WO2024079934A1 - Single crystal pulling device and single crystal pulling method - Google Patents
Single crystal pulling device and single crystal pulling method Download PDFInfo
- Publication number
- WO2024079934A1 WO2024079934A1 PCT/JP2023/020633 JP2023020633W WO2024079934A1 WO 2024079934 A1 WO2024079934 A1 WO 2024079934A1 JP 2023020633 W JP2023020633 W JP 2023020633W WO 2024079934 A1 WO2024079934 A1 WO 2024079934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crucible
- single crystal
- brightness
- silicon melt
- radiation shield
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 99
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 99
- 239000010703 silicon Substances 0.000 claims abstract description 99
- 230000005855 radiation Effects 0.000 claims abstract description 64
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 239000000155 melt Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 52
- 239000010453 quartz Substances 0.000 description 50
- 239000007788 liquid Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000005034 decoration Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to a single crystal pulling device and a single crystal pulling method, and in particular to a single crystal pulling device and a single crystal pulling method for pulling silicon single crystals by the Czochralski method.
- a quartz crucible 51 installed in a chamber 50 is filled with polysilicon as a raw material, and the polysilicon is heated and melted by a heater 52 provided around the quartz crucible 51 to obtain a silicon melt M.
- a seed crystal P (seed) attached to a seed chuck is immersed in the silicon melt M, and a single crystal C is grown inside the radiation shield 53 by lifting the seed chuck while rotating the seed chuck and the quartz crucible 51 in the same or opposite directions.
- the temperature gradient is the temperature change per unit length in the height direction of the single crystal near the solid-liquid interface
- the pulling speed is the speed at which the single crystal is pulled up.
- the quality of the crystal may vary along the length of the crystal simply by controlling the pulling speed V to be constant, because the temperature gradient G is not constant but fluctuates during the pulling process.
- the distance (called the gap) between the bottom end of the radiation shield and the silicon melt surface is a factor that greatly affects the control to keep the temperature gradient G constant.
- the present invention was made in light of the above circumstances, and aims to provide a single crystal pulling device and a single crystal pulling method that can grow silicon single crystals by precisely controlling the gap between the bottom end of the radiation shield and the silicon melt when pulling silicon single crystals using the Czochralski method.
- the single crystal pulling device which has been made to solve the above problems, is a single crystal pulling device that pulls a single crystal by the Czochralski method from a silicon melt contained in a crucible in a chamber, and is equipped with a lifting drive unit that lifts and lowers the crucible, a heater that heats the crucible, a cylindrical radiation shield that is arranged above the silicon melt formed in the crucible and surrounds the single crystal to be pulled, a light-transmitting pin member that is arranged on the terrace surface located at the tip side of the radiation shield, penetrating the radiation shield so that its lower part is on the melt side and its upper part is on the inner circumference side of the radiation shield, a brightness detection unit that detects the brightness of the pin member, and a controller that controls the lifting drive unit, and the controller is characterized in that it lifts the crucible using the lifting drive unit and causes the brightness detection unit to detect the brightness of the pin member, and when the detected brightness of the pin member exceeds a pre
- the controller after stopping the raising of the crucible by the lifting drive unit, it is desirable for the controller to lower the crucible by the lifting drive unit a distance obtained by subtracting the known length from the lower end of the radiation shield to the tip of the pin member from the desired value of the gap from the lower end of the radiation shield to the silicon melt.
- the predetermined threshold value of the brightness is a value obtained by adding a value of 25% or more of a reference brightness to a reference brightness in a state where the pin member is not in contact with the silicon melt.
- the predetermined brightness threshold value is preferably a value obtained by adding a value that is 50% or more of a reference brightness when the pin member is not in contact with the silicon melt.
- the crucible in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before the start of pulling the single crystal, the crucible is raised, and when the pin members provided at the lower end of the radiation shield come into contact with the silicon melt and the luminance of the pin members changes significantly, the raising of the crucible is stopped.
- the luminance is detected by detecting the luminance of the pin members, not the luminance on the liquid surface, so that there is little risk of erroneous detection and accurate detection results can be obtained.
- the crucible is lowered by a height obtained by subtracting the known length of the pin member from the desired gap value, thereby making it possible to set the initial gap with high accuracy.
- the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high-quality defect-free single crystal.
- the single crystal pulling method according to the present invention is a method for pulling a single crystal by the Czochralski method from a silicon melt contained in a crucible in a chamber, and is characterized by comprising the steps of: before pulling the single crystal, raising the crucible and detecting the brightness of a light-transmitting pin member that is placed above the silicon melt formed in the crucible and extends downward from the lower end of a cylindrical radiation shield that surrounds the single crystal to be pulled; and, when the brightness exceeds a predetermined threshold value, determining that the lower end of the pin member has come into contact with the silicon melt and stopping the raising of the crucible.
- the predetermined threshold value of the brightness is a value obtained by adding a value of 25% or more of a reference brightness to a reference brightness in a state where the pin member is not in contact with the silicon melt.
- the predetermined brightness threshold value is preferably a value obtained by adding a value that is 50% or more of a reference brightness when the pin member is not in contact with the silicon melt.
- the crucible in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before the start of pulling the single crystal, the crucible is raised, and when the pin members provided at the lower end of the radiation shield come into contact with the silicon melt and the luminance of the pin members changes significantly, the raising of the crucible is stopped.
- the luminance is detected by detecting the luminance of the pin members, not the luminance on the liquid surface, so that there is little risk of erroneous detection and accurate detection results can be obtained.
- the crucible is lowered by a height obtained by subtracting the known length of the pin member from the desired gap value, thereby making it possible to set the initial gap with high accuracy.
- the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high-quality defect-free single crystal.
- the gap between the bottom end of the radiation shield and the silicon melt can be precisely controlled to grow the silicon single crystal.
- FIG. 1 is a cross-sectional view showing an example of a single crystal pulling apparatus according to the present invention.
- FIG. 2 is a schematic cross-sectional view showing an enlarged portion of the single crystal pulling apparatus shown in FIG.
- FIG. 3 is a flow chart showing an example of the method for pulling a single crystal according to the present invention.
- FIG. 4 is a graph showing the results of the examples.
- FIG. 5 is a cross-sectional view of a conventional single crystal pulling apparatus. 6(a) and 6(b) are enlarged views of a portion of FIG. 5 for explaining a fusion ring that occurs when a pin provided at the lower end of the radiation shield comes into contact with the silicon melt.
- FIG. 1 is a cross-sectional view showing an example of a single crystal pulling apparatus according to the present invention.
- This single crystal pulling apparatus 1 has a furnace body 10 formed by stacking a pull chamber 10b on top of a cylindrical main chamber 10a, and is equipped with a carbon crucible (or graphite crucible) 2 that is provided in this furnace body 10 so as to be rotatable about a vertical axis and movable up and down, and a quartz glass crucible 3 (hereinafter simply referred to as crucible 3) held by the carbon crucible 2.
- This crucible 3 is rotatable about a vertical axis together with the rotation of the carbon crucible 2.
- a rotation drive unit 14 such as a rotation motor for rotating the carbon crucible 2 around a vertical axis
- an elevation drive unit 15 for moving the carbon crucible 2 up and down.
- the rotation drive unit 14 is connected to a rotation drive control unit 14a
- the elevation drive unit 15 is connected to an elevation drive control unit 15a.
- the single crystal pulling apparatus 1 also includes a heater 4 of a resistance heating type or a high-frequency induction heating type for heating and melting the semiconductor raw material (raw polysilicon) placed in the crucible 3 to form a silicon melt M.
- the single crystal pulling apparatus 1 also includes a pulling mechanism 9 that winds up the wire 6 and pulls up the grown single crystal C.
- a seed crystal P is attached to the tip of the wire 6 of the pulling mechanism 9.
- a rotation drive control unit 9a that controls the rotation drive of the pulling mechanism 9 is connected to the pulling mechanism 9.
- a radiation shield 7 is disposed above the silicon melt M formed in the crucible 3 to surround the single crystal C.
- This radiation shield 7 is formed with openings at the top and bottom, and serves to block excess radiant heat from the side heaters 4, the silicon melt M, etc., to the single crystal C being grown, and to straighten the gas flow in the furnace.
- the radiation shield 7 has a tapered portion 7b that narrows in diameter (downward) from an upper opening 7a toward the silicon melt M, and a ring-shaped terrace portion 7c that extends horizontally inward from the lower end of the tapered portion 7b. The single crystal is pulled up so as to pass through a lower opening 7d formed on the inner edge of the terrace portion 7c and the upper opening 7a.
- the radial length (width) of the terrace portion 7c is set to, for example, 10 mm or more and 150 mm or less so that reflection of the silicon melt M and stray light do not reach the vicinity 7c1 of the lower end of the tapered portion 7b.
- the terrace portion 7c is provided with a light-transmitting quartz pin 8 (pin member) extending downward as shown in the figure. That is, the quartz pin 8 is disposed on the terrace portion 7c (terrace surface) located on the tip side of the radiation shield 7, penetrating the radiation shield 7 so that its lower portion is located on the melt M side and its upper portion is located on the inner peripheral side of the radiation shield 7.
- the quartz pin 8 is provided by inserting the straight body portion 8a from above downward into a hole 7c1 formed in the terrace portion 7c in accordance with the diameter of the straight body portion 8a, and engaging the head portion 8b with the terrace portion 7c.
- the length L of the quartz pin 8 from the lower end 7d of the radiation shield 7 to the pin tip 8a1 is, for example, 15 mm.
- the single crystal pulling device 1 also includes an optical diameter measuring sensor (diameter measuring device) 16, such as a CCD camera, for measuring the diameter of the single crystal being grown.
- an optical diameter measuring sensor such as a CCD camera
- a small observation window 10a1 is provided on the top surface of the main chamber 10a, and the positional change of the crystal end (position indicated by the dashed arrow) at the solid-liquid interface can be detected from outside this small window 10a1.
- the single crystal pulling apparatus 1 also includes a brightness detector 17 such as a CCD camera for measuring the brightness of the head 8b of the quartz pin 8 provided at the lower end of the radiation shield 7.
- This brightness detector 17 is arranged to measure the brightness of the head 8b of the quartz pin 8 arranged on the upper surface of the terrace portion 7c of the radiation shield 7 as shown in FIG. 2.
- a small window 10a2 separate from the small window 10a1 is provided on the upper surface of the main chamber 10a, and changes in the brightness of the head 8b of the quartz pin 8 are detected from outside this small window 10a2.
- the reason for detecting the change in brightness of the head 8b of the quartz pin 8 in this manner is to set the initial gap between the lower end 7d of the radiation shield 7 and the melt surface with high precision.
- the method for setting this initial gap will be described in detail later, but when the tip 8a1 of the quartz pin 8 comes into contact with the silicon melt M, light passes through the quartz pin 8, causing the head 8b of the quartz pin 8 to shine with a higher brightness. This change in brightness is detected by the brightness detector 17.
- the reason why the head 8b of the quartz pin 8 shines with high brightness is due to the following principle.
- the silicon melt M is orange in color and is considerably brighter than the surrounding environment in the furnace.
- the quartz pin 8 When the transparent quartz pin 8 comes into contact with the silicon melt M, a ring is formed around the quartz pin 8 due to surface tension, and the ring captures more visible light emitted from the silicon melt M than before contact.
- the quartz pin 8 is transparent, and the visible light is transmitted to the head of the quartz pin 8 with almost no reflection or absorption, causing it to shine with high brightness.
- the single crystal pulling device 1 also includes a controller 11 having a storage device 11a and an arithmetic and control device 11b, and the rotation drive control unit 14a, the lift drive control unit 15a, the rotation drive control unit 9a, the diameter measurement sensor 16, and the brightness detector 17 are each connected to the arithmetic and control device 11b.
- the single crystal pulling apparatus 1 when a single crystal C having a diameter of, for example, 300 mm is grown, pulling is performed as follows. That is, first, raw polysilicon (for example, 460 kg) is loaded into the crucible 3, and a crystal growing process is started based on the program stored in the storage device 11a of the controller 11.
- raw polysilicon for example, 460 kg
- a predetermined atmosphere (mainly an inert gas such as argon gas) is created inside the furnace body 10.
- a furnace atmosphere with an internal furnace pressure of 65 torr and an argon gas flow rate of 90 l/min is created.
- the raw material polysilicon loaded in the crucible 3 is melted by heating with the heater 4 to become silicon melt M (step S1 in FIG. 3).
- the pulling conditions are adjusted using parameters such as the initial power supply to the heater 4 and the pulling speed, and the seed crystal P starts to rotate around its axis at a predetermined rotation speed.
