WO2024079946A1 - Cast shaping method and cast material - Google Patents

Cast shaping method and cast material Download PDF

Info

Publication number
WO2024079946A1
WO2024079946A1 PCT/JP2023/023577 JP2023023577W WO2024079946A1 WO 2024079946 A1 WO2024079946 A1 WO 2024079946A1 JP 2023023577 W JP2023023577 W JP 2023023577W WO 2024079946 A1 WO2024079946 A1 WO 2024079946A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
sand
binder
weight
aggregate
Prior art date
Application number
PCT/JP2023/023577
Other languages
French (fr)
Japanese (ja)
Inventor
知裕 青木
哲司 松井
敏彦 善甫
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Publication of WO2024079946A1 publication Critical patent/WO2024079946A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • This disclosure relates to a mold making method and mold material.
  • Patent Document 1 discloses a mold.
  • the mold is produced by binding molded silica sand with a binder.
  • the main component of silica sand is silicon dioxide (SiO 2 ).
  • metal oxides e.g., FeO
  • SiO 2 silicon dioxide
  • Fayalite (2FeO.SiO 2 ) may cause seizure defects on the surface of the casting or cause insertion failure.
  • it is possible to apply a mold coat to the mold In order to reduce the defects, for example, it is possible to apply a mold coat to the mold. However, this increases the number of manufacturing steps, which reduces productivity.
  • the present disclosure provides a technique for suppressing the occurrence of defects without reducing productivity in the molding of molds for manufacturing iron-based castings.
  • a method for making a mold for producing a ferrous casting includes the following steps: (1) A step of producing mixed sand using artificial sand as aggregate and a binder; (2) A step of filling the mixed sand into a mold; and (3) A step of solidifying the mixed sand filled into the mold.
  • the artificial sand contains 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ), and the binder may be either sodium silicate or potassium silicate.
  • the binder may have a molar ratio of 1.8 or more.
  • the mold making method can improve the collapse property of the mold while maintaining the strength of the mold.
  • the binder may be 4 parts by weight or less per 100 parts by weight of aggregate.
  • natural silica sand is used as the aggregate, generally more than 4 parts by weight of binder is added.
  • this mold making method by using artificial sand as the aggregate, it is possible to obtain sufficient strength of the mold even if the amount of binder added is 4 parts by weight or less. Therefore, this mold making method can improve the collapseability of the mold while maintaining the strength of the mold.
  • the artificial sand may be produced by a melting or sintering process.
  • This mold-making method can reduce production costs because artificial sand produced by the melting or sintering process can require less binder than artificial sand produced by other methods.
  • the solidification step may involve solidifying the mixed sand through a dehydration condensation reaction.
  • the filling step may involve blow-filling wet mixed sand into a heated mold, or injecting foamed mixed sand into the mold. This mold-making method allows for the creation of environmentally friendly foundries with little odor.
  • solidification is performed using an ester, an odor specific to organic matter is generated, and when solidification is performed by reacting metal powder with water glass, hydrogen is generated.
  • the solidifying step may solidify the mixed sand using carbon dioxide (CO 2 ) gas.
  • CO 2 carbon dioxide
  • the wet mixed sand can be filled by hand filling, vibration filling, squeezing, or blow filling in the filling step.
  • This mold making method can realize a foundry with less odor and a good environment.
  • ester an odor specific to organic matter is generated, and when solidifying by reacting metal powder with water glass, hydrogen is generated.
  • the mixed sand may be expanded mixed sand containing a surfactant.
  • this mold making method can improve the filling properties of the sand while suppressing the occurrence of defects without reducing productivity.
  • a mold material according to another aspect of the present disclosure is a material for a mold for producing an iron-based casting.
  • the mold material contains artificial sand containing 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ) as an aggregate, and either one of sodium silicate or potassium silicate as a binder.
  • This mold material contains 40% or less silicon dioxide (SiO 2 ) as an aggregate, and the content of silicon dioxide (SiO 2 ) is significantly reduced compared to natural silica sand containing 90% or more silicon dioxide (SiO 2 ).
  • a mold produced using this mold material is less likely to generate fayalite (2FeO.SiO 2 ) compared to a mold produced using natural silica sand as an aggregate. Therefore, this mold material can suppress the occurrence of seizure defects and insertion failures on the surface of the casting compared to a case in which natural silica sand is used as an aggregate. Furthermore, since fayalite (2FeO.SiO 2 ) is unlikely to be generated, there is no need to apply a mold coat, and therefore this mold material can suppress the occurrence of defects without reducing productivity.
  • This disclosure provides a technology that can reduce the occurrence of defects in the molding of molds for producing iron-based castings without reducing productivity.
  • 1 is a flowchart of a mold making method according to one embodiment.
  • 1 is a graph showing the relationship between the amount of binder added and bending strength for each aggregate.
  • 1 is a graph showing the relationship between the amount of each binder added and bending strength.
  • 1 is a graph showing the amount of sand remaining on the casting surface after sand removal for each aggregate.
  • 1 is a graph showing the amount of sand remaining on the casting surface after sand removal for each binder.
  • a mold making method makes a mold.
  • the mold is a main mold or a core for producing an iron-based casting.
  • the iron-based casting is a casting in which the molten metal used for production contains iron oxide (FeO), such as cast iron.
  • FeO iron oxide
  • FIG. 1 is a flow chart of a mold making method according to one embodiment.
  • a kneading process (step S10) is first performed.
  • aggregate and binder are mixed in a kneader.
  • the aggregate is artificial sand having 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ).
  • the percentages used here indicate the average values of the components of one grain of sand.
  • the aggregate is artificial sand having 61% or more and 72% or less aluminum oxide (Al 2 O 3 ) and 20% or more and 36% or less silicon dioxide (SiO 2 ).
  • the artificial sand is in the form of particles, and as an example, spherical particles.
  • the artificial sand is manufactured by, for example, a sintering method or a melting method.
  • the sintering method is a method in which fine particles are granulated using a spray dryer or an agitator mixer, and then sintered in a rotary kiln.
  • the melting method is a method in which fine particles are granulated and then melted, or the material is melted in an arc furnace and then granulated by atomization.
  • Artificial sand produced by the fusion method tends to have a smaller specific surface area than artificial sand produced by the sintering method. For this reason, when molding using artificial sand produced by the fusion method, the amount of binder used to solidify the artificial sand can be reduced compared to when molding using artificial sand produced by the sintering method. This allows this mold-making method to reduce manufacturing costs.
  • the binder is either sodium silicate or potassium silicate.
  • the binder is 4 parts by weight or less per 100 parts by weight of aggregate. In other words, this means that the binder is 4 g or less per 100 g of aggregate. As an example, the binder is 1 part by weight or more and 4 parts by weight or less per 100 parts by weight of aggregate.
  • the binder may have a molar ratio of 1.8 or more.
  • the aggregate and the binder may be foamed while being mixed.
  • a surfactant may be added.
  • An example of the surfactant is an anionic surfactant.
  • the foamed sand is a mixture of solid particles and a foamed liquid.
  • the foamed sand is a mixture of aggregate, binder, and surfactant.
  • the foamed sand may contain not only aggregate, binder, and surfactant, but also other materials.
  • the foamed sand may further contain at least one of poorly water-soluble inorganic compound particles and a lithium salt.
  • “Poorly water-soluble” means that the amount of dissolution is 100 mg or less when dissolved in 1 L of water at 25°C.
  • the inorganic compound particles are, for example, carbonates or hydroxides, and examples are calcium carbonate, magnesium carbonate, magnesium hydroxide, or aluminum hydroxide.
  • Examples of lithium salts are lithium silicate, lithium oxide, lithium hydroxide, lithium carbonate, lithium bromide, lithium chloride, lithium nitrate, or lithium nitrite. Using foamed mixed sand improves the filling properties of the sand.
  • the filling process (step S12) is carried out.
  • the mixed sand an example of a mold material
  • the filling method may be changed depending on the type of solidification method described below. Examples of filling methods include blowing, which uses airflow to fill the mold, injection such as pressing, manual filling, filling by vibration, or squeezing.
  • a solidification process (step S14) is performed.
  • the mixed sand filled in the mold is solidified.
  • the solidification method is not particularly limited.
  • a method using a dehydration condensation reaction a method of hardening a binder with carbon dioxide (CO 2 ) gas, a method of mixing 2 to 4% slag with aggregate and using the slag as a hardener, a method of simultaneously adding an ester and an additive to aggregate and kneading the aggregate to gel, a method of reacting metal powder with an alkali additive to harden the aggregate, and the like can be adopted.
  • the solidification process (step S14) the flow chart shown in FIG. 1 is completed. After the solidification is completed, the main mold or the core is removed from the mold.
  • step S14 When a dehydration condensation reaction is used in the solidification process (step S14), the heated metal mold is filled with the foamed mixed sand in the filling process (step S12).
  • the binder is hardened with carbon dioxide (CO 2 ) gas in the solidification process (step S14)
  • the wooden mold, resin mold, or (heated) metal mold is filled with the mixed sand in the filling process (step S12).
  • solidification by a dehydration condensation reaction is employed, or when solidification using carbon dioxide (CO 2 ) gas is employed, a foundry with less odor and a better environment can be realized compared to other methods.
  • the silicon dioxide (SiO 2 ) contained in the aggregate is 40% or less, and the content of silicon dioxide (SiO 2 ) is significantly reduced compared to natural silica sand containing 90% or more of silicon dioxide (SiO 2 ). Therefore, the mold made by the mold-making method according to the embodiment is less likely to generate fayalite (2FeO.SiO 2 ) compared to a mold made using natural silica sand as aggregate. Therefore, the mold-making method according to the embodiment can suppress the occurrence of seizure defects and insertion defects on the casting surface compared to a mold made using natural silica sand as aggregate. Furthermore, since fayalite (2FeO.SiO 2 ) is less likely to be generated, there is no need to apply a mold coat. Therefore, the mold-making method according to the embodiment can suppress the occurrence of defects without reducing productivity.
  • the mold-making method according to the embodiment can improve the collapseability of the mold while maintaining its strength.
  • Test 1 Mold strength evaluation
  • Examples and comparative examples were produced by varying the type of aggregate and the amount of binder added, and the mold strength was evaluated.
  • the binder was No. 1 water glass (manufactured by Fuji Chemical Co., Ltd.), and the surfactant was an anionic surfactant.
  • Example 1 Artificial sand 1 was used as aggregate. 100 parts by weight of artificial sand 1, 1 part by weight of binder, and 0.25 parts by weight of surfactant were mixed and foamed for about 5 minutes using a kneader (tabletop mixer: manufactured by Aikosha Seisakusho) at about 200 rpm to prepare foamed mixed sand. Next, this foamed mixed sand was filled into a mold heated to 250°C using an injection filling device. The mold was a mold for preparing bending strength test pieces and had a cavity with a capacity of about 80 cm3 . It was filled at a gate speed of about 1 m/sec and a cylinder surface pressure of 0.4 MPa. The foamed mixed sand filled into this heated mold was left for 2 minutes, and the foamed mixed sand was solidified by a dehydration condensation reaction due to the heat of the mold. After solidification was completed, the core was removed from the mold.
  • a kneader tablette: manufactured by Aiko
  • Example 2 (Examples 2 to 6)
  • the binder was 2 parts by weight.
  • the rest was the same as Example 1.
  • the binder was 4 parts by weight.
  • the rest was the same as Example 1.
  • artificial sand 2 was used as the aggregate.
  • the rest was the same as Example 1.
  • artificial sand 2 was used as the aggregate.
  • the rest was the same as Example 2.
  • artificial sand 2 was used as the aggregate.
  • the rest was the same as Example 3.
  • Sand test pieces measuring 10 mm x 10 mm x 140 mm were prepared from Examples 1 to 6 and Comparative Examples 1 to 6, and their bending strength was measured. The bending strength was measured in accordance with JACT test method SM-1, bending strength test method. The results are shown in Figure 2.
  • Figure 2 is a graph showing the relationship between the amount of binder added for each aggregate and bending strength.
  • the horizontal axis is the amount of binder added (parts by weight) and the vertical axis is bending strength (MPa). Cores used in casting are required to be strong enough not to break during transportation or when the cores are placed in place. For this reason, a bending strength of 3 MPa or more was set as the required strength, and the measurement results were evaluated.
  • the dashed line in the figure is a regression curve. As shown in Figure 2, in the case of artificial sand 1 in Examples 1 to 3, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 1 part by weight.
  • the natural silica sand 2 of Comparative Examples 4 to 6 it is considered that 5.0 parts by weight of the binder is required to achieve a bending strength of 3 MPa or more, based on the estimation from the regression curve. In this way, it was confirmed that by using artificial sand as aggregate, strength can be ensured with a smaller amount of binder than natural silica sand. It is considered that such a difference in the measurement results is influenced by the difference in shape and specific surface area between the artificial sand and the natural silica sand. Since the artificial sand has a smooth surface and the natural silica sand has many irregularities on the surface, the artificial sand has a smaller specific surface area, and it is considered that the desired strength can be obtained even with a smaller amount of binder used.
  • the aggregate was artificial sand 1 in Table 1, and the surfactant was an anionic surfactant.
  • Example 7 The aggregate used was artificial sand 1.
  • the artificial sand 1 was 100 parts by weight, the binder 1 was 1 part by weight, and the surfactant was 0.25 parts by weight.
  • the preparation conditions were the same as those in Example 1.
  • Example 8 In Examples 8 and 9, the amount of binder 1 was 2 parts by weight and 4 parts by weight. The rest was the same as Example 7. In Examples 10 to 12, the amount of binder 2 was 1, 2, and 4 parts by weight. The rest was the same as Example 7. In Examples 13 to 15, the amount of binder 3 was 1, 2, and 4 parts by weight. The rest was the same as Example 7. In Examples 16 to 18, the amount of binder 4 was 1, 2, and 4 parts by weight. The rest was the same as Example 7.
  • Sand test pieces measuring 10 mm x 10 mm x 140 mm were prepared from Examples 7 to 18, and their bending strength was measured. The bending strength was measured in accordance with JACT test method SM-1, bending strength test method. The results are shown in Figure 3.
  • Figure 3 is a graph showing the relationship between the amount of each binder added and the bending strength.
  • the horizontal axis is the amount of binder added (parts by weight) and the vertical axis is the bending strength (MPa).
  • MPa bending strength
  • a bending strength of 3 MPa or more was set as the required strength, and the measurement results were evaluated.
  • the dashed line in the figure is a regression curve.
  • FIG 3 in the case of binder 1 in Examples 7 to 9 (Examples 1 to 3), it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 1 part by weight.
  • binder 2 in Examples 10 to 12 it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 4 parts by weight (approximately 2.5 parts by weight estimated from the regression curve).
  • binder 3 in Examples 13 to 15 it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 2 parts by weight (approximately 1.5 parts by weight estimated from the regression curve).
  • binder 4 in Examples 16 to 18 it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 4 parts by weight. In this way, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 1 to 4 parts by weight. Furthermore, it was confirmed that with any binder, a bending strength of 3 MPa or more was achieved with at least 4 parts by weight.
  • Example 19 a core was prepared from 100 parts by weight of artificial sand 1, 1 part by weight of binder 1, and 0.25 parts by weight of anionic surfactant.
  • Example 20 a core was prepared from 100 parts by weight of artificial sand 2, 2.5 parts by weight of binder 1, and 0.25 parts by weight of anionic surfactant.
  • Comparative Example 7 a core was prepared from 100 parts by weight of natural silica sand 1, 3.5 parts by weight of binder 1, and 0.25 parts by weight of anionic surfactant.
  • Comparative Example 8 a core was prepared from 100 parts by weight of natural silica sand 2, 5.0 parts by weight of binder 1, and 0.25 parts by weight of anionic surfactant.
  • the preparation conditions for Examples 19 and 20 and Comparative Examples 7 and 8 were the same as those for Example 1, and a core measuring 10 mm x 10 mm x 140 mm was obtained.
  • Example 21 100 parts by weight of artificial sand 1 and 1 part by weight of binder 1 were mixed for about 5 minutes at about 200 rpm using a mixer (tabletop mixer: Aikosha Seisakusho) to prepare wet mixed sand. This mixed sand was then manually filled into a wooden mold. A wooden mold capable of casting a 30 mm x 30 mm x 100 mm casting and molding a master mold capable of housing a 10 mm x 10 mm x 140 mm core was used. Carbon dioxide ( CO2 ) was blown into the mixed sand filled into the wooden mold for 30 seconds to solidify it. After solidification was complete, the master mold was removed from the wooden mold.
  • a mixer tabletop mixer: Aikosha Seisakusho
  • Example 22 Comparative Examples 9 and 10
  • the master mold was made with 100 parts by weight of artificial sand 2 and 2.5 parts by weight of binder 1.
  • the master mold was made with 100 parts by weight of natural silica sand 1 and 3.5 parts by weight of binder 1.
  • the master mold was made with 100 parts by weight of natural silica sand 2 and 5.0 parts by weight of binder 1.
  • the production conditions for Example 22 and Comparative Examples 9 and 10 are the same as those for Example 21.
  • Cast iron FC200 was cast using the core and main mold in casting number 1. Casting was performed without coating the core and main mold. After casting, the sprue was struck 10 times with a hammer to remove sand from the casting, and the core was visually inspected for collapse and the weight of sand adhering to the casting was measured. For casting numbers 2 to 4, the core was visually inspected for collapse under the same conditions and the weight of sand adhering to the casting was measured.
  • FIG. 4 is a graph showing the amount of sand remaining on the casting surface after sand removal for each aggregate.
  • the horizontal axis is the casting number, and the vertical axis is the amount of remaining sand.
  • the amount of remaining sand was about 2 g in casting No. 1, where the aggregate was artificial sand, and about 6 g in casting No. 2, where the aggregate was artificial sand.
  • the amount of remaining sand was about 36 g in casting No. 3, where the aggregate was natural silica sand, and about 32 g in casting No. 4, where the aggregate was natural silica sand.
  • the natural silica sand was hardened to surround the casting. Since the natural silica sand caused a seizure defect, the weight of the natural silica sand that could be removed from the casting with a metal file was measured. Thus, it was confirmed that it is difficult to achieve both strength and collapsibility of the main mold when natural silica sand is used as the aggregate. It was also confirmed that it is possible to achieve both strength and collapsibility of the main mold by using artificial sand as the aggregate.
  • Table 7 shows the parts by weight of each binder required to achieve a bending strength of 3 MPa or more in artificial sand 1, which was estimated from the results of Test 2.
  • Example 23 a core was made with 100 parts by weight of artificial sand 1, 1 part by weight of binder 1, and 0.25 parts by weight of anionic surfactant.
  • Example 24 a core was made with 100 parts by weight of artificial sand 1, 2.5 parts by weight of binder 2, and 0.25 parts by weight of anionic surfactant.
  • Example 25 a core was made with 100 parts by weight of artificial sand 1, 1.5 parts by weight of binder 3, and 0.25 parts by weight of anionic surfactant.
  • Example 26 a core was made with 100 parts by weight of artificial sand 1, 4.0 parts by weight of binder 4, and 0.25 parts by weight of anionic surfactant.
  • the preparation conditions for Examples 23 to 26 were the same as those for Example 1.
  • Example 27 the master mold was made with 100 parts by weight of artificial sand 1 and 1 part by weight of binder 1.
  • the master mold was made with 100 parts by weight of artificial sand 1 and 2.5 parts by weight of binder 2.
  • the master mold was made with 100 parts by weight of artificial sand 1 and 1.5 parts by weight of binder 3.
  • the master mold was made with 100 parts by weight of artificial sand 1 and 4.0 parts by weight of binder 4.
  • the production conditions for Examples 27 to 30 were the same as those for Example 21.
  • Cast iron FC200 was cast using the core and main mold in casting number 5. Casting was performed without coating the core and main mold. After casting, the sprue was struck 10 times with a hammer to remove sand from the casting, and the core was visually inspected for collapse and the weight of sand adhering to the casting was measured. For casting numbers 6 to 8, the core was visually inspected for collapse under the same conditions and the weight of sand adhering to the casting was measured.
  • Figure 5 is a graph showing the amount of sand remaining on the casting surface after sand removal for each binder.
  • the horizontal axis is the casting number, and the vertical axis is the amount of remaining sand.
  • the amount of remaining sand was 4g or less for casting numbers 5 to 8, in which the aggregate was artificial sand, and it was confirmed that, regardless of the type of binder, when the aggregate was artificial sand, only a small amount of sand adhered to the casting. It was also confirmed that, regardless of the type of binder, by using artificial sand as the aggregate, it was possible to achieve both strength and collapsibility of the main mold.
  • a mold making method for making a mold for producing an iron-based casting comprising the steps of: A step of producing mixed sand using artificial sand as aggregate and a binder; Filling the mixed sand into a mold; A step of solidifying the mixed sand filled in the mold; A mold making method comprising: [Clause 2] 2.
  • Al 2 O 3 aluminum oxide
  • SiO 2 silicon dioxide
  • a mold material for a mold for producing iron-based castings comprising artificial sand containing 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ) as aggregate, and containing either sodium silicate or potassium silicate as a binder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

This cast shaping method is for shaping a cast for manufacturing an iron-based cast object, the method including: a step for producing kneading sand by using a binder and artificial sand which is the aggregate; a step for filling the kneading sand into a mold; and a step for solidifying the kneading sand filled into the mold.

