WO2024079298A1 - Method for heating a catalytic converter in a hybrid drive vehicle - Google Patents

Method for heating a catalytic converter in a hybrid drive vehicle Download PDF

Info

Publication number
WO2024079298A1
WO2024079298A1 PCT/EP2023/078435 EP2023078435W WO2024079298A1 WO 2024079298 A1 WO2024079298 A1 WO 2024079298A1 EP 2023078435 W EP2023078435 W EP 2023078435W WO 2024079298 A1 WO2024079298 A1 WO 2024079298A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
combustion
vehicle
heating
electric machine
Prior art date
Application number
PCT/EP2023/078435
Other languages
French (fr)
Inventor
Bertrand Fasolo
Original Assignee
New H Powertrain Holding, S.L.U
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New H Powertrain Holding, S.L.U filed Critical New H Powertrain Holding, S.L.U
Publication of WO2024079298A1 publication Critical patent/WO2024079298A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus

Definitions

  • TITLE Process for heating a catalyst in a hybrid motorized vehicle
  • the invention relates to a method for heating a three-way catalyst integrated into the exhaust line of a spark-ignition internal combustion engine. It also relates to a hybrid motorization device capable of implementing such a process.
  • Modern combustion engines are equipped with various systems for post-treatment of polluting molecules emitted in the combustion gases of said engines, in order to limit releases of harmful species into the outside atmosphere.
  • HC unburned hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxides
  • efficiency we mean the proportion of polluting molecules of a given type which enter the system, which the said system manages to treat.
  • the efficiency begins to reach acceptable values, for example between 50% and 90%, when the temperature of the catalyst is for example between approximately 250°C and 300°C.
  • the effectiveness of a catalyst is zero until the temperature has reached a value of around 150°C.
  • hybrid engines conventionally delayed combustion is carried out inside the engine cylinders to heat the catalyst, so as to degrade the combustion efficiency and increase the thermal losses of the engine.
  • a delayed ignition advance it is common to use a delayed ignition advance and perform a series of fuel injections with a final injection close to ignition.
  • the current catalyst heating strategy is not sufficient and it is necessary to couple it with complex and expensive technical solutions such as an electrically heated catalyst (EHC) potentially added to an exhaust air injection system allowing the heat produced upstream by the EHC to be diffused throughout the post-treatment system before the actual starting of the engine.
  • EHC electrically heated catalyst
  • the invention proposes to remedy the defects of known methods of priming a heat engine catalyst in a hybrid motorization device, that is to say in the case where the thermal engine is associated with at least one electric machine.
  • Said heating step comprises a step of adjusting post-combustion of the engine comprising a step of injecting fuel into at least one cylinder of the engine around the top dead center of combustion, followed by a step of igniting said injected fuel around the exhaust bottom dead center.
  • the post-combustion adjustment aims to improve the heating of the catalyst and corresponds to the adjustment of the operation of at least one cylinder of the heat engine to transfer all the chemical energy contained in the fuel to the catalyst, eliminating the exchange of mechanical energy with the piston of the cylinder during the expansion phase and frictional losses.
  • the fuel injection step comprises a sequence of injections carried out around the top dead center of combustion.
  • the ignition of said fuel injected around the exhaust bottom dead center is carried out with several sparks.
  • said engine post-combustion adjustment step is applied to only part of the engine cylinders or is applied to a sub-unit fraction of the engine cycles.
  • the afterburner adjustment step is applied to all engine cylinders but only for every other engine cycle.
  • the afterburner adjustment step is applied to a single cylinder.
  • the invention also relates to a spark-ignition internal combustion engine for a motor vehicle implementing a method as described above.
  • FIG 1 is a schematic plan view of a hybrid motorization device according to the prior art
  • FIG 2 is a schematic view of a heat engine according to the prior art
  • FIG 3 illustrates the injection and ignition signals in the compression and expansion phases of an engine cycle according to the prior art
  • FIG 4 illustrates the openings of the exhaust and intake valves respectively in the exhaust and intake phases of an engine cycle according to the prior art
  • FIG 5 is a flowchart illustrating the different stages of a process for heating a catalyst according to the invention.
  • FIG 6 illustrates the injection and ignition signals in the compression and expansion phases of an engine cycle according to the invention
  • FIG 7 illustrates the openings of the exhaust and intake valves respectively in the exhaust and intake phases of a cycle of the engine according to the invention
  • FIG 8 illustrates a post-combustion adjustment of the engine according to one embodiment
  • FIG 9 illustrates an engine post-combustion adjustment according to another embodiment.
  • Figure 1 schematically illustrates a hybrid motorization device 1 known in itself, in particular mounted on a motor vehicle.
  • the hybrid motorization device 1 comprises a thermal engine 2 with internal combustion and spark ignition, a first electric machine 3 and a second electric machine 4.
  • the heat engine 2 produces an engine torque, which results from the combustion of a mixture of fresh air and fuel in quantities defined by a calculator of the heat engine 2 not shown.
  • the electrical machines 3, 4 are able to operate in “generator” mode under the supervision of a control box not shown.
  • at least the first electric machine 3 is able to operate in “motor” mode.
  • the first electric machine is reversible.
  • the second electric machine 4 is able to operate in “motor” mode.
  • an electric machine 3, 4 is an alternator which supplies an electric current intended to be stored in a battery of accumulators not shown.
  • the first electric machine 3 is on the contrary powered by current previously stored in the accumulator battery and provides a motor torque which can be transmitted to the wheels of the vehicle, in addition to or in replacement of the torque provided by the thermal engine 2.
  • the motorization device 1 is associated with a transmission system 5 making it possible to transmit to the wheels 6 the torque supplied by the motorization device 1.
  • the motorization device is adjusted in such a way that the torque it provides reaches a torque value setpoint, or required torque, corresponding to the "driver's desire to accelerate", materialized for example by a value of the depression of an accelerator pedal of the vehicle or the pressure exerted on said pedal.
  • the transmission system 5 includes in particular a gearbox 7, a differential bridge 8 and a transmission shaft 9.
  • the gearbox is connected to the heat engine 2 and to the electric machines 3, 4 on the one hand, and on the other goes to the wheels 6 via the differential 8 and the transmission shaft 9.
  • Figure 2 illustrates the operation of the heat engine 2 of Figure 1.
  • the heat engine 2 illustrated here is a supercharged three-cylinder in-line engine.
  • Such a heat engine 2 sucks air in the direction of the arrow E via an intake pipe 10, and rejects its exhaust gases via an exhaust pipe 11 in order to direct them towards a depollution device 12.
  • the depollution device 12 comprises a three-way catalyst 13 and a particle filter 14.
  • the exhaust gases are evacuated into the external atmosphere in the direction of the arrow S.
  • the engine also consumes fuel, for example gasoline, a mixture of gasoline and ethanol, or even pure ethanol, which is brought to the engine using an injection system (not shown), by example a direct injection system which comprises a supply rail common to the cylinders and at least one fuel injector per cylinder capable of injecting the fuel directly into each of the cylinders.
  • an injection system not shown
