1の情報及び前記第2の情報の送信条件、前記DL受信と前記UL送信に適用される条件、及びあらかじめ設定される条件の少なくとも一つを利用して、前記DL受信と前記UL送信の一方を選択するように前記端末に指示する制御部と、を有する基地局。
    A transmitter that transmits at least one of first information instructing DL reception and second information instructing UL transmission to a terminal in a time domain to which subband non-overlapping full duplex transmission is applied;
    A base station having a control unit that, when the DL reception and the UL transmission instructions are supported for the same time domain to which the subband non-overlapping full duplex signaling is applied, instructs the terminal to select one of the DL reception and the UL transmission using at least one of the transmission conditions of the first information and the second information, the conditions applied to the DL reception and the UL transmission, and pre-set conditions.
PCT/JP2023/031739 2022-10-13 2023-08-31 Terminal, wireless communication method, and base station WO2024080027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165013 2022-10-13
JP2022165013 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080027A1 true WO2024080027A1 (en) 2024-04-18

Family

ID=90669468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031739 WO2024080027A1 (en) 2022-10-13 2023-08-31 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024080027A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132261A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Interference management with coloring concept
WO2021090409A1 (en) * 2019-11-06 2021-05-14 株式会社Nttドコモ Terminal and wireless communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132261A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Interference management with coloring concept
WO2021090409A1 (en) * 2019-11-06 2021-05-14 株式会社Nttドコモ Terminal and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussions on subband non-overlapping full duplex", 3GPP TSG RAN WG1 #110B-E R1-2209052, 30 September 2022 (2022-09-30), XP052276971 *

Similar Documents

Publication Publication Date Title
WO2023203778A1 (en) Terminal, radio communication method, and base station
WO2023203777A1 (en) Terminal, radio communication method, and base station
WO2023135799A1 (en) Terminal, wireless communication method, and base station
WO2024080027A1 (en) Terminal, wireless communication method, and base station
WO2024075279A1 (en) Terminal, wireless communication method, and base station
WO2024069707A1 (en) Terminal, wireless communication method, and base station
WO2024069706A1 (en) Terminal, wireless communication method, and base station
WO2024069708A1 (en) Terminal, wireless communication method, and base station
WO2024100733A1 (en) Terminal, wireless communication method, and base station
WO2024095468A1 (en) Terminal, wireless communication method, and base station
WO2023085352A1 (en) Terminal, wireless communication method, and base station
WO2024095469A1 (en) Terminal, wireless communication method, and base station
WO2024085130A1 (en) Terminal, wireless communication method and base station
WO2023058236A1 (en) Terminal, wireless communication method, and base station
WO2023058235A1 (en) Terminal, wireless communication method, and base station
WO2023073908A1 (en) Terminal, wireless communication method, and base station
WO2023063233A1 (en) Terminal, wireless communication method and base station
WO2024069968A1 (en) Terminal, wireless communication method, and base station
WO2024095363A1 (en) Terminal, wireless communication method, and base station
WO2024043179A1 (en) Terminal, wireless communication method, and base station
WO2024095364A1 (en) Terminal, wireless communication method, and base station
WO2023136055A1 (en) Terminal, radio communication method, and base station
WO2024095477A1 (en) Terminal, wireless communication method, and base station
WO2024095478A1 (en) Terminal, wireless communication method, and base station
WO2023135748A1 (en) Terminal, wireless comemunication method, and base station