Description

鋳型造型方法及び鋳型材料Mold making method and mold material
 本開示は、鋳型造型方法及び鋳型材料に関する。 This disclosure relates to a mold making method and mold material.
 特許文献1は、鋳型を開示する。鋳型は、成型された珪砂を、バインダーを用いて粘結させることで製造される。珪砂の主成分は、二酸化ケイ素(SiO)である。 Patent Document 1 discloses a mold. The mold is produced by binding molded silica sand with a binder. The main component of silica sand is silicon dioxide (SiO 2 ).
特表2014-527915号公報JP 2014-527915 A
 特許文献1記載の鋳型を鉄系鋳物の製造に用いる場合、溶湯中の金属酸化物(例えばFeO)が鋳型の骨材である珪砂に含まれる二酸化ケイ素(SiO)と反応し、ファイアライト(2FeO・SiO)が生成される場合がある。ファイアライト(2FeO・SiO)は、鋳物表面の焼付き欠陥を引き起こしたり、差し込み不良を発生させたりするおそれがある。不良を低減するために、例えば鋳型に塗型を塗ることが考えられる。しかしながら、製造工程が増えるため、生産性が低下する。本開示は、鉄系鋳物を製造する鋳型の造型において、生産性を低下させることなく不良の発生を抑える技術を提供する。 When the mold described in Patent Document 1 is used to manufacture iron-based castings, metal oxides (e.g., FeO) in the molten metal may react with silicon dioxide (SiO 2 ) contained in silica sand, which is the aggregate of the mold, to generate fayalite (2FeO.SiO 2 ). Fayalite (2FeO.SiO 2 ) may cause seizure defects on the surface of the casting or cause insertion failure. In order to reduce the defects, for example, it is possible to apply a mold coat to the mold. However, this increases the number of manufacturing steps, which reduces productivity. The present disclosure provides a technique for suppressing the occurrence of defects without reducing productivity in the molding of molds for manufacturing iron-based castings.
 本開示の一側面に係る鋳型造型方法は、鉄系鋳物を製造する鋳型を造型する方法である。方法は、以下ステップを含む。
(1)骨材である人工砂と粘結剤とを用いて混練砂を生成するステップ
(2)混練砂を型に充填するステップ
(3)型に充填された混練砂を固化させるステップ
A method for making a mold for producing a ferrous casting according to one aspect of the present disclosure includes the following steps:
(1) A step of producing mixed sand using artificial sand as aggregate and a binder; (2) A step of filling the mixed sand into a mold; and (3) A step of solidifying the mixed sand filled into the mold.
 この鋳型造型方法では、人工砂を骨材とするため、二酸化ケイ素(SiO)を90%以上含む天然珪砂と比べて、二酸化ケイ素(SiO)の含有量が大きく抑えられる。このため、この鋳型造型方法によって製造された鋳型は、天然珪砂を骨材として製造された鋳型と比べて、ファイアライト(2FeO・SiO)が発生しにくい。よって、この鋳型造型方法は、天然珪砂を骨材とした場合と比べて、鋳物表面の焼付き欠陥及び差し込み不良の発生を抑制できる。さらに、ファイアライト(2FeO・SiO)が発生しにくいことから、塗型を塗る必要もない。このため、この鋳型造型方法は、生産性を低下させることなく不良の発生を抑えることができる。 In this mold-making method, since artificial sand is used as aggregate, the content of silicon dioxide (SiO 2 ) is significantly reduced compared to natural silica sand, which contains 90% or more of silicon dioxide (SiO 2 ). Therefore, the mold made by this mold-making method is less likely to generate fayalite (2FeO.SiO 2 ) compared to molds made using natural silica sand as aggregate. Therefore, this mold-making method can suppress the occurrence of seizure defects and insertion defects on the casting surface compared to when natural silica sand is used as aggregate. Furthermore, since fayalite (2FeO.SiO 2 ) is less likely to be generated, there is no need to apply a mold coat. Therefore, this mold-making method can suppress the occurrence of defects without reducing productivity.
 一実施形態においては、人工砂は、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下であり、粘結剤は、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方であってもよい。 In one embodiment, the artificial sand contains 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ), and the binder may be either sodium silicate or potassium silicate.
 一実施形態においては、粘結剤はモル比が1.8以上であってもよい。この場合、鋳型造型方法は、鋳型の強度を保ちつつ鋳型の崩壊性を改善できる。 In one embodiment, the binder may have a molar ratio of 1.8 or more. In this case, the mold making method can improve the collapse property of the mold while maintaining the strength of the mold.
 一実施形態においては、粘結剤は骨材100重量部に対して4重量部以下であってもよい。鋳型の強度を確保するためには粘結剤を多めに添加する必要がある。天然珪砂を骨材とする場合には、一般的に粘結剤は4重量部よりも多く添加される。しかしながら、粘結剤を多めに添加した場合、鋳型の崩壊性が悪化する。この鋳型造型方法では、骨材に人工砂を採用することにより、粘結剤の添加量が4重量部以下であっても鋳型の強度を十分に得ることができる。よって、この鋳型造型方法は、鋳型の強度を保ちつつ鋳型の崩壊性を改善できる。 In one embodiment, the binder may be 4 parts by weight or less per 100 parts by weight of aggregate. In order to ensure the strength of the mold, it is necessary to add a larger amount of binder. When natural silica sand is used as the aggregate, generally more than 4 parts by weight of binder is added. However, if too much binder is added, the collapseability of the mold deteriorates. In this mold making method, by using artificial sand as the aggregate, it is possible to obtain sufficient strength of the mold even if the amount of binder added is 4 parts by weight or less. Therefore, this mold making method can improve the collapseability of the mold while maintaining the strength of the mold.
 一実施形態においては、人工砂は溶融法又は焼結法により製造されてもよい。溶融法又は焼結法により製造された人工砂は、他の方法で製造された人工砂と比べて粘結剤の量を少なくできるので、この鋳型造型方法は製造コストを削減できる。 In one embodiment, the artificial sand may be produced by a melting or sintering process. This mold-making method can reduce production costs because artificial sand produced by the melting or sintering process can require less binder than artificial sand produced by other methods.
 一実施形態においては、固化させるステップでは、脱水縮合反応によって混練砂を固化させてもよい。脱水縮合反応による固化を採用した場合、充填するステップでは、加熱された金型に、湿態の混練砂をブロー充填したり、発泡混練砂を射出充填したりできる。この鋳型造型方法は、臭いが少なく環境の良い鋳造工場が実現できる。一方で、エステルを用いて固化させる場合には、有機物特有の臭いが発生し、金属粉と水ガラスとを反応させて固化させる場合には、水素が発生する。 In one embodiment, the solidification step may involve solidifying the mixed sand through a dehydration condensation reaction. When solidification through a dehydration condensation reaction is used, the filling step may involve blow-filling wet mixed sand into a heated mold, or injecting foamed mixed sand into the mold. This mold-making method allows for the creation of environmentally friendly foundries with little odor. On the other hand, when solidification is performed using an ester, an odor specific to organic matter is generated, and when solidification is performed by reacting metal powder with water glass, hydrogen is generated.
 一実施形態においては、固化させるステップでは、二酸化炭素(CO)ガスを用いて混練砂を固化させてもよい。二酸化炭素(CO)ガスを用いた固化を採用した場合、充填するステップでは、湿態の混練砂を手込め、振動充填、スクイズ、又はブロー充填によって充填できる。この鋳型造型方法は、臭いが少なく環境の良い鋳造工場が実現できる。一方で、エステルを用いて固化させる場合には、有機物特有の臭いが発生し、金属粉と水ガラスとを反応させて固化させる場合には、水素が発生する。 In one embodiment, the solidifying step may solidify the mixed sand using carbon dioxide (CO 2 ) gas. When solidifying using carbon dioxide (CO 2 ) gas is adopted, the wet mixed sand can be filled by hand filling, vibration filling, squeezing, or blow filling in the filling step. This mold making method can realize a foundry with less odor and a good environment. On the other hand, when solidifying using ester, an odor specific to organic matter is generated, and when solidifying by reacting metal powder with water glass, hydrogen is generated.
 一実施形態においては、混練砂は界面活性剤を含む発泡混練砂であってもよい。この鋳型造型方法は、人工砂を骨材とする発泡混練砂を用いることで、砂の充填性を向上させつつ、生産性を低下させることなく不良の発生を抑えることができる。 In one embodiment, the mixed sand may be expanded mixed sand containing a surfactant. By using expanded mixed sand with artificial sand as aggregate, this mold making method can improve the filling properties of the sand while suppressing the occurrence of defects without reducing productivity.
 本開示の他の側面に係る鋳型材料は、鉄系鋳物を製造する鋳型の材料である。鋳型材料は、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下である人工砂を骨材とし、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方を粘結剤として含む。この鋳型材料は、骨材に含まれる、二酸化ケイ素(SiO)が40%以下であり、二酸化ケイ素(SiO)を90%以上含む天然珪砂と比べて、二酸化ケイ素(SiO)の含有量が大きく抑えられる。このため、この鋳型材料を用いて製造された鋳型は、天然珪砂を骨材として製造された鋳型と比べて、ファイアライト(2FeO・SiO)が発生しにくい。よって、この鋳型材料は、天然珪砂を骨材とした場合と比べて、鋳物表面の焼付き欠陥及び差し込み不良の発生を抑制できる。さらに、ファイアライト(2FeO・SiO)が発生しにくいことから、塗型を塗る必要もない。このため、この鋳型材料は、生産性を低下させることなく不良の発生を抑えることができる。 A mold material according to another aspect of the present disclosure is a material for a mold for producing an iron-based casting. The mold material contains artificial sand containing 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ) as an aggregate, and either one of sodium silicate or potassium silicate as a binder. This mold material contains 40% or less silicon dioxide (SiO 2 ) as an aggregate, and the content of silicon dioxide (SiO 2 ) is significantly reduced compared to natural silica sand containing 90% or more silicon dioxide (SiO 2 ). Therefore, a mold produced using this mold material is less likely to generate fayalite (2FeO.SiO 2 ) compared to a mold produced using natural silica sand as an aggregate. Therefore, this mold material can suppress the occurrence of seizure defects and insertion failures on the surface of the casting compared to a case in which natural silica sand is used as an aggregate. Furthermore, since fayalite (2FeO.SiO 2 ) is unlikely to be generated, there is no need to apply a mold coat, and therefore this mold material can suppress the occurrence of defects without reducing productivity.
 本開示によれば、鉄系鋳物を製造する鋳型の造型において、生産性を低下させることなく不良の発生を抑えることができる技術が提供される。 This disclosure provides a technology that can reduce the occurrence of defects in the molding of molds for producing iron-based castings without reducing productivity.
