WO2024079958A1 - 雌雄判定装置及び雌雄判定方法 - Google Patents

雌雄判定装置及び雌雄判定方法 Download PDF

Info

Publication number
WO2024079958A1
WO2024079958A1 PCT/JP2023/026635 JP2023026635W WO2024079958A1 WO 2024079958 A1 WO2024079958 A1 WO 2024079958A1 JP 2023026635 W JP2023026635 W JP 2023026635W WO 2024079958 A1 WO2024079958 A1 WO 2024079958A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
egg
sex
determination
sexing
Prior art date
Application number
PCT/JP2023/026635
Other languages
English (en)
French (fr)
Inventor
真治 上出
修 芝
佳子 小澤
雄志 中矢
貴寛 田上
Original Assignee
株式会社日立ソリューションズ・クリエイト
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ソリューションズ・クリエイト, 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 株式会社日立ソリューションズ・クリエイト
Publication of WO2024079958A1 publication Critical patent/WO2024079958A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K43/00Testing, sorting or cleaning eggs ; Conveying devices ; Pick-up devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a sex determination device and a sex determination method.
  • a known method for determining the sex of eggs before they hatch is to use a laser beam to make a hole of 0.3 mm or less in the eggshell on the 9th day after incubation, collect allantoic fluid through the hole, and detect estrone sulfate in the allantoic fluid by colorimetric method to determine the sex.
  • Patent Document 1 discloses a technology for determining the condition of eggs, which includes the steps of irradiating eggs with multiple light pulses having a wavelength in the range of 400 to 1500 nm, a width in the range of about 0.5 to about 500 picoseconds, and an intensity in the range of about 0.1 to about 100 mJ, detecting reflected light of at least a portion of the multiple light pulses, and analyzing the detected reflected light to classify the eggs into at least one gender.
  • Patent Document 2 also discloses a technology for a non-invasive method of detecting the current state of a chicken egg, which includes the steps of obtaining a test measurement image by using a hyperspectral camera to measure the amount of light of at least one predetermined wavelength corresponding to the reflected light or transmitted light of the egg, comparing the test measurement image with a control measurement image, obtaining at least one spectrum of the egg in a predetermined wavelength range using the hyperspectral camera, comparing the spectra using a neural network algorithm, and evaluating the current state of the egg using the comparison result.
  • Patent Document 3 shows a non-destructive testing device for hatching eggs, which includes a light irradiation unit that irradiates light onto the hatching eggs, a light detection unit that detects the intensity of light that has passed through the hatching eggs, and a gender discrimination unit that performs preliminary discrimination based on the intensity of light that has passed through the hatching eggs at a first point in time that is a predetermined period of time after the start of incubation.
  • Patent Documents 1 to 3 enable sex determination by non-destructive spectroscopic means.
  • the method disclosed in Patent Document 1 requires irradiation of light pulses and detection of reflected light over a wide wavelength range from the visible light region to the near-infrared light region, which may take a long time to implement.
  • the method disclosed in Patent Document 2 requires special means such as measurement using a hyperspectral camera and processing using a neural network algorithm, which may result in excessive costs for implementation and implementation.
  • the object of the present invention is to provide a technology that enables highly accurate and non-destructive sex determination in the early stages of incubation.
  • the sexing device of the present invention which solves the above problem, is characterized by comprising: an irradiation means for irradiating each egg with light of a predetermined wavelength within a predetermined period from the start of incubation; an image taking means for taking an image of each irradiated egg; a means for generating a sexing model using the results of a separate sexing judgment for each egg and the spectral data obtained by the image taking of the egg as learning data; and a means for inputting the spectral data obtained by the irradiation means and the image taking means for a new target egg for sexing into the sexing model to determine the sex of the target egg.
  • Spectral data is a numerical representation of the intensity or absorbance of light acquired for each wavelength.
  • the inventor discovered that sexing is possible by the fact that there are characteristics of intensity for each wavelength band for each sex.
  • the sex-determining method of the present invention is characterized by carrying out the following steps: an irradiation step of irradiating each egg within a predetermined period from the start of incubation with light of a predetermined wavelength; a photography step of photographing each irradiated egg; a step of generating a sex-determination model using the results of a separate determination of the sex of each egg and the spectral data obtained from the photography of the eggs as learning data; and a step of determining the sex of a new target egg for sex determination by inputting the spectral data obtained from the irradiation step and the photography step into the sex-determination model.
  • the present invention makes it possible to perform highly accurate, non-destructive sex determination early in incubation.
  • FIG. 1 is a diagram showing an example of the configuration of a sex determination system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the configuration of a sex determining device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the configuration of a spectrum data collecting server according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a learning data DB according to the present embodiment.
  • FIG. 4 is a diagram illustrating an example of a configuration of a threshold parameter according to the present embodiment.
  • FIG. 13 is a diagram illustrating an example of a configuration of a determination method setting parameter according to the present embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a sex determination system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the configuration of a sex determining device according to an embodiment of the present invention.
  • FIG. 2 is a diagram
  • FIG. 13 is a diagram illustrating an example of the configuration of a determination result DB according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a flow of a sex determination method according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the flow of a sex determination method according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a flow of a sex determination method according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a flow of a sex determination method according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the flow of a sex determination method according to the present embodiment.
  • Fig. 1 is a diagram showing an example of the configuration of a sexing system 10 including a sexing device 10 of this embodiment.
  • the sexing system 10 shown in Fig. 1 is composed of an incubation tray 2 on which chicken eggs 1 are placed for incubation processing, a light source 11, a visible light/near-infrared light camera 12, the light source 11, a terminal 150, and a spectrum data collection server 200 in addition to the sexing device 100.
  • egg 1 is a chicken egg to be sexed. This egg 1 is placed on an incubation tray 2 of an incubator and is managed under appropriate conditions. The egg 1 placed on the incubation tray 2 is irradiated with light of an appropriate wavelength by a light source 11.
  • the light source 11 is, for example, a light-emitting unit including an LED (Light Emitting Diode) element.
  • the light emitted by this light source 11 is visible light to near-infrared light (light that can be captured by the imaging element of the visible light/near-infrared light camera 12), and is preferably assumed to have a wavelength of, for example, around 600 to 1000 nm.
  • these wavelengths are merely examples, and the light is not limited to 400 to 1050 nm, 1150 to 2500 nm, etc., as long as it can be captured by the visible light/near-infrared light camera 12.
  • the light source 11 include a light emitting element selected from the group consisting of a halogen lamp and EverGlo ceramic.
  • the reflected light of the light source 11 generated in the egg 1 is captured by the imaging element of the visible light/near-infrared light camera 12.
  • the visible light/near-infrared light camera 12 photographs the egg 1.
  • the imaging element for example, a CCD (Carge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) may be used, but is not limited to these.
  • the chicken egg 1 to be sexed as described above is one that is sexed within 6 days of the start of incubation. From the perspective of animal welfare, it is very meaningful to perform sexing before the 7th day from the start of incubation, when it is believed that the embryo in the chicken egg 1 acquires a sense of pain, that is, before the chicken egg 1 (a concept that includes the embryo that develops in the egg and the subsequent chick) can feel pain.
  • the sex determination device 100 of this embodiment is communicatively connected to a terminal 150 and a spectrum data collection server 200 via a network 5. Therefore, these may be collectively referred to as the sex determination system 10.
  • the sex determination device 100 of this embodiment can be said to be a service provider that appropriately acquires information from the constituent devices of the sex determination system 10 as described above and determines the sex of the chicken eggs 1 placed on the incubation trays 2.
  • the terminal 200 is a device or a terminal of a person in charge that performs highly accurate sex determination using an algorithm different from that of the sex determination device 100 of this embodiment. Specifically, it can be a personal computer, a smartphone, a tablet terminal, etc. The algorithm that performs this highly accurate sex determination will be described later.
  • the spectral data collection server 200 is a server that acquires spectral data obtained by photographing the chicken egg 1 with the visible light/near-infrared light camera 12 from the visible light/near-infrared light camera 12 (or its control system, etc.), and stores and manages the data by linking it to attribute information such as the visible light/near-infrared light camera 12 and the photographing conditions.
  • This spectral data collection server 200 distributes the obtained spectral data to the sex determination device 100 via the network 5 immediately each time it obtains spectral data from the visible light/near-infrared light camera 12, or each time the data is obtained and stored within a certain period of time.
  • the sex determining system 10 of this embodiment includes a sex determining device 100 having a hardware configuration as shown in FIG.
  • the sex determination device 100 includes a storage 101, a memory 103, a CPU 104, and a communication device 105.
  • the sex determination device 100 may further include the light source 11 and the visible light/near-infrared light camera 12 described above.
  • storage 101 is composed of an appropriate non-volatile memory element such as an SSD (Solid State Drive) or a hard disk drive.
  • SSD Solid State Drive
  • hard disk drive any suitable non-volatile memory element
  • memory 103 is composed of a volatile memory element such as RAM.
  • the CPU 104 also reads out the program 102 stored in the storage 101 into the memory 103 and executes it to perform overall control of the device itself, as well as various types of judgments, calculations, and control processes.
  • the communication device 105 is assumed to be a network interface card or the like that is connected to the network 5 and handles communication processing with the terminal 150 and the spectrum data collection server 200.
  • the sex determination device 100 is a stand-alone machine, it is preferable for it to further include an input device that accepts key input or voice input from the user, and an output device such as a display that displays processed data.
  • the storage 101 also stores at least a learning data DB 1013, a determination result DB 1014, threshold parameters 1015, and determination method setting parameters 1016.
  • a learning data DB 1013 a learning data DB 1013
  • a determination result DB 1014 threshold parameters 1015
  • determination method setting parameters 1016 determination method setting parameters
  • the program 102 also includes a model creation engine 1011 and a sexing model 1012. Details will be described later, but the model creation engine 1011 is an engine that performs machine learning using a large amount of photography data (spectral data and its conditions, etc.) related to eggs and the labels of the photographed eggs (determination results of whether they are male or female) as learning data, and generates a sexing model 1012 that determines the sex of the egg 1.
  • the sexing model 1012 is a model created by the model creation engine 1011 described above.
  • the hardware configuration of the spectrum data collecting server 200 of this embodiment is as shown in Fig. 3. That is, the spectrum data collecting server 200 includes a storage 201, a memory 203, a CPU 204, and a communication device 205.
  • storage 201 is composed of an appropriate non-volatile memory element such as an SSD (Solid State Drive) or a hard disk drive.
  • SSD Solid State Drive
  • hard disk drive any suitable non-volatile memory element
  • the memory 203 is composed of a volatile memory element such as a RAM.
  • the CPU 204 also reads out the program 202 stored in the storage 201 into the memory 203 and executes it to perform overall control of the device itself, as well as various types of judgment, calculation, and control processing.
  • the communication device 205 is assumed to be a network interface card or the like that is connected to the network 5 and handles communication processing with the gender determination device 100.
  • the storage 201 also stores at least a photographed spectrum data DB 2011 in addition to a program 202 for implementing functions required for the spectrum data collection server 200 of this embodiment.
  • the photographed spectrum data DB 2011 will be described in detail later.
  • the learning data DB 1013 of this embodiment is a database that links the spectral data distributed from the spectral data collection server 200 with the sex determination results (obtained from the terminal 150) obtained for the chicken eggs that are the subject of the spectral data, and stores and manages the data as learning data for machine learning, i.e., learning data for the model creation engine 1011.
  • This learning data DB 1013 is a collection of records that link data such as the start date of incubation, number of days of incubation, type of egg, file name, camera, light source, light intensity, temperature, and humidity, using, for example, a serial number as a key.
  • the number of days of incubation is the number of days that have passed since the start of incubation.
  • the type of egg indicates whether the shell of the target egg is white or red.
  • the file name indicates the name (and where it is stored) of the spectral data obtained for the egg by photographing it with a visible light and near-infrared camera.
  • the cameras are also arranged around the incubation tray 2 of the incubator, and indicate the identification information of the camera that photographs the eggs on the incubation tray 2.
  • the light source indicates the identification information of the light source used to photograph the eggs on the incubation tray 2.
  • the light intensity indicates the intensity of the light emitted by the light source.
  • the temperature indicates the temperature near the incubation tray 2 at the time of photographing, and the humidity indicates the humidity in the same area.
  • the sex determination is a highly accurate result input by the operator of the terminal 150. Details of this sex determination will be described later.
