WO2024078503A1 - 全服役环境和交通荷载作用的路基累积变形模拟试验系统 - Google Patents

全服役环境和交通荷载作用的路基累积变形模拟试验系统 Download PDF

Info

Publication number
WO2024078503A1
WO2024078503A1 PCT/CN2023/123811 CN2023123811W WO2024078503A1 WO 2024078503 A1 WO2024078503 A1 WO 2024078503A1 CN 2023123811 W CN2023123811 W CN 2023123811W WO 2024078503 A1 WO2024078503 A1 WO 2024078503A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
roadbed
water
full service
service environment
Prior art date
Application number
PCT/CN2023/123811
Other languages
English (en)
French (fr)
Inventor
崔新壮
张小宁
包振昊
郝建文
杜业峰
金青
王旭东
李晋
张炯
张圣琦
王艺霖
李向阳
颜士荣
曹天才
Original Assignee
重庆大学
山东大学
山东交通学院
济南东测试验机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211240409.1A external-priority patent/CN115480049B/zh
Application filed by 重庆大学, 山东大学, 山东交通学院, 济南东测试验机技术有限公司 filed Critical 重庆大学
Publication of WO2024078503A1 publication Critical patent/WO2024078503A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials

Definitions

  • the invention relates to the field of roadbed dynamic response model test, and in particular to a roadbed cumulative deformation simulation test system under full service environment and traffic load.
  • the roadbed As the support of the superstructure of transportation infrastructure, the roadbed is related to the smooth, safe and efficient operation of transportation vehicles.
  • the long-term service performance and toughness of the roadbed are often overlooked.
  • road engineering there is “heavy pavement, light roadbed”
  • in the field of railway engineering there is “heavy line, light roadbed”.
  • the scope and level of dynamic stress on the roadbed have become larger, making the uneven settlement of the roadbed larger, which puts higher requirements on the performance of the roadbed structure.
  • the regional climate is complex and changeable, with hot and humid rainy areas, seasonally frozen areas, and permafrost areas, etc., resulting in the roadbed often facing the dual effects of environmental loads and traffic loads during service, aggravating the development of cumulative deformation of the roadbed and further causing safety hazards to the superstructure.
  • the main experimental research methods for roadbed cumulative deformation are indoor specimen tests, full-scale model tests and on-site in-situ tests.
  • Indoor specimen tests are greatly affected by size and boundary effects; full-scale model tests lack simulation of the full service environment of the roadbed, as well as the true and accurate simulation of the main axis rotation effect of the roadbed internal stress under traffic loads.
  • the only loading device that can simulate the movement effect of traffic loads is used in railway engineering.
  • Engineering field; the geological and environmental conditions of on-site in-situ tests are complex and difficult to control, making it difficult to carry out qualitative and quantitative research; the existing systems are difficult to reproduce the dynamic stress of the roadbed under different traffic loads and to simulate the coupling of the full service environment and traffic loads.
  • the purpose of the present invention is to provide a simulation test system and method for the cumulative deformation of the roadbed under the full service environment and traffic loads in view of the defects of the prior art.
  • simulation experiments are carried out on the cumulative deformation of the roadbed when it is in the full service environment of freezing, freeze-thaw, dry and wet, rainfall, and groundwater level and traffic loads, so as to achieve the reproduction of the dynamic stress of the roadbed under different traffic load forms and the coupled simulation of the full service environment and traffic loads, thereby meeting the research needs on the cumulative deformation of the roadbed.
  • the first object of the present invention is to provide a roadbed cumulative deformation simulation test system under full service environment and traffic load, adopting the following scheme:
  • test chamber is buckled on the surface of the model to form an environmental chamber
  • the water level control system is located on one side of the model, and includes a pipe network arranged in the sand and gravel cushion layer and a water supply component connecting the pipe network to adjust the environment of the model and the water level inside the model;
  • the environmental simulation system includes a spraying component and a temperature control component, wherein the spraying component is arranged in the environmental cavity and acts on the model, and the temperature control component is arranged in the environmental cavity and the model respectively;
  • the excitation system applies stress to the surface of the model
  • the monitoring system comprises an environment monitoring component arranged in the environment cavity and a model monitoring component arranged in the model, and is used for acquiring environment parameter data in the environment cavity and model parameter data in the model.
  • the water supply assembly includes a water storage pipe, a water inlet pipe and a water outlet pipe.
  • the bottom of the water storage pipe is connected to the bottom of the model through a pipe network to form a communicating vessel.
  • the water storage pipe is connected to the water inlet pipe and the drain pipe.
  • the water storage pipe is adjusted by lifting and lowering. Water level inside the model.
  • one end of the water inlet pipe is connected to a water source, and the other end is connected to a water storage pipe and a gravel cushion layer in a pipe network area, respectively, so as to supply water to the water storage pipe and/or the gravel cushion layer.
  • the pipe network is provided with a plurality of outlets, and all outlets of the pipe network are evenly distributed in the sand and gravel cushion layer.
  • control device which is respectively connected to the water level control system, the environment simulation system, the excitation system and the monitoring system.
  • the environmental monitoring component includes an environmental temperature probe and an environmental humidity probe installed in the test box, and the environmental parameter data includes environmental temperature data and environmental humidity data.
  • the model monitoring component includes a dynamic soil pressure sensor, a pore water pressure sensor, a soil moisture sensor, a soil temperature sensor buried in the model, and a laser displacement sensor installed at the action position of the excitation system, and the laser displacement sensor is used to measure the settlement of the top surface of the model.
  • the model includes a foundation and a roadbed arranged in a pre-buried foundation pit, a sand and gravel cushion layer is laid under the model, and an insertable instrument embedding hole for accommodating the model detection component is provided inside the model.
  • the second object of the present invention is to provide a test method of a roadbed cumulative deformation simulation test system using the full service environment and traffic load as described in the first object, comprising:
  • the freezing and melting process of the model is simulated by the temperature control component, the humidity change of the model is simulated by the spray component, and the environment of the model and the water level inside the model are adjusted by the water level control system;
  • the simulation process is adjusted to realize the cumulative deformation test of the roadbed under the full service environment and traffic loads.
  • the water level is controlled to gradually rise to the surface of the roadbed in the model, and then the water level is controlled to gradually decrease to the initial position to simulate the dry-wet cycle effect caused by the change of the groundwater level.
  • the present invention has the following advantages and positive effects:
  • a roadbed foundation model, a full service environment simulation test chamber, an excitation system, and a monitoring system are configured to simulate the cumulative deformation of the roadbed under the full service environment of freezing, freeze-thaw, dry and wet, rainfall, and groundwater level and traffic loads. This can achieve the reproduction of the dynamic stress of the roadbed under different traffic loads and the coupled simulation of the full service environment and traffic loads, thereby meeting the research needs on the cumulative deformation of the roadbed.
