WO2024078499A1 - Control method and apparatus for intelligent operation device, device, medium and program product - Google Patents

Control method and apparatus for intelligent operation device, device, medium and program product Download PDF

Info

Publication number
WO2024078499A1
WO2024078499A1 PCT/CN2023/123802 CN2023123802W WO2024078499A1 WO 2024078499 A1 WO2024078499 A1 WO 2024078499A1 CN 2023123802 W CN2023123802 W CN 2023123802W WO 2024078499 A1 WO2024078499 A1 WO 2024078499A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacing
parameter
operation device
intelligent operation
running trajectory
Prior art date
Application number
PCT/CN2023/123802
Other languages
French (fr)
Inventor
Chunhong Li
Degan LIN
Original Assignee
Willand (Beijing) Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willand (Beijing) Technology Co., Ltd. filed Critical Willand (Beijing) Technology Co., Ltd.
Publication of WO2024078499A1 publication Critical patent/WO2024078499A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Definitions

  • the present application relates to a field of intelligent device control, and in particular, to a control method and apparatus for an intelligent operation device, a device, a medium and a program product.
  • a lawn mower is a gardening tool used for trimming lawns, vegetation, etc., it typically includes a self-propelled component, a cutting blade component, and a power source, which can be a gasoline engine, a battery pack, etc.
  • the lawn mower can mow the lawns along a preset planning path, which can be a fixed separation or an alternating wide and narrow separation. For example, for a blade offset lawn mower, where the vertical distance between the blade center and the vehicle centerline is not zero, the actual motion trajectory of the lawn mower is an alternating wide and narrow path in order to achieve a fixed separation mowing effect.
  • the present application provides a control method and an apparatus for an intelligent operation device, a device, a medium, and a program product to solve the problem of poor mowing effect and low mowing efficiency in the current way in which the lawn mower mows strictly following the preset planning path.
  • the present disclosure provides a control method for an intelligent operation device, including:
  • controlling the intelligent operation device to operate along a first running trajectory obtaining an operating parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object;
  • controlling the intelligent operation device to operate along the second running trajectory according to the target spacing.
  • the present disclosure provides a control apparatus for an intelligent operation device, including:
  • a first obtaining module configured to control the intelligent operation device to operate along a first running trajectory, obtain an operating parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object;
  • a second obtaining module configured to obtain a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter, where the second running trajectory is a next running trajectory after the first running track;
  • control module configured to control the intelligent operation device to operate along the second running trajectory according to the target spacing.
  • the present disclosure provides an electronic device, including: a processor and a memory connected in communication with the processor;
  • the memory has a computer executable instruction stored therein;
  • the processor executes the computer-executable instruction stored in the memory to implement any one of the method described in the first aspect above.
  • the present disclosure provides a computer readable storage medium storing a computer-executable instruction, where when the computer-executable instruction is executed by a processor, any one of the control method for an intelligent operation device described in the first aspect above is implemented.
  • the present disclosure provides a computer program product including a computer program, where when the computer program is executed by a processor, any one of the control method for an intelligent operation device described in the first aspect above is implemented.
  • a control method and an apparatus for an intelligent operation device, a device, a medium, and a program product provided by the present application can adaptively adjust a spacing used for determining the second running trajectory of the intelligent operation device according to the operation condition of the intelligent operation device for an operation object when operating on the first running trajectory, thereby improving the operation efficiency while taking into account the operation effect.
  • FIG. 1 is a schematic diagram of an application scenario of a lawn mower.
  • FIG. 2 is a flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application.
  • FIG. 3 is a flow schematic diagram of obtaining a target spacing provided by an embodiment of the present application.
  • FIG. 4 is another flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application.
  • FIG. 5 is a structural schematic diagram of a control apparatus for an intelligent operation device provided by an embodiment of the present application.
  • FIG. 6 is a structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of a lawn mower. As shown in FIG. 1, the scenario includes: a mowing operation area and a running trajectory of the lawn mower.
  • the running trajectory of the lawn mower can be preset according to actual needs, or can be a fixed running trajectory determined by the lawn mower itself according to parameters such as a size, a shape, and an actual situation of the mowing operation area received.
  • the preset running trajectory includes a central region trajectory and a boundary trajectory.
  • the central region trajectory can be a “ ⁇ ” (arch) shaped trajectory or a circular trajectory.
  • the boundary trajectory includes a circular trajectory or an annular trajectory.
  • the central area trajectory being the “ ⁇ ” shaped trajectory is taken as an example, the “ ⁇ ” shaped trajectory includes a first running trajectory, a second running trajectory and a third running trajectory, which are adjacent, and the second running trajectory located in the middle of the first running trajectory and the third running trajectory.
  • the first running trajectory, the second running trajectory and the third running trajectory are parallel. That is, a running trajectory on which the lawn mower most recently completed the mowing operation is the first running trajectory, and a next running trajectory after the first running trajectory is called the second running trajectory.
  • the spacing between each of the two running trajectories can be fixed or alternately wide and narrow, for example, for a lawn mower with a zero vertical distance between a center of a blade and a vehicle centerline, the spacing between each of the two running trajectories is fixed; for a blade offset lawn mower, the spacing between the running trajectories is alternately wide and narrow.
  • FIG. 1 is description with the example of the spacing between each of the two running trajectories of the lawn mower being fixed.
  • the lawn mower moves between the two running trajectories by the spacing distance as shown in FIG. 1, in order to achieve the goal that the mowing operation fully covers the mowing operation area.
  • the influencing factor related to the mowing operation area can include a softness and hardness degree of the grass, a density degree of the grass, a levelness of the grass ground, etc.
  • the positioning effect of the lawn mower can include the positioning quality, the positioning accuracy, etc.
  • the mowing effect of the lawn mower is poor, by reducing the spacing between every two running trajectories, the mowing area between the two running trajectories can be repeatedly mowed over a larger range, thereby improving the effect of the mowing operation.
  • the mowing effect of the lawn mower is better, by increasing the spacing between every two running trajectories, it is possible to reduce repeated mowing for the mowing area between the two running trajectories, thereby improving the efficiency of the mowing operation.
  • the present application provides a control method for an intelligent operation device, which can adaptively adjust a spacing used for determining the second running trajectory of the intelligent operation device according to the operation condition of the intelligent operation device for an operation object when operating on the first running trajectory, thereby improving the operation efficiency while taking into account the operation effect.
  • the intelligent operation device referred to in the present application can be devices that can operate independently, such as a lawn mower, a sweeper, a sweeping and mopping all-in-one machine, a snowplow, etc.
  • the executive subject of the present application can be the intelligent operation device, a processing chip in the intelligent operation device, and a device or a cloud platform used to provide an operation instruction to the intelligent operation device.
  • the executive subject is the intelligent operation device or the processing chip in the intelligent operation device, according to the operating parameter of the intelligent operation device, the spacing between the second running trajectory and the first running trajectory is calculated, and the spacing between the running trajectories of the intelligent operation device is adjusted, the first running trajectory and the second running trajectory are similar to the first running trajectory and the second running trajectory of the aforementioned lawn mower, and will not be repeated here.
  • the operating parameter of the intelligent operation device is obtained, the spacing between the second running trajectory and the first running trajectory is calculated, and the operation instruction containing the spacing is provided to the intelligent operation device, so that intelligent operation device can determine the second running trajectory according to the spacing and operate according to the second running trajectory.
  • FIG. 2 is a flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application. As illustrated in FIG. 2, the method may include the following steps.
  • S201 controlling the intelligent operation device to operate along a first running trajectory, obtaining an operating parameter of the intelligent operation device.
  • the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object.
  • the operation object is related to the intelligent operation device, for example, when the intelligent operation device is a lawn mower, the operation object is grass; when the intelligent operation device is a sweeper, the operation object is ground dirt, etc.; when the intelligent operation device is a snowplow, the operation object is snow.
  • the operating parameter of the intelligent operation device are related to the type of the intelligent operation device.
  • the operating parameter may include a parameter for characterizing the difficult degree of performing the operation, such as a torque and a speed of the operation disc of the intelligent operation device; it may also include a parameter for characterizing the operation condition of the intelligent operation device in accordance with the running trajectory, such as a deviation parameter of the intelligent operation device; it may also include a parameter for characterizing the positioning condition of the intelligent operation device, such as a positioning parameter of the intelligent operation device.
  • the operating parameter of the intelligent operation device may be determined based on operating data of the intelligent operation device.
  • the operating data refers to operating data of the intelligent operation device while operating along the first running trajectory, the operating data may include, for example, torque data of the operation disc, speed data of the operation disc, positioning data, etc.
  • the method for obtaining the operating data may be determined according to the type of the operating data, which is obtained using the corresponding obtaining method in the prior art according to the type of the operating data.
  • the operating parameter is obtained according to the operating data corresponding to the operating parameter, such as obtaining the torque parameter of the operation disc according to the torque data of the operation disc.
  • the target spacing may be used to control the spacing between the second running trajectory and the first running trajectory.
  • the target spacing may be accurately obtained based on the operating parameter, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the operation efficiency can be improved while the operation effect of the intelligent operation device on the operation object can be guaranteed.
  • the operating parameter characterizes that the operation condition of the intelligent operation device on the first running trajectory for the operation object is better, it means that the operating capability of the intelligent operation device is better than the operating capability required to operate the object when operating at the current spacing.
  • the target spacing determined on the basis of the operating parameter may be greater than the current spacing, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the operating capability of the intelligent operation device is slightly better than, or matches, the operating capability required to operate the object, thereby enabling to improve the operation efficiency of the intelligent operating device on the same size area to be operated in the same time.