  • FIG. 5 shows an example of the threshold parameters 1015 in this embodiment.
  • the threshold parameters 1015 in this embodiment are values that specify multiple patterns of photography methods and photography dates for the chicken egg 1, and define the judgment threshold and weighting for each of the patterns.
  • These threshold parameters 1015 are composed of the following values: photography/data collection method, day, female determination threshold, and weighting.
  • photography/data collection method indicates the type of visible light/near-infrared light camera.
  • the day is a value that specifies the number of days after the start of incubation on which to take the photograph.
  • the female determination threshold is a threshold for determining that a male is female if the confidence level of the sex determination model 1012 is equal to or higher than the female determination threshold.
  • the weighting is the weighted determination value (unit: %) in the overall determination described below.
  • the female determination threshold mentioned above can be changed, and by operating in this way, it is possible for this system to contribute to animal welfare while also providing economic benefits. For example, by setting the female determination threshold lower than a certain standard, it is possible to meet the need to determine the sex as quickly as possible, even if there is a certain degree of possibility that male eggs may be mixed in with eggs 1 determined to be female.
  • the female determination threshold higher than a certain standard, it is possible to meet the need to keep the possibility of male eggs being mixed in with eggs 1 determined to be female extremely low, even if it may take a few days (up to 6 days from the start of incubation).
  • sex determination can be performed with an emphasis on high accuracy.
  • FIG. 6 shows an example of the determination method setting parameter 1016 in this embodiment.
  • the determination method setting parameter 1016 in this embodiment is a value that specifies the gender determination algorithm executed by the gender determination device 100.
  • the determination method setting parameter 1016 is composed of a serial number, a setting value, and a default value. Of these, the setting value indicates the user-specified algorithm used for sex determination. In the example shown, the value of "Overall determination (weighted determination)" is set. This algorithm performs sex determination based on, for example, the results of sex determination for all specified shooting dates and the "weighting" value of the threshold parameter 1015.
  • a comprehensive determination (majority vote) algorithm determines the sex of the egg by taking a majority vote on the sex determination results for all specified photo dates.
  • FIG. 7 shows an example of the configuration of the determination result DB 1014 in this embodiment.
  • This determination result DB 1014 is a database that stores the results of sex determination of the egg 1 by the sex determination model 1012 of the sex determination device 100 of this embodiment.
  • This judgment result DB1014 is composed of records that include the serial number, lot number, subject egg, photography/data collection method 1....photography/data collection method n, and the final judgment value.
  • the lot number is identification information for the lot to which the target egg belongs.
  • the target egg is also a value that indicates its position on the incubation tray 2 of the incubator, and indicates, for example, the number of the incubation tray 2 and the position coordinates of the egg 1 on the incubation tray 2 of that level (similar concept to coordinate values in a coordinate space).
  • the values in the shooting/data collection method column indicate the results of sex determination made by the sex determination model 1012 for the spectral data obtained by shooting under conditions corresponding to the values in each of the shooting/data collection method columns in the threshold parameters 1015 in FIG. 5.
  • the value in the final judgment column indicates the result of the final judgment made by the sexing algorithm, such as immediate judgment or comprehensive judgment.
  • Model creation> The actual procedure of the sexing method according to this embodiment will be described below with reference to the drawings.
  • the various operations corresponding to the sexing method described below are realized by a program that is read into a memory or the like and executed by the sexing device 100. This program is composed of codes for performing the various operations described below.
  • FIG. 8A is a diagram showing an example of the flow of the sex determination method in this embodiment.
  • the sex determination device 100 controls the light source 11 to irradiate the eggs on the incubation tray 2 with light of a predetermined wavelength (s1).
  • the wavelength of this light is as already described.
  • the sex determination device 100 detects the light emitted outside the egg as a result of the light being irradiated by the light source 11 and either passing through the egg or being reflected within the egg (s2). This detection is performed, for example, by a photodetector.
  • This photodetector means is composed of a photodetector element selected from the group consisting of silicon, PbS (lead sulfide), InGaAs (indium gallium arsenide), and arsenide.
  • the sex determination device 100 acquires the visible and near-infrared spectrum of the detected light using a spectroscopic device.
  • the sex determination device 100 also controls the visible light/near-infrared light camera 12 to photograph the above-mentioned chicken eggs (s3) and stores the spectral data in the spectral data collection server 200.
  • the visible light/near-infrared light camera 12 stores the spectral data of the photographed chicken eggs in the spectral data collection server 200 (s4).
  • the sex determining device 100 determines the sex of the egg based on the visible and near-infrared spectrum data of the egg obtained up to this point (s5). The result of this determination is stored in the "sex determination" column in the learning data DB 1013.
  • the sex determining device 100 determines the sex of the egg based on spectral data in the wavelength region of the visible and near-infrared spectrum ranging from 1700 to 2500 nm.
  • this method of sexing based on visible and near-infrared spectra consists of a light irradiation process, a light detection process, a spectrum acquisition process, and a sexing process.
  • the light irradiation step involves irradiating the egg 1 with light having a wavelength ranging from the visible light region to the near-infrared light region.
  • visible light refers to light having a wavelength in the 400-900 nm wavelength region, which includes the 400-750 nm wavelength region that corresponds to visible light.
  • near-infrared light refers to light having a wavelength in the 900-2500 nm wavelength region.
  • light having a wavelength in the visible light range to the near infrared light range means light having a wavelength in the wavelength range of 400 to 2500 nm.
  • the light irradiated in this process (hereinafter also referred to as "irradiation light”) preferably has a wavelength in the wavelength range of 400 to 2500 nm, and more preferably has a wavelength in the range of 400 to 900 nm and 1700 to 2500 nm.
  • the irradiated light may be light having all wavelengths consecutively within the above-mentioned wavelength range, or light having some wavelengths (e.g., specific wavelengths) within the wavelength range.
  • irradiating light having wavelengths within the above-mentioned wavelength range it is possible to perform highly accurate sex determination in the sex determination process described below.
  • by selectively irradiating light having specific wavelengths for example, wavelengths within the wavelength ranges of 400 to 900 nm and 1700 to 2500 nm, it is possible to narrow the wavelength sweep range and shorten the time required to perform this process.
  • the irradiated light can be applied to the egg from various directions.
  • the irradiated light is applied to a chicken egg arranged so that the long axis connecting the blunt end and the sharp end is perpendicular to the horizontal plane, from above the egg in any direction passing through the animal pole or embryo (for example, in a direction in the range of 0 to 50° with respect to the long axis, and particularly in a direction parallel to the long axis on a plane parallel to the vertical plane including the long axis) (hereinafter, also referred to as the "first embodiment").
  • the irradiated light is light that is irradiated from the side of a chicken egg, which is positioned so that the long axis connecting the blunt end and the sharp end is parallel to the horizontal plane, in any direction passing through the animal pole or embryo (for example, in a direction in the range of 0 to 90° to the long axis, and particularly in a direction perpendicular to the long axis on a plane parallel to the horizontal plane that includes the long axis) (hereinafter also referred to as the "second or fourth embodiment").
  • the irradiated light is light that is irradiated from above the egg in any direction passing through the animal pole or embryo (for example, in a direction within a range of 40 to 90° from the long axis, particularly in a direction perpendicular to the long axis on a plane parallel to the vertical plane that includes the long axis) onto a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to the horizontal plane (hereinafter also referred to as the "third or sixth embodiment").
  • the irradiated light is a light that is irradiated from below the egg in any direction passing through the animal pole or embryo (for example, in a direction within a range of 40 to 90° from the long axis, particularly in a direction perpendicular to the long axis on a plane parallel to a vertical plane that includes the long axis) onto a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane (hereinafter, also referred to as the "fifth embodiment").
  • the irradiated light is a light that is irradiated in a direction parallel to the long axis line connecting the blunt end and the sharp end of the egg, on a plane parallel to the vertical plane that includes the long axis line, so as to pass from above the egg through the animal pole or embryo, with the egg being positioned so that the long axis line is perpendicular to the horizontal plane.
  • the irradiated light is a light that is irradiated in a direction perpendicular to the long axis line connecting the blunt end and the sharp end of the egg, on a plane parallel to the horizontal plane and including the long axis line, so as to pass through the animal pole or embryo from the side of the egg and perpendicular to the long axis line.
  • the irradiated light is a light that is irradiated from above the egg in a direction perpendicular to the long axis, on a plane parallel to a vertical plane that includes the long axis, so as to pass through the animal pole or embryo of the egg that is positioned such that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane.
  • the irradiated light is a light that is irradiated from below the egg in a direction perpendicular to the long axis, on a plane parallel to a vertical plane that includes the long axis, so as to pass through the animal pole or embryo, on a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane.
  • parallel means that lines and/or surfaces are in a completely or approximately parallel, perpendicular, or orthogonal positional relationship.
  • this process is carried out with the egg fixed so that the egg 1 and the irradiated light are positioned in the positional relationship described above. For this reason, it is preferable to use an incubation tray 2 in this process to position the egg as described above.
  • an incubation tray 2 When an incubation tray 2 is used, the egg is placed on the top surface of the incubation tray 2, for example.
  • passing through the animal pole or embryo and “passing through the yolk” mean that light passes through the animal pole or embryo in a chicken egg, or at least a portion of the yolk.
  • a position passing through the animal pole or embryo means for example, a position in the range of 15-30 mm, typically 17-25 mm, from the acute end of the egg.
  • a position passing through the yolk means for example, a position in the range of 20-60 mm, typically 27-52 mm, from the acute end of the egg.
  • This process is preferably carried out by irradiating light inside a storage member that contains the eggs and incubation trays.
  • the storage member is preferably a member that can substantially block external light, such as a dark box.
  • the light emitted in the above-mentioned light irradiation process is sometimes referred to as "transmitted light” and the light emitted outside the egg as a result of the light being reflected within the egg in the light irradiation process is sometimes referred to as "reflected light.”
  • the transmitted light and reflected light can be selected based on a combination of the light irradiation position in the light irradiation process and the light detection position in this process, it is difficult to strictly separate the transmitted light and the reflected light from each other. Therefore, in this embodiment, the transmitted light may contain a certain proportion of reflected light, and the reflected light may contain a certain proportion of transmitted light.
  • an embodiment in which sexing is performed by detecting transmitted light emitted outside the egg may be referred to as the "transmission method,” and an embodiment in which sexing is performed by detecting reflected light emitted outside the egg may be referred to as the "reflection method.”
  • the transmitted or reflected light detected in this process preferably has a wavelength in the wavelength range of 400 to 2500 nm, and more preferably has a wavelength in the range of 400 to 900 nm and 1700 to 2500 nm.
  • the transmitted or reflected light may be light that continuously contains all wavelengths in the wavelength range described above, or it may be light that contains only a portion of the wavelengths (e.g., a specific wavelength) that belong to the wavelength range described above.
  • the detected light is light (transmitted light) that passes through an egg that is positioned so that the long axis connecting the blunt end and the sharp end is perpendicular to the horizontal plane and is emitted to the side of the egg, and that passes through the yolk of the egg in any direction (for example, in a direction within a range of 40 to 90° relative to the long axis, particularly in a direction perpendicular to the long axis on a horizontal plane perpendicular to the long axis) (hereinafter, also referred to as the "first embodiment").
  • the detected light is light (transmitted light) that passes through a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to the horizontal plane and is emitted downward from the egg, and is emitted in any direction (for example, in a direction within a range of 40 to 90° to the long axis, and in particular in a direction perpendicular to the long axis on a plane parallel to a vertical plane that includes the long axis) so as to pass through the yolk of the egg (transmitted light) (hereinafter also referred to as the "second or third embodiment").
  • the detected light is light (transmitted light) that passes through a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to the horizontal plane and is emitted to the side of the egg, and is emitted in any direction (for example, in a direction in the range of 0 to 90° with respect to the long axis, and in particular in a direction perpendicular to the long axis on a plane that includes the long axis and is parallel to the horizontal plane) so as to pass through the yolk of the egg (hereinafter, also referred to as the "fourth embodiment").
  • the light detected is light (reflected light) that is reflected inside a chicken egg that is placed so that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane and is emitted downward from the egg, and that passes through the yolk of the egg in any direction (for example, in a direction in the range of 40 to 90 degrees from the long axis, and in particular in a direction of 45 degrees from the long axis on a plane that is parallel to a vertical plane that includes the long axis) (hereinafter, also referred to as the "fifth embodiment").