  • a direct injection system which comprises a supply rail common to the cylinders and at least one fuel injector per cylinder capable of injecting the fuel directly into each of the cylinders.
  • an air filter 15 which makes it possible to eliminate dust contained in the air and an intake flap 16, or throttle body 16 which makes it possible to regulate the flow admitted into the engine 2 by obstructing the intake pipe 10 to a greater or lesser extent.
  • the thermal engine 2 also comprises a turbocharger 17 whose compressor 18 is interposed in the intake pipe 10 between the air filter 15 and the throttle body 16.
  • a temperature exchanger 19 is arranged in the inlet pipe 10, between the compressor 18 and the throttle body 16 so as to cool the air compressed by the compressor 18.
  • the engine thermal 2 may comprise one or more exhaust gas recirculation circuits at the intake (not shown), more particularly a so-called high pressure EGR circuit and/or a low pressure EGR circuit, EGR being the English acronym for "Exhaust Gas Recycling” or recycling of exhaust gases.
  • the thermal engine 2 can also have a variable distribution with the acronym VVT for “Variable Valve Timing” in English.
  • the catalyst can be equipped with means for determining a parameter representative of the temperature T of the exhaust gases passing through it, for example the temperature T of the catalyst itself, measured by a temperature sensor 21.
  • the engine 2 comprises an electronic control unit 22 configured to control the different elements of the engine 2 from data collected by sensors at different locations of the engine.
  • the electronic control unit 22 comprises a calculation module 23, a measurement module 24 and a control module 25.
  • the measuring module 24 is for example capable of receiving temperature measurements from the temperature sensor 21.
  • the control module 25 is for example capable of controlling the fuel injection system and the opening and closing of the throttle body 16.
  • hybrid engines as described above require a heating phase of the catalyst during a cold start of the thermal engine.
  • This phase of heating the catalyst lasts approximately 30 seconds and makes it possible to bring the temperature of the catalyst up to a priming temperature at which it has a predefined minimum treatment efficiency.
  • the torque provided by the heat engine 2 is not transmitted to the wheels and the advancement of the vehicle is ensured solely by the first electric machine 3.
  • the torque provided by the heat engine 2 is transmitted to the second electric machine 4 to recharge the battery.
  • the conventionally used operating point corresponds to a speed of 1300 rpm and a torque of 50 Nm, i.e. relatively low values.
  • the engine setting used in the catalyst heating phase is shown in Figures 3 and 4.
  • the setting used in the catalyst heating phase differs from the nominal setting used outside of the catalyst heating phase.
  • the PMB and PMH zones correspond respectively to the bottom dead center and the top dead center of a heat engine 2. It should be noted that engine 2 operates according to a four-stroke cycle.
  • Adjusting the engine consists of using a delayed ignition advance and carrying out a series of injections 26 including a final injection close to ignition 27.
  • three injections 26 are carried out and Ignition is achieved at approximately 15 crankshaft degrees with a single spark.
  • ignition according to the nominal setting occurs a few moments before TDC, in order to take into account the time necessary for combustion to develop.
  • Figure 3 illustrates the injection and ignition signals in the compression and expansion phases
  • Figure 4 illustrates the openings of the exhaust valves 28 and the intake valves 29 respectively in the exhaust phases. and admission.
  • Figure 5 illustrates the different stages of a process 30 for heating the catalyst 13 according to one embodiment of the invention, using a motorization device 1 as described previously, in which the temperature T of the catalyst 13 is brought up to at a starting temperature Ta at which it has a predefined minimum treatment efficiency.
  • the targeted efficiency may be of the order of 50%, and the corresponding initiation temperature may be close to 250°C.
  • the method is in particular implemented by means of a motorization device 1 comprising, as previously described, a heat engine 2 associated with electrical machines 3, 4 which are capable of operating in "generator” mode and of which at least the first electric machine 3 is also capable of operating in “motor” mode under the supervision of a control box.
  • the method 30 begins with a step 31 of starting the vehicle. It can materialize by the fact that the driver switches on the ignition and requires a torque C to drive the vehicle, for example by pressing the accelerator pedal.
  • the process continues, iteratively, with a step 32 of measuring the temperature T of the catalyst 13, then by a step 33 of comparing said temperature T with a predefined initiation temperature Ta.
  • the measurement of the temperature T of the catalyst 13 can be determined by the electronic control unit 22 using a temperature sensor 21 which equips the catalyst 13.
  • the process continues with a step 34 of heating the catalyst 13 in which the torque C necessary to the drive of the vehicle is entirely provided by the first electric machine 3.
  • step 38 If the temperature T of the catalyst is not lower than the priming temperature Ta, the process goes to step 38 of adjusting the engine to nominal operation.
  • the electronic control unit 22 controls the adjustment of at least one cylinder of the heat engine so as to transfer all the chemical energy contained in the fuel to the catalyst 13 by eliminating the exchange of mechanical energy with the piston during the expansion phase.
  • Step 34 comprises a step 35 of post-combustion adjustment of the engine 2 comprising a step 36 of injecting fuel into at least one cylinder of the engine 2 around the combustion TDC, followed by a step 37 of igniting said fuel injected around the exhaust BDC.
  • Combustion TDC is the moment of transition from a compression phase to an expansion phase and corresponds to the start of stroke three of a conventional four-stroke cycle.
  • Exhaust BDC is the moment of transition from an expansion phase to an exhaust phase where the piston of an engine operating on a conventional four-stroke cycle begins to rise just after the expansion phase.
  • Figure 6 illustrates the injection and ignition signals in the compression and expansion phases
  • Figure 7 illustrates the openings of the exhaust valves and the intake valves respectively in the exhaust and expansion phases. ' admission.
  • the post-combustion adjustment of the engine consists of burning the air-fuel charge very late in the engine cycle with ignition carried out at the end of the expansion phase before the opening of the exhaust valves, i.e. around the BDC of exhaust.
  • the pressure and temperature conditions of an ignition carried out around the exhaust BDC are rather low in comparison to an ignition carried out around the combustion TDC.
  • the fuel injection step 36 comprises a sequence of injections 40 carried out around the combustion TDC (figure 6). Indeed, it is at TDC of combustion that the aerodynamic speeds and intensities are the highest, making it possible to obtain ideal air-fuel homogenization.
  • the electronic control unit 22 carries out in step 37 the ignition of the air-fuel mixture with several sparks 41 in the form of a train of sparks making it possible to increase the ignition energy and ensure the initiation of combustion (figure 6).
  • engine 2 no longer provides torque and cannot meet its target speed setting if the afterburner setting is applied to all cylinders and cycles of engine 2.
  • the other cylinders or engine cycles operating either with a catalyst heating setting of the state of the art as described previously, or with a nominal setting conventionally used outside the catalyst heating phase.
  • the engine 2 has three cylinders and the post-combustion is activated only on the second cylinder.
  • the first and third cylinders provide constant torque, while the second cylinder provides no torque.
  • the engine 2 has three cylinders and the post-combustion is activated on all three cylinders, at the rate of one engine cycle out of two.