- the rotation direction is opposite to that of the crucible 3.
- the lift drive unit 15 is driven via the lift drive control unit 15a to raise the height of the crucible 3 by an inching (small movement) operation, for example, in increments of 0.05 mm (step S2 in Figure 3).
- the controller 11 monitors the change in luminance of the head 8b of the quartz pin 8 by the luminance detector 17 (step S3 in FIG. 3).
- the controller 11 stores in advance the maximum luminance after the quartz pin 8 comes into contact with the silicon melt M as 100%.
- the luminance (reference luminance) before the quartz pin 8 comes into contact with the silicon melt M is, for example, 40%.
- the controller 11 detects this with the brightness detector 17 and controls the lifting drive unit 15 to stop the lifting operation of the crucible 3 (step S5 in FIG. 3). Specifically, the controller 11 determines that the quartz pins 8 at the lower end of the radiation shield 7 have come into contact with the silicon melt M when the change in brightness detected by the brightness detector 17 exceeds a predetermined threshold.
- the predetermined threshold of brightness is a value obtained by adding, when the maximum brightness after the quartz pins 8 have come into contact with the silicon melt M is taken as 100%, to a reference brightness (here, 40%) in a state in which the quartz pins 8 are not in contact with the silicon melt M, for example, 25% or more (or 50% or more) of the reference brightness (here, 40%).
- the controller 11 lowers the crucible 3 by the lift driver 15 by a dimension H obtained by subtracting the length L of the quartz pin 8 from the desired gap value G (step S6 in FIG. 3). This allows the initial gap value to be set with high precision. In addition, since the height position of the fixed radiation shield 7 is known, the height position of the silicon melt surface M1 after the gap is set (initial liquid level height) can be easily obtained. The controller 11 stores this initial liquid level height (step S7 in FIG. 3).
- the wire 6 is lowered to bring the seed crystal P into contact with the silicon melt M, and after the tip of the seed crystal P is melted, necking is performed to form a neck portion P1 (step S8 in FIG. 3). Then, the crystal diameter gradually expands to form a shoulder portion C1 (step S9 in FIG. 3).
- the controller 11 also controls the lift drive control unit 15a to drive and control the lift drive unit 15, keeps the pulling speed constant at, for example, 0.55 mm/min, and proceeds to the process of forming the straight body portion C2 that will become the product part (step S10 in Figure 3).
- the controller 11 determines the solidification rate of the silicon single crystal using the measurement results of the measurement sensor 16, and calculates the height position and gap of the silicon melt surface M1 at that time based on this solidification rate and the initial height of the silicon melt surface M1 (step S11 in Figure 3). Then, it is determined whether the variation in the measured dimension of the gap is within ⁇ 0.1 mm (step S12 in FIG. 3), and if it is not, the lifting device control unit 15a is controlled to adjust the height position of the crucible 3 by the lifting drive unit 15 so that the condition is satisfied (step S13 in FIG. 3). During the pulling process, control is performed so that the condition of step S12 is satisfied, and the single crystal pulling process proceeds.
- step S14 in FIG. 3 the process proceeds to the final tail portion process (step S15 in FIG. 3).
- step S15 in FIG. 3 the contact area between the bottom end of the crystal and the silicon melt M gradually decreases, and the single crystal C and the silicon melt M are separated, producing a silicon single crystal.
- the crucible 3 in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before starting to pull the single crystal, the crucible 3 is raised by an inching motion, and the raising of the crucible 3 is stopped when the luminance of the quartz pins 8 provided at the lower end of the radiation shield 7 changes significantly when the quartz pins 8 come into contact with the silicon melt M.
- the luminance is detected by detecting the luminance of the quartz pins 8, rather than the luminance on the liquid surface M1, so that there is little risk of erroneous detection and accurate detection results can be obtained.
- the crucible 3 is lowered by a height H obtained by subtracting the known length L of the quartz pin 8 from the desired gap value, whereby the initial gap can be set with high accuracy.
- the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high quality single crystal.
- the height position detection of the silicon melt surface M1 is calculated based on the solidification rate of the single crystal, but the present invention is not limited to this.
- the reflection of a laser beam irradiated on the silicon melt surface may be detected by a CCD camera, and the detected image signal may be subjected to image processing to determine the silicon melt surface height.
- the pulling speed is constant, but the pulling speed may not be constant but may be variable.
- the crucible 3 is controlled to rise as the silicon melt M decreases, but in order to prevent contact between the radiation shield 7 body and the silicon melt M, if a short pin comes into contact with the silicon melt M, the rising of the crucible 3 may be stopped or the crucible 3 may be controlled to be lowered.
- the quartz pin 8 is composed of a straight body portion 8a having a constant diameter and a disk-shaped head portion 8b having a diameter larger than that of the straight body portion 8a, but the present invention is not limited to this form.
- the lower diameter may be smaller than the upper diameter (the upper diameter may be larger than the lower diameter).
- Example 1 In experiment 1, in the single crystal pulling apparatus shown in Fig. 1, 460 kg of silicon raw material was filled into a quartz crucible having a diameter of 32 inches to form a silicon melt. After the silicon melt was melted in the crucible, the crucible was raised to verify whether there was a change in brightness when the silicon melt came into contact with the quartz pin provided at the lower end of the radiation shield. The crucible was raised in increments of 0.05 mm by inching, and the luminance at that time was detected.
- the threshold value for the controller to determine contact between the quartz pin and the silicon melt is preferably a brightness of 50% or more (a value obtained by adding 25% of the reference brightness (40%) to the reference brightness of 40% before the quartz pin comes into contact with the silicon melt) at which there is almost no possibility of picking up external disturbances and making an erroneous determination, and more preferably, 60% or more (a value obtained by adding 50% of the reference brightness (40%) to the reference brightness of 40% before the quartz pin comes into contact with the silicon melt).
- Example 1 Ten silicon single crystals were actually pulled in Experiment 2.
- Example 1 similarly to Experiment 1, 460 kg of silicon raw material was filled in a quartz crucible having a diameter of 32 inches to form a silicon melt.
- a quartz pin was provided at the lower end of the radiation shield, and an initial gap between the radiation shield and the melt surface was set to 50 mm.
- the furnace environment was created by setting the furnace pressure at 50 torr and flowing argon gas at a flow rate of 100 l/min.
- the crucible rotation speed was set to 1 rpm
- the crystal rotation speed was set to 7 rpm (opposite to the crucible rotation direction)
- the single crystal was grown at a pulling speed of 0.6 mm/min with a target crystal diameter of 305 to 310 mm.
- the gap between the radiation shield and the melt surface was controlled to be 50 mm ⁇ 0.1 mm.
- Example 1 10 single crystals were pulled to be defect-free.
- the V-rich side where void defects exist, was checked for the presence or absence of clusters using 50 overlapping maps of LPD (Light Point Defect) evaluation, and the presence or absence of COP (Crystal Originated Particle) was determined.
- LPD Light Point Defect
- COP Crystal Originated Particle
- the I-rich side was judged for the presence or absence of a B-band region, which is a region where oxygen precipitates are likely to occur by the Cu decoration method.
- a defect-free crystal was defined as a crystal that had neither COPs nor a B-band region.
- Table 1 The results of Example 1 are shown in Table 1. As shown in Table 1, the evaluation of 10 single crystals confirmed that all 10 were defect-free crystals over their entire length.
- Comparative Example 1 In Comparative Example 1, an attempt was made to pull a defect-free crystal using a gap matching method using a mirror image gap. The mirror image gap was calculated from the difference between the actual image of the radiation shield and the edge of the shield as its mirror image reflected on the melt surface, detected using the same CCD camera as that used to detect the brightness of the quartz pin. The results of Comparative Example 1 are shown in Table 1 together with the results of Example 1. As a result of pulling 10 single crystals, I-defects were detected over the entire length of two of the crystals by wafer evaluation using the Cu decoration method. Also, DSOD and LPD crowding modes were observed in parts of the two crystals.
- Example 1 confirmed that the present invention reduces gap variation and increases the yield of defect-free crystals.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
The present invention precisely controls a gap that is the distance between the bottom end of a radiation shield and molten silicon when pulling a silicon single crystal by means of the Czochralski method, and grows a silicon single crystal. The present invention comprises: a raising/lowering driving unit 15 that raises and lowers a crucible 3; a heater 4 that heats the crucible; a cylindrical radiation shield 7 that is disposed above molten silicon M formed in the crucible and surrounds the periphery a single crystal C that is pulled upward; a translucent pin member 8 that is disposed to a terraced surface located at the front end of the radiation shield and penetrates the radiation shield such that the bottom part of the pin member is located on the molten liquid-side and the top part is located on the radiation shield inner circumference-side; a brightness detection portion 17 that detects the brightness of the pin member; and a controller 11 that, when the detected brightness of the pin member exceeds a prescribed threshold, determines that the bottom end of the pin member has come into contact with the molten silicon and stops the raising of the crucible.
Description
本発明は、単結晶引上装置および単結晶引上方法に関し、特にチョクラルスキー法によりシリコン単結晶を引き上げる単結晶引上装置および単結晶引上方法に関する。
The present invention relates to a single crystal pulling device and a single crystal pulling method, and in particular to a single crystal pulling device and a single crystal pulling method for pulling silicon single crystals by the Czochralski method.
チョクラルスキー法(CZ法)によるシリコン単結晶の育成は、図5に示すようにチャンバ50内に設置した石英ルツボ51に原料であるポリシリコンを充填し、前記石英ルツボ51の周囲に設けられたヒータ52によってポリシリコンを加熱して溶融し、シリコン融液Mとする。
その後、シードチャックに取り付けた種結晶P(シード)をシリコン融液Mに浸漬し、シードチャックおよび石英ルツボ51を同方向または逆方向に回転させながらシードチャックを引上げることにより輻射シールド53の内側で単結晶Cを育成する。 In growing silicon single crystals by the Czochralski method (CZ method), as shown in FIG. 5 , aquartz crucible 51 installed in a chamber 50 is filled with polysilicon as a raw material, and the polysilicon is heated and melted by a heater 52 provided around the quartz crucible 51 to obtain a silicon melt M.
Thereafter, a seed crystal P (seed) attached to a seed chuck is immersed in the silicon melt M, and a single crystal C is grown inside theradiation shield 53 by lifting the seed chuck while rotating the seed chuck and the quartz crucible 51 in the same or opposite directions.
その後、シードチャックに取り付けた種結晶P(シード)をシリコン融液Mに浸漬し、シードチャックおよび石英ルツボ51を同方向または逆方向に回転させながらシードチャックを引上げることにより輻射シールド53の内側で単結晶Cを育成する。 In growing silicon single crystals by the Czochralski method (CZ method), as shown in FIG. 5 , a
Thereafter, a seed crystal P (seed) attached to a seed chuck is immersed in the silicon melt M, and a single crystal C is grown inside the
このチョクラルスキー法によるシリコン単結晶の育成では、無欠陥単結晶が求められるが、無欠陥単結晶を製造することができる製造条件は極めて狭い。この製造条件の例として引上速度と温度勾配の比がある。
温度勾配とは、固液界面付近における単結晶の高さ方向の単位長さ当たりの温度変化であり、引上速度とは、単結晶を引き上げる速度である。引上速度をVとし、温度勾配をGとしたとき、単結晶の製造時に形成される欠陥は、引上速度Vと温度勾配Gの比(V/G)に応じて敏感に変化する。例えば、引上速度Vと温度勾配Gの比(V/G)が大き過ぎる場合、空孔型欠陥(ボイド欠陥)が形成されてしまい、逆に、引上速度Vと温度勾配Gの比(V/G)が小さ過ぎる場合、格子間Si型欠陥(転位ループ)が形成されてしまう。 In the growth of silicon single crystals by the Czochralski method, defect-free single crystals are required, but the manufacturing conditions under which defect-free single crystals can be produced are extremely narrow, including the ratio of the pulling rate to the temperature gradient.
The temperature gradient is the temperature change per unit length in the height direction of the single crystal near the solid-liquid interface, and the pulling speed is the speed at which the single crystal is pulled up. When the pulling speed is V and the temperature gradient is G, the defects formed during the production of the single crystal change sensitively depending on the ratio (V/G) of the pulling speed V to the temperature gradient G. For example, when the ratio (V/G) of the pulling speed V to the temperature gradient G is too large, vacancy type defects (void defects) are formed, and conversely, when the ratio (V/G) of the pulling speed V to the temperature gradient G is too small, interstitial Si type defects (dislocation loops) are formed.