  • the light detected is light (reflected light) that is reflected inside a chicken egg that is placed so that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane and is emitted above the egg, and that passes through the yolk of the egg in any direction (for example, in a direction within a range of 40 to 90° to the long axis, and in particular in a direction perpendicular to the long axis on a plane parallel to a vertical plane that includes the long axis) (hereinafter, also referred to as the "sixth embodiment").
  • the detected light is light (transmitted light) that passes through a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is perpendicular to the horizontal plane and is emitted to the side of the egg, and is also light (transmitted light) that passes through the yolk of the egg and is emitted in a direction perpendicular to the long axis on a horizontal plane perpendicular to the long axis.
  • the detected light is light (transmitted light) that passes through a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to the horizontal plane and is emitted downward from the egg, and is also emitted in a direction perpendicular to the long axis on a plane parallel to a vertical plane that includes the long axis, so as to pass through the yolk of the egg.
  • the detected light is light (transmitted light) that passes through a chicken egg that is positioned so that the long axis connecting the blunt end and the sharp end is parallel to the horizontal plane and is emitted to the side of the egg, and is emitted in a direction perpendicular to the long axis on a plane parallel to the horizontal plane that includes the long axis so as to pass through the yolk of the egg.
  • the light detected is light (reflected light) that is reflected inside a chicken egg that is placed so that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane and is emitted downward from the egg, and is emitted at a 45° angle to the long axis on a plane parallel to a vertical plane that includes the long axis so as to pass through the yolk of the egg.
  • the light to be detected is light (reflected light) that is reflected inside a chicken egg that is placed so that the long axis connecting the blunt end and the sharp end is parallel to a horizontal plane and is emitted above the egg, and is emitted in a direction perpendicular to the long axis on a plane parallel to a vertical plane that includes the long axis so as to pass through the yolk of the egg.
  • the spectrum acquisition process is a process for acquiring the visible and near-infrared spectra of the light detected in the light detection process described above.
  • This step is carried out by generating visible and near-infrared spectra based on the light detected in the light detection step.
  • Means for generating visible and near-infrared spectra include visible and near-infrared spectroscopic devices commonly used in the art.
  • Visible and near-infrared spectrometers are usually connected to a data analysis device that stores a program for analyzing spectral data in addition to a control program for the visible and near-infrared spectrometer. Therefore, by using a visible and near-infrared spectrometer, it is possible to generate visible and near-infrared spectra and analyze the spectral data in a short period of time.
  • the visible and near-infrared spectra acquired in this process may be the spectra in their original state, or may be second-derivative spectra obtained by subjecting the spectra to second-derivative processing. Second-derivative spectra are preferred because they can reduce the effects of baseline changes, etc. By acquiring second-derivative spectra in this process, sexing can be performed with high accuracy.
  • the sex determination process is a process for determining the sex of the egg 1 based on the visible and near-infrared spectral data acquired in the above-mentioned spectrum acquisition process.
  • a multivariate analysis known in the art can be applied as a means for determining the sex of the egg 1 based on the spectral data.
  • the multivariate analysis include principal component analysis and partial least squares discriminant analysis (PLS discriminant analysis).
  • PLS discriminant analysis partial least squares discriminant analysis
  • suitable models include PLS-DA.
  • a sex determination model is created.
  • a predetermined number of chicken eggs of known sex are used to carry out the light irradiation step, light detection step, and spectrum acquisition step to obtain standard visible and near-infrared spectra for each sex.
  • the visible and near-infrared spectra acquired are preferably second derivative spectra.
  • Sex determination of chicken eggs used to obtain standard visible and near-infrared spectra may be carried out by applying a sex determination method known in the art.
  • sex determination methods include a genetic analysis method in which samples of chicken egg embryos and blood are collected, and DNA extracted from the collected samples is used to determine sex by multiplex PCR using sex-specific primers, and a method in which the collected samples are analyzed by an instrument to determine sex based on the component concentrations (e.g., hormone concentrations) in the samples.
  • component concentrations e.g., hormone concentrations
  • the sex determination method exemplified above can be carried out by cracking the egg used after acquiring the standard visible and near-infrared spectra, and taking a sample. Next, a principal component analysis is carried out on the standard spectral data groups for both sexes. In the standard principal component space for both sexes, it is preferable to detect outliers using Mahalanobis distance and obtain a principal component score plot with the outliers removed. The obtained principal component score plot can be used as a sex determination model.
  • a light irradiation step, a light detection step, and a spectrum acquisition step are performed on the chicken eggs to be measured to acquire visible and near-infrared spectra.
  • the acquired visible and near-infrared spectra are preferably second derivative spectra.
  • a principal component analysis is performed on the acquired spectral data of the visible and near-infrared spectra, and the obtained principal component scores are applied to the principal component space of the sex determination model to determine the sex.
  • methods for applying the principal component scores of the measured egg to the principal component space of the sex determination model include, for example, the residual variance method in the principal component space, the maximum distance method by wavelength, and the Mahalanobis distance in the principal component space.
  • the creation of a sex determination model by multivariate analysis and the sex determination of the measurement subject may be performed using, for example, a data analysis device such as a computer installed with commercially available multivariate analysis software commonly used in the technical field, or a data analysis device such as a computer connected to the visible and near-infrared spectrometer used in the spectrum acquisition step.
  • the data analysis device connected to the visible and near-infrared spectrometer usually stores a program for performing multivariate analysis of spectral data. Therefore, by performing this step using a data analysis device connected to the visible and near-infrared spectrometer, sex determination can be performed at low cost.
  • the sexing model may be created using multivariate analysis each time this process is performed. However, it is preferable to store the data of the sexing model created in advance in the storage 101 of the sexing device 100, and to call it up and use it when this process is performed on the eggs to be measured. In this embodiment, the time required for sexing can be shortened.
  • sex determination can be performed with high accuracy by performing sex determination based on spectral data in the wavelength region of 1700 to 2500 nm.
  • the wavelength region of the spectral data used in this process is in the range of 1700 to 2500 nm, preferably in the range of 1700 to 2200 nm or 1800 to 2500 nm, and more preferably in the range of 1800 to 2200 nm.
  • the spectral data used in this process may be spectral data of light having continuously all wavelengths belonging to the wavelength region of the above range, or may be spectral data of light having some wavelengths (e.g., specific wavelengths) belonging to the wavelength region of the above range.
  • the wavelength range mentioned above belongs to the long-wavelength near-infrared light range. From the spectral data in the long-wavelength wavelength range, information on the various components such as proteins and fats contained in the eggshell and inside the egg can be obtained. It is believed that there are slight differences in composition between males and females in the various components contained inside the egg, particularly in the animal pole of the yolk or the embryo. Therefore, by carrying out this process based on the spectral data in the long-wavelength near-infrared light range mentioned above, it is possible to determine the sex with high accuracy based on the slight differences in composition of the various components contained in the eggshell and inside the egg.
  • the sexing device 100 links the sexing result (highly accurate using a different algorithm) obtained in s5 as a label to the spectrum data of the egg 1 obtained in s3 and s4 in the flow in FIG. 8A described above (s10).
  • the sexing device 100 then performs appropriate processing on the spectrum data to which the labels were attached in s10, such as deleting unnecessary data and emphasizing characteristic data, to create learning data (s11).
  • the sexing device 100 stores the learning data created here in the learning data DB 1013.
  • the sexing device 100 also provides the learning data obtained in s11 to the model creation engine 1011, and proceeds with machine learning using, for example, a gradient boosting method to create a sexing model 1012 (s12), and ends the process.
  • the sexing device 100 stores and holds the sexing model 1012 created here in the storage 101.
  • a method other than gradient boosting may be used as the above-mentioned machine learning method.
  • sex determination> The above-mentioned processing according to the flow shown in Figures 8A and 8B was performed on a large number of chicken eggs within 6 days after the start of incubation, in order to generate the sexing model 1012. Meanwhile, a flow for accurately determining the sex of chicken eggs 1 in the early stages of incubation using such sexing model 1012 will be described with reference to Figures 9 to 11.
  • the sex determination device 100 executes this flow for each chicken egg 1 on the incubation tray 2 for all the days of photography (i.e., a total of six days from the start of incubation to the sixth day).
  • the sex determination device 100 detects whether the eggs on the incubation tray 2 have reached a specified number of days of incubation, such as the second or third day since the start of incubation, by obtaining information on the number of days of incubation from an incubation management system or the like (s30).
  • the sexing device 100 then sends an instruction to the visible/near-infrared camera 12 to capture and collect data on the egg image (photography/data collection methods 1-n) (s31).
  • the visible/near-infrared camera 12 captures the image of the egg 1 using each method (s32) and obtains spectral data.
  • the sexing device 100 also acquires spectral data of the egg 1 from the above-mentioned visible light/near-infrared light camera (s33).
  • s33 visible light/near-infrared light camera
  • the management system for the visible light/near-infrared light camera 12 distributes the spectral data to the sexing device 100 via the network 5.
  • the sex determination device 100 refers to the setting value of the determination method setting parameter 1016 and identifies the algorithm for sex determination (s34).
  • the sex determination device 100 executes a series of instant determination processes shown in the flow of FIG. 10 (s35).
  • the sexing device 100 inputs the spectral data of the egg 1 for the corresponding number of days of incubation taken by the corresponding visible light/near infrared light camera 12 into the sexing model 1012 according to the values specified in the fields for the photography/data collection method and date of the threshold parameters 1015 shown in FIG. 5, and performs sexing (s351, s354, ... s357).
  • the sex determination device 100 stores the sex determination result of the egg 1 on that day in the corresponding column in the determination result DB 1014, and ends the process.
  • the sex determining device 100 similarly performs sex determination using the sex determining model 1012 on the next day and on the spectral data from the photographing and data collection method. If the result of this series of sex determinations is "male" on any day, the egg 1 is marked as not to be incubated or is removed from the incubation tray 2, and the process ends.
  • the sexing device 100 inputs the spectral data obtained by each imaging and data collection method on each day into the sexing model 1012 as shown in the flow in Figure 10, and obtains the sexing result (s361 to s363).
  • the sex determination device 100 also performs a comprehensive sex determination process (s364) for each sex determination result obtained up to s363, according to the "female determination threshold” and "weighting" defined by the threshold parameter 1015 in Fig. 5.
  • This process determines sex based on whether the spectral data on the third day is 90% or more in terms of americanity, and multiplies the result of the sex determination (e.g., "1" for female, "0" for male) by a weighting value, for example, for each spectral data obtained up to the previous day. If the average value of the multiplication results obtained for each day is equal to or greater than a predetermined threshold, the sex of the egg 1 is determined to be female (s365: female), and the process ends.
  • the sex of the egg 1 is judged to be male (s365: male), and the egg 1 is marked as not to be incubated or is removed from the incubation tray 2 (s367), and the process ends.
  • the irradiation means may irradiate light with a wavelength that belongs to the visible light range to the near-infrared light range, and the photographing means may be a visible light/near-infrared light camera.
  • the sex determining device of this embodiment further includes a light detection means for detecting light emitted outside the egg when the light irradiated by the irradiation means passes through or is reflected within the egg, a spectrum acquisition means for acquiring the visible and near-infrared spectrum of the light detected by the light detection means, and a sex determination means for determining the sex of the egg based on the spectral data in the wavelength region of 1700 to 2500 nm in the visible and near-infrared spectrum acquired by the spectrum acquisition means, and the result of the determination by the sex determination means may be used as the result of the separate determination.
  • the irradiating step may involve irradiating light with a wavelength in the visible light to near-infrared light range
  • the photographing step may involve photographing the image using a visible light/near-infrared light camera.
  • the sexing method of this embodiment further includes a light detection step of detecting light emitted outside the egg when the light irradiated in the irradiation step passes through the egg or is reflected within the egg, a spectrum acquisition step of acquiring the visible and near-infrared spectrum of the light detected in the light detection step, and a sexing step of determining the sex of the egg based on the spectral data in the wavelength region of 1700 to 2500 nm in the visible and near-infrared spectrum acquired in the spectrum acquisition step, and the result of the sexing step may be used as the result of the separate determination.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