  • the current spacing referred to here is the spacing corresponding to the first running trajectory, that is the spacing used to determine the first running trajectory.
  • the operating parameter characterizes that the operation condition of the intelligent operation device on the first running trajectory for the operation object is normal, it means that the operating capability of the intelligent operation device matches the operating capability required to operate the object when operating at the current spacing.
  • the target spacing determined on the basis of the operating parameter may be equal to the current spacing, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the current operating effect and operating efficiency may be continued to maintain.
  • the operating parameter characterizes that the operation condition of the intelligent operation device on the first running trajectory for the operation object is poor, it means that the operating capability of the intelligent operation device is inferior to the operating capability required to operate the object when operating at the current spacing, that is, the operating effect is poor when operating at the current spacing.
  • the target spacing determined on the basis of the operating parameter may be less than the current spacing to improve the operating capability of the intelligent operation device, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the operating effect of the intelligent operation device operating the same size of the area to be operated may be improved.
  • an area with a width of 3 cm in the central part between the two running trajectories is operated twice after the intelligent operation device runs on the two running trajectories mentioned above.
  • the target spacing is obtained by increasing, decreasing or maintaining the current spacing according to the operating parameter, the specific processing is related to the operating parameter.
  • the target spacing may be calculated directly according to the operating parameter.
  • the above target spacing may be determined by one operating parameter, or by at least two operating parameters, etc.
  • S203 controlling the intelligent operation device to operate along the second running trajectory according to the target spacing.
  • the intelligent operation device may determine a starting point of the second running trajectory according to the target spacing. The intelligent operation device moves to the starting point and then runs and operates according to the second running trajectory.
  • the control method for an intelligent operation device may adaptively adjust a spacing used for determining the second running trajectory of the intelligent operation device according to the operation condition of the intelligent operation device for an operation object when operating on the first running trajectory during the process of intelligent operation device performing tasks on the operation object, thereby improving the operation efficiency while taking into account the operation effect.
  • the following operating parameters of the intelligent operation device in the above embodiment may include, for example, a target torque of an operation disc of the intelligent operation device, a target rotational speed of the operation disc, a deviation parameter of the intelligent operation device, and a positioning parameter of the intelligent operation device, etc.
  • Target torque and/or, target rotational speed
  • the target torque, and/or the target rotational speed of the operation disc of the intelligent operation device may characterize the softness and hardness degree of the operation object and the density degree of the operation object when the intelligent operation device runs on the first running trajectory.
  • the target torque may be, for example, an average torque, a maximum torque, a minimum torque, etc. of the torque data in the operating data;
  • the target rotational speed may be, for example, an average rotational speed, a maximum rotational speed, a minimum rotational speed, etc. of the rotational speed data in the operating data, which is not limited in the present application.
  • the torque, and/or, the rotational speed of the operation disc during the operation of the intelligent operation device may be obtained at a preset time interval.
  • the target torque of the intelligent operation device as the blade type lawn mower as an example, the harder the grass, and/or the thicker the grass, the more difficult the blade of the lawn mower for mowing, and the higher the target torque.
  • the target spacing determined based on the target torque is less than the current spacing of the lawn mower. The softer the grass, and/or the sparser the grass, the simpler the blade of the lawn mower for mowing, and the smaller the target torque. At this time, the lawn mower has a better mowing effect.
  • the target spacing determined based on the target torque is greater than the current spacing of the lawn mower. If the softness and hardness degree, and/or the density degree of the grass are moderate, the difficult degree of mowing with the blade of the lawn mower meets the expectation, and the target torque is the same or close to the expected torque. At this time, the target torque determined based on the target torque is equal to the current spacing of the lawn mower.
  • the operating parameter when including the target rotational speed, is similar to that in the case of the target torque described above and will not be repeated here.
  • the deviation parameter of the intelligent operation device is used to characterize the deviation degree of the first running trajectory
  • the deviation parameter may be, for example, a deviation proportion of the trajectory point of the intelligent operation device from the expected running trajectory in the first running trajectory, or a distance between the actual running trajectory and the expected running trajectory.
  • the deviation degree may be caused by the unevenness of the ground in the area to be operated, the lower the ground evenness, the greater the deviation degree.
  • the deviation parameter of the intelligent operation device may be determined by obtaining the actual operating trajectory data of the intelligent device and the planned operating trajectory (i.e. the expected operating trajectory, or the first operating trajectory determined according to the current spacing) .
  • the lower the ground evenness the greater the proportion of the intelligent operation device that deviates from the expected operating trajectory during operation and the more missed operations.
  • the target spacing determined according to the deviation proportion is smaller than the current spacing of the intelligent operation device. The higher the ground evenness, the smaller the proportion of the intelligent operation device that deviates from the expected operating trajectory during operation and the more missed operations.
  • the operation effect of the intelligent operation device is better, in order to reduce the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation efficiency, the target spacing determined according to the deviation proportion is greater than the current spacing of the intelligent operation device.
  • the target spacing determined according to the deviation proportion is equal to the current spacing of the intelligent operation device.
  • the positioning parameter of the intelligent operation device is used to characterize the positioning quality of the intelligent operation device on the first running trajectory.
  • the operating parameter includes the positioning parameter of the intelligent operation device
  • operating data such as the number of the satellite currently receivable and the strength of the received satellite signal
  • the positioning parameter may be determined based on the number of the satellite and the strength of the received satellite signal.
  • a weight may be determined according to the number of the satellite, and the weight may be multiplied by the strength of the satellite signal to obtain the positioning parameter.
  • the above method and data for obtaining the positioning parameter may be determined according to actual needs, which is not limited in the present application.
  • the positioning quality is positively correlated with the number of the satellite currently receivable and the strength of the received satellite signal.
  • the target spacing determined according to the deviation proportion is smaller than the current spacing of the intelligent operation device.
  • the better the positioning quality the less possibility that the intelligent operation device deviates from the expected operating trajectory during operation, and the less cases of missed operations caused by the intelligent operation device deviating from the expected operating trajectory.
  • the target spacing determined according to the deviation proportion is greater than the current spacing of the intelligent operation device.
  • the positioning quality is close to the expected positioning quality, the possibility that the intelligent operation device deviates from the expected operating trajectory during operation is in line with the expectation, and the cases of missed operations caused by the intelligent operation device deviating from the expected operating trajectory is in line with the expectation.
  • the operation effect of the intelligent operation device is better, in order to reduce the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation efficiency, the target spacing determined according to the deviation proportion is equal to the current spacing of the intelligent operation device.
  • taking the operating parameter includes at least one of the target torque of the operation disc of the intelligent operation device, the deviation parameter of the intelligent operation device, and the positioning parameter of the intelligent operation device, as an example, a detailed explanation will be provided on how to obtain the target spacing of the required separation between the second running trajectory and the first running trajectory according to the operating parameter in step S202.
  • Implementation A the operating parameter includes at least two parameters.
  • FIG. 3 is a flow schematic diagram of obtaining a target spacing provided by an embodiment of the present application. As illustrated in FIG. 3, the method may include:
  • Implementation 11 obtaining candidate spacing through a threshold.
  • the threshold corresponding to each parameter is determined according to the parameter and actual needs, which is not limited in the present application.
  • the target torque of the operation disc of the intelligent operation device corresponds to the threshold of the target torque
  • the deviation parameter of the intelligent operation device corresponds to the threshold of the deviation parameter
  • the positioning parameter of the intelligent operation device corresponds to the threshold of the positioning parameter, etc.
  • the parameter For each parameter, if the parameter is equal to the corresponding threshold, it indicates that the operation condition characterized by the operating data of the intelligent operation device on the first running trajectory meets the expected operation effect, and there is no need to adjust the separation between the second running trajectory and the first running trajectory of the intelligent operation device. If the parameter is not equal to the corresponding threshold, it indicates that the operating capability of the intelligent operation device does not correspond to the operating capability required to operate the object, for example, if the operating capability of the intelligent operation device is better than the operating capability required to operate the object, or if the operating capability of the intelligent operation device is weaker than the operating capability required to operate the object, the separation between the second running trajectory and the first running trajectory of the intelligent operation device needs to be adjusted to improve the operating effect, or to improve the operating efficiency.
  • Parameter 1 the target torque of the operation disc of the intelligent operation device.
  • the target torque of the operation disc of the intelligent operation device is greater than the corresponding threshold, which characterizes that the object operated by the operation disc on the first running trajectory is easy to operate and the current spacing needs to be reduced, so as to increase the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation effect.
  • the spacing obtained by reducing the current spacing is used as the candidate spacing corresponding to the parameter.
  • the target torque of the operation disc of the intelligent operation device is equal to the corresponding threshold, which characterizes that the target torque of the operation disc of the intelligent operation device is a suitable torque and there is no need to adjust the parameter to improve the operating effect, or to improve the operating efficiency.
  • the current spacing is used as the candidate spacing corresponding to the parameter.
  • the target torque of the operation disc of the intelligent operation device is smaller than the corresponding threshold, which characterizes that the object operated by the operation disc on the first running trajectory is easy to operate, for example, if the intelligent operation device is a lawn mower, which characterizes that the grass on the first running trajectory is soft, and/or, the grass is thinner, and the current spacing needs to be increased, so as to reduce the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation efficiency.
  • the spacing obtained by increasing the current spacing is used as the candidate spacing corresponding to the parameter.
  • Parameter 2 the deviation parameter of the intelligent operation device.
  • the deviation parameter of the intelligent operation device is greater than the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory is greater, there are more missed operation areas, and the current spacing needs to be reduced, so as to increase the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation effect.
  • the deviation parameter of the intelligent operation device is equal to the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory meets expectation, and there is no need to adjust the current spacing.