温度勾配とは、固液界面付近における単結晶の高さ方向の単位長さ当たりの温度変化であり、引上速度とは、単結晶を引き上げる速度である。引上速度をVとし、温度勾配をGとしたとき、単結晶の製造時に形成される欠陥は、引上速度Vと温度勾配Gの比(V/G)に応じて敏感に変化する。例えば、引上速度Vと温度勾配Gの比(V/G)が大き過ぎる場合、空孔型欠陥(ボイド欠陥)が形成されてしまい、逆に、引上速度Vと温度勾配Gの比(V/G)が小さ過ぎる場合、格子間Si型欠陥(転位ループ)が形成されてしまう。 In the growth of silicon single crystals by the Czochralski method, defect-free single crystals are required, but the manufacturing conditions under which defect-free single crystals can be produced are extremely narrow, including the ratio of the pulling rate to the temperature gradient.
The temperature gradient is the temperature change per unit length in the height direction of the single crystal near the solid-liquid interface, and the pulling speed is the speed at which the single crystal is pulled up. When the pulling speed is V and the temperature gradient is G, the defects formed during the production of the single crystal change sensitively depending on the ratio (V/G) of the pulling speed V to the temperature gradient G. For example, when the ratio (V/G) of the pulling speed V to the temperature gradient G is too large, vacancy type defects (void defects) are formed, and conversely, when the ratio (V/G) of the pulling speed V to the temperature gradient G is too small, interstitial Si type defects (dislocation loops) are formed.
したがって、安定した品質の単結晶を得るためには、引上速度Vと温度勾配Gの比(V/G)を高精度に制御することが必要となる。そして、引上速度Vは機械的な精密制御が可能であるので、安定した結晶品質と計画生産を両立するためには、引上速度Vを一定するように制御を行う単結晶の製造方法が一般に行われている。
Therefore, to obtain single crystals of stable quality, it is necessary to control the ratio of the pulling speed V to the temperature gradient G (V/G) with high precision. Since the pulling speed V can be precisely controlled mechanically, a common method for producing single crystals is to control the pulling speed V to be constant in order to achieve both stable crystal quality and planned production.
しかしながら、引上速度Vを一定とする制御のみでは、結晶長方向に品質がバラつくことがあった。これは、引上げ過程で温度勾配Gが一定ではなく変動しているためである。
温度勾配Gを一定とするための制御に大きく影響する要素として、輻射シールド下端とシリコン融液面との距離(ギャップと呼ぶ)があげられる。単結晶引き上げ中においては、このギャップを精度良く一定に制御することが重要である。 However, the quality of the crystal may vary along the length of the crystal simply by controlling the pulling speed V to be constant, because the temperature gradient G is not constant but fluctuates during the pulling process.
The distance (called the gap) between the bottom end of the radiation shield and the silicon melt surface is a factor that greatly affects the control to keep the temperature gradient G constant. During single crystal pulling, it is important to precisely control this gap to a constant value.
温度勾配Gを一定とするための制御に大きく影響する要素として、輻射シールド下端とシリコン融液面との距離(ギャップと呼ぶ)があげられる。単結晶引き上げ中においては、このギャップを精度良く一定に制御することが重要である。 However, the quality of the crystal may vary along the length of the crystal simply by controlling the pulling speed V to be constant, because the temperature gradient G is not constant but fluctuates during the pulling process.
The distance (called the gap) between the bottom end of the radiation shield and the silicon melt surface is a factor that greatly affects the control to keep the temperature gradient G constant. During single crystal pulling, it is important to precisely control this gap to a constant value.
従来は、例えば特許文献1に開示されるギャップの設定法がある。これは、図5に破線円で囲う輻射シールド53の下端53aに、図6(a)に示すように棒状のピン60を取り付け、ルツボ51を上昇させる。そして、図6(b)に示すように、ピン60とシリコン融液Mとが接触した際にピン60の周りに発生するフュージョンリング70をCCDカメラ等により検出し、それに基づき初期ギャップを設定するようにしている。
There is a conventional gap setting method, for example, disclosed in Patent Document 1. In this method, a rod-shaped pin 60 is attached to the lower end 53a of a radiation shield 53, which is surrounded by a dashed circle in Figure 5, as shown in Figure 6(a), and the crucible 51 is raised. Then, as shown in Figure 6(b), a fusion ring 70 that occurs around the pin 60 when the pin 60 comes into contact with the silicon melt M is detected by a CCD camera or the like, and the initial gap is set based on this.
しかしながら、特許文献1に開示されるように輻射シールド53下端に設けたピン60の最先端部がシリコン融液Mに接触した際のフュージョンリング70は微小であり、液面上に発生するため、精度良く検出することが困難であり、誤検出することもあった。そのため、初期ギャップの設定精度が低くなる虞があり、単結晶引上げ中におけるギャップの制御精度が悪化し、その場合、高品質の無欠陥単結晶収率が低下するという課題があった。
However, as disclosed in Patent Document 1, when the tip of the pin 60 provided at the lower end of the radiation shield 53 comes into contact with the silicon melt M, the fusion ring 70 is very small and occurs above the liquid surface, making it difficult to detect accurately and sometimes resulting in erroneous detection. This can lead to a risk of low accuracy in setting the initial gap, which can lead to poor accuracy in controlling the gap during single crystal pulling, resulting in a problem of a low yield of high-quality defect-free single crystals.
本発明は、上記事情のもとになされたものであり、チョクラルスキー法によりシリコン単結晶を引き上げる際、輻射シールドの下端とシリコン融液との距離であるギャップを精度良く制御して、シリコン単結晶を育成することのできる単結晶引上装置および単結晶引上方法を提供することを目的とする。
The present invention was made in light of the above circumstances, and aims to provide a single crystal pulling device and a single crystal pulling method that can grow silicon single crystals by precisely controlling the gap between the bottom end of the radiation shield and the silicon melt when pulling silicon single crystals using the Czochralski method.
前記課題を解決するためになされた、本発明に係る単結晶引上装置は、チャンバ内のルツボに収容されたシリコン融液からチョクラルスキー法により単結晶を引き上げる単結晶引上装置であって、前記ルツボを昇降させる昇降駆動部と、前記ルツボを加熱するヒータと、前記ルツボ内に形成されるシリコン融液の上方に配置され、引き上げる単結晶の周囲を包囲する円筒状の輻射シールドと、前記輻射シールドの先端側に位置するテラス面に、前記輻射シールドを貫通して下部が融液側に上部が前記輻射シールドの内周側に位置するように配置された光透過性のピン部材と、前記ピン部材の輝度を検出する輝度検出部と、前記昇降駆動部を制御するコントローラと、を備え、前記コントローラは、前記昇降駆動部により前記ルツボを上昇させるとともに前記ピン部材の輝度を前記輝度検出部に検出させ、検出された前記ピン部材の輝度が所定の閾値を超えたときに、前記ピン部材の下端がシリコン融液に接触したものと判定し、前記昇降駆動部による前記ルツボの上昇を停止させることに特徴を有する。
The single crystal pulling device according to the present invention, which has been made to solve the above problems, is a single crystal pulling device that pulls a single crystal by the Czochralski method from a silicon melt contained in a crucible in a chamber, and is equipped with a lifting drive unit that lifts and lowers the crucible, a heater that heats the crucible, a cylindrical radiation shield that is arranged above the silicon melt formed in the crucible and surrounds the single crystal to be pulled, a light-transmitting pin member that is arranged on the terrace surface located at the tip side of the radiation shield, penetrating the radiation shield so that its lower part is on the melt side and its upper part is on the inner circumference side of the radiation shield, a brightness detection unit that detects the brightness of the pin member, and a controller that controls the lifting drive unit, and the controller is characterized in that it lifts the crucible using the lifting drive unit and causes the brightness detection unit to detect the brightness of the pin member, and when the detected brightness of the pin member exceeds a predetermined threshold value, it determines that the lower end of the pin member has come into contact with the silicon melt and stops the lifting of the crucible using the lifting drive unit.
なお、前記昇降駆動部による前記ルツボの上昇を停止させた状態から、前記コントローラは、前記輻射シールドの下端からシリコン融液までのギャップの所望値から、前記ピン部材における輻射シールド下端からピン先端までの既知の長さを差し引いた距離だけ、前記ルツボを前記昇降駆動部により下降させることが望ましい。
また、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の25%以上の値を加えた値であることが望ましい。
或いは、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の50%以上の値を加えた値であることが望ましい。 Furthermore, after stopping the raising of the crucible by the lifting drive unit, it is desirable for the controller to lower the crucible by the lifting drive unit a distance obtained by subtracting the known length from the lower end of the radiation shield to the tip of the pin member from the desired value of the gap from the lower end of the radiation shield to the silicon melt.
Moreover, it is preferable that the predetermined threshold value of the brightness is a value obtained by adding a value of 25% or more of a reference brightness to a reference brightness in a state where the pin member is not in contact with the silicon melt.
Alternatively, the predetermined brightness threshold value is preferably a value obtained by adding a value that is 50% or more of a reference brightness when the pin member is not in contact with the silicon melt.
また、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の25%以上の値を加えた値であることが望ましい。
或いは、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の50%以上の値を加えた値であることが望ましい。 Furthermore, after stopping the raising of the crucible by the lifting drive unit, it is desirable for the controller to lower the crucible by the lifting drive unit a distance obtained by subtracting the known length from the lower end of the radiation shield to the tip of the pin member from the desired value of the gap from the lower end of the radiation shield to the silicon melt.
Moreover, it is preferable that the predetermined threshold value of the brightness is a value obtained by adding a value of 25% or more of a reference brightness to a reference brightness in a state where the pin member is not in contact with the silicon melt.
Alternatively, the predetermined brightness threshold value is preferably a value obtained by adding a value that is 50% or more of a reference brightness when the pin member is not in contact with the silicon melt.
このような構成によれば、単結晶引上開始前の輻射シールド下端とシリコン融液面との間の初期ギャップの設定において、ルツボを上昇させ、輻射シールド下端に設けたピン部材とシリコン融液とが接触した際の、ピン部材の輝度が大きく変化したときにルツボの上昇を停止させる。ここで、輝度の検出は、液面上の輝度を検出するのではなく、ピン部材の輝度を検出するため、誤検出の虞が少なく、精度よい検出結果が得られる。
そして、所望のギャップ値からピン部材における既知の長さを差し引いた高さだけ、ルツボを下降させることにより、精度良く初期ギャップを設定することができる。
その結果、その後の単結晶引上げ工程におけるギャップ制御を高精度に行うことができ、高品質な無欠陥単結晶の引上げを可能とすることができる。 According to this configuration, in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before the start of pulling the single crystal, the crucible is raised, and when the pin members provided at the lower end of the radiation shield come into contact with the silicon melt and the luminance of the pin members changes significantly, the raising of the crucible is stopped. Here, the luminance is detected by detecting the luminance of the pin members, not the luminance on the liquid surface, so that there is little risk of erroneous detection and accurate detection results can be obtained.
Then, the crucible is lowered by a height obtained by subtracting the known length of the pin member from the desired gap value, thereby making it possible to set the initial gap with high accuracy.
As a result, the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high-quality defect-free single crystal.
そして、所望のギャップ値からピン部材における既知の長さを差し引いた高さだけ、ルツボを下降させることにより、精度良く初期ギャップを設定することができる。
その結果、その後の単結晶引上げ工程におけるギャップ制御を高精度に行うことができ、高品質な無欠陥単結晶の引上げを可能とすることができる。 According to this configuration, in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before the start of pulling the single crystal, the crucible is raised, and when the pin members provided at the lower end of the radiation shield come into contact with the silicon melt and the luminance of the pin members changes significantly, the raising of the crucible is stopped. Here, the luminance is detected by detecting the luminance of the pin members, not the luminance on the liquid surface, so that there is little risk of erroneous detection and accurate detection results can be obtained.
Then, the crucible is lowered by a height obtained by subtracting the known length of the pin member from the desired gap value, thereby making it possible to set the initial gap with high accuracy.
As a result, the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high-quality defect-free single crystal.
