WO2024080016A1 - Terminal and communication method - Google Patents

Terminal and communication method Download PDF

Info

Publication number
WO2024080016A1
WO2024080016A1 PCT/JP2023/031328 JP2023031328W WO2024080016A1 WO 2024080016 A1 WO2024080016 A1 WO 2024080016A1 JP 2023031328 W JP2023031328 W JP 2023031328W WO 2024080016 A1 WO2024080016 A1 WO 2024080016A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
lbt
icgb
resource
channel
Prior art date
Application number
PCT/JP2023/031328
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
太一 七條
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024080016A1 publication Critical patent/WO2024080016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • Non-Patent Document 1 For LTE (Long Term Evolution) and its successor systems (e.g., LTE-A (LTE Advanced) and NR (New Radio) (also known as 5G)), D2D (Device to Device) technology is being considered, which allows terminals to communicate directly with each other without going through a base station (e.g., Non-Patent Document 1).
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G New Radio
  • D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate due to a disaster or other reason.
  • 3GPP registered trademark
  • 3rd Generation Partnership Project refers to D2D as "sidelink,” but in this specification, the more general term D2D is used. However, in the explanation of the embodiments described later, sidelink will also be used as necessary.
  • D2D communication is broadly divided into D2D discovery (also called D2D discovery) for discovering other terminals with which it can communicate, and D2D communication (also called D2D direct communication, D2D communication, direct communication between terminals, etc.) for direct communication between terminals.
  • D2D discovery also called D2D discovery
  • D2D communication also called D2D direct communication, D2D communication, direct communication between terminals, etc.
  • D2D signals transmitted and received in D2D will be referred to as D2D signals.
  • Various use cases for services related to V2X (Vehicle to Everything) in NR are being considered (for example, Non-Patent Document 2).
  • Non-Patent Document 3 the use of higher frequency bands than in previous releases is being considered.
  • applicable numerology including subcarrier spacing and channel bandwidth in the frequency band from 52.6 GHz to 71 GHz, physical layer design, and anticipated interference in actual wireless communications are being considered.
  • Unlicensed bands are defined for new frequency bands that use higher frequencies than conventional bands.
  • Various regulations are defined for unlicensed bands, for example, LBT (Listen before talk) is executed when accessing a channel.
  • LBT Listen before talk
  • operation that complies with the regulations in unlicensed bands is required.
  • the present invention has been made in consideration of the above points, and aims to perform interlaced transmission for direct communication between terminals that complies with regulations in unlicensed bands.
  • a terminal has a control unit that determines an interlaced channel configuration to be applied to transmissions in multiple adjacent LBT (Listen before talk) channels in an unlicensed band, a receiving unit that performs LBT in the multiple LBT channels, and a transmitting unit that transmits to other terminals based on the channel configuration if the LBT is successful, and the control unit determines whether or not to use an ICGB (intra-cell guard band) between the multiple LBT channels as a control channel in the channel configuration.
  • ICGB intra-cell guard band
  • the disclosed technology makes it possible to perform interlaced transmission for direct communication between terminals that complies with regulations in unlicensed bands.
  • FIG. 1 is a diagram for explaining V2X.
  • FIG. 1 is a sequence diagram showing an operation example (1) of V2X.
  • FIG. 11 is a sequence diagram showing an operation example (2) of V2X.
  • FIG. 11 is a sequence diagram showing an operation example (3) of V2X.
  • FIG. 11 is a sequence diagram showing an operation example (4) of V2X.
  • FIG. 11 is a diagram illustrating an example of a sensing operation.
  • 11 is a flowchart illustrating an example of a preemption operation.
  • FIG. 13 illustrates an example of a preemption operation.
  • FIG. 13 is a diagram illustrating an example of a partial sensing operation.
  • FIG. 13 is a diagram for explaining an example of periodic partial sensing.
  • FIG. 13 is a diagram for explaining an example of continuous partial sensing.
  • FIG. 4 is a diagram illustrating an example of a frequency range according to an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining an example of LBT (1).
  • FIG. 13 is a diagram for explaining an example of LBT (2).
  • FIG. 13 is a diagram for explaining an example of LBT (3).
  • FIG. 1 is a diagram for explaining an example (1) of broadband operation.
  • FIG. 13 is a diagram for explaining an example (2) of broadband operation.
  • FIG. 13 is a diagram for explaining an example (3) of broadband operation.
  • FIG. 13 is a diagram for explaining an example (4) of broadband operation.
  • FIG. 1 is a diagram for explaining an example (1) of control channel transmission in an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an example (2) of control channel transmission in an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an example (3) of control channel transmission in an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an example (4) of control channel transmission in an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a base station 10 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a terminal 20 according to an embodiment of the present invention.
  • 2 is a diagram illustrating an example of a hardware configuration of a base station 10 or a terminal 20 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of a vehicle 2001 according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR Universal Terrestrial Radio Access
  • LAN Local Area Network
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (e.g., Flexible Duplex, etc.).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • another method e.g., Flexible Duplex, etc.
  • radio parameters and the like when radio parameters and the like are “configured,” this may mean that predetermined values are pre-configured, or that radio parameters notified from the base station 10 or the terminal 20 are configured.
  • FIG. 1 is a diagram for explaining V2X.
  • 3GPP is considering the realization of V2X (Vehicle to Everything) or eV2X (enhanced V2X) by expanding the D2D function, and is currently working on specifications.
  • V2X is part of ITS (Intelligent Transport Systems) and is a general term for V2V (Vehicle to Vehicle), which refers to a form of communication between vehicles, V2I (Vehicle to Infrastructure), which refers to a form of communication between vehicles and roadside units (RSUs) installed on the side of the road, V2N (Vehicle to Network), which refers to a form of communication between vehicles and ITS servers, and V2P (Vehicle to Pedestrian), which refers to a form of communication between vehicles and mobile terminals carried by pedestrians.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • RSUs roadside units
  • V2N Vehicle to Network
  • V2X using LTE or NR cellular and terminal-to-terminal communications is also called cellular V2X.
  • cellular V2X For NR V2X, studies are underway to achieve high capacity, low latency, high reliability, and QoS (Quality of Service) control.
  • LTE or NR V2X will be conducted beyond 3GPP specifications. For example, it is expected that studies will be conducted on ensuring interoperability, reducing costs by implementing higher layers, methods for using or switching between multiple RATs (Radio Access Technologies), compliance with regulations in each country, and methods for acquiring, distributing, managing databases, and using data on LTE or NR V2X platforms.
  • RATs Radio Access Technologies
  • the communication device is mainly assumed to be mounted on a vehicle, but the embodiment of the present invention is not limited to this form.
  • the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, an RSU, a relay station (relay node), a terminal with scheduling capability, etc.
  • SL Sidelink
  • UL Uplink
  • DL Downlink
  • SL may also be called by other names.
  • SL or UL OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic-Prefix OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread - OFDM
  • Mode 3 and Mode 4 are specified for SL resource allocation to the terminal 20.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the terminal 20 autonomously selects transmission resources from a resource pool.
  • the slot in the embodiments of the present invention may be interpreted as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval).
  • the cell in the embodiments of the present invention may be interpreted as a cell group, carrier component, BWP, resource pool, resource, RAT (Radio Access Technology), system (including wireless LAN), etc.
  • the terminal 20 is not limited to a V2X terminal, and may be any type of terminal that performs D2D communication.
  • the terminal 20 may be a terminal carried by a user, such as a smartphone, or may be an IoT (Internet of Things) device, such as a smart meter.
  • IoT Internet of Things
  • NR-SL will support HARQ (Hybrid automatic repeat request) for sidelink unicast and groupcast.
  • NR-V2X will define SFCI (Sidelink Feedback Control Information) that includes HARQ responses. It is also being considered to transmit SFCI via PSFCH (Physical Sidelink Feedback Channel).
  • the PSFCH is used to transmit the HARQ-ACK on the sidelink, but this is just one example.
  • the PSCCH may be used to transmit the HARQ-ACK on the sidelink
  • the PSSCH may be used to transmit the HARQ-ACK on the sidelink
  • another channel may be used to transmit the HARQ-ACK on the sidelink.
  • HARQ-ACK For the sake of convenience, in the following, all information reported by the terminal 20 in HARQ is referred to as HARQ-ACK.
  • This HARQ-ACK may also be referred to as HARQ-ACK information.
  • the codebook applied to the HARQ-ACK information reported from the terminal 20 to the base station 10, etc. is referred to as the HARQ-ACK codebook.
  • the HARQ-ACK codebook specifies the bit string of the HARQ-ACK information. Note that in addition to ACK, NACK is also transmitted by "HARQ-ACK".
  • FIG. 2 is a sequence diagram showing an example (1) of V2X operation.
  • a wireless communication system according to an embodiment of the present invention may have terminal 20A and terminal 20B. Note that, although in reality, many user devices exist, FIG. 2 shows terminal 20A and terminal 20B as an example.
  • terminal 20 when there is no particular distinction between terminals 20A, 20B, etc., they will be simply referred to as "terminal 20" or "user device.”
  • terminal 20 or “user device.”
  • FIG. 2 as an example, a case is shown in which terminals 20A and 20B are both within the coverage of a cell, but the operation in the embodiment of the present invention can also be applied to a case in which terminal 20B is outside the coverage.
  • the terminal 20 is, for example, a device mounted on a vehicle such as an automobile, and has a cellular communication function as a UE in LTE or NR, and a side link function.
  • the terminal 20 may be a general mobile terminal (such as a smartphone).
  • the terminal 20 may also be an RSU.
  • the RSU may be a UE type RSU having the function of a UE, or a gNB type RSU having the function of a base station device.
  • the terminal 20 does not have to be a device in a single housing.
  • the device including the various sensors may be the terminal 20.
  • terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding. Then, it maps the precoded complex-valued symbols to resource elements to generate a transmission signal (e.g., a complex-valued time-domain SC-FDMA signal), which is then transmitted from each antenna port.
  • a transmission signal e.g., a complex-valued time-domain SC-FDMA signal
  • the base station 10 has a function of cellular communication as a base station in LTE or NR, and a function for enabling communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.).
  • the base station 10 may also be an RSU (gNB type RSU).
  • the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or another signal waveform.
  • the terminal 20 transmits a Sidelink Synchronization Signal Block (S-SSB).
  • S-SSB may include the Sidelink Primary Synchronization Signal (S-PSS), the Sidelink Secondary Synchronization Signal (S-SSS), and the Physical Sidelink Broadcast Channel (PSBCH).
  • S-PSS Sidelink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • PSBCH Physical Sidelink Broadcast Channel
  • the terminal 20 transmits an S-SSB to another terminal 20 based on a signal received from the base station device 10, a Global Navigation Satellite System (GNSS) signal, or a signal received from another terminal 20. If the terminal 20 cannot transmit an S-SSB based on any signal from the base station device 10, the GNSS, or another terminal 20, the terminal 20 may transmit an autonomously determined S-SSB to the other terminal 20.
  • the resources available for the S-SSB may be periodic slots and may be referred to as S-SSB opportunities.
  • the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
  • the resource selection window may be set in the terminal 20 by the base station 10.
  • the predetermined period of the resource selection window may be determined by the implementation conditions of the terminal, such as the processing time or the maximum allowable packet delay time, or may be determined in advance by the specifications, or the predetermined period may be called an interval in the time domain.
  • terminal 20A transmits SCI (Sidelink Control Information) via PSCCH and/or PSSCH using the resources autonomously selected in step S101, and transmits SL data via PSSCH.
  • SCI Servicelink Control Information
  • terminal 20A may transmit PSCCH using frequency resources that are adjacent or non-adjacent to the frequency resources of PSSCH, with time resources that are the same as at least a portion of the time resources of PSSCH.
  • Terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from terminal 20A.
  • the received SCI may include information on the PSFCH resource for terminal 20B to transmit a HARQ-ACK in response to the reception of the data.
  • Terminal 20A may transmit information on autonomously selected resources by including it in the SCI. Note that the resources available for the PSFCH may be periodic slots and the last symbols in the slot (excluding the final symbol), and may be called PSFCH opportunities.
  • step S104 terminal 20B uses the PSFCH resources determined from the received SCI to transmit a HARQ-ACK for the received data to terminal 20A.
  • step S105 if the HARQ-ACK received in step S104 indicates a request for retransmission, i.e., if it is a NACK (negative response), the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B.
  • the terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
  • steps S104 and S105 do not need to be performed.
  • FIG. 3 is a sequence diagram showing an example of V2X operation (2). Blind retransmission without HARQ control may be performed to improve the transmission success rate or reach.
  • step S201 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
  • the resource selection window may be set in the terminal 20 by the base station 10.
  • terminal 20A transmits SCI via PSCCH and/or PSSCH using the resources autonomously selected in step S201, and transmits SL data via PSSCH.
  • terminal 20A may transmit PSCCH using frequency resources adjacent to the frequency resources of PSSCH with time resources that are the same as at least a portion of the time resources of PSSCH.
  • step S204 terminal 20A retransmits the SCI via the PSCCH and/or PSSCH and the SL data via the PSSCH to terminal 20B using the resources autonomously selected in step S201.
  • the retransmission in step S204 may be performed multiple times.
  • step S204 does not need to be performed.
  • FIG. 4 is a sequence diagram showing an example (3) of V2X operation.
  • the base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the sidelink resources to be used by the terminal 20 and transmit information indicating the resources to the terminal 20. Furthermore, when HARQ control involving HARQ feedback is applied, the base station 10 may transmit information indicating the PSFCH resources to the terminal 20.
  • step S301 the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via the PDCCH.
  • DCI Downlink Control Information
  • the DCI for SL scheduling is referred to as SL scheduling DCI.
  • step S301 it is assumed that the base station 10 also transmits DCI for DL scheduling (which may also be called DL allocation) to the terminal 20A via the PDCCH.
  • DCI for DL scheduling is called DL scheduling DCI.
  • the terminal 20A that receives the DL scheduling DCI receives DL data via the PDSCH using the resources specified in the DL scheduling DCI.
  • the terminal 20A transmits SCI (Sidelink Control Information) via the PSCCH and/or PSSCH using the resources specified in the SL scheduling DCI, and transmits SL data via the PSSCH.
  • SCI Servicelink Control Information
  • the SL scheduling DCI may specify only the resources of the PSSCH.
  • the terminal 20A may transmit the PSCCH using frequency resources adjacent to the frequency resources of the PSSCH with the same time resources as at least a portion of the time resources of the PSSCH.
  • Terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from terminal 20A.
  • the SCI received via the PSCCH and/or PSSCH includes information on the PSFCH resources for terminal 20B to transmit a HARQ-ACK in response to the reception of the data.
  • the resource information is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the resource information from the DL scheduling DCI or SL scheduling DCI and includes it in the SCI.
  • the resource information may not be included in the DCI transmitted from the base station 10, and the terminal 20A may autonomously include the resource information in the SCI and transmit it.
  • step S304 terminal 20B uses the PSFCH resources determined from the received SCI to transmit a HARQ-ACK for the received data to terminal 20A.
  • the terminal 20A transmits a HARQ-ACK using PUCCH (Physical uplink control channel) resources specified by the DL scheduling DCI (or SL scheduling DCI) at a timing (for example, slot-by-slot timing) specified by the DL scheduling DCI (or SL scheduling DCI), and the base station 10 receives the HARQ-ACK.
  • the codebook for the HARQ-ACK may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or the PSFCH that was not received, and a HARQ-ACK for DL data. However, if no DL data is assigned, for example, a HARQ-ACK for DL data is not included. In NR Rel. 16, the codebook for the HARQ-ACK does not include a HARQ-ACK for DL data.
  • step S304 and/or step S305 may not be performed.
  • FIG. 5 is a sequence diagram showing an example of V2X operation (4).
  • the format of the PSFCH can be, for example, a format similar to PUCCH (Physical Uplink Control Channel) format 0. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1 and ACK and NACK are identified by differences in sequence and/or cyclic shift.
  • the format of the PSFCH is not limited to this.
  • the PSFCH resource may be placed in the last symbol or the last multiple symbols of the slot.
  • a period N is set or predefined for the PSFCH resource. The period N may be set or predefined on a slot-by-slot basis.
  • the vertical axis corresponds to the frequency domain
  • the horizontal axis corresponds to the time domain.
  • the PSCCH may be placed in one symbol at the beginning of the slot, or in multiple symbols from the beginning, or in multiple symbols from a symbol other than the beginning.
  • the PSFCH may be placed in one symbol at the end of the slot, or in multiple symbols at the end of the slot. Note that the above-mentioned "beginning of the slot” and "end of the slot” may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching.
  • AGC Automatic Gain Control
  • the "beginning of the slot” and the “end of the slot” may mean the first and last symbols, respectively, of the 12 symbols excluding the first and last symbols.
  • three subchannels are set in the resource pool, and two PSFCHs are placed three slots after the slot in which the PSSCH is placed.
  • the arrow from the PSSCH to the PSFCH shows an example of a PSFCH associated with the PSSCH.
  • step S401 terminal 20A, which is the transmitting terminal 20, performs group cast to terminals 20B, 20C, and 20D, which are receiving terminals 20, via SL-SCH (Sidelink Shared Channel).
  • step S402 terminal 20B uses PSFCH#B, terminal 20C uses PSFCH#C, and terminal 20D uses PSFCH#D to transmit the HARQ response to terminal 20A.
  • step S402 terminal 20B uses PSFCH#B
  • terminal 20C uses PSFCH#C
  • terminal 20D uses PSFCH#D to transmit the HARQ response to terminal 20A.
  • the transmitting terminal 20 may be aware of the number of receiving terminals 20 in the group cast.
  • groupcast option 1 only NACK is sent as the HARQ response, and ACK is not sent.
  • Figure 6 is a diagram showing an example of sensing operation in NR.
  • the terminal 20 selects a resource and transmits.
  • the terminal 20 performs sensing in a sensing window in a resource pool.
  • the terminal 20 receives a resource reservation field or a resource assignment field included in an SCI transmitted from another terminal 20, and identifies available resource candidates in a resource selection window in the resource pool based on the field.
  • the terminal 20 then randomly selects a resource from the available resource candidates.
  • the resource pool may be set to a period.
  • the period may be a period of 10240 milliseconds.
  • Fig. 6 shows an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool.
  • the resource pool in each period may have an area set by, for example, a bitmap.
  • a transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is p TX .
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting with priority p RX in the sensing window from slot n-T 0 to the slot immediately before slot n-T proc,0 .
  • RSRP Reference Signal Received Power
  • the threshold may be, for example, a threshold Th pTX,pRX that is set or defined for each resource in the sensing window based on the priority p TX and the priority p RX .
  • resources in the resource selection window that are candidates for resource reservation information corresponding to resources in the sensing window that were not monitored, for example for transmission, such as slot t m SL shown in FIG. 6, are excluded.
  • the threshold value Th pTX,pRX set for each resource of the sensing window may be increased by 3 dB and resource identification may be performed again. That is, by increasing the threshold value Th pTX,pRX and performing resource identification again, the number of resources that are not excluded because the RSRP is less than the threshold value may be increased so that the set of resource candidates S A becomes 20% or more of the resource selection window.
  • the operation of increasing the threshold value Th pTX,pRX set for each resource of the sensing window by 3 dB and performing resource identification again may be repeated.
  • the lower layer of the terminal 20 may report S A to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on S A to determine the resources to be used.
  • the terminal 20 may perform sidelink transmission using the determined resources.
  • the upper layer may be a MAC layer
  • the lower layer may be a PHY layer or a physical layer.
  • the receiving terminal 20 may detect data transmission from another terminal 20 based on the results of sensing or partial sensing, and receive data from the other terminal 20.
  • FIG. 7 is a flowchart showing an example of preemption in NR.
  • FIG. 8 is a diagram showing an example of preemption in NR.
  • step S501 the terminal 20 performs sensing in a sensing window. When the terminal 20 performs a power saving operation, sensing may be performed in a predefined limited period.
  • the terminal 20 identifies each resource in the resource selection window based on the sensing result to determine a set S A of resource candidates and selects resources to be used for transmission (S502).
  • the terminal 20 selects a resource set (r_0, r_1, ...) for determining preemption from the set S A of resource candidates (S503).
  • the resource set may be notified to the PHY layer from the upper layer as a resource for determining whether or not preemption has been performed.
  • step S504 the terminal 20 re-identifies each resource in the resource selection window based on the sensing result at the timing of T(r_0) -T3 shown in FIG. 8 to determine a set of resource candidates S A , and further determines preemption for the resource set (r_0, r_1, ...) based on the priority.
  • r_1 shown in FIG. 8 is not included in S A because the SCI transmitted from the other terminal 20 has been detected by re-sensing.
  • the terminal 20 determines that the resource r_1 has been preempted. Note that the lower the value indicating the priority, the higher the priority. That is, when the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the terminal itself, the terminal 20 does not exclude the resource r_1 from the SA .
  • preemption is valid only for a specific priority (for example, sl-PreemptionEnable is any of pl1, pl2, ..., pl8)
  • this priority is set as prio_pre.
  • the terminal 20 determines that the resource r_1 has been preempted.
  • step S505 if preemption is determined in step S504, the terminal 20 notifies the upper layer of preemption, reselects resources in the upper layer, and ends the preemption check.
  • step S504 when performing re-evaluation instead of checking preemption, after determining the set S A of resource candidates in step S504, if a resource in the resource set (r_0, r_1, ...) is not included in S A , the resource is not used and a resource re-selection is performed in the upper layer.
  • FIG. 9 is a diagram showing an example of partial sensing operation in LTE.
  • the terminal 20 selects resources and transmits as shown in FIG. 9.
  • the terminal 20 performs partial sensing on a part of a sensing window in a resource pool, i.e., a sensing target.