Abstract

This method for heating a three-way catalytic converter (13) mounted at the exhaust of a combustion engine (2) associated with a first electric machine capable of operating in a generator mode or in a motor mode, in which modes said electric machine participates in the drive torque of the vehicle, and associated with a second electric machine capable of operating at least in a generator mode, comprises: - a step of starting the vehicle in which a drive torque of the vehicle is required; and - a step of heating the catalytic converter (13) to a light-off temperature, in which the drive torque of the vehicle is produced entirely by the first electric machine. Said heating step comprises a step of adjusting the post-combustion of the engine (2) comprising a step of injecting fuel into at least one cylinder of the engine (2) around the top dead centre of combustion, followed by an ignition step around the bottom dead centre of exhaust.

Description

DESCRIPTION DESCRIPTION
TITRE : Procédé de chauffage d’ un catalyseur dans un véhicule à motorisation hybride TITLE: Process for heating a catalyst in a hybrid motorized vehicle
Domaine technique Technical area
L’invention concerne un procédé de chauffage d’un catalyseur trois voies intégré à la ligne d’ échappement d’un moteur à combustion interne à allumage commandé. Il concerne aussi un dispositif de motorisation hybride apte à mettre en œuvre un tel procédé. The invention relates to a method for heating a three-way catalyst integrated into the exhaust line of a spark-ignition internal combustion engine. It also relates to a hybrid motorization device capable of implementing such a process.
Techniques antérieures Previous techniques
Les moteurs à combustion modernes, plus particulièrement ceux des véhicules automobiles qui sont soumis à des normes anti-pollution de plus en plus sévères, sont équipés de divers systèmes de posttraitement des molécules polluantes émi ses dans les gaz de combustion desdits moteurs, afin de limiter les rej ets d’ espèces nocives dans l ’ atmosphère extérieure. Modern combustion engines, more particularly those of motor vehicles which are subject to increasingly strict anti-pollution standards, are equipped with various systems for post-treatment of polluting molecules emitted in the combustion gases of said engines, in order to limit releases of harmful species into the outside atmosphere.
Sur les moteurs du type à allumage commandé fonctionnant notamment à l ’ essence, on connaît notamment les catalyseurs trois voies qui sont aptes à traiter les hydrocarbures imbrûlés (HC), le monoxyde de carbone (CO) et les oxydes d’ azote (NOx) émis dans les gaz de combustion du moteur. On spark ignition type engines operating in particular on gasoline, three-way catalysts are known in particular which are capable of treating unburned hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). emitted in the engine combustion gases.
Il est connu que l ’ efficacité d’un système de post-traitement dépend de sa température. Par efficacité, on entend la proportion de molécules polluantes d’un type donné qui entrent dans le système, que ledit système parvient à traiter. L’ efficacité commence à atteindre des valeurs acceptables, par exemple comprises entre 50% et 90%, lorsque la température du catalyseur est par exemple comprise entre environ 250°C et 300°C. L’ efficacité d’un catalyseur est nulle tant que la température n’ a pas atteint une valeur de l ’ ordre de 150°C . It is known that the efficiency of a post-treatment system depends on its temperature. By efficiency, we mean the proportion of polluting molecules of a given type which enter the system, which the said system manages to treat. The efficiency begins to reach acceptable values, for example between 50% and 90%, when the temperature of the catalyst is for example between approximately 250°C and 300°C. The effectiveness of a catalyst is zero until the temperature has reached a value of around 150°C.
Au démarrage d’un moteur thermique, il est donc nécessaire de prendre des mesures que le véhicule ne rej ette trop d’ émissions polluantes dans l ’ atmosphère extérieure. On sait également que les moteurs thermiques de certains véhicules automobiles à motorisation dite « hybride » sont associés à des machines électriques réversibles pouvant fonctionner en mode « moteur » ou en mode « générateur » . When starting a thermal engine, it is therefore necessary to take measures to ensure that the vehicle does not release too many polluting emissions into the outside atmosphere. We also know that the heat engines of certain motor vehicles with so-called “hybrid” engines are associated with reversible electrical machines that can operate in “engine” mode or “generator” mode.
Dans ces motorisations « hybrides », on procède classiquement à des combustions retardées à l ’ intérieur des cylindres du moteur pour réchauffer le catalyseur, de manière à dégrader le rendement de combustion et augmenter les pertes thermiques du moteur. Par exemple, il est courant d’utiliser une avance à l ’ allumage retardée et de procéder à une série d’ inj ections de carburant avec une dernière inj ection proche de l ’ allumage. In these “hybrid” engines, conventionally delayed combustion is carried out inside the engine cylinders to heat the catalyst, so as to degrade the combustion efficiency and increase the thermal losses of the engine. For example, it is common to use a delayed ignition advance and perform a series of fuel injections with a final injection close to ignition.
Cependant, la sous-avance à l ’ allumage reste limitée par les instabilités de combustion qui deviennent inacceptables au-delà d’ environ 15 degrés de vilebrequin. En effet, les combustions de plus en plus erratiques génèrent d’ importants écarts de couple d’un cycle à un autre et ont pour conséquence des fortes instabilités de régime qui engendrent des augmentations inacceptables de bruit et de vibrations. However, the ignition underadvance remains limited by combustion instabilities which become unacceptable beyond approximately 15 crankshaft degrees. Indeed, increasingly erratic combustion generates significant differences in torque from one cycle to another and results in strong regime instabilities which generate unacceptable increases in noise and vibrations.
Bien que le procédé actuel permette de répondre aux normes anti-pollution actuelles, la future norme Euro7 s’ avère extrêmement sévère. Although the current process makes it possible to meet current anti-pollution standards, the future Euro7 standard is extremely severe.
Ainsi, pour respecter les seuil s d’ émissions des futures normes, la stratégie actuelle de chauffe du catalyseur n’ est pas suffisante et il est nécessaire de la coupler à des solutions techniques complexes et coûteuses comme un catalyseur chauffé électriquement (EHC) potentiellement additionné à un système d’ inj ection d’ air à l ’ échappement permettant de diffuser la chaleur produite en amont par l ’EHC dans tout le système de post-traitement avant le démarrage effectif du moteur. Thus, to meet the emission thresholds of future standards, the current catalyst heating strategy is not sufficient and it is necessary to couple it with complex and expensive technical solutions such as an electrically heated catalyst (EHC) potentially added to an exhaust air injection system allowing the heat produced upstream by the EHC to be diffused throughout the post-treatment system before the actual starting of the engine.
Exposé de l’ invention Presentation of the invention
L’invention propose de remédier aux défauts des procédés connus d’ amorçage d’un catalyseur de moteur thermique dans un dispositif de motorisation hybride, c’ est-à-dire dans le cas où le moteur thermique est associé à au moins une machine électrique. The invention proposes to remedy the defects of known methods of priming a heat engine catalyst in a hybrid motorization device, that is to say in the case where the thermal engine is associated with at least one electric machine.
Elle propose pour cela un procédé de chauffage d’un catalyseur trois voies monté à l ’ échappement d’un moteur à combustion interne à allumage commandé apte à entraîner au moins une roue motrice d’un véhicule automobile, ledit moteur étant associé à une première machine électrique réversible pouvant fonctionner selon un mode générateur ou selon un mode moteur dans lesquels ladite première machine électrique participe au couple d’ entraînement du véhicule, ledit moteur étant associé en outre à une deuxième machine électrique pouvant fonctionner au moins selon un mode générateur, ledit procédé comprenant : For this purpose, it proposes a method of heating a three-way catalyst mounted at the exhaust of a spark-ignition internal combustion engine capable of driving at least one driving wheel of a motor vehicle, said engine being associated with a first reversible electric machine capable of operating in a generator mode or in a motor mode in which said first electric machine participates in the driving torque of the vehicle, said motor being further associated with a second electric machine capable of operating at least in a generator mode, said process comprising:
- une étape de démarrage du véhicule dans laquelle un couple d’ entraînement du véhicule est requis ; et - a vehicle starting step in which a vehicle drive torque is required; And
- une étape de chauffage du catalyseur jusqu’ à une température d’ amorçage d’ efficacité minimale du catalyseur prédéterminée, dans laquelle le couple d’ entraînement du véhicule est entièrement produit par la première machine électrique fonctionnant en mode moteur. - a step of heating the catalyst up to a predetermined minimum efficiency priming temperature of the catalyst, in which the driving torque of the vehicle is entirely produced by the first electric machine operating in motor mode.
Ladite étape de chauffage comprend une étape de réglage de post-combustion du moteur comprenant une étape d’ inj ection de carburant dans au moins un cylindre du moteur autour du point mort haut de combustion, suivie par une étape d’ allumage dudit carburant inj ecté aux alentours du point mort bas d’ échappement. Said heating step comprises a step of adjusting post-combustion of the engine comprising a step of injecting fuel into at least one cylinder of the engine around the top dead center of combustion, followed by a step of igniting said injected fuel around the exhaust bottom dead center.
Le réglage de post-combustion vise à améliorer le chauffage du catalyseur et correspond au réglage du fonctionnement d’ au moins un cylindre du moteur thermique pour transférer toute l ’ énergie chimique contenue dans le carburant vers le catalyseur, en éliminant l ’ échange d’ énergie mécanique avec le piston du cylindre lors de la phase de détente et aux pertes par frottement près. The post-combustion adjustment aims to improve the heating of the catalyst and corresponds to the adjustment of the operation of at least one cylinder of the heat engine to transfer all the chemical energy contained in the fuel to the catalyst, eliminating the exchange of mechanical energy with the piston of the cylinder during the expansion phase and frictional losses.
Avantageusement, l ’ étape d’ inj ection de carburant comprend une séquence d’ inj ections réalisées autour du point mort haut de combustion. Advantageously, the fuel injection step comprises a sequence of injections carried out around the top dead center of combustion.
Selon une caractéristique avantageuse, l ’ allumage dudit carburant inj ecté aux alentours du point mort bas d’ échappement est réalisé avec plusieurs étincelles. De préférence, ladite étape de réglage de post-combustion du moteur est appliquée à une partie seulement des cylindres du moteur ou est appliquée sur une fraction sous-unitaire des cycles du moteur. According to an advantageous characteristic, the ignition of said fuel injected around the exhaust bottom dead center is carried out with several sparks. Preferably, said engine post-combustion adjustment step is applied to only part of the engine cylinders or is applied to a sub-unit fraction of the engine cycles.
Par exemple, l’étape de réglage de post-combustion est appliquée à tous les cylindres du moteur mais uniquement pour un cycle du moteur sur deux. For example, the afterburner adjustment step is applied to all engine cylinders but only for every other engine cycle.
Par exemple, l’étape de réglage de post-combustion est appliquée à un seul cylindre. For example, the afterburner adjustment step is applied to a single cylinder.
Selon un autre aspect, l’invention a aussi pour objet un moteur à combustion interne à allumage commandé de véhicule automobile mettant en œuvre un procédé tel que décrit ci-dessus. According to another aspect, the invention also relates to a spark-ignition internal combustion engine for a motor vehicle implementing a method as described above.
Brève description des dessins Brief description of the drawings
D’autres buts, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : Other aims, characteristics and advantages of the invention will appear on reading the following description, given solely by way of non-limiting example, and made with reference to the appended drawings in which:
[Fig 1] est une vue en plan schématique d’un dispositif de motorisation hybride selon l’art antérieur ; [Fig 1] is a schematic plan view of a hybrid motorization device according to the prior art;
[Fig 2] est une vue schématique d’un moteur thermique selon l’art antérieur ; [Fig 2] is a schematic view of a heat engine according to the prior art;
[Fig 3] illustre les signaux d’injection et d’allumage dans les phases de compression et de détente d’un cycle du moteur selon l’art antérieur ; [Fig 3] illustrates the injection and ignition signals in the compression and expansion phases of an engine cycle according to the prior art;
[Fig 4] illustre les ouvertures des soupapes d’échappement et d’admission respectivement dans les phases d’échappement et d’admission d’un cycle du moteur selon l’art antérieur ; [Fig 4] illustrates the openings of the exhaust and intake valves respectively in the exhaust and intake phases of an engine cycle according to the prior art;
[Fig 5] est un organigramme illustrant les différentes étapes d’un procédé de chauffage d’un catalyseur selon l’invention ; [Fig 5] is a flowchart illustrating the different stages of a process for heating a catalyst according to the invention;
[Fig 6] illustre les signaux d’injection et d’allumage dans les phases de compression et de détente d’un cycle du moteur selon l’invention ; [Fig 7] illustre les ouvertures des soupapes d’ échappement et d’ admission respectivement dans les phases d’ échappement et d’ admission d’un cycle du moteur selon l ’ invention ; [Fig 6] illustrates the injection and ignition signals in the compression and expansion phases of an engine cycle according to the invention; [Fig 7] illustrates the openings of the exhaust and intake valves respectively in the exhaust and intake phases of a cycle of the engine according to the invention;
[Fig 8] illustre un réglage de post-combustion du moteur selon un mode de réalisation ; et [Fig 8] illustrates a post-combustion adjustment of the engine according to one embodiment; And
[Fig 9] illustre un réglage de post-combustion du moteur selon un autre mode de réalisation. [Fig 9] illustrates an engine post-combustion adjustment according to another embodiment.
Exposé détaillé d’ au moins un mode de réalisation Detailed presentation of at least one embodiment
La figure 1 illustre de manière schématique un dispositif de motorisation 1 hybride connu en lui-même, notamment monté sur un véhicule automobile. Figure 1 schematically illustrates a hybrid motorization device 1 known in itself, in particular mounted on a motor vehicle.
Le dispositif de motorisation 1 hybride comprend un moteur thermique 2 à combustion interne et à allumage commandé, une première machine électrique 3 et une deuxième machine électrique 4. The hybrid motorization device 1 comprises a thermal engine 2 with internal combustion and spark ignition, a first electric machine 3 and a second electric machine 4.
Le moteur thermique 2 produit un couple moteur, qui résulte de la combustion d’un mélange d’ air frais et de carburant dans des quantités définies par un calculateur du moteur thermique 2 non représenté. The heat engine 2 produces an engine torque, which results from the combustion of a mixture of fresh air and fuel in quantities defined by a calculator of the heat engine 2 not shown.
Les machines électriques 3 , 4 sont aptes à fonctionner en mode « générateur » sous la supervision d’un boîtier de commande non représenté. En outre, au moins la première machine électrique 3 est apte à fonctionner en mode « moteur » . En d’ autres termes, la première machine électrique est réversible. Cependant, il n’ est pas indispensabl e à la mise en œuvre du procédé selon l ’ invention que la deuxième machine électrique 4 soit apte à pouvoir fonctionner en mode « moteur » . The electrical machines 3, 4 are able to operate in “generator” mode under the supervision of a control box not shown. In addition, at least the first electric machine 3 is able to operate in “motor” mode. In other words, the first electric machine is reversible. However, it is not essential to the implementation of the method according to the invention that the second electric machine 4 is able to operate in “motor” mode.