一実施形態に係る鋳型造型方法のフローチャートである。1 is a flowchart of a mold making method according to one embodiment. 各骨材における粘結剤の添加量と曲げ強度との関係を示すグラフである。1 is a graph showing the relationship between the amount of binder added and bending strength for each aggregate. 各粘結剤の添加量と曲げ強度との関係を示すグラフである。1 is a graph showing the relationship between the amount of each binder added and bending strength. 各骨材における砂落とし後の鋳肌への砂残量を示すグラフである。1 is a graph showing the amount of sand remaining on the casting surface after sand removal for each aggregate. 各粘結剤における砂落とし後の鋳肌への砂残量を示すグラフである。1 is a graph showing the amount of sand remaining on the casting surface after sand removal for each binder.
 以下、本発明の実施形態について図面を参照して説明する。各図面において同一又は相当の部分に対しては同一の符号を附す。 Below, an embodiment of the present invention will be described with reference to the drawings. The same or equivalent parts in each drawing are given the same reference numerals.
(鋳型造型方法の概要)
 一実施形態に係る鋳型造型方法は、鋳型を造型する。鋳型は、鉄系鋳物を製造する主型又は中子である。鉄系鋳物とは、製造に用いられる溶湯に酸化鉄(FeO)が含有されている鋳物であり、鋳鉄などである。
(Outline of the casting method)
A mold making method according to one embodiment makes a mold. The mold is a main mold or a core for producing an iron-based casting. The iron-based casting is a casting in which the molten metal used for production contains iron oxide (FeO), such as cast iron.
 図1は、一実施形態に係る鋳型造型方法のフローチャートである。図1に示されるように、鋳型造型方法においては、最初に混練処理(ステップS10)が実行される。混練処理(ステップS10)では、混練機で骨材と粘結剤とが混合される。 FIG. 1 is a flow chart of a mold making method according to one embodiment. As shown in FIG. 1, in the mold making method, a kneading process (step S10) is first performed. In the kneading process (step S10), aggregate and binder are mixed in a kneader.
 骨材は、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下である人工砂である。ここでの%表記は、砂一粒の成分の平均値についての表示である。より具体的な一例としては、骨材は、酸化アルミニウム(Al)が61%以上かつ72%以下であって、二酸化ケイ素(SiO)が20%以上かつ36%以下である人工砂である。人工砂は、粒子であり、一例として球状粒子である。人工砂は、例えば、焼結法又は溶融法により製造される。 The aggregate is artificial sand having 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ). The percentages used here indicate the average values of the components of one grain of sand. As a more specific example, the aggregate is artificial sand having 61% or more and 72% or less aluminum oxide (Al 2 O 3 ) and 20% or more and 36% or less silicon dioxide (SiO 2 ). The artificial sand is in the form of particles, and as an example, spherical particles. The artificial sand is manufactured by, for example, a sintering method or a melting method.
 焼結法は、スプレードライヤ又はアジテータミキサで微粒子を造粒した後に、ロータリーキルンで微粒子を焼結する方法である。溶融法は、微粒子を造粒した後に、微粒子を溶融させる方法、又は、アーク炉で材料を溶融させた後にアトマイジングにより粒子化する方法である。 The sintering method is a method in which fine particles are granulated using a spray dryer or an agitator mixer, and then sintered in a rotary kiln. The melting method is a method in which fine particles are granulated and then melted, or the material is melted in an arc furnace and then granulated by atomization.
 溶融法により製造された人工砂は、焼結法で製造された人工砂と比べて比表面積が小さくなる傾向にある。このため、溶融法により製造された人工砂を用いて造型した場合、焼結法で製造された人工砂を用いて造型した場合と比べて、人工砂を固化させる粘結剤の量を少なくできる。これにより、この鋳型造型方法は、製造コストを削減できる。 Artificial sand produced by the fusion method tends to have a smaller specific surface area than artificial sand produced by the sintering method. For this reason, when molding using artificial sand produced by the fusion method, the amount of binder used to solidify the artificial sand can be reduced compared to when molding using artificial sand produced by the sintering method. This allows this mold-making method to reduce manufacturing costs.
 粘結剤は、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方である。粘結剤は、骨材100重量部に対して4重量部以下である。つまり、骨材100gに対して粘結剤は4g以下という意味である。粘結剤は、一例として骨材100重量部に対して1重量部以上4重量部以下である。粘結剤は、モル比が1.8以上であってもよい。 The binder is either sodium silicate or potassium silicate. The binder is 4 parts by weight or less per 100 parts by weight of aggregate. In other words, this means that the binder is 4 g or less per 100 g of aggregate. As an example, the binder is 1 part by weight or more and 4 parts by weight or less per 100 parts by weight of aggregate. The binder may have a molar ratio of 1.8 or more.
 混練処理(ステップS10)では、骨材と粘結剤とを混合させながら発泡させてもよい。この場合、界面活性剤が添加され得る。界面活性剤は、一例としてアニオン界面活性剤である。これにより、ホイップクリーム状の発泡混練砂が得られる。発泡混練砂とは、固体粒子と発泡した液体との混練砂である。発泡混練砂は、骨材、粘結剤、及び、界面活性剤を混合させたものである。発泡混練砂は、骨材、粘結剤、及び、界面活性剤だけでなく、他の材料を含んでもよい。例えば、発泡混練砂は、難水溶性の無機化合物粒子、及び、リチウム塩の少なくとも一方をさらに含んでもよい。「難水溶性」とは、25℃の水1L中に溶解させたときにその溶解量が100mg以下であることである。無機化合物粒子は、例えば炭酸塩又は水酸化物であり、一例として炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、又は水酸化アルミニウムである。リチウム塩の一例は、珪酸リチウム、酸化リチウム、水酸化リチウム、炭酸リチウム、臭化リチウム、塩化リチウム、硝酸リチウム、又は、亜硝酸リチウムである。発泡混練砂を用いることで、砂の充填性が向上する。 In the kneading process (step S10), the aggregate and the binder may be foamed while being mixed. In this case, a surfactant may be added. An example of the surfactant is an anionic surfactant. This results in a whipped cream-like foamed sand. The foamed sand is a mixture of solid particles and a foamed liquid. The foamed sand is a mixture of aggregate, binder, and surfactant. The foamed sand may contain not only aggregate, binder, and surfactant, but also other materials. For example, the foamed sand may further contain at least one of poorly water-soluble inorganic compound particles and a lithium salt. "Poorly water-soluble" means that the amount of dissolution is 100 mg or less when dissolved in 1 L of water at 25°C. The inorganic compound particles are, for example, carbonates or hydroxides, and examples are calcium carbonate, magnesium carbonate, magnesium hydroxide, or aluminum hydroxide. Examples of lithium salts are lithium silicate, lithium oxide, lithium hydroxide, lithium carbonate, lithium bromide, lithium chloride, lithium nitrate, or lithium nitrite. Using foamed mixed sand improves the filling properties of the sand.
 混練処理(ステップS10)にて混練砂の調整が終了すると、充填処理(ステップS12)が実行される。充填処理(ステップS12)では、混練砂(鋳型材料の一例)を型に充填する。充填の方法は特に限定されない。充填方法は、後述の固化方法の種類に応じて変更してもよい。充填の方法は、一例として、空気流によって充填させるブロー、圧入などの射出、手作業による手込め、振動による充填、又は、スクイズである。 Once the preparation of the mixed sand in the mixing process (step S10) is completed, the filling process (step S12) is carried out. In the filling process (step S12), the mixed sand (an example of a mold material) is filled into the mold. There are no particular limitations on the filling method. The filling method may be changed depending on the type of solidification method described below. Examples of filling methods include blowing, which uses airflow to fill the mold, injection such as pressing, manual filling, filling by vibration, or squeezing.
 充填処理(ステップS12)にて混練砂の充填が終了すると、固化処理(ステップS14)が実行される。固化処理(ステップS14)では、型に充填された混練砂を固化させる。固化の方法は特に限定されない。固化の方法は、一例として、脱水縮合反応を利用する方法、二酸化炭素(CO)ガスで粘結剤を硬化させる方法、骨材に2~4%ほどスラグを混ぜておき、スラグを硬化剤とする方法、骨材にエステルと添加剤とを同時に添加して混練することでゲル化させる方法、金属粉と添加剤のアルカリとを反応させて硬化させる方法などを採用できる。固化処理(ステップS14)が終了すると、図1に示されるフローチャートは終了する。固化終了後、型から主型又は中子が取り出される。 When the filling of the mixed sand is completed in the filling process (step S12), a solidification process (step S14) is performed. In the solidification process (step S14), the mixed sand filled in the mold is solidified. The solidification method is not particularly limited. As an example of the solidification method, a method using a dehydration condensation reaction, a method of hardening a binder with carbon dioxide (CO 2 ) gas, a method of mixing 2 to 4% slag with aggregate and using the slag as a hardener, a method of simultaneously adding an ester and an additive to aggregate and kneading the aggregate to gel, a method of reacting metal powder with an alkali additive to harden the aggregate, and the like can be adopted. When the solidification process (step S14) is completed, the flow chart shown in FIG. 1 is completed. After the solidification is completed, the main mold or the core is removed from the mold.
 なお、固化処理(ステップS14)において脱水縮合反応を利用する場合には、充填処理(ステップS12)では、加熱された金型に発泡混練砂を充填させる。固化処理(ステップS14)において二酸化炭素(CO)ガスで粘結剤を硬化させる場合には、充填処理(ステップS12)では、木型、樹脂型または(加熱)金型に混練砂を充填させる。脱水縮合反応による固化を採用した場合、及び、二酸化炭素(CO)ガスを用いた固化を採用した場合には、他の方法と比べて、臭いが少なく環境の良い鋳造工場が実現できる。 When a dehydration condensation reaction is used in the solidification process (step S14), the heated metal mold is filled with the foamed mixed sand in the filling process (step S12). When the binder is hardened with carbon dioxide (CO 2 ) gas in the solidification process (step S14), the wooden mold, resin mold, or (heated) metal mold is filled with the mixed sand in the filling process (step S12). When solidification by a dehydration condensation reaction is employed, or when solidification using carbon dioxide (CO 2 ) gas is employed, a foundry with less odor and a better environment can be realized compared to other methods.
(実施形態のまとめ)
 実施形態に係る鋳型造型方法では、骨材に含まれる二酸化ケイ素(SiO)が40%以下であり、二酸化ケイ素(SiO)を90%以上含む天然珪砂と比べて、二酸化ケイ素(SiO)の含有量が大きく抑えられる。このため、実施形態に係る鋳型造型方法によって製造された鋳型は、天然珪砂を骨材として製造された鋳型と比べて、ファイアライト(2FeO・SiO)が発生しにくい。よって、実施形態に係る鋳型造型方法は、天然珪砂を骨材とした場合と比べて、鋳物表面の焼付き欠陥及び差し込み不良の発生を抑制できる。さらに、ファイアライト(2FeO・SiO)が発生しにくいことから、塗型を塗る必要もない。このため、実施形態に係る鋳型造型方法は、生産性を低下させることなく不良の発生を抑えることができる。