また、前記課題を解決するためになされた、本発明に係る単結晶引上方法は、チャンバ内のルツボに収容されたシリコン融液からチョクラルスキー法により単結晶を引き上げる単結晶引上方法であって、単結晶の引上げ前に、前記ルツボを上昇させるとともに、前記ルツボ内に形成されるシリコン融液の上方に配置され、引き上げる単結晶の周囲を包囲する円筒状の輻射シールドの下端から下方に向けて延びる光透過性のピン部材の輝度を検出するステップと、前記輝度が所定の閾値を超えた際に、前記ピン部材の下端がシリコン融液に接触したものと判定し、前記ルツボの上昇を停止させるステップと、を備えることに特徴を有する。
The single crystal pulling method according to the present invention, which has been made to solve the above problems, is a method for pulling a single crystal by the Czochralski method from a silicon melt contained in a crucible in a chamber, and is characterized by comprising the steps of: before pulling the single crystal, raising the crucible and detecting the brightness of a light-transmitting pin member that is placed above the silicon melt formed in the crucible and extends downward from the lower end of a cylindrical radiation shield that surrounds the single crystal to be pulled; and, when the brightness exceeds a predetermined threshold value, determining that the lower end of the pin member has come into contact with the silicon melt and stopping the raising of the crucible.
なお、前記輝度が所定の閾値を超えたときに、前記ピン部材の下端がシリコン融液に接触したものと判定し、前記ルツボの上昇を停止させるステップの後、前記輻射シールドの下端からシリコン融液までのギャップの所望値から、前記ピン部材の輻射シールド下端からピン先端までの既知の長さを差し引いた距離だけ、前記ルツボを下降させるステップと、を備えることが望ましい。
また、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の25%以上の値を加えた値であることが望ましい。
或いは、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の50%以上の値を加えた値であることが望ましい。 In addition, it is desirable to include a step of determining that the lower end of the pin member has come into contact with the silicon melt when the brightness exceeds a predetermined threshold value, and after the step of stopping the raising of the crucible, lowering the crucible a distance obtained by subtracting a known length from the lower end of the radiation shield of the pin member to the tip of the pin from a desired value of the gap from the lower end of the radiation shield to the silicon melt.
Moreover, it is preferable that the predetermined threshold value of the brightness is a value obtained by adding a value of 25% or more of a reference brightness to a reference brightness in a state where the pin member is not in contact with the silicon melt.
Alternatively, the predetermined brightness threshold value is preferably a value obtained by adding a value that is 50% or more of a reference brightness when the pin member is not in contact with the silicon melt.
また、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の25%以上の値を加えた値であることが望ましい。
或いは、前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の50%以上の値を加えた値であることが望ましい。 In addition, it is desirable to include a step of determining that the lower end of the pin member has come into contact with the silicon melt when the brightness exceeds a predetermined threshold value, and after the step of stopping the raising of the crucible, lowering the crucible a distance obtained by subtracting a known length from the lower end of the radiation shield of the pin member to the tip of the pin from a desired value of the gap from the lower end of the radiation shield to the silicon melt.
Moreover, it is preferable that the predetermined threshold value of the brightness is a value obtained by adding a value of 25% or more of a reference brightness to a reference brightness in a state where the pin member is not in contact with the silicon melt.
Alternatively, the predetermined brightness threshold value is preferably a value obtained by adding a value that is 50% or more of a reference brightness when the pin member is not in contact with the silicon melt.
このような構成によれば、単結晶引上開始前の輻射シールド下端とシリコン融液面との間の初期ギャップの設定において、ルツボを上昇させ、輻射シールド下端に設けたピン部材とシリコン融液とが接触した際の、ピン部材の輝度が大きく変化したときにルツボの上昇を停止させる。ここで、輝度の検出は、液面上の輝度を検出するのではなく、ピン部材の輝度を検出するため、誤検出の虞が少なく、精度よい検出結果が得られる。
そして、所望のギャップ値からピン部材における既知の長さを差し引いた高さだけ、ルツボを下降させることにより、精度良く初期ギャップを設定することができる。
その結果、その後の単結晶引上げ工程におけるギャップ制御を高精度に行うことができ、高品質な無欠陥単結晶の引上げを可能とすることができる。 According to this configuration, in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before the start of pulling the single crystal, the crucible is raised, and when the pin members provided at the lower end of the radiation shield come into contact with the silicon melt and the luminance of the pin members changes significantly, the raising of the crucible is stopped. Here, the luminance is detected by detecting the luminance of the pin members, not the luminance on the liquid surface, so that there is little risk of erroneous detection and accurate detection results can be obtained.
Then, the crucible is lowered by a height obtained by subtracting the known length of the pin member from the desired gap value, thereby making it possible to set the initial gap with high accuracy.
As a result, the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high-quality defect-free single crystal.
そして、所望のギャップ値からピン部材における既知の長さを差し引いた高さだけ、ルツボを下降させることにより、精度良く初期ギャップを設定することができる。
その結果、その後の単結晶引上げ工程におけるギャップ制御を高精度に行うことができ、高品質な無欠陥単結晶の引上げを可能とすることができる。 According to this configuration, in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before the start of pulling the single crystal, the crucible is raised, and when the pin members provided at the lower end of the radiation shield come into contact with the silicon melt and the luminance of the pin members changes significantly, the raising of the crucible is stopped. Here, the luminance is detected by detecting the luminance of the pin members, not the luminance on the liquid surface, so that there is little risk of erroneous detection and accurate detection results can be obtained.
Then, the crucible is lowered by a height obtained by subtracting the known length of the pin member from the desired gap value, thereby making it possible to set the initial gap with high accuracy.
As a result, the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high-quality defect-free single crystal.
本発明によれば、チョクラルスキー法によりシリコン単結晶を引き上げる際、輻射シールドの下端とシリコン融液との距離であるギャップを精度良く制御して、シリコン単結晶を育成することができる。
According to the present invention, when pulling silicon single crystals using the Czochralski method, the gap between the bottom end of the radiation shield and the silicon melt can be precisely controlled to grow the silicon single crystal.
以下、本発明に係る単結晶引上装置および単結晶引上方法について図面を用いながら説明する。ただし、本発明の一例として本実施形態を説明するものであり、本発明はこれに限定されるものではない。
The following describes the single crystal pulling device and single crystal pulling method according to the present invention with reference to the drawings. However, this embodiment is described as an example of the present invention, and the present invention is not limited to this.
図1は、本発明に係る単結晶引上装置の一例を示す断面図である。この単結晶引上装置1は、円筒形状のメインチャンバ10aの上にプルチャンバ10bを重ねて形成された炉体10を備え、この炉体10内に鉛直軸回りに回転可能、且つ昇降可能に設けられたカーボンルツボ(或いは黒鉛ルツボ)2と、カーボンルツボ2によって保持された石英ガラスルツボ3(以下、単にルツボ3と称する)とを具備している。このルツボ3は、カーボンルツボ2の回転とともに鉛直軸回りに回転可能となされている。
Figure 1 is a cross-sectional view showing an example of a single crystal pulling apparatus according to the present invention. This single crystal pulling apparatus 1 has a furnace body 10 formed by stacking a pull chamber 10b on top of a cylindrical main chamber 10a, and is equipped with a carbon crucible (or graphite crucible) 2 that is provided in this furnace body 10 so as to be rotatable about a vertical axis and movable up and down, and a quartz glass crucible 3 (hereinafter simply referred to as crucible 3) held by the carbon crucible 2. This crucible 3 is rotatable about a vertical axis together with the rotation of the carbon crucible 2.
また、カーボンルツボ2の下方には、このカーボンルツボ2を鉛直軸回りに回転させる回転モータなどの回転駆動部14と、カーボンルツボ2を昇降移動させる昇降駆動部15とが設けられている。
尚、回転駆動部14には回転駆動制御部14aが接続され、昇降駆動部15には昇降駆動制御部15aが接続されている。 Further, below thecarbon crucible 2, there are provided a rotation drive unit 14 such as a rotation motor for rotating the carbon crucible 2 around a vertical axis, and an elevation drive unit 15 for moving the carbon crucible 2 up and down.
Therotation drive unit 14 is connected to a rotation drive control unit 14a, and the elevation drive unit 15 is connected to an elevation drive control unit 15a.
尚、回転駆動部14には回転駆動制御部14aが接続され、昇降駆動部15には昇降駆動制御部15aが接続されている。 Further, below the
The
また単結晶引上装置1は、ルツボ3に装填された半導体原料(原料ポリシリコン)を加熱溶融してシリコン融液Mとするための抵抗加熱式または高周波誘導加熱方式によるヒータ4を備えている。
また、単結晶引上装置1は、ワイヤ6を巻き上げ、育成される単結晶Cを引き上げる引き上げ機構9を備えている。引き上げ機構9が有するワイヤ6の先端には、種結晶Pが取り付けられている。引き上げ機構9には、その回転駆動の制御を行う回転駆動制御部9aが接続されている。 The singlecrystal pulling apparatus 1 also includes a heater 4 of a resistance heating type or a high-frequency induction heating type for heating and melting the semiconductor raw material (raw polysilicon) placed in the crucible 3 to form a silicon melt M.
The singlecrystal pulling apparatus 1 also includes a pulling mechanism 9 that winds up the wire 6 and pulls up the grown single crystal C. A seed crystal P is attached to the tip of the wire 6 of the pulling mechanism 9. A rotation drive control unit 9a that controls the rotation drive of the pulling mechanism 9 is connected to the pulling mechanism 9.
また、単結晶引上装置1は、ワイヤ6を巻き上げ、育成される単結晶Cを引き上げる引き上げ機構9を備えている。引き上げ機構9が有するワイヤ6の先端には、種結晶Pが取り付けられている。引き上げ機構9には、その回転駆動の制御を行う回転駆動制御部9aが接続されている。 The single
The single
また、ルツボ3内に形成されるシリコン融液Mの上方には、単結晶Cの周囲を包囲する輻射シールド7が配置されている。この輻射シールド7は、上部と下部が開口形成され、育成中の単結晶Cに対するサイドヒータ4やシリコン融液M等からの余計な輻射熱を遮蔽すると共に、炉内のガス流を整流するものである。
輻射シールド7の形状について、詳細に説明すると、図2に示すように輻射シールド7は、上部開口7aからシリコン融液Mに向けて(下方に向けて)縮径するテーパ部7bと、テーパ部7b下端から内方に向かって水平に延設され、これが環状に形成されたテラス部7cとを有する。テラス部7cの内縁に形成された下部開口7dと上部開口7aとを通るように単結晶が引き上げられることになる。 In addition, aradiation shield 7 is disposed above the silicon melt M formed in the crucible 3 to surround the single crystal C. This radiation shield 7 is formed with openings at the top and bottom, and serves to block excess radiant heat from the side heaters 4, the silicon melt M, etc., to the single crystal C being grown, and to straighten the gas flow in the furnace.
2, theradiation shield 7 has a tapered portion 7b that narrows in diameter (downward) from an upper opening 7a toward the silicon melt M, and a ring-shaped terrace portion 7c that extends horizontally inward from the lower end of the tapered portion 7b. The single crystal is pulled up so as to pass through a lower opening 7d formed on the inner edge of the terrace portion 7c and the upper opening 7a.
輻射シールド7の形状について、詳細に説明すると、図2に示すように輻射シールド7は、上部開口7aからシリコン融液Mに向けて(下方に向けて)縮径するテーパ部7bと、テーパ部7b下端から内方に向かって水平に延設され、これが環状に形成されたテラス部7cとを有する。テラス部7cの内縁に形成された下部開口7dと上部開口7aとを通るように単結晶が引き上げられることになる。 In addition, a
2, the
テラス部7cの径方向の長さ(幅)は、テーパ部7b下端近傍7c1においてシリコン融液Mの反射や迷光が届かないように、例えば10mm以上150mm以下に形成されている。このテラス部7cには、図示するように下方に延びる光透過性の石英ピン8(ピン部材)が設けられている。即ち、この石英ピン8は、輻射シールド7の先端側に位置するテラス部7c(テラス面)に、輻射シールド7を貫通して下部が融液M側に、上部が輻射シールド7の内周側に位置するように配置されている。
この石英ピン8は、例えば、直胴部8aと、直胴部8aよりも径の大きな円板状の頭部8bとからなり、テラス部7cに直胴部8aの径に合わせて形成された孔7c1に上方から下方に向けて直胴部8aを挿入し、頭部8bをテラス部7cに係止することにより設けられている。この石英ピン8において、輻射シールド7の下端7dからピン先端8a1までの長さLは、例えば15mmに形成されている。 The radial length (width) of theterrace portion 7c is set to, for example, 10 mm or more and 150 mm or less so that reflection of the silicon melt M and stray light do not reach the vicinity 7c1 of the lower end of the tapered portion 7b. The terrace portion 7c is provided with a light-transmitting quartz pin 8 (pin member) extending downward as shown in the figure. That is, the quartz pin 8 is disposed on the terrace portion 7c (terrace surface) located on the tip side of the radiation shield 7, penetrating the radiation shield 7 so that its lower portion is located on the melt M side and its upper portion is located on the inner peripheral side of the radiation shield 7.