En mode « générateur », une machine électrique 3 , 4 est un alternateur qui fournit un courant électrique destiné à être stocké dans une batterie d’ accumulateurs non représentée. In “generator” mode, an electric machine 3, 4 is an alternator which supplies an electric current intended to be stored in a battery of accumulators not shown.
En mode « moteur », la première machine électrique 3 est au contraire alimentée par du courant précédemment stocké dans la batteri e d’ accumulateurs et fournit un couple moteur qui peut être transmis aux roues du véhicule, en complément ou en remplacement du couple fourni par le moteur thermique 2. In “motor” mode, the first electric machine 3 is on the contrary powered by current previously stored in the accumulator battery and provides a motor torque which can be transmitted to the wheels of the vehicle, in addition to or in replacement of the torque provided by the thermal engine 2.
Le dispositif de motorisation 1 est associé à un système de transmission 5 permettant de transmettre aux roues 6 le couple fourni par le dispositif de motorisation 1. Le dispositif de motorisation est réglé de telle façon que le couple qu’ il fournit atteigne une valeur de couple de consigne, ou couple requis, correspondant à la « volonté du conducteur d’ accélérer », matérialisée par exemple par une valeur de l ’ enfoncement d’une pédale d’ accélérateur du véhicule ou de la pression exercée sur ladite pédale. The motorization device 1 is associated with a transmission system 5 making it possible to transmit to the wheels 6 the torque supplied by the motorization device 1. The motorization device is adjusted in such a way that the torque it provides reaches a torque value setpoint, or required torque, corresponding to the "driver's desire to accelerate", materialized for example by a value of the depression of an accelerator pedal of the vehicle or the pressure exerted on said pedal.
Le système de transmission 5 comprend notamment une boîte de vitesses 7, un pont différentiel 8 et un arbre de transmission 9. La boîte de vitesses est reliée au moteur thermique 2 et aux machines électriques 3 , 4 d’une part, et d’ autre part aux roues 6 par l ’ intermédiaire du différentiel 8 et de l ’ arbre de transmission 9. The transmission system 5 includes in particular a gearbox 7, a differential bridge 8 and a transmission shaft 9. The gearbox is connected to the heat engine 2 and to the electric machines 3, 4 on the one hand, and on the other goes to the wheels 6 via the differential 8 and the transmission shaft 9.
La figure 2 illustre le fonctionnement du moteur thermique 2 de la figure 1. Le moteur thermique 2 illustré est ici un moteur à troi s cylindres en ligne suralimenté. Figure 2 illustrates the operation of the heat engine 2 of Figure 1. The heat engine 2 illustrated here is a supercharged three-cylinder in-line engine.
Un tel moteur thermique 2 aspire de l ’ air dans le sens de la flèche E par l ’ intermédiaire d’une conduite d’ admission 10, et rej ette ses gaz d’ échappement par une conduite d’ échappement 1 1 afin de les diriger vers un dispositif de dépollution 12. Le dispositif de dépollution 12 comporte un catalyseur trois voies 13 et un filtre à particules 14. Such a heat engine 2 sucks air in the direction of the arrow E via an intake pipe 10, and rejects its exhaust gases via an exhaust pipe 11 in order to direct them towards a depollution device 12. The depollution device 12 comprises a three-way catalyst 13 and a particle filter 14.
A la sortie du dispositif de dépollution 12, les gaz d’ échappement sont évacués dans l ’ atmosphère extérieure dans le sens de la flèche S . At the outlet of the pollution control device 12, the exhaust gases are evacuated into the external atmosphere in the direction of the arrow S.
Le moteur consomme également du carburant, par exemple de l ’ essence, un mélange d’ essence et d’ éthanol, voire de l ’ éthanol pur, qui est amené au moteur grâce à un système d’ inj ection (non représenté), par exemple un système d’ inj ection directe qui comporte une rampe d’ alimentation commune aux cylindres et au moins un inj ecteur de carburant par cylindre apte à inj ecter le carburant directement dans chacun des cylindres. Dans la conduite d’ admission d’ air 10, de manière non limitative, on peut trouver un filtre à air 15 qui permet d’ éliminer les poussières contenues dans l ’ air et un volet d’ admission 16, ou boîtier- papillon 16 qui permet de réguler le débit admis dans le moteur 2 en obstruant plus ou moins la conduite d’ admission 10. The engine also consumes fuel, for example gasoline, a mixture of gasoline and ethanol, or even pure ethanol, which is brought to the engine using an injection system (not shown), by example a direct injection system which comprises a supply rail common to the cylinders and at least one fuel injector per cylinder capable of injecting the fuel directly into each of the cylinders. In the air intake pipe 10, in a non-limiting manner, we can find an air filter 15 which makes it possible to eliminate dust contained in the air and an intake flap 16, or throttle body 16 which makes it possible to regulate the flow admitted into the engine 2 by obstructing the intake pipe 10 to a greater or lesser extent.
S ’ agissant d’un moteur 2 suralimenté, le moteur thermique 2 comporte par ailleurs un turbocompresseur 17 dont le compresseur 18 est interposé dans la conduite d’ admission 10 entre le filtre à air 15 et le boîtier-papillon 16. De plus, il est possible qu’un échangeur de température 19 soit disposé dans la conduite d’ admission 10, entre le compresseur 18 et le boîtier-papillon 16 de manière à refroidir l ’ air comprimé par le compresseur 18. Concerning a supercharged engine 2, the thermal engine 2 also comprises a turbocharger 17 whose compressor 18 is interposed in the intake pipe 10 between the air filter 15 and the throttle body 16. In addition, it It is possible that a temperature exchanger 19 is arranged in the inlet pipe 10, between the compressor 18 and the throttle body 16 so as to cool the air compressed by the compressor 18.
Le compresseur 18 est entraîné par la turbine 20 du turbocompresseur 17, qui est interposée dans la conduite d’ échappement 1 1 entre le moteur 2 et le dispositif de dépollution 12. De plus et sans nuire à la généralité de l ’ invention, le moteur thermique 2 peut comporter un ou plusieurs circuits de recirculation de gaz d’ échappement à l ’ admission (non représentés), plus particulièrement un circuit dit EGR haute pression et/ou un circuit EGR basse pression, EGR étant l ’ acronyme anglais pour « Exhaust Gas Recycling » ou recyclage des gaz d’ échappement. Le moteur thermique 2 peut également disposer d’une distribution variable d’ acronyme VVT pour « Variable Valve Timing » en langue anglaise. The compressor 18 is driven by the turbine 20 of the turbocharger 17, which is interposed in the exhaust pipe 11 between the engine 2 and the pollution control device 12. In addition and without harming the generality of the invention, the engine thermal 2 may comprise one or more exhaust gas recirculation circuits at the intake (not shown), more particularly a so-called high pressure EGR circuit and/or a low pressure EGR circuit, EGR being the English acronym for "Exhaust Gas Recycling” or recycling of exhaust gases. The thermal engine 2 can also have a variable distribution with the acronym VVT for “Variable Valve Timing” in English.
Le catalyseur peut être équipé de moyens de détermination d’un paramètre représentatif de la température T des gaz d’ échappement qui le traversent, par exemple la température T du catalyseur lui-même, mesurée par un capteur de température 21. The catalyst can be equipped with means for determining a parameter representative of the temperature T of the exhaust gases passing through it, for example the temperature T of the catalyst itself, measured by a temperature sensor 21.
Par ailleurs, le moteur 2 comprend une unité électronique de commande 22 configurée pour commander les différents éléments du moteur 2 à partir de données recueillies par des capteurs à différents endroits du moteur. Furthermore, the engine 2 comprises an electronic control unit 22 configured to control the different elements of the engine 2 from data collected by sensors at different locations of the engine.
L’unité électronique de commande 22 comporte un module de calcul 23 , un module de mesure 24 et un module de commande 25. Le module de mesure 24 est par exemple apte à recevoir les mesures de température issues du capteur de température 21. The electronic control unit 22 comprises a calculation module 23, a measurement module 24 and a control module 25. The measuring module 24 is for example capable of receiving temperature measurements from the temperature sensor 21.