雌雄判定装置100において、孵卵開始から所定期間内の各鶏卵に対し、所定波長の光を照射する照射手段と、前記照射がなされた各鶏卵の撮影を行う撮影手段と、前記各鶏卵それぞれの雌雄に関して別途判定した結果と、当該鶏卵に関する前記撮影で得たスペクトルデータとを学習データとして、雌雄判定モデルを生成する手段と、新たな雌雄判定の対象鶏卵に関して、前記照射手段及び前記撮影手段により得たスペクトルデータを、前記雌雄判定モデルに入力することで、前記対象鶏卵の雌雄判定を行う手段を含む構成とする。

Description

雌雄判定装置及び雌雄判定方法
 本発明は、雌雄判定装置及び雌雄判定方法に関するものである。
===参照による取り込み===
 本出願は、2022年10月11日に出願された日本特許出願第2022-163035号の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 採卵鶏は、孵化後(孵卵後21日目)に羽毛鑑別により雌雄判定が行われている。判定の結果、雄は、通常は殺処分される。近年では、日本国内で毎年1億羽、全世界で60億羽の雄雛が殺処分されると推定される。孵化後の雄雛を殺処分することは、アニマルウェルフェアの観点から大きな問題となっている。
 そこで孵化前における雌雄判定方法として、孵卵後約9日目の卵に、レーザー光を用いて卵殻に0.3mm以下の穴を形成し、該穴を介して尿膜液を採取し、尿膜液中の硫酸エストロンを比色法により検出して雌雄を判定する方法が知られている。
 例えば、特許文献1に、卵の状態を判定する方法として、400~1500nmの範囲の波長、約0.5~約500ピコ秒の範囲の幅、及び約0.1~約100mJの範囲の強度を有する複数の光パルスを照射する工程、複数の光パルスの少なくとも一部の反射光を検出する工程、及び検出した反射光を分析して少なくとも1つの性別に分類する工程を含む技術が示されている。
 また、特許文献2には、鶏卵の現在の状態を検出する非侵襲的方法として、ハイパースペクトルカメラを用いて鶏卵の反射光又は透過光に対応する少なくとも1つの所定の波長の光量を測定することにより試験測定画像を得る工程、試験測定画像を対照の測定画像と比較する工程、該ハイパースペクトルカメラを用いて、所定の波長領域の鶏卵のスペクトルの少なくとも1つを得る工程、及びニューラルネットワークアルゴリズムを用いてスペクトルを比較する工程、比較した結果を用いて鶏卵の現在の状態を評価する工程を含む技術が示されている。
 さらに特許文献3には、光を種卵に照射する光照射部と前記種卵を透過した光の強度を検出する光検出部と、孵卵開始から所定期間経過した第1時点の前記種卵を透過した光の強度に基づいて、前判別する性別判別部とを備える、種卵の非破壊検査装置が示されている。
米国特許第10,705,066号明細書 米国特許第9,435,732号明細書 特許第6723597号公報
 上述の通り、孵化前に鶏卵の雌雄判定を行う方法は知られている。しかしながら、従来の雌雄判定方法には、いくつかの課題が存在した。例えば、卵殻に穴を形成して尿膜液を採取し雌雄判定を行う方法の場合、穴の形成及び/又は尿膜液の採取により、当該鶏卵の孵化率が低下する可能性がある。
 一方、特許文献1~3が示す技術は、非破壊的な分光学的手段によって雌雄判定を行うことが可能である。ところが、特許文献1に記載の方法の場合、可視光領域から近赤外光領域の広い波長領域に亘って光パルスの照射及び反射光の検出を行う必要があり、実施に長時間を要する恐れがある。また、特許文献2に記載の方法の場合、ハイパースペクトルカメラによる測定、及びニューラルネットワークアルゴリズムによる処理、といった特殊な手段が必要となるため、導入や実施に要するコストが過大となる可能性がある。
 また、いずれの非破壊的な方法であっても、孵卵後7日目より前に、高精度の雌雄判定を行うことは困難であった。鶏の場合、孵卵後7日目以降には、胚が痛覚を獲得するとされるため、非破壊的な従来技術を採用しても、結局のところ、アニマルウェルフェアの観点での問題は解消されない。つまり、孵卵の初期段階での雌雄判定方法が確立されていない。
 そこで本発明の目的は、孵卵早期に高精度な雌雄判定を非破壊的に実施可能とする技術を提供することにある。
 上記課題を解決する本発明の雌雄判定装置は、孵卵開始から所定期間内の各鶏卵に対し、所定波長の光を照射する照射手段と、前記照射がなされた各鶏卵の撮影を行う撮影手段と、前記各鶏卵それぞれの雌雄に関して別途判定した結果と、当該鶏卵に関する前記撮影で得たスペクトルデータとを学習データとして、雌雄判定モデルを生成する手段と、新たな雌雄判定の対象鶏卵に関して、前記照射手段及び前記撮影手段により得たスペクトルデータを、前記雌雄判定モデルに入力することで、前記対象鶏卵の雌雄判定を行う手段と、を備えることを特徴とする。スペクトルデータとは波長毎に取得した光の強度または吸収度を数値化したものである。発明者は雌雄ごとに、ある波長帯毎に強度に特徴があることで雌雄判定可能であることを発見した。
 また、本発明の雌雄判定方法は、孵卵開始から所定期間内の各鶏卵に対し、所定波長の光を照射する照射工程と、前記照射がなされた各鶏卵の撮影を行う撮影工程と、前記各鶏卵それぞれの雌雄に関して別途判定した結果と、当該鶏卵に関する前記撮影で得たスペクトルデータとを学習データとして、雌雄判定モデルを生成する工程と、新たな雌雄判定の対象鶏卵に関して、前記照射工程及び前記撮影工程により得たスペクトルデータを、前記雌雄判定モデルに入力することで、前記対象鶏卵の雌雄判定を行う工程と、を実行することを特徴とする。
 本発明によれば、孵卵早期に高精度な雌雄判定を非破壊的に実施可能となる。
本実施形態における雌雄判定システムの構成例を示す図である。 本実施形態における雌雄判定装置の構成例を示す図である。 本実施形態におけるスペクトルデータ収集サーバの構成例を示す図である。 本実施形態の学習データDBの構成例を示す図である。 本実施形態の閾値パラメータの構成例を示す図である。 本実施形態の判定手法設定パラメータの構成例を示す図である。 本実施形態の判定結果DBの構成例を示す図である。 本実施形態における雌雄判定方法のフロー例を示す図である。 本実施形態における雌雄判定方法のフロー例を示す図である。 本実施形態における雌雄判定方法のフロー例を示す図である。 本実施形態における雌雄判定方法のフロー例を示す図である。 本実施形態における雌雄判定方法のフロー例を示す図である。
<雌雄判定システムの構成例>
 以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の雌雄判定装置10を含む雌雄判定システム10の構成例を示す図である。図1に示す雌雄判定システム10は、雌雄判定装置100の他、鶏卵1を載置して孵卵処理を担う孵卵トレー2、光源11、可視光・近赤外光カメラ12、光源11、端末150、及びスペクトルデータ収集サーバ200から構成される。
 こうした構成の雌雄判定システム10によれば、又は雌雄判定装置100によれば、孵卵早期に高精度な雌雄判定を非破壊的に実施可能である。
 図1のごときシステム構成において、鶏卵1は、雌雄判定の対象となる鶏卵である。この鶏卵1は、孵卵器の孵卵トレー2に載置され、適宜な条件下で管理されることとなる。孵卵トレー2に載置された鶏卵1は、光源11による適宜な波長の光の照射を受ける。
 光源11は、例えば、LED(Light Emitting Diode)素子を含む発光ユニットである。この光源11が発する光としては可視光~近赤外光(可視光・近赤外光カメラ12の撮像素子が捕捉可能な光)であって、例えば、好ましくは600~1000nm前後の波長の光を想定する。ただし、こうした波長は一例であって、400~1050nm、1150~2500nmなど、可視光・近赤外光カメラ12で撮影できる光であれば限定はしない。
 なお、光源11の他例としては、ハロゲンランプやEverGloセラミックからなる群から選択される光照射素子を想定できる。
 一方、鶏卵1において発生した、光源11による光の反射光は、可視光・近赤外光カメラ12の撮像素子で捉えられる。つまり可視光・近赤外光カメラ12は、鶏卵1の撮影を行うことになる。撮像素子としては、例えば、CCD(Carge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)を採用すればよいが、これらに限定しない。
 なお、本実施形態の雌雄判定システム10における、上述の雌雄判定対象となる鶏卵1は、孵卵開始から6日以内ものとする。鶏卵1における胚が痛覚を獲得すると考えられている、孵卵開始から7日目よりも前に、すなわち鶏卵1(において成長した胚やその後の雛鳥を含む概念)が痛みを感じるよりも前に、雌雄判定を実施することは、アニマルウェルフェアの観点から非常に有意義である。
 他方、本実施形態の雌雄判定装置100は、図1で示すように、ネットワーク5を介して、端末150及びスペクトルデータ収集サーバ200と通信可能に接続されている。よって、これらを総称して雌雄判定システム10としてもよい。
 本実施形態の雌雄判定装置100は、上述のごとき雌雄判定システム10の構成装置らから適宜に情報を取得し、孵卵トレー2に載置された鶏卵1の雌雄判定を行うサービスの提供装置と言える。
 一方、端末200は、本実施形態の雌雄判定装置100とは異なるアルゴリズムによって、高精度な雌雄判定を行う装置ないし担当者の端末である。具体的には、パーソナルコンピュータ、スマートフォン、タブレット端末などを想定できる。この高精度な雌雄判定を行うアルゴリズムについては後述する。
 また、スペクトルデータ収集サーバ200は、可視光・近赤外光カメラ12による、鶏卵1の撮影で得たスペクトルデータを当該可視光・近赤外光カメラ12(またはその制御システムなど)から取得し、当該可視光・近赤外光カメラ12や撮影条件等の属性情報と紐付けて格納、管理するサーバである。
 このスペクトルデータ収集サーバ200は、可視光・近赤外光カメラ12からスペクトルデータを得るたび即時に、又は一定期間中に取得、格納がなされるごとに、得られたスペクトルデータをネットワーク5経由で雌雄判定装置100に配信する。
<ハードウェア構成:雌雄判定装置>
 また、本実施形態の雌雄判定システム10を構成する、雌雄判定装置100のハードウェア構成は、図2に以下の如くとなる。
 すなわち雌雄判定装置100は、ストレージ101、メモリ103、CPU104、および通信装置105、を備える。また雌雄判定装置100は、上述の光源11及び可視光・近赤外光カメラ12をさらに含むとしてもよい。
 このうちストレージ101は、SSD(Solid State Drive)やハードディスクドライブなど適宜な不揮発性記憶素子で構成される。
 また、メモリ103は、RAMなど揮発性記憶素子で構成される。
 また、CPU104は、ストレージ101に保持されるプログラム102をメモリ103に読み出すなどして実行し装置自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPUである。
 また、通信装置105は、ネットワーク5と接続して端末150やスペクトルデータ収集サーバ200との通信処理を担うネットワークインターフェイスカード等を想定する。
 なお、雌雄判定装置100がスタンドアロンマシンである場合、ユーザからのキー入力や音声入力を受け付ける入力装置、処理データの表示を行うディスプレイ等の出力装置、を更に備えるとすれば好適である。
 また、ストレージ101内には、本実施形態の雌雄判定装置100として必要な機能を実装する為のプログラム102に加えて、学習データDB1013、判定結果DB1014、閾値パラメータ1015、判定手法設定パラメータ1016が少なくとも記憶されている。ただし、これらデータベースやパラメータについての詳細は後述する。
 また、プログラム102は、モデル作成エンジン1011及び雌雄判定モデル1012を含むものとする。詳細については後述するが、モデル作成エンジン1011は、大量の鶏卵に関する撮影データ(スペクトルデータやその条件など)と当該撮影の対象となった鶏卵のラベル(雌雄いずれかの判定結果)を学習データとして機械学習を実行し、鶏卵1の雌雄判定を行う雌雄判定モデル1012を生成するエンジンとなる。また、雌雄判定モデル1012は、上述のモデル作成エンジン1011により作成されたモデルである。