  • the terminal 20 receives a resource reservation field included in an SCI transmitted from another terminal 20, and identifies available resource candidates in a resource selection window in the resource pool based on the field. The terminal 20 then randomly selects a resource from the available resource candidates.
  • Fig. 9 shows an example in which subframe t 0 SL to subframe t Tmax-1 SL are set as a resource pool.
  • the target area of the resource pool may be set by, for example, a bitmap.
  • a transmission trigger in terminal 20 is assumed to occur in subframe n.
  • Y subframes from subframe t y1 SL to subframe t yY SL may be set as a resource selection window.
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting in one or more sensing targets from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL , which has a Y subframe length.
  • k may be determined by, for example, a 10-bit bitmap.
  • FIG. 9 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 9, subframe t y1-6 ⁇ Pstep SL to subframe t yY-6 ⁇ Pstep SL and subframe t y1-3 ⁇ Pstep SL to subframe t yY-3 ⁇ Pstep SL are set as sensing targets.
  • the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL .
  • yi corresponds to index (1...Y) in the Y subframe.
  • k may be set by a 10-bit bitmap or may be predefined, and P step may be 100 ms.
  • P step may be (U/(D+S+U))*100 ms.
  • U corresponds to the number of UL subframes
  • D corresponds to the number of DL subframes
  • S corresponds to the number of special subframes.
  • the threshold may be, for example, a threshold Th pTX,pRX that is set or defined for each resource in the sensing target based on the sender priority p TX and the receiver priority p RX .
  • the terminal 20 identifies resources occupied by other UEs, and the resources excluding the identified resources become available resource candidates. Note that the Y subframe does not have to be consecutive. If the set of available resource candidates is S A , when S A is less than 20% of the resources in the resource selection window, the threshold Th pTX,pRX set for each sensing target resource may be increased by 3 dB and resource identification may be performed again.
  • the threshold Th pTX,pRX may be increased and resource identification may be performed again to increase the number of resources that are not excluded because their RSRP is below the threshold. Furthermore, the RSSI of each resource in S A may be measured, and the resource with the smallest RSSI may be added to the set S B. The operation of adding the resource with the smallest RSSI included in S A to S B may be repeated until the set S B of resource candidates becomes 20% or more of the resource selection window.
  • the lower layer of the terminal 20 may report S B to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on S B to determine the resource to be used.
  • the terminal 20 may perform sidelink transmission using the determined resource. After reserving the resource once, the terminal 20 may use the resource periodically without performing sensing for a predetermined number of times (e.g., C resel times).
  • a terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window. That is, the terminal 20 may perform resource identification by sensing only limited resources compared to full sensing, and perform partial sensing to select resources from the identified resource set. The terminal 20 may also perform random selection to select resources from the identified resource set by setting the resources in the resource selection window as the identified resource set without excluding resources from the resources in the resource selection window.
  • the method of performing random selection at the time of resource selection and using sensing information during reevaluation or preemption checks may be treated as partial sensing or as random selection.
  • sensing operations may be 1) and 2) shown below. Note that sensing and monitoring may be interchangeable, and the operations may include at least one of measuring the received RSRP, obtaining reservation resource information, and obtaining priority information.
  • Periodic-based partial sensing In a mechanism in which sensing is performed only on some slots, an operation of determining a sensing slot based on a reservation periodicity.
  • the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
  • SL-DRX discontinuous reception
  • reception operations are only performed during a specified time period.
  • partial sensing is supported as one of the power saving functions.
  • the terminal 20 may execute the above-mentioned periodic partial sensing.
  • the terminal 20 may receive information from the base station 10 for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
  • FIG 10 is a diagram for explaining an example of periodic partial sensing. As shown in FIG 10, Y candidate slots for resource selection are selected from a resource selection window [n+T 1 , n+T 2 ].
  • Sensing may be performed by regarding t y SL as one slot included in the Y candidate slots and t y ⁇ k ⁇ Preserve SL as a target slot for periodic partial sensing.
  • Preserve may correspond to all values included in a set or predefined set sl-ResourceReservePeriodList. Alternatively, values of Preserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined. Preserve and sl-ResourceReservePeriodList may be set for each transmission resource pool of resource allocation mode 2. Furthermore, as a UE implementation, a period included in sl-ResourceReservePeriodList other than the limited subset may be monitored. For example, the terminal 20 may additionally monitor an opportunity corresponding to P_RSVP_Tx.
  • the terminal 20 may monitor the most recent sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots that are subject to processing time limitations.
  • the terminal 20 may also additionally monitor periodic sensing opportunities corresponding to a set of one or more k values.
  • the k value may be set to a value corresponding to the most recent sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots that are subject to processing time limitations, and a value corresponding to the sensing opportunity immediately prior to the most recent sensing opportunity in the certain reservation period.
  • partial sensing is supported as one of the power saving functions.
  • the terminal 20 may execute the above-mentioned continuous partial sensing.
  • the terminal 20 may receive information from the base station 10 for configuring a resource pool in which partial sensing is configured and non-periodic reservations are enabled.
  • Fig. 11 is a diagram for explaining an example of continuous partial sensing.
  • the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+ T1 , n+ T2 ].
  • the head of the Y candidate slots is represented as slot t y1 , the next slot as t y2 , ..., and the end of the Y candidate slots as slot t yY .
  • the terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection at n+T B or after n+T B (n+T C ).
  • the above-mentioned periodic partial sensing may be additionally executed.
  • T A and T B in the interval [n+T A , n+T B ] may be any value.
  • n may be replaced with the index of any slot among the Y candidate slots.
  • the symbol [ may be replaced with the symbol (, and the symbol ] may be replaced with the symbol).
  • the interval [a, b] is the interval from slot a to slot b, including slot a and slot b.
  • the interval (a, b) is the interval from slot a to slot b, not including slot a and slot b.
  • Candidate resources to be selected are referred to as Y candidate slots, but all slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or only some of the slots may be candidate slots.
  • inter-terminal coordination has been specified as a method for improving reliability and delay performance.
  • the inter-terminal coordination method 1 and inter-terminal coordination method 2 shown below have been specified.
  • the terminal 20 that transmits coordination information will be referred to as UE-A
  • the terminal 20 that receives the coordination information will be referred to as UE-B.
  • Inter-UE coordination method 1 For transmission by UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B.
  • inter-UE coordination method 1 is also referred to as IUC scheme 1 (Inter-UE coordination scheme 1).
  • Inter-UE coordination method 2 UE-A transmits to UE-B information indicating resources in which collision with other transmissions or receptions is expected and/or collisions have been detected, among resources indicated by the SCI received from UE-B.
  • the information may be transmitted via the PSFCH.
  • inter-UE coordination method 2 is also referred to as IUC scheme 2 (Inter-UE coordination scheme 2).
  • 3GPP Release 16 or Release 17 sidelink is specified for 1) and 2) below.
  • ITS Intelligent Transport Systems
  • FR1 Frequency range 1
  • FR2 Frequency range 2
  • Unlicensed bands are being considered for inclusion as side links in 3GPP Release 18 and beyond.
  • unlicensed bands such as the 5GHz-7GHz band and the 60GHz band.
  • Figure 12 is a diagram showing an example of frequency bands used in wireless communication systems.
  • FR Frequency range
  • SCS Sub carrier spacing
  • FR2-1 is a frequency band from 24.25 GHz to 52.6 GHz, and the SCS uses 60, 120 or 240 kHz, with a bandwidth of 50 MHz to 400 MHz.
  • FR2-2 may be assumed to be from 52.6 GHz to 71 GHz. It may also be assumed to support frequency bands above 71 GHz.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread
  • SCS Sub-Carrier Spacing
  • examples of unlicensed bands in the 5 GHz-7 GHz band include 5.15 GHz to 5.35 GHz, 5.47 GHz to 5.725 GHz, and 5.925 GHz and above.
  • examples of unlicensed bands in the 60 GHz band include 59 GHz to 66 GHz, 57 GHz to 64 GHz or 66 GHz, and 59.4 GHz to 62.9 GHz.
  • LBT Listen before talk
  • the base station 10 or terminal 20 performs power detection for a specified period immediately before transmitting, and if the power exceeds a certain value, i.e. if it detects transmission from another device, it stops transmission (this may be called LBT failure).
  • a maximum channel occupancy time MCOT is specified. MCOT is the maximum time period during which continued transmission is permitted when transmission is started after LBT, and is, for example, 4 ms in Japan.
  • the Occupied channel bandwidth (OCB) requirement states that when a transmission uses a certain carrier bandwidth, it must use at least X% of that bandwidth. For example, in Europe, it is required to use 80% to 100% of the nominal channel bandwidth (NCB). The OCB requirement is intended to ensure that power detection for channel access is performed correctly.
  • maximum transmission power and maximum power spectral density in order to avoid excessive interference, it is stipulated that transmissions must be performed at or below a certain transmission power. For example, in Europe, the maximum transmission power is 23 dBm in the 5150 MHz-5350 MHz band. Also, for example, in Europe, the maximum power spectral density is 10 dBm/MHz in the 5150 MHz-5350 MHz band.
  • LBT is performed when accessing a channel.
  • the base station 10 or terminal 20 performs power detection for a specified period immediately before transmitting, and if the power exceeds a certain value, i.e. if transmission from another device is detected, the transmission is halted.
  • a certain value i.e. if transmission from another device is detected.
  • transmission is performed at or below a specified transmission power. It is also specified that the terminal has the capability to satisfy OCB requirements.
  • the following four types of channel access procedures are defined based on the difference in the time behavior of LBT (the period during which sensing is performed). Note that this sensing is a different operation from the sidelink sensing described above, and is described as LBT sensing to distinguish it.
  • Type 1 Variable time LBT sensing is performed before transmission. Also called Category 4 LBT.
  • Type 2A Performs 25 ⁇ s LBT sensing before transmission. Also known as Category 2 LBT.
  • Type 2B Performs 16 ⁇ s LBT sensing before transmission. Also known as Category 2 LBT.
  • Type 2C Start transmission without LBT. Same as licensed band transmission.
  • Figure 13 is a diagram for explaining an example of LBT (1).
  • Figure 13 is an example of a type 1 channel access procedure.
  • Type 1 is further classified into four classes indicating channel access priority classes (CAPC) based on differences in LBT sensing length. LBT sensing is performed in the following two periods.
  • CAC channel access priority classes
  • the first period is a prioritization period or a defer duration, and has a length of 16+9 ⁇ m p [ ⁇ s], where m p is a fixed value defined for each channel access priority class.
  • the second period is a backoff procedure, and has a length of 9 x N [ ⁇ s].
  • the value of N is determined randomly from a certain range (see the CWS adjustment procedure in Non-Patent Document 4).
  • N is the initial value of the backoff counter, and the value of the backoff counter is decreased by 1 each time the power of a signal from another device is not detected within 9 [ ⁇ s].
  • the 9 ⁇ s LBT sensing period may be referred to as the LBT sensing slot period.
  • m p 3
  • the hold period is 43 ⁇ s.
  • the backoff counter is fixed while the channel is busy.
  • the contention window size (CWS) is expanded from 3 to 13 in the NR-U gNB.
  • Figure 14 is a diagram for explaining an example of LBT (2).
  • Figure 14 is an example of a channel access procedure of Type 2A or Type 2B without random backoff.
  • a power detection gap of 25 ⁇ s or more is set before transmission for Type 2A, and a power detection gap of 16 ⁇ s is set for Type 2B.
  • FIG. 15 is a diagram for explaining an example of LBT (3).
  • FIG. 15 is an example of a type 2C channel access procedure. As shown in FIG. 15, no power detection is performed before transmission, and the transmission is performed immediately after a gap not exceeding 16 ⁇ s. The transmission period may be up to 584 ⁇ s.
  • the initial value N of the backoff counter is set to a random number in the interval from 0 to CW p , whose value range is determined based on the channel access priority class p.
  • Table 1 shows examples of m p , the minimum value CW p,min of CW p , and the maximum value CW p , max of CW p , which are specified for each channel access priority class p in the UL.
  • m p , CW p,min , and CW p,max are determined by the channel access priority class p.
  • the LBT period calculated from Table 1 is a minimum of 34 ⁇ s and a maximum of 88 ⁇ s.
  • the LBT period calculated from Table 1 is a minimum of 34 ⁇ s and a maximum of 160 ⁇ s.
  • the LBT period calculated from Table 1 is a minimum of 43 ⁇ s and a maximum of 9286 ⁇ s.
  • the LBT period calculated from Table 1 is a minimum of 79 ⁇ s and a maximum of 9286 ⁇ s.
  • Table 1 is a table used for UL.
  • the LBT type and channel access priority class may be determined based on notifications from the base station 10, the channel type, etc.
  • the 25 ⁇ s or 16 ⁇ s gap may be set by the base station 10 scheduling, taking into account the TA (Timing Advance) and CP extension.
  • the LBT applied to channel access is performed for each predetermined bandwidth (e.g., 20 MHz). If no power is detected in the LBT channel that contains the respective transmission, the transmission can be performed. On the other hand, each CC in Uu can be defined with a bandwidth wider than the LBT channel. In other words, wideband operation is supported. Note that Uu is the radio interface between the UTRAN (Universal Terrestrial Radio Access Network) and the UE (User Equipment).
  • UTRAN Universal Terrestrial Radio Access Network
  • UE User Equipment
  • FIG. 16 is a diagram for explaining an example (1) of broadband operation.
  • FIG. 17 is a diagram for explaining an example (2) of broadband operation.
  • the gNB may transmit a single continuous block, or as shown in FIG. 17, the gNB may transmit multiple discontinuous blocks.
  • DL Type A For DL in unlicensed bands, DL Type A is specified, which performs LBT on each channel, and DL Type B, which performs LBT Type 1 on randomly selected channels and LBT Type 2A on the remaining channels.
  • Type A is further classified into Type A1 and Type A2.
  • Type A1 the contention window CWp is determined for each channel.
  • Type A2 the maximum CWp among the CWp determined for each channel is used.
  • Type B is further classified into Type B1 and Type B2.
  • Type B1 a single CWp is applied to all channels.
  • Type B2 the maximum CWp among the CWps determined for each channel is used.
  • the gNB may transmit a single block that is contiguous in the frequency direction, or the gNB may transmit multiple blocks that are discontinuous in the frequency direction.
  • FIG. 18 is a diagram for explaining an example (3) of broadband operation.
  • FIG. 19 is a diagram for explaining an example (4) of broadband operation. As shown in FIG. 18 or FIG. 19, when LBT in the UE is successful in all LBT channels in the scheduled band, transmission may be permitted. As shown in FIG. 19, when LBT fails in some LBT channels, transmission may not be permitted.
  • Figure 20 is a diagram for explaining an example (1) of multiple RB sets.
  • an intra-cell guard band is defined between two adjacent RB sets (which may also be called LBT channels or LBT bands).
  • the intra-cell guard band may also be called an intra-carrier guard band, and may also be written as ICGB.
  • ICGB can also be used for transmission.
  • 50 + 6 + 50 106 PRB can be used.
  • LBT is successful on one of the LBT channels and LBT is not performed or fails on the other LBT channel, ICGB cannot be used. In other words, 50 PRB of the channel on which LBT was successful can be used.
  • Figure 21 is a diagram for explaining an example (2) of multiple RB sets.
  • one subchannel is configured to be closed to one interlace of a certain LBT channel, i.e., when it is not associated with interlaces related to multiple LBT channels, the number of PRBs that can be used for the PSCCH is limited. For example, when a resource pool is defined to only one RB set, only 10 PRBs can be used.
  • an 11IRB Interlaced Resource Block
  • PSCCH transmission and reception becomes complicated when ICGB cannot be used.
  • PSCCH is defined without ICGB
  • UE operation related to the use of non-PSCCH PRBs for symbols that include PSCCH becomes complicated.
  • the UE may assume that the PSCCH may have a different configuration from the conventional configuration for sidelink UEs.
  • the PRBs may be replaced with IRBs, and the IRBs may be replaced with PRBs.
  • Figure 22 is a diagram for explaining an example (1) of control channel transmission in an embodiment of the present invention. As shown in Figure 22, four or more symbols may be applied to the PSCCH.
  • the number of symbols in the PSCCH may be any of 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.
  • the PSCCH may simultaneously apply a PRB number of less than 10 PRBs.
  • the PRB number may be any number from 1 to 9.
  • the PRB number of less than 10 PRBs may be applied only when the number of PSCCH symbols is 4 symbols or more, or when the number is 2 or 3 symbols.
  • Operation 1c The placement of PSCCH-DMRS in each symbol may be the same as in the 2 or 3 symbol case, or it may be different.
  • Operation 1d The predetermined operations corresponding to the transmission/reception/decoding of the PSCCH/PSSCH may be changed. For example, the operation 1) or 2) shown below may be performed.
  • a value greater than 2 or 3 may be assumed as the time offset value from the PSCCH/PSSCH to the corresponding PSFCH.
  • a new parameter different from sl-MinTimeGapPSFCH (see Non-Patent Document 5) may be defined, and a value of 4 or more may be set or pre-configured.
  • the candidate values may be ⁇ 3, 4 ⁇ .
  • resource selection may be performed based on the new parameter.
  • sl-MinTimeGapPSFCH may be set or pre-configured to 4 or more.
  • the candidate values may be ⁇ 2, 3, 4 ⁇ .
  • the time gap from the resource selection timing or the resource selection trigger timing in resource allocation mode 2 to the end of the sensing window may be larger than in the past. That is, the end of the sensing window may be earlier than in the past.
  • the value of the parameter Tproc,0SL corresponding to the time gap may be the conventional value plus one slot. That is, the value of Tproc,0SL may be 2 for SCS 15 kHz, 2 for SCS 30 kHz, 3 for SCS 60 kHz, and 5 for SCS 120 kHz.
  • the time gap may be the value of Tproc,0SL plus 1. This may be similarly applied to the operations related to the above parameters in partial sensing, reevaluation, or preemption check.
  • the symbol to which the PSSCH-DMRS is mapped may be the same as when the PSCCH is 2 or 3 symbols, or it may be different.
  • the above-mentioned operation 1) can improve the performance of the PSCCH in the SL-U.
  • a common understanding can be reached about the operations that need to be changed in order to increase the number of PSCCH symbols.
  • the PSCCH may be mapped including the PRB of ICGB.
  • the PSCCH mapping when ICGB is used may be applied, and the PSCCH mapped to ICGB may not be transmitted.
  • Figure 23 is a diagram for explaining an example (2) of control channel transmission in an embodiment of the present invention. As shown in Figure 23, when ICGB is not used, PSCCH may be mapped to PRBs other than the PRB of ICGB.
  • FIG. 24 is a diagram for explaining an example (3) of control channel transmission in an embodiment of the present invention.
  • PSCCH mapping for when ICGB is not used may be applied, and information mapped to any PRB other than the PRBs in ICGB may be copied to ICGB.
  • PSSCH may have the same mapping operation for PRBs of ICGB and PRBs other than ICGB.
  • Operation 2c) Whether operation 2a) or operation 2b) is to be applied may be given by configuration or pre-setting.
  • the above-mentioned operation 2) allows the UE operation to be the same whether ICGB is used or not. In other words, the UE operation can be simplified.
  • Operation 3 If the PSCCH cannot be mapped to the ICGB, a predetermined operation related to the 2nd stage SCI may be performed for the PSCCH that is mapped to the ICGB. Note that operation 3) may also be applied when the PSCCH can be mapped to the ICGB but is not mapped.
  • Figure 25 is a diagram for explaining an example (4) of control channel transmission in an embodiment of the present invention.
  • the 2nd stage SCI may not be mapped to the PRB of ICGB, but may be mapped to a PRB other than the PRB of ICGB.
  • the 2nd stage SCI may be mapped in the order of frequency first and time second.
  • the 2nd stage SCI may be mapped in the order of frequency first and time second.
  • 2nd stage SCI may be mapped to a PRB of ICGB.
  • the above-mentioned operation 3) allows the UE operation to be common whether ICGB is used or not. In other words, the UE operation can be simplified.
  • a conventional SL channel and SL signal configuration is used, but this is not limiting.
  • this embodiment may also be applied when an interlaced channel is used as a configuration to satisfy the OCB requirements.
  • the above-mentioned embodiment may be applied only when a certain condition is satisfied. For example, it may be applied in relation to a certain SL channel or SL signal. For example, this embodiment may be applied to any of PSCCH/PSSCH, PSFCH, S-SSB, and SL positioning RS. For example, it may be applied based on a certain setting or pre-setting. For example, this embodiment may be applied when "enabling" this embodiment is given by setting or pre-setting in the resource pool. For example, this embodiment may not be applied when the LBT method related to the second SL transmission is not or is no longer type 1.
  • an additional transmission such as a CP extension, may be performed immediately before transmission P.
  • the UE capabilities related to the applicability and operation of this embodiment may be defined, and may or may not be reported to the base station 10 and/or the terminal 20.
  • the UE's SL transmission may be PSCCH, PSSCH, PSFCH, S-SSB, or SL-PRS, and different channels or signals may be applied to each operation of this embodiment.
  • At least one of the UE's SL transmissions may be a UL transmission.
  • This embodiment may be applied to resource selection, resource reselection, reevaluation, and preemption checks.
  • the method in the embodiment of the present invention is not limited to the case of direct communication between terminals described above, but may be applied to other similar cases.
  • the above-described embodiment is not limited to V2X terminals, but may also be applied to terminals that perform D2D communication.
  • the above-described embodiment makes it possible to perform interlaced transmission of channels including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
  • the base station 10 and the terminal 20 include functions for implementing the above-mentioned embodiments. However, the base station 10 and the terminal 20 may each include only a part of the functions in the embodiments.