Le module de commande 25 est par exemple apte à piloter le système d’ inj ection de carburant et l ’ ouverture et la fermeture du boîtier-papillon 16. The control module 25 is for example capable of controlling the fuel injection system and the opening and closing of the throttle body 16.
Classiquement, les motorisations hybrides tel que décrites ci- dessus nécessitent une phase de chauffage du catalyseur lors d’un départ à froid du moteur thermique. Cette phase de chauffage du catalyseur dure environ 30 secondes et permet d’ amener la température du catalyseur jusqu’ à une température d’ amorçage à laquelle il possède une efficacité de traitement minimale prédéfinie. Conventionally, hybrid engines as described above require a heating phase of the catalyst during a cold start of the thermal engine. This phase of heating the catalyst lasts approximately 30 seconds and makes it possible to bring the temperature of the catalyst up to a priming temperature at which it has a predefined minimum treatment efficiency.
Durant cette phase, le couple fourni par le moteur thermique 2 n’ est pas transmis aux roues et l ’ avancement du véhicule est assuré uniquement par la première machine électrique 3. Le couple fourni par le moteur thermique 2 est transmis à la deuxième machine électrique 4 afin de recharger la batterie. Le point de fonctionnement classiquement utilisé correspond à un régime de 1300 tours/minute et un couple de 50 Nm, c’ est-à-dire des valeurs relativement faibles. During this phase, the torque provided by the heat engine 2 is not transmitted to the wheels and the advancement of the vehicle is ensured solely by the first electric machine 3. The torque provided by the heat engine 2 is transmitted to the second electric machine 4 to recharge the battery. The conventionally used operating point corresponds to a speed of 1300 rpm and a torque of 50 Nm, i.e. relatively low values.
Le réglage du moteur utilisé dans la phase de chauffage du catalyseur est illustré sur les figures 3 et 4. Le réglage utilisé dans la phase de chauffage du catalyseur diffère du réglage nominal utilisé en dehors de la phase de chauffage du catalyseur. The engine setting used in the catalyst heating phase is shown in Figures 3 and 4. The setting used in the catalyst heating phase differs from the nominal setting used outside of the catalyst heating phase.
Les zones PMB et PMH correspondent respectivement au point mort bas et au point mort haut d’un moteur thermique 2. Il est à noter que le moteur 2 fonctionne selon un cycle à quatre temps. The PMB and PMH zones correspond respectively to the bottom dead center and the top dead center of a heat engine 2. It should be noted that engine 2 operates according to a four-stroke cycle.
Le réglage du moteur consiste à utiliser une avance à l ’ allumage retardée et de procéder à une série d’ inj ections 26 comprenant une dernière inj ection proche de l ’ allumage 27. Dans l ’ exemple illustré, on effectue trois inj ections 26 et l ’ allumage est réalisé à environ 15 degrés de vilebrequin avec une seule étincelle. A titre de comparaison, l ’ allumage selon le réglage nominal intervient quelques instants avant le PMH, afin de prendre en compte le délai nécessaire au développement de la combustion. La figure 3 illustre les signaux d’ inj ection et d’ allumage dans les phases de compression et de détente, et la figure 4 illustre les ouvertures des soupapes d’ échappement 28 et des soupapes d’ admission 29 respectivement dans les phases d’ échappement et d’ admission. Adjusting the engine consists of using a delayed ignition advance and carrying out a series of injections 26 including a final injection close to ignition 27. In the example illustrated, three injections 26 are carried out and Ignition is achieved at approximately 15 crankshaft degrees with a single spark. For comparison, ignition according to the nominal setting occurs a few moments before TDC, in order to take into account the time necessary for combustion to develop. Figure 3 illustrates the injection and ignition signals in the compression and expansion phases, and Figure 4 illustrates the openings of the exhaust valves 28 and the intake valves 29 respectively in the exhaust phases. and admission.
On va maintenant décrire en référence aux figures 5 à 7 un procédé de chauffage d’un catalyseur selon l ’ invention. We will now describe with reference to Figures 5 to 7 a process for heating a catalyst according to the invention.
La figure 5 illustre les différentes étapes d’un procédé 30 de chauffage du catalyseur 13 selon un mode de réalisation de l ’invention, utilisant un dispositif de motorisation 1 tel que décrit précédemment, dans lequel on amène la température T du catalyseur 13 jusqu’ à une température Ta d’ amorçage à laquelle il possède une efficacité de traitement minimale prédéfinie. Par exemple, l ’ efficacité visée peut être de l ’ ordre de 50%, et la température d’ amorçage correspondante peut être voisine de 250°C . Figure 5 illustrates the different stages of a process 30 for heating the catalyst 13 according to one embodiment of the invention, using a motorization device 1 as described previously, in which the temperature T of the catalyst 13 is brought up to at a starting temperature Ta at which it has a predefined minimum treatment efficiency. For example, the targeted efficiency may be of the order of 50%, and the corresponding initiation temperature may be close to 250°C.
Le procédé est en particulier mis en œuvre au moyen d’un dispositif de motorisation 1 comprenant, tel que décrit précédemment un moteur thermique 2 associé à des machines électriques 3 , 4 qui sont aptes à fonctionner en mode « générateur » et dont au moins la première machine électrique 3 est en outre apte à fonctionner en mode « moteur » sous la supervision d’un boîtier de commande. The method is in particular implemented by means of a motorization device 1 comprising, as previously described, a heat engine 2 associated with electrical machines 3, 4 which are capable of operating in "generator" mode and of which at least the first electric machine 3 is also capable of operating in “motor” mode under the supervision of a control box.
Le procédé 30 commence par une étape 3 1 de démarrage du véhicule. Elle peut se matérialiser par le fait que le conducteur met le contact et requiert un couple C pour l ’ entraînement du véhicule, par exemple en appuyant sur la pédale d’ accélérateur. The method 30 begins with a step 31 of starting the vehicle. It can materialize by the fact that the driver switches on the ignition and requires a torque C to drive the vehicle, for example by pressing the accelerator pedal.
Le procédé se poursuit, de manière itérative, par une étape 32 de mesure de la température T du catalyseur 13 , puis par une étape 33 de comparaison de ladite température T avec une température d’ amorçage Ta prédéfinie. La mesure de la température T du catalyseur 13 peut être déterminée par l ’unité électronique de commande 22 à l ’ aide d’un capteur de température 21 qui équipe le catalyseur 13. The process continues, iteratively, with a step 32 of measuring the temperature T of the catalyst 13, then by a step 33 of comparing said temperature T with a predefined initiation temperature Ta. The measurement of the temperature T of the catalyst 13 can be determined by the electronic control unit 22 using a temperature sensor 21 which equips the catalyst 13.
Tant que la température T du catalyseur est inférieure à la température d’ amorçage Ta, le procédé se poursuit par une étape 34 de chauffage du catalyseur 13 dans laquelle le couple C nécessaire à l ’ entraînement du véhicule est entièrement fourni par la première machine électrique 3. As long as the temperature T of the catalyst is lower than the initiation temperature Ta, the process continues with a step 34 of heating the catalyst 13 in which the torque C necessary to the drive of the vehicle is entirely provided by the first electric machine 3.
Si la température T du catalyseur n’ est pas inférieure à la température d’ amorçage Ta, le procédé passe à l ’ étape 38 de réglage du moteur sur un fonctionnement nominal . If the temperature T of the catalyst is not lower than the priming temperature Ta, the process goes to step 38 of adjusting the engine to nominal operation.
A cette étape 34, l ’unité électronique de commande 22 pilote le réglage d’ au moins un cylindre du moteur thermique de manière à transférer toute l ’ énergie chimique contenue dans le carburant vers le catalyseur 13 en éliminant l ’ échange d’ énergie mécanique avec le piston lors de la phase de détente. At this step 34, the electronic control unit 22 controls the adjustment of at least one cylinder of the heat engine so as to transfer all the chemical energy contained in the fuel to the catalyst 13 by eliminating the exchange of mechanical energy with the piston during the expansion phase.