  • the deviation parameter of the intelligent operation device is smaller than the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory is smaller, there is no missed operation area, and the current spacing needs to be increased, so as to reduce the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation efficiency.
  • Parameter 3 the positioning parameter of the intelligent operation device.
  • the corresponding threshold which indicates that the possibility that the intelligent operation device on the first running trajectory deviates from the operating trajectory is smaller, there are less missed operation areas, and the current spacing needs to be increased, so as to reduce the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation efficiency.
  • the positioning parameter of the intelligent operation device is equal to the corresponding threshold, which indicates that the possibility that the intelligent operation device on the first running trajectory deviates from the operating trajectory meets expectation, and there is no need to adjust the current spacing.
  • the positioning parameter of the intelligent operation device is smaller than the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory is greater, there are more missed operation areas, and the current spacing needs to be reduced, so as to increase the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation effect.
  • S3012 adopting a spacing adjustment manner corresponding to a size relationship between each parameter and the corresponding threshold, and obtaining the candidate spacing corresponding to the parameter according to a current spacing.
  • the spacing adjustment manner corresponding to the size relationship between each parameter and the corresponding threshold may be, for example, as described in step S3011, when the target torque of the operation disc of the intelligent operation device, or the deviation parameter of the intelligent operation device is greater than the corresponding threshold, the spacing is reduced, and, when it is less than the corresponding threshold, the spacing is expanded; when the positioning parameter of the intelligent operation device is greater than the corresponding threshold, the spacing is expanded, and when it is less than the corresponding threshold, the spacing is reduced.
  • the candidate spacing corresponding to each parameter is obtained according to the spacing adjustment manner and the current spacing.
  • the candidate spacing may be a fixedly adjusted according to the result of the comparison.
  • the target torque as an example, as long as the target torque is not equal to the threshold, the operating capability of the intelligent operation device does not match the required operating capability of the operation object.
  • the candidate spacing needs to be greater than the current spacing; when the operating capability of the intelligent operation device is weaker than the required operating capability of the operation object, the candidate spacing needs to be less than the current spacing.
  • the determined candidate spacing is not equal to the current spacing, and the difference between the candidate spacing and the current spacing is a fixed distance.
  • the candidate spacing may be obtained, for example, by fixedly adjusting at a first preset distance on a basis from the current spacing.
  • the separation distance between the subsequent running trajectory and the previous running trajectory of each subsequent running trajectory may be gradually adjusted to prevent an excessive change in the candidate spacing for each adjustment, thereby ensuring that the difference of the operation effect between each two adjacent running trajectories is small.
  • the candidate spacing may be determined based on a difference between each parameter and the corresponding preset threshold.
  • the difference between the target torque and the corresponding preset threshold is greater than the preset difference, the distance at which the current spacing needs to be reduced is obtained according to the ratio of the difference to the preset difference, and the candidate spacing is obtained according to the current spacing and the distance at which the current spacing needs to be reduced.
  • the current spacing needs to be reduced by 2 cm, and when the difference is equal to twice the preset difference, the current spacing needs to be reduced by 4 cm.
  • the most suitable candidate spacing corresponding to each parameter may be directly determined according to each parameter, thereby obtaining the best candidate spacing to improve the operation effect or the operation efficiency based on the parameter.
  • Implementation 12 obtaining the candidate spacing through a data range.
  • a starting point of the second data range is greater than an endpoint of the first data range
  • a starting point of the third data range is greater than an endpoint of the second data range
  • the spacing adjustment manner corresponding to the data range that different parameters fall into may be the same or different.
  • its adjustment method may be as follows.
  • the parameter is in the corresponding first data range, which characterizes that the operation difficulty of the operation object is low, i.e. the softness and hardness degree of the operation object is soft, or the density degree of the operation object is sparse, or the deviation degree of the intelligent operation device is low, etc.
  • the operation effect of the intelligent operation device on the operation object is better, and the candidate spacing needs to be greater than the current spacing in order to improve the operation efficiency.
  • the parameter is in the corresponding second data range, which characterizes that the operation difficulty of the operation object meets expectation, i.e. the softness and hardness degree of the operation object, or the density degree of the operation object, or the deviation degree of the intelligent operation device meets expectation.
  • the operation effect of the intelligent operation device on the operation object meets expectation, and the candidate spacing needs to be equal to the current spacing in order to maintain the operation effect and the operation efficiency.
  • the parameter is in the corresponding third data range, which characterizes that the operation difficulty of the operation object is great, i.e. the softness and hardness degree of the operation object is hard, or the density degree of the operation object is dense, or the deviation degree of the intelligent operation device is great, etc.
  • the operation effect of the intelligent operation device on the operation object is poor, and the candidate spacing needs to be less than the current spacing in order to improve the operation effect.
  • the parameter is the positioning parameter of the intelligent operation device
  • its adjustment method may be as follows.
  • the parameter is in the corresponding first data range, which characterizes that the positioning quality of the intelligent device is poor.
  • the operation effect of the intelligent operation device on the operation object is poor, and the candidate spacing needs to be less than the current spacing in order to improve the operation effect.
  • the parameter is in the corresponding second data range, which characterizes that the positioning quality of the intelligent device meets expectation.
  • the operation effect of the intelligent operation device on the operation object meets expectation, and the candidate spacing needs to be equal to the current spacing in order to maintain the operation effect and the operation efficiency.
  • the parameter is in the corresponding third data range, which characterizes that the positioning quality of the intelligent device is better.
  • the operation effect of the intelligent operation device on the operation object is better, and the candidate spacing needs to be greater than the current spacing in order to improve the operation efficiency.
  • the candidate spacing may also be obtained by the difference between the current spacing and the first preset spacing, as well as the preset difference threshold.
  • the first preset spacing may be determined based on actual needs, for example, it can be the spacing between each running trajectory set by the intelligent operation device before operating in the area to be operated.
  • the first preset difference threshold is used to determine whether the current spacing needs to be reduced. When the above difference is greater than the first preset difference threshold, it is considered that the difference between the current spacing and the first preset spacing is great, that is, the current spacing after multiple adjustments exceeds the adjustment range of the first preset spacing, and there is a risk of reducing the operating effect. Therefore, the current spacing needs to be reduced to ensure that the spacing between the first running trajectory and the second running trajectory of the intelligent operation device is adjusted within the range of the first preset difference threshold, thereby improving the stability of the adjustment of the spacing of the intelligent operating device.
  • the current spacing is increased in the manner described previously to obtain the candidate spacing corresponding to the parameter.
  • the implementation is similar to the method and effect of reducing the current spacing to obtain the candidate spacing corresponding to the parameter, and will not be repeated here.
  • the first preset spacing and the second preset spacing mentioned above may be the same or different.
  • the first preset difference threshold and the second preset difference threshold mentioned above may be different or the same.
  • the above preset spacing and preset difference threshold may be adjusted at any time according to actual needs, which is not limited in the present application.
  • the target spacing is obtained according to a weight of each parameter and the corresponding candidate spacing.
  • the weight corresponding to each parameter may be the same or different, and the weight may be determined according to actual needs.
  • the candidate spacing corresponding to each parameter is weighted to obtain the target spacing.
  • the candidate spacing obtained by the data of the target torque of the operation disc of the intelligent operation device is 10 cm
  • the candidate spacing obtained by the data of the deviation parameter of the intelligent operation device is 9 cm
  • the candidate spacing obtained by the data of the positioning parameter of the intelligent operation device is 8 cm
  • the weight corresponding to each parameter is 1/3
  • the influence of each parameter on the target spacing may be flexibly adjusted according to the actual needs, and under the consideration of the degree of influence of a number of parameters, a comprehensive analysis is carried out to more accurately obtain the target spacing that matches with the actual demand, so as to more accurately improve the operation efficiency as far as possible under the circumstance of guaranteeing the operation effect.
  • a candidate spacing corresponding to a parameter with a highest priority is used as the target spacing according to a priority of each parameter.
  • the priority of each parameter may be determined according to actual needs, and the present application does not limit this.
  • the priority of the above three parameters is that the average torque of the operation disc of the intelligent operation device > the deviation parameter of the intelligent operation device > the positioning parameter of the intelligent operation device, the candidate spacing obtained from the data of the deviation parameter of the intelligent operation device is used as the target spacing.
  • the manner that determining the target spacing through the priority is possible to determine the main factor affecting the operation effect and the operation efficiency in the presence of multiple parameters, and then to determine the target spacing based only on the candidate spacing corresponding to that main factor, thereby adjusting the operation effect, or, the operation efficiency, more quickly.
  • the minimum candidate spacing among the candidate spacing corresponding to each parameter is used as the target spacing, and continuing with the above example, the candidate spacing of 8 cm obtained from the positioning parameter data of the intelligent work device is taken as the target spacing.
  • the maximum candidate spacing among the candidate spacing corresponding to each parameter is used as the target spacing, and continuing with the above example, the candidate spacing of 9 cm obtained from the data of the average torque of the operation disc of the intelligent operation device is taken as the target spacing.
  • the purpose of adjusting the distance between the first running trajectory and second running trajectory based on the parameter with the largest adjustment magnitude may be achieved, thereby ensuring that the adjustment of the separation may make the operating capability of the target operation device more match the required operating capability of the operation object, thereby improving the operation effect or the operation efficiency.
  • the target spacing is 9 cm.
  • the purpose of considering the target spacing indicated by all current parameters in a balanced manner may be achieved, thereby more accurately obtaining the target spacing that matches the actual needs, and more accurately improving the operation effect as much as possible while ensuring the operation efficiency.