Thequartz pin 8 is provided by inserting the straight body portion 8a from above downward into a hole 7c1 formed in the terrace portion 7c in accordance with the diameter of the straight body portion 8a, and engaging the head portion 8b with the terrace portion 7c. The length L of the quartz pin 8 from the lower end 7d of the radiation shield 7 to the pin tip 8a1 is, for example, 15 mm.
この石英ピン8は、例えば、直胴部8aと、直胴部8aよりも径の大きな円板状の頭部8bとからなり、テラス部7cに直胴部8aの径に合わせて形成された孔7c1に上方から下方に向けて直胴部8aを挿入し、頭部8bをテラス部7cに係止することにより設けられている。この石英ピン8において、輻射シールド7の下端7dからピン先端8a1までの長さLは、例えば15mmに形成されている。 The radial length (width) of the
The
また、単結晶引上装置1は、育成中の単結晶の直径を測定するためのCCDカメラ等の光学式の直径測定センサ(直径測定装置)16を備える。メインチャンバ10aの上面部には、観測用の小窓10a1が設けられており、この小窓10a1の外側から固液界面における結晶端(破線矢印で示す位置)の位置変化を検出するようになされている。
The single crystal pulling device 1 also includes an optical diameter measuring sensor (diameter measuring device) 16, such as a CCD camera, for measuring the diameter of the single crystal being grown. A small observation window 10a1 is provided on the top surface of the main chamber 10a, and the positional change of the crystal end (position indicated by the dashed arrow) at the solid-liquid interface can be detected from outside this small window 10a1.
また、単結晶引上装置1は、輻射シールド7の下端に設けられた石英ピン8の頭部8bの輝度を測定するためのCCDカメラ等の輝度検出計17を備える。この輝度検出計17は、図2に示すように輻射シールド7のテラス部7c上面に配置された石英ピン8の頭部8bの輝度を測定するよう配置されている。メインチャンバ10aの上面部には、小窓10a1とは別の小窓10a2が設けられており、この小窓10a2の外側から石英ピン8の頭部8bの輝度の変化を検出するようになされている。
The single crystal pulling apparatus 1 also includes a brightness detector 17 such as a CCD camera for measuring the brightness of the head 8b of the quartz pin 8 provided at the lower end of the radiation shield 7. This brightness detector 17 is arranged to measure the brightness of the head 8b of the quartz pin 8 arranged on the upper surface of the terrace portion 7c of the radiation shield 7 as shown in FIG. 2. A small window 10a2 separate from the small window 10a1 is provided on the upper surface of the main chamber 10a, and changes in the brightness of the head 8b of the quartz pin 8 are detected from outside this small window 10a2.
本実施の形態において、このように石英ピン8の頭部8bの輝度変化を検出するのは、輻射シールド7の下端7dと融液面との間の初期ギャップの設定を高精度に行うためである。この初期ギャップの設定方法は、詳しく後述するが、石英ピン8の先端8a1とシリコン融液Mとが接触した際に、石英ピン8内を光が通過し、石英ピン8の頭部8bがより高輝度に光る。この輝度の変化を輝度検出計17により検出するものである。
なお、石英ピン8の頭部8bが高輝度に光るのは、次のような原理による。シリコン融液Mはオレンジ色で、炉内の周辺環境に比べてかなり明るい。そのシリコン融液Mに透明な石英ピン8が接触すると、石英ピン8周りに表面張力によりリングが形成され、接触する前よりもシリコン融液Mから放射される可視光を多く取り込む。石英ピン8は透明であり、その可視光をほとんど反射・吸収することなく石英ピン8の頭部にまで伝搬するため高輝度に光る。 In this embodiment, the reason for detecting the change in brightness of thehead 8b of the quartz pin 8 in this manner is to set the initial gap between the lower end 7d of the radiation shield 7 and the melt surface with high precision. The method for setting this initial gap will be described in detail later, but when the tip 8a1 of the quartz pin 8 comes into contact with the silicon melt M, light passes through the quartz pin 8, causing the head 8b of the quartz pin 8 to shine with a higher brightness. This change in brightness is detected by the brightness detector 17.
The reason why thehead 8b of the quartz pin 8 shines with high brightness is due to the following principle. The silicon melt M is orange in color and is considerably brighter than the surrounding environment in the furnace. When the transparent quartz pin 8 comes into contact with the silicon melt M, a ring is formed around the quartz pin 8 due to surface tension, and the ring captures more visible light emitted from the silicon melt M than before contact. The quartz pin 8 is transparent, and the visible light is transmitted to the head of the quartz pin 8 with almost no reflection or absorption, causing it to shine with high brightness.
なお、石英ピン8の頭部8bが高輝度に光るのは、次のような原理による。シリコン融液Mはオレンジ色で、炉内の周辺環境に比べてかなり明るい。そのシリコン融液Mに透明な石英ピン8が接触すると、石英ピン8周りに表面張力によりリングが形成され、接触する前よりもシリコン融液Mから放射される可視光を多く取り込む。石英ピン8は透明であり、その可視光をほとんど反射・吸収することなく石英ピン8の頭部にまで伝搬するため高輝度に光る。 In this embodiment, the reason for detecting the change in brightness of the
The reason why the
また、この単結晶引上装置1は、記憶装置11aと演算制御装置11bとを有するコントローラ11を備え、回転駆動制御部14a、昇降駆動制御部15a、回転駆動制御部9a、直径測定センサ16、輝度検出計17は、それぞれ演算制御装置11bに接続されている。
The single crystal pulling device 1 also includes a controller 11 having a storage device 11a and an arithmetic and control device 11b, and the rotation drive control unit 14a, the lift drive control unit 15a, the rotation drive control unit 9a, the diameter measurement sensor 16, and the brightness detector 17 are each connected to the arithmetic and control device 11b.
このように構成された単結晶引上装置1において、例えば、直径300mmの単結晶Cを育成する場合、次のように引き上げが行われる。
即ち、最初にルツボ3に原料ポリシリコン(例えば460kg)を装填し、コントローラ11の記憶装置11aに記憶されたプログラムに基づき結晶育成工程が開始される。 In the singlecrystal pulling apparatus 1 thus constructed, when a single crystal C having a diameter of, for example, 300 mm is grown, pulling is performed as follows.
That is, first, raw polysilicon (for example, 460 kg) is loaded into thecrucible 3, and a crystal growing process is started based on the program stored in the storage device 11a of the controller 11.
即ち、最初にルツボ3に原料ポリシリコン(例えば460kg)を装填し、コントローラ11の記憶装置11aに記憶されたプログラムに基づき結晶育成工程が開始される。 In the single
That is, first, raw polysilicon (for example, 460 kg) is loaded into the
先ず、炉体10内が所定の雰囲気(主にアルゴンガスなどの不活性ガス)となされる。例えば、炉内圧65torr、アルゴンガス流量90l/minの炉内雰囲気が形成される。
そして、ルツボ3が所定の回転速度(rpm)で所定方向に回転動作された状態で、ルツボ3内に装填された原料ポリシリコンが、ヒータ4による加熱によって溶融され、シリコン融液Mとされる(図3のステップS1)。 First, a predetermined atmosphere (mainly an inert gas such as argon gas) is created inside thefurnace body 10. For example, a furnace atmosphere with an internal furnace pressure of 65 torr and an argon gas flow rate of 90 l/min is created.
Then, while thecrucible 3 is rotated in a predetermined direction at a predetermined rotation speed (rpm), the raw material polysilicon loaded in the crucible 3 is melted by heating with the heater 4 to become silicon melt M (step S1 in FIG. 3).
そして、ルツボ3が所定の回転速度(rpm)で所定方向に回転動作された状態で、ルツボ3内に装填された原料ポリシリコンが、ヒータ4による加熱によって溶融され、シリコン融液Mとされる(図3のステップS1)。 First, a predetermined atmosphere (mainly an inert gas such as argon gas) is created inside the
Then, while the
また、ヒータ4への初期供給電力や、引き上げ速度などをパラメータとして引き上げ条件が調整され、種結晶Pが軸回りに所定の回転速度で回転開始される。回転方向はルツボ3の回転方向とは逆方向になされる。
シリコン融液Mの液面高さが安定すると、コントローラ11の制御のもと、昇降駆動制御部15aを介して昇降駆動部15を駆動し、ルツボ3の高さを例えば、0.05mm刻みでインチング(寸動)動作により上昇させる(図3のステップS2)。
また、この間、コントローラ11は、輝度検出計17により石英ピン8の頭部8bの輝度変化を監視する(図3のステップS3)。なお、本実施の形態において、予めコントローラ11は、石英ピン8がシリコン融液Mに接触後の最大輝度を100%として記憶しているものとする。また、石英ピン8がシリコン融液Mに接触する前の輝度(基準輝度とする)は、例えば40%とする。 The pulling conditions are adjusted using parameters such as the initial power supply to theheater 4 and the pulling speed, and the seed crystal P starts to rotate around its axis at a predetermined rotation speed. The rotation direction is opposite to that of the crucible 3.
When the liquid level of the silicon melt M has stabilized, under the control of thecontroller 11, the lift drive unit 15 is driven via the lift drive control unit 15a to raise the height of the crucible 3 by an inching (small movement) operation, for example, in increments of 0.05 mm (step S2 in Figure 3).
During this time, thecontroller 11 monitors the change in luminance of the head 8b of the quartz pin 8 by the luminance detector 17 (step S3 in FIG. 3). In this embodiment, the controller 11 stores in advance the maximum luminance after the quartz pin 8 comes into contact with the silicon melt M as 100%. The luminance (reference luminance) before the quartz pin 8 comes into contact with the silicon melt M is, for example, 40%.
シリコン融液Mの液面高さが安定すると、コントローラ11の制御のもと、昇降駆動制御部15aを介して昇降駆動部15を駆動し、ルツボ3の高さを例えば、0.05mm刻みでインチング(寸動)動作により上昇させる(図3のステップS2)。
また、この間、コントローラ11は、輝度検出計17により石英ピン8の頭部8bの輝度変化を監視する(図3のステップS3)。なお、本実施の形態において、予めコントローラ11は、石英ピン8がシリコン融液Mに接触後の最大輝度を100%として記憶しているものとする。また、石英ピン8がシリコン融液Mに接触する前の輝度(基準輝度とする)は、例えば40%とする。 The pulling conditions are adjusted using parameters such as the initial power supply to the
When the liquid level of the silicon melt M has stabilized, under the control of the
During this time, the
ルツボ3の上昇によりシリコン融液Mの液面M1と輻射シールド7下端の石英ピン8の先端8a1とが接触すると、石英ピン8の頭部8bの輝度が所定の閾値以上に上昇する(図3のステップS4)。
これを、コントローラ11は輝度検出計17により検出し、昇降駆動部15を制御してルツボ3の上昇動作を停止させる(図3のステップS5)。具体的には、コントローラ11は、輝度検出計17により検出された輝度の変化が、所定の閾値を超えたときに輻射シールド7下端の石英ピン8とシリコン融液Mとが接触したと判定する。例えば、この輝度の所定の閾値とは、石英ピン8がシリコン融液Mに接触後の最大輝度を100%としたとき、石英ピン8がシリコン融液Mに接触していない状態での基準輝度(ここでは40%)に、該基準輝度(ここでは40%)の例えば25%以上(或いは50%以上)を加えた値とする。 When the liquid level M1 of the silicon melt M comes into contact with the tip 8a1 of thequartz pin 8 at the lower end of the radiation shield 7 due to the rise of the crucible 3, the brightness of the head 8b of the quartz pin 8 rises above a predetermined threshold value (step S4 in FIG. 3).
Thecontroller 11 detects this with the brightness detector 17 and controls the lifting drive unit 15 to stop the lifting operation of the crucible 3 (step S5 in FIG. 3). Specifically, the controller 11 determines that the quartz pins 8 at the lower end of the radiation shield 7 have come into contact with the silicon melt M when the change in brightness detected by the brightness detector 17 exceeds a predetermined threshold. For example, the predetermined threshold of brightness is a value obtained by adding, when the maximum brightness after the quartz pins 8 have come into contact with the silicon melt M is taken as 100%, to a reference brightness (here, 40%) in a state in which the quartz pins 8 are not in contact with the silicon melt M, for example, 25% or more (or 50% or more) of the reference brightness (here, 40%).