  • the full service environment simulation module realizes the simulation of frozen soil environment, freeze-thaw cycle, wet-dry cycle, rainfall and groundwater level changes, and combines the incentive system to simulate different forms of traffic loads, thereby achieving the coupling of environmental loads and traffic loads.
  • the full-service environmental simulation test chamber realizes the effective separation of the environmental chamber and the excitation-control system, preventing the sensitive components in the excitation-control system from being affected by environmental factors, while saving the invalid environmental simulation space outside the chamber.
  • This form reduces the environmental simulation space by 95% compared with the external wrapping type and can reduce energy consumption by 85%.
  • a remote cloud operation module is provided for the test system, which facilitates the test personnel to observe and operate the test system in the background and improves work efficiency.
  • the application scenarios are wide, and tests and research can be carried out for different climatic conditions and traffic load types, with strong promotion potential.
  • FIG. 1 is a schematic front view of a roadbed cumulative deformation simulation test system under full service environment and traffic load in Embodiment 1 or 2 of the present invention.
  • FIG. 2 is a schematic side view of a roadbed cumulative deformation simulation test system under full service environment and traffic load in Embodiment 1 or 2 of the present invention.
  • FIG3 is a schematic end view of an indoor model of a road base foundation in Embodiment 1 or 2 of the present invention.
  • FIG. 4 is a schematic diagram of the buried positions of sensors inside the underground water level raising and lowering system and the roadbed foundation indoor model in Embodiment 1 or 2 of the present invention.
  • FIG. 1 to FIG. 4 a roadbed cumulative deformation simulation test system under full service environment and traffic load is provided.
  • the roadbed cumulative deformation simulation test system under the full service environment and traffic load includes a model, a test box 3, a water level control system, an environmental simulation system, an excitation system 4 and a monitoring system 5.
  • the model is a roadbed foundation model 2, which is formed after excavation from the original road surface 1 and laying the corresponding structure; the test box 3 is buckled on the surface of the model to form an environmental cavity, so that the test box 3 forms a full service environment simulation test box 3.
  • the full service environment simulation test box 3 is used to simulate freezing, freeze-thaw, dry and wet, rainfall, and groundwater level changes.
  • Roadbed foundation model 2 The gravel cushion layer 20, foundation and roadbed are laid in sequence from bottom to top at the bottom of the pre-buried foundation pit, and a water level control system is provided.
  • the water level control system is a groundwater level lifting system that simulates the rise and fall of the groundwater level.
  • the foundation height and the roadbed height in the roadbed foundation model 2 are determined according to the specific test requirements. Waterproof material is applied to the surface around the foundation pit, and plug-in instrument embedding holes are set inside to facilitate the embedding of instruments and the extraction of data acquisition wires.
  • the underground water level lifting system includes a liftable water storage pipe 23, a water inlet pipe 24, a water tank 6, a drainage pipe 25 and a bottom pipe network 26 with a water outlet.
  • the liftable water storage pipe 23 is used to control the underground water level, and it can perform constant water head control at a certain height; the water storage pipe 23 is connected to the rotating wheel 17 through a flexible rope, and the rotating wheel 17 releases the water storage pipe 23 by winding it up, and adjusts the vertical height of the water storage pipe 23, thereby adjusting the height of the water level in the water storage pipe 23.
  • the flexible rope adopts a traction rope 21, and the traction rope 21 is provided with a scale, and the height of the water storage pipe 23 is adjusted by pulling.
  • the water storage pipe 23 is connected to the bottom of the model through the pipe network 26 to form a communicating vessel.
  • the water level inside the model will gradually change until it is flush with the water level in the water storage pipe 23, using the hydraulic gradient to simulate the change of the groundwater level.
  • a water supply network 26 for controlling the water level is provided in the gravel cushion layer 20 at the bottom of the model test box 3.
  • the bottom pipe network 26 system is used to directly infiltrate groundwater into the soil through the anti-filtration layer to achieve the effect of uniform distribution of water head and prevent the concentrated seepage phenomenon along the side of the model tank.
  • geotextiles are laid on the surface of the gravel cushion layer 20 to play the role of anti-filtration and separation of sand and soil.
  • the water supply network 26 is provided with multiple outlets, and all outlets of the network 26 are evenly distributed in the gravel cushion layer 20, covering the vertical projection of the roadbed foundation model 2, and are evenly distributed in its projection surface.
  • the multiple outlets provided on the water supply network 26 can improve the uniformity of the distribution of the water body when it is output, and on the other hand, after the water body is output from the outlet of the network 26, the water body is further dispersed through the internal gaps of the densely arranged gravel cushion layer 20, thereby improving its uniform distribution.
  • the drainage pipe 25, the water inlet pipe 24 and the traction rope 21 are all arranged in the arrangement pipe 22, and the arrangement space of each pipeline and the flexible rope is established by the arrangement pipe 22, which reduces the contact between the original road surface 1 and the model.
  • One end of the drainage pipe 25 is connected to the bottom of the arrangement pipe 22 through the centrifugal pump 18, and the other end is connected to the water tank 6.
  • the arrangement pipe 22 extends to the bottom of the model, so that when water is precipitated from the model, the water is pumped out through the drainage pipe 25 for the recovery of overflow water in the drainage stage and the water supply stage.
  • the water inlet pipe 24 is connected to a water source through a water pump, and the other end is connected to the water storage pipe 23 and the gravel cushion layer 20 in the pipe network 26 area, so as to supply water to the water storage pipe 23 or the gravel cushion layer 20 alone, or to supply water to the water storage pipe 23 and the gravel cushion layer 20 at the same time.
  • the water source in this embodiment can be a water tank 6, in which water is stored.
  • Full service environment simulation test box 3 used to simulate the environmental conditions such as freezing, freezing and thawing, dry and wet, rainfall and groundwater level changes encountered by the roadbed during service, so as to study the development law of the roadbed cumulative deformation and the disaster mechanism under the coupling of environmental load and traffic load.
  • Its outer structure is a rectangular steel structure test box 3 composed of four side steel plates and an overlying plate. A plexiglass visual window is set on the side of the test box 3, which can observe the test process in real time; at the same time, the side steel plate is provided with a constant temperature plate 11 to ensure the thermal insulation performance of the test box 3.
  • a rainwater spray assembly, a temperature control assembly and a control device are arranged on the top of the full service environment simulation test box 3.
  • the control device is connected to the rainwater spray assembly and the temperature control assembly through a line 16.
  • the rainwater spray assembly includes a rainwater sprayer 9 hoisted on the top wall inside the box body and a first delivery pipe 15 connecting the rainwater sprayer 9 and the external water tank 6 arranged outside the box body.
  • the temperature control assembly includes a heating device 7, a cooling system and a constant temperature plate 11, which are used to control the temperature inside the model test box 3.