  • the target spacing of the required separation between the second running trajectory and the first running trajectory may also be obtained according to the operating parameter in the following way:
  • the operating parameter includes at least two parameters, determining a target parameter from the at least two parameters according to a priority of each parameter.
  • the priority of each parameter is that the target torque of the operation disc of the intelligent operation device > the deviation parameter of the intelligent operation device > the positioning parameter of the intelligent operation device
  • the operating data corresponding to multiple operating parameters is obtained, and then the operating data corresponding to the operating parameter with the highest priority id determined according to the priority of each parameter, the operating data corresponding to the operating parameter with the highest priority is used as the target parameter.
  • the target parameter is used to determine the candidate spacing in the aforementioned method embodiment.
  • the target spacing may be obtained according to the candidate spacing.
  • the computation burden of obtaining the target spacing may be reduced, and the efficiency of adjusting the separation of the intelligent operation device may be improved.
  • Implementation B the operating parameter includes one parameter.
  • the candidate spacing corresponding to the parameter is determined according to the parameter, and the candidate spacing is used as the target spacing.
  • the method for determining the candidate spacing is the same as in Implementation A, and will not be repeated here.
  • the control method for the intelligent operation device provided by the embodiment of the present application considers a plurality of operating parameters for different scenes existing in the operation process in order to determine a target spacing of a required separation between the second running trajectory and the first running trajectory for different scenes, and then adjusts a size of an area that needs to repeat operation in the subsequent operation of the intelligent operation device according to the target spacing, so as to be able to improve the operation effect for the scene in which the operation effect is poor, and to be able to improve the operation efficiency for the scene in which the operation effect is better.
  • the above method may flexibly set the method for adjusting the target spacing by considering the priority between various operating parameters to adapt to different practical needs.
  • FIG. 4 is another flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application. As illustrated in FIG. 4, the method may include the following steps.
  • the intelligent operation device obtains torque data (i.e. operating data) of the operation disc in the first running trajectory at a preset time interval, obtains the average torque of the intelligent operation device in the first running trajectory according to these torque data, and uses the average torque as the target torque of the operation disc of the intelligent operation device.
  • torque data i.e. operating data
  • the target torque is 900.
  • the intelligent operation device obtains the deviation of the first running trajectory between the actual running trajectory of the intelligent operation device and the preset running trajectory, and uses the proportion of the length of the deviation path in the length of the preset running trajectory as the deviation parameter of the intelligent operation device.
  • the deviation parameter is 10%.
  • the intelligent operation device obtains the number of the satellite and the strength of satellite signal when the positioning element of the intelligent operation device receives the satellite positioning message in the first running trajectory, and then obtains the positioning parameter of the intelligent operation device according to the number of the satellite and the strength of satellite signal. For example, in the embodiment, if the number of all satellites is 10, and the number of the satellite that the intelligent operation device can receive is 5, and the strength of the satellite signal is 0.7, the weight of the number of the satellite is 50%, the positioning parameter is equal to the weight of the number of satellite multiplied by the strength of the satellite signal, and the obtained positioning parameter is 0.35.
  • the corresponding operating parameters of the intelligent operation device are 900, 10%, and 0.35.
  • S402 obtaining a candidate spacing of a required separation between a second running trajectory and a first running trajectory according to the operating parameter.
  • the range of the average torque of the operation disc of the intelligent operation device may be 0 to 1000
  • the corresponding first data range may be (20, 700]
  • the second data range may be (700, 800]
  • the third data range may be (800, 1000]
  • the range of the deviation parameter of the intelligent operation device is 0%to 100%
  • the corresponding first data range may be [0%, 10%)
  • the second data range may be [10%, 20%)
  • the third data range may be [20%, 100%]
  • the range of the positioning parameter of the intelligent operation device may be 0 to 1
  • the corresponding first data range may be [0, 0.3)
  • the second data range may be [0.3, 0.8)
  • the third data range may be [0.8, 1] .
  • the current spacing is 5 cm
  • the current spacing is fixedly adjusted by 1 cm on the basic of the current spacing to obtain the candidate spacing of the parameter. That is, the current spacing is reduced by 1 cm to obtain the candidate spacing corresponding to the average torque of the operation disc of the intelligent operation device of 4 cm; the current spacing is expanded by 1 cm to obtain the candidate spacing corresponding to the deviation parameter of the intelligent operation device of 6 cm; and the current spacing is maintained to obtain the candidate spacing corresponding to the positioning parameter of the intelligent operation device of 5 cm.
  • S403 determining a target spacing of the required separation between the second running trajectory and the first running trajectory according to the candidate spacing.
  • the candidate spacing of the data with the highest priority is taken as the target spacing, i.e., the target spacing is the candidate spacing of 4 cm corresponding to the average torque of the operation disc of the intelligent operation device.
  • the intelligent operation device determines a position of the starting point of the second running trajectory according to the target spacing of 4 cm (i.e., the spacing between the second running trajectory and the first running trajectory is 4 cm) , the distance between the position and the first running trajectory is 4 cm, and the second running trajectory may, for example, be parallel to and run in an opposite direction to the first running trajectory.
  • the intelligent operation device first moves to the position of the starting point of the second running trajectory mentioned above, and then starts from the position of the starting point, and starts running in a direction opposite to the direction of the first running trajectory.
  • FIG. 5 is a structural schematic diagram of a control apparatus for an intelligent operation device provided by an embodiment of the present application. As illustrated in FIG. 5, including: a first obtaining module 11, a second obtaining module 12, and a control module 13.
  • the first obtaining module 11 is configured to control the intelligent operation device to operate along a first running trajectory, obtain an operating parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object.
  • the second obtaining module 12 is configured to obtain a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter, where the second running trajectory is a next running trajectory after the first running track.
  • the control module 13 is configured to control the intelligent operation device to operate along the second running trajectory according to the target spacing.
  • the operating parameter includes at least one of the following parameters:
  • the second obtaining module 12 is specifically configured to, if the operating parameter includes at least two parameters, determine a target parameter from the at least two parameters according to a priority of each parameter, and obtain the target spacing according to the target parameter.
  • the second obtaining module 12 is specifically configured to obtain a candidate spacing corresponding to each parameter according to each parameter if the operating parameter includes at least two parameters, and obtain the target spacing according to the candidate spacing corresponding to each parameter.
  • the second obtaining module 12 is specifically configured to compare each parameter and a corresponding threshold, adopt a spacing adjustment manner corresponding to a size relationship between each parameter and the corresponding threshold, and obtain the candidate spacing corresponding to the parameter according to a current spacing.
  • the second obtaining module 12 is specifically configured to determine a data range where the parameter falls into according to the parameter, and a first data range, a second data range, and a third data range corresponding to the parameter, and
  • a starting point of the second data range is greater than an endpoint of the first data range
  • a starting point of the third data range is greater than an endpoint of the second data range.
  • the second obtaining module 12 is specifically configured to reduce the current spacing to obtain the candidate spacing corresponding to the parameter if a difference between the current spacing and a first preset spacing is greater than a first preset difference threshold, and increase the current spacing to obtain the candidate spacing corresponding to the parameter if a difference between the current spacing and a second preset spacing is greater than a second preset difference threshold.
  • the second obtaining module 12 is specifically configured to obtain the target spacing according to a weight of each parameter and the corresponding candidate spacing, or, use a candidate spacing corresponding to a parameter with a highest priority as the target spacing according to a priority of each parameter, or, use a minimum candidate spacing among the candidate spacing corresponding to each parameter as the target spacing, or, use a maximum candidate spacing among the candidate spacing corresponding to each parameter as the target spacing, or, use an average value of the candidate spacing corresponding to each parameter as the target spacing.
  • the first obtaining module 11 is specifically configured to obtain operating data of the intelligent operation device on the first running trajectory, and obtain the operating parameter according to the operating data.
  • control apparatus for the intelligent operation device provided in the embodiment of the present application may perform the control method for the intelligent operation device in the above method embodiments, and its realization principle and technical effect are similar and will not be repeated herein.
  • FIG. 6 is a structural schematic diagram of an electronic device provided by an embodiment of the present application. Where the electronic device is used to perform the previously described control method for an intelligent operation device.
  • the electronic device may, for example, be an intelligent operation device as described previously, or a processing chip in the intelligent operation device, or a device or cloud platform for providing an operational instruction to the intelligent operation device.
  • the electronic device 600 may include: at least one processor 601, a memory 602, and, in one possible implementation, a communication interface 603.
  • the memory 602 is configured to store a program.
  • the program may comprise a program code
  • the program code includes a computer operation instruction.
  • the memory 602 may comprise a high-speed RAM memory or may also comprise a non-volatile memory (non-volatile memory) , such as at least one magnetic disk memory.
  • the processor 601 is configured to execute the computer-executable instruction stored in the memory 602 to implement the method described in the aforementioned method embodiments.
  • the processor 601 may be a CPU, or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , or one or more integrated circuits configured to implement the embodiments of the present application.
  • ASIC Application Specific Integrated Circuit
  • the processor 601 may communicate and interact with an external device through the communication interface 603.
  • the electronic device is a device or a cloud platform for providing an operation instruction to the intelligent operation device
  • the external device referred to herein may, for example, be the intelligent operation device.
  • the communication interface 603, the memory 602, and the processor 601 may be connected to each other via a bus and complete communication with each other.
  • the bus can be an industry standard architecture (Industry Standard Architecture, ISA) bus, a peripheral component (Peripheral Component, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus may be classified as an address bus, a data bus, a control bus, etc., but this does not mean that there is only one bus or one type of bus.
  • the communication interface 603, the memory 602, and the processor 601 may complete the communication through an internal interface.