これを、コントローラ11は輝度検出計17により検出し、昇降駆動部15を制御してルツボ3の上昇動作を停止させる(図3のステップS5)。具体的には、コントローラ11は、輝度検出計17により検出された輝度の変化が、所定の閾値を超えたときに輻射シールド7下端の石英ピン8とシリコン融液Mとが接触したと判定する。例えば、この輝度の所定の閾値とは、石英ピン8がシリコン融液Mに接触後の最大輝度を100%としたとき、石英ピン8がシリコン融液Mに接触していない状態での基準輝度(ここでは40%)に、該基準輝度(ここでは40%)の例えば25%以上(或いは50%以上)を加えた値とする。 When the liquid level M1 of the silicon melt M comes into contact with the tip 8a1 of the
The
コントローラ11は、所望のギャップ値Gから石英ピン8における長さLを差し引いた寸法Hだけ、昇降駆動部15によりルツボ3を下降させる(図3のステップS6)。これにより初期ギャップ値が高精度に設定される。
また、固定された輻射シールド7の高さ位置は既知であるため、ギャップが設定された後のシリコン融液面M1の高さ位置(初期液面高さ)が容易に求められる。コントローラ11は、この初期液面高さを記憶しておく(図3のステップS7)。 Thecontroller 11 lowers the crucible 3 by the lift driver 15 by a dimension H obtained by subtracting the length L of the quartz pin 8 from the desired gap value G (step S6 in FIG. 3). This allows the initial gap value to be set with high precision.
In addition, since the height position of the fixedradiation shield 7 is known, the height position of the silicon melt surface M1 after the gap is set (initial liquid level height) can be easily obtained. The controller 11 stores this initial liquid level height (step S7 in FIG. 3).
また、固定された輻射シールド7の高さ位置は既知であるため、ギャップが設定された後のシリコン融液面M1の高さ位置(初期液面高さ)が容易に求められる。コントローラ11は、この初期液面高さを記憶しておく(図3のステップS7)。 The
In addition, since the height position of the fixed
続いて、ワイヤ6が降ろされて種結晶Pがシリコン融液Mに接触され、種結晶Pの先端部を溶解した後、ネッキングが行われ、ネック部P1が形成される(図3のステップS8)。
そして、結晶径が徐々に拡径されて肩部C1が形成される(図3のステップS9)。
また、コントローラ11は、昇降駆動制御部15aにより昇降駆動部15を駆動制御し、引上げ速度を例えば0.55mm/minに一定とし、製品部分となる直胴部C2を形成する工程に移行する(図3のステップS10)。 Next, thewire 6 is lowered to bring the seed crystal P into contact with the silicon melt M, and after the tip of the seed crystal P is melted, necking is performed to form a neck portion P1 (step S8 in FIG. 3).
Then, the crystal diameter gradually expands to form a shoulder portion C1 (step S9 in FIG. 3).
Thecontroller 11 also controls the lift drive control unit 15a to drive and control the lift drive unit 15, keeps the pulling speed constant at, for example, 0.55 mm/min, and proceeds to the process of forming the straight body portion C2 that will become the product part (step S10 in Figure 3).
そして、結晶径が徐々に拡径されて肩部C1が形成される(図3のステップS9)。
また、コントローラ11は、昇降駆動制御部15aにより昇降駆動部15を駆動制御し、引上げ速度を例えば0.55mm/minに一定とし、製品部分となる直胴部C2を形成する工程に移行する(図3のステップS10)。 Next, the
Then, the crystal diameter gradually expands to form a shoulder portion C1 (step S9 in FIG. 3).
The
この直胴部C2の形成の間、コントローラ11は、測定センサ16の測定結果を用いてシリコン単結晶の固化率を求め、この固化率と、シリコン融液面M1の初期高さとに基づき、その時点でのシリコン融液面M1の高さ位置とギャップとを算出する(図3のステップS11)。
そして、ギャップの測定寸法の変動が±0.1mm以内であるかを判断し(図3のステップS12)、満たしていない場合には、その条件を満たすよう昇降装置制御部15aを制御して昇降駆動部15によりルツボ3の高さ位置を調整する(図3のステップS13)。引上工程中においては、ステップS12の条件を満たすように制御がなされ、単結晶の引上げ工程が進行する。 During the formation of this straight body portion C2, thecontroller 11 determines the solidification rate of the silicon single crystal using the measurement results of the measurement sensor 16, and calculates the height position and gap of the silicon melt surface M1 at that time based on this solidification rate and the initial height of the silicon melt surface M1 (step S11 in Figure 3).
Then, it is determined whether the variation in the measured dimension of the gap is within ±0.1 mm (step S12 in FIG. 3), and if it is not, the liftingdevice control unit 15a is controlled to adjust the height position of the crucible 3 by the lifting drive unit 15 so that the condition is satisfied (step S13 in FIG. 3). During the pulling process, control is performed so that the condition of step S12 is satisfied, and the single crystal pulling process proceeds.
そして、ギャップの測定寸法の変動が±0.1mm以内であるかを判断し(図3のステップS12)、満たしていない場合には、その条件を満たすよう昇降装置制御部15aを制御して昇降駆動部15によりルツボ3の高さ位置を調整する(図3のステップS13)。引上工程中においては、ステップS12の条件を満たすように制御がなされ、単結晶の引上げ工程が進行する。 During the formation of this straight body portion C2, the
Then, it is determined whether the variation in the measured dimension of the gap is within ±0.1 mm (step S12 in FIG. 3), and if it is not, the lifting
所定の長さまで直胴部C2が形成されると(図3のステップS14)、最終のテール部工程に移行する(図3のステップS15)。このテール部工程においては、結晶下端とシリコン融液Mとの接触面積が徐々に小さくなり、単結晶Cとシリコン融液Mとが切り離され、シリコン単結晶が製造される。
When the body portion C2 is formed to a predetermined length (step S14 in FIG. 3), the process proceeds to the final tail portion process (step S15 in FIG. 3). In this tail portion process, the contact area between the bottom end of the crystal and the silicon melt M gradually decreases, and the single crystal C and the silicon melt M are separated, producing a silicon single crystal.
以上のように、本実施の形態によれば、単結晶引上開始前の輻射シールド下端とシリコン融液面との間の初期ギャップの設定において、ルツボ3をインチング動作により上昇させ、輻射シールド7下端に設けた石英ピン8とシリコン融液Mとが接触した際の、石英ピン8の輝度が大きく変化したときにルツボ3の上昇を停止させる。ここで、輝度の検出は、液面M1上の輝度を検出するのではなく、石英ピン8の輝度を検出するため、誤検出の虞が少なく、精度よい検出結果が得られる。
そして、所望のギャップ値から石英ピン8における既知の長さLを差し引いた高さHだけ、ルツボ3を下降させることにより、精度良く初期ギャップを設定することができる。
その結果、その後の単結晶引上げ工程におけるギャップ制御を高精度に行うことができ、高品質な単結晶の引上げを可能とすることができる。 As described above, according to this embodiment, in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before starting to pull the single crystal, thecrucible 3 is raised by an inching motion, and the raising of the crucible 3 is stopped when the luminance of the quartz pins 8 provided at the lower end of the radiation shield 7 changes significantly when the quartz pins 8 come into contact with the silicon melt M. Here, the luminance is detected by detecting the luminance of the quartz pins 8, rather than the luminance on the liquid surface M1, so that there is little risk of erroneous detection and accurate detection results can be obtained.
Then, thecrucible 3 is lowered by a height H obtained by subtracting the known length L of the quartz pin 8 from the desired gap value, whereby the initial gap can be set with high accuracy.
As a result, the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high quality single crystal.
そして、所望のギャップ値から石英ピン8における既知の長さLを差し引いた高さHだけ、ルツボ3を下降させることにより、精度良く初期ギャップを設定することができる。
その結果、その後の単結晶引上げ工程におけるギャップ制御を高精度に行うことができ、高品質な単結晶の引上げを可能とすることができる。 As described above, according to this embodiment, in setting the initial gap between the lower end of the radiation shield and the silicon melt surface before starting to pull the single crystal, the
Then, the
As a result, the gap can be controlled with high precision in the subsequent single crystal pulling process, making it possible to pull a high quality single crystal.
尚、上記実施の形態において、単結晶引上中のギャップ制御において、シリコン融液面M1の高さ位置検出は、単結晶の固化率に基づき算出するものとしたが、本発明にあっては、それに限定されるものではない。例えば、特開2008-189522号公報に開示されるように、シリコン融液面に照射したレーザ光の反射をCCDカメラにより検出し、検出した画像信号を画像処理してシリコン融液の液面高さを求めるようにしてもよい。
また、上記実施の形態において引上げ速度は一定としてあるが、引上げ速度について一定とせずに変動させてもよい。 In the above embodiment, in the gap control during the pulling of the single crystal, the height position detection of the silicon melt surface M1 is calculated based on the solidification rate of the single crystal, but the present invention is not limited to this. For example, as disclosed in JP 2008-189522 A, the reflection of a laser beam irradiated on the silicon melt surface may be detected by a CCD camera, and the detected image signal may be subjected to image processing to determine the silicon melt surface height.
Furthermore, in the above embodiment, the pulling speed is constant, but the pulling speed may not be constant but may be variable.
また、上記実施の形態において引上げ速度は一定としてあるが、引上げ速度について一定とせずに変動させてもよい。 In the above embodiment, in the gap control during the pulling of the single crystal, the height position detection of the silicon melt surface M1 is calculated based on the solidification rate of the single crystal, but the present invention is not limited to this. For example, as disclosed in JP 2008-189522 A, the reflection of a laser beam irradiated on the silicon melt surface may be detected by a CCD camera, and the detected image signal may be subjected to image processing to determine the silicon melt surface height.
Furthermore, in the above embodiment, the pulling speed is constant, but the pulling speed may not be constant but may be variable.
また、前記実施の形態においては、輻射シールド7の下端に、1本の石英ピン8を設けた例について説明したが、さらに石英ピン8に加え、この石英ピン8よりも短い石英ピンを輻射シールド7の下端に設けてもよい。
この場合、単結晶引上中の制御において、シリコン融液Mの減少とともにルツボ3は上昇させる制御をするが、輻射シールド7本体とシリコン融液Mとの接触を防止するために、短いピンがシリコン融液に接触した場合には、ルツボ3の上昇を停止する、或いは下降させる制御を行うようにしてもよい。 In addition, in the above embodiment, an example was described in which onequartz pin 8 is provided at the lower end of the radiation shield 7, but in addition to the quartz pin 8, a quartz pin shorter than this quartz pin 8 may also be provided at the lower end of the radiation shield 7.
In this case, during control of pulling up the single crystal, thecrucible 3 is controlled to rise as the silicon melt M decreases, but in order to prevent contact between the radiation shield 7 body and the silicon melt M, if a short pin comes into contact with the silicon melt M, the rising of the crucible 3 may be stopped or the crucible 3 may be controlled to be lowered.
この場合、単結晶引上中の制御において、シリコン融液Mの減少とともにルツボ3は上昇させる制御をするが、輻射シールド7本体とシリコン融液Mとの接触を防止するために、短いピンがシリコン融液に接触した場合には、ルツボ3の上昇を停止する、或いは下降させる制御を行うようにしてもよい。 In addition, in the above embodiment, an example was described in which one
In this case, during control of pulling up the single crystal, the
また、前記実施の形態において、石英ピン8は、径が一定の直胴部8aと、直胴部8aよりも径の大きな円板状の頭部8bとからなるものとしたが、本発明にあっては、その形態に限定されるものではない。
例えば、下方の径が上方の径より小さく(上方の径が下方の径より大きく)形成してもよい。つまり、石英ピン8は、輻射シールド7より下部の直胴部8a(輻射シールド7より下部の第一領域)に比べて、輻射シールド7より上部の頭部8b(輻射シールド7より上部の第二領域)の方が長さ辺りの表面積が大きい場合には、輝度検出計17による輝度の検出がより容易となる(頭部8bの表面積が小さすぎると外乱等の影響をより受けやすくなり、測定精度が下がる)。 In addition, in the above embodiment, thequartz pin 8 is composed of a straight body portion 8a having a constant diameter and a disk-shaped head portion 8b having a diameter larger than that of the straight body portion 8a, but the present invention is not limited to this form.
For example, the lower diameter may be smaller than the upper diameter (the upper diameter may be larger than the lower diameter). In other words, when the surface area per length of thehead 8b above the radiation shield 7 (second region above the radiation shield 7) of the quartz pin 8 is larger than that of the straight body portion 8a below the radiation shield 7 (first region below the radiation shield 7), it becomes easier to detect the luminance by the luminance detector 17 (when the surface area of the head 8b is too small, the head 8b becomes more susceptible to the effects of disturbances, etc., and the measurement accuracy decreases).