  • Fig. 26 is a diagram showing an example of the functional configuration of the base station 10. As shown in Fig. 26, the base station 10 has a transmitting unit 110, a receiving unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in Fig. 26 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any names.
  • the transmitting unit 110 has a function of generating a signal to be transmitted to the terminal 20 and transmitting the signal wirelessly.
  • the receiving unit 120 has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information of a higher layer from the received signals.
  • the transmitting unit 110 also has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL reference signals, etc. to the terminal 20.
  • the setting unit 130 stores in a storage device the setting information that is set in advance and various setting information to be transmitted to the terminal 20, and reads it from the storage device as necessary.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • the control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication, as described in the embodiment.
  • the control unit 140 also transmits scheduling for D2D communication and DL communication to the terminal 20 via the transmission unit 110.
  • the control unit 140 also receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120.
  • the functional unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • Fig. 27 is a diagram showing an example of the functional configuration of the terminal 20. As shown in Fig. 27, the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in Fig. 27 is merely an example.
  • the names of the functional divisions and functional units may be any as long as they can execute the operations related to the embodiment of the present invention.
  • the transmitter 210 creates a transmission signal from the transmission data and transmits the transmission signal wirelessly.
  • the receiver 220 wirelessly receives various signals and acquires higher layer signals from the received physical layer signals.
  • the receiver 220 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals or reference signals, etc. transmitted from the base station 10.
  • the transmitter 210 transmits PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel), etc. to another terminal 20 as D2D communication, and the receiver 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it out from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the content of the setting information is, for example, information related to the setting of D2D communication, etc.
  • the control unit 240 controls the D2D communication that establishes an RRC connection with another terminal 20.
  • the control unit 240 also performs processing related to power saving operation.
  • the control unit 240 also performs processing related to HARQ for D2D communication and DL communication.
  • the control unit 240 also transmits information related to HARQ responses for D2D communication and DL communication to another terminal 20 scheduled by the base station 10 to the base station 10.
  • the control unit 240 may also schedule D2D communication for the other terminal 20.
  • the control unit 240 may also autonomously select resources to be used for D2D communication from a resource selection window based on the result of sidelink sensing, or may perform reevaluation or preemption.
  • the control unit 240 also performs processing related to power saving in transmission and reception of D2D communication.
  • the control unit 240 also performs processing related to inter-terminal coordination in D2D communication.
  • the control unit 240 also performs processing related to LBT in D2D communication.
  • the functional units in the control unit 240 related to signal transmission may be included in the transmitting unit 210, and the functional units in the control unit 240 related to signal reception may be included in the receiving unit 220.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional block may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • the base station 10, terminal 20, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 28 is a diagram showing an example of the hardware configuration of the base station 10 and terminal 20 in one embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the term "apparatus" can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • the functions of the base station 10 and the terminal 20 are realized by loading specific software (programs) onto hardware such as the processor 1001 and the storage device 1002, causing the processor 1001 to perform calculations, control communications by the communication device 1004, and control at least one of the reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), software module, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to the program.
  • the program is a program that causes a computer to execute at least a part of the operations described in the above-mentioned embodiment.
  • the control unit 140 of the base station 10 shown in FIG. 26 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 27 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium and may be composed of, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), etc.
  • the storage device 1002 may also be called a register, a cache, a main memory, etc.
  • the storage device 1002 can store executable programs (program codes), software modules, etc. for implementing a communication method relating to one embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database, a server, or other suitable medium that includes at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmitting/receiving antenna, an amplifier unit, a transmitting/receiving unit, a transmission path interface, etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit may be implemented as a transmitting unit or a receiving unit that is physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • FIG. 29 shows an example configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • a communication device mounted on the vehicle 2001 and may be applied to the communication module 2013, for example.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2029 provided in the vehicle 2001.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021-2029 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide various multimedia information and multimedia services to the occupants of the vehicle 2001.
  • the information service unit 2012 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) maps, autonomous vehicle (AV) maps, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021 to 29, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 may transmit at least one of the signals from the various sensors 2021-2028 described above input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012 to an external device via wireless communication.
  • the electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on the information service unit 2012 provided in the vehicle 2001.
  • the information service unit 2012 may be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013).
  • the communication module 2013 also stores various information received from an external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axles 2009, sensors 2021 to 2029, etc. provided in the vehicle 2001.
  • a terminal has a control unit that determines an interlaced channel configuration to be applied to transmission in multiple adjacent LBT (Listen before talk) channels in an unlicensed band, a receiving unit that performs LBT in the multiple LBT channels, and a transmitting unit that transmits to other terminals based on the channel configuration if the LBT is successful, and the control unit determines whether or not to use an ICGB (intra-cell guard band) between the multiple LBT channels for a control channel in the channel configuration.
  • ICGB intra-cell guard band
  • the above configuration makes it possible to perform interlaced transmission of channels including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band. In other words, it is possible to perform interlaced transmission in direct communication between terminals that complies with regulations in an unlicensed band.
  • the control unit may map the control channel to a PRB (Physical Resource Block) of the multiple LBT channels other than the PRB included in the ICGB.
  • PRB Physical Resource Block
  • the control unit When ICGB is not used as a control channel, the control unit applies mapping of the control channel when ICGB is used as a control channel, and the transmission unit does not need to transmit the control channel mapped to ICGB. With this configuration, it is possible to perform interlaced transmission of a channel including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
  • the control unit may copy information mapped to PRBs other than the PRBs in the ICGB to the PRBs in the ICGB.
  • the control unit may copy information mapped to PRBs other than the PRBs in the ICGB to the PRBs in the ICGB.
  • the control unit does not need to map control information to a shared channel that is mapped to a PRB in the ICGB. With this configuration, it is possible to perform interlaced transmission of a channel including the ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
  • a communication method in which a terminal executes the following steps in an unlicensed band: determining an interlaced channel configuration to be applied to transmissions in a plurality of adjacent LBT (Listen before talk) channels; executing LBT in the plurality of LBT channels; if the LBT is successful, transmitting to another terminal based on the channel configuration; and determining whether or not to use an ICGB (intra-cell guard band) between the plurality of LBT channels as a control channel in the channel configuration.
  • LBT Listen before talk
  • the above configuration makes it possible to perform interlaced transmission of channels including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band. In other words, it is possible to perform interlaced transmission in direct communication between terminals that complies with regulations in an unlicensed band.
  • the operations of multiple functional units may be physically performed by one part, or the operations of one functional unit may be physically performed by multiple parts.
  • the order of processing procedures described in the embodiment may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams, but such devices may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor possessed by the base station 10 in accordance with an embodiment of the present invention and the software operated by the processor possessed by the terminal 20 in accordance with an embodiment of the present invention may each be stored in random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • Each aspect/embodiment described in this disclosure may be a mobile communication system (mobile communications system) for mobile communications over a wide range of networks, including LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), FRA (Future Ra).
  • the present invention may be applied to at least one of systems using IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and next-generation systems that are expanded, modified, created, or defined based on these. It may also be applied to a combination of multiple systems (for example, a combination of at least one
  • certain operations that are described as being performed by the base station 10 may in some cases be performed by its upper node.
  • various operations performed for communication with a terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (such as, but not limited to, an MME or S-GW).
  • the base station 10 may be a combination of multiple other network nodes (such as an MME and an S-GW).
  • the information or signals described in this disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or added to.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination in this disclosure may be based on a value represented by one bit (0 or 1), a Boolean (true or false) value, or a comparison of numerical values (e.g., a comparison with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • access point e.g., "transmission point”
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (RRH: Remote Radio Head)).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving object is a movable object, and the moving speed is arbitrary. It also includes the case where the moving object is stopped.
  • the moving object includes, but is not limited to, for example, a vehicle, a transport vehicle, an automobile, a motorcycle, a bicycle, a connected car, an excavator, a bulldozer, a wheel loader, a dump truck, a forklift, a train, a bus, a handcar, a rickshaw, a ship and other watercraft, an airplane, a rocket, an artificial satellite, a drone (registered trademark), a multicopter, a quadcopter, a balloon, and objects mounted thereon.
  • the moving object may also be a moving object that travels autonomously based on an operation command.
  • At least one of the base station and the mobile station may be a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple terminals 20 (which may be called, for example, D2D (Device-to-Device) or V2X (Vehicle-to-Everything)).
  • the terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "side").
  • the uplink channel, downlink channel, etc. may be read as a side channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the user terminal described above.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as “judging” or “determining.”
  • determining and “determining” may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as “judging” or “determining.”
  • judgment” and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment (decision)” can be interpreted as “assuming,” “ex
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as RS (Reference Signal) or may be called a pilot depending on the applicable standard.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • radio frame structure a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.).
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate wireless resources (such as frequency bandwidth and transmission power that can be used by each terminal 20) to each terminal 20 in TTI units.
  • wireless resources such as frequency bandwidth and transmission power that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for the terminal 20.
  • At least one of the configured BWPs may be active, and the terminal 20 may not be expected to transmit or receive a specific signal/channel outside the active BWP.
  • BWP bit stream
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system unit 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal comprises: a control unit that determines an interlaced channel configuration applied to the transmission in a plurality of adjacent Listen Before Talk (LBT) channels in an unlicensed band; a reception unit that executes the LBT in the plurality of LBT channels; and a transmission unit that performs a transmission to another terminal on the basis of the channel configuration when the LBT is successful. The control unit determines whether or not to use an intra-cell guard band (ICGB) between the plurality of LBT channels as a control channel in the channel configuration.

Description

端末及び通信方法Terminal and communication method
 本発明は、無線通信システムにおける端末及び通信方法に関する。 The present invention relates to a terminal and a communication method in a wireless communication system.
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gともいう。))では、端末同士が基地局を介さずに直接通信を行うD2D(Device to Device)技術が検討されている(例えば非特許文献1)。 For LTE (Long Term Evolution) and its successor systems (e.g., LTE-A (LTE Advanced) and NR (New Radio) (also known as 5G)), D2D (Device to Device) technology is being considered, which allows terminals to communicate directly with each other without going through a base station (e.g., Non-Patent Document 1).
 D2Dは、端末と基地局との間のトラフィックを軽減し、災害時等に基地局が通信不能になった場合でも端末間の通信を可能とする。なお、3GPP(登録商標)(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてサイドリンクも使用する。 D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate due to a disaster or other reason. In addition, 3GPP (registered trademark) (3rd Generation Partnership Project) refers to D2D as "sidelink," but in this specification, the more general term D2D is used. However, in the explanation of the embodiments described later, sidelink will also be used as necessary.
 D2D通信は、通信可能な他の端末を発見するためのD2Dディスカバリ(D2D discovery、D2D発見ともいう。)と、端末間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信等ともいう。)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリ等を特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。NRにおけるV2X(Vehicle to Everything)に係るサービスの様々なユースケースが検討されている(例えば非特許文献2)。 D2D communication is broadly divided into D2D discovery (also called D2D discovery) for discovering other terminals with which it can communicate, and D2D communication (also called D2D direct communication, D2D communication, direct communication between terminals, etc.) for direct communication between terminals. In the following, when there is no particular distinction between D2D communication, D2D discovery, etc., it will simply be referred to as D2D. Furthermore, signals transmitted and received in D2D will be referred to as D2D signals. Various use cases for services related to V2X (Vehicle to Everything) in NR are being considered (for example, Non-Patent Document 2).
 また、NRリリース17では(例えば非特許文献3)、従来のリリースよりも高い周波数帯を使用することが検討されている。例えば、52.6GHzから71GHzまでの周波数帯における、サブキャリア間隔、チャネル帯域幅等を含む適用可能なニューメロロジ、物理レイヤのデザイン、実際の無線通信において想定される障害等が検討されている。 In addition, in NR Release 17 (e.g., Non-Patent Document 3), the use of higher frequency bands than in previous releases is being considered. For example, applicable numerology including subcarrier spacing and channel bandwidth in the frequency band from 52.6 GHz to 71 GHz, physical layer design, and anticipated interference in actual wireless communications are being considered.
 新たに運用される従来より高い周波数を使用する周波数帯では、アンライセンスバンドが規定される。アンライセンスバンドでは、種々のレギュレーションが規定され、例えば、チャネルアクセスに際しLBT(Listen before talk)を実行する。当該高い周波数帯において、D2D通信を行う場合、アンライセンスバンドにおけるレギュレーションに適合する動作が要求される。ここで、端末間直接通信において、複数のLBTチャネルを使用するインタレース送信を実行する場合の方法が不明であった。 Unlicensed bands are defined for new frequency bands that use higher frequencies than conventional bands. Various regulations are defined for unlicensed bands, for example, LBT (Listen before talk) is executed when accessing a channel. When performing D2D communication in these high frequency bands, operation that complies with the regulations in unlicensed bands is required. Here, it was unclear how to perform interlaced transmission using multiple LBT channels in direct communication between terminals.
 本発明は上記の点に鑑みてなされたものであり、アンライセンスバンドにおけるレギュレーションに適合する端末間直接通信のインタレース送信を実行することを目的とする。 The present invention has been made in consideration of the above points, and aims to perform interlaced transmission for direct communication between terminals that complies with regulations in unlicensed bands.
 開示の技術によれば、アンライセンスバンドにおいて、隣接する複数のLBT(Listen before talk)チャネルにおける送信に適用するインタレースされたチャネル構成を決定する制御部と、前記複数のLBTチャネルにおいて、LBTを実行する受信部と、前記LBTに成功した場合、前記チャネル構成に基づいて他の端末に送信する送信部とを有し、前記制御部は、前記チャネル構成において、前記複数のLBTチャネル間のICGB(intra-cell guard band)を制御チャネルに使用するか否かを決定する端末が提供される。 According to the disclosed technology, a terminal is provided that has a control unit that determines an interlaced channel configuration to be applied to transmissions in multiple adjacent LBT (Listen before talk) channels in an unlicensed band, a receiving unit that performs LBT in the multiple LBT channels, and a transmitting unit that transmits to other terminals based on the channel configuration if the LBT is successful, and the control unit determines whether or not to use an ICGB (intra-cell guard band) between the multiple LBT channels as a control channel in the channel configuration.
 開示の技術によれば、アンライセンスバンドにおけるレギュレーションに適合する端末間直接通信のインタレース送信を実行することができる。 The disclosed technology makes it possible to perform interlaced transmission for direct communication between terminals that complies with regulations in unlicensed bands.
V2Xを説明するための図である。FIG. 1 is a diagram for explaining V2X. V2Xの動作例(1)を示すシーケンス図である。FIG. 1 is a sequence diagram showing an operation example (1) of V2X. V2Xの動作例(2)を示すシーケンス図である。FIG. 11 is a sequence diagram showing an operation example (2) of V2X. V2Xの動作例(3)を示すシーケンス図である。FIG. 11 is a sequence diagram showing an operation example (3) of V2X. V2Xの動作例(4)を示すシーケンス図である。FIG. 11 is a sequence diagram showing an operation example (4) of V2X. センシング動作の例を示す図である。FIG. 11 is a diagram illustrating an example of a sensing operation. プリエンプション動作の例を説明するためのフローチャートである。11 is a flowchart illustrating an example of a preemption operation. プリエンプション動作の例を示す図である。FIG. 13 illustrates an example of a preemption operation. 部分センシング動作の例を示す図である。FIG. 13 is a diagram illustrating an example of a partial sensing operation. 周期的部分センシングの例を説明するための図である。FIG. 13 is a diagram for explaining an example of periodic partial sensing. 連続部分センシングの例を説明するための図である。FIG. 13 is a diagram for explaining an example of continuous partial sensing. 本発明の実施の形態における周波数レンジの例を示す図である。FIG. 4 is a diagram illustrating an example of a frequency range according to an embodiment of the present invention. LBTの例(1)を説明するための図である。FIG. 1 is a diagram for explaining an example of LBT (1). LBTの例(2)を説明するための図である。FIG. 13 is a diagram for explaining an example of LBT (2). LBTの例(3)を説明するための図である。FIG. 13 is a diagram for explaining an example of LBT (3). 広帯域運用の例(1)を説明するための図である。FIG. 1 is a diagram for explaining an example (1) of broadband operation. 広帯域運用の例(2)を説明するための図である。FIG. 13 is a diagram for explaining an example (2) of broadband operation. 広帯域運用の例(3)を説明するための図である。FIG. 13 is a diagram for explaining an example (3) of broadband operation. 広帯域運用の例(4)を説明するための図である。FIG. 13 is a diagram for explaining an example (4) of broadband operation. 複数RBセットの例(1)を説明するための図である。A diagram to explain an example (1) of a multiple RB set. 複数RBセットの例(2)を説明するための図である。A diagram to explain an example (2) of multiple RB sets. 本発明の実施の形態における制御チャネル送信の例(1)を説明するための図である。FIG. 1 is a diagram for explaining an example (1) of control channel transmission in an embodiment of the present invention. 本発明の実施の形態における制御チャネル送信の例(2)を説明するための図である。FIG. 11 is a diagram for explaining an example (2) of control channel transmission in an embodiment of the present invention. 本発明の実施の形態における制御チャネル送信の例(3)を説明するための図である。FIG. 11 is a diagram for explaining an example (3) of control channel transmission in an embodiment of the present invention. 本発明の実施の形態における制御チャネル送信の例(4)を説明するための図である。FIG. 11 is a diagram for explaining an example (4) of control channel transmission in an embodiment of the present invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a base station 10 according to an embodiment of the present invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a terminal 20 according to an embodiment of the present invention. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of a base station 10 or a terminal 20 according to an embodiment of the present invention. 本発明の実施の形態における車両2001の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of a vehicle 2001 according to an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Below, an embodiment of the present invention will be described with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention can be applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)、又は無線LAN(Local Area Network)を含む広い意味を有するものとする。 In operating the wireless communication system according to the embodiment of the present invention, existing technology is used as appropriate. However, the existing technology is, for example, the existing LTE, but is not limited to the existing LTE. Furthermore, the term "LTE" used in this specification has a broad meaning including LTE-Advanced and systems subsequent to LTE-Advanced (e.g., NR), or wireless LAN (Local Area Network), unless otherwise specified.
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Furthermore, in an embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (e.g., Flexible Duplex, etc.).
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 In addition, in the embodiment of the present invention, when radio parameters and the like are "configured," this may mean that predetermined values are pre-configured, or that radio parameters notified from the base station 10 or the terminal 20 are configured.
 図1は、V2Xを説明するための図である。3GPPでは、D2D機能を拡張することでV2X(Vehicle to Everything)あるいはeV2X(enhanced V2X)を実現することが検討され、仕様化が進められている。図1に示されるように、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、車両間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、車両と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、車両とITSサーバとの間で行われる通信形態を意味するV2N(Vehicle to Network)、及び、車両と歩行者が所持するモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。 Figure 1 is a diagram for explaining V2X. 3GPP is considering the realization of V2X (Vehicle to Everything) or eV2X (enhanced V2X) by expanding the D2D function, and is currently working on specifications. As shown in Figure 1, V2X is part of ITS (Intelligent Transport Systems) and is a general term for V2V (Vehicle to Vehicle), which refers to a form of communication between vehicles, V2I (Vehicle to Infrastructure), which refers to a form of communication between vehicles and roadside units (RSUs) installed on the side of the road, V2N (Vehicle to Network), which refers to a form of communication between vehicles and ITS servers, and V2P (Vehicle to Pedestrian), which refers to a form of communication between vehicles and mobile terminals carried by pedestrians.
 また、3GPPにおいて、LTE又はNRのセルラ通信及び端末間通信を用いたV2Xが検討されている。セルラ通信を用いたV2XをセルラV2Xともいう。NRのV2Xにおいては、大容量化、低遅延、高信頼性、QoS(Quality of Service)制御を実現する検討が進められている。 3GPP is also considering V2X using LTE or NR cellular and terminal-to-terminal communications. V2X using cellular communications is also called cellular V2X. For NR V2X, studies are underway to achieve high capacity, low latency, high reliability, and QoS (Quality of Service) control.
 LTE又はNRのV2Xについて、今後3GPP仕様に限られない検討も進められることが想定される。例えば、インターオペラビリティの確保、上位レイヤの実装によるコストの低減、複数RAT(Radio Access Technology)の併用又は切替方法、各国におけるレギュレーション対応、LTE又はNRのV2Xプラットフォームのデータ取得、配信、データベース管理及び利用方法が検討されることが想定される。 It is expected that future studies on LTE or NR V2X will be conducted beyond 3GPP specifications. For example, it is expected that studies will be conducted on ensuring interoperability, reducing costs by implementing higher layers, methods for using or switching between multiple RATs (Radio Access Technologies), compliance with regulations in each country, and methods for acquiring, distributing, managing databases, and using data on LTE or NR V2X platforms.
 本発明の実施の形態において、通信装置が車両に搭載される形態を主に想定するが、本発明の実施の形態は、当該形態に限定されない。例えば、通信装置は人が保持する端末であってもよいし、通信装置がドローンあるいは航空機に搭載される装置であってもよいし、通信装置が基地局、RSU、中継局(リレーノード)、スケジューリング能力を有する端末等であってもよい。 In the embodiment of the present invention, the communication device is mainly assumed to be mounted on a vehicle, but the embodiment of the present invention is not limited to this form. For example, the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, an RSU, a relay station (relay node), a terminal with scheduling capability, etc.
 なお、SL(Sidelink)は、UL(Uplink)又はDL(Downlink)と以下1)-4)のいずれか又は組み合わせに基づいて区別されてもよい。また、SLは、他の名称であってもよい。
1)時間領域のリソース配置
2)周波数領域のリソース配置
3)参照する同期信号(SLSS(Sidelink Synchronization Signal)を含む)
4)送信電力制御のためのパスロス測定に用いる参照信号
In addition, SL (Sidelink) may be distinguished as UL (Uplink) or DL (Downlink) based on any one or combination of 1) to 4) below. SL may also be called by other names.