(Summary of the embodiment)
In the mold-making method according to the embodiment, the silicon dioxide (SiO 2 ) contained in the aggregate is 40% or less, and the content of silicon dioxide (SiO 2 ) is significantly reduced compared to natural silica sand containing 90% or more of silicon dioxide (SiO 2 ). Therefore, the mold made by the mold-making method according to the embodiment is less likely to generate fayalite (2FeO.SiO 2 ) compared to a mold made using natural silica sand as aggregate. Therefore, the mold-making method according to the embodiment can suppress the occurrence of seizure defects and insertion defects on the casting surface compared to a mold made using natural silica sand as aggregate. Furthermore, since fayalite (2FeO.SiO 2 ) is less likely to be generated, there is no need to apply a mold coat. Therefore, the mold-making method according to the embodiment can suppress the occurrence of defects without reducing productivity.
 また、鋳型の強度を確保するためには粘結剤を多めに添加する必要がある。天然珪砂を骨材とする場合には、一般的に粘結剤は4重量部よりも多く添加される。しかしながら、粘結剤を多めに添加した場合、鋳型の崩壊性が悪化する。実施形態に係る鋳型造型方法では、骨材に人工砂を採用することにより、粘結剤の添加量が4重量部以下であっても鋳型の強度を十分に得ることができる。よって、実施形態に係る鋳型造型方法は、鋳型の強度を保ちつつ鋳型の崩壊性を改善できる。 Furthermore, to ensure the strength of the mold, it is necessary to add a large amount of binder. When natural silica sand is used as the aggregate, generally more than 4 parts by weight of binder is added. However, adding too much binder deteriorates the collapseability of the mold. In the mold-making method according to the embodiment, by using artificial sand as the aggregate, it is possible to obtain sufficient strength for the mold even if the amount of binder added is 4 parts by weight or less. Therefore, the mold-making method according to the embodiment can improve the collapseability of the mold while maintaining its strength.
 以下、本開示の効果を確認すべく本発明者等が実施した実施例及び比較例について説明される。 Below, examples and comparative examples carried out by the inventors to confirm the effects of this disclosure are described.
[試験1:鋳型強度評価]
 骨材の種類、及び、粘結剤の添加量を変化させた実施例及び比較例を製造し、鋳型強度を評価した。
[Test 1: Mold strength evaluation]
Examples and comparative examples were produced by varying the type of aggregate and the amount of binder added, and the mold strength was evaluated.
(骨材の種類)
 骨材として人工砂を2種類、天然珪砂を2種類用意した。
Figure JPOXMLDOC01-appb-T000001
(Type of aggregate)
Two types of artificial sand and two types of natural silica sand were prepared as aggregates.
Figure JPOXMLDOC01-appb-T000001
(粘結剤、界面活性剤)
 粘結剤は1号水ガラス(富士化学株式会社製)とし、界面活性剤はアニオン界面活性剤とした。
(Binding agent, surfactant)
The binder was No. 1 water glass (manufactured by Fuji Chemical Co., Ltd.), and the surfactant was an anionic surfactant.
(実施例1)
 骨材として人工砂1を用いた。人工砂1を100重量部、粘結剤を1重量部、界面活性剤を0.25重量部とした材料を、混練機(卓上ミキサ:愛工舎製作所製)を用いて約200rpmで約5分間、混合・発泡させて、発泡混練砂を調整した。次いで、この発泡混練砂を射出充填装置にて250℃に加熱した金型に充填した。金型は曲げ強度試験片作製用の金型で、容量約80cmのキャビティを有する。ゲート速度約1m/sec、シリンダ面圧0.4MPaで充填した。この加熱された金型に充填された発泡混練砂を2分間、放置して、金型の熱による脱水縮合反応によって発泡混練砂を固化させた。固化完了後、金型から中子を取り出した。
Example 1
Artificial sand 1 was used as aggregate. 100 parts by weight of artificial sand 1, 1 part by weight of binder, and 0.25 parts by weight of surfactant were mixed and foamed for about 5 minutes using a kneader (tabletop mixer: manufactured by Aikosha Seisakusho) at about 200 rpm to prepare foamed mixed sand. Next, this foamed mixed sand was filled into a mold heated to 250°C using an injection filling device. The mold was a mold for preparing bending strength test pieces and had a cavity with a capacity of about 80 cm3 . It was filled at a gate speed of about 1 m/sec and a cylinder surface pressure of 0.4 MPa. The foamed mixed sand filled into this heated mold was left for 2 minutes, and the foamed mixed sand was solidified by a dehydration condensation reaction due to the heat of the mold. After solidification was completed, the core was removed from the mold.
(実施例2~6)
 実施例2は、粘結剤を2重量部とした。その他は実施例1と同一である。実施例3は、粘結剤を4重量部とした。その他は実施例1と同一である。実施例4は、骨材として人工砂2を用いた。その他は実施例1と同一である。実施例5は、骨材として人工砂2を用いた。その他は実施例2と同一である。実施例6は、骨材として人工砂2を用いた。その他は実施例3と同一である。
(Examples 2 to 6)
In Example 2, the binder was 2 parts by weight. The rest was the same as Example 1. In Example 3, the binder was 4 parts by weight. The rest was the same as Example 1. In Example 4, artificial sand 2 was used as the aggregate. The rest was the same as Example 1. In Example 5, artificial sand 2 was used as the aggregate. The rest was the same as Example 2. In Example 6, artificial sand 2 was used as the aggregate. The rest was the same as Example 3.
(比較例1~6)
 比較例1は、骨材として天然珪砂1を用いた。その他は実施例1と同一である。比較例2は、骨材として天然珪砂1を用いた。その他は実施例2と同一である。比較例3は、骨材として天然珪砂1を用いた。その他は実施例3と同一である。比較例4は、骨材として天然珪砂2を用いた。その他は実施例1と同一である。比較例5は、骨材として天然珪砂2を用いた。その他は実施例2と同一である。比較例6は、骨材として天然珪砂2を用いた。その他は実施例3と同一である。
(Comparative Examples 1 to 6)
In Comparative Example 1, natural silica sand 1 was used as the aggregate. The rest was the same as in Example 1. In Comparative Example 2, natural silica sand 1 was used as the aggregate. The rest was the same as in Example 2. In Comparative Example 3, natural silica sand 1 was used as the aggregate. The rest was the same as in Example 3. In Comparative Example 4, natural silica sand 2 was used as the aggregate. The rest was the same as in Example 1. In Comparative Example 5, natural silica sand 2 was used as the aggregate. The rest was the same as in Example 2. In Comparative Example 6, natural silica sand 2 was used as the aggregate. The rest was the same as in Example 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~6及び比較例1~6から10mm×10mm×140mmの砂試験片を作製し、曲げ強度を測定した。曲げ強度の測定はJACT試験法SM-1、曲げ強さ試験法に準拠して行った。結果を図2に示す。 Sand test pieces measuring 10 mm x 10 mm x 140 mm were prepared from Examples 1 to 6 and Comparative Examples 1 to 6, and their bending strength was measured. The bending strength was measured in accordance with JACT test method SM-1, bending strength test method. The results are shown in Figure 2.
 図2は、各骨材における粘結剤の添加量と曲げ強度との関係を示すグラフである。図2は、横軸が粘結剤の添加量(重量部)であり、縦軸が曲げ強度(MPa)である。鋳造に用いられる中子は、輸送時や中子納め時に破損しない程度の強度が要求される。このため、曲げ強度3MPa以上を必要な強度として設定し、測定結果を評価した。図中の破線は回帰曲線である。図2に示されるように、実施例1~3の人工砂1の場合には、粘結剤が1重量部のときに曲げ強度3MPa以上を達成していることが確認された。実施例4~6の人工砂2の場合には、粘結剤が4重量部のときに曲げ強度3MPa以上を達成していることが確認された(回帰曲線から見積もると約2.5重量部)。これに対して、比較例1~3の天然珪砂1の場合には、粘結剤が4重量部(回帰曲線から見積もると約3.5重量部)のときに曲げ強度3MPa以上を達成しているものの、実施例4~6の人工砂2よりも曲げ強度が小さいことが確認された。比較例4~6の天然珪砂2の場合には、粘結剤が4重量部のときでも曲げ強度3MPa以上を達成できなかった。比較例4~6の天然珪砂2においては、曲げ強度3MPa以上を達成するためには、回帰曲線から見積もると粘結剤が5.0重量部必要と考えられる。このように、骨材として人工砂を採用することにより、天然珪砂と比べて少ない量の粘結剤で強度を確保できることが確認された。このような測定結果の差は、人工砂と天然珪砂との形状の違い、比表面積の違いが影響していると考えられる。人工砂は表面が滑らかで、天然珪砂は表面に凹凸が多いため、人工砂の方が比表面積は小さく、使用する粘結剤の量が少なくても所望の強度を得ることができると考えられる。 Figure 2 is a graph showing the relationship between the amount of binder added for each aggregate and bending strength. In Figure 2, the horizontal axis is the amount of binder added (parts by weight) and the vertical axis is bending strength (MPa). Cores used in casting are required to be strong enough not to break during transportation or when the cores are placed in place. For this reason, a bending strength of 3 MPa or more was set as the required strength, and the measurement results were evaluated. The dashed line in the figure is a regression curve. As shown in Figure 2, in the case of artificial sand 1 in Examples 1 to 3, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 1 part by weight. In the case of artificial sand 2 in Examples 4 to 6, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 4 parts by weight (approximately 2.5 parts by weight estimated from the regression curve). In contrast, in the case of the natural silica sand 1 of Comparative Examples 1 to 3, a bending strength of 3 MPa or more was achieved when the binder was 4 parts by weight (approximately 3.5 parts by weight estimated from the regression curve), but it was confirmed that the bending strength was smaller than that of the artificial sand 2 of Examples 4 to 6. In the case of the natural silica sand 2 of Comparative Examples 4 to 6, a bending strength of 3 MPa or more could not be achieved even when the binder was 4 parts by weight. In the case of the natural silica sand 2 of Comparative Examples 4 to 6, it is considered that 5.0 parts by weight of the binder is required to achieve a bending strength of 3 MPa or more, based on the estimation from the regression curve. In this way, it was confirmed that by using artificial sand as aggregate, strength can be ensured with a smaller amount of binder than natural silica sand. It is considered that such a difference in the measurement results is influenced by the difference in shape and specific surface area between the artificial sand and the natural silica sand. Since the artificial sand has a smooth surface and the natural silica sand has many irregularities on the surface, the artificial sand has a smaller specific surface area, and it is considered that the desired strength can be obtained even with a smaller amount of binder used.