  • the present application also provides a computer-readable storage medium
  • the computer-readable storage medium may include: a USB flash drive, a removable hard disk drive, a read-only memory (ROM, Read-Only Memory) , a random access memory (RAM, Random Access Memory) , a magnetic disk, or a compact disc and other kinds of media that can store a program code, and in particular, the computer-readable storage medium is stored with a program instruction, and the program instruction is used in the method in the above embodiments.
  • the present application also provides a computer program product that includes an execution instruction that are stored in a readable storage medium.
  • the at least one processor of the electronic device may read the execution instruction from the readable storage medium, and the at least one processor executes the execution instruction to enable the electronic device to implement the control method for the intelligent operation device provided by the various embodiments described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

The present application provides a control method and an apparatus for an intelligent operation device, a device, a medium, and a program product. The method includes: controlling the intelligent operation device to operate along a first running trajectory, obtaining an operating parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object; obtaining a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter; and controlling the intelligent operation device to operate along the second running trajectory according to the target spacing. The method of the present application improves operation effect and operation efficiency of the intelligent operation device.

Description

CONTROL METHOD AND APPARATUS FOR INTELLIGENT OPERATION DEVICE, DEVICE, MEDIUM AND PROGRAM PRODUCT
CROSS-REFERENCE TO RELATED APPLICATIONS
The present disclosure claims priority to Chinese Patent Application No. 202211232852.4, titled “CONTROL METHOD AND APPARATUS FOR INTELLIGENT OPERATION DEVICE, DEVICE, MEDIUM AND PROGRAM PRODUCT” , filed to China National Intellectual Property Administration on October 10, 2022, which is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
The present application relates to a field of intelligent device control, and in particular, to a control method and apparatus for an intelligent operation device, a device, a medium and a program product.
BACKGROUND
A lawn mower is a gardening tool used for trimming lawns, vegetation, etc., it typically includes a self-propelled component, a cutting blade component, and a power source, which can be a gasoline engine, a battery pack, etc. The lawn mower can mow the lawns along a preset planning path, which can be a fixed separation or an alternating wide and narrow separation. For example, for a blade offset lawn mower, where the vertical distance between the blade center and the vehicle centerline is not zero, the actual motion trajectory of the lawn mower is an alternating wide and narrow path in order to achieve a fixed separation mowing effect.
However, the way in which the lawn mower mows strictly following the preset planning path suffers from a poor mowing effect.
SUMMARY
The present application provides a control method and an apparatus for an intelligent operation device, a device, a medium, and a program product to solve the problem of poor mowing effect and low mowing efficiency in the current way in which the lawn mower mows strictly following the preset planning path.
In a first aspect, the present disclosure provides a control method for an intelligent operation device, including:
controlling the intelligent operation device to operate along a first running trajectory, obtaining an operating parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object;
obtaining a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter, where the second running trajectory is a next running trajectory after the first running track; and
controlling the intelligent operation device to operate along the second running trajectory according to the target spacing.
In a second aspect, the present disclosure provides a control apparatus for an intelligent operation device, including:
a first obtaining module, configured to control the intelligent operation device to operate along a first running trajectory, obtain an operating parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object;
a second obtaining module, configured to obtain a target spacing of a required separation between a second running trajectory and the first running  trajectory according to the operating parameter, where the second running trajectory is a next running trajectory after the first running track; and
a control module, configured to control the intelligent operation device to operate along the second running trajectory according to the target spacing.
In a third aspect, the present disclosure provides an electronic device, including: a processor and a memory connected in communication with the processor;
where the memory has a computer executable instruction stored therein; and
the processor executes the computer-executable instruction stored in the memory to implement any one of the method described in the first aspect above.
In a fourth aspect, the present disclosure provides a computer readable storage medium storing a computer-executable instruction, where when the computer-executable instruction is executed by a processor, any one of the control method for an intelligent operation device described in the first aspect above is implemented.
In a fifth aspect, the present disclosure provides a computer program product including a computer program, where when the computer program is executed by a processor, any one of the control method for an intelligent operation device described in the first aspect above is implemented.
A control method and an apparatus for an intelligent operation device, a device, a medium, and a program product provided by the present application can adaptively adjust a spacing used for determining the second running trajectory of the intelligent operation device according to the operation condition of the intelligent operation device for an operation object when operating on the first running trajectory, thereby improving the operation efficiency while taking into account the operation effect.
BRIEF DESCRIPTION OF DRAWINGS
The accompanying drawings here are incorporated into the description and  form a part of the description, showing embodiments consistent with the present application, and are used together with the description to explain the principles of the present application.
FIG. 1 is a schematic diagram of an application scenario of a lawn mower.
FIG. 2 is a flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application.
FIG. 3 is a flow schematic diagram of obtaining a target spacing provided by an embodiment of the present application.
FIG. 4 is another flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application.
FIG. 5 is a structural schematic diagram of a control apparatus for an intelligent operation device provided by an embodiment of the present application.
FIG. 6 is a structural schematic diagram of an electronic device provided by an embodiment of the present application.
Clear embodiments of the present application have been illustrated through the above accompanying drawings, and more detailed descriptions will be provided in the following. These accompanying drawings and textual descriptions are not intended to limit the scope of the concept of the present application in any way, but rather to illustrate the concept of the present application to those skilled in the art by referring to specific embodiments.
DESCRIPTION OF EMBODIMENTS
Exemplary embodiments will be described in detail herein, examples of which are represented in the accompanying drawings. Where the following description relates to the accompanying drawings, the same numerals in the different accompanying drawings indicate the same or similar elements, unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with the present application. In contrast, they are only examples of apparatuses and methods that are consistent with  some aspects of the present application, as detailed in the appended claims.
Firstly, an application scenario of a current lawn mower for a mowing operation is explained. FIG. 1 is a schematic diagram of an application scenario of a lawn mower. As shown in FIG. 1, the scenario includes: a mowing operation area and a running trajectory of the lawn mower.
The running trajectory of the lawn mower can be preset according to actual needs, or can be a fixed running trajectory determined by the lawn mower itself according to parameters such as a size, a shape, and an actual situation of the mowing operation area received. The preset running trajectory includes a central region trajectory and a boundary trajectory. The central region trajectory can be a “弓” (arch) shaped trajectory or a circular trajectory. The boundary trajectory includes a circular trajectory or an annular trajectory.
The central area trajectory being the “弓” shaped trajectory is taken as an example, the “弓” shaped trajectory includes a first running trajectory, a second running trajectory and a third running trajectory, which are adjacent, and the second running trajectory located in the middle of the first running trajectory and the third running trajectory. The first running trajectory, the second running trajectory and the third running trajectory are parallel. That is, a running trajectory on which the lawn mower most recently completed the mowing operation is the first running trajectory, and a next running trajectory after the first running trajectory is called the second running trajectory. The spacing between each of the two running trajectories can be fixed or alternately wide and narrow, for example, for a lawn mower with a zero vertical distance between a center of a blade and a vehicle centerline, the spacing between each of the two running trajectories is fixed; for a blade offset lawn mower, the spacing between the running trajectories is alternately wide and narrow. FIG. 1 is description with the example of the spacing between each of the two running trajectories of the lawn mower being fixed.
In the application scenario of FIG. 1, the lawn mower moves between the two running trajectories by the spacing distance as shown in FIG. 1, in order to achieve the goal that the mowing operation fully covers the mowing operation area.  However, in real scenarios, there are multiple influencing factors that affect the effect and efficiency of the mowing operation, such as the influencing factor related to the mowing operation area and the influencing factor for the positioning effect of the lawn mower. Exemplarily, the influencing factor related to the mowing operation area can include a softness and hardness degree of the grass, a density degree of the grass, a levelness of the grass ground, etc.; the positioning effect of the lawn mower can include the positioning quality, the positioning accuracy, etc.
When the mowing effect of the lawn mower is poor, by reducing the spacing between every two running trajectories, the mowing area between the two running trajectories can be repeatedly mowed over a larger range, thereby improving the effect of the mowing operation. When the mowing effect of the lawn mower is better, by increasing the spacing between every two running trajectories, it is possible to reduce repeated mowing for the mowing area between the two running trajectories, thereby improving the efficiency of the mowing operation.
The present application provides a control method for an intelligent operation device, which can adaptively adjust a spacing used for determining the second running trajectory of the intelligent operation device according to the operation condition of the intelligent operation device for an operation object when operating on the first running trajectory, thereby improving the operation efficiency while taking into account the operation effect.
The intelligent operation device referred to in the present application can be devices that can operate independently, such as a lawn mower, a sweeper, a sweeping and mopping all-in-one machine, a snowplow, etc.
The executive subject of the present application can be the intelligent operation device, a processing chip in the intelligent operation device, and a device or a cloud platform used to provide an operation instruction to the intelligent operation device. When the executive subject is the intelligent operation device or the processing chip in the intelligent operation device, according to the operating parameter of the intelligent operation device, the spacing between the second running trajectory and the first running trajectory is calculated, and the spacing between the  running trajectories of the intelligent operation device is adjusted, the first running trajectory and the second running trajectory are similar to the first running trajectory and the second running trajectory of the aforementioned lawn mower, and will not be repeated here. When the executive subject is the device or the cloud platform that provides the operation instruction, the operating parameter of the intelligent operation device is obtained, the spacing between the second running trajectory and the first running trajectory is calculated, and the operation instruction containing the spacing is provided to the intelligent operation device, so that intelligent operation device can determine the second running trajectory according to the spacing and operate according to the second running trajectory.
In the following, taking the intelligent operation device as the executing entity as an example, the technical solution of the present application and how the technical solution of the present application solves the above technical problem are described in detail with specific embodiments. The following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. Embodiments of the present application will be described below in conjunction with the accompanying drawings.