1) Resource allocation in the time domain; 2) Resource allocation in the frequency domain; 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal))
4) Reference signal used for path loss measurement for transmission power control
 また、SL又はULのOFDM(Orthogonal Frequency Division Multiplexing)に関して、CP-OFDM(Cyclic-Prefix OFDM)、DFT-S-OFDM(Discrete Fourier Transform - Spread - OFDM)、Transform precodingされていないOFDM又はTransform precodingされているOFDMのいずれが適用されてもよい。 Furthermore, with regard to SL or UL OFDM (Orthogonal Frequency Division Multiplexing), either CP-OFDM (Cyclic-Prefix OFDM), DFT-S-OFDM (Discrete Fourier Transform - Spread - OFDM), OFDM without transform precoding or OFDM with transform precoding may be applied.
 LTEのSLにおいて、端末20へのSLのリソース割り当てに関してMode3とMode4が規定されている。Mode3では、基地局10から端末20に送信されるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、端末20はリソースプールから自律的に送信リソースを選択する。 In LTE SL, Mode 3 and Mode 4 are specified for SL resource allocation to the terminal 20. In Mode 3, transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20. Also, in Mode 3, SPS (Semi Persistent Scheduling) is possible. In Mode 4, the terminal 20 autonomously selects transmission resources from a resource pool.
 なお、本発明の実施の形態におけるスロットは、シンボル、ミニスロット、サブフレーム、無線フレーム、TTI(Transmission Time Interval)と読み替えられてもよい。また、本発明の実施の形態におけるセルは、セルグループ、キャリアコンポーネント、BWP、リソースプール、リソース、RAT(Radio Access Technology)、システム(無線LAN含む)等に読み替えられてもよい。 Note that the slot in the embodiments of the present invention may be interpreted as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval). Also, the cell in the embodiments of the present invention may be interpreted as a cell group, carrier component, BWP, resource pool, resource, RAT (Radio Access Technology), system (including wireless LAN), etc.
 なお、本発明の実施の形態において、端末20は、V2X端末に限定されず、D2D通信を行うあらゆる種別の端末であってもよい。例えば、端末20は、スマートフォンのようなユーザが所持する端末でもよいし、スマートメータ等のIoT(Internet of Things)機器であってもよい。 In addition, in the embodiment of the present invention, the terminal 20 is not limited to a V2X terminal, and may be any type of terminal that performs D2D communication. For example, the terminal 20 may be a terminal carried by a user, such as a smartphone, or may be an IoT (Internet of Things) device, such as a smart meter.
 また、NR-SLにおいて、サイドリンクのユニキャスト及びグループキャストにHARQ(Hybrid automatic repeat request)がサポートされることが想定される。さらに、NR-V2Xにおいて、HARQ応答を含むSFCI(Sidelink Feedback Control Information)が定義される。さらに、PSFCH(Physical Sidelink Feedback Channel)を介して、SFCIが送信されることが検討されている。 In addition, it is expected that NR-SL will support HARQ (Hybrid automatic repeat request) for sidelink unicast and groupcast. Furthermore, NR-V2X will define SFCI (Sidelink Feedback Control Information) that includes HARQ responses. It is also being considered to transmit SFCI via PSFCH (Physical Sidelink Feedback Channel).
 なお、以下の説明では、サイドリンクでのHARQ-ACKの送信において、PSFCHを使用することとしているが、これは一例である。例えば、PSCCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、PSSCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、その他のチャネルを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよい。 In the following description, the PSFCH is used to transmit the HARQ-ACK on the sidelink, but this is just one example. For example, the PSCCH may be used to transmit the HARQ-ACK on the sidelink, the PSSCH may be used to transmit the HARQ-ACK on the sidelink, or another channel may be used to transmit the HARQ-ACK on the sidelink.
 以下では、便宜上、HARQにおいて端末20が報告する情報全般をHARQ-ACKと呼ぶ。このHARQ-ACKをHARQ-ACK情報と称してもよい。また、より具体的には、端末20から基地局10等に報告されるHARQ-ACKの情報に適用されるコードブックをHARQ-ACKコードブックと呼ぶ。HARQ-ACKコードブックは、HARQ-ACK情報のビット列を規定する。なお、「HARQ-ACK」により、ACKの他、NACKも送信される。 For the sake of convenience, in the following, all information reported by the terminal 20 in HARQ is referred to as HARQ-ACK. This HARQ-ACK may also be referred to as HARQ-ACK information. More specifically, the codebook applied to the HARQ-ACK information reported from the terminal 20 to the base station 10, etc. is referred to as the HARQ-ACK codebook. The HARQ-ACK codebook specifies the bit string of the HARQ-ACK information. Note that in addition to ACK, NACK is also transmitted by "HARQ-ACK".
 図2は、V2Xの動作例(1)を示すシーケンス図である。図2に示されるように、本発明の実施の形態に係る無線通信システムは、端末20A、及び端末20Bを有してもよい。なお、実際には多数のユーザ装置が存在するが、図2は例として端末20A、及び端末20Bを示している。 FIG. 2 is a sequence diagram showing an example (1) of V2X operation. As shown in FIG. 2, a wireless communication system according to an embodiment of the present invention may have terminal 20A and terminal 20B. Note that, although in reality, many user devices exist, FIG. 2 shows terminal 20A and terminal 20B as an example.
 以下、端末20A、20B等を特に区別しない場合、単に「端末20」あるいは「ユーザ装置」と記述する。図2では、一例として端末20Aと端末20Bがともにセルのカバレッジ内にある場合を示しているが、本発明の実施の形態における動作は、端末20Bがカバレッジ外にある場合にも適用できる。 Hereinafter, when there is no particular distinction between terminals 20A, 20B, etc., they will be simply referred to as "terminal 20" or "user device." In FIG. 2, as an example, a case is shown in which terminals 20A and 20B are both within the coverage of a cell, but the operation in the embodiment of the present invention can also be applied to a case in which terminal 20B is outside the coverage.
 前述したように、本実施の形態において、端末20は、例えば、自動車等の車両に搭載された装置であり、LTEあるいはNRにおけるUEとしてのセルラ通信の機能、及び、サイドリンク機能を有している。端末20が、一般的な携帯端末(スマートフォン等)であってもよい。また、端末20が、RSUであってもよい。当該RSUは、UEの機能を有するUEタイプRSUであってもよいし、基地局装置の機能を有するgNBタイプRSUであってもよい。 As described above, in this embodiment, the terminal 20 is, for example, a device mounted on a vehicle such as an automobile, and has a cellular communication function as a UE in LTE or NR, and a side link function. The terminal 20 may be a general mobile terminal (such as a smartphone). The terminal 20 may also be an RSU. The RSU may be a UE type RSU having the function of a UE, or a gNB type RSU having the function of a base station device.
 なお、端末20は1つの筐体の装置である必要はなく、例えば、各種センサが車両内に分散して配置される場合でも、当該各種センサを含めた装置が端末20であってもよい。 In addition, the terminal 20 does not have to be a device in a single housing. For example, even if various sensors are distributed throughout the vehicle, the device including the various sensors may be the terminal 20.
 また、端末20のサイドリンクの送信データの処理内容は基本的には、LTEあるいはNRでのUL送信の処理内容と同様である。例えば、端末20は、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)を1又は2レイヤにマッピングし、プリコーディングを行う。そして、precoded complex-valued symbolsをリソースエレメントにマッピングして、送信信号(例:complex-valued time-domain SC-FDMA signal)を生成し、各アンテナポートから送信する。 Furthermore, the processing of sidelink transmission data by terminal 20 is basically the same as the processing of UL transmission in LTE or NR. For example, terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding. Then, it maps the precoded complex-valued symbols to resource elements to generate a transmission signal (e.g., a complex-valued time-domain SC-FDMA signal), which is then transmitted from each antenna port.
 なお、基地局10については、LTEあるいはNRにおける基地局としてのセルラ通信の機能、及び、本実施の形態における端末20の通信を可能ならしめるための機能(例:リソースプール設定、リソース割り当て等)を有している。また、基地局10は、RSU(gNBタイプRSU)であってもよい。 The base station 10 has a function of cellular communication as a base station in LTE or NR, and a function for enabling communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.). The base station 10 may also be an RSU (gNB type RSU).
 また、本発明の実施の形態に係る無線通信システムにおいて、端末20がSLあるいはULに使用する信号波形は、OFDMAであってもよいし、SC-FDMAであってもよいし、その他の信号波形であってもよい。 Furthermore, in the wireless communication system according to the embodiment of the present invention, the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or another signal waveform.
 SLにおける同期信号として、端末20はサイドリンク同期信号ブロック(Sidelink Synchronization Signal Block)(S-SSB)を送信する。S-SSBには、S-PSS(Sidelink Primary Synchronization Signal)、S-SSS(Sidelink Secondary Synchronization Signal)、PSBCH(Physical Sidelink Broadcast Channel)が含まれ得る。なお、S-SSB、S-PSS、S-SSS等の名称は一例であり、S-SSB、S-PSS、S-SSS等以外の名称であってもよい。 As a synchronization signal in SL, the terminal 20 transmits a Sidelink Synchronization Signal Block (S-SSB). The S-SSB may include the Sidelink Primary Synchronization Signal (S-PSS), the Sidelink Secondary Synchronization Signal (S-SSS), and the Physical Sidelink Broadcast Channel (PSBCH). Note that the names S-SSB, S-PSS, S-SSS, etc. are merely examples, and names other than S-SSB, S-PSS, S-SSS, etc. may also be used.
 端末20は、基地局装置10から受信した信号又はGNSS(Global Navigation Satellite System)信号又は他の端末20から受信した信号に基づいて、S-SSBを別の端末20へ送信する。なお、端末20が、基地局装置10、GNSS、および他の端末20のいずれの信号に基づいてS-SSBを送信できない場合、端末20は、自律的に決定したS-SSBを他の端末20へ送信してもよい。S-SSBに使用可能なリソースは周期的なスロットであってもよく、S-SSB機会と呼ばれてもよい。 The terminal 20 transmits an S-SSB to another terminal 20 based on a signal received from the base station device 10, a Global Navigation Satellite System (GNSS) signal, or a signal received from another terminal 20. If the terminal 20 cannot transmit an S-SSB based on any signal from the base station device 10, the GNSS, or another terminal 20, the terminal 20 may transmit an autonomously determined S-SSB to the other terminal 20. The resources available for the S-SSB may be periodic slots and may be referred to as S-SSB opportunities.
 ステップS101において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。ここで、リソース選択ウィンドウの所定の期間について、例えば処理時間又はパケット最大許容遅延時間のような端末の実装条件により期間が規定されてもよいし、仕様により予め期間が規定されてもよいし、所定の期間は時間領域上の区間と呼ばれてもよい。 In step S101, the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period. The resource selection window may be set in the terminal 20 by the base station 10. Here, the predetermined period of the resource selection window may be determined by the implementation conditions of the terminal, such as the processing time or the maximum allowable packet delay time, or may be determined in advance by the specifications, or the predetermined period may be called an interval in the time domain.
 ステップS102及びステップS103において、端末20Aは、ステップS101で自律的に選択したリソースを用いて、PSCCH及び/又はPSSCHによりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する又は隣接しない周波数リソースを使用して送信してもよい。 In steps S102 and S103, terminal 20A transmits SCI (Sidelink Control Information) via PSCCH and/or PSSCH using the resources autonomously selected in step S101, and transmits SL data via PSSCH. For example, terminal 20A may transmit PSCCH using frequency resources that are adjacent or non-adjacent to the frequency resources of PSSCH, with time resources that are the same as at least a portion of the time resources of PSSCH.
 端末20Bは、端末20Aから送信されたSCI(PSCCH及び/又はPSSCH)とSLデータ(PSSCH)を受信する。受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれてもよい。端末20Aは自律的に選択したリソースの情報をSCIに含めて送信してもよい。なお、PSFCHに使用可能なリソースは周期的なスロットかつスロット内の末尾(最終シンボルは除く)のシンボルであってもよく、PSFCH機会と呼ばれてもよい。 Terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from terminal 20A. The received SCI may include information on the PSFCH resource for terminal 20B to transmit a HARQ-ACK in response to the reception of the data. Terminal 20A may transmit information on autonomously selected resources by including it in the SCI. Note that the resources available for the PSFCH may be periodic slots and the last symbols in the slot (excluding the final symbol), and may be called PSFCH opportunities.
 ステップS104において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。 In step S104, terminal 20B uses the PSFCH resources determined from the received SCI to transmit a HARQ-ACK for the received data to terminal 20A.
 ステップS105において、端末20Aは、ステップS104で受信したHARQ-ACKが再送を要求することを示す場合すなわちNACK(否定的応答)である場合、端末20BにPSCCH及びPSSCHを再送する。端末20Aは、自律的に選択したリソースを使用してPSCCH及びPSSCHを再送してもよい。 In step S105, if the HARQ-ACK received in step S104 indicates a request for retransmission, i.e., if it is a NACK (negative response), the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B. The terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
 なお、HARQフィードバックを伴うHARQ制御が実行されない場合、ステップS104及びステップS105は実行されなくてもよい。 Note that if HARQ control involving HARQ feedback is not performed, steps S104 and S105 do not need to be performed.
 図3は、V2Xの動作例(2)を示すシーケンス図である。送信の成功率又は到達距離を向上させるためのHARQ制御によらないブラインド再送が実行されてもよい。 FIG. 3 is a sequence diagram showing an example of V2X operation (2). Blind retransmission without HARQ control may be performed to improve the transmission success rate or reach.
 ステップS201において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。 In step S201, the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period. The resource selection window may be set in the terminal 20 by the base station 10.
 ステップS202及びステップS203において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH及び/又はPSSCHによりSCIを送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信してもよい。 In steps S202 and S203, terminal 20A transmits SCI via PSCCH and/or PSSCH using the resources autonomously selected in step S201, and transmits SL data via PSSCH. For example, terminal 20A may transmit PSCCH using frequency resources adjacent to the frequency resources of PSSCH with time resources that are the same as at least a portion of the time resources of PSSCH.
 ステップS204において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH及び/又はPSSCHによるSCI及びPSSCHによるSLデータを端末20Bに再送する。ステップS204における再送は、複数回実行されてもよい。 In step S204, terminal 20A retransmits the SCI via the PSCCH and/or PSSCH and the SL data via the PSSCH to terminal 20B using the resources autonomously selected in step S201. The retransmission in step S204 may be performed multiple times.
 なお、ブラインド再送が実行されない場合、ステップS204は実行されなくてもよい。 Note that if blind retransmission is not performed, step S204 does not need to be performed.
 図4は、V2Xの動作例(3)を示すシーケンス図である。基地局10は、サイドリンクのスケジューリングを行ってもよい。すなわち、基地局10は、端末20が使用するサイドリンクのリソースを決定して、当該リソースを示す情報を端末20に送信してもよい。さらに、HARQフィードバックを伴うHARQ制御が適用される場合、基地局10は、PSFCHのリソースを示す情報を端末20に送信してもよい。 FIG. 4 is a sequence diagram showing an example (3) of V2X operation. The base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the sidelink resources to be used by the terminal 20 and transmit information indicating the resources to the terminal 20. Furthermore, when HARQ control involving HARQ feedback is applied, the base station 10 may transmit information indicating the PSFCH resources to the terminal 20.
 ステップS301において、基地局10は端末20Aに対して、PDCCHによりDCI(Downlink Control Information)を送ることにより、SLスケジューリングを行う。以降、便宜上、SLスケジューリングのためのDCIをSLスケジューリングDCIと呼ぶ。 In step S301, the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via the PDCCH. Hereinafter, for convenience, the DCI for SL scheduling is referred to as SL scheduling DCI.
 また、ステップS301において、基地局10は端末20Aに対して、PDCCHにより、DLスケジューリング(DL割り当てと呼んでもよい)のためのDCIも送信することを想定している。以降、便宜上、DLスケジューリングのためのDCIをDLスケジューリングDCIと呼ぶ。DLスケジューリングDCIを受信した端末20Aは、DLスケジューリングDCIで指定されるリソースを用いて、PDSCHによりDLデータを受信する。 In addition, in step S301, it is assumed that the base station 10 also transmits DCI for DL scheduling (which may also be called DL allocation) to the terminal 20A via the PDCCH. Hereinafter, for convenience, the DCI for DL scheduling is called DL scheduling DCI. The terminal 20A that receives the DL scheduling DCI receives DL data via the PDSCH using the resources specified in the DL scheduling DCI.
 ステップS302及びステップS303において、端末20Aは、SLスケジューリングDCIで指定されたリソースを用いて、PSCCH及び/又はPSSCHによりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。なお、SLスケジューリングDCIでは、PSSCHのリソースのみが指定されることとしてもよい。この場合、例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信することとしてもよい。 In steps S302 and S303, the terminal 20A transmits SCI (Sidelink Control Information) via the PSCCH and/or PSSCH using the resources specified in the SL scheduling DCI, and transmits SL data via the PSSCH. Note that the SL scheduling DCI may specify only the resources of the PSSCH. In this case, for example, the terminal 20A may transmit the PSCCH using frequency resources adjacent to the frequency resources of the PSSCH with the same time resources as at least a portion of the time resources of the PSSCH.
 端末20Bは、端末20Aから送信されたSCI(PSCCH及び/又はPSSCH)とSLデータ(PSSCH)を受信する。PSCCH及び/又はPSSCHにより受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれる。 Terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from terminal 20A. The SCI received via the PSCCH and/or PSSCH includes information on the PSFCH resources for terminal 20B to transmit a HARQ-ACK in response to the reception of the data.
 当該リソースの情報は、ステップS301において基地局10から送信されるDLスケジューリングDCI又はSLスケジューリングDCIに含まれていて、端末20Aが、DLスケジューリングDCI又はSLスケジューリングDCIから当該リソースの情報を取得してSCIの中に含める。あるいは、基地局10から送信されるDCIには当該リソースの情報は含まれないこととし、端末20Aが自律的に当該リソースの情報をSCIに含めて送信することとしてもよい。 The resource information is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the resource information from the DL scheduling DCI or SL scheduling DCI and includes it in the SCI. Alternatively, the resource information may not be included in the DCI transmitted from the base station 10, and the terminal 20A may autonomously include the resource information in the SCI and transmit it.
 ステップS304において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。 In step S304, terminal 20B uses the PSFCH resources determined from the received SCI to transmit a HARQ-ACK for the received data to terminal 20A.
 ステップS305において、端末20Aは、例えば、DLスケジューリングDCI(又はSLスケジューリングDCI)により指定されたタイミング(例えばスロット単位のタイミング)で、当該DLスケジューリングDCI(又は当該SLスケジューリングDCI)により指定されたPUCCH(Physical uplink control channel)リソースを用いてHARQ-ACKを送信し、基地局10が当該HARQ-ACKを受信する。当該HARQ-ACKのコードブックには、端末20Bから受信したHARQ-ACK又は受信しなかったPSFCHに基づいて生成されるHARQ-ACKと、DLデータに対するHARQ-ACKとが含まれ得る。ただし、DLデータの割り当てがない場合等には、DLデータに対するHARQ-ACKは含まれない。NR Rel.16では、当該HARQ-ACKのコードブックに、DLデータに対するHARQ-ACKは含まれない。 In step S305, the terminal 20A transmits a HARQ-ACK using PUCCH (Physical uplink control channel) resources specified by the DL scheduling DCI (or SL scheduling DCI) at a timing (for example, slot-by-slot timing) specified by the DL scheduling DCI (or SL scheduling DCI), and the base station 10 receives the HARQ-ACK. The codebook for the HARQ-ACK may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or the PSFCH that was not received, and a HARQ-ACK for DL data. However, if no DL data is assigned, for example, a HARQ-ACK for DL data is not included. In NR Rel. 16, the codebook for the HARQ-ACK does not include a HARQ-ACK for DL data.
 なお、HARQフィードバックを伴うHARQ制御が実行されない場合、ステップS304及び/又はステップS305は実行されなくてもよい。 Note that if HARQ control involving HARQ feedback is not performed, step S304 and/or step S305 may not be performed.
 図5は、V2Xの動作例(4)を示すシーケンス図である。上述のとおりNRのサイドリンクにおいて、HARQ応答はPSFCHで送信されることがサポートされている。なお、PSFCHのフォーマットは、例えばPUCCH(Physical Uplink Control Channel)フォーマット0と同様のフォーマットが使用可能である。すなわち、PSFCHのフォーマットは、PRB(Physical Resource Block)サイズは1であり、ACK及びNACKはシーケンス及び/又はサイクリックシフトの差異によって識別されるシーケンスベースのフォーマットであってもよい。PSFCHのフォーマットとしては、これに限られない。PSFCHのリソースは、スロットの末尾のシンボル又は末尾の複数シンボルに配置されてもよい。また、PSFCHリソースに、周期Nが設定されるか予め規定される。周期Nは、スロット単位で設定されるか予め規定されてもよい。 Figure 5 is a sequence diagram showing an example of V2X operation (4). As described above, in the NR sidelink, it is supported that the HARQ response is transmitted on the PSFCH. The format of the PSFCH can be, for example, a format similar to PUCCH (Physical Uplink Control Channel) format 0. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1 and ACK and NACK are identified by differences in sequence and/or cyclic shift. The format of the PSFCH is not limited to this. The PSFCH resource may be placed in the last symbol or the last multiple symbols of the slot. In addition, a period N is set or predefined for the PSFCH resource. The period N may be set or predefined on a slot-by-slot basis.