[試験2:鋳型強度評価]
 粘結剤の種類、及び、粘結剤の添加量を変化させた実施例を製造し、鋳型強度を評価した。
[Test 2: Mold strength evaluation]
Examples were produced in which the type of binder and the amount of binder added were changed, and the mold strength was evaluated.
(粘結剤の種類)
 粘結剤としてモル比の異なるケイ酸ナトリウム及びケイ酸カリウムを用意した。
Figure JPOXMLDOC01-appb-T000003
(Type of binder)
As a binder, sodium silicate and potassium silicate having different molar ratios were prepared.
Figure JPOXMLDOC01-appb-T000003
(骨材、界面活性剤)
 骨材は表1の人工砂1とし、界面活性剤はアニオン界面活性剤とした。
(aggregate, surfactant)
The aggregate was artificial sand 1 in Table 1, and the surfactant was an anionic surfactant.
(実施例7)
 骨材として人工砂1を用いた。人工砂1を100重量部、粘結剤1を1重量部、界面活性剤を0.25重量部とした。作製条件は実施例1と同一である。
(Example 7)
The aggregate used was artificial sand 1. The artificial sand 1 was 100 parts by weight, the binder 1 was 1 part by weight, and the surfactant was 0.25 parts by weight. The preparation conditions were the same as those in Example 1.
(実施例8~18)
 実施例8、9は、粘結剤1を2重量部、4重量部とした。その他は実施例7と同一である。実施例10~12は、粘結剤2を1、2、4重量部とした。その他は実施例7と同一である。実施例13~15は、粘結剤3を1、2、4重量部とした。その他は実施例7と同一である。実施例16~18は、粘結剤4を1、2、4重量部とした。その他は実施例7と同一である。
Figure JPOXMLDOC01-appb-T000004
(Examples 8 to 18)
In Examples 8 and 9, the amount of binder 1 was 2 parts by weight and 4 parts by weight. The rest was the same as Example 7. In Examples 10 to 12, the amount of binder 2 was 1, 2, and 4 parts by weight. The rest was the same as Example 7. In Examples 13 to 15, the amount of binder 3 was 1, 2, and 4 parts by weight. The rest was the same as Example 7. In Examples 16 to 18, the amount of binder 4 was 1, 2, and 4 parts by weight. The rest was the same as Example 7.
Figure JPOXMLDOC01-appb-T000004
 実施例7~18から10mm×10mm×140mmの砂試験片を作製し、曲げ強度を測定した。曲げ強度の測定はJACT試験法SM-1、曲げ強さ試験法に準拠して行った。結果を図3に示す。 Sand test pieces measuring 10 mm x 10 mm x 140 mm were prepared from Examples 7 to 18, and their bending strength was measured. The bending strength was measured in accordance with JACT test method SM-1, bending strength test method. The results are shown in Figure 3.
 図3は、各粘結剤の添加量と曲げ強度との関係を示すグラフである。図3は、横軸が粘結剤の添加量(重量部)であり、縦軸が曲げ強度(MPa)である。試験1と同様に、曲げ強度3MPa以上を必要な強度として設定し、測定結果を評価した。図中の破線は回帰曲線である。図3に示されるように、実施例7~9(実施例1~3)の粘結剤1の場合には、粘結剤が1重量部のときに曲げ強度3MPa以上を達成していることが確認された。実施例10~12の粘結剤2の場合には、粘結剤が4重量部(回帰曲線から見積もると約2.5重量部)のときに曲げ強度3MPa以上を達成していることが確認された。実施例13~15の粘結剤3の場合には、粘結剤が2重量部(回帰曲線から見積もると約1.5重量部)のときに曲げ強度3MPa以上を達成していることが確認された。実施例16~18の粘結剤4の場合には、粘結剤が4重量部のときに曲げ強度3MPa以上を達成していることが確認された。このように、粘結剤が1~4重量部のときに、曲げ強度3MPa以上を達成していることが確認された。さらに、何れの粘結剤においても、少なくとも4重量部あれば曲げ強度3MPa以上を達成することが確認された。 Figure 3 is a graph showing the relationship between the amount of each binder added and the bending strength. In Figure 3, the horizontal axis is the amount of binder added (parts by weight) and the vertical axis is the bending strength (MPa). As in Test 1, a bending strength of 3 MPa or more was set as the required strength, and the measurement results were evaluated. The dashed line in the figure is a regression curve. As shown in Figure 3, in the case of binder 1 in Examples 7 to 9 (Examples 1 to 3), it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 1 part by weight. In the case of binder 2 in Examples 10 to 12, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 4 parts by weight (approximately 2.5 parts by weight estimated from the regression curve). In the case of binder 3 in Examples 13 to 15, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 2 parts by weight (approximately 1.5 parts by weight estimated from the regression curve). In the case of binder 4 in Examples 16 to 18, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 4 parts by weight. In this way, it was confirmed that a bending strength of 3 MPa or more was achieved when the binder was 1 to 4 parts by weight. Furthermore, it was confirmed that with any binder, a bending strength of 3 MPa or more was achieved with at least 4 parts by weight.
[試験3:崩壊性評価]
 各骨材を用いて作製された鋳型(中子、主型)の崩壊性を評価した。
[Test 3: Evaluation of disintegration]
The collapsibility of the molds (core, main mold) made using each aggregate was evaluated.
 試験1の結果から見積もられた、曲げ強度3MPa以上を達成するために必要な粘結剤1の重量部を表5に示す。
Figure JPOXMLDOC01-appb-T000005
The parts by weight of binder 1 required to achieve a bending strength of 3 MPa or more, estimated from the results of Test 1, is shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
<中子>
(実施例19,20、比較例7,8)
 実施例19においては、人工砂1を100重量部、粘結剤1を1重量部、アニオン界面活性剤を0.25重量部で中子を作製した。実施例20においては、人工砂2を100重量部、粘結剤1を2.5重量部、アニオン界面活性剤を0.25重量部で中子を作製した。比較例7においては、天然珪砂1を100重量部、粘結剤1を3.5重量部、アニオン界面活性剤を0.25重量部で中子を作製した。比較例8においては、天然珪砂2を100重量部、粘結剤1を5.0重量部、アニオン界面活性剤を0.25重量部で中子を作製した。実施例19,20及び比較例7,8の作製条件は実施例1と同一であり、10mm×10mm×140mmの中子が得られた。
<Middle part>
(Examples 19 and 20, Comparative Examples 7 and 8)
In Example 19, a core was prepared from 100 parts by weight of artificial sand 1, 1 part by weight of binder 1, and 0.25 parts by weight of anionic surfactant. In Example 20, a core was prepared from 100 parts by weight of artificial sand 2, 2.5 parts by weight of binder 1, and 0.25 parts by weight of anionic surfactant. In Comparative Example 7, a core was prepared from 100 parts by weight of natural silica sand 1, 3.5 parts by weight of binder 1, and 0.25 parts by weight of anionic surfactant. In Comparative Example 8, a core was prepared from 100 parts by weight of natural silica sand 2, 5.0 parts by weight of binder 1, and 0.25 parts by weight of anionic surfactant. The preparation conditions for Examples 19 and 20 and Comparative Examples 7 and 8 were the same as those for Example 1, and a core measuring 10 mm x 10 mm x 140 mm was obtained.
<主型>
(実施例21)
 人工砂1を100重量部、粘結剤1を1重量部とした材料を、混練機(卓上ミキサ:愛工舎製作所)を用いて約200rpmで約5分間混合させて、湿態の混練砂を調整した。次いで、この混練砂を木型に手込めで充填した。30mm×30mm×100mmの鋳物を鋳造でき、10mm×10mm×140mmの中子を収められる主型を造型できる木型を使用した。この木型に充填した混練砂に二酸化炭素(CO)を30秒間吹き込み、固化させた。固化完了後、木型から主型を取り出した。
<Main type>
(Example 21)
100 parts by weight of artificial sand 1 and 1 part by weight of binder 1 were mixed for about 5 minutes at about 200 rpm using a mixer (tabletop mixer: Aikosha Seisakusho) to prepare wet mixed sand. This mixed sand was then manually filled into a wooden mold. A wooden mold capable of casting a 30 mm x 30 mm x 100 mm casting and molding a master mold capable of housing a 10 mm x 10 mm x 140 mm core was used. Carbon dioxide ( CO2 ) was blown into the mixed sand filled into the wooden mold for 30 seconds to solidify it. After solidification was complete, the master mold was removed from the wooden mold.
(実施例22、比較例9,10)
 実施例22においては、人工砂2を100重量部、粘結剤1を2.5重量部で主型を作製した。比較例9においては、天然珪砂1を100重量部、粘結剤1を3.5重量部で主型を作製した。比較例10においては、天然珪砂2を100重量部、粘結剤1を5.0重量部で主型を作製した。実施例22及び比較例9,10の作製条件は実施例21と同一である。
(Example 22, Comparative Examples 9 and 10)
In Example 22, the master mold was made with 100 parts by weight of artificial sand 2 and 2.5 parts by weight of binder 1. In Comparative Example 9, the master mold was made with 100 parts by weight of natural silica sand 1 and 3.5 parts by weight of binder 1. In Comparative Example 10, the master mold was made with 100 parts by weight of natural silica sand 2 and 5.0 parts by weight of binder 1. The production conditions for Example 22 and Comparative Examples 9 and 10 are the same as those for Example 21.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 鋳造番号1における中子及び主型を用いて鋳鉄FC200を鋳造した。中子及び主型への塗型をすることなく鋳造した。鋳造後、鋳物からの砂落としのために、湯口部をハンマーで10回叩き、中子の崩壊の有無を目視で確認するとともに、鋳物に付着した砂の重量を測定した。鋳造番号2~4についても同一条件で中子の崩壊の有無を目視で確認するとともに、鋳物に付着した砂の重量を測定した。 Cast iron FC200 was cast using the core and main mold in casting number 1. Casting was performed without coating the core and main mold. After casting, the sprue was struck 10 times with a hammer to remove sand from the casting, and the core was visually inspected for collapse and the weight of sand adhering to the casting was measured. For casting numbers 2 to 4, the core was visually inspected for collapse under the same conditions and the weight of sand adhering to the casting was measured.
<中子の崩壊性の目視結果>
 鋳造番号1,2の人工砂では中子が崩壊し、中子の部分が貫通穴となった。これに対して、鋳造番号3,4の天然珪砂では中子が崩壊せず、鋳物の中に残った。このように、天然珪砂を骨材とした場合、中子の強度と崩壊性とを両立させることが困難であることが確認された。また、人工砂を骨材とすることで、中子の強度と崩壊性とを両立できることが確認された。
<Visual inspection results of core collapse>
In the artificial sand castings Nos. 1 and 2, the core collapsed, leaving a through hole in the core area. In contrast, in the natural silica sand castings Nos. 3 and 4, the core did not collapse and remained in the casting. Thus, it was confirmed that it is difficult to achieve both strength and collapsibility of the core when natural silica sand is used as aggregate. It was also confirmed that it is possible to achieve both strength and collapsibility of the core by using artificial sand as aggregate.
<鋳物に付着した砂>