<ハードウェア構成:スペクトルデータ収集サーバ>
 また、本実施形態のスペクトルデータ収集サーバ200のハードウェア構成は、図3に以下の如くとなる。すなわちスペクトルデータ収集サーバ200は、ストレージ201、メモリ203、CPU204、および通信装置205、を備える。
 このうちストレージ201は、SSD(Solid State Drive)やハードディスクドライブなど適宜な不揮発性記憶素子で構成される。
 また、メモリ203は、RAMなど揮発性記憶素子で構成される。
 また、CPU204は、ストレージ201に保持されるプログラム202をメモリ203に読み出すなどして実行し装置自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPUである。
 また、通信装置205は、ネットワーク5と接続して雌雄判定装置100との通信処理を担うネットワークインターフェイスカード等を想定する。
 また、ストレージ201内には、本実施形態のスペクトルデータ収集サーバ200として必要な機能を実装する為のプログラム202に加えて、撮影スペクトルデータDB2011が少なくとも記憶されている。ただし、この撮影スペクトルデータDB2011ついての詳細は後述する。
<データ構造例>
 続いて、本実施形態の雌雄判定装置100が用いる各種情報について説明する。図4に、本実施形態における学習データDB1013の一例を示す。
 本実施形態の学習データDB1013は、スペクトルデータ収集サーバ200から配信されたスペクトルデータに、当該スペクトルデータの被写体たる鶏卵に関して得られている雌雄判定結果(端末150から得たもの)を紐付けて、機械学習における学習用データすなわちモデル作成エンジン1011の学習データとして格納、管理するデータベースである。
 この学習データDB1013は、例えば、通番をキーとして、孵卵開始日、孵卵日数、卵の種類、ファイル名、カメラ、光源、光の強さ、温度、及び湿度、といったデータを紐付けレコードの集合体となっている。
 このうち孵卵日数は、孵卵開始日からの経過日数である。また、卵の種類は、対象鶏卵の殻が白色か赤色かを示す。また、ファイル名は、当該鶏卵に関して可視光・近赤外光カメラの撮影で得られたスペクトルデータの名称(やその格納先)を示す。
 また、カメラは、孵卵器の孵卵トレー2の周囲に配置され、孵卵トレー2上の鶏卵の撮影を行うカメラの識別情報を示す。
 また、光源は、孵卵トレー2上の鶏卵の撮影に使用する光源の識別情報を示す。また、光の強さは、上述の光源が照射する光の強さを示す。また、温度は、撮影時の孵卵トレー2付近での温度を、湿度は、同エリアでの湿度を示す。
 また、雌雄判定は、端末150の操作者等が入力した、高精度な雌雄判定の結果である。この雌雄判定の詳細は後述する。
 図5に、本実施形態における閾値パラメータ1015の一例を示す。本実施形態の閾値パラメータ1015は、鶏卵1に対する、複数のパターンの撮影方法と撮影日を指定し、そのパターン各々に関する判定閾値、及び重み付けを規定する値である。
 こうした閾値パラメータ1015は、撮影・データ採取方法、日目、メス判定閾値、及び重み付け、の各値から構成されている。このうち撮影・データ採取方法は、可視光・近赤外光カメラの種類を示す。また、日目は、孵卵開始後、何日目で撮影するかを指定する値である。
 また、メス判定閾値は、雌雄判定モデル1012の確信度が、メス判定閾値以上の結果であった場合、メスと判定する閾値である。また、重み付けは、後述する総合判定における加重判定の値(単位は%)である。
 上述のメス判定閾値は変更可能であって、そのように運用することで、本システムによるアニマルウェルフェアへの貢献と経済的な効果の共存を可能とする。例えば、メス判定閾値を一定基準より低く設定することで、メスと判定した鶏卵1の中に及びオスの鶏卵が混じる可能性が一定程度以上あるとしても、とにかく早く雌雄を確定したい、といったニーズに対応可能である。
 或いは、メス判定閾値を一定基準より高く設定することで、多少の日数(ただし孵卵開始から6日以内)を要する可能性があっても、メスと判定した鶏卵1の中に及びオスの鶏卵が混じる可能性を非常に低く抑えたい、といったニーズに対応可能である。
 また重み付けの値を、例えば、孵卵開始から間もない期間(例えば、3日目まで)の雌雄判定結果の重み付け値を、それ以降の期間(例えば、4日目以降から6日目まで)の雌雄判定結果の重み付け値よりも小さくするといった運用を行うことで、より精度の高さを重視した雌雄判定を行うことができる。
 図6に、本実施形態における判定手法設定パラメータ1016の一例を示す。本実施形態の判定手法設定パラメータ1016は、雌雄判定装置100において実行する雌雄判定アルゴリズムを規定した値である。
 この判定手法設定パラメータ1016は、通番、設定値、及びデフォルト値から構成されている。このうち設定値は、雌雄判定に用いるユーザ指定のアルゴリズムを示す。図の例では、「総合判定(加重判定)」の値が設定されている。このアルゴリズムは、例えば指定された全撮影日の雌雄判定結果と閾値パラメータ1015の「重み付け」の値とに基づいて雌雄判定を行うものである。
 この他にも、即時判定(どの撮影日でもオス判定が出たら、当該鶏卵をオスの鶏卵と決定する)、総合判定(多数決)、といったアルゴリズムも想定しうる。総合判定(多数決)なるアルゴリズムは、例えば指定された全撮影日の雌雄判定結果について多数決をとり、当該鶏卵の雌雄を確定させるものである。
 また図7に、本実施形態における判定結果DB1014の構成例を示す。この判定結果DB1014は、本実施形態の雌雄判定装置100の雌雄判定モデル1012による鶏卵1の雌雄判定結果を格納したデータベースである。
 この判定結果DB1014は、通番、ロット番号、対象鶏卵、撮影・データ採取方法1・・・撮影・データ採取方法n、及び最終判定の各値を含むレコードから構成されている。
 このうちロット番号は、対象鶏卵の属するロットの識別情報である。また、対象鶏卵は、孵卵器の孵卵トレー2上での位置を示す値であり、例えば、孵卵トレー2の段数、当該段の孵卵トレー2上における鶏卵1の配置座標(座標空間における座標値と同様の概念)を示すものとなる。
 また、撮影・データ採取方法欄の値は、図5の閾値パラメータ1015における撮影・データ採取方法の各欄の値に対応する条件での撮影で得られたスペクトルデータに関して、雌雄判定モデル1012が下した雌雄判定の結果を示す値である。
 また、最終判定欄の値は、即時判定または総合判定といった雌雄判定のアルゴリズムで行った最終判断の結果を示す値である。
<フロー例:モデル作成>
 以下、本実施形態における雌雄判定方法の実際手順について図に基づき説明する。以下で説明する雌雄判定方法に対応する各種動作は、雌雄判定装置100がメモリ等に読み出して実行するプログラムによって実現される。そして、このプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。
 図8Aは、本実施形態における雌雄判定方法のフロー例を示す図である。ここでは、まず雌雄判定モデル1012の生成フローについて説明する。
 この場合、雌雄判定装置100は、例えば光源11を制御することで、孵卵トレー2上の鶏卵に対して所定波長の光を照射する(s1)。この光の波長については既に述べたとおりである。
 続いて、雌雄判定装置100は、光源11での照射の結果、光が鶏卵を透過するか又は鶏卵内で反射することにより、鶏卵外に放出される光を検出する(s2)。この検出は、例えば光検出素子で実行するものとする。この光検出手段は、シリコン、PbS(硫化鉛)、InGaAs(インジウム・ガリウム・ヒ素)及びアーセナイドからなる群から選択される光検出素子で構成されるものとする。
 また、この検出に際して、雌雄判定装置100は、検出された光の可視及び近赤外スペクトルを分光機器により取得するものとする。
 また、雌雄判定装置100は、可視光・近赤外光カメラ12を制御して、上述の鶏卵に対する撮影を実行し(s3)、スペクトルデータをスペクトルデータ収集サーバ200に格納する。或いは、可視光・近赤外光カメラ12は、撮影した鶏卵のスペクトルデータをスペクトルデータ収集サーバ200に格納する(s4)。
 続いて、雌雄判定装置100は、ここまでで得られている、鶏卵の可視及び近赤外線スペクトルデータに基づき、当該鶏卵の雌雄を判定する(s5)。ここでの判定結果が、学習データDB1013における「雌雄判定」欄に格納されることとなる。
 この場合、雌雄判定装置100は、可視及び近赤外スペクトルにおける1700~2500nmの範囲の波長領域のスペクトルデータに基づき、当該鶏卵の雌雄を判定する。
 こうした可視及び近赤外スペクトルに基づく雌雄判定の手法の詳細は、以下のとおり、光照射工程、光検出工程、スペクトル取得工程、及び雌雄判定工程からなる。
 このうち光照射工程は、鶏卵1に可視光領域から近赤外光領域に属する波長を有する光を照射する程である。ここで「可視光」は、可視光に相当する400~750nmの波長領域を含む、400~900nmの波長領域に属する波長を有する光である。また、「近赤外光」は、900~2500nmの波長領域に属する波長を有する光を意味する。
 例えば、「可視光領域から近赤外光領域に属する波長を有する光」は、400~2500nmの波長領域に属する波長を有する光を意味する。
 本工程において照射される光(以下、「照射光」とも記載する)は、400~2500 nmの波長領域に属する波長を有することが好ましく、400~900nmの範囲及び1700~2500nmの範囲の波長領域に属する波長を有することがより好ましい。
 照射光は、上述の範囲の波長領域に属する全ての波長を連続的に有する光であってもよく、当該範囲の波長領域に属する一部の波長(例えば特定の波長)を有する光であってもよい。上述の範囲の波長領域に属する波長を有する光を照射することにより、以下において説明する雌雄判定工程において、高精度での雌雄判定を行うことができる。また、特定の波長、例えば400~900nmの範囲及び1700~2500nmの範囲の波長領域に属する波長を有する光を選択的に照射することにより、波長掃引範囲を狭くし本工程の実施に要する時間を短縮することができる。
 本工程において、照射光は、鶏卵に対して様々な方向から照射することができる。例えば、一実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と直交するように配置された鶏卵に対し、該鶏卵の上方から動物極又は胚を通過するように任意の方向に(例えば、該長軸線に対して0~50°の範囲の方向に、特に該長軸線を含む垂直面と平行な面上において該長軸線と平行な方向に)照射される光である(以下、「第一の実施形態」とも記載する)。
 別の一実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵に対し、該鶏卵の側方から動物極又は胚を通過するように任意の方向に(例えば、該長軸線に対して0~90°の範囲の方向に、特に該長軸線を含む水平面と平行な面上において該長軸線と直交する方向に)照射される光である(以下、「第二又は第四の実施形態」とも記載する)。
 別の一実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵に対し、該鶏卵の上方から動物極又は胚を通過するように任意の方向に(例えば、該長軸線に対して40~90°の範囲の方向に、特に該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に)照射される光である(以下、「第三又は第六の実施形態」とも記載する)。
 別の一実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵に対し、該鶏卵の下方から動物極又は胚を通過するように任意の方向に(例えば、該長軸線に対して40~90°の範囲の方向に、特に該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に)照射される光である(以下、「第五の実施形態」とも記載する)。
 好ましい第一の実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と直交するように配置された鶏卵に対し、該鶏卵の上方から動物極又は胚を通過するように、該長軸線を含む垂直面と平行な面上において該長軸線と平行な方向に照射される光である。