  • the control device refers to a control unit arranged outside the box body, which is responsible for regulating the overall operation of the full service environment simulation test box 3.
  • the heating device 7 refers to a photoelectric heater installed on the top of the full service environment simulation test box 3 for heating the inside of the box and electrically connected to the control device.
  • the cooling device includes a high-power refrigeration device 10, a cooling device 8, and a second delivery pipe 14 connecting the refrigeration device and the cooling device 8.
  • the high-power refrigeration device 10 is installed on the outside of the box and is connected to the cooling device 8 through the second delivery pipe 14.
  • the cooling device 8 is installed on the top of the full service environment model test box 3.
  • the constant temperature plate 11 is arranged inside the box and is electrically connected to the control panel outside the box.
  • a temperature probe is provided to monitor the internal temperature of the full service environment model test box 3.
  • the water tank 6 is responsible for supplying water to the rainwater spraying assembly and the water level lifting system.
  • the water tank 6 is connected to the rainwater sprayer 9 and the tank body through the first delivery pipe 15, and is connected to the water level lifting system through the pumping water supply system.
  • Excitation system 4 It includes a dynamic loading module and a constraint loading module, which contains multiple actuators, distribution beams and reaction systems.
  • the dynamic loading module consists of four dynamic loading cylinders and a loading head;
  • the constraint loading device consists of a circular loading plate and three static hydraulic cylinders; the loading head and the bottom surface of the circular loading plate are in direct contact with the roadbed soil.
  • the excitation system 4 can achieve the stress principal axis rotation effect of the roadbed soil under the action of traffic loads through dynamic and static coordinated loading of multiple cylinders.
  • Monitoring system 5 including high-precision laser displacement sensor, dynamic soil pressure sensor 28, pore water pressure sensor 29, soil moisture sensor 30, soil temperature sensor 27, ambient temperature probe 12, ambient humidity probe 13 and cloud remote operation module.
  • the monitoring system 5 is divided into an environmental monitoring component arranged in the environmental cavity and a model monitoring component arranged in the model, which are used to obtain environmental parameter data in the environmental cavity and model parameter data in the model.
  • the environmental monitoring component includes an environmental temperature probe 12 and an environmental humidity probe 13 installed in the test box 3, and the environmental parameter data include environmental temperature data and environmental humidity data;
  • the model monitoring component includes a dynamic soil pressure sensor 28, a pore water pressure sensor 29, a soil humidity sensor 30, a soil temperature sensor 27 buried in the model, and a laser displacement sensor installed at the action position of the excitation system 4, and the laser displacement sensor is used to measure the settlement of the top surface of the model.
  • the monitoring system 5 can be used to dynamically monitor the temperature and humidity conditions in the environmental chamber, the dynamic stress, temperature, humidity, pore water pressure, and cumulative deformation development of the soil in the roadbed foundation model 2.
  • the ambient temperature probe 12 is installed on one side of the box side wall and is electrically connected to the control device.
  • the temperature probe can accurately obtain the temperature required by the full service environment simulation test box 3.
  • the ambient humidity probe 13 is installed on one side of the box side wall and is electrically connected to the control device. The humidity probe can accurately obtain the humidity required by the full service environment simulation test box 3.
  • the dynamic soil pressure sensors 28 are arranged at 0.3m, 1.0m, 1.5m, 2.5m and 3.5m below the loading surface respectively.
  • the distribution size and attenuation law of the dynamic stress of the soil along the roadbed from top to bottom can be obtained through the dynamic soil pressure sensors 28.
  • the pore water pressure sensors 29 are arranged at 0.3m, 1.0m, 1.5m, 2.5m and 3.5m below the loading surface respectively.
  • the pore water pressure changes of the soil in a depth range under the traffic load can be obtained through the pore water pressure sensors 29.
  • the humidity sensor 30 and the temperature sensor 27 are arranged at 0.3m, 1.0m, 1.5m and 2.5m below the loading surface respectively.
  • the humidity sensor 30 and the temperature sensor 27 can obtain the humidity and temperature of the roadbed foundation soil in a depth range in real time.
  • High-precision laser displacement sensors are arranged at the upper loading panels. They emit infrared signals to sense the settlement of the top surface of the roadbed during loading in real time, thereby obtaining the settlement law of the roadbed under long-term traffic loads. This can be used to establish a prediction model for the cumulative deformation of the roadbed under long-term traffic loads.
  • the cloud remote operation module includes a data acquisition module, a data analysis module and a control terminal.
  • the data acquisition module can transmit the collected comprehensive data to the data analysis module in real time, and the data analysis module processes it to obtain digital information.
  • the control terminal can use special software to connect to a mobile phone to form a mobile terminal, classify and store all digital information in the cloud, and display it for sharing. Experimenters can obtain information and observe the progress of the experiment in real time through the mobile terminal.
  • FIGS. 1 to 4 a test method for a roadbed cumulative deformation simulation test system under full service environment and traffic load is provided.
  • test method includes:
  • the freezing and melting process of the model is simulated by the temperature control component, the humidity change of the model is simulated by the spray component, and the environment of the model and the water level inside the model are adjusted by the water level control system;
  • the simulation process is adjusted to realize the cumulative deformation test of the roadbed under the full service environment and traffic loads.
  • the water level is controlled to gradually rise to the surface of the roadbed in the model, and then the water level is controlled to gradually decrease to the initial position to simulate the dry-wet cycle caused by the change of groundwater level.
  • the test method includes:
  • Roadbed foundation model 2 As shown in FIG3, the size of the roadbed foundation model 2 is 3m long ⁇ 5m wide ⁇ 4m high. From bottom to top, a 0.5m deep gravel cushion layer 20, a 2.5m deep foundation and a 1.0m thick roadbed are arranged in sequence at the bottom of the pre-buried foundation pit, and a groundwater level lifting system is provided. Insertion instrument burying holes are arranged inside the roadbed foundation model 2 to facilitate the burying of instruments and the extraction of data acquisition wires.
  • the thickness of foundation 2-1 is 2.5m.
  • the original foundation soil is backfilled and compacted, and the filling is vibrated and compacted in layers.
  • the quality of the fill is guaranteed by controlling the moisture content and density of the fill.
  • the moisture content of the fill is 18 ⁇ 2%, and the target density is 1.8g/cm ⁇ 3.
  • a vibration compactor is used, and the specific model can be determined according to the on-site conditions.
  • the thickness of each layer is 30cm and compacted to 20cm. After reaching the design elevation, the layer is sampled and inspected, the fill density is tested by the ring knife method, and the moisture content of the fill is tested by the drying method. After the filling is completed, the foundation is statically touched.
  • the roadbed section 2-2 also adopts the method of layered filling and vibration compaction to ensure the quality of the fill by controlling the density of the fill.