 図5において、縦軸が周波数領域、横軸が時間領域に対応する。PSCCHは、スロット先頭の1シンボルに配置されてもよいし、先頭からの複数シンボルに配置されてもよいし、先頭以外のシンボルから複数シンボルに配置されてもよい。PSFCHは、スロット末尾の1シンボルに配置されてもよいし、スロット末尾の複数シンボルに配置されてもよい。なお、上述の「スロットの先頭」「スロットの末尾」は、AGC(Automatic Gain Control)用のシンボル及び送信/受信切替用のシンボルの考慮が省略されていてもよい。すなわち、例えば1スロットが14シンボルで構成される場合、「スロットの先頭」「スロットの末尾」は、先頭及び末尾のシンボルを除いた12シンボルにおいて、それぞれ先頭及び末尾のシンボルであることを意味してもよい。図5に示される例では、3つのサブチャネルがリソースプールに設定されており、PSSCHが配置されるスロットの3スロット後にPSFCHが2つ配置される。PSSCHからPSFCHへの矢印は、PSSCHに関連付けられるPSFCHの例を示す。 In FIG. 5, the vertical axis corresponds to the frequency domain, and the horizontal axis corresponds to the time domain. The PSCCH may be placed in one symbol at the beginning of the slot, or in multiple symbols from the beginning, or in multiple symbols from a symbol other than the beginning. The PSFCH may be placed in one symbol at the end of the slot, or in multiple symbols at the end of the slot. Note that the above-mentioned "beginning of the slot" and "end of the slot" may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching. That is, for example, when one slot is composed of 14 symbols, the "beginning of the slot" and the "end of the slot" may mean the first and last symbols, respectively, of the 12 symbols excluding the first and last symbols. In the example shown in FIG. 5, three subchannels are set in the resource pool, and two PSFCHs are placed three slots after the slot in which the PSSCH is placed. The arrow from the PSSCH to the PSFCH shows an example of a PSFCH associated with the PSSCH.
 NR-V2XのグループキャストにおけるHARQ応答がACK又はNACKを送信するグループキャストオプション2である場合、PSFCHの送受信に使用するリソースを決定する必要がある。図5に示されるように、ステップS401において、送信側端末20である端末20Aが、SL-SCH(Sidelink Shared Channel)を介して、受信側端末20である端末20B、端末20C及び端末20Dにグループキャストを実行する。続くステップS402において、端末20BはPSFCH#Bを使用し、端末20CはPSFCH#Cを使用し、端末20DはPSFCH#Dを使用してHARQ応答を端末20Aに送信する。ここで、図5の例に示されるように、利用可能なPSFCHのリソースの個数が、グループに属する受信側端末20の数より少ない場合、PSFCHのリソースをどのように割り当てるか決定する必要がある。なお、送信側端末20は、グループキャストにおける受信側端末20の数を把握していてもよい。なお、グループキャストオプション1では、HARQ応答として、NACKのみ送信され、ACKは送信されない。 If the HARQ response in NR-V2X group cast is group cast option 2, which transmits ACK or NACK, it is necessary to determine the resources to be used for transmitting and receiving the PSFCH. As shown in FIG. 5, in step S401, terminal 20A, which is the transmitting terminal 20, performs group cast to terminals 20B, 20C, and 20D, which are receiving terminals 20, via SL-SCH (Sidelink Shared Channel). In the following step S402, terminal 20B uses PSFCH#B, terminal 20C uses PSFCH#C, and terminal 20D uses PSFCH#D to transmit the HARQ response to terminal 20A. Here, as shown in the example of FIG. 5, if the number of available PSFCH resources is less than the number of receiving terminals 20 belonging to the group, it is necessary to determine how to allocate the PSFCH resources. Note that the transmitting terminal 20 may be aware of the number of receiving terminals 20 in the group cast. In addition, with groupcast option 1, only NACK is sent as the HARQ response, and ACK is not sent.
 図6は、NRにおけるセンシング動作の例を示す図である。リソース割り当てモード2(Resource allocation mode 2)では、端末20がリソースを選択して送信を行う。図6に示されるように、端末20は、リソースプール内のセンシングウィンドウでセンシングを実行する。センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約(resource reservation)フィールド又はリソース割り当て(resource assignment)フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ(resource selection window)内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。 Figure 6 is a diagram showing an example of sensing operation in NR. In resource allocation mode 2, the terminal 20 selects a resource and transmits. As shown in Figure 6, the terminal 20 performs sensing in a sensing window in a resource pool. By sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in an SCI transmitted from another terminal 20, and identifies available resource candidates in a resource selection window in the resource pool based on the field. The terminal 20 then randomly selects a resource from the available resource candidates.
 また、図6に示されるように、リソースプールの設定は周期を有してもよい。例えば、当該周期は、10240ミリ秒の期間であってもよい。図6は、スロットt SLからスロットtTmax-1 SLまでがリソースプールとして設定される例である。各周期内のリソースプールは、例えばビットマップによって領域が設定されてもよい。 Also, as shown in Fig. 6, the resource pool may be set to a period. For example, the period may be a period of 10240 milliseconds. Fig. 6 shows an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. The resource pool in each period may have an area set by, for example, a bitmap.
 また、図6に示されるように、端末20における送信トリガはスロットnで発生しており、当該送信の優先度はpTXであるとする。端末20は、スロットn-Tからスロットn-Tproc,0の直前のスロットまでのセンシングウィンドウにおいて、例えば他の端末20が優先度pRXの送信を行っていることを検出することができる。センシングウィンドウ内でSCIが検出され、かつRSRP(Reference Signal Received Power)が閾値を上回る場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングウィンドウ内でSCIが検出され、かつRSRPが閾値未満である場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、優先度pTX及び優先度pRXに基づいて、センシングウィンドウ内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。 Also, as shown in FIG. 6, it is assumed that a transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is p TX . The terminal 20 can detect, for example, that another terminal 20 is transmitting with priority p RX in the sensing window from slot n-T 0 to the slot immediately before slot n-T proc,0 . When SCI is detected in the sensing window and the Reference Signal Received Power (RSRP) exceeds a threshold, the resource in the resource selection window corresponding to the SCI is excluded. Also, when SCI is detected in the sensing window and the RSRP is less than a threshold, the resource in the resource selection window corresponding to the SCI is not excluded. The threshold may be, for example, a threshold Th pTX,pRX that is set or defined for each resource in the sensing window based on the priority p TX and the priority p RX .
 また、図6に示されるスロットt SLのように、例えば送信のため、モニタリングしなかったセンシングウィンドウ内のリソースに対応するリソース予約情報の候補となるリソース選択ウィンドウ内のリソースは除外される。 Also, resources in the resource selection window that are candidates for resource reservation information corresponding to resources in the sensing window that were not monitored, for example for transmission, such as slot t m SL shown in FIG. 6, are excluded.
 スロットn+Tからスロットn+T2までのリソース選択ウィンドウは、図6に示されるように、他UEが占有するリソースが識別され、当該リソースが除外されたリソースが、使用可能なリソース候補となる。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させて、リソース候補の集合Sがリソース選択ウィンドウの20%以上となるようにしてもよい。Sがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行する動作は繰り返されてもよい。 In the resource selection window from slot n+ T1 to slot n+ T2 , as shown in FIG. 6, resources occupied by other UEs are identified, and the resources from which the resources are excluded become available resource candidates. If the set of available resource candidates is S A , when S A is less than 20% of the resource selection window, the threshold value Th pTX,pRX set for each resource of the sensing window may be increased by 3 dB and resource identification may be performed again. That is, by increasing the threshold value Th pTX,pRX and performing resource identification again, the number of resources that are not excluded because the RSRP is less than the threshold value may be increased so that the set of resource candidates S A becomes 20% or more of the resource selection window. When S A is less than 20% of the resource selection window, the operation of increasing the threshold value Th pTX,pRX set for each resource of the sensing window by 3 dB and performing resource identification again may be repeated.
 端末20の下位レイヤは、Sを上位レイヤに報告してもよい。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。例えば、上位レイヤはMACレイヤであってもよいし、下位レイヤはPHYレイヤ又は物理レイヤであってもよい。 The lower layer of the terminal 20 may report S A to the upper layer. The upper layer of the terminal 20 may perform random selection on S A to determine the resources to be used. The terminal 20 may perform sidelink transmission using the determined resources. For example, the upper layer may be a MAC layer, and the lower layer may be a PHY layer or a physical layer.
 上述の図6では、送信側端末20の動作を説明したが、受信側端末20は、センシング又は部分センシングの結果に基づいて、他の端末20からのデータ送信を検知して、当該他の端末20からデータを受信してもよい。 In FIG. 6 above, the operation of the sending terminal 20 is described, but the receiving terminal 20 may detect data transmission from another terminal 20 based on the results of sensing or partial sensing, and receive data from the other terminal 20.
 図7は、NRにおけるプリエンプションの例を示すフローチャートである。図8は、NRにおけるプリエンプションの例を示す図である。ステップS501において、端末20は、センシングウィンドウでセンシングを実行する。端末20が省電力動作を行う場合、予め規定された限定された期間でセンシングが実行されてもよい。続いて、端末20は、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを識別してリソース候補の集合Sを決定し、送信に使用するリソースを選択する(S502)。続いて、端末20は、リソース候補の集合Sからプリエンプションを判定するリソースセット(r_0,r_1,・・・)を選択する(S503)。当該リソースセットは、プリエンプションされたか否かを判定するリソースとして上位レイヤからPHYレイヤに通知されてもよい。 FIG. 7 is a flowchart showing an example of preemption in NR. FIG. 8 is a diagram showing an example of preemption in NR. In step S501, the terminal 20 performs sensing in a sensing window. When the terminal 20 performs a power saving operation, sensing may be performed in a predefined limited period. Next, the terminal 20 identifies each resource in the resource selection window based on the sensing result to determine a set S A of resource candidates and selects resources to be used for transmission (S502). Next, the terminal 20 selects a resource set (r_0, r_1, ...) for determining preemption from the set S A of resource candidates (S503). The resource set may be notified to the PHY layer from the upper layer as a resource for determining whether or not preemption has been performed.
 ステップS504において、端末20は、図8に示されるT(r_0)-Tのタイミングで、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを再度識別してリソース候補の集合Sを決定し、さらに優先度に基づいてリソースセット(r_0,r_1,・・・)に対してプリエンプションを判定する。例えば、図8に示されるr_1は、再度のセンシングにより、他端末20から送信されたSCIが検出されており、Sに含まれていない。プリエンプションが有効である場合、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr_1をプリエンプションされたと判定する。なお、優先度を示す値はより低い値のほうが、優先度はより高くなる。すなわち、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも高い場合、端末20はリソースr_1をSから除外しない。または、プリエンプションが特定の優先度にのみ有効である場合(例えば、sl-PreemptionEnableがpl1, pl2, ..., pl8のいずれか)、この優先度をprio_preとする。このとき、他端末20から送信されたSCIの優先度を示す値prio_RXが、prio_preよりも低く、かつ、prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr_1をプリエンプションされたと判定する。 In step S504, the terminal 20 re-identifies each resource in the resource selection window based on the sensing result at the timing of T(r_0) -T3 shown in FIG. 8 to determine a set of resource candidates S A , and further determines preemption for the resource set (r_0, r_1, ...) based on the priority. For example, r_1 shown in FIG. 8 is not included in S A because the SCI transmitted from the other terminal 20 has been detected by re-sensing. When preemption is enabled, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than the value prio_TX indicating the priority of the transport block transmitted from the terminal itself, the terminal 20 determines that the resource r_1 has been preempted. Note that the lower the value indicating the priority, the higher the priority. That is, when the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the terminal itself, the terminal 20 does not exclude the resource r_1 from the SA . Alternatively, when preemption is valid only for a specific priority (for example, sl-PreemptionEnable is any of pl1, pl2, ..., pl8), this priority is set as prio_pre. At this time, when the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than prio_pre and prio_RX is lower than the value prio_TX indicating the priority of the transport block transmitted from the terminal itself, the terminal 20 determines that the resource r_1 has been preempted.
 ステップS505において、端末20は、ステップS504においてプリエンプションが判定された場合、上位レイヤにプリエンプションを通知し、上位レイヤにおいてリソースの再選択を行い、プリエンプションのチェックを終了する。 In step S505, if preemption is determined in step S504, the terminal 20 notifies the upper layer of preemption, reselects resources in the upper layer, and ends the preemption check.
 なお、プリエンプションのチェックに代えて再評価(Re-evaluation)を実行する場合、上記ステップS504において、リソース候補の集合Sを決定した後、Sにリソースセット(r_0,r_1,・・・)のリソースが含まれない場合、当該リソースを使用せず、上位レイヤにおいてリソースの再選択を行う。 In addition, when performing re-evaluation instead of checking preemption, after determining the set S A of resource candidates in step S504, if a resource in the resource set (r_0, r_1, ...) is not included in S A , the resource is not used and a resource re-selection is performed in the upper layer.
 図9は、LTEにおける部分センシング動作の例を示す図である。LTEサイドリンクにおいて部分センシングが上位レイヤから設定された場合、図9に示されるように端末20はリソースを選択して送信を行う。図9に示されるように、端末20は、リソースプール内のセンシングウィンドウの一部すなわちセンシングターゲットに対して部分センシングを実行する。部分センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。 FIG. 9 is a diagram showing an example of partial sensing operation in LTE. When partial sensing is configured from a higher layer in the LTE side link, the terminal 20 selects resources and transmits as shown in FIG. 9. As shown in FIG. 9, the terminal 20 performs partial sensing on a part of a sensing window in a resource pool, i.e., a sensing target. With partial sensing, the terminal 20 receives a resource reservation field included in an SCI transmitted from another terminal 20, and identifies available resource candidates in a resource selection window in the resource pool based on the field. The terminal 20 then randomly selects a resource from the available resource candidates.
 図9は、サブフレームt SLからサブフレームtTmax-1 SLまでがリソースプールとして設定される例である。リソースプールは、例えばビットマップによって対象領域が設定されてもよい。図9に示されるように、端末20における送信トリガはサブフレームnで発生するものとする。図9に示されるように、サブフレームn+Tからサブフレームn+T2までのうち、サブフレームty1 SLからサブフレームtyY SLまでのYサブフレームがリソース選択ウィンドウとして設定されてもよい。 Fig. 9 shows an example in which subframe t 0 SL to subframe t Tmax-1 SL are set as a resource pool. The target area of the resource pool may be set by, for example, a bitmap. As shown in Fig. 9, a transmission trigger in terminal 20 is assumed to occur in subframe n. As shown in Fig. 9, among subframes n+T 1 to n+T 2 , Y subframes from subframe t y1 SL to subframe t yY SL may be set as a resource selection window.
 端末20は、Yサブフレーム長となるサブフレームty1-k×Pstep SLからサブフレームtyY-k×Pstep SLまでの1又は複数のセンシングターゲットにおいて、例えば他の端末20が送信を行っていることを検出することができる。kは、例えば10ビットのビットマップによって決定されてもよい。図9では、ビットマップの3番目と6番目のビットが、部分センシングを行うことを示す"1"に設定される例を示す。すなわち、図9において、サブフレームty1-6×Pstep SLからサブフレームtyY-6×Pstep SLまでと、サブフレームty1-3×Pstep SLからサブフレームtyY-3×Pstep SLまでとがセンシングターゲットとして設定される。上記のように、ビットマップのk番目のビットは、サブフレームty1-k×Pstep SLからサブフレームtyY-k×Pstep SLまでのセンシングウィンドウに対応してもよい。なお、yはYサブフレーム内のインデックス(1...Y)に対応する。 The terminal 20 can detect, for example, that another terminal 20 is transmitting in one or more sensing targets from subframe t y1-k×Pstep SL to subframe t yY-k×Pstep SL , which has a Y subframe length. k may be determined by, for example, a 10-bit bitmap. FIG. 9 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 9, subframe t y1-6×Pstep SL to subframe t yY-6×Pstep SL and subframe t y1-3×Pstep SL to subframe t yY-3×Pstep SL are set as sensing targets. As described above, the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k×Pstep SL to subframe t yY-k×Pstep SL . Note that yi corresponds to index (1...Y) in the Y subframe.
 なお、kは10ビットのビットマップで設定されるか予め規定され、Pstepは100msであってもよい。ただし、DL及びULキャリアでSL通信を行う場合、Pstepは(U/(D+S+U))*100msとしてもよい。UはULサブフレーム数、DはDLサブフレーム数、Sはスペシャルサブフレーム数に対応する。 Note that k may be set by a 10-bit bitmap or may be predefined, and P step may be 100 ms. However, when SL communication is performed using DL and UL carriers, P step may be (U/(D+S+U))*100 ms. U corresponds to the number of UL subframes, D corresponds to the number of DL subframes, and S corresponds to the number of special subframes.
 上記のセンシングターゲットにおいてSCIが検出され、かつRSRPが閾値を上回る場合、当該SCIのリソース予約フィールドに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングターゲットにおいてSCIが検出され、かつRSRPが閾値未満である場合、当該SCIのリソース予約フィールドに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、送信側優先度pTX及び受信側優先度pRXに基づいて、センシングターゲット内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。 When SCI is detected in the sensing target and the RSRP is greater than a threshold, the resource in the resource selection window corresponding to the resource reservation field of the SCI is excluded. Also, when SCI is detected in the sensing target and the RSRP is less than a threshold, the resource in the resource selection window corresponding to the resource reservation field of the SCI is not excluded. The threshold may be, for example, a threshold Th pTX,pRX that is set or defined for each resource in the sensing target based on the sender priority p TX and the receiver priority p RX .
 図9に示されるように、区間[n+T,n+T]のうちYサブフレームに設定されるリソース選択ウィンドウにおいて、端末20は、他UEが占有するリソースを識別し、当該リソースを除外したリソースが、使用可能なリソース候補となる。なお、Yサブフレームは連続していなくてもよい。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウのリソースの20%未満であった場合、センシングターゲットのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。 As shown in Fig. 9, in a resource selection window set in the Y subframe of the section [n+ T1 , n+ T2 ], the terminal 20 identifies resources occupied by other UEs, and the resources excluding the identified resources become available resource candidates. Note that the Y subframe does not have to be consecutive. If the set of available resource candidates is S A , when S A is less than 20% of the resources in the resource selection window, the threshold Th pTX,pRX set for each sensing target resource may be increased by 3 dB and resource identification may be performed again.
 すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させてもよい。さらに、Sの各リソースのRSSIを測定し、RSSIが最小のリソースを集合Sに追加してもよい。リソース候補の集合Sがリソース選択ウィンドウの20%以上となるまで、Sに含まれるRSSIが最小のリソースをSに追加する動作を繰り返してもよい。 That is, the threshold Th pTX,pRX may be increased and resource identification may be performed again to increase the number of resources that are not excluded because their RSRP is below the threshold. Furthermore, the RSSI of each resource in S A may be measured, and the resource with the smallest RSSI may be added to the set S B. The operation of adding the resource with the smallest RSSI included in S A to S B may be repeated until the set S B of resource candidates becomes 20% or more of the resource selection window.
 端末20の下位レイヤは、Sを上位レイヤに報告してもよい。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。なお、端末20は、一度リソースを確保した後、所定の回数(例えばCresel回)はセンシングを行わずに周期的にリソースを使用してもよい。 The lower layer of the terminal 20 may report S B to the upper layer. The upper layer of the terminal 20 may perform random selection on S B to determine the resource to be used. The terminal 20 may perform sidelink transmission using the determined resource. After reserving the resource once, the terminal 20 may use the resource periodically without performing sensing for a predetermined number of times (e.g., C resel times).
 NRサイドリンクにおいて、ランダムリソース選択(random resource selection)及び部分センシング(partial sensing)をベースとする省電力化が仕様化されている。部分センシングが適用される端末20は、センシングウィンドウ内の特定のスロットでのみ受信及びセンシングを実行する。すなわち、端末20は、フルセンシングと比較して限定されたリソースのみに対するセンシングによってリソースの識別を実行し、識別されたリソースセットからリソース選択を行う部分センシングを実行してもよい。また、端末20は、リソース選択ウィンドウ内のリソースからリソースの除外を行うことなく、リソース選択ウィンドウ内のリソースを識別されたリソースセットとし、当該識別されたリソースセットからリソース選択を行うランダム選択を実行してもよい。 In the NR sidelink, power saving based on random resource selection and partial sensing is specified. A terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window. That is, the terminal 20 may perform resource identification by sensing only limited resources compared to full sensing, and perform partial sensing to select resources from the identified resource set. The terminal 20 may also perform random selection to select resources from the identified resource set by setting the resources in the resource selection window as the identified resource set without excluding resources from the resources in the resource selection window.
 なお、リソース選択の時点では、ランダム選択を実行し、再評価又はプリエンプションチェック時にはセンシング情報を使用する方法が、部分センシングとして扱われてもよいし、ランダム選択として扱われてもよい。 Note that the method of performing random selection at the time of resource selection and using sensing information during reevaluation or preemption checks may be treated as partial sensing or as random selection.
 なお、センシングにおける動作として、以下に示される1)及び2)が適用されてもよい。なお、センシングとモニタリングとは互いに読み替えられてもよく、受信RSRPの測定、予約リソース情報の取得及び優先度情報の取得のうち少なくとも一つが当該動作に含まれていてもよい。 Note that the sensing operations may be 1) and 2) shown below. Note that sensing and monitoring may be interchangeable, and the operations may include at least one of measuring the received RSRP, obtaining reservation resource information, and obtaining priority information.