 好ましい第二又は第四の実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵に対し、該鶏卵の側方から動物極又は胚を通過するように、該長軸線を含む水平面と平行な面上において該長軸線と直交する方向に照射される光である。
 好ましい第三又は第六の実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵に対し、該鶏卵の上方から動物極又は胚を通過するように、該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に照射される光である。
 好ましい第五の実施形態において、照射光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵に対し、該鶏卵の下方から動物極又は胚を通過するように、該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に照射される光である。
 上述にて例示した各実施形態において、鶏卵の動物極又は胚の位置を検卵器で事前に確認し、動物極又は胚が照射光の入射方向になるように鶏卵を配置することが好ましい。照射光が動物極又は胚を通過するように本工程を実施することにより、以下において説明する各工程において動物極又は胚に含まれる血液及び/又は各種成分の情報を得て、高精度で雌雄判定を行うことができる。
 本実施形態において、「平行」、「垂直」及び「直交」とは、直線及び/又は面が完全に又は略平行、垂直若しくは直交の位置関係にあることを意味する。
 通常、本工程は、鶏卵1と照射光との配置を、上述にて説明した位置関係にするために、鶏卵を固定した状態で実施される。このため、本工程において、鶏卵を上述の配置にするために、孵卵トレー2が使用されることが好ましい。孵卵トレー2を使用する場合、鶏卵は、例えば孵卵トレー2の上面に載置される。
 本実施形態において、「動物極又は胚を通過するように」及び「卵黄を通過するように」とは、鶏卵内の動物極又は胚、或いは卵黄の少なくとも一部分を光が通過することを意味する。
 動物極又は胚を通過するような位置とは、例えば、鶏卵の鋭端部から15~30mmの範囲、典型的には17~25 mmの範囲を意味する。また、卵黄を通過するような位置とは、例えば、鶏卵の鋭端部から20~60 mmの範囲、典型的には27~52 mmの範囲を意味する。
 本工程は、鶏卵及び孵卵トレーを収容する収容部材の内部で光を照射することにより実施することが好ましい。収容部材は、暗箱のように外部の光を実質的に遮断できる部材であることが好ましい。収容部材の内部で本工程を実施することにより、外部の光の影響を実質的に抑制して、より高精度で雌雄判定を行うことができる。
 また、光検出工程において、上述の光照射工程で照射された光が鶏卵1を透過することにより鶏卵外に放出される光を「透過光」と、光照射工程で照射された光が鶏卵内で反射することにより鶏卵外に放出される光を「反射光」と、それぞれ記載する場合がある。
 透過光及び反射光は、光照射工程における光の照射位置及び本工程における光の検出位置の組合せに基づき選択することができるものの、透過光及び反射光を、互いに厳密に分離することは困難である。それ故、本実施形態において、透過光は、一定の割合で反射光を含んでもよく、反射光は、一定の割合で透過光を含んでもよい。
 また、本実施形態において、鶏卵外に放出される透過光を検出して雌雄判定を行う実施形態を「透過法」と、鶏卵外に放出される反射光を検出して雌雄判定を行う実施形態を「反射法」と、それぞれ記載する場合がある。
 本工程において検出される透過光又は反射光は、400~2500 nmの波長領域に属する波長を有することが好ましく、400~900 nmの範囲及び1700~2500 nmの範囲の波長領域に属する波長を有することがより好ましい。
 透過光又は反射光は、上述の範囲の波長領域に属する全ての波長を連続的に有する光であってもよく上述の範囲の波長領域に属する一部の波長(例えば特定の波長)を有する光であってもよい。
 上述の範囲の波長領域に属する波長を有する透過光又は反射光を検出することにより、以下において説明する雌雄判定工程において、高精度で雌雄判定を行うことができる。また、特定の波長、例えば400~900 nmの範囲及び1700~2500 nmの範囲の波長領域に属する波長を有する透過光又は反射光を選択的に検出することにより、波長掃引範囲を狭くし本工程の実施に要する時間を短縮することができる。
 本工程においては、鶏卵に対して様々な方向に放出される光を検出することができる。例えば、一実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と直交するように配置された鶏卵を透過することにより該鶏卵の側方に放出される光(透過光)であって、且つ該鶏卵の卵黄を通過するように任意の方向に(例えば、該長軸線に対して40~90°の範囲の方向に、特に該長軸線と直交する水平面上において該長軸線と直交する方向に)放出される光(透過光)である(以下、「第一の実施形態」とも記載する)。
 別の一実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵を透過することにより該鶏卵の下方に放出される光(透過光)であって、且つ該鶏卵の卵黄を通過するように任意の方向に(例えば、該長軸線に対して40~90°の範囲の方向に、特に該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に)放出される光(透過光)である(以下、「第二又は第三の実施形態」とも記載する)。
 別の一実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵を透過することにより該鶏卵の側方に放出される光(透過光)であって、且つ該鶏卵の卵黄を通過するように任意の方向に(例えば、該長軸線に対して0~90°の範囲の方向に、特に該長軸線を含む水平面と平行な面上において該長軸線と直交する方向に)放出される光である(以下、「第四の実施形態」とも記載する)。
 別の一実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵の内部で反射することにより該鶏卵の下方に放出される光(反射光)であって、且つ該鶏卵の卵黄を通過するように任意の方向に(例えば、該長軸線に対して40~90°の範囲の方向に、特に該長軸線を含む垂直面と平行な面上において該長軸線に対して45°の方向に)放出される光(反射光)である(以下、「第五の実施形態」とも記載する)。
 別の一実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵の内部で反射することにより該鶏卵の上方に放出される光(反射光)であって、且つ該鶏卵の卵黄を通過するように任意の方向に(例えば、該長軸線に対して40~90°の範囲の方向に、特に該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に)放出される光(反射光)である(以下、「第六の実施形態」とも記載する)。
 好ましい第一の実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と直交するように配置された鶏卵を透過することにより該鶏卵の側方に放出される光(透過光)であって、且つ該鶏卵の卵黄を通過するように、該長軸線と直交する水平面上において該長軸線と直交する方向に放出される光(透過光)である。
 好ましい第二又は第三の実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵を透過することにより該鶏卵の下方に放出される光(透過光)であって、且つ該鶏卵の卵黄を通過するように、該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に)放出される光(透過光)である。
 好ましい第四の実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵を透過することにより該鶏卵の側方に放出される光(透過光)であって、且つ該鶏卵の卵黄を通過するように、該長軸線を含む水平面と平行な面上において該長軸線と直交する方向に放出される光である。
 好ましい第五の実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵の内部で反射することにより該鶏卵の下方に放出される光(反射光)であって、且つ該鶏卵の卵黄を通過するように、該長軸線を含む垂直面と平行な面上において該長軸線に対して45°の方向に放出される光(反射光)である。
 好ましい第六の実施形態において、検出される光は、鈍端部と鋭端部とを結ぶ長軸線が水平面と平行となるように配置された鶏卵の内部で反射することにより該鶏卵の上方に放出される光(反射光)であって、且つ該鶏卵の卵黄を通過するように、該長軸線を含む垂直面と平行な面上において該長軸線と直交する方向に放出される光(反射光)である。
 前記で例示した各実施形態において、鶏卵の卵黄の位置を検卵器で事前に確認し、透過光又は反射光が卵黄を通過するように鶏卵を配置することが好ましい。透過光又は反射光が卵黄を通過するように本工程を実施することにより、以下において説明する各工程において動物極又は胚に含まれる血液及び/又は各種成分の情報を得て、高精度で雌雄判定を行うことができる
 また、上述の工程は、前記で説明した収容部材の内部で光を検出することにより実施することが好ましい。収容部材の内部で本工程を実施することにより、外部の光の影響を実質的に抑制して、より高精度で雌雄判定を行うことができる。
 続いて、スペクトル取得工程は、上述の光検出工程で検出された光の可視及び近赤外スペクトルを取得する工程である。
 本工程は、光検出工程で検出された光に基づき、可視及び近赤外スペクトルを生成することによって実施される。可視及び近赤外スペクトルを生成するための手段としては、当該技術分野で通常使用される可視及び近赤外分光装置を挙げることができる。
 可視及び近赤外分光装置には、通常は、可視及び近赤外分光装置の制御プログラムに加えて、スペクトルデータの解析プログラムを格納するデータ解析装置が接続されている。それ故、可視及び近赤外分光装置を用いることにより、短時間で可視及び近赤外スペクトルを生成し、スペクトルデータを解析することができる。
 本工程において取得する可視及び近赤外スペクトルは、そのままの状態のスペクトルであってもよく、該スペクトルを二次微分処理した二次微分スペクトルであってもよい。ベースライン変化の影響等を低減し得ることから、二次微分スペクトルであることが好ましい。本工程において二次微分スペクトルを取得することにより、高精度で雌雄判定を行うことができる。
 続いて、雌雄判定工程は、上述のスペクトル取得工程で取得された可視及び近赤外スペクトルのスペクトルデータに基づき、鶏卵1の雌雄を判定する工程である。
 本工程において、スペクトルデータに基づき、鶏卵1の雌雄を判定するための手段としては、例えば、当該技術分野で公知の多変量解析を適用することができる。多変量解析としては、例えば、主成分分析、及びPLS判別分析(Partial least square discriminant
analysis, PLS-DA)を挙げることができる。
 主成分分析を用いて本工程を実施する場合、以下の手順で実施すればよい。まず、雌雄判定モデルを作成する。雌雄が既知の所定数の鶏卵を用いて光照射工程、光検出工程及びスペクトル取得工程を実施して、雌雄それぞれの標準の可視及び近赤外スペクトルを取得する。取得する可視及び近赤外スペクトルは、二次微分スペクトルであることが好ましい。標準の可視及び近赤外スペクトルを取得するために使用する鶏卵の雌雄判定は、当該技術分野で公知の雌雄判定手段を適用して実施すればよい。公知の雌雄判定手段としては、例えば、鶏卵の胚及び血液の試料を採取し、採取した試料から抽出したDNAを用いて、雌雄特異的プライマーによるマルチプレックスPCR法にて雌雄判定を行う遺伝子解析法、及び採取した試料を機器分析して、試料中の成分濃度(例えば、ホルモン濃度)により雌雄判定を行う方法を挙げることができる。