  • the thickness of the roadbed is 1.0m, and coarse-grained soil such as gravel soil and sand soil with good gradation is used. It is layered and compacted, with 35cm of empty paving and compaction to 25cm to control the density and moisture content of the fill. After reaching the design elevation, a laser flatness meter is used for flatness testing, and then the filling quality of the roadbed is monitored.
  • the groundwater level should be observed before excavation of the roadbed foundation model 22, and the groundwater level should be ensured to be no less than 600mm below the compacted surface.
  • the roadbed filler should be made of well-graded gravel soil and sandy soil, with a maximum particle size of no more than 100mm.
  • a water supply pump 19 can be added.
  • One end of the water supply pump 19 is connected to the liftable water storage pipe 23 through the water supply pipe 24, and the other end is connected to the external water tank 6.
  • the foundation water level adopts the method of increasing the water level in the water storage pipe 23 in stages to achieve the rise of the groundwater level. After reaching the water level standard, the water level in the water storage pipe 23 is kept constant. Due to the water level difference between the water storage pipe 23 and the foundation, under the action of hydraulic gradient, water will flow from the water tank 6 along the pipe network 26 to the foundation soil. During the water level rise process, the roadbed deformation and the pore water pressure inside the roadbed foundation are monitored.
  • the water level in the water storage pipe 23 is level with the gravel cushion layer 20.
  • the water level is gradually raised to the surface of the roadbed by directly injecting water at the bottom of the model groove.
  • the water supply is controlled by observing the pore water pressure sensor 29 so that the water level rises steadily inside the soil. After the water level rises to the maximum position, it is left to stand for 12 hours. After that, the water level in the roadbed foundation model 2 is gradually lowered to the initial position by lowering the water level in the water storage pipe 23. At this time, the roadbed foundation has undergone a dry-wet cycle caused by the change of the groundwater level.
  • Full Service Environment Simulation Test Box 3 A rectangular steel structure model tank consisting of the main steel structure beams and columns and the insulation layer inside the insulation plate steel plate on the side of the main structure, with dimensions of 3.1m long ⁇ 5.5m wide ⁇ 0.3m high; the box has certain corrosion resistance and insulation.
  • the full service environment model test box 3 is monitored in real time from multiple angles. And a visual window is arranged in the box body.
  • the rainwater spraying component and temperature control component can be operated through the control device.
  • the following is an introduction to the freeze-thaw cycle test process:
  • Freezing process of the road base foundation model 2 the temperature is adjusted by the temperature control component, and the refrigeration equipment transmits cold air to the cooling equipment through the third delivery pipe to cool the model test box 3.
  • the cooling is stopped and the constant temperature is maintained until the monitoring data of the temperature sensor 27, the humidity sensor 30 and the laser displacement sensor in the road base foundation model 2 are stable, the freezing process is ended and the next step is carried out.
  • the melting process of the road base foundation model 2 by adjusting the temperature control component, the heating device 7 heats the road base foundation model 2 at the set working temperature.