1)周期的部分センシング(Periodic-based partial sensing)
一部のスロットのみセンシングを行う仕組みにおいて、予約周期(Reservation periodicity)に基づいてセンシングスロットを決定する動作。なお、予約周期は、リソース予約周期フィールド(resource reservation period field)に関連する値である。なお、周期は周期性に置き換えられてもよい。
1) Periodic-based partial sensing
In a mechanism in which sensing is performed only on some slots, an operation of determining a sensing slot based on a reservation periodicity. Note that the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
2)連続部分センシング(Contiguous partial sensing)
一部のスロットのみセンシングを仕組みにおいて、非周期的予約(aperiodic reservation)に基づいてセンシングスロットを決定する動作。なお、非周期的予約は、時間リソース割り当てフィールド(time resource assignment field)に関連する値である。
2) Contiguous partial sensing
In a mechanism in which sensing is performed only on some slots, an operation of determining sensing slots based on aperiodic reservation, where the aperiodic reservation is a value associated with a time resource assignment field.
 また、あるリソースプールに複数のリソース割り当て方法が設定され得る。また、省電力化機能の一つとして、SL-DRX(Discontinuous reception)がサポートされる。すなわち、所定の時間区間でのみ受信動作が行われる。 Furthermore, multiple resource allocation methods can be set for a given resource pool. Also, SL-DRX (Discontinuous reception) is supported as a power saving function. In other words, reception operations are only performed during a specified time period.
 上記の通り、省電力機能の一つとして部分センシングがサポートされる。部分センシングが設定されたリソースプールにおいて、端末20は、上述した周期的部分センシングを実行してもよい。端末20は、部分センシングが設定され、かつ周期的予約が有効に設定されたリソースプールを設定するための情報を、基地局10から受信してもよい。 As described above, partial sensing is supported as one of the power saving functions. In a resource pool in which partial sensing is configured, the terminal 20 may execute the above-mentioned periodic partial sensing. The terminal 20 may receive information from the base station 10 for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
 図10は、周期的部分センシングの例を説明するための図である。図10に示されるように、リソース選択のためのY候補スロットを、リソース選択ウィンドウ[n+T,n+T]から選択する。 10 is a diagram for explaining an example of periodic partial sensing. As shown in FIG 10, Y candidate slots for resource selection are selected from a resource selection window [n+T 1 , n+T 2 ].
 t SLをY候補スロットに含まれる一つのスロットとして、ty-k×Preserve SLを、周期的部分センシングの対象スロットとしてセンシングを行ってもよい。 Sensing may be performed by regarding t y SL as one slot included in the Y candidate slots and t y−k×Preserve SL as a target slot for periodic partial sensing.
 Preserveは、設定されるか予め規定されるセットsl-ResouceReservePeriodListに含まれるすべての値に対応してもよい。あるいは、sl-ResouceReservePeriodListのサブセットに限定されたPreserveの値が、設定されるか予め規定されてもよい。Preserve及びsl-ResouceReservePeriodListは、リソース割り当てモード2の送信リソースプールごとに設定されてもよい。また、UE実装として、限定されたサブセット以外のsl-ResouceReservePeriodListに含まれる周期をモニタリングしてもよい。例えば、端末20は、P_RSVP_Txに対応する機会を追加的にモニタリングしてもよい。 Preserve may correspond to all values included in a set or predefined set sl-ResourceReservePeriodList. Alternatively, values of Preserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined. Preserve and sl-ResourceReservePeriodList may be set for each transmission resource pool of resource allocation mode 2. Furthermore, as a UE implementation, a period included in sl-ResourceReservePeriodList other than the limited subset may be monitored. For example, the terminal 20 may additionally monitor an opportunity corresponding to P_RSVP_Tx.
 k値に関して、端末20は、リソース選択トリガのスロットn以前の、あるいは、処理時間の制限を受けるY候補スロットの先頭スロット以前の、ある予約周期における最も新しいセンシング機会をモニタリングしてもよい。また、端末20は、1以上のk値のセットに対応する周期的なセンシング機会を追加的にモニタリングしてもよい。例えば、k値として、リソース選択トリガのスロットn以前の、あるいは、処理時間の制限を受けるY候補スロットの先頭スロット以前の、ある予約周期における最も新しいセンシング機会に対応する値と、当該ある予約周期における最も新しいセンシング機会の直前のセンシング機会に対応する値とが設定されてもよい。 Regarding the k value, the terminal 20 may monitor the most recent sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots that are subject to processing time limitations. The terminal 20 may also additionally monitor periodic sensing opportunities corresponding to a set of one or more k values. For example, the k value may be set to a value corresponding to the most recent sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots that are subject to processing time limitations, and a value corresponding to the sensing opportunity immediately prior to the most recent sensing opportunity in the certain reservation period.
 上記の通り、省電力機能の一つとして部分センシングがサポートされる。部分センシングが設定されたリソースプールにおいて、端末20は、上述した連続部分センシングを実行してもよい。端末20は、部分センシングが設定され、かつ非周期的予約が有効に設定されたリソースプールを設定するための情報を、基地局10から受信してもよい。 As described above, partial sensing is supported as one of the power saving functions. In a resource pool in which partial sensing is configured, the terminal 20 may execute the above-mentioned continuous partial sensing. The terminal 20 may receive information from the base station 10 for configuring a resource pool in which partial sensing is configured and non-periodic reservations are enabled.
 図11は、連続部分センシングの例を説明するための図である。図11に示されるように、端末20は、リソース選択のトリガをスロットnとした場合、リソース選択のためのY候補スロットをリソース選択ウィンドウ[n+T,n+T]から選択する。図11は、Y=7の場合の一例である。図11に示されるように、Y候補スロットの先頭をスロットty1とし、次のスロットをty2とし、・・・、Y候補スロットの末尾をスロットtyYと表記する。 Fig. 11 is a diagram for explaining an example of continuous partial sensing. As shown in Fig. 11, when the trigger for resource selection is slot n, the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+ T1 , n+ T2 ]. Fig. 11 shows an example in which Y=7. As shown in Fig. 11, the head of the Y candidate slots is represented as slot t y1 , the next slot as t y2 , ..., and the end of the Y candidate slots as slot t yY .
 端末20は、区間[n+T,n+T]でセンシングを行い、n+T又はn+T以降(n+Tとする)でリソース選択を実行する。なお、上述した周期的部分センシングが追加的に実行されてもよい。なお、区間[n+T,n+T]のTおよびTは何れの値であってもよい。また、nはY候補スロットのうちの何れかのスロットのインデックスに置き換えられてもよい。 The terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection at n+T B or after n+T B (n+T C ). The above-mentioned periodic partial sensing may be additionally executed. Note that T A and T B in the interval [n+T A , n+T B ] may be any value. Also, n may be replaced with the index of any slot among the Y candidate slots.
 また、記号[は記号(に置き換えられてもよく、記号]は記号)に置き換えられてもよい。なお、例えば、区間[a,b]は、スロットaからスロットbまでの区間であって、スロットa及びスロットbを含む。例えば、区間(a,b)は、スロットaからスロットbまでの区間であって、スロットa及びスロットbを含まない。 In addition, the symbol [ may be replaced with the symbol (, and the symbol ] may be replaced with the symbol). For example, the interval [a, b] is the interval from slot a to slot b, including slot a and slot b. For example, the interval (a, b) is the interval from slot a to slot b, not including slot a and slot b.
 なお、リソース選択の対象となる候補リソースを、Y候補スロットと記載するが、区間[n+T,n+T]のすべてのスロットが候補スロットであってもよいし、一部のスロットが候補スロットであってもよい。 Candidate resources to be selected are referred to as Y candidate slots, but all slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or only some of the slots may be candidate slots.
 また、信頼性及び遅延性能を向上させる手法として、端末間協調が仕様化されている。例えば、以下に示される端末間協調方法1及び端末間協調方法2が仕様化されている。以下、協調情報(Coordination information)を送信する端末20をUE-A、協調情報を受信する端末20をUE-Bと記載する。 Furthermore, inter-terminal coordination has been specified as a method for improving reliability and delay performance. For example, the inter-terminal coordination method 1 and inter-terminal coordination method 2 shown below have been specified. In the following, the terminal 20 that transmits coordination information will be referred to as UE-A, and the terminal 20 that receives the coordination information will be referred to as UE-B.
端末間協調方法1)UE-Bの送信のため、推奨される(preferred)リソースセット及び/又は推奨されない(non-preferred)リソースセットが、UE-AからUE-Bに送信される。以下、端末間協調方法1を、IUCスキーム1(Inter-UE coordination scheme 1)とも記載する。 Inter-UE coordination method 1) For transmission by UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B. Hereinafter, inter-UE coordination method 1 is also referred to as IUC scheme 1 (Inter-UE coordination scheme 1).
端末間協調方法2)UE-Bから受信したSCIにより指示されたリソースにおいて、他の送信又は受信との衝突が予期されること及び/又は衝突が検出されたリソースを示す情報を、UE-AはUE-Bに送信する。当該情報は、PSFCHを介して送信されてもよい。以下、端末間協調方法2を、IUCスキーム2(Inter-UE coordination scheme 2)とも記載する。 Inter-UE coordination method 2) UE-A transmits to UE-B information indicating resources in which collision with other transmissions or receptions is expected and/or collisions have been detected, among resources indicated by the SCI received from UE-B. The information may be transmitted via the PSFCH. Hereinafter, inter-UE coordination method 2 is also referred to as IUC scheme 2 (Inter-UE coordination scheme 2).
 3GPPリリース16又はリリース17サイドリンクは、以下に示される1)及び2)を対象に仕様化されている。 3GPP Release 16 or Release 17 sidelink is specified for 1) and 2) below.
1)ITS(Intelligent Transport Systems)バンドにおいて3GPP端末のみが存在する環境
2)NRで定義されているFR1(Frequency range 1)及びFR2のライセンスバンドにおいてULリソースをSLに利用可能とする環境
1) An environment in which only 3GPP terminals exist in the ITS (Intelligent Transport Systems) band. 2) An environment in which UL resources are available for SL in the licensed bands of FR1 (Frequency range 1) and FR2 defined by NR.
 3GPPリリース18以降のサイドリンクとして、アンライセンスバンドを新たに対象とすることが検討されている。例えば、5GHz-7GHz帯、60GHz帯等のアンライセンスバンドである。 Unlicensed bands are being considered for inclusion as side links in 3GPP Release 18 and beyond. For example, unlicensed bands such as the 5GHz-7GHz band and the 60GHz band.
 図12は、無線通信システムにおいて使用される周波数帯域の例を示す図である。3GPPリリース15及びリリース16のNR仕様では、例えば52.6GHz以上の周波数帯を運用することが検討されている。なお、図12に示されるように、現状運用が規定されているFR(Frequency range)1は410MHzから7.125GHzまでの周波数帯であり、SCS(Sub carrier spacing)は15、30又は60kHzであり、帯域幅は5MHzから100MHzまでである。 Figure 12 is a diagram showing an example of frequency bands used in wireless communication systems. In the NR specifications of 3GPP Release 15 and Release 16, it is being considered to operate in frequency bands of, for example, 52.6 GHz or higher. As shown in Figure 12, FR (Frequency range) 1, which is currently specified for operation, is the frequency band from 410 MHz to 7.125 GHz, SCS (Sub carrier spacing) is 15, 30 or 60 kHz, and the bandwidth is from 5 MHz to 100 MHz.
 FR2-1は24.25GHzから52.6GHzまでの周波数帯であり、SCSは60、120又は240kHzを使用し、帯域幅は50MHzから400MHzである。図12に示されるように、FR2-2は、52.6GHzから71GHzまでを想定してもよい。さらに、71GHzを超える周波数帯をサポートすることを想定してもよい。 FR2-1 is a frequency band from 24.25 GHz to 52.6 GHz, and the SCS uses 60, 120 or 240 kHz, with a bandwidth of 50 MHz to 400 MHz. As shown in Figure 12, FR2-2 may be assumed to be from 52.6 GHz to 71 GHz. It may also be assumed to support frequency bands above 71 GHz.
 52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 When using bands above 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) may be applied.
 また、FR2-2のような高周波数帯域では、キャリア間の位相雑音の増大が問題となる。このため、より大きな(広い)SCS又はシングルキャリア波形の適用が必要となり得る。 Also, in high frequency bands such as FR2-2, increased phase noise between carriers becomes an issue. This may necessitate the application of a larger (wider) SCS or single carrier waveform.
 例えば、5GHz-7GHz帯におけるアンライセンスバンドの例として、5.15GHzから5.35GHzまで、5.47GHzから5.725GHzまで、5.925GHz以上等が想定される。 For example, examples of unlicensed bands in the 5 GHz-7 GHz band include 5.15 GHz to 5.35 GHz, 5.47 GHz to 5.725 GHz, and 5.925 GHz and above.
 例えば、60GHz帯におけるアンライセンスバンドの例として、59GHzから66GHzまで、57GHzから64GHz又は66GHzまで、59.4GHzから62.9GHzまで等が想定される。 For example, examples of unlicensed bands in the 60 GHz band include 59 GHz to 66 GHz, 57 GHz to 64 GHz or 66 GHz, and 59.4 GHz to 62.9 GHz.
 アンライセンスバンドにおいては、他のシステム又は他の機器に影響を与えないように、種々のレギュレーションが規定されている。 In unlicensed bands, various regulations are in place to prevent interference with other systems or devices.
 例えば、5GHz-7GHz帯において、チャネルアクセスに際しLBT(Listen before talk)を実行する。基地局10又は端末20は、送信を行う直前に所定の期間において電力検出を行い、電力が一定値を超えた場合すなわち他の機器の送信を検出した場合は送信を中止する(LBT失敗と呼ばれてもよい)。また、最大チャネル占有時間(Maximum channel occupancy time, MCOT)が規定される。MCOTは、LBT後に送信を開始した場合に送信継続が許容される最大の時間区間であり、例えば日本では4msである。 For example, in the 5 GHz-7 GHz band, LBT (Listen before talk) is executed when accessing the channel. The base station 10 or terminal 20 performs power detection for a specified period immediately before transmitting, and if the power exceeds a certain value, i.e. if it detects transmission from another device, it stops transmission (this may be called LBT failure). In addition, a maximum channel occupancy time (MCOT) is specified. MCOT is the maximum time period during which continued transmission is permitted when transmission is started after LBT, and is, for example, 4 ms in Japan.
 また、占有チャネルバンド幅(Occupied channel bandwidth, OCB)要件(requirement)として、送信はあるキャリアバンド幅を使用する場合、当該帯域のX%以上を使用しなければならない。例えば、欧州では、NCB(Nominal channel bandwidth)における80%から100%を使用することが要求される。OCB要件は、チャネルアクセスの電力検出が正しく行われるようにすることを目的とする。 Furthermore, the Occupied channel bandwidth (OCB) requirement states that when a transmission uses a certain carrier bandwidth, it must use at least X% of that bandwidth. For example, in Europe, it is required to use 80% to 100% of the nominal channel bandwidth (NCB). The OCB requirement is intended to ensure that power detection for channel access is performed correctly.
 また、最大送信電力、最大パワースペクトル密度(Power spectral density)に関して、過剰な干渉を回避するため、送信は所定の送信電力以下で行われることが規定される。例えば欧州では、5150MHz-5350MHz帯において23dBmが最大送信電力となる。また、例えば欧州では、5150MHz-5350MHz帯において10dBm/MHzが最大パワースペクトル密度となる。 Furthermore, with regard to maximum transmission power and maximum power spectral density, in order to avoid excessive interference, it is stipulated that transmissions must be performed at or below a certain transmission power. For example, in Europe, the maximum transmission power is 23 dBm in the 5150 MHz-5350 MHz band. Also, for example, in Europe, the maximum power spectral density is 10 dBm/MHz in the 5150 MHz-5350 MHz band.
 例えば、60GHz帯において、チャネルアクセスに際しLBTを実行する。基地局10又は端末20は、送信を行う直前に所定の期間において電力検出を行い、電力が一定値を超えた場合すなわち他の機器の送信を検出した場合は送信を中止する。また、最大送信電力、最大パワースペクトル密度に関して、送信は所定の送信電力以下で行われることが規定される。また、OCB要件を満たす能力を有することが規定される。 For example, in the 60 GHz band, LBT is performed when accessing a channel. The base station 10 or terminal 20 performs power detection for a specified period immediately before transmitting, and if the power exceeds a certain value, i.e. if transmission from another device is detected, the transmission is halted. In addition, with regard to maximum transmission power and maximum power spectral density, it is specified that transmission is performed at or below a specified transmission power. It is also specified that the terminal has the capability to satisfy OCB requirements.
 NRでは、LBTの時間方向の挙動(センシングを行う期間)の違いに基づいて、以下に示される4タイプのチャネルアクセス手順が規定される。なお、当該センシングは上述のサイドリンクセンシングとは異なる動作であって、区別のためにLBTセンシングとして記述する。 In NR, the following four types of channel access procedures are defined based on the difference in the time behavior of LBT (the period during which sensing is performed). Note that this sensing is a different operation from the sidelink sensing described above, and is described as LBT sensing to distinguish it.
タイプ1)可変時間のLBTセンシングを送信前に実行する。カテゴリ4LBTとも呼ばれる。
タイプ2A)25μsのLBTセンシングを送信前に実行する。カテゴリ2LBTとも呼ばれる。
タイプ2B)16μsのLBTセンシングを送信前に実行する。カテゴリ2LBTとも呼ばれる。
タイプ2C)LBTをせずに送信開始する。ライセンスバンドの送信と同様。
Type 1) Variable time LBT sensing is performed before transmission. Also called Category 4 LBT.
Type 2A) Performs 25 μs LBT sensing before transmission. Also known as Category 2 LBT.
Type 2B) Performs 16 μs LBT sensing before transmission. Also known as Category 2 LBT.
Type 2C) Start transmission without LBT. Same as licensed band transmission.
 図13は、LBTの例(1)を説明するための図である。図13は、タイプ1のチャネルアクセス手順の例である。タイプ1は、LBTセンシング長の違いに基づいてさらにチャネルアクセス優先度クラス(Channel access priority class、CAPC)を示す4クラスに分類される。以下の二つの期間においてLBTセンシングが実行される。 Figure 13 is a diagram for explaining an example of LBT (1). Figure 13 is an example of a type 1 channel access procedure. Type 1 is further classified into four classes indicating channel access priority classes (CAPC) based on differences in LBT sensing length. LBT sensing is performed in the following two periods.
 第1の期間は、優先順付け期間(Prioritization Period)あるいは保留期間(defer duration)であって、16+9×m[μs]の長さを有する。mは、チャネルアクセス優先度クラスごとに固定値が規定されている。 The first period is a prioritization period or a defer duration, and has a length of 16+9×m p [μs], where m p is a fixed value defined for each channel access priority class.
 第2の期間は、バックオフ手順であって、9×N[μs]の長さを有する。Nの値はある範囲からランダムに決定される(非特許文献4のCWS調整手順参照)。Nはバックオフカウンタの初期値であり、9[μs]の間に他装置の信号の電力を検出しなかった場合ごとに、バックオフカウンタの値は1ずつ小さくなる。 The second period is a backoff procedure, and has a length of 9 x N [μs]. The value of N is determined randomly from a certain range (see the CWS adjustment procedure in Non-Patent Document 4). N is the initial value of the backoff counter, and the value of the backoff counter is decreased by 1 each time the power of a signal from another device is not detected within 9 [μs].
 上記において、9μsのLBTセンシング期間を、LBTセンシングスロット期間と呼んでもよい。 In the above, the 9 μs LBT sensing period may be referred to as the LBT sensing slot period.
 図13の例では、m=3であり、保留期間は43μsである。図13に示されるように、バックオフカウンタはチャネルビジー中は固定される。また、図13に示されるように、NR-U gNBと、無線LANノード#2の送信が衝突しており、エラーが検出された場合、NR-U gNBでは3から13、コンテンションウィンドウサイズ(CWS:Contention Window Size)は拡大される。 In the example of Fig. 13, m p = 3, and the hold period is 43 μs. As shown in Fig. 13, the backoff counter is fixed while the channel is busy. Also, as shown in Fig. 13, when the transmissions of the NR-U gNB and the wireless LAN node #2 collide and an error is detected, the contention window size (CWS) is expanded from 3 to 13 in the NR-U gNB.
 図14は、LBTの例(2)を説明するための図である。図14は、ランダムバックオフを伴わないタイプ2A又はタイプ2Bのチャネルアクセス手順の例である。タイプ2Aは25μs又は25μsを超える期間、タイプ2Bは16μsの電力検出を行うギャップが送信前に設定される。 Figure 14 is a diagram for explaining an example of LBT (2). Figure 14 is an example of a channel access procedure of Type 2A or Type 2B without random backoff. A power detection gap of 25 μs or more is set before transmission for Type 2A, and a power detection gap of 16 μs is set for Type 2B.
 図15は、LBTの例(3)を説明するための図である。図15は、タイプ2Cのチャネルアクセス手順の例である。図15に示されるように、送信前に電力検出は行われず、16μsを超えないギャップの後、送信が即時実行される。送信期間は、最大584μsであってもよい。 FIG. 15 is a diagram for explaining an example of LBT (3). FIG. 15 is an example of a type 2C channel access procedure. As shown in FIG. 15, no power detection is performed before transmission, and the transmission is performed immediately after a gap not exceeding 16 μs. The transmission period may be up to 584 μs.