 図4は、各骨材における砂落とし後の鋳肌への砂残量を示すグラフである。横軸は鋳造番号、縦軸は砂残量である。図4に示されるように、骨材が人工砂である鋳造番号1では砂残量は2g程度であり、同じく骨材が人工砂である鋳造番号2では砂残量は6g程度であった。このように、骨材が人工砂である場合には、砂は鋳物にわずかに付着する程度であった。これに対して、骨材が天然珪砂である鋳造番号3では砂残量は36g程度であり、同じく骨材が天然珪砂である鋳造番号4では砂残量は32g程度であった。そして、鋳物を取り囲むように天然珪砂が固まっていた。なお、天然珪砂は焼付き欠陥が生じたため、金属やすりで鋳物から除去できた天然珪砂の重量を計測した。このように、天然珪砂を骨材とした場合、主型の強度と崩壊性とを両立させることが困難であることが確認された。また、人工砂を骨材とすることで、主型の強度と崩壊性とを両立できることが確認された。
<Sand adhering to castings>
FIG. 4 is a graph showing the amount of sand remaining on the casting surface after sand removal for each aggregate. The horizontal axis is the casting number, and the vertical axis is the amount of remaining sand. As shown in FIG. 4, the amount of remaining sand was about 2 g in casting No. 1, where the aggregate was artificial sand, and about 6 g in casting No. 2, where the aggregate was artificial sand. Thus, when the aggregate was artificial sand, the sand only adhered slightly to the casting. In contrast, the amount of remaining sand was about 36 g in casting No. 3, where the aggregate was natural silica sand, and about 32 g in casting No. 4, where the aggregate was natural silica sand. The natural silica sand was hardened to surround the casting. Since the natural silica sand caused a seizure defect, the weight of the natural silica sand that could be removed from the casting with a metal file was measured. Thus, it was confirmed that it is difficult to achieve both strength and collapsibility of the main mold when natural silica sand is used as the aggregate. It was also confirmed that it is possible to achieve both strength and collapsibility of the main mold by using artificial sand as the aggregate.
[試験4:崩壊性評価]
 各粘結剤を用いて作製された中子及び主型の崩壊性を評価した。
[Test 4: Evaluation of disintegration]
The collapsibility of the core and the main mold made using each binder was evaluated.
 試験2の結果から見積もられた、人工砂1における曲げ強度3MPa以上を達成するために必要な各粘結剤の重量部を表7に示す。
Figure JPOXMLDOC01-appb-T000007
Table 7 shows the parts by weight of each binder required to achieve a bending strength of 3 MPa or more in artificial sand 1, which was estimated from the results of Test 2.
Figure JPOXMLDOC01-appb-T000007
<中子>
(実施例23~26)
 実施例23においては、人工砂1を100重量部、粘結剤1を1重量部、アニオン界面活性剤を0.25重量部で中子を作製した。実施例24においては、人工砂1を100重量部、粘結剤2を2.5重量部、アニオン界面活性剤を0.25重量部で中子を作製した。実施例25においては、人工砂1を100重量部、粘結剤3を1.5重量部、アニオン界面活性剤を0.25重量部で中子を作製した。実施例26においては、人工砂1を100重量部、粘結剤4を4.0重量部、アニオン界面活性剤を0.25重量部で中子を作製した。実施例23~26の作製条件は実施例1と同一である。
<Middle part>
(Examples 23 to 26)
In Example 23, a core was made with 100 parts by weight of artificial sand 1, 1 part by weight of binder 1, and 0.25 parts by weight of anionic surfactant. In Example 24, a core was made with 100 parts by weight of artificial sand 1, 2.5 parts by weight of binder 2, and 0.25 parts by weight of anionic surfactant. In Example 25, a core was made with 100 parts by weight of artificial sand 1, 1.5 parts by weight of binder 3, and 0.25 parts by weight of anionic surfactant. In Example 26, a core was made with 100 parts by weight of artificial sand 1, 4.0 parts by weight of binder 4, and 0.25 parts by weight of anionic surfactant. The preparation conditions for Examples 23 to 26 were the same as those for Example 1.
<主型>
(実施例27~30)
 実施例27においては、人工砂1を100重量部、粘結剤1を1重量部で主型を作製した。実施例28においては、人工砂1を100重量部、粘結剤2を2.5重量部で主型を作製した。実施例29においては、人工砂1を100重量部、粘結剤3を1.5重量部で主型を作製した。実施例30においては、人工砂1を100重量部、粘結剤4を4.0重量部で主型を作製した。実施例27~30の作製条件は実施例21と同一である。
<Main type>
(Examples 27 to 30)
In Example 27, the master mold was made with 100 parts by weight of artificial sand 1 and 1 part by weight of binder 1. In Example 28, the master mold was made with 100 parts by weight of artificial sand 1 and 2.5 parts by weight of binder 2. In Example 29, the master mold was made with 100 parts by weight of artificial sand 1 and 1.5 parts by weight of binder 3. In Example 30, the master mold was made with 100 parts by weight of artificial sand 1 and 4.0 parts by weight of binder 4. The production conditions for Examples 27 to 30 were the same as those for Example 21.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 鋳造番号5における中子及び主型を用いて鋳鉄FC200を鋳造した。中子及び主型への塗型をすることなく鋳造した。鋳造後、鋳物からの砂落としのために、湯口部をハンマーで10回叩き、中子の崩壊の有無を目視で確認するとともに、鋳物に付着した砂の重量を測定した。鋳造番号6~8についても同一条件で中子の崩壊の有無を目視で確認するとともに、鋳物に付着した砂の重量を測定した。 Cast iron FC200 was cast using the core and main mold in casting number 5. Casting was performed without coating the core and main mold. After casting, the sprue was struck 10 times with a hammer to remove sand from the casting, and the core was visually inspected for collapse and the weight of sand adhering to the casting was measured. For casting numbers 6 to 8, the core was visually inspected for collapse under the same conditions and the weight of sand adhering to the casting was measured.
<中子の崩壊性の目視結果>
 鋳造番号5~8の人工砂では中子が崩壊し、中子の部分が貫通穴となった。このように、粘結剤の種類に関わらず、人工砂を骨材とすることで、中子の強度と崩壊性とを両立できることが確認された。
<Visual inspection results of core collapse>
The core collapsed and a through hole was formed in the artificial sand of casting numbers 5 to 8. In this way, it was confirmed that by using artificial sand as aggregate, regardless of the type of binder, it is possible to achieve both strength and collapse property of the core.
<鋳物に付着した砂>
 図5は、各粘結剤における砂落とし後の鋳肌への砂残量を示すグラフである。横軸は鋳造番号、縦軸は砂残量である。図5に示されるように、骨材が人工砂である鋳造番号5~8では砂残量は何れも4g以下であり、粘結剤の種類に関わらず、骨材が人工砂である場合には、砂は鋳物にわずかに付着する程度であることが確認された。また、粘結剤の種類に関わらず、人工砂を骨材とすることで、主型の強度と崩壊性とを両立できることが確認された。
<Sand adhering to castings>
Figure 5 is a graph showing the amount of sand remaining on the casting surface after sand removal for each binder. The horizontal axis is the casting number, and the vertical axis is the amount of remaining sand. As shown in Figure 5, the amount of remaining sand was 4g or less for casting numbers 5 to 8, in which the aggregate was artificial sand, and it was confirmed that, regardless of the type of binder, when the aggregate was artificial sand, only a small amount of sand adhered to the casting. It was also confirmed that, regardless of the type of binder, by using artificial sand as the aggregate, it was possible to achieve both strength and collapsibility of the main mold.
 以上、例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。 Although exemplary embodiments have been described above, various omissions, substitutions, and modifications may be made without being limited to the exemplary embodiments described above.
 本開示に含まれる種々の例示的実施形態は以下の条項を含む。
[条項1]
 鉄系鋳物を製造する鋳型を造型する鋳型造型方法であって、
 骨材である人工砂と粘結剤とを用いて混練砂を生成するステップと、
 前記混練砂を型に充填するステップと、
 前記型に充填された前記混練砂を固化させるステップと、
を含む鋳型造型方法。
[条項2]
 前記人工砂は、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下であり、前記粘結剤は、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方である、条項1に記載の鋳型造型方法。
[条項3]
 前記粘結剤はモル比が1.8以上である、条項1又は2に記載の鋳型造型方法。
[条項4]
 前記粘結剤は前記骨材100重量部に対して4重量部以下である、条項1~3の何れか一項に記載の鋳型造型方法。
[条項5]
 前記人工砂は、溶融法又は焼結法により製造される、条項1~4の何れか一項に記載の鋳型造型方法。
[条項6]
 前記固化させるステップでは、脱水縮合反応によって前記混練砂を固化させる、条項1~5の何れか一項に記載の鋳型造型方法。
[条項7]
 前記固化させるステップでは、二酸化炭素(CO)ガスを用いて前記混練砂を固化させる、条項1~6の何れか一項に記載の鋳型造型方法。
[条項8]
  前記混練砂は、界面活性剤を含む発泡混練砂である、条項1~7の何れか一項に記載の鋳型造型方法。
[条項9]
 鉄系鋳物を製造する鋳型の鋳型材料であって、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下である人工砂を骨材とし、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方を粘結剤として含む、鋳型材料。
Various exemplary embodiments included in this disclosure include the following provisions:
[Clause 1]
A mold making method for making a mold for producing an iron-based casting, comprising the steps of:
A step of producing mixed sand using artificial sand as aggregate and a binder;
Filling the mixed sand into a mold;
A step of solidifying the mixed sand filled in the mold;
A mold making method comprising:
[Clause 2]
2. The mold-making method according to claim 1, wherein the artificial sand contains 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ), and the binder is one of sodium silicate and potassium silicate.
[Clause 3]
3. The method for making a mold according to claim 1 or 2, wherein the binder has a molar ratio of 1.8 or more.
[Clause 4]
The mold-making method according to any one of claims 1 to 3, wherein the binder is 4 parts by weight or less per 100 parts by weight of the aggregate.
[Clause 5]
5. The mold-making method according to any one of claims 1 to 4, wherein the artificial sand is produced by a melting method or a sintering method.
[Clause 6]
The mold making method according to any one of clauses 1 to 5, wherein in the solidifying step, the mixed sand is solidified by a dehydration condensation reaction.
[Clause 7]
7. The mold making method according to any one of clauses 1 to 6, wherein in the solidifying step, the mixed sand is solidified using carbon dioxide (CO 2 ) gas.
[Clause 8]
8. The mold-making method according to any one of claims 1 to 7, wherein the mixed sand is a foamed mixed sand containing a surfactant.
[Clause 9]
A mold material for a mold for producing iron-based castings, comprising artificial sand containing 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ) as aggregate, and containing either sodium silicate or potassium silicate as a binder.