  • the temperature probe shows that the temperature has returned to the temperature before freezing
  • the temperature is stopped and kept constant until the monitoring data of the temperature sensor 27, humidity sensor 30 and laser displacement sensor in the road base foundation model 2 reaches stability, and the melting process is ended.
  • the simulation of the internal humidity of the soil can be carried out through the rainwater spraying assembly, which is regulated by the control device and adjusted by the real-time observation of the internal humidity sensor 30 of the soil.
  • the rainwater sandblasting device is turned off and a simulated loading test is carried out.
  • the photoelectric heater is driven by the control device to heat the inside of the box to evaporate the moisture in the soil.
  • the ambient temperature value in the box can be adjusted within the range of -30 to 65°C, with long-term temperature stability of ⁇ 1 to 5°C and uniformity ⁇ 80%; the rainfall value is adjusted within the range of 0 to 3 mm/min.
  • Excitation system 4 According to the driving conditions of the vehicle, the characteristics of the pavement structure and the parameters of the roadbed soil, the loading spectrum of each actuator is set to simulate the dynamic stress of the roadbed under the action of the vehicle load. The test is carried out under the environmental conditions of the full service environment simulation test chamber 3.
  • Monitoring system 5 Various information parameters, images and curves during the experiment are monitored and displayed in real time through the control host display terminal. Multi-channel sensor acquisition card and ARM embedded Linex system are used as acquisition and storage terminals, and high-stability wireless transmission modules are installed. Test personnel can monitor the progress of the test in real time through the cloud.
  • the monitoring sensors include high-precision laser displacement sensors, pore water pressure sensors 29, dynamic soil pressure sensors 28, soil moisture sensors 30, soil temperature sensors 27, ambient temperature probes 12, ambient humidity probes 13 and cloud remote operation modules, as shown in Figure 4. After the test starts, the dynamic stress, temperature, humidity, pore water pressure and cumulative deformation development of the soil in the roadbed foundation model 2 can be dynamically monitored through the monitoring system 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供全服役环境和交通荷载作用的路基累积变形模拟试验系统及方法,涉及路基动力响应模型试验领域,针对路基累积变形难以开展定性、定量研究的问题,通过配置路基地基模型、全服役环境模拟试验箱、激励系统和监测系统,对于路基处于冻结、冻融、干湿、降雨、地下水位中的全服役环境和交通荷载作用时的累积变形进行模拟实验,达到对不同交通荷载形式的路基动应力复现、全服役环境与交通荷载的耦合模拟,从而满足对路基累积变形的研究需求。

Description

全服役环境和交通荷载作用的路基累积变形模拟试验系统
本发明要求于2022年10月11日提交中国专利局、申请号为202211240409.1、发明名称为“全服役环境和交通荷载作用的路基累积变形模拟试验系统”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及路基动力响应模型试验领域,具体涉及全服役环境和交通荷载作用的路基累积变形模拟试验系统。
背景技术
路基作为交通基础设施上部结构的支撑,关系到交通运输工具的平稳、安全、高效运行。然而,目前的交通基础建设领域,路基的长期服役性能及韧性往往被忽视,比如在道路工程中存在“重路面,轻路基”,在铁路工程领域中存在“重线路,轻路基”。随着交通运输“高速化”和“重载化”的发展趋势,路基承受的动应力影响范围和水平变大,使得路基的不均匀沉降变大,这便对路基结构的性能提出了更高的要求。同时,区域气候复杂多变,存在湿热多雨地区、季冻地区以及永久冻土地区等等,导致路基在服役过程中往往面临环境荷载和交通荷载的双重作用,加剧了路基累积变形的发展,进一步对上部结构造成安全隐患。
目前,路基累积变形的试验研究手段主要有室内试件试验、全比尺模型试验以及现场原位试验。室内试件试验受尺寸和边界效应影响较大;全比尺模型试验缺乏对路基全服役环境的模拟,以及对交通荷载作用下路基内部应力主轴旋转效应的真实、精确模拟,仅有的可模拟交通荷载移动效应的加载装置应用于铁路工 程领域;现场原位试验的地质条件和环境条件复杂且不易控制,难以开展定性、定量研究;现有的系统均难以实现对不同交通荷载形式的路基动应力复现、全服役环境与交通荷载的耦合模拟。
发明内容
本发明的目的是针对现有技术存在的缺陷,提供全服役环境和交通荷载作用的路基累积变形模拟试验系统及方法,通过配置路基地基模型、全服役环境模拟试验箱、激励系统和监测系统,对于路基处于冻结、冻融、干湿、降雨、地下水位中的全服役环境和交通荷载作用时的累积变形进行模拟实验,达到对不同交通荷载形式的路基动应力复现、全服役环境与交通荷载的耦合模拟,从而满足对路基累积变形的研究需求。
本发明的第一目的是提供全服役环境和交通荷载作用的路基累积变形模拟试验系统,采用以下方案:
试验箱,扣罩于模型表面形成环境腔;
水位控制系统,位于模型一侧,包括布置在砂石垫层内的管网和连通管网供水组件,以调节模型所处环境及模型内部水位;