 上述のように、NR-Uでは複数のLBTタイプがサポートされる。上記タイプ1において、バックオフカウンタの初期値Nは、0から、チャネルアクセス優先度クラスpに基づいて値の範囲が決定されるCWまでの区間のランダムな数が設定される。表1は、ULにおけるチャネルアクセス優先度クラスpごとに規定されるm、CWの最小値CWp,min、CWの最大値CWp,maxの例を示す。 As described above, multiple LBT types are supported in NR-U. In the above type 1, the initial value N of the backoff counter is set to a random number in the interval from 0 to CW p , whose value range is determined based on the channel access priority class p. Table 1 shows examples of m p , the minimum value CW p,min of CW p , and the maximum value CW p , max of CW p , which are specified for each channel access priority class p in the UL.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、チャネルアクセス優先度クラスpにより、m、CWp,min、CWp,maxが決定される。pが1の場合、表1からLBT期間を算出すると、最小34μs最大88μsとなる。pが2の場合、表1からLBT期間を算出すると、最小34μs最大160μsとなる。pが3の場合、表1からLBT期間を算出すると、最小43μs最大9286μsとなる。pが4の場合、表1からLBT期間を算出すると、最小79μs最大9286μsとなる。なお、表1はULに用いられる表である。 As shown in Table 1, m p , CW p,min , and CW p,max are determined by the channel access priority class p. When p is 1, the LBT period calculated from Table 1 is a minimum of 34 μs and a maximum of 88 μs. When p is 2, the LBT period calculated from Table 1 is a minimum of 34 μs and a maximum of 160 μs. When p is 3, the LBT period calculated from Table 1 is a minimum of 43 μs and a maximum of 9286 μs. When p is 4, the LBT period calculated from Table 1 is a minimum of 79 μs and a maximum of 9286 μs. Note that Table 1 is a table used for UL.
 LBTタイプ及びチャネルアクセス優先度クラスは、基地局10からの通知、チャネルタイプ等に基づいて決定されてもよい。25μs又は16μsのギャップは、基地局10のスケジューリングによりTA(Timing Advance)及びCP延長を考慮して設定されてもよい。 The LBT type and channel access priority class may be determined based on notifications from the base station 10, the channel type, etc. The 25 μs or 16 μs gap may be set by the base station 10 scheduling, taking into account the TA (Timing Advance) and CP extension.
 チャネルアクセスに適用するLBTは、所定の帯域幅(例えば20MHz)ごとに実行される。各送信が含まれるLBTチャネルにおいて電力が検出されない場合、送信を実行することができる。一方、Uuにおける各CCは、LBTチャネルよりも広い帯域幅で定義され得る。すなわち、広帯域運用(Wideband operation)がサポートされている。なお、Uuとは、UTRAN(Universal Terrestrial Radio Access Network)とUE(User Equipment)間の無線インタフェースである。 The LBT applied to channel access is performed for each predetermined bandwidth (e.g., 20 MHz). If no power is detected in the LBT channel that contains the respective transmission, the transmission can be performed. On the other hand, each CC in Uu can be defined with a bandwidth wider than the LBT channel. In other words, wideband operation is supported. Note that Uu is the radio interface between the UTRAN (Universal Terrestrial Radio Access Network) and the UE (User Equipment).
 図16は、広帯域運用の例(1)を説明するための図である。図17は、広帯域運用の例(2)を説明するための図である。アンライセンスバンドにおける広帯域運用の場合、図16又は図17に示されるように、gNBにおけるLBTが、LBTチャネルの一部又は全てで成功したとき、LBTに成功したLBTチャネルにおいて送信が許可されてもよい。図16に示されるようにgNBは単一の連続するブロックの送信を行ってもよいし、図17に示されるようにgNBは複数の不連続なブロックの送信を行ってもよい。 FIG. 16 is a diagram for explaining an example (1) of broadband operation. FIG. 17 is a diagram for explaining an example (2) of broadband operation. In the case of broadband operation in an unlicensed band, as shown in FIG. 16 or FIG. 17, when an LBT in a gNB is successful in some or all of the LBT channels, transmission may be permitted in the LBT channel in which the LBT was successful. As shown in FIG. 16, the gNB may transmit a single continuous block, or as shown in FIG. 17, the gNB may transmit multiple discontinuous blocks.
 アンライセンスバンドにおけるDLについて、チャネルごとにLBTを実行するDLタイプAと、ランダムに選択されたチャネルにおいてLBTタイプ1を実行し、残りのチャネルはLBTタイプ2Aを実行するDLタイプBが規定されている。 For DL in unlicensed bands, DL Type A is specified, which performs LBT on each channel, and DL Type B, which performs LBT Type 1 on randomly selected channels and LBT Type 2A on the remaining channels.
 DLタイプAは、さらにタイプA1及びタイプA2に分類される。タイプA1では、コンテンションウィンドウCWpは各チャネルごとに決定される。タイプA2では、CWpは、各チャネルについて決定されたCWpのうち最大のCWpが使用される。 DL Type A is further classified into Type A1 and Type A2. In Type A1, the contention window CWp is determined for each channel. In Type A2, the maximum CWp among the CWp determined for each channel is used.
 DLタイプBは、さらにタイプB1及びタイプB2に分類される。タイプB1では、単一のCWpがすべてのチャネルに適用される。タイプB2では、各チャネルについて決定されたCWpのうち最大のCWpが使用される。 DL Type B is further classified into Type B1 and Type B2. In Type B1, a single CWp is applied to all channels. In Type B2, the maximum CWp among the CWps determined for each channel is used.
 gNBにおける一部又は全部のLBTチャネルがLBTに成功した場合、LBTが成功したLBTチャネルにおけるPDSCH送信は許可される。gNBは周波数方向に連続する単一のブロックの送信を行ってもよいし、gNBは周波数方向に不連続な複数のブロックの送信を行ってもよい。 If some or all of the LBT channels in a gNB are successful in LBT, PDSCH transmission is permitted on the LBT channels where LBT was successful. The gNB may transmit a single block that is contiguous in the frequency direction, or the gNB may transmit multiple blocks that are discontinuous in the frequency direction.
 図18は、広帯域運用の例(3)を説明するための図である。図19は、広帯域運用の例(4)を説明するための図である。図18又は図19に示されるように、UEにおけるLBTが、スケジューリングされた帯域におけるLBTチャネルの全てで成功したとき、送信が許可されてもよい。図19に示されるように、一部のLBTチャネルでLBTが失敗した場合、送信は許可されなくてもよい。 FIG. 18 is a diagram for explaining an example (3) of broadband operation. FIG. 19 is a diagram for explaining an example (4) of broadband operation. As shown in FIG. 18 or FIG. 19, when LBT in the UE is successful in all LBT channels in the scheduled band, transmission may be permitted. As shown in FIG. 19, when LBT fails in some LBT channels, transmission may not be permitted.
 図20は、複数RBセットの例(1)を説明するための図である。図20に示されるように、二つの隣接するRBセット(LBTチャネル、LBTバンドと呼ばれてもよい。)の間に、イントラセルガードバンド(intra-cell guard band)が定義される。イントラセルガードバンドはイントラキャリアガードバンド(intra-carrier guard band)と呼ばれてもよく、ICGBと記載されてもよい。 Figure 20 is a diagram for explaining an example (1) of multiple RB sets. As shown in Figure 20, an intra-cell guard band is defined between two adjacent RB sets (which may also be called LBT channels or LBT bands). The intra-cell guard band may also be called an intra-carrier guard band, and may also be written as ICGB.
 二つのLBTチャネル両方でLBTに成功した場合、ICGBも送信に使用することができる。図20の例では、50+6+50=106PRBを使用することができる。 If LBT is successful on both LBT channels, ICGB can also be used for transmission. In the example of Figure 20, 50 + 6 + 50 = 106 PRB can be used.
 いずれか一方のLBTチャネルでLBTが成功し、他方のLBTチャネルでLBTを実行していない又はLBTに失敗した場合、ICGBは使用できない。すなわち、LBTに成功したチャネルの50PRBを使用することができる。 If LBT is successful on one of the LBT channels and LBT is not performed or fails on the other LBT channel, ICGB cannot be used. In other words, 50 PRB of the channel on which LBT was successful can be used.
 図20に示される構成で、インタレースされたPSCCH/PSSCHを送信する場合、PSCCH構成に問題が生じることがある。 When transmitting interlaced PSCCH/PSSCH in the configuration shown in Figure 20, problems may arise with the PSCCH configuration.
 図21は、複数RBセットの例(2)を説明するための図である。1サブチャネルが、あるLBTチャネルの1インタレースに閉じて構成される場合、すなわち複数のLBTチャネルに係るインタレースとは関連付けられない場合、PSCCHに使用できるPRB数が限定されてしまう。例えば、あるリソースプールが1RBセットのみに定義される場合、10PRBのみ使用することができる。 Figure 21 is a diagram for explaining an example (2) of multiple RB sets. When one subchannel is configured to be closed to one interlace of a certain LBT channel, i.e., when it is not associated with interlaces related to multiple LBT channels, the number of PRBs that can be used for the PSCCH is limited. For example, when a resource pool is defined to only one RB set, only 10 PRBs can be used.
 図21に示されるように、11IRB(Interlaced Resource Block)がPRBにICGBを含むように定義されると、ICGBを使用できない場合のPSCCH送受信が複雑になる。一方、PSCCHがICGBを含まない形で定義されると、PSCCHを含むシンボルの非PSCCH PRBの使用に係るUE動作が複雑になる。 As shown in Figure 21, if an 11IRB (Interlaced Resource Block) is defined to include ICGB in the PRB, PSCCH transmission and reception becomes complicated when ICGB cannot be used. On the other hand, if the PSCCH is defined without ICGB, UE operation related to the use of non-PSCCH PRBs for symbols that include PSCCH becomes complicated.
 そこで、インタレース構成が適用される場合、PSCCHは従来のサイドリンクUE向けの構成と異なる構成をとり得るとUEは想定してもよい。なお、PRBはIRBに置換されてもよいし、IRBはPRBに置換されてもよい。 Therefore, when an interlaced configuration is applied, the UE may assume that the PSCCH may have a different configuration from the conventional configuration for sidelink UEs. In addition, the PRBs may be replaced with IRBs, and the IRBs may be replaced with PRBs.
動作1)図22は、本発明の実施の形態における制御チャネル送信の例(1)を説明するための図である。図22に示されるように、PSCCHに4シンボル以上のシンボル数が適用されてもよい。 Operation 1) Figure 22 is a diagram for explaining an example (1) of control channel transmission in an embodiment of the present invention. As shown in Figure 22, four or more symbols may be applied to the PSCCH.
動作1a)PSCCHのシンボル数は、4、5、6、7、8、9、10、11、12、13のいずれであってもよい。 Operation 1a) The number of symbols in the PSCCH may be any of 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.
動作1b)PSCCHは同時に10PRB未満のPRB数が適用されてもよい。例えば、PRB数は1から9のいずれであってもよい。10PRB未満のPRB数はPSCCHのシンボル数が4シンボル以上の場合に限定して適用されてもよいし、2又は3シンボルの場合に適用されてもよい。 Operation 1b) The PSCCH may simultaneously apply a PRB number of less than 10 PRBs. For example, the PRB number may be any number from 1 to 9. The PRB number of less than 10 PRBs may be applied only when the number of PSCCH symbols is 4 symbols or more, or when the number is 2 or 3 symbols.
動作1c)各シンボルにおけるPSCCH-DMRSの配置は、2又は3シンボルの場合と同じであってもよいし、異なっていてもよい。 Operation 1c) The placement of PSCCH-DMRS in each symbol may be the same as in the 2 or 3 symbol case, or it may be different.
動作1d)PSCCH/PSSCHの送信/受信/復号に対応する所定の動作を変更してもよい。例えば、以下に示される1)又は2)の動作を実行してもよい。 Operation 1d) The predetermined operations corresponding to the transmission/reception/decoding of the PSCCH/PSSCH may be changed. For example, the operation 1) or 2) shown below may be performed.
1)PSCCH/PSSCHから、対応するPSFCHまでの時間オフセット値として、2又は3より大きい値を想定してもよい。例えば、sl-MinTimeGapPSFCH(非特許文献5参照)と異なる新たなパラメータを定義し、4以上を設定又は事前設定可能としてもよい。例えば、候補値は、{3,4}であってもよい。MACレイヤにおいて、PSSCHのリソースとPSFCHのリソースのリソース選択を実行するとき、当該新たなパラメータに基づいてリソース選択を実行してもよい。また、例えば、sl-MinTimeGapPSFCHに4以上を設定又は事前設定可能であってもよい。例えば、候補値は、{2,3,4}であってもよい。 1) A value greater than 2 or 3 may be assumed as the time offset value from the PSCCH/PSSCH to the corresponding PSFCH. For example, a new parameter different from sl-MinTimeGapPSFCH (see Non-Patent Document 5) may be defined, and a value of 4 or more may be set or pre-configured. For example, the candidate values may be {3, 4}. When performing resource selection of PSSCH resources and PSFCH resources in the MAC layer, resource selection may be performed based on the new parameter. Also, for example, sl-MinTimeGapPSFCH may be set or pre-configured to 4 or more. For example, the candidate values may be {2, 3, 4}.
2)リソース割り当てモード2におけるリソース選択タイミング又はリソース選択トリガのタイミングから、センシングウィンドウの末尾までの時間ギャップは、従来より大きいケースを想定してもよい。すなわち、センシングウィンドウの末尾を、従来より過去にしてもよい。時間ギャップに対応するパラメータTproc,0SLの値は、従来の値に1スロットを加えた値としてもよい。すなわち、Tproc,0SLの値は、SCS15kHzでは2、SCS30kHzでは2、SCS60kHzでは3、SCS120kHzでは5であってもよい。時間ギャップは、Tproc,0SLの値に1を加えた値としてもよい。部分センシング、再評価又はプリエンプションチェックにおいて、上記パラメータに係る動作に同様に適用されてもよい。 2) The time gap from the resource selection timing or the resource selection trigger timing in resource allocation mode 2 to the end of the sensing window may be larger than in the past. That is, the end of the sensing window may be earlier than in the past. The value of the parameter Tproc,0SL corresponding to the time gap may be the conventional value plus one slot. That is, the value of Tproc,0SL may be 2 for SCS 15 kHz, 2 for SCS 30 kHz, 3 for SCS 60 kHz, and 5 for SCS 120 kHz. The time gap may be the value of Tproc,0SL plus 1. This may be similarly applied to the operations related to the above parameters in partial sensing, reevaluation, or preemption check.
動作1e)PSSCH-DMRSがマッピングされるシンボルは、PSCCHが2又は3シンボルの場合と同一であってもよいし、異なっていてもよい。 Operation 1e) The symbol to which the PSSCH-DMRS is mapped may be the same as when the PSCCH is 2 or 3 symbols, or it may be different.
 上述した動作1)により、SL-UにおけるPSCCHのパフォーマンスを向上させることができる。PSCCHのシンボル数を多くすることに伴う変更が必要な動作について、共通理解が得られる。 The above-mentioned operation 1) can improve the performance of the PSCCH in the SL-U. A common understanding can be reached about the operations that need to be changed in order to increase the number of PSCCH symbols.
動作2)PSCCHがICGBにマッピングされ得る場合、ICGBをPSCCH/PSSCH送信に使用する場合と使用しない場合とで、PSCCHに係る共通の動作を実行してもよい。 Operation 2) If the PSCCH can be mapped to the ICGB, common operations related to the PSCCH may be performed whether or not the ICGB is used for PSCCH/PSSCH transmission.
動作2a)ICGBを使用する場合、ICGBのPRBを含めてPSCCHをマッピングしてもよい。ICGBを使用しない場合、ICGBを使用する場合のPSCCHマッピングを適用し、ICGBにマッピングされたPSCCHを送信しなくてもよい。 Operation 2a) When ICGB is used, the PSCCH may be mapped including the PRB of ICGB. When ICGB is not used, the PSCCH mapping when ICGB is used may be applied, and the PSCCH mapped to ICGB may not be transmitted.
動作2b)図23は、本発明の実施の形態における制御チャネル送信の例(2)を説明するための図である。図23に示されるように、ICGBを使用しない場合、ICGBのPRBを除くPRBにPSCCHをマッピングしてもよい。 Operation 2b) Figure 23 is a diagram for explaining an example (2) of control channel transmission in an embodiment of the present invention. As shown in Figure 23, when ICGB is not used, PSCCH may be mapped to PRBs other than the PRB of ICGB.
 図24は、本発明の実施の形態における制御チャネル送信の例(3)を説明するための図である。図24に示されるように、ICGBを使用する場合、ICGBを使用しない場合のPSCCHマッピングを適用し、ICGBにはICGB内のPRB以外のいずれかのPRBにマッピングされた情報をコピーしてもよい。PSSCHは、ICGBのPRBとICGB以外のPRBとで同一のマッピング動作としてもよい。 FIG. 24 is a diagram for explaining an example (3) of control channel transmission in an embodiment of the present invention. As shown in FIG. 24, when ICGB is used, PSCCH mapping for when ICGB is not used may be applied, and information mapped to any PRB other than the PRBs in ICGB may be copied to ICGB. PSSCH may have the same mapping operation for PRBs of ICGB and PRBs other than ICGB.
動作2c)動作2a)及び動作2b)のいずれを適用するかが設定又は事前設定により与えられてもよい。 Operation 2c) Whether operation 2a) or operation 2b) is to be applied may be given by configuration or pre-setting.
 上述した動作2)により、ICGBを使用する場合と使用しない場合とで共通のUE動作にすることができる。すなわち、UE動作を簡略化することができる。 The above-mentioned operation 2) allows the UE operation to be the same whether ICGB is used or not. In other words, the UE operation can be simplified.
動作3)PSCCHがICGBにマッピングされ得ない場合、ICGBにマッピングされるPSSCHについて、2ndステージSCIに係る所定の動作を実行してもよい。なお、PSCCHがICGBにマッピングされ得るがマッピングされない場合に動作3)が適用されてもよい。 Operation 3) If the PSCCH cannot be mapped to the ICGB, a predetermined operation related to the 2nd stage SCI may be performed for the PSCCH that is mapped to the ICGB. Note that operation 3) may also be applied when the PSCCH can be mapped to the ICGB but is not mapped.
動作3a)図25は、本発明の実施の形態における制御チャネル送信の例(4)を説明するための図である。図25に示されるように、2ndステージSCIはICGBのPRBにマッピングされず、ICGBのPRB以外のPRBにマッピングされてもよい。例えば、ICGBのPRBを除くPRBについて、2ndステージSCIは第1に周波数、第2に時間の順でマッピングされてもよい。例えば、いずれかのLBTチャネルに限定して(例えばPSCCHと同一のLBTチャネル)、2ndステージSCIは第1に周波数、第2に時間の順でマッピングされてもよい。 Operation 3a) Figure 25 is a diagram for explaining an example (4) of control channel transmission in an embodiment of the present invention. As shown in Figure 25, the 2nd stage SCI may not be mapped to the PRB of ICGB, but may be mapped to a PRB other than the PRB of ICGB. For example, for PRBs other than the PRB of ICGB, the 2nd stage SCI may be mapped in the order of frequency first and time second. For example, limited to any LBT channel (e.g., the same LBT channel as PSCCH), the 2nd stage SCI may be mapped in the order of frequency first and time second.
動作3b)2ndステージSCIは、ICGBのPRBにマッピングされてもよい。 Operation 3b) 2nd stage SCI may be mapped to a PRB of ICGB.
 上述した動作3)により、ICGBを使用する場合と使用しない場合とで共通のUE動作にすることができる。すなわち、UE動作を簡略化することができる。 The above-mentioned operation 3) allows the UE operation to be common whether ICGB is used or not. In other words, the UE operation can be simplified.
 なお、上述の実施例において、従来のSLチャネル及びSL信号の構成を用いているが、これに限定されない。例えば、OCB要件を満たすための構成としてインタレースチャネル(interlaced channel)が適用されている場合にも、本実施例は適用されてもよい。 In the above embodiment, a conventional SL channel and SL signal configuration is used, but this is not limiting. For example, this embodiment may also be applied when an interlaced channel is used as a configuration to satisfy the OCB requirements.
 なお、上述の実施例は、所定の条件が満たされた場合に限定して適用されてもよい。例えば、所定のSLチャネル又はSL信号に関連して適用されてもよい。例えば、PSCCH/PSSCH、PSFCH、S-SSB、SLポジショニングRSのいずれかに本実施例は適用されてもよい。例えば、所定の設定又は事前設定に基づいて適用されてもよい。例えば、リソースプールにおいて、本実施例を「有効化」することが設定又は事前設定により与えられた場合に、本実施例を適用してもよい。例えば、第2のSL送信に係るLBT方法が、タイプ1ではない又はではなくなった場合、本実施例は適用されなくてもよい。 Note that the above-mentioned embodiment may be applied only when a certain condition is satisfied. For example, it may be applied in relation to a certain SL channel or SL signal. For example, this embodiment may be applied to any of PSCCH/PSSCH, PSFCH, S-SSB, and SL positioning RS. For example, it may be applied based on a certain setting or pre-setting. For example, this embodiment may be applied when "enabling" this embodiment is given by setting or pre-setting in the resource pool. For example, this embodiment may not be applied when the LBT method related to the second SL transmission is not or is no longer type 1.
 なお、LBTタイプ2A、2B又は2Cを適用するため、送信Pの直前に追加の送信(additional TX)、例えば、CP延長等が実行されてもよい。 In addition, to apply LBT type 2A, 2B or 2C, an additional transmission (additional TX), such as a CP extension, may be performed immediately before transmission P.
 なお、本実施例の適用可否及び動作に係るUE能力が定義されてもよいし、基地局10及び/又は端末20に報告されてもよいし、報告されなくてもよい。 Note that the UE capabilities related to the applicability and operation of this embodiment may be defined, and may or may not be reported to the base station 10 and/or the terminal 20.
 なお、UEのSL送信は、PSCCH、PSSCH、PSFCH、S-SSB、SL-PRSのいずれであってもよいし、本実施例の各動作に異なるチャネル又は信号が適用されてもよい。 Note that the UE's SL transmission may be PSCCH, PSSCH, PSFCH, S-SSB, or SL-PRS, and different channels or signals may be applied to each operation of this embodiment.
 なお、UEのSL送信の少なくとも一方がUL送信であってもよい。 In addition, at least one of the UE's SL transmissions may be a UL transmission.