FIG. 2 is a flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application. As illustrated in FIG. 2, the method may include the following steps.
S201: controlling the intelligent operation device to operate along a first running trajectory, obtaining an operating parameter of the intelligent operation device.
The operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object. The operation object is related to the intelligent operation device, for example, when the intelligent operation device is a lawn mower, the operation object is grass; when the intelligent operation device is a sweeper, the operation object is ground dirt, etc.; when the intelligent operation device is a snowplow, the operation object is snow.
The operating parameter of the intelligent operation device are related to  the type of the intelligent operation device. For example, when the intelligent operation device is a lawn mower, the operating parameter may include a parameter for characterizing the difficult degree of performing the operation, such as a torque and a speed of the operation disc of the intelligent operation device; it may also include a parameter for characterizing the operation condition of the intelligent operation device in accordance with the running trajectory, such as a deviation parameter of the intelligent operation device; it may also include a parameter for characterizing the positioning condition of the intelligent operation device, such as a positioning parameter of the intelligent operation device.
The operating parameter of the intelligent operation device may be determined based on operating data of the intelligent operation device. The operating data refers to operating data of the intelligent operation device while operating along the first running trajectory, the operating data may include, for example, torque data of the operation disc, speed data of the operation disc, positioning data, etc. The method for obtaining the operating data may be determined according to the type of the operating data, which is obtained using the corresponding obtaining method in the prior art according to the type of the operating data. The operating parameter is obtained according to the operating data corresponding to the operating parameter, such as obtaining the torque parameter of the operation disc according to the torque data of the operation disc.
S202: obtaining a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter.
The target spacing may be used to control the spacing between the second running trajectory and the first running trajectory.
Since the operating parameter can accurately characterize the operation condition of the intelligent operation device on the first running trajectory for the operation object, the target spacing may be accurately obtained based on the operating parameter, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the operation  efficiency can be improved while the operation effect of the intelligent operation device on the operation object can be guaranteed.
When the operating parameter characterizes that the operation condition of the intelligent operation device on the first running trajectory for the operation object is better, it means that the operating capability of the intelligent operation device is better than the operating capability required to operate the object when operating at the current spacing. Thus, the target spacing determined on the basis of the operating parameter may be greater than the current spacing, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the operating capability of the intelligent operation device is slightly better than, or matches, the operating capability required to operate the object, thereby enabling to improve the operation efficiency of the intelligent operating device on the same size area to be operated in the same time. The current spacing referred to here is the spacing corresponding to the first running trajectory, that is the spacing used to determine the first running trajectory.
When the operating parameter characterizes that the operation condition of the intelligent operation device on the first running trajectory for the operation object is normal, it means that the operating capability of the intelligent operation device matches the operating capability required to operate the object when operating at the current spacing. Thus, the target spacing determined on the basis of the operating parameter may be equal to the current spacing, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the current operating effect and operating efficiency may be continued to maintain.
When the operating parameter characterizes that the operation condition of the intelligent operation device on the first running trajectory for the operation object is poor, it means that the operating capability of the intelligent operation device is inferior to the operating capability required to operate the object when operating at the current spacing, that is, the operating effect is poor when operating at the current spacing. Thus, the target spacing determined on the basis of the operating parameter  may be less than the current spacing to improve the operating capability of the intelligent operation device, so that when the intelligent operation device operates according to the second running trajectory determined based on the target spacing, the operating effect of the intelligent operation device operating the same size of the area to be operated may be improved. For example, if the operating width of the intelligent operation device is 10 cm, and the spacing between the second running trajectory and the first running trajectory is 7 cm, an area with a width of 3 cm in the central part between the two running trajectories is operated twice after the intelligent operation device runs on the two running trajectories mentioned above.
In a possible way, the target spacing is obtained by increasing, decreasing or maintaining the current spacing according to the operating parameter, the specific processing is related to the operating parameter. Alternatively, the target spacing may be calculated directly according to the operating parameter.
When specifically implementing, the above target spacing may be determined by one operating parameter, or by at least two operating parameters, etc.
S203: controlling the intelligent operation device to operate along the second running trajectory according to the target spacing.
After obtaining the target spacing, the intelligent operation device may determine a starting point of the second running trajectory according to the target spacing. The intelligent operation device moves to the starting point and then runs and operates according to the second running trajectory.
The control method for an intelligent operation device provided by the embodiment of the present application may adaptively adjust a spacing used for determining the second running trajectory of the intelligent operation device according to the operation condition of the intelligent operation device for an operation object when operating on the first running trajectory during the process of intelligent operation device performing tasks on the operation object, thereby improving the operation efficiency while taking into account the operation effect.
The following operating parameters of the intelligent operation device in the above embodiment may include, for example, a target torque of an operation disc  of the intelligent operation device, a target rotational speed of the operation disc, a deviation parameter of the intelligent operation device, and a positioning parameter of the intelligent operation device, etc.
Target torque, and/or, target rotational speed
The target torque, and/or the target rotational speed of the operation disc of the intelligent operation device may characterize the softness and hardness degree of the operation object and the density degree of the operation object when the intelligent operation device runs on the first running trajectory. The target torque may be, for example, an average torque, a maximum torque, a minimum torque, etc. of the torque data in the operating data; the target rotational speed may be, for example, an average rotational speed, a maximum rotational speed, a minimum rotational speed, etc. of the rotational speed data in the operating data, which is not limited in the present application. The torque, and/or, the rotational speed of the operation disc during the operation of the intelligent operation device may be obtained at a preset time interval.
Taking the target torque of the intelligent operation device as the blade type lawn mower as an example, the harder the grass, and/or the thicker the grass, the more difficult the blade of the lawn mower for mowing, and the higher the target torque. At this time, in order to increase the range of repeated mowing between the two running trajectories of the lawn mower to improve the operation effect, the target spacing determined based on the target torque is less than the current spacing of the lawn mower. The softer the grass, and/or the sparser the grass, the simpler the blade of the lawn mower for mowing, and the smaller the target torque. At this time, the lawn mower has a better mowing effect. In order to reduce the range of repeated mowing between the two running trajectories of the lawn mower to improve the operation efficiency, the target spacing determined based on the target torque is greater than the current spacing of the lawn mower. If the softness and hardness degree, and/or the density degree of the grass are moderate, the difficult degree of mowing with the blade of the lawn mower meets the expectation, and the target torque is the same or close to the expected torque. At this time, the target torque determined based on the target torque is equal to the current spacing of the lawn mower.
It should be understood that the operating parameter, when including the target rotational speed, is similar to that in the case of the target torque described above and will not be repeated here.
Deviation parameter
The deviation parameter of the intelligent operation device is used to characterize the deviation degree of the first running trajectory, the deviation parameter may be, for example, a deviation proportion of the trajectory point of the intelligent operation device from the expected running trajectory in the first running trajectory, or a distance between the actual running trajectory and the expected running trajectory. The deviation degree may be caused by the unevenness of the ground in the area to be operated, the lower the ground evenness, the greater the deviation degree.
When the operating parameter includes the deviation parameter of the intelligent operation device, the deviation parameter of the intelligent operation device may be determined by obtaining the actual operating trajectory data of the intelligent device and the planned operating trajectory (i.e. the expected operating trajectory, or the first operating trajectory determined according to the current spacing) .
Taking the deviation parameter including the deviation proportion as an example, the lower the ground evenness, the greater the proportion of the intelligent operation device that deviates from the expected operating trajectory during operation and the more missed operations. At this time, in order to increase the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation effect, the target spacing determined according to the deviation proportion is smaller than the current spacing of the intelligent operation device. The higher the ground evenness, the smaller the proportion of the intelligent operation device that deviates from the expected operating trajectory during operation and the more missed operations. At this time, the operation effect of the intelligent operation device is better, in order to reduce the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation efficiency, the target spacing determined according to the deviation  proportion is greater than the current spacing of the intelligent operation device. The closer the ground evenness is to the expected evenness, the closer the proportion of the intelligent operation device that deviates from the expected operating trajectory during operation is to the expected proportion. At this point, the target spacing determined according to the deviation proportion is equal to the current spacing of the intelligent operation device.
Positioning parameter
The positioning parameter of the intelligent operation device is used to characterize the positioning quality of the intelligent operation device on the first running trajectory.
When the operating parameter includes the positioning parameter of the intelligent operation device, for example, operating data, such as the number of the satellite currently receivable and the strength of the received satellite signal, may be obtained by the intelligent operation device, and then the positioning parameter may be determined based on the number of the satellite and the strength of the received satellite signal. For example, a weight may be determined according to the number of the satellite, and the weight may be multiplied by the strength of the satellite signal to obtain the positioning parameter. The above method and data for obtaining the positioning parameter may be determined according to actual needs, which is not limited in the present application.
Taking the intelligent operation device positioning through a real -time kinematic (Real -time kinematic, RTK) technology as an example, the positioning quality is positively correlated with the number of the satellite currently receivable and the strength of the received satellite signal.
The worse the positioning quality, the greater possibility that the intelligent operation device deviates from the expected operating trajectory during operation, and the more cases of missed operations caused by the intelligent operation device deviating from the expected operating trajectory. At this time, in order to increase the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation effect, the target spacing determined  according to the deviation proportion is smaller than the current spacing of the intelligent operation device. The better the positioning quality, the less possibility that the intelligent operation device deviates from the expected operating trajectory during operation, and the less cases of missed operations caused by the intelligent operation device deviating from the expected operating trajectory. At this time, in order to increase the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation effect, the target spacing determined according to the deviation proportion is greater than the current spacing of the intelligent operation device. When the positioning quality is close to the expected positioning quality, the possibility that the intelligent operation device deviates from the expected operating trajectory during operation is in line with the expectation, and the cases of missed operations caused by the intelligent operation device deviating from the expected operating trajectory is in line with the expectation. At this time, the operation effect of the intelligent operation device is better, in order to reduce the range of repeated operation between the two running trajectories of the intelligent operation device to improve the operation efficiency, the target spacing determined according to the deviation proportion is equal to the current spacing of the intelligent operation device.