Claims (9)

  1.  鉄系鋳物を製造する鋳型を造型する鋳型造型方法であって、
     骨材である人工砂と粘結剤とを用いて混練砂を生成するステップと、
     前記混練砂を型に充填するステップと、
     前記型に充填された前記混練砂を固化させるステップと、
    を含む鋳型造型方法。
    A mold making method for making a mold for producing an iron-based casting, comprising the steps of:
    A step of producing mixed sand using artificial sand as aggregate and a binder;
    Filling the mixed sand into a mold;
    A step of solidifying the mixed sand filled in the mold;
    A mold making method comprising:
  2.  前記人工砂は、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下であり、
     前記粘結剤は、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方である、請求項1に記載の鋳型造型方法。
    The artificial sand contains 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 );
    2. The method for making a mold according to claim 1, wherein the binder is one of sodium silicate and potassium silicate.
  3.  前記粘結剤はモル比が1.8以上である、請求項1又は2に記載の鋳型造型方法。 The mold making method according to claim 1 or 2, wherein the binder has a molar ratio of 1.8 or more.
  4.  前記粘結剤は前記骨材100重量部に対して4重量部以下である、請求項1又は2に記載の鋳型造型方法。 The mold making method according to claim 1 or 2, wherein the binder is 4 parts by weight or less per 100 parts by weight of the aggregate.
  5.  前記人工砂は、溶融法又は焼結法により製造される、請求項1又は2に記載の鋳型造型方法。 The mold-making method according to claim 1 or 2, wherein the artificial sand is produced by a melting method or a sintering method.
  6.  前記固化させるステップでは、脱水縮合反応によって前記混練砂を固化させる、請求項1又は2に記載の鋳型造型方法。 The mold making method according to claim 1 or 2, wherein in the solidifying step, the mixed sand is solidified by a dehydration condensation reaction.
  7.  前記固化させるステップでは、二酸化炭素(CO)ガスを用いて前記混練砂を固化させる、請求項1又は2に記載の鋳型造型方法。 The mold making method according to claim 1 or 2, wherein the mixed sand is solidified using carbon dioxide (CO 2 ) gas in the solidifying step.
  8.  前記混練砂は、少なくとも界面活性剤を含む発泡混練砂である、請求項1又は2に記載の鋳型造型方法。 The mold-making method according to claim 1 or 2, wherein the mixed sand is expanded mixed sand containing at least a surfactant.
  9.  鉄系鋳物を製造する鋳型の鋳型材料であって、酸化アルミニウム(Al)が60%以上、かつ、二酸化ケイ素(SiO)が40%以下である人工砂を骨材とし、ケイ酸ナトリウム及びケイ酸カリウムの何れか一方を粘結剤として含む、鋳型材料。 A mold material for a mold for producing iron-based castings, comprising artificial sand containing 60% or more aluminum oxide (Al 2 O 3 ) and 40% or less silicon dioxide (SiO 2 ) as aggregate, and containing either sodium silicate or potassium silicate as a binder.
PCT/JP2023/023577 2022-10-11 2023-06-26 Cast shaping method and cast material WO2024079946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163314A JP2024056445A (en) 2022-10-11 2022-10-11 Mold making method and mold material
JP2022-163314 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024079946A1 true WO2024079946A1 (en) 2024-04-18