例えば、下方の径が上方の径より小さく(上方の径が下方の径より大きく)形成してもよい。つまり、石英ピン8は、輻射シールド7より下部の直胴部8a(輻射シールド7より下部の第一領域)に比べて、輻射シールド7より上部の頭部8b(輻射シールド7より上部の第二領域)の方が長さ辺りの表面積が大きい場合には、輝度検出計17による輝度の検出がより容易となる(頭部8bの表面積が小さすぎると外乱等の影響をより受けやすくなり、測定精度が下がる)。 In addition, in the above embodiment, the
For example, the lower diameter may be smaller than the upper diameter (the upper diameter may be larger than the lower diameter). In other words, when the surface area per length of the
本発明に係る単結晶引上装置および単結晶引上方法について、実施例に基づきさらに説明する。
The single crystal pulling device and single crystal pulling method according to the present invention will be further explained based on examples.
(実験1)
実験1では、図1に示した単結晶引上装置において、直径32インチの石英ルツボ内に460kgのシリコン原料を充填しシリコン融液を形成した。ルツボ内にシリコン融液を溶融した後、ツルボを上昇させ、シリコン融液と輻射シールド下端に設けた石英ピンとが接触する際の輝度の変化があるかを検証した。
ルツボは、0.05mm単位でインチング動作により上昇させ、そのときの輝度を検出した。 (Experiment 1)
Inexperiment 1, in the single crystal pulling apparatus shown in Fig. 1, 460 kg of silicon raw material was filled into a quartz crucible having a diameter of 32 inches to form a silicon melt. After the silicon melt was melted in the crucible, the crucible was raised to verify whether there was a change in brightness when the silicon melt came into contact with the quartz pin provided at the lower end of the radiation shield.
The crucible was raised in increments of 0.05 mm by inching, and the luminance at that time was detected.
実験1では、図1に示した単結晶引上装置において、直径32インチの石英ルツボ内に460kgのシリコン原料を充填しシリコン融液を形成した。ルツボ内にシリコン融液を溶融した後、ツルボを上昇させ、シリコン融液と輻射シールド下端に設けた石英ピンとが接触する際の輝度の変化があるかを検証した。
ルツボは、0.05mm単位でインチング動作により上昇させ、そのときの輝度を検出した。 (Experiment 1)
In
The crucible was raised in increments of 0.05 mm by inching, and the luminance at that time was detected.
この実験1の結果を図4のグラフに示す。図4のグラフにおいて、左側の縦軸は基準値(0mm)に対するルツボ変動(mm)、右側の縦軸は輝度(%)である。なお、縦軸の輝度(%)は、石英ピンがシリコン融液に接触後の最大輝度を100%とした。
図4のグラフに示すように、ルツボを+0.4mm上昇させた位置において、輝度が大きく上昇した。この位置は、目視により、シリコン融液と輻射シールド下端に設けた石英ピンとが接触した位置であった。即ち、シリコン融液と輻射シールド下端に設けた石英ピンとが接触する際に、輝度が大きく上昇することを確認した。
また、図4のグラフから、コントローラが石英ピンとシリコン融液との接触を判定するための閾値は、外乱を拾って誤判定する可能性がほぼ無い輝度50%(石英ピンがシリコン融液と接触する前の基準輝度40%に該基準輝度(40%)の25%の値を加えた値)以上、より確実には60%(石英ピンがシリコン融液と接触する前の基準輝度40%に該基準輝度(40%)の50%の値を加えた値)以上とするのが望ましいことを確認した。 The results ofExperiment 1 are shown in the graph of Figure 4. In the graph of Figure 4, the left vertical axis represents the crucible fluctuation (mm) relative to the reference value (0 mm), and the right vertical axis represents the brightness (%). Note that the brightness (%) on the vertical axis is set to 100% as the maximum brightness after the quartz pin contacted the silicon melt.
As shown in the graph in Fig. 4, the brightness increased significantly when the crucible was raised by +0.4 mm. This position was visually confirmed to be the position where the silicon melt came into contact with the quartz pin provided at the bottom end of the radiation shield. In other words, it was confirmed that the brightness increased significantly when the silicon melt came into contact with the quartz pin provided at the bottom end of the radiation shield.
Furthermore, from the graph in Figure 4, it was confirmed that the threshold value for the controller to determine contact between the quartz pin and the silicon melt is preferably a brightness of 50% or more (a value obtained by adding 25% of the reference brightness (40%) to the reference brightness of 40% before the quartz pin comes into contact with the silicon melt) at which there is almost no possibility of picking up external disturbances and making an erroneous determination, and more preferably, 60% or more (a value obtained by adding 50% of the reference brightness (40%) to the reference brightness of 40% before the quartz pin comes into contact with the silicon melt).
図4のグラフに示すように、ルツボを+0.4mm上昇させた位置において、輝度が大きく上昇した。この位置は、目視により、シリコン融液と輻射シールド下端に設けた石英ピンとが接触した位置であった。即ち、シリコン融液と輻射シールド下端に設けた石英ピンとが接触する際に、輝度が大きく上昇することを確認した。
また、図4のグラフから、コントローラが石英ピンとシリコン融液との接触を判定するための閾値は、外乱を拾って誤判定する可能性がほぼ無い輝度50%(石英ピンがシリコン融液と接触する前の基準輝度40%に該基準輝度(40%)の25%の値を加えた値)以上、より確実には60%(石英ピンがシリコン融液と接触する前の基準輝度40%に該基準輝度(40%)の50%の値を加えた値)以上とするのが望ましいことを確認した。 The results of
As shown in the graph in Fig. 4, the brightness increased significantly when the crucible was raised by +0.4 mm. This position was visually confirmed to be the position where the silicon melt came into contact with the quartz pin provided at the bottom end of the radiation shield. In other words, it was confirmed that the brightness increased significantly when the silicon melt came into contact with the quartz pin provided at the bottom end of the radiation shield.
Furthermore, from the graph in Figure 4, it was confirmed that the threshold value for the controller to determine contact between the quartz pin and the silicon melt is preferably a brightness of 50% or more (a value obtained by adding 25% of the reference brightness (40%) to the reference brightness of 40% before the quartz pin comes into contact with the silicon melt) at which there is almost no possibility of picking up external disturbances and making an erroneous determination, and more preferably, 60% or more (a value obtained by adding 50% of the reference brightness (40%) to the reference brightness of 40% before the quartz pin comes into contact with the silicon melt).
(実験2)
(実施例1)
実験2では、実際に10本のシリコン単結晶の引上げを実施した。実施例1では、実験1と同様に、直径32インチの石英ルツボ内に460kgのシリコン原料を充填しシリコン融液を形成した。
本実施の形態にしたがって輻射シールドの下端に石英ピンを設け、輻射シールドと融液面との初期ギャップを設定した。このギャップは50mmとした。
また、炉内圧50torr、アルゴンガスを流量100l/minで流して炉内環境を作った。
そして、ルツボ回転数を1rpm、結晶回転数を7rpm(ルツボ回転とは逆方向)とし、引上げ速度0.6mm/minで結晶径305~310mmを目標として単結晶育成を行った。また、引上中において輻射シールドと融液面とのギャップを50mm±0.1mmとなるよう制御した。 (Experiment 2)
Example 1
Ten silicon single crystals were actually pulled inExperiment 2. In Example 1, similarly to Experiment 1, 460 kg of silicon raw material was filled in a quartz crucible having a diameter of 32 inches to form a silicon melt.
According to the present embodiment, a quartz pin was provided at the lower end of the radiation shield, and an initial gap between the radiation shield and the melt surface was set to 50 mm.
The furnace environment was created by setting the furnace pressure at 50 torr and flowing argon gas at a flow rate of 100 l/min.
Then, the crucible rotation speed was set to 1 rpm, the crystal rotation speed was set to 7 rpm (opposite to the crucible rotation direction), and the single crystal was grown at a pulling speed of 0.6 mm/min with a target crystal diameter of 305 to 310 mm. During pulling, the gap between the radiation shield and the melt surface was controlled to be 50 mm±0.1 mm.
(実施例1)
実験2では、実際に10本のシリコン単結晶の引上げを実施した。実施例1では、実験1と同様に、直径32インチの石英ルツボ内に460kgのシリコン原料を充填しシリコン融液を形成した。
本実施の形態にしたがって輻射シールドの下端に石英ピンを設け、輻射シールドと融液面との初期ギャップを設定した。このギャップは50mmとした。
また、炉内圧50torr、アルゴンガスを流量100l/minで流して炉内環境を作った。
そして、ルツボ回転数を1rpm、結晶回転数を7rpm(ルツボ回転とは逆方向)とし、引上げ速度0.6mm/minで結晶径305~310mmを目標として単結晶育成を行った。また、引上中において輻射シールドと融液面とのギャップを50mm±0.1mmとなるよう制御した。 (Experiment 2)
Example 1
Ten silicon single crystals were actually pulled in
According to the present embodiment, a quartz pin was provided at the lower end of the radiation shield, and an initial gap between the radiation shield and the melt surface was set to 50 mm.
The furnace environment was created by setting the furnace pressure at 50 torr and flowing argon gas at a flow rate of 100 l/min.
Then, the crucible rotation speed was set to 1 rpm, the crystal rotation speed was set to 7 rpm (opposite to the crucible rotation direction), and the single crystal was grown at a pulling speed of 0.6 mm/min with a target crystal diameter of 305 to 310 mm. During pulling, the gap between the radiation shield and the melt surface was controlled to be 50 mm±0.1 mm.
この実施例1において、無欠陥となるよう単結晶を10本引き上げた。無欠陥領域の評価として、ボイド(Void)欠陥が存在するV-rich側は、LPD(Light Point Defect)評価の50枚の重ね合わせマップによる群集の有無を確認し、COP(Crystal Originated Particle)の有無を判定した。
In this Example 1, 10 single crystals were pulled to be defect-free. To evaluate the defect-free region, the V-rich side, where void defects exist, was checked for the presence or absence of clusters using 50 overlapping maps of LPD (Light Point Defect) evaluation, and the presence or absence of COP (Crystal Originated Particle) was determined.
I-rich側は、Cuデコレーション法により酸素析出物が発生しやすい領域であるB-band領域の有無を判定した。無欠陥結晶としては、COP、B-band領域がともに無い結晶であるものと定義した。
実施例1の結果を表1に示す。表1に示すように、10本の単結晶を評価した結果、10本ともに全長にわたり無欠陥結晶であることを確認した。 The I-rich side was judged for the presence or absence of a B-band region, which is a region where oxygen precipitates are likely to occur by the Cu decoration method. A defect-free crystal was defined as a crystal that had neither COPs nor a B-band region.
The results of Example 1 are shown in Table 1. As shown in Table 1, the evaluation of 10 single crystals confirmed that all 10 were defect-free crystals over their entire length.
実施例1の結果を表1に示す。表1に示すように、10本の単結晶を評価した結果、10本ともに全長にわたり無欠陥結晶であることを確認した。 The I-rich side was judged for the presence or absence of a B-band region, which is a region where oxygen precipitates are likely to occur by the Cu decoration method. A defect-free crystal was defined as a crystal that had neither COPs nor a B-band region.
The results of Example 1 are shown in Table 1. As shown in Table 1, the evaluation of 10 single crystals confirmed that all 10 were defect-free crystals over their entire length.
(比較例1)
比較例1では、鏡像GapによるGap合わせ方法を用いて、無欠陥結晶の引上げを試みた。鏡像Gapは、石英ピンの輝度を検出したものと同じCCDカメラを用いて輻射シールドの実像と融液面に映った鏡像のシールドのエッジを検出し、その差分からギャップを算出した。
比較例1の結果を実施例1の結果とともに表1に示す。10本の単結晶の引上げを行った結果、Cuデコレーション法によるウェーハ評価により、2本で全長にわたるI-defectが検出された。また、2本の結晶内の一部にDSODやLPDの群集モードが観察された。 (Comparative Example 1)
In Comparative Example 1, an attempt was made to pull a defect-free crystal using a gap matching method using a mirror image gap. The mirror image gap was calculated from the difference between the actual image of the radiation shield and the edge of the shield as its mirror image reflected on the melt surface, detected using the same CCD camera as that used to detect the brightness of the quartz pin.
The results of Comparative Example 1 are shown in Table 1 together with the results of Example 1. As a result of pulling 10 single crystals, I-defects were detected over the entire length of two of the crystals by wafer evaluation using the Cu decoration method. Also, DSOD and LPD crowding modes were observed in parts of the two crystals.