In the following, taking the operating parameter includes at least one of the target torque of the operation disc of the intelligent operation device, the deviation parameter of the intelligent operation device, and the positioning parameter of the intelligent operation device, as an example, a detailed explanation will be provided on how to obtain the target spacing of the required separation between the second running trajectory and the first running trajectory according to the operating parameter in step S202.
Implementation A: the operating parameter includes at least two parameters.
Implementation 1:
FIG. 3 is a flow schematic diagram of obtaining a target spacing provided by an embodiment of the present application. As illustrated in FIG. 3, the method may  include:
S301: obtaining a candidate spacing corresponding to each parameter according to each parameter.
Implementation 11: obtaining candidate spacing through a threshold.
S3011: comparing each parameter with a corresponding threshold.
The threshold corresponding to each parameter is determined according to the parameter and actual needs, which is not limited in the present application. For example, the target torque of the operation disc of the intelligent operation device corresponds to the threshold of the target torque, and the deviation parameter of the intelligent operation device corresponds to the threshold of the deviation parameter; the positioning parameter of the intelligent operation device corresponds to the threshold of the positioning parameter, etc.
For each parameter, if the parameter is equal to the corresponding threshold, it indicates that the operation condition characterized by the operating data of the intelligent operation device on the first running trajectory meets the expected operation effect, and there is no need to adjust the separation between the second running trajectory and the first running trajectory of the intelligent operation device. If the parameter is not equal to the corresponding threshold, it indicates that the operating capability of the intelligent operation device does not correspond to the operating capability required to operate the object, for example, if the operating capability of the intelligent operation device is better than the operating capability required to operate the object, or if the operating capability of the intelligent operation device is weaker than the operating capability required to operate the object, the separation between the second running trajectory and the first running trajectory of the intelligent operation device needs to be adjusted to improve the operating effect, or to improve the operating efficiency.
Parameter 1: the target torque of the operation disc of the intelligent operation device.
If the target torque of the operation disc of the intelligent operation device is greater than the corresponding threshold, which characterizes that the object  operated by the operation disc on the first running trajectory is easy to operate and the current spacing needs to be reduced, so as to increase the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation effect. The spacing obtained by reducing the current spacing is used as the candidate spacing corresponding to the parameter.
If the target torque of the operation disc of the intelligent operation device is equal to the corresponding threshold, which characterizes that the target torque of the operation disc of the intelligent operation device is a suitable torque and there is no need to adjust the parameter to improve the operating effect, or to improve the operating efficiency. The current spacing is used as the candidate spacing corresponding to the parameter.
If the target torque of the operation disc of the intelligent operation device is smaller than the corresponding threshold, which characterizes that the object operated by the operation disc on the first running trajectory is easy to operate, for example, if the intelligent operation device is a lawn mower, which characterizes that the grass on the first running trajectory is soft, and/or, the grass is thinner, and the current spacing needs to be increased, so as to reduce the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation efficiency. The spacing obtained by increasing the current spacing is used as the candidate spacing corresponding to the parameter.
Parameter 2: the deviation parameter of the intelligent operation device.
If the deviation parameter of the intelligent operation device is greater than the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory is greater, there are more missed operation areas, and the current spacing needs to be reduced, so as to increase the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation effect.
If the deviation parameter of the intelligent operation device is equal to the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory meets expectation, and there is no need to adjust the current spacing.
If the deviation parameter of the intelligent operation device is smaller than the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory is smaller, there is no missed operation area, and the current spacing needs to be increased, so as to reduce the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation efficiency.
Parameter 3: the positioning parameter of the intelligent operation device.
For data of the positioning parameter of the intelligent operation device, if it is greater than the corresponding threshold, which indicates that the possibility that the intelligent operation device on the first running trajectory deviates from the operating trajectory is smaller, there are less missed operation areas, and the current spacing needs to be increased, so as to reduce the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation efficiency.
If the positioning parameter of the intelligent operation device is equal to the corresponding threshold, which indicates that the possibility that the intelligent operation device on the first running trajectory deviates from the operating trajectory meets expectation, and there is no need to adjust the current spacing.
If the positioning parameter of the intelligent operation device is smaller than the corresponding threshold, which indicates that the deviation degree of the intelligent operation device on the first running trajectory is greater, there are more missed operation areas, and the current spacing needs to be reduced, so as to increase the size of the area that needs to be repeatedly operated by the intelligent operation device between the first running trajectory and the second running trajectory, and improve the operation effect.
S3012: adopting a spacing adjustment manner corresponding to a size relationship between each parameter and the corresponding threshold, and obtaining the candidate spacing corresponding to the parameter according to a current spacing.
The spacing adjustment manner corresponding to the size relationship between each parameter and the corresponding threshold may be, for example, as described in step S3011, when the target torque of the operation disc of the intelligent operation device, or the deviation parameter of the intelligent operation device is greater than the corresponding threshold, the spacing is reduced, and, when it is less than the corresponding threshold, the spacing is expanded; when the positioning parameter of the intelligent operation device is greater than the corresponding threshold, the spacing is expanded, and when it is less than the corresponding threshold, the spacing is reduced. The candidate spacing corresponding to each parameter is obtained according to the spacing adjustment manner and the current spacing.
In a possible implementation, the candidate spacing may be a fixedly adjusted according to the result of the comparison. Taking the target torque as an example, as long as the target torque is not equal to the threshold, the operating capability of the intelligent operation device does not match the required operating capability of the operation object. When the operating capability of the intelligent operation device is better than the required operating capability of the operation object, the candidate spacing needs to be greater than the current spacing; when the operating capability of the intelligent operation device is weaker than the required operating capability of the operation object, the candidate spacing needs to be less than the current spacing. At this time, the determined candidate spacing is not equal to the current spacing, and the difference between the candidate spacing and the current spacing is a fixed distance. The candidate spacing may be obtained, for example, by fixedly adjusting at a first preset distance on a basis from the current spacing. In the implementation, the separation distance between the subsequent running trajectory and the previous running trajectory of each subsequent running trajectory may be gradually adjusted to prevent an excessive change in the candidate spacing for each  adjustment, thereby ensuring that the difference of the operation effect between each two adjacent running trajectories is small.
In a possible implementation, the candidate spacing may be determined based on a difference between each parameter and the corresponding preset threshold. Continuing with the example of the target torque, if the difference between the target torque and the corresponding preset threshold is greater than the preset difference, the distance at which the current spacing needs to be reduced is obtained according to the ratio of the difference to the preset difference, and the candidate spacing is obtained according to the current spacing and the distance at which the current spacing needs to be reduced. For example, when the difference is equal to the preset difference, the current spacing needs to be reduced by 2 cm, and when the difference is equal to twice the preset difference, the current spacing needs to be reduced by 4 cm. In the implementation, the most suitable candidate spacing corresponding to each parameter may be directly determined according to each parameter, thereby obtaining the best candidate spacing to improve the operation effect or the operation efficiency based on the parameter.
Implementation 12: obtaining the candidate spacing through a data range.
Determining a data range where the parameter falls into according to the parameter, and a first data range, a second data range, and a third data range corresponding to the parameter. A starting point of the second data range is greater than an endpoint of the first data range, and a starting point of the third data range is greater than an endpoint of the second data range, the present application does not impose any restrictions on the specific division of the data range.
The spacing adjustment manner corresponding to the data range that different parameters fall into may be the same or different.
For example, when the parameter is the target torque of the operation disc of the intelligent operation device, or the deviation parameter of the intelligent operation device, its adjustment method may be as follows.
If the parameter is in the corresponding first data range, which characterizes that the operation difficulty of the operation object is low, i.e. the  softness and hardness degree of the operation object is soft, or the density degree of the operation object is sparse, or the deviation degree of the intelligent operation device is low, etc. In the case of the parameter, the operation effect of the intelligent operation device on the operation object is better, and the candidate spacing needs to be greater than the current spacing in order to improve the operation efficiency.
If the parameter is in the corresponding second data range, which characterizes that the operation difficulty of the operation object meets expectation, i.e. the softness and hardness degree of the operation object, or the density degree of the operation object, or the deviation degree of the intelligent operation device meets expectation. In the case of the parameter, the operation effect of the intelligent operation device on the operation object meets expectation, and the candidate spacing needs to be equal to the current spacing in order to maintain the operation effect and the operation efficiency.
If the parameter is in the corresponding third data range, which characterizes that the operation difficulty of the operation object is great, i.e. the softness and hardness degree of the operation object is hard, or the density degree of the operation object is dense, or the deviation degree of the intelligent operation device is great, etc. In the case of the parameter, the operation effect of the intelligent operation device on the operation object is poor, and the candidate spacing needs to be less than the current spacing in order to improve the operation effect.
When the parameter is the positioning parameter of the intelligent operation device, its adjustment method may be as follows.
If the parameter is in the corresponding first data range, which characterizes that the positioning quality of the intelligent device is poor. In the case of the parameter, the operation effect of the intelligent operation device on the operation object is poor, and the candidate spacing needs to be less than the current spacing in order to improve the operation effect.