Family

ID=90669268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023577 WO2024079946A1 (en) 2022-10-11 2023-06-26 Cast shaping method and cast material

Country Status (2)

Country Link
JP (1) JP2024056445A (en)
WO (1) WO2024079946A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098129A1 (en) * 2012-12-19 2014-06-26 旭有機材工業株式会社 Coated sand, manufacturing method for same, and manufacturing method for mold
JP2014527915A (en) * 2011-09-30 2014-10-23 エーエスケー ケミカルズ ゲゼルシャフト ミット ベシュレンクテル ハフツング COATING COMPOSITION FOR INORGANIC MOLD AND CORE AND METHOD OF USING THE SAME
JP2018047493A (en) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 Molding method of core
JP2019111577A (en) * 2017-12-26 2019-07-11 花王株式会社 Particle for molding mold
JP2020011296A (en) * 2018-07-09 2020-01-23 花王株式会社 Inorganic coated sand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527915A (en) * 2011-09-30 2014-10-23 エーエスケー ケミカルズ ゲゼルシャフト ミット ベシュレンクテル ハフツング COATING COMPOSITION FOR INORGANIC MOLD AND CORE AND METHOD OF USING THE SAME
WO2014098129A1 (en) * 2012-12-19 2014-06-26 旭有機材工業株式会社 Coated sand, manufacturing method for same, and manufacturing method for mold
JP2018047493A (en) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 Molding method of core
JP2019111577A (en) * 2017-12-26 2019-07-11 花王株式会社 Particle for molding mold
JP2020011296A (en) * 2018-07-09 2020-01-23 花王株式会社 Inorganic coated sand

Also Published As

Publication number Publication date
JP2024056445A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP4610679B2 (en) Manufacturing procedures for ferrules for molds, other feeding heads and feeding elements, and compositions for the production of said ferrules and elements
US5641015A (en) Water dispersible molds
RU2551335C2 (en) Salt-based rod and method of its production
JPH0734970B2 (en) Water-dispersible mold, method for producing the mold, and casting method using the mold
CN110267752B (en) Mold material composition and method for producing mold using same
EP2513005B1 (en) Foundry mixes containing sulfate and/or nitrate salts and their uses
JP4223830B2 (en) Water-soluble casting mold and manufacturing method thereof
US11179767B2 (en) Compositions and methods for foundry cores in high pressure die casting
KR101580775B1 (en) Core and a method for the production thereof
JPWO2007010848A1 (en) Resin coated sand for cast steel, mold made of the sand, and steel casting cast by the mold
MX2014012219A (en) Salt-based cores, method for the production thereof and use thereof.
JP2005224833A (en) Casting mold and its manufacturing method
WO2024079946A1 (en) Cast shaping method and cast material
JP3253579B2 (en) Sand for mold
JP4397040B2 (en) Core material
JPH04147742A (en) Mold for casting
JP6595688B2 (en) Mold sand and its manufacturing method
WO2023285482A1 (en) Inorganic binders system
WO2023237882A1 (en) Inorganic water-soluble binder system
CN112846069A (en) Inorganic sand core mold sand-sticking inhibitor, additive and application
JP2023153624A (en) Method for manufacturing core
JPH10146647A (en) Treatment of molding sand and manufacture of mold
JP5176015B2 (en) Molding core
JP2004034042A (en) Method for molding frozen mold
JPH0550176A (en) Treatment of casting sand and manufacture of sand mold for casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876955

Country of ref document: EP

Kind code of ref document: A1