环境模拟系统,包括喷洒组件和温控组件,喷洒组件布置在环境腔内并作用于模型,温控组件分别布置在环境腔和模型内;
激励系统,于模型表面施加应力作用;
监测系统,包括布置在环境腔内的环境监测组件和布置在模型内的模型监测组件,用于获取环境腔内的环境参数数据和模型内的模型参数数据。
进一步地,所述供水组件包括储水管、进水管和出水管,储水管底部通过管网连通模型底部形成连通器,储水管连通进水管和排水管,储水管通过升降调节 模型内部水位。
进一步地,所述进水管一端连接水源,另一端分别连通储水管和管网区域的砂石垫层,以向储水管和/或砂石垫层供水。
进一步地,所述管网设有多个出口,管网的所有出口均匀分布在砂石垫层内。
进一步地,还包括控制装置,控制装置分别连接水位控制系统、环境模拟系统、激励系统和监测系统。
进一步地,所述环境监测组件包括安装于试验箱的环境温度探针、环境湿度探针,环境参数数据包括环境温度数据和环境湿度数据。
进一步地,所述模型监测组件包括埋设于模型内的动态土压力传感器、孔隙水压力传感器、土体湿度传感器、土体温度传感器以及安装在激励系统作用位置的激光位移传感器,激光位移传感器用于测取模型顶面的沉降量。
进一步地,所述模型包括布置在预埋基坑内的地基和路基,模型下方铺设砂石垫层,模型内部设有容纳模型检测组件的插入式仪器埋设孔。
本发明的第二目的是提供一种利用如第一目的所述全服役环境和交通荷载作用的路基累积变形模拟试验系统的试验方法,包括:
通过温控组件模拟模型的冻结和融化过程,通过喷洒组件模拟模型湿度变化,通过水位控制系统调节模型所处环境及模型内部水位;
通过激励系统对模型施加应力作用,模拟荷载作用下模型动应力;
调节模拟过程实现全服役环境和交通荷载作用下的路基累积变形试验。
进一步地,对于水位控制系统,控制水位逐渐上升到模型的路基表层,然后控制水位逐渐降低至初始位置,模拟地下水位变化引起的干湿循环作用。
与现有技术相比,本发明具有的优点和积极效果是:
(1)针对路基累积变形难以开展定性、定量研究的问题,通过配置路基地基模型、全服役环境模拟试验箱、激励系统和监测系统,对于路基处于冻结、冻融、干湿、降雨、地下水位中的全服役环境和交通荷载作用时的累积变形进行模拟实验,达到对不同交通荷载形式的路基动应力复现、全服役环境与交通荷载的耦合模拟,从而满足对路基累积变形的研究需求。
(2)全服役环境模拟模块实现了对冻土环境、冻融循环、干湿循环、降雨以及地下水位变化的模拟,并结合激励系统模拟不同交通荷载形式,从而实现环境荷载与交通荷载的耦合。
(3)全服役环境模拟试验箱实现了环境舱与激励-控制系统的有效分离,避免了激励-控制系统中敏感元件遭受环境因素影响,同时节省了箱外的无效环境模拟空间。该形式较外置包裹式缩小了95%的环境模拟空间,可降低能耗85%。
(4)针对路基累积变形试验周期长的特点,为试验系统提供了远程云端操作模块,方便试验人员在后台观测和操作试验系统,提高工作效率;应用场景广泛,针对不同气候条件和交通荷载类型均可开展试验和研究,推广性强。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1或2中全服役环境和交通荷载作用的路基累积变形模拟试验系统的正视示意图。
图2为本发明实施例1或2中全服役环境和交通荷载作用的路基累积变形模拟试验系统的侧视示意图。
图3为本发明实施例1或2中路基地基室内模型端面示意图。
图4为本发明实施例1或2中地下水位升降系统及路基地基室内模型内部传感器埋设位置示意图。
图中1、原路面,2、路基地基模型,3、试验箱,4、激励系统,5、监测系统,6、水箱,7、加热装置,8、供冷装置,9、雨水喷洒器,10、大功率制冷设备,11、恒温板,12、环境温度探针,13、环境湿度探针,14、第二输送管,15、第一输送管,16、线路,17、转轮,18、离心泵,19、给水泵,20、砂石垫层,21、牵引绳,22、布置管,23、储水管,24、进水管,25、排水管,26、管网,27、温度传感器,28、动态土压力传感器,29、孔隙水压力传感器,30、湿度传感器。
具体实施方式
实施例1
本发明的一个典型实施例中,如图1-图4所示,给出全服役环境和交通荷载作用的路基累积变形模拟试验系统。
如图1所示全服役环境和交通荷载作用的路基累积变形模拟试验系统,包括模型、试验箱3、水位控制系统、环境模拟系统、激励系统4和监测系统5,本实施例中,模型为路基地基模型2,从原路面1位置开挖后,铺设相应结构后形成路基地基模型2;试验箱3扣罩在模型表面形成环境腔,使得试验箱3形成全服役环境模拟试验箱3。全服役环境模拟试验箱3用于模拟冻结、冻融、干湿、降雨、地下水位变化。
1.路基地基模型2:在预埋基坑底部由下至上依次铺设砂石垫层20、地基及路基,并设置有水位控制系统,本实施例中,水位控制系统为模拟地下水位升降的地下水位升降系统。路基地基模型2中地基高度与路基高度根据具体试验要 求决定。在基坑四周表面涂抹防水材料,并且在内部设置插入式仪器埋设孔,便于仪器的埋设与数据采集导线的引出。
地下水位升降系统包括可升降储水管23、进水管24、水箱6、排水管25和带有出水口的底部管网26系统组成。可升降储水管23用来控制地下水位,它在一定高度处可以进行常水头控制;储水管23通过柔性索连接有转轮17,转轮17通过收卷释放储水管23,调节储水管23的竖直高度,从而调节储水管23内水位的高度。柔性索采用牵引绳21,牵引绳21上设有刻度,通过牵拉调节储水管23的高度。
在储水管23通过管网26连通模型下方,形成连通器,在储水管23内水位变化时,模型内部的水位也会逐渐变化直至与储水管23水位平齐,利用水力梯度模拟地下水位的变化。
为了增加水流均匀性,模型试验箱3底部的砂石垫层20内设有控制水位用的供水管网26。试验中利用底部管网26系统经过反滤层将地下水直接渗入土体,达到使水头均匀分布的效果,防止出现沿模型槽侧面的集中渗流现象。另外在砂石垫层20表面铺设土工织物,起到反滤和分离砂土的作用。
需要指出的是,供水管网26设有多个出口,管网26的所有出口均匀分布在砂石垫层20内,覆盖路基地基模型2竖直方向的投影,并在其投影面内均匀分布。一方面供水管网26上设置多个出口能够提高水体输出时分布的均匀性,另一方面,在水体从管网26的出口输出后,通过密集布置的砂石垫层20内部间隙使水体进一步分散从而提高其均匀分布。
可以理解的是,排水管25、进水管24和牵引绳21均设置在布置管22内,通过布置管22建立各个管路和柔性索的布置空间,减少原路面1与模型对其的 干涉。排水管25一端通过离心泵18连接布置管22底,一端连接水箱6,布置管22延伸至模型底部,从而在模型析出水体时将水体通过排水管25抽出,用于排水阶段及供水阶段的溢出水量回收。
进水管24一端通过水泵连接水源,另一端分别连通储水管23和管网26区域的砂石垫层20,以向储水管23或砂石垫层20单独供水,也可以同时向储水管23、砂石垫层20供水。本实施例中的水源可以采用水箱6,水箱6内储存有水体。
2.全服役环境模拟试验箱3:用于模拟路基在服役过程中遭遇冻结、冻融、干湿、降雨及地下水位变化等环境条件,以研究在环境荷载和交通荷载耦合作用下路基累积变形发展规律以及灾变机理。其外侧结构由四个侧面钢板和上覆板构成的长方体钢结构试验箱3,在试验箱3侧面设置了有机玻璃可视窗口,可以实时观测试验过程;同时侧面钢板设置有恒温板11,以保证试验箱3的保温性能。
全服役环境模拟试验箱3顶部设置有雨水喷洒组件、温控组件及控制装置。控制装置通过线路16连接雨水喷洒组件、温控组件。雨水喷洒组件包括吊装于箱体内部顶壁上的雨水喷洒器9以及连通雨水喷洒器9与设置于箱体外部的外水箱6的第一输送管15。温控组件包括加热装置7、冷却系统与恒温板11,用于控制模型试验箱3内的温度。控制装置是指设置于箱体外侧的控制机组,负责调控全服役环境模拟试验箱3整体运行。
加热装置7指设置于全服役环境模拟试验箱3顶部的用于给箱体内部加热并与控制装置电连接的光电加热器。冷却装置包括大功率制冷设备10、供冷装置8及连接制冷设备及供冷装置8的第二输送管14。大功率制冷设备10安装于箱体外侧,通过第二输送管14与供冷装置8连接,供冷装置8安装于全服役环境模型试验箱3顶部。恒温板11布置在箱体内侧,与箱体外部控制面板电连接,并 设置温度探针用于监测全服役环境模型试验箱3内部温度。
水箱6负责供水给雨水喷洒组件及水位升降系统,水箱6通过第一输送管15与雨水喷洒器9以及箱体连通,通过泵送供水系统与水位升降系统连通。
3.激励系统4:包括动力加载模块及约束加载模块,其中包含多个作动器、分配梁以及反力系统。动力加载模块包括四个动态加载缸及加载头组成;约束加载装置由圆形加载板及3个静态液压缸组成;加载头与圆形加载板底面直接与路基土体接触。同时,激励系统4通过多缸联动的动静协同加载,可以实现交通荷载作用下路基土体的应力主轴旋转效应。