L’ étape 34 comprend une étape 35 de réglage de post-combustion du moteur 2 comprenant une étape 36 d’ inj ection de carburant dans au moins un cylindre du moteur 2 autour du PMH de combustion, suivie par une étape 37 d’ allumage dudit carburant inj ecté aux alentours du PMB d’ échappement. Le PMH de combustion est le moment de passage d’une phase de compression à une phase de détente et correspond au début du temps trois d’un cycle conventionnel à quatre temps. Le PMB d’ échappement est le moment de passage d’une phase de détente à une phase d’ échappement où le piston d’un moteur fonctionnant selon un cycle conventionnel à quatre temps commence à remonter juste après la phase de détente. Step 34 comprises a step 35 of post-combustion adjustment of the engine 2 comprising a step 36 of injecting fuel into at least one cylinder of the engine 2 around the combustion TDC, followed by a step 37 of igniting said fuel injected around the exhaust BDC. Combustion TDC is the moment of transition from a compression phase to an expansion phase and corresponds to the start of stroke three of a conventional four-stroke cycle. Exhaust BDC is the moment of transition from an expansion phase to an exhaust phase where the piston of an engine operating on a conventional four-stroke cycle begins to rise just after the expansion phase.
Le réglage du moteur utilisé à l ’ étape 35 de réglage de postcombustion est illustré sur les figures 6 et 7. The engine adjustment used in afterburner adjustment step 35 is illustrated in Figures 6 and 7.
La figure 6 illustre les signaux d’ inj ection et d’ allumage dans les phases de compression et de détente, et la figure 7 illustre les ouvertures des soupapes d’ échappement et des soupapes d’ admission respectivement dans les phases d’ échappement et d’ admission. Figure 6 illustrates the injection and ignition signals in the compression and expansion phases, and Figure 7 illustrates the openings of the exhaust valves and the intake valves respectively in the exhaust and expansion phases. ' admission.
Ce réglage dit « de post-combustion » diffère du réglage utili sé dans l ’ art antérieur dans la phase de chauffage du catalyseur et illustré sur les figures 3 et 4. This so-called “post-combustion” adjustment differs from the adjustment used in the prior art in the catalyst heating phase and illustrated in Figures 3 and 4.
Le réglage de post-combustion du moteur consiste à brûler la charge air-carburant très tard dans le cycle du moteur avec un allumage réalisé en fin de phase de détente avant l ’ ouverture des soupapes d’ échappement, soit aux alentours du PMB d’ échappement. Les conditions de pression et de température d’un allumage effectué aux alentours du PMB d’ échappement sont plutôt faibles en comparaison à un allumage réalisé autour du PMH de combustion. The post-combustion adjustment of the engine consists of burning the air-fuel charge very late in the engine cycle with ignition carried out at the end of the expansion phase before the opening of the exhaust valves, i.e. around the BDC of exhaust. The pressure and temperature conditions of an ignition carried out around the exhaust BDC are rather low in comparison to an ignition carried out around the combustion TDC.
Il est donc nécessaire pour garantir une qualité suffisante de combustion de veiller à ce que le mélange air-carburant soit le plus homogène possible. It is therefore necessary to guarantee sufficient quality of combustion to ensure that the air-fuel mixture is as homogeneous as possible.
Dans ce but, l ’ étape 36 d’ inj ection de carburant comprend une séquence d’ inj ections 40 effectuées autour du PMH de combustion (figure 6). En effet, c’ est au PMH de combustion que les vitesses et intensités aérodynamiques sont les plus élevées, permettant d’ obtenir une homogénéisation air-carburant idéale. For this purpose, the fuel injection step 36 comprises a sequence of injections 40 carried out around the combustion TDC (figure 6). Indeed, it is at TDC of combustion that the aerodynamic speeds and intensities are the highest, making it possible to obtain ideal air-fuel homogenization.
Il est aussi nécessaire de fournir une énergie d’ allumage la plus élevée possible. It is also necessary to provide the highest possible ignition energy.
A cette fin, l ’unité électronique de commande 22 réalise à l ’ étape 37 l ’ allumage du mélange air-carburant avec plusieurs étincelles 41 sous forme de train d’ étincelles permettant d’ accroître l ’ énergie d’ allumage et assurer l ’initiation de la combustion (figure 6). To this end, the electronic control unit 22 carries out in step 37 the ignition of the air-fuel mixture with several sparks 41 in the form of a train of sparks making it possible to increase the ignition energy and ensure the initiation of combustion (figure 6).
Dans le cas d’un moteur thermique 2 disposant d’une distribution variable et à l ’ instar du réglage classique en phase de chauffage du catalyseur, il n’y a pas de croisement des soupapes d’ échappement 42 et des soupapes d’ admission 43 dans le réglage de post-combustion pour éviter la présence de gaz brûlés dans les chambres de combustion après la combustion, afin de stabiliser au maximum la combustion (figure 7). De plus, en post-combustion tout croisement des soupapes d’ échappement et des soupapes d’ admission doit être supprimé au risque de voir remonter vers l ’ admission des gaz enflammés et donc de subir des problèmes de bruit d’ admission, voire des problèmes de fiabilité. In the case of a heat engine 2 having a variable distribution and like the classic adjustment in the heating phase of the catalyst, there is no crossing of the exhaust valves 42 and the intake valves 43 in the post-combustion setting to avoid the presence of burnt gases in the combustion chambers after combustion, in order to stabilize combustion as much as possible (figure 7). In addition, in post-combustion any crossing of the exhaust valves and the intake valves must be eliminated at the risk of seeing ignited gases rising towards the intake and therefore experiencing intake noise problems, or even problems. reliability.
Avec le réglage de post-combustion, le moteur 2 ne fournit plus de couple et ne peut respecter sa consigne cible de régime si le réglage de post-combustion est appliqué sur tous les cylindres et tous les cycles du moteur 2. With the afterburner setting, engine 2 no longer provides torque and cannot meet its target speed setting if the afterburner setting is applied to all cylinders and cycles of engine 2.
Il est donc préférable d’ activer le réglage de post-combustion uniquement sur certains cylindres ou seulement dans certains cycles (soit une fraction sous-unitaire) du moteur 2, les autres cylindres ou cycles du moteur fonctionnant soit avec un réglage de chauffage du catalyseur de l ’ état de la technique tel que décrit précédemment, soit avec un réglage nominal utilisé classiquement en dehors de la phase de chauffage du catalyseur. Dans un mode de réalisation illustré sur la figure 8, le moteur 2 est à trois cylindres et la post-combustion est activée uniquement sur le deuxième cylindre. Les premier et troisième cylindres fournissent un couple constant, alors que le deuxième cylindre ne fournit pas de couple. Pour simplifier la présentation nous avons négligé les pertes par frottements et par pompage du deuxième cylindre. Ces pertes sont en réalité compensées par un couple fourni par la deuxième machine électrique 4. It is therefore preferable to activate the post-combustion adjustment only on certain cylinders or only in certain cycles (i.e. a sub-unit fraction) of engine 2, the other cylinders or engine cycles operating either with a catalyst heating setting of the state of the art as described previously, or with a nominal setting conventionally used outside the catalyst heating phase. In one embodiment illustrated in Figure 8, the engine 2 has three cylinders and the post-combustion is activated only on the second cylinder. The first and third cylinders provide constant torque, while the second cylinder provides no torque. To simplify the presentation we have neglected the losses by friction and by pumping of the second cylinder. These losses are in reality compensated by a torque supplied by the second electrical machine 4.
Dans un autre mode de réalisation illustré sur la figure 9, le moteur 2 est à trois cylindres et la post-combustion est activée sur tous les trois cylindres, à raison d’un cycle du moteur sur deux. In another embodiment illustrated in Figure 9, the engine 2 has three cylinders and the post-combustion is activated on all three cylinders, at the rate of one engine cycle out of two.
D’ autres combinaisons sont envisageables tout en restant dans le cadre de l ’ invention. Other combinations are possible while remaining within the scope of the invention.