 前記で例示した雌雄判定手段は、標準の可視及び近赤外スペクトルを取得した後で使用した鶏卵を割卵し、試料を採取して実施すればよい。次いで、雌雄それぞれの標準のスペクトルデータ群に対して主成分分析を実施する。雌雄それぞれの標準の主成分空間において、マハラノビス距離を用いて外れ値を検出して、外れ値を除いた主成分スコアプロットを得ることが好ましい。得られた主成分スコアプロットを、雌雄判定モデルとして使用することができる。
 次いで、測定対象となる鶏卵について、光照射工程、光検出工程及びスペクトル取得工程を実施して、可視及び近赤外スペクトルを取得する。取得する可視及び近赤外スペクトルは、二次微分スペクトルであることが好ましい。取得した可視及び近赤外スペクトルのスペクトルデータに対して主成分分析を実施して、得られた主成分スコアを雌雄判定モデルの主成分空間に適用して、雌雄を判定する。
 この場合、測定対象の鶏卵の主成分スコアを雌雄判定モデルの主成分空間に適用する手段としては、例えば、主成分空間における残差分散法、波長による最大距離法、及び主成分空間におけるマハラノビス距離を挙げることができる。
 本工程において、多変量解析による雌雄判定モデルの作成及び測定対象の雌雄判定は、例えば、当該技術分野で通常使用される市販の多変量解析用ソフトウェアをインストールしたコンピューター等のデータ解析装置を使用して行ってもよく、前記スペクトル取得工程で使用した可視及び近赤外分光装置に接続されているコンピューター等のデータ解析装置を使用して行ってもよい。可視及び近赤外分光装置に接続されているデータ解析装置には、通常は、スペクトルデータの多変量解析を実行するためのプログラムが格納されている。それ故、可視及び近赤外分光装置に接続されているデータ解析装置を用いて本工程を
実施することにより、低コストで雌雄判定を行うことができる。
 本工程において、多変量解析による雌雄判定モデルの作成は、本工程を実施する度に行ってもよい。しかしながら、雌雄判定モデルは、予め作成した該モデルのデータを雌雄判定装置100のストレージ101に格納しておき、測定対象の鶏卵に対して本工程を実施する際に呼び出して使用することが好ましい。本実施形態の場合、雌雄判定の時間を短縮することができる。
 本工程において、1700~2500 nmの範囲の波長領域のスペクトルデータに基づき雌雄判定を行うことにより、高精度で雌雄判定を行うことができることが判明した。本工程において使用するスペクトルデータの波長領域は、1700~2500 nmの範囲であり、1700~2200nmの範囲又は1800~2500 nmの範囲であることが好ましく、1800~2200 nmの範囲であることがより好ましい。
 本工程において使用するスペクトルデータは、前記範囲の波長領域に属する全ての波長を連続的に有する光のスペクトルデータであってもよく、前記範囲の波長領域に属する一部の波長(例えば特定の波長)を有する光のスペクトルデータであってもよい。
 前記波長領域は、長波長側の近赤外光領域に属する。長波長側の波長領域のスペクトルデータからは、卵殻及び鶏卵内部に含まれるタンパク質及び脂肪等の各種成分の情報を得ることができる。鶏卵内部、特に卵黄の動物極又は胚に含まれる各種成分は、雌雄によってその組成に僅かな相違があると考えられる。それ故、前記範囲の長波長側の近赤外光領域のスペクトルデータに基づき本工程を実施することにより、卵殻及び鶏卵内部に含まれる各種成分の組成の僅かな相違に基づき、高精度で雌雄判定を行うことができる。
 続いて雌雄判定装置100におけるモデル作成エンジン1011による処理について、図8Bのフローに基づき説明する。この場合、雌雄判定装置100は、上述の図8Aのフローにおけるs3、s4で得られた鶏卵1のスペクトルデータに、s5で得ている(別のアルゴリズムによる高精度な)雌雄判定結果をラベルとして紐付ける(s10)。
 続いて、雌雄判定装置100は、s10でラベルを紐付けたスペクトルデータについて、例えば、不要なデータを削除して特徴データを強調するといった適宜な加工処理を実行し、学習データを作成する(s11)。なお、雌雄判定装置100は、ここで作成した学習データを、学習データDB1013に格納するものとする。
 また、雌雄判定装置100は、s11で得た学習データを、モデル作成エンジン1011に与えて、例えば勾配ブースティング手法を使って機械学習を進めることで、雌雄判定モデル1012を作成し(s12)、処理を終了する。なお、雌雄判定装置100は、ここで作成した雌雄判定モデル1012をストレージ101に格納し、保持するものとする。なお、上述の機械学習の手法としては、勾配ブースティング以外の手法を採用してもよい。
<フロー例:雌雄判定>
 上述の図8A、図8Bで示すフローによる処理は、孵卵開始後6日以内の大量の鶏卵に関して実施し、雌雄判定モデル1012を生成するためのものであった。一方、そうした雌雄判定モデル1012を利用して、孵卵開始初期の鶏卵1に関して精度良く雌雄判定を行うフローについて、図9~図11に基づき説明する。
 ここで、雌雄判定装置100は、孵卵トレー2上の鶏卵1それぞれについて、全ての撮影日数分(すなわち孵卵開始から6日目までの計6日分)、本フローを実行するものとする。
 雌雄判定装置100は、例えば、孵卵トレー2上の鶏卵に関して、孵卵開始から2日目ないし3日目といった規定の孵卵日数に至ったか、孵卵管理用のシステム等から孵卵日数の情報を得るなどして検知する(s30)。
 続いて、雌雄判定装置100は、可視光・近赤外光カメラ12に対して、鶏卵画像の撮影データ採取指示を送信(撮影・データ採取方法1~n)する(s31)。これを受けた可視光・近赤外光カメラ12は、各方法での鶏卵1の撮影を実行し(s32)、スペクトルデータを得ることとなる。
 また、雌雄判定装置100は、上述の可視光・近赤外光カメラから、鶏卵1のスペクトルデータを取得する(s33)。この場合、可視光・近赤外光カメラ12の管理システムが、ネットワーク5を介して、雌雄判定装置100へのスペクトルデータ配信を行うといった運用を想定できる。
 続いて、雌雄判定装置100は、判定手法設定パラメータ1016の設定値を参照し、雌雄判定のアルゴリズムを特定する(s34)。
 上述の判定の結果、採用すべきアルゴリズムが「即時判定」であった場合(s34:YES)、雌雄判定装置100は、図10のフローで示す、一連の即時判定処理を実行する(s35)。
 この場合、雌雄判定装置100は、図5で示す閾値パラメータ1015の、撮影・データ採取方法および日目、の各欄で規定の値に合わせて、対応する可視光・近赤外光カメラ12による、対応する孵卵日数での鶏卵1のスペクトルデータを、雌雄判定モデル1012に入力して、雌雄判定を実行する(s351、s354、・・・s357)。
 その判定の結果、当該鶏卵1の性別がメスであった場合(s352、s355、s358にて「雌」判定)、雌雄判定装置100は、当該日目の当該鶏卵1の雌雄判定結果を、判定結果DB1014における該当欄に格納し、処理を終了する。
 他方、上述の判定の結果、当該鶏卵1の性別がオスであった場合(s352、s355、s358にて「雄」判定)、雌雄判定装置100は、次の日目や撮影・データ採取方法でのスペクトルデータに関して雌雄判定モデル1012での雌雄判定を同様に実施する。そうした一連の雌雄判定の結果、いずれの日目でも「雄」との判定結果が出た場合、当該鶏卵1は孵卵対象外としてマーキングするか、または孵卵トレー2から排出し、処理を終了する。
 ここで図9のフローにおける説明に戻る。一方、上述のs34での判定の結果、採用すべきアルゴリズムが「総合判定」であった場合(s34:NO)、雌雄判定装置100は、図11のフローで示す、一連の総合判定処理を実行する(s36)。
 この場合、雌雄判定装置100は、図10でのフローで示したような、各日目、各撮影・データ採取方法によるスペクトルデータについて、それぞれ雌雄判定モデル1012に入力して雌雄判定結果を取得する(s361~s363)。
 また、雌雄判定装置100は、s363までで得た各雌雄判定結果について、図5の閾値パラメータ1015で規定の「メス判定閾値」及び「重み付け」に従い、総合判定処理を実行する(s364)。この処理は、例えば、3日目のスペクトルデータが、雌らしさに関して90%以上であるか否かにより雌雄判定を行い、またその判定結果(例:雌の場合は“1”、雄の場合は“0”)に重み付け値を乗算する処理を、例えば、これまで得られている日目までの各スペクトルデータについて実行し、各日目に関して得た乗算結果の値の例えば平均値が、所定の閾値以上であれば当該鶏卵1の性別はメス、と判定し(s365:メス)、処理を終了する。
 一方、上述の判定の結果、平均値が、所定の閾値以下であれば当該鶏卵1の性別はオス、と判定し(s365:オス)、当該鶏卵1は孵卵対象外としてマーキングするか、または孵卵トレー2から排出し(s367)、処理を終了する。
 以上、本発明を実施するための最良の形態などについて具体的に説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 こうした本実施形態によれば、鶏卵における胚が痛覚を獲得すると考えられている孵卵後7日目までに雌雄判定が可能となる。そのため、雄となる可能性が高い卵を(痛覚を感じないまま)孵化前に早期に取り除き、雄雛の殺処分を実質的に回避できる。
 また、雌となる可能性が高い卵を的確に選別して孵卵することが可能であり、孵卵に要するコストの低減及び採卵鶏の生産効率化を図ることができる。
 ひいては、卵生産業の課題となっている、雌雄判定作業者不足や雄の雛の殺処分に対するアニマルウェルフェア対応、卵の孵化費用・殺処分費用低減、などの課題解決が可能となる。
 本明細書の記載により、少なくとも次のことが明らかにされる。すなわち、本実施形態の雌雄判定装置において、前記照射手段は、可視光領域から近赤外光領域に属する波長の光を照射するものであり、前記撮影手段は、可視光・近赤外光カメラである、としてもよい。
 これによれば、一般的な撮影手段である可視光・近赤外光カメラでの簡便で低コストでの運用が可能となる。ひいては、孵卵早期に高精度で低コストな雌雄判定を非破壊的に実施可能となる。
 また、本実施形態の雌雄判定装置において、前記照射手段により照射された光が鶏卵を透過するか又は鶏卵内で反射することにより、鶏卵外に放出される光を検出する光検出手段と、前記光検出手段で検出された光の可視及び近赤外スペクトルを取得するスペクトル取得手段と、前記スペクトル取得手段で取得された可視及び近赤外スペクトルにおける1700~2500nmの範囲の波長領域のスペクトルデータに基づき、前記鶏卵の雌雄を判定する雌雄判定手段と、を更に備え、前記雌雄判定手段による判定結果を、前記別途判定した結果として用いるとしてもよい。
 これによれば、雌雄判定モデルを高精度なものとすることにつながり、ひいては、孵卵早期により高精度な雌雄判定を非破壊的に実施可能となる。
 また、本実施形態の雌雄判定方法において、前記照射工程は、可視光領域から近赤外光領域に属する波長の光を照射するものであり、前記撮影工程は、可視光・近赤外光カメラにより前記撮影を行うものである、としてもよい。
 また、本実施形態の雌雄判定方法において、前記照射工程により照射された光が鶏卵を透過するか又は鶏卵内で反射することにより、鶏卵外に放出される光を検出する光検出工程と、前記光検出工程で検出された光の可視及び近赤外スペクトルを取得するスペクトル取得工程と、前記スペクトル取得工程で取得された可視及び近赤外スペクトルにおける1700~2500nmの範囲の波長領域のスペクトルデータに基づき、前記鶏卵の雌雄を判定する雌雄判定工程と、を更に備え、前記雌雄判定工程による判定結果を、前記別途判定した結果として用いるとしてもよい。
1   鶏卵
2   孵卵トレー
5   ネットワーク
10  雌雄判定システム
11  光源(照射手段)
12  可視光・近赤外光カメラ(撮影手段)
100 雌雄判定装置
101 ストレージ
1011 モデル作成エンジン
1012 雌雄判定モデル
1013 学習データDB
1014 判定結果DB
1015 閾値パラメータ
1016 判定手法設定パラメータ
102 プログラム
103 メモリ
104 CPU
105 通信装置
150 端末
200 スペクトルデータ収集サーバ
201 ストレージ
2011 撮影スペクトルデータDB
202 プログラム
203 メモリ
204 CPU
205 通信装置