4.监测系统5:包括高精度激光位移传感器、动态土压力传感器28、孔隙水压力传感器29、土体湿度传感器30、土体温度传感器27、环境温度探针12、环境湿度探针13及云端远程操作模块。本实施例中,监测系统5分为布置在环境腔内的环境监测组件和布置在模型内的模型监测组件,用于获取环境腔内的环境参数数据和模型内的模型参数数据。
环境监测组件包括安装于试验箱3的环境温度探针12、环境湿度探针13,环境参数数据包括环境温度数据和环境湿度数据;模型监测组件包括埋设于模型内的动态土压力传感器28、孔隙水压力传感器29、土体湿度传感器30、土体温度传感器27以及安装在激励系统4作用位置的激光位移传感器,激光位移传感器用于测取模型顶面的沉降量。
试验开始之后,可以通过监测系统5对环境箱内温度和湿度条件、路基地基模型2内土体的动应力、温度、湿度、孔隙水压力以及累积变形发展等进行动态监测。
其中:
环境温度探针12安装在箱体侧壁一侧并与控制装置电连接,通过温度探针能够准确地得到全服役环境模拟试验箱3所需的温度。环境湿度探针13安装于箱体侧壁一侧并与控制装置电连接,通过湿度探针能够准确地得到全服役环境模拟试验箱3所需的湿度。
动态土压力传感器28分别布置在加载面下0.3m、1.0m、1.5m、2.5m、3.5m处,通过动态土压力传感器28可以获得土体动应力沿着路基由上往下的分布大小和衰减规律。
孔隙水压力传感器29分别布置在加载面下0.3m、1.0m、1.5m、2.5m、3.5m处,通过孔隙水压力传感器29可以获得交通荷载作用下土体在深度范围上的孔隙水压力变化。
湿度传感器30及温度传感器27分别布置在加载面下0.3m、1.0m、1.5m、2.5m处,通过湿度传感器30和温度传感器27可以实时获得路基地基土体在深度范围上的湿度和温度。
高精度激光位移传感器分别布置在上加载面板处,通过发射红外信号实时感知加载过程中路基顶面的沉降量,从而获得长期交通荷载作用下路基沉降规律,可用于建立长期交通荷载作用下路基累积变形的预测模型。
云端远程操作模块包括数据采集模块、数据分析模块及控制终端。数据采集模块可以实时将所采集到的综合数据传递给数据分析模块,由数据分析模块对其进行处理得到数字化信息。控制终端可以使用特制软件与手机连接形成移动端,将所有数字化信息分类存储在云端并显示进行共享,试验人员可以通过移动端实时获取信息、观察试验进度。
实施例2
本发明的另一典型实施方式中,如图1-图4所示,给出全服役环境和交通荷载作用的路基累积变形模拟试验系统的试验方法。
利用如实施例1中的全服役环境和交通荷载作用的路基累积变形模拟试验系统,该试验方法包括:
通过温控组件模拟模型的冻结和融化过程,通过喷洒组件模拟模型湿度变化,通过水位控制系统调节模型所处环境及模型内部水位;
通过激励系统4对模型施加应力作用,模拟荷载作用下模型动应力;
调节模拟过程实现全服役环境和交通荷载作用下的路基累积变形试验。
对于水位控制系统,控制水位逐渐上升到模型的路基表层,然后控制水位逐渐降低至初始位置,模拟地下水位变化引起的干湿循环作用。
结合实施例1和图1-图4,对于模拟试验系统的各个组成部分,路基地基模型2、全服役环境模型试验箱3、激励系统4和监测系统5,此处以道路工程中的公路结构要求为例,其试验方法包括:
1.路基地基模型2:如图3所示,路基地基模型2尺寸为长3m×宽5m×高4m,在预埋基坑底部由下至上依次设置有0.5m深的砂石垫层20、2.5m深的地基及1.0m厚的路基,并设置有地下水位升降系统。路基地基模型2内部设置插入式仪器埋设孔,便于仪器的埋设与数据采集导线的引出。
其中,地基2-1厚度为2.5m,采用原有地基土回填压实,分层填筑振动夯实,通过控制填土的含水量和密度来保证填土质量,所采用填土的含水量为18±2%,目标密度1.8g/cm^3。地基土体填筑时,采用振动夯实机,具体型号可视现场情况定。每一层虚铺厚度30cm,夯实至20cm。达到设计标高后,对该层抽样检查,环刀法测试填土密度,烘干法测试填土含水量。填筑完成后,对地基进行静力触 探试验,抽取地基范围内的6个测点检验土体的比贯入阻力,其值不小于2.0Mpa,从而验证其承载力满足地基承载力要求。在夯实过程中,防止与边缘碰撞,夯实机与边缘壁距离不得低于10cm,边缘部分采用人工夯实。
路基部分2-2同样采用分层填筑振动夯实的方法,通过控制填土的密度来保证填土质量。路基厚度为1.0m,采用级配较好的砾类土、砂类土等粗粒土,分层填筑夯实,虚铺35cm,夯实至25cm,控制填土的密度和含水量。达到设计标高后,采用激光平整度仪进行平整度测试,之后对路基的填筑质量进行监测,抽取路基范围内6个测点,核子密湿度仪测定压实度、原位测定CBR值及回弹模量,使得路基填料最小承载比、路基表面回弹模量及压实度符合表1、表2、表3规定。
表1路基填料最小承载比(CBR)要求
表2路基压实度要求

表3路基顶面回弹模量(MPa)
路基地基模型22开挖前应观测地下水位,并且保证地下水位到振实面下不小于600mm处。路基填料宜选用级配好的砾类土、砂类土,粒径最大不大于100mm。
对于地下水位升降系统,由于采用水力梯度差别渗流的方式进行过程较慢,可增设给水泵19。给水泵19一端通过供水管24连接可升降储水管23,一端连接外水箱6。
模拟试验中地基水位采用分阶段提高储水管23内水位高度的方法来实现地下水位的上升,达到水位标准后,保持储水管23内的水位恒定。由于储水管23与地基之间存在水位差,在水力梯度作用下,水将从水箱6沿着管网26流向地基土体。在水位上升过程中,对路基变形和路基地基内部孔隙水压力进行监测。
试验开始前,储水管23内的水位与砂石垫层20持平,通过直接在模型槽底部注水使水位逐渐上升到路基表层,通过观测孔隙水压力传感器29控制供水量使得水位在土体内部平稳上升。待水位上升到最大位置后静置12h。之后通过降低储水管23内水位高度,使路基地基模型2内水位高度逐渐将低至初始位置,此时路基地基就经过了一次地下水位变化引起的干湿循环作用。
2.全服役环境模拟试验箱3:由主体钢结构梁柱与主体结构侧面保温板钢板内设保温层组成的长方体钢结构模型槽,尺寸为长3.1m×宽5.5m×高0.3m;箱体具备一定的耐腐蚀性及绝缘性。全服役环境模型试验箱3内部多角度实时监控, 并且箱体内设有可视窗口。
参照图1、2,实际交通运行过程中会伴随多种环境条件并存的情况,可通过控制装置对雨水喷洒组件及温控组件进行操作。下面介绍一下冻融循环测试的过程:
路基地基模型2冻结过程:通过温控组件对温度进行调节,制冷设备通过第三输送管将冷气输送给供冷设备从而对模型试验箱3内进行供冷,当温度探针显示温度已降低到预定的温度停止冷却且保持恒温,直到路基地基模型2内温度传感器27、湿度传感器30及激光位移传感器监测数据达到稳定时,结束冻结过程,进行下一步骤。
路基地基模型2融化过程:通过调节温控组件使加热装置7以设定的工作温度对路基地基模型2进行升温,当温度探针显示温度已回到冻结前的温度停止升温且保持恒温,直到路基地基模型2内温度传感器27、湿度传感器30及激光位移传感器监测数据达到稳定时,结束融化过程。
模拟土体内部湿度可通过雨水喷洒组件进行,通过控制装置调控雨水喷洒组件并实时观察土体内部湿度传感器30进行调整。当土体内部湿度达到平衡,关闭雨水喷砂装置,并进行模拟加载试验。在测试完毕后,通过控制装置驱动光电加热器对箱体内部进行加热以蒸发土体水分。
该全服役环境模拟试验箱3工作时,箱内环境温度数值能够在-30~65℃的区间范围内进行调节,长期温度稳定性±1~5℃,均匀度≥80%;降雨量数值在0~3mm/min的区间范围内进行调节。
3.激励系统4:根据汽车行驶条件、路面结构特征以及路基土体参数,设置各作动器的加载谱,实现对汽车荷载作用下路基动应力的模拟。激励系统4可耦 合全服役环境模拟试验箱3中的环境条件进行试验。
4监测系统5:通过控制主机显示终端实时监测显示实验过程中的各种信息参数、图像及曲线。多通道传感器采集卡及ARM嵌入式Linex系统作为采集、存储终端,并安装高稳定性无线传输模块,试验人员可以通过云端实时监测试验进度。监测传感器包括高精度激光位移传感器、孔隙水压力传感器29、动态土压力传感器28、土体湿度传感器30、土体温度传感器27、环境温度探针12、环境湿度探针13及云端远程操作模块等,如图4所示。试验开始之后,可以通过监测系统5对路基地基模型2内土体的动应力、温度、湿度、孔隙水压力以及累积变形发展等进行动态监测。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,包括:
    试验箱,扣罩于模型表面形成环境腔;
    水位控制系统,位于模型一侧,包括布置在砂石垫层内的管网和连通管网供水组件,以调节模型所处环境及模型内部水位;
    环境模拟系统,包括喷洒组件和温控组件,喷洒组件布置在环境腔内并作用于模型,温控组件分别布置在环境腔和模型内;