Claims

REVENDICATIONS
1. Procédé de chauffage d’un catalyseur (13) trois voies monté à l ’ échappement d’un moteur (2) à combustion interne à allumage commandé apte à entraîner au moins une roue (6) motrice d’un véhicul e automobile, ledit moteur (2) étant associé à une première machine électrique (3) réversible pouvant fonctionner selon un mode générateur ou selon un mode moteur dans lesquels ladite machine électrique (3 ) participe au couple (C) d’ entraînement du véhicule, ledit moteur (2) étant en outre associé à une deuxième machine électrique (4) pouvant fonctionner au moins selon un mode générateur, ledit procédé comprenant : 1. Method for heating a three-way catalyst (13) mounted at the exhaust of a spark-ignition internal combustion engine (2) capable of driving at least one driving wheel (6) of a motor vehicle, said motor (2) being associated with a first reversible electric machine (3) capable of operating in a generator mode or in a motor mode in which said electric machine (3) participates in the torque (C) driving the vehicle, said motor ( 2) being further associated with a second electrical machine (4) capable of operating at least in a generator mode, said method comprising:
- une étape de démarrage du véhicule dans laquelle un couple d’ entraînement (C) du véhicule est requis ; et - a vehicle starting step in which a driving torque (C) of the vehicle is required; And
- une étape de chauffage du catalyseur ( 13) jusqu’ à une température d’ amorçage (Ta) d’ efficacité minimale du catalyseur prédéterminée, dans laquelle le coupl e d’ entraînement (C) du véhicule est entièrement produit par la première machine électrique (3) fonctionnant en mode moteur ; caractérisé en ce que ladite étape de chauffage comprend une étape de réglage de post-combustion du moteur (2) comprenant une étape d’ inj ection de carburant dans au moins un cylindre du moteur (2) autour du point mort haut de combustion, suivie par une étape d’ allumage dudit carburant inj ecté aux alentours du point mort bas d’ échappement. - a step of heating the catalyst (13) up to a starting temperature (Ta) of minimum predetermined catalyst efficiency, in which the driving torque (C) of the vehicle is entirely produced by the first electric machine (3) operating in motor mode; characterized in that said heating step comprises a step of post-combustion adjustment of the engine (2) comprising a step of injecting fuel into at least one cylinder of the engine (2) around the top dead center of combustion, followed by by a step of igniting said fuel injected around the exhaust bottom dead center.
2. Procédé selon la revendication 1 dans lequel l ’ étape d’ inj ection comprend une séquence d’ inj ections réalisées autour du point mort haut de combustion. 2. Method according to claim 1 in which the injection step comprises a sequence of injections carried out around the top dead center of combustion.
3. Procédé selon la revendication 1 ou 2, dans lequel l ’ allumage dudit carburant inj ecté aux alentours du point mort bas d’ échappement est réalisé avec plusieurs étincelles. 3. Method according to claim 1 or 2, in which the ignition of said fuel injected around the exhaust bottom dead center is carried out with several sparks.
4. Procédé selon l ’une quelconque des revendications précédentes, dans lequel ladite étape de réglage de post-combustion du moteur (2) est appliquée à une partie seulement des cylindres du moteur (2) ou est appliquée sur une fraction sous-unitaire des cycles du moteur (2). 4. Method according to any one of the preceding claims, wherein said step of adjusting post-combustion of the engine (2) is applied to only part of the cylinders of the engine (2) or is applied to a subunit fraction of the cycles of the engine (2).
5. Procédé selon la revendication 4, dans lequel l ’ étape de réglage de post-combustion est appliquée à tous les cylindres du moteur (2) mais uniquement pour un cycle du moteur sur deux. 5. Method according to claim 4, wherein the post-combustion adjustment step is applied to all the cylinders of the engine (2) but only for every other engine cycle.
6. Procédé selon la revendication 4, dans lequel l ’ étape de réglage de post-combustion est appliquée à un seul cylindre. 6. Method according to claim 4, wherein the post-combustion adjustment step is applied to a single cylinder.
7. Moteur (2) à combustion interne à allumage commandé de véhicule automobile mettant en œuvre un procédé selon l ’une quelconque des revendications 1 à 6. 7. Motor vehicle spark-ignition internal combustion engine (2) implementing a method according to any one of claims 1 to 6.
PCT/EP2023/078435 2022-10-13 2023-10-12 Method for heating a catalytic converter in a hybrid drive vehicle WO2024079298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2210533A FR3140910A1 (en) 2022-10-13 2022-10-13 Process for heating a catalyst in a vehicle with a hybrid engine
FRFR2210533 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024079298A1 true WO2024079298A1 (en) 2024-04-18

Family

ID=84887517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/078435 WO2024079298A1 (en) 2022-10-13 2023-10-12 Method for heating a catalytic converter in a hybrid drive vehicle

Country Status (2)

Country Link
FR (1) FR3140910A1 (en)
WO (1) WO2024079298A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328123A1 (en) * 2002-06-24 2004-01-15 Denso Corp., Kariya Controller for internal combustion engine, has compression stroke combustion controller that carries out divided multiple fuel injection when producing compression stroke combustion
FR3029972A1 (en) * 2014-12-16 2016-06-17 Renault Sa METHOD FOR HEATING A CATALYST IN A HYBRID MOTORIZATION DEVICE
US20180010538A1 (en) * 2016-07-05 2018-01-11 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10393048B2 (en) * 2016-07-05 2019-08-27 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328123A1 (en) * 2002-06-24 2004-01-15 Denso Corp., Kariya Controller for internal combustion engine, has compression stroke combustion controller that carries out divided multiple fuel injection when producing compression stroke combustion
FR3029972A1 (en) * 2014-12-16 2016-06-17 Renault Sa METHOD FOR HEATING A CATALYST IN A HYBRID MOTORIZATION DEVICE
US20180010538A1 (en) * 2016-07-05 2018-01-11 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10393048B2 (en) * 2016-07-05 2019-08-27 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
FR3140910A1 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
FR2992348A3 (en) Method for reducing emission levels of pollutants of car, involves limiting thermal losses of thermal engine and inputting torque to element of traction chain formed by engine and torque input component distinct from turbo compressor
EP3194744B1 (en) Method to control a powertrain equipped with an electrical compressor
FR3064683B1 (en) METHOD FOR CONTROLLING A SUPERIMUM CONTROL IGNITION ENGINE WITH PARTIAL EXHAUST GAS RECIRCULATION, AND MOTORIZATION DEVICE THEREFOR
EP3233599A1 (en) Method for heating a catalytic converter in a hybrid engine device
EP3083358B1 (en) Method for cold-starting a heat engine and associated drive device
WO2018083400A1 (en) System for injecting air into a gas exhaust circuit of a supercharged heat engine
WO2024079298A1 (en) Method for heating a catalytic converter in a hybrid drive vehicle
FR3072418A1 (en) METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH COMMON IGNITION, IN THE UNLIMITED STATE
EP1832728B1 (en) Device for pollution control of the exhaust gases from an internal combustion engine
WO2015092292A1 (en) Assembly comprising a heat engine and an electrical compressor
EP3163042A1 (en) Method for supplying power to a device for heating the exhaust gases of a drive train of a motor vehicle and associated vehicle
FR2926518A1 (en) Hybrid engine controlling method for motor vehicle i.e. hybrid vehicle, involves continuously maintaining diesel type internal combustion engine at functioning points with fuel mixture of richness equal to one
FR3088957A1 (en) Device and method for controlling the regeneration of a particulate filter of an exhaust line of an internal combustion engine
EP4031754B1 (en) Method for regeneration of a particlate filter of a hybrid vehicle
EP2128414B1 (en) Engine control method
FR3072726A3 (en) METHOD FOR CONTROLLING A COMPRESSED IGNITION INTERNAL COMBUSTION ENGINE IN THE UNLIMITED STATE
FR3069023A1 (en) METHOD FOR CONTROLLING A SUPERIOR INTERNAL COMBUSTION ENGINE COMPRISING AN ADDITIONAL COMPRESSOR.
FR2921122A3 (en) Intake gas temperature regulating system, has detecting unit detecting parameters representing operating state of gas treating device, and electronic control unit controlling increasing unit based on detected parameters at level of device
FR3067061B1 (en) SYSTEM FOR SUPPLYING AN INTERNAL COMBUSTION ENGINE
FR3104210A1 (en) PROCESS FOR LIMITING THE QUANTITY OF POLLUTANTS RELEASED BY A HYBRID VEHICLE THERMAL ENGINE
EP1491750B1 (en) Method and apparatus for regenerating a catalytic particulate filter
FR3131943A1 (en) Method and system for controlling the torque delivered during a change of gear ratio for a motor vehicle equipped with at least one exhaust gas recirculation system
FR3000991A1 (en) SYSTEM FOR TREATING EXHAUST GAS FROM AN ENGINE ON A MOTOR VEHICLE AND ITS CONTROL METHOD.
FR2936979A1 (en) Passenger compartment heating device for motor vehicle, has heat exchanger placed in heat regulation circuit, where circuit comprises pump to circulate heat transfer fluid, and forced air heater to blow heat regulated air into compartment
FR3007791A1 (en) METHOD FOR PURGING A NITROGEN OXIDE TRAP AND ASSOCIATED MOTORIZATION DEVICE