 本実施例は、リソース選択、リソース再選択、再評価、プリエンプションチェックのいずれに適用されてもよい。 This embodiment may be applied to resource selection, resource reselection, reevaluation, and preemption checks.
 なお、本発明の実施の形態における手法は、上述の端末間直接通信のケースに限定されず、他の同様のケースについて適用されてもよい。 The method in the embodiment of the present invention is not limited to the case of direct communication between terminals described above, but may be applied to other similar cases.
 上述の実施例は、V2X端末に限定されず、D2D通信を行う端末に適用されてもよい。 The above-described embodiment is not limited to V2X terminals, but may also be applied to terminals that perform D2D communication.
 上述の実施例により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。 The above-described embodiment makes it possible to perform interlaced transmission of channels including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
 すなわち、アンライセンスバンドにおけるレギュレーションに適合する端末間直接通信のインタレース送信を実行することができる。 In other words, it is possible to perform interlaced transmission for direct communication between terminals that complies with regulations in unlicensed bands.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10 and the terminal 20 that execute the processes and operations described above will be described. The base station 10 and the terminal 20 include functions for implementing the above-mentioned embodiments. However, the base station 10 and the terminal 20 may each include only a part of the functions in the embodiments.
 <基地局10>
 図26は、基地局10の機能構成の一例を示す図である。図26に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図26に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base Station 10>
Fig. 26 is a diagram showing an example of the functional configuration of the base station 10. As shown in Fig. 26, the base station 10 has a transmitting unit 110, a receiving unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in Fig. 26 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any names.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DL参照信号等を送信する機能を有する。 The transmitting unit 110 has a function of generating a signal to be transmitted to the terminal 20 and transmitting the signal wirelessly. The receiving unit 120 has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information of a higher layer from the received signals. The transmitting unit 110 also has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL reference signals, etc. to the terminal 20.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。 The setting unit 130 stores in a storage device the setting information that is set in advance and various setting information to be transmitted to the terminal 20, and reads it from the storage device as necessary. The content of the setting information is, for example, information related to the setting of D2D communication.
 制御部140は、実施例において説明したように、端末20がD2D通信を行うための設定に係る処理を行う。また、制御部140は、D2D通信及びDL通信のスケジューリングを送信部110を介して端末20に送信する。また、制御部140は、D2D通信及びDL通信のHARQ応答に係る情報を受信部120を介して端末20から受信する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 The control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication, as described in the embodiment. The control unit 140 also transmits scheduling for D2D communication and DL communication to the terminal 20 via the transmission unit 110. The control unit 140 also receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120. The functional unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the reception unit 120.
 <端末20>
 図27は、端末20の機能構成の一例を示す図である。図27に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図27に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Terminal 20>
Fig. 27 is a diagram showing an example of the functional configuration of the terminal 20. As shown in Fig. 27, the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in Fig. 27 is merely an example. The names of the functional divisions and functional units may be any as long as they can execute the operations related to the embodiment of the present invention.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号又は参照信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。 The transmitter 210 creates a transmission signal from the transmission data and transmits the transmission signal wirelessly. The receiver 220 wirelessly receives various signals and acquires higher layer signals from the received physical layer signals. The receiver 220 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals or reference signals, etc. transmitted from the base station 10. For example, the transmitter 210 transmits PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel), etc. to another terminal 20 as D2D communication, and the receiver 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
 設定部230は、受信部220により基地局10又は端末20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。 The setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it out from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance. The content of the setting information is, for example, information related to the setting of D2D communication, etc.
 制御部240は、実施例において説明したように、他の端末20との間のRRC接続を確立するD2D通信を制御する。また、制御部240は、省電力動作に係る処理を行う。また、制御部240は、D2D通信及びDL通信のHARQに係る処理を行う。また、制御部240は、基地局10からスケジューリングされた他の端末20へのD2D通信及びDL通信のHARQ応答に係る情報を基地局10に送信する。また、制御部240は、他の端末20にD2D通信のスケジューリングを行ってもよい。また、制御部240は、サイドリンクセンシングの結果に基づいてD2D通信に使用するリソースをリソース選択ウィンドウから自律的に選択してもよいし、再評価又はプリエンプションを実行してもよい。また、制御部240は、D2D通信の送受信における省電力に係る処理を行う。また、制御部240は、D2D通信における端末間協調に係る処理を行う。また、制御部240は、D2D通信におけるLBTに係る処理を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 As described in the embodiment, the control unit 240 controls the D2D communication that establishes an RRC connection with another terminal 20. The control unit 240 also performs processing related to power saving operation. The control unit 240 also performs processing related to HARQ for D2D communication and DL communication. The control unit 240 also transmits information related to HARQ responses for D2D communication and DL communication to another terminal 20 scheduled by the base station 10 to the base station 10. The control unit 240 may also schedule D2D communication for the other terminal 20. The control unit 240 may also autonomously select resources to be used for D2D communication from a resource selection window based on the result of sidelink sensing, or may perform reevaluation or preemption. The control unit 240 also performs processing related to power saving in transmission and reception of D2D communication. The control unit 240 also performs processing related to inter-terminal coordination in D2D communication. The control unit 240 also performs processing related to LBT in D2D communication. The functional units in the control unit 240 related to signal transmission may be included in the transmitting unit 210, and the functional units in the control unit 240 related to signal reception may be included in the receiving unit 220.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図26及び図27)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 26 and 27) used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional block may be realized by combining the one device or the multiple devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for either of these.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図28は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 28 is a diagram showing an example of the hardware configuration of the base station 10 and terminal 20 in one embodiment of the present disclosure. The above-mentioned base station 10 and terminal 20 may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the terminal 20 are realized by loading specific software (programs) onto hardware such as the processor 1001 and the storage device 1002, causing the processor 1001 to perform calculations, control communications by the communication device 1004, and control at least one of the reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, the above-mentioned control unit 140, control unit 240, etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図26に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図27に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 The processor 1001 reads out a program (program code), software module, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to the program. The program is a program that causes a computer to execute at least a part of the operations described in the above-mentioned embodiment. For example, the control unit 140 of the base station 10 shown in FIG. 26 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001. For example, the control unit 240 of the terminal 20 shown in FIG. 27 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001. Although the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from a network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium and may be composed of, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), etc. The storage device 1002 may also be called a register, a cache, a main memory, etc. The storage device 1002 can store executable programs (program codes), software modules, etc. for implementing a communication method relating to one embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. The above-mentioned storage medium may be, for example, a database, a server, or other suitable medium that includes at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, etc. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the transmitting/receiving antenna, an amplifier unit, a transmitting/receiving unit, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting/receiving unit may be implemented as a transmitting unit or a receiving unit that is physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the base station 10 and the terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
 図29に車両2001の構成例を示す。図29に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 29 shows an example configuration of a vehicle 2001. As shown in FIG. 29, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, and may be applied to the communication module 2013, for example.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2029 provided in the vehicle 2001. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from the various sensors 2021-2029 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices. The information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide various multimedia information and multimedia services to the occupants of the vehicle 2001. The information service unit 2012 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) maps, autonomous vehicle (AV) maps, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and AI processor, as well as one or more ECUs that control these devices. In addition, the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021 to 29, which are provided on the vehicle 2001.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 may transmit at least one of the signals from the various sensors 2021-2028 described above input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012 to an external device via wireless communication. The electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on the information service unit 2012 provided in the vehicle 2001. The information service unit 2012 may be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). The communication module 2013 also stores various information received from an external device in a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axles 2009, sensors 2021 to 2029, etc. provided in the vehicle 2001.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、アンライセンスバンドにおいて、隣接する複数のLBT(Listen before talk)チャネルにおける送信に適用するインタレースされたチャネル構成を決定する制御部と、前記複数のLBTチャネルにおいて、LBTを実行する受信部と、前記LBTに成功した場合、前記チャネル構成に基づいて他の端末に送信する送信部とを有し、前記制御部は、前記チャネル構成において、前記複数のLBTチャネル間のICGB(intra-cell guard band)を制御チャネルに使用するか否かを決定する端末が提供される。
(Summary of the embodiment)
As described above, according to an embodiment of the present invention, a terminal is provided that has a control unit that determines an interlaced channel configuration to be applied to transmission in multiple adjacent LBT (Listen before talk) channels in an unlicensed band, a receiving unit that performs LBT in the multiple LBT channels, and a transmitting unit that transmits to other terminals based on the channel configuration if the LBT is successful, and the control unit determines whether or not to use an ICGB (intra-cell guard band) between the multiple LBT channels for a control channel in the channel configuration.
 上記の構成により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。すなわち、アンライセンスバンドにおけるレギュレーションに適合する端末間直接通信のインタレース送信を実行することができる。 The above configuration makes it possible to perform interlaced transmission of channels including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band. In other words, it is possible to perform interlaced transmission in direct communication between terminals that complies with regulations in an unlicensed band.
 前記制御部は、ICGBを制御チャネルに使用しない場合、ICGBに含まれるPRB(Physical Resource Block)以外の前記複数のLBTチャネルのPRBに制御チャネルをマッピングしてもよい。当該構成により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。 When the control unit does not use the ICGB as a control channel, the control unit may map the control channel to a PRB (Physical Resource Block) of the multiple LBT channels other than the PRB included in the ICGB. With this configuration, it is possible to perform interlaced transmission of a channel including the ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
 前記制御部は、ICGBを制御チャネルに使用しない場合、ICGBを制御チャネルに使用する場合の制御チャネルのマッピングを適用し、前記送信部は、ICGBにマッピングされた制御チャネルを送信しなくてもよい。当該構成により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。 When ICGB is not used as a control channel, the control unit applies mapping of the control channel when ICGB is used as a control channel, and the transmission unit does not need to transmit the control channel mapped to ICGB. With this configuration, it is possible to perform interlaced transmission of a channel including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
 前記制御部は、ICGBを制御チャネルに使用する場合、ICGB内のPRB以外のPRBにマッピングされた情報をICGB内のPRBにコピーしてもよい。当該構成により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。 When the control unit uses the ICGB for a control channel, the control unit may copy information mapped to PRBs other than the PRBs in the ICGB to the PRBs in the ICGB. With this configuration, it is possible to perform interlaced transmission of a channel including the ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
 前記制御部は、ICGBを制御チャネルに使用しない場合、ICGB内のPRBにマッピングされる共有チャネルに制御情報をマッピングしなくてもよい。当該構成により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。 If the ICGB is not used as a control channel, the control unit does not need to map control information to a shared channel that is mapped to a PRB in the ICGB. With this configuration, it is possible to perform interlaced transmission of a channel including the ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band.
 また、本発明の実施の形態によれば、アンライセンスバンドにおいて、隣接する複数のLBT(Listen before talk)チャネルにおける送信に適用するインタレースされたチャネル構成を決定する手順と、前記複数のLBTチャネルにおいて、LBTを実行する手順と、前記LBTに成功した場合、前記チャネル構成に基づいて他の端末に送信する手順と、前記チャネル構成において、前記複数のLBTチャネル間のICGB(intra-cell guard band)を制御チャネルに使用するか否かを決定する手順とを端末が実行する通信方法が提供される。 In addition, according to an embodiment of the present invention, a communication method is provided in which a terminal executes the following steps in an unlicensed band: determining an interlaced channel configuration to be applied to transmissions in a plurality of adjacent LBT (Listen before talk) channels; executing LBT in the plurality of LBT channels; if the LBT is successful, transmitting to another terminal based on the channel configuration; and determining whether or not to use an ICGB (intra-cell guard band) between the plurality of LBT channels as a control channel in the channel configuration.
 上記の構成により、アンライセンスバンドにおける複数のLBTチャネルを使用する端末間直接通信において、ICGBを含むチャネルのインタレース送信を実行することができる。すなわち、アンライセンスバンドにおけるレギュレーションに適合する端末間直接通信のインタレース送信を実行することができる。 The above configuration makes it possible to perform interlaced transmission of channels including ICGB in direct communication between terminals using multiple LBT channels in an unlicensed band. In other words, it is possible to perform interlaced transmission in direct communication between terminals that complies with regulations in an unlicensed band.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary description of the embodiment)
Although the embodiment of the present invention has been described above, the disclosed invention is not limited to such an embodiment, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, and the like. Although the description has been given using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, those numerical values are merely examples and any appropriate value may be used. The division of items in the above description is not essential to the present invention, and items described in two or more items may be used in combination as necessary, and items described in one item may be applied to items described in another item (as long as there is no contradiction). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical parts. The operations of multiple functional units may be physically performed by one part, or the operations of one functional unit may be physically performed by multiple parts. The order of processing procedures described in the embodiment may be changed as long as there is no contradiction. For convenience of processing description, the base station 10 and the terminal 20 have been described using functional block diagrams, but such devices may be realized by hardware, software, or a combination thereof. The software operated by the processor possessed by the base station 10 in accordance with an embodiment of the present invention and the software operated by the processor possessed by the terminal 20 in accordance with an embodiment of the present invention may each be stored in random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure may be a mobile communication system (mobile communications system) for mobile communications over a wide range of networks, including LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), FRA (Future Ra The present invention may be applied to at least one of systems using IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and next-generation systems that are expanded, modified, created, or defined based on these. It may also be applied to a combination of multiple systems (for example, a combination of at least one of LTE and LTE-A with 5G, etc.).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described herein may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an exemplary order and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, certain operations that are described as being performed by the base station 10 may in some cases be performed by its upper node. In a network consisting of one or more network nodes having a base station 10, it is clear that various operations performed for communication with a terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (such as, but not limited to, an MME or S-GW). Although the above example shows a case where there is one other network node other than the base station 10, the other network node may be a combination of multiple other network nodes (such as an MME and an S-GW).
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information or signals described in this disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or added to. The output information may be deleted. The input information may be sent to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in this disclosure may be based on a value represented by one bit (0 or 1), a Boolean (true or false) value, or a comparison of numerical values (e.g., a comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "radio base station", "base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (RRH: Remote Radio Head)). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc. The moving object is a movable object, and the moving speed is arbitrary. It also includes the case where the moving object is stopped. The moving object includes, but is not limited to, for example, a vehicle, a transport vehicle, an automobile, a motorcycle, a bicycle, a connected car, an excavator, a bulldozer, a wheel loader, a dump truck, a forklift, a train, a bus, a handcar, a rickshaw, a ship and other watercraft, an airplane, a rocket, an artificial satellite, a drone (registered trademark), a multicopter, a quadcopter, a balloon, and objects mounted thereon. The moving object may also be a moving object that travels autonomously based on an operation command. It may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). In addition, at least one of the base station and the mobile station may be a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple terminals 20 (which may be called, for example, D2D (Device-to-Device) or V2X (Vehicle-to-Everything)). In this case, the terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to terminal-to-terminal communication (for example, "side"). For example, the uplink channel, downlink channel, etc. may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the user terminal described above.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as "judging" or "determining." Also, "determining" and "determining" may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as "judging" or "determining." Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment (decision)" can be interpreted as "assuming," "expecting," "considering," etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as RS (Reference Signal) or may be called a pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.). A slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station performs scheduling to allocate wireless resources (such as frequency bandwidth and transmission power that can be used by each terminal 20) to each terminal 20 in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured within one carrier for the terminal 20.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 may not be expected to transmit or receive a specific signal/channel outside the active BWP. Note that "cell," "carrier," and the like in this disclosure may be read as "BWP."
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。  Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended to be illustrative and does not have any limiting meaning on the present disclosure.
 本国際特許出願は2022年10月13日に出願した日本国特許出願第2022-165093号に基づきその優先権を主張するものであり、日本国特許出願第2022-165093号の全内容を本願に援用する。 This international patent application claims priority to Japanese Patent Application No. 2022-165093, filed on October 13, 2022, and the entire contents of Japanese Patent Application No. 2022-165093 are incorporated herein by reference.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system unit 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  アンライセンスバンドにおいて、隣接する複数のLBT(Listen before talk)チャネルにおける送信に適用するインタレースされたチャネル構成を決定する制御部と、
     前記複数のLBTチャネルにおいて、LBTを実行する受信部と、
     前記LBTに成功した場合、前記チャネル構成に基づいて他の端末に送信する送信部とを有し、
     前記制御部は、前記チャネル構成において、前記複数のLBTチャネル間のICGB(intra-cell guard band)を制御チャネルに使用するか否かを決定する端末。
    A control unit that determines an interlaced channel configuration to be applied to transmissions in a plurality of adjacent LBT (Listen Before Talk) channels in an unlicensed band;
    A receiving unit that performs LBT in the plurality of LBT channels;
    A transmission unit that transmits to another terminal based on the channel configuration when the LBT is successful,
    The control unit is a terminal that determines whether or not to use an intra-cell guard band (ICGB) between the multiple LBT channels as a control channel in the channel configuration.
  2.  前記制御部は、ICGBを制御チャネルに使用しない場合、ICGBに含まれるPRB(Physical Resource Block)以外の前記複数のLBTチャネルのPRBに制御チャネルをマッピングする請求項1記載の端末。 The terminal of claim 1, wherein the control unit maps the control channel to a PRB (Physical Resource Block) of the multiple LBT channels other than the PRB included in the ICGB when the ICGB is not used as a control channel.
  3.  前記制御部は、ICGBを制御チャネルに使用しない場合、ICGBを制御チャネルに使用する場合の制御チャネルのマッピングを適用し、
     前記送信部は、ICGBにマッピングされた制御チャネルを送信しない請求項1記載の端末。
    When ICGB is not used as a control channel, the control unit applies mapping of the control channel when ICGB is used as a control channel;
    The terminal according to claim 1 , wherein the transmitting unit does not transmit a control channel mapped to ICGB.
  4.  前記制御部は、ICGBを制御チャネルに使用する場合、ICGB内のPRB以外のPRBにマッピングされた情報をICGB内のPRBにコピーする請求項1記載の端末。 The terminal according to claim 1, wherein the control unit copies information mapped to PRBs other than the PRBs in the ICGB to the PRBs in the ICGB when the ICGB is used for a control channel.
  5.  前記制御部は、ICGBを制御チャネルに使用しない場合、ICGB内のPRBにマッピングされる共有チャネルに制御情報をマッピングしない請求項1記載の端末。 The terminal according to claim 1, wherein the control unit does not map control information to a shared channel that is mapped to a PRB in the ICGB when the ICGB is not used as a control channel.
  6.  アンライセンスバンドにおいて、隣接する複数のLBT(Listen before talk)チャネルにおける送信に適用するインタレースされたチャネル構成を決定する手順と、
     前記複数のLBTチャネルにおいて、LBTを実行する手順と、
     前記LBTに成功した場合、前記チャネル構成に基づいて他の端末に送信する手順と、
     前記チャネル構成において、前記複数のLBTチャネル間のICGB(intra-cell guard band)を制御チャネルに使用するか否かを決定する手順とを端末が実行する通信方法。
    determining an interlaced channel configuration to be applied to transmissions on a plurality of adjacent listen before talk (LBT) channels in an unlicensed band;
    performing LBT on the plurality of LBT channels;
    If the LBT is successful, transmitting the LBT to another terminal based on the channel configuration;
    A communication method in which a terminal executes a procedure of determining whether or not to use an ICGB (intra-cell guard band) between the multiple LBT channels as a control channel in the channel configuration.
PCT/JP2023/031328 2022-10-13 2023-08-29 Terminal and communication method WO2024080016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165093 2022-10-13
JP2022165093 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080016A1 true WO2024080016A1 (en) 2024-04-18

Family

ID=90669387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031328 WO2024080016A1 (en) 2022-10-13 2023-08-29 Terminal and communication method

Country Status (1)

Country Link
WO (1) WO2024080016A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351917A1 (en) * 2019-05-02 2020-11-05 Samsung Electronics Co., Ltd. Method and apparatus for transmission and reception of data channel in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351917A1 (en) * 2019-05-02 2020-11-05 Samsung Electronics Co., Ltd. Method and apparatus for transmission and reception of data channel in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITL: "On Physical Channel Design framework for SL-U", 3GPP TSG RAN WG1 #110B-E R1-2209773, 30 September 2022 (2022-09-30), XP052259246 *
NTT DOCOMO, INC.: "Discussion on channel design framework in SL-U", 3GPP TSG RAN WG1 #110B-E R1-2209905, 30 September 2022 (2022-09-30), XP052259378 *

Similar Documents

Publication Publication Date Title
WO2024080016A1 (en) Terminal and communication method
WO2024100747A1 (en) Terminal and communication method
WO2024105965A1 (en) Terminal and communication method
WO2024069828A1 (en) Terminal and communication method
WO2024095492A1 (en) Terminal and communication method
WO2024100748A1 (en) Terminal and communication method
WO2024069717A1 (en) Terminal and communication method
WO2024095493A1 (en) Terminal and communication method
WO2024069827A1 (en) Terminal and communication method
WO2024069773A1 (en) Terminal and communication method
WO2024089778A1 (en) Terminal and communication method
WO2024089779A1 (en) Terminal and communication method
WO2024100811A1 (en) Terminal and communication method
WO2024089894A1 (en) Terminal and communication method
WO2024080019A1 (en) Terminal and communication method
WO2024069826A1 (en) Terminal and communication method
WO2024100728A1 (en) Terminal and communication method
WO2024100730A1 (en) Terminal and communication method
WO2024106288A1 (en) Terminal and communication method
WO2024100729A1 (en) Terminal and communication method
WO2024029051A1 (en) Terminal and communication method
WO2024029053A1 (en) Terminal and communication method
WO2024029052A1 (en) Terminal and communication method
WO2024034106A1 (en) Terminal and communication method
WO2024034105A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877024

Country of ref document: EP

Kind code of ref document: A1