    激励系统,于模型表面施加应力作用;
    监测系统,包括布置在环境腔内的环境监测组件和布置在模型内的模型监测组件,用于获取环境腔内的环境参数数据和模型内的模型参数数据。
  2. 如权利要求1所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,所述供水组件包括储水管、进水管和出水管,储水管底部通过管网连通模型底部形成连通器,储水管连通进水管和排水管,储水管通过升降调节模型内部水位。
  3. 如权利要求2所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,所述进水管一端连接水源,另一端分别连通储水管和管网区域的砂石垫层,以向储水管和/或砂石垫层供水。
  4. 如权利要求1所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,所述管网设有多个出口,管网的所有出口均匀分布在砂石垫层内。
  5. 如权利要求1所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,还包括控制装置,控制装置分别连接水位控制系统、环境模 拟系统、激励系统和监测系统。
  6. 如权利要求1所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,所述环境监测组件包括安装于试验箱的环境温度探针、环境湿度探针,环境参数数据包括环境温度数据和环境湿度数据。
  7. 如权利要求1所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,所述模型监测组件包括埋设于模型内的动态土压力传感器、孔隙水压力传感器、土体湿度传感器、土体温度传感器以及安装在激励系统作用位置的激光位移传感器,激光位移传感器用于测取模型顶面的沉降量。
  8. 如权利要求1所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统,其特征在于,所述模型包括布置在预埋基坑内的地基和路基,模型下方铺设砂石垫层,模型内部设有容纳模型检测组件的插入式仪器埋设孔。
  9. 一种如权利要求1-8任一项所述的全服役环境和交通荷载作用的路基累积变形模拟试验系统的试验方法,其特征在于,包括:
    通过温控组件模拟模型的冻结和融化过程,通过喷洒组件模拟模型湿度变化,通过水位控制系统调节模型所处环境及模型内部水位;
    通过激励系统对模型施加应力作用,模拟荷载作用下模型动应力;
    调节模拟过程实现全服役环境和交通荷载作用下的路基累积变形试验。
  10. 如权利要求9所述的试验方法,其特征在于,对于水位控制系统,控制水位逐渐上升到模型的路基表层,然后控制水位逐渐降低至初始位置,模拟地下水位变化引起的干湿循环作用。
PCT/CN2023/123811 2022-10-11 2023-10-10 全服役环境和交通荷载作用的路基累积变形模拟试验系统 WO2024078503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211240409.1A CN115480049B (zh) 2022-10-11 全服役环境和交通荷载作用的路基累积变形模拟试验系统
CN202211240409.1 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024078503A1 true WO2024078503A1 (zh) 2024-04-18

Family

ID=84394658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123811 WO2024078503A1 (zh) 2022-10-11 2023-10-10 全服役环境和交通荷载作用的路基累积变形模拟试验系统

Country Status (1)

Country Link
WO (1) WO2024078503A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201359584Y (zh) * 2009-01-07 2009-12-09 吉林大学 冻融循环下路基材料力学参数测试试验机
CN110749517A (zh) * 2019-10-25 2020-02-04 中南大学 一种循环湿化作用下路基土动力特性的模型试验装置及方法
CN212077884U (zh) * 2020-04-24 2020-12-04 重庆交通大学 重复荷载作用下在役公路路基动态模量缩尺测试系统
CN112900508A (zh) * 2021-01-22 2021-06-04 湖北工业大学 一种交通荷载作用下冻土地基上管涵模型实验装置及方法
CN115480049A (zh) * 2022-10-11 2022-12-16 山东大学 全服役环境和交通荷载作用的路基累积变形模拟试验系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201359584Y (zh) * 2009-01-07 2009-12-09 吉林大学 冻融循环下路基材料力学参数测试试验机
CN110749517A (zh) * 2019-10-25 2020-02-04 中南大学 一种循环湿化作用下路基土动力特性的模型试验装置及方法
CN212077884U (zh) * 2020-04-24 2020-12-04 重庆交通大学 重复荷载作用下在役公路路基动态模量缩尺测试系统
CN112900508A (zh) * 2021-01-22 2021-06-04 湖北工业大学 一种交通荷载作用下冻土地基上管涵模型实验装置及方法
CN115480049A (zh) * 2022-10-11 2022-12-16 山东大学 全服役环境和交通荷载作用的路基累积变形模拟试验系统

Also Published As

Publication number Publication date
CN115480049A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN102094432B (zh) 一种由工程环境效应引起地面沉降的模型及其试验方法
CN105181531B (zh) 黄土水分迁移规律室内模拟系统及特征参数测定方法
CN202631519U (zh) 降雨滑坡试验用通用模型槽装置
CN106645633B (zh) 干湿交替环境下胀缩性土路基的变形模拟装置及模拟方法
CN104749205A (zh) 土体冻结过程水热力综合试验系统及试验方法
CN104459086B (zh) 一种土-岩界面滑坡的物理模型试验装置及其制作方法和使用方法
CN107907662A (zh) 一种多功能土工模型试验系统及方法
CN104632244B (zh) 确定地面沉降对地铁隧道沉降影响及保护隧道结构的方法
CN106840087A (zh) 用于孔压分布测量的沉降柱试验仪及试验方法
CN110967467B (zh) 一种模拟降雨诱发反序粒堆积体破坏的试验系统
JP2011231568A (ja) 間隙水圧測定装置、それを用いた軟弱地盤の改良工法、地下埋設物が埋設される地盤の動態把握方法、及び盛土構造物が造成される地盤の動態把握方法
CN106284436A (zh) 一种采动区地表沉陷单桩静载荷模型试验装置及试验方法
WO2022127142A1 (zh) 一种智能跑道及道面信息监测方法
CN205662958U (zh) 一种混凝土扩展基础试验装置
CN108362727A (zh) 可视化双向冻胀实验台
CN107179391A (zh) 一种用于超浅埋下穿隧道浅层注浆的试验装置
CN204536237U (zh) 一种土体冻结过程水热力综合试验系统
Chan et al. Field performance of in-service cast iron gas reticulation pipe buried in reactive clay
CN210073108U (zh) 一种人工增湿边坡足尺模型试验系统
WO2024078503A1 (zh) 全服役环境和交通荷载作用的路基累积变形模拟试验系统
CN109799140A (zh) 非饱和土强度特性的现场试验测定方法
CN115480049B (zh) 全服役环境和交通荷载作用的路基累积变形模拟试验系统
CN207601081U (zh) 一种多功能土工模型试验系统
CN210037042U (zh) 一种矩形顶管顶进时的摩阻力测试装置
CN116519428A (zh) 道路病害演化识别模型试验装置及方法