Claims (6)

  1.  孵卵開始から所定期間内の各鶏卵に対し、所定波長の光を照射する照射手段と、
     前記照射がなされた各鶏卵の撮影を行う撮影手段と、
     前記各鶏卵それぞれの雌雄に関して別途判定した結果と、当該鶏卵に関する前記撮影で得たスペクトルデータとを学習データとして、雌雄判定モデルを生成する手段と、
     新たな雌雄判定の対象鶏卵に関して、前記照射手段及び前記撮影手段により得たスペクトルデータを、前記雌雄判定モデルに入力することで、前記対象鶏卵の雌雄判定を行う手段と、
     を備えることを特徴とする雌雄判定装置。
  2.  前記照射手段は、可視光領域から近赤外光領域に属する波長の光を照射するものであり、
     前記撮影手段は、可視光・近赤外光カメラである、
     ことを特徴とする請求項1に記載の雌雄判定装置。
  3.  前記照射手段により照射された光が鶏卵を透過するか又は鶏卵内で反射することにより、鶏卵外に放出される光を検出する光検出手段と、
     前記光検出手段で検出された光の可視及び近赤外スペクトルを取得するスペクトル取得手段と、
     前記スペクトル取得手段で取得された可視及び近赤外スペクトルにおける400~2500nmの範囲の波長領域のスペクトルデータに基づき、前記鶏卵の雌雄を判定する雌雄判定手段と、
     を更に備え、前記雌雄判定手段による判定結果を、前記別途判定した結果として用いるものである、
     ことを特徴とする請求項2に記載の雌雄判定装置。
  4.  孵卵開始から所定期間内の各鶏卵に対し、所定波長の光を照射する照射工程と、
     前記照射がなされた各鶏卵の撮影を行う撮影工程と、
     前記各鶏卵それぞれの雌雄に関して別途判定した結果と、当該鶏卵に関する前記撮影で得たスペクトルデータとを学習データとして、雌雄判定モデルを生成する工程と、
     新たな雌雄判定の対象鶏卵に関して、前記照射工程及び前記撮影工程により得たスペクトルデータを、前記雌雄判定モデルに入力することで、前記対象鶏卵の雌雄判定を行う工程と、
     を実行することを特徴とする雌雄判定方法。
  5.  前記照射工程は、可視光領域から近赤外光領域に属する波長の光を照射するものであり、
     前記撮影工程は、可視光・近赤外光カメラにより前記撮影を行うものである、
     ことを特徴とする請求項4に記載の雌雄判定方法。
  6.  前記照射工程により照射された光が鶏卵を透過するか又は鶏卵内で反射することにより、鶏卵外に放出される光を検出する光検出工程と、
     前記光検出工程で検出された光の可視及び近赤外スペクトルを取得するスペクトル取得工程と、
     前記スペクトル取得工程で取得された可視及び近赤外スペクトルにおける400~2500nmの範囲の波長領域のスペクトルデータに基づき、前記鶏卵の雌雄を判定する雌雄判定工程と、
     を更に備え、前記雌雄判定工程による判定結果を、前記別途判定した結果として用いるものである、
     ことを特徴とする請求項5に記載の雌雄判定方法。
PCT/JP2023/026635 2022-10-11 2023-07-20 雌雄判定装置及び雌雄判定方法 WO2024079958A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163035 2022-10-11
JP2022163035A JP2024056270A (ja) 2022-10-11 2022-10-11 雌雄判定装置及び雌雄判定方法

Publications (1)

Publication Number Publication Date
WO2024079958A1 true WO2024079958A1 (ja) 2024-04-18

Family

ID=90669463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026635 WO2024079958A1 (ja) 2022-10-11 2023-07-20 雌雄判定装置及び雌雄判定方法

Country Status (2)

Country Link
JP (1) JP2024056270A (ja)
WO (1) WO2024079958A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435732B2 (en) * 2009-06-25 2016-09-06 Yissum Research Development Of The Hebrew University Of Jerusalem Ltd. Hyperspectral identification of egg fertility and gender
JP2019017336A (ja) * 2017-07-20 2019-02-07 株式会社ナベル 入卵前の種卵の性別指向選抜装置
US10705066B2 (en) * 2017-06-18 2020-07-07 Zen Genetics Ltd. Method and system for spectral determination of egg gender and fertility
JP2020204570A (ja) * 2019-06-18 2020-12-24 株式会社ナベル 種卵検査装置、特定方法、および、特定プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435732B2 (en) * 2009-06-25 2016-09-06 Yissum Research Development Of The Hebrew University Of Jerusalem Ltd. Hyperspectral identification of egg fertility and gender
US10705066B2 (en) * 2017-06-18 2020-07-07 Zen Genetics Ltd. Method and system for spectral determination of egg gender and fertility
JP2019017336A (ja) * 2017-07-20 2019-02-07 株式会社ナベル 入卵前の種卵の性別指向選抜装置
JP2020204570A (ja) * 2019-06-18 2020-12-24 株式会社ナベル 種卵検査装置、特定方法、および、特定プログラム

Also Published As

Publication number Publication date
JP2024056270A (ja) 2024-04-23

Similar Documents

Publication Publication Date Title
Liu et al. Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging
EP3164696B1 (de) Verfahren und vorrichtung zur ramanspektroskopischen in-ovo geschlechtsbestimmung von befruchteten und bebrüteten vogeleiern
Göhler et al. In-ovo sexing of 14-day-old chicken embryos by pattern analysis in hyperspectral images (VIS/NIR spectra): A non-destructive method for layer lines with gender-specific down feather color
JP6863625B2 (ja) スペクトルの高速分類を利用したリアルタイムスペクトル解析
JP6930727B2 (ja) 入卵前の種卵の性別指向選抜装置
Holveck et al. Eggshell spottiness reflects maternally transferred antibodies in blue tits
WO2019170887A1 (de) Verfahren zur in-ovo fertilisations- und geschlechtsbestimmung am geschlossenen ei
Park et al. Line-scan imaging analysis for rapid viability evaluation of white-fertilized-egg embryos
Islam et al. Prediction of chick hatching time using visible transmission spectroscopy combined with partial least squares regression
Ding et al. Quality and safety inspection of food and agricultural products by LabVIEW IMAQ vision
Yang et al. Machine vision system for online inspection of freshly slaughtered chickens
WO2024079958A1 (ja) 雌雄判定装置及び雌雄判定方法
WO2023181478A1 (ja) 雌雄判定装置及び雌雄判定方法
WO2023181479A1 (ja) 雌雄判定サービス提供システム及び雌雄判定サービス提供方法
JP2023125036A (ja) 種卵の非破壊検査装置及びそれに用いる種卵検査プログラム
Liu et al. Towards the non-invasive assessment of staling in bovine hides with hyperspectral imaging
CN114689526A (zh) 一种香蕉枯萎病无损检测方法、装置及检测设备
WO2023181480A1 (ja) アニマルウェルフェア管理支援システム及びアニマルウェルフェア管理支援方法
CN116806308A (zh) 使用近ir光谱学确定鸡蛋的性质和/或蛋内鸡胚胎的性质的非侵入性方法、相应的系统及其用途
Xie et al. A review of the recent advances for the in-ovo sexing of chicken embryos using optical sensing techniques
KR20180055970A (ko) 초분광 영상을 이용한 유정란 내부 배아 생존유무 판별방법
Lin et al. An optimization strategy for detection of fertile pigeon egg based on NIR spectroscopy analysis
JP2016142633A (ja) 植物判別装置、植物判別方法及び植物判別用プログラム
Blanch-Perez-del-Notario et al. Hyperspectral analysis for extraction of chemical characteristics in dehydrated bones
Latina et al. Gender Classification for a Day-Old Gallus Gallus Domesticus Using Image Processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876967

Country of ref document: EP

Kind code of ref document: A1