比較例1では、鏡像GapによるGap合わせ方法を用いて、無欠陥結晶の引上げを試みた。鏡像Gapは、石英ピンの輝度を検出したものと同じCCDカメラを用いて輻射シールドの実像と融液面に映った鏡像のシールドのエッジを検出し、その差分からギャップを算出した。
比較例1の結果を実施例1の結果とともに表1に示す。10本の単結晶の引上げを行った結果、Cuデコレーション法によるウェーハ評価により、2本で全長にわたるI-defectが検出された。また、2本の結晶内の一部にDSODやLPDの群集モードが観察された。 (Comparative Example 1)
In Comparative Example 1, an attempt was made to pull a defect-free crystal using a gap matching method using a mirror image gap. The mirror image gap was calculated from the difference between the actual image of the radiation shield and the edge of the shield as its mirror image reflected on the melt surface, detected using the same CCD camera as that used to detect the brightness of the quartz pin.
The results of Comparative Example 1 are shown in Table 1 together with the results of Example 1. As a result of pulling 10 single crystals, I-defects were detected over the entire length of two of the crystals by wafer evaluation using the Cu decoration method. Also, DSOD and LPD crowding modes were observed in parts of the two crystals.
実施例1の結果、本発明によれば、ギャップばらつきが小さくなり、無欠陥結晶の収率が高いことを確認した。
The results of Example 1 confirmed that the present invention reduces gap variation and increases the yield of defect-free crystals.
1 単結晶ブロック
3 石英ガラスルツボ
4 サイドヒータ
6 ワイヤ
7 輻射シールド
8 石英ピン(ピン部材)
C シリコン単結晶
M シリコン融液
M1 融液面
C シリコン単結晶
C2 直胴部 1Single crystal block 3 Quartz glass crucible 4 Side heater 6 Wire 7 Radiation shield 8 Quartz pin (pin member)
C Silicon single crystal M Silicon melt M1 Melt surface C Silicon single crystal C2 Body part
3 石英ガラスルツボ
4 サイドヒータ
6 ワイヤ
7 輻射シールド
8 石英ピン(ピン部材)
C シリコン単結晶
M シリコン融液
M1 融液面
C シリコン単結晶
C2 直胴部 1
C Silicon single crystal M Silicon melt M1 Melt surface C Silicon single crystal C2 Body part
Claims (8)
- チャンバ内のルツボに収容されたシリコン融液からチョクラルスキー法により単結晶を引き上げる単結晶引上装置であって、
前記ルツボを昇降させる昇降駆動部と、前記ルツボを加熱するヒータと、前記ルツボ内に形成されるシリコン融液の上方に配置され、引き上げる単結晶の周囲を包囲する円筒状の輻射シールドと、前記輻射シールドの先端側に位置するテラス面に、前記輻射シールドを貫通して下部が融液側に上部が前記輻射シールドの内周側に位置するように配置された光透過性のピン部材と、前記ピン部材の輝度を検出する輝度検出部と、前記昇降駆動部を制御するコントローラと、を備え、
前記コントローラは、前記昇降駆動部により前記ルツボを上昇させるとともに前記ピン部材の輝度を前記輝度検出部に検出させ、検出された前記ピン部材の輝度が所定の閾値を超えたときに、前記ピン部材の下端がシリコン融液に接触したものと判定し、前記昇降駆動部による前記ルツボの上昇を停止させることを特徴とする単結晶引上装置。 A single crystal pulling apparatus for pulling a single crystal by the Czochralski method from a silicon melt contained in a crucible in a chamber, comprising:
the crucible is provided with an elevation drive unit for raising and lowering the crucible, a heater for heating the crucible, a cylindrical radiation shield disposed above the silicon melt formed in the crucible and surrounding the single crystal to be pulled, optically transparent pin members disposed on a terrace surface located at a tip side of the radiation shield, penetrating the radiation shield with a lower portion positioned on the melt side and an upper portion positioned on an inner peripheral side of the radiation shield, a brightness detection unit for detecting the brightness of the pin members, and a controller for controlling the elevation drive unit,
The controller causes the lifting drive unit to lift the crucible while causing the brightness detection unit to detect the brightness of the pin member, and when the detected brightness of the pin member exceeds a predetermined threshold, determines that the lower end of the pin member has come into contact with the silicon melt, and stops the lifting of the crucible by the lifting drive unit. - 前記昇降駆動部による前記ルツボの上昇を停止させた状態から、
前記コントローラは、
前記輻射シールドの下端からシリコン融液までのギャップの所望値から、前記ピン部材における輻射シールド下端からピン先端までの既知の長さを差し引いた距離だけ、前記ルツボを前記昇降駆動部により下降させることを特徴とする請求項1に記載された単結晶引上装置。 From a state in which the lifting of the crucible by the lifting drive unit is stopped,
The controller:
2. The single crystal pulling apparatus according to claim 1, wherein the crucible is lowered by the lifting drive unit by a distance obtained by subtracting a known length from the lower end of the radiation shield to the tip of the pin in the pin member from a desired value of a gap from the lower end of the radiation shield to the silicon melt. - 前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の25%以上の値を加えた値であることを特徴とする請求項1に記載された単結晶引上装置。 The single crystal pulling apparatus described in claim 1, characterized in that the predetermined brightness threshold is a value obtained by adding a value of 25% or more of the reference brightness to the reference brightness when the pin member is not in contact with the silicon melt.
- 前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の50%以上の値を加えた値であることを特徴とする請求項1に記載された単結晶引上装置。 The single crystal pulling apparatus described in claim 1, characterized in that the predetermined brightness threshold is a value obtained by adding a value of 50% or more of the reference brightness to the reference brightness when the pin member is not in contact with the silicon melt.
- チャンバ内のルツボに収容されたシリコン融液からチョクラルスキー法により単結晶を引き上げる単結晶引上方法であって、
単結晶の引上げ前に、
前記ルツボを上昇させるとともに、
前記ルツボ内に形成されるシリコン融液の上方に配置され、引き上げる単結晶の周囲を包囲する円筒状の輻射シールドの下端から下方に向けて延びる光透過性のピン部材の輝度を検出するステップと、
前記輝度が所定の閾値を超えた際に、前記ピン部材の下端がシリコン融液に接触したものと判定し、前記ルツボの上昇を停止させるステップと、
を備えることを特徴とする単結晶引上方法。 A method for pulling a single crystal by the Czochralski method from a silicon melt contained in a crucible in a chamber, comprising the steps of:
Before pulling a single crystal,
The crucible is raised,
detecting the brightness of an optically transparent pin member extending downward from a lower end of a cylindrical radiation shield that is disposed above the silicon melt formed in the crucible and surrounds the single crystal being pulled;
determining that the lower end of the pin member has come into contact with the silicon melt when the brightness exceeds a predetermined threshold value, and stopping the ascent of the crucible;
A method for pulling a single crystal comprising the steps of: - 前記輝度が所定の閾値を超えたときに、前記ピン部材の下端がシリコン融液に接触したものと判定し、前記ルツボの上昇を停止させるステップの後、
前記輻射シールドの下端からシリコン融液までのギャップの所望値から、前記ピン部材の輻射シールド下端からピン先端までの既知の長さを差し引いた距離だけ、前記ルツボを下降させるステップと、
を備えることを特徴とする請求項5に記載された単結晶引上方法。 When the brightness exceeds a predetermined threshold value, it is determined that the lower end of the pin member has come into contact with the silicon melt, and after stopping the ascent of the crucible,
lowering the crucible by a distance obtained by subtracting a known length of the pin member from the lower end of the radiation shield to the tip of the pin from a desired gap from the lower end of the radiation shield to the silicon melt;
6. The method for pulling a single crystal according to claim 5, further comprising: - 前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の25%以上の値を加えた値であることを特徴とする請求項5に記載された単結晶引上方法。 The method for pulling a single crystal, as described in claim 5, characterized in that the predetermined brightness threshold is a value obtained by adding a value of 25% or more of the reference brightness to the reference brightness when the pin member is not in contact with the silicon melt.
- 前記輝度の所定の閾値は、前記ピン部材がシリコン融液に接触していない状態での基準輝度に、該基準輝度の50%以上の値を加えた値であることを特徴とする請求項5に記載された単結晶引上方法。 The method for pulling a single crystal, as described in claim 5, characterized in that the predetermined brightness threshold is a value obtained by adding a value of 50% or more of the reference brightness to the reference brightness when the pin member is not in contact with the silicon melt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-164716 | 2022-10-13 | ||
JP2022164716A JP2024057807A (en) | 2022-10-13 | 2022-10-13 | Crystal pulling apparatus and crystal pulling method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024079934A1 true WO2024079934A1 (en) | 2024-04-18 |
Family
ID=90669340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/020633 WO2024079934A1 (en) | 2022-10-13 | 2023-06-02 | Single crystal pulling device and single crystal pulling method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024057807A (en) |
TW (1) | TW202415817A (en) |
WO (1) | WO2024079934A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080293A (en) * | 2000-06-20 | 2002-03-19 | Toshiba Ceramics Co Ltd | Apparatus and method of pulling-up single crystal |
JP2011057464A (en) * | 2009-09-07 | 2011-03-24 | Sumco Techxiv株式会社 | Method for producing single crystal silicon, and production apparatus for single crystal silicon |
JP2016204253A (en) * | 2015-04-23 | 2016-12-08 | 環球晶圓股▲ふん▼有限公司 | Melt gap measuring apparatus, crystal growth apparatus and melt gap measuring method |
-
2022
- 2022-10-13 JP JP2022164716A patent/JP2024057807A/en active Pending
-
2023
- 2023-06-02 WO PCT/JP2023/020633 patent/WO2024079934A1/en unknown
- 2023-06-16 TW TW112122510A patent/TW202415817A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080293A (en) * | 2000-06-20 | 2002-03-19 | Toshiba Ceramics Co Ltd | Apparatus and method of pulling-up single crystal |
JP2011057464A (en) * | 2009-09-07 | 2011-03-24 | Sumco Techxiv株式会社 | Method for producing single crystal silicon, and production apparatus for single crystal silicon |
JP2016204253A (en) * | 2015-04-23 | 2016-12-08 | 環球晶圓股▲ふん▼有限公司 | Melt gap measuring apparatus, crystal growth apparatus and melt gap measuring method |
Also Published As
Publication number | Publication date |
---|---|
TW202415817A (en) | 2024-04-16 |
JP2024057807A (en) | 2024-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101028684B1 (en) | Silicon single crystal pulling method | |
KR102157388B1 (en) | Silicon single crystal manufacturing method and apparatus | |
JP5167651B2 (en) | Method for measuring distance between heat shield member lower end surface and raw material melt surface, and method for controlling the distance | |
KR101901308B1 (en) | Method for calculating height position of silicon melt surface, method for drawing up monocrystalline silicon and device for drawing up monocrystalline silicon | |
JP3528758B2 (en) | Single crystal pulling device | |
JP5446277B2 (en) | Method for producing silicon single crystal | |
JP4209082B2 (en) | Single crystal pulling apparatus and pulling method | |
KR101729472B1 (en) | Methods for measuring and controlling distance between lower end surface of heat-blocking member and surface of starting material melt, and method for manufacturing silicon single crystal | |
KR20020081287A (en) | Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations | |
JP6885301B2 (en) | Single crystal manufacturing method and equipment | |
WO2024079934A1 (en) | Single crystal pulling device and single crystal pulling method | |
JP2019214486A (en) | Method of measuring interval between melt level and seed crystal, method of preheating seed crystal, and method of manufacturing single crystal | |
JP5404264B2 (en) | Single crystal silicon manufacturing method and single crystal silicon manufacturing apparatus | |
JP2735960B2 (en) | Liquid level control method | |
KR20230051263A (en) | Single crystal manufacturing method | |
JP2005097050A (en) | Apparatus and method for manufacturing single crystal | |
JP2008189523A (en) | Method for manufacturing single crystal | |
JP2003026495A (en) | Device and method for pulling single crystal | |
US20240026565A1 (en) | Method for measuring distance between lower end surface of heat shielding member and surface of raw material melt, method for controlling distance between lower end surface of heat shielding member and surface of raw material melt and method for manufacturing silicon single crystal | |
WO2023033111A1 (en) | Method for producing single crystal and single crystal production device | |
JP2023081004A (en) | Single crystal pulling apparatus and method for manufacturing single crystal | |
JP2000026197A (en) | Production of silicon single crystal and equipment therefor | |
JP2024038702A (en) | Silicon single crystal manufacturing system and manufacturing method | |
KR20140023517A (en) | Apparatus and method for growing single crystal silicon ingots | |
JP2011032136A (en) | Method for monitoring height of liquid surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876943 Country of ref document: EP Kind code of ref document: A1 |