If the parameter is in the corresponding second data range, which characterizes that the positioning quality of the intelligent device meets expectation. In the case of the parameter, the operation effect of the intelligent operation device on  the operation object meets expectation, and the candidate spacing needs to be equal to the current spacing in order to maintain the operation effect and the operation efficiency.
If the parameter is in the corresponding third data range, which characterizes that the positioning quality of the intelligent device is better. In the case of the parameter, the operation effect of the intelligent operation device on the operation object is better, and the candidate spacing needs to be greater than the current spacing in order to improve the operation efficiency.
The details of how the spacing is adjusted according to the above spacing adjustment manner corresponding to the data range where the different parameters fall into are similar to that of Implementation 11, and will not be repeated here.
On the basis of Implementation 11 and Implementation 12, the candidate spacing may also be obtained by the difference between the current spacing and the first preset spacing, as well as the preset difference threshold.
Regarding the reducing the current spacing to obtain the candidate spacing corresponding to the parameter mentioned in Implementation 11 and Implementation 12, including:
if a difference between the current spacing and a first preset spacing is greater than a first preset difference threshold, reducing the current spacing to obtain the candidate spacing corresponding to the parameter. Where the first preset spacing may be determined based on actual needs, for example, it can be the spacing between each running trajectory set by the intelligent operation device before operating in the area to be operated. The first preset difference threshold is used to determine whether the current spacing needs to be reduced. When the above difference is greater than the first preset difference threshold, it is considered that the difference between the current spacing and the first preset spacing is great, that is, the current spacing after multiple adjustments exceeds the adjustment range of the first preset spacing, and there is a risk of reducing the operating effect. Therefore, the current spacing needs to be reduced to ensure that the spacing between the first running trajectory and the second running trajectory of the intelligent operation device is adjusted within the  range of the first preset difference threshold, thereby improving the stability of the adjustment of the spacing of the intelligent operating device.
Regarding the increasing the current spacing to obtain the candidate spacing corresponding to the parameter mentioned in Implementation 11 and Implementation 12, including:
if a difference between the current spacing and a second preset spacing is greater than a second preset difference threshold, the current spacing is increased in the manner described previously to obtain the candidate spacing corresponding to the parameter. The implementation is similar to the method and effect of reducing the current spacing to obtain the candidate spacing corresponding to the parameter, and will not be repeated here.
The first preset spacing and the second preset spacing mentioned above may be the same or different. Correspondingly, the first preset difference threshold and the second preset difference threshold mentioned above may be different or the same. The above preset spacing and preset difference threshold may be adjusted at any time according to actual needs, which is not limited in the present application.
S302: obtaining the target spacing according to the candidate spacing corresponding to each parameter.
Optionally, the target spacing is obtained according to a weight of each parameter and the corresponding candidate spacing. The weight corresponding to each parameter may be the same or different, and the weight may be determined according to actual needs. According to the weight of each parameter, the candidate spacing corresponding to each parameter is weighted to obtain the target spacing.
Exemplarily, if the candidate spacing obtained by the data of the target torque of the operation disc of the intelligent operation device is 10 cm, the candidate spacing obtained by the data of the deviation parameter of the intelligent operation device is 9 cm, the candidate spacing obtained by the data of the positioning parameter of the intelligent operation device is 8 cm, and the weight corresponding to each parameter is 1/3, then the three candidate spacing mentioned above are weighted and averaged to obtain a target spacing of 9 cm.
By assigning the weight to each parameter and obtaining the target spacing based on the weight and the candidate spacing corresponding to the parameter, the influence of each parameter on the target spacing may be flexibly adjusted according to the actual needs, and under the consideration of the degree of influence of a number of parameters, a comprehensive analysis is carried out to more accurately obtain the target spacing that matches with the actual demand, so as to more accurately improve the operation efficiency as far as possible under the circumstance of guaranteeing the operation effect.
Optionally, a candidate spacing corresponding to a parameter with a highest priority is used as the target spacing according to a priority of each parameter. The priority of each parameter may be determined according to actual needs, and the present application does not limit this.
Exemplarily, if the priority of the above three parameters is that the average torque of the operation disc of the intelligent operation device > the deviation parameter of the intelligent operation device > the positioning parameter of the intelligent operation device, the candidate spacing obtained from the data of the deviation parameter of the intelligent operation device is used as the target spacing.
The manner that determining the target spacing through the priority is possible to determine the main factor affecting the operation effect and the operation efficiency in the presence of multiple parameters, and then to determine the target spacing based only on the candidate spacing corresponding to that main factor, thereby adjusting the operation effect, or, the operation efficiency, more quickly.
Optionally, the minimum candidate spacing among the candidate spacing corresponding to each parameter is used as the target spacing, and continuing with the above example, the candidate spacing of 8 cm obtained from the positioning parameter data of the intelligent work device is taken as the target spacing. In the implementation, it is possible to achieve the purpose of adjusting the spacing between the first running trajectory and the second running trajectory by as small a magnitude as possible, thereby preventing the problem of the uneven operation result that arises from adjusting the target spacing by too large a margin each time when operating the  area to be operated.
Optionally, the maximum candidate spacing among the candidate spacing corresponding to each parameter is used as the target spacing, and continuing with the above example, the candidate spacing of 9 cm obtained from the data of the average torque of the operation disc of the intelligent operation device is taken as the target spacing. In the implementation, the purpose of adjusting the distance between the first running trajectory and second running trajectory based on the parameter with the largest adjustment magnitude may be achieved, thereby ensuring that the adjustment of the separation may make the operating capability of the target operation device more match the required operating capability of the operation object, thereby improving the operation effect or the operation efficiency.
Optionally, if an average value of the candidate spacing corresponding to each parameter is used as the target spacing, the target spacing is 9 cm. In the implementation, the purpose of considering the target spacing indicated by all current parameters in a balanced manner may be achieved, thereby more accurately obtaining the target spacing that matches the actual needs, and more accurately improving the operation effect as much as possible while ensuring the operation efficiency.
Implementation 2, the target spacing of the required separation between the second running trajectory and the first running trajectory may also be obtained according to the operating parameter in the following way:
if the operating parameter includes at least two parameters, determining a target parameter from the at least two parameters according to a priority of each parameter.
Continuing with taking the example that the priority of each parameter is that the target torque of the operation disc of the intelligent operation device > the deviation parameter of the intelligent operation device > the positioning parameter of the intelligent operation device, firstly, the operating data corresponding to multiple operating parameters is obtained, and then the operating data corresponding to the operating parameter with the highest priority id determined according to the priority of each parameter, the operating data corresponding to the operating parameter with  the highest priority is used as the target parameter. The target parameter is used to determine the candidate spacing in the aforementioned method embodiment.
In the implementation, only the candidate spacing corresponding to the parameter with the highest priority (i.e., the target parameter) needs to be obtained according to the priority of each parameter, and there is no need to calculate the candidate spacing for each parameter. After determining the candidate spacing, the target spacing may be obtained according to the candidate spacing. Through the implementation, the computation burden of obtaining the target spacing may be reduced, and the efficiency of adjusting the separation of the intelligent operation device may be improved.
Implementation B: the operating parameter includes one parameter.
The candidate spacing corresponding to the parameter is determined according to the parameter, and the candidate spacing is used as the target spacing. The method for determining the candidate spacing is the same as in Implementation A, and will not be repeated here.
The control method for the intelligent operation device provided by the embodiment of the present application considers a plurality of operating parameters for different scenes existing in the operation process in order to determine a target spacing of a required separation between the second running trajectory and the first running trajectory for different scenes, and then adjusts a size of an area that needs to repeat operation in the subsequent operation of the intelligent operation device according to the target spacing, so as to be able to improve the operation effect for the scene in which the operation effect is poor, and to be able to improve the operation efficiency for the scene in which the operation effect is better. In addition, the above method may flexibly set the method for adjusting the target spacing by considering the priority between various operating parameters to adapt to different practical needs.
For ease of understanding, the following takes an example that the executing entity is the intelligent operation device, the intelligent operation device is the lawn mower, the operating parameter includes three parameters that the target torque of the operation disc of the intelligent operation device, the deviation  parameter of the intelligent operation device, and the positioning parameter of the intelligent operation device, and using the above Implementation 1 as an example, the control method for the intelligent operation device referred to in the present application is provided. FIG. 4 is another flow schematic diagram of a control method for an intelligent operation device provided by an embodiment of the present application. As illustrated in FIG. 4, the method may include the following steps.
S401: obtaining an operating parameter of an intelligent operation device.
The intelligent operation device obtains torque data (i.e. operating data) of the operation disc in the first running trajectory at a preset time interval, obtains the average torque of the intelligent operation device in the first running trajectory according to these torque data, and uses the average torque as the target torque of the operation disc of the intelligent operation device. For example, in the embodiment, the target torque is 900.
The intelligent operation device obtains the deviation of the first running trajectory between the actual running trajectory of the intelligent operation device and the preset running trajectory, and uses the proportion of the length of the deviation path in the length of the preset running trajectory as the deviation parameter of the intelligent operation device. For example, in the embodiment, the deviation parameter is 10%.
The intelligent operation device obtains the number of the satellite and the strength of satellite signal when the positioning element of the intelligent operation device receives the satellite positioning message in the first running trajectory, and then obtains the positioning parameter of the intelligent operation device according to the number of the satellite and the strength of satellite signal. For example, in the embodiment, if the number of all satellites is 10, and the number of the satellite that the intelligent operation device can receive is 5, and the strength of the satellite signal is 0.7, the weight of the number of the satellite is 50%, the positioning parameter is equal to the weight of the number of satellite multiplied by the strength of the satellite signal, and the obtained positioning parameter is 0.35.
That is, the corresponding operating parameters of the intelligent operation  device are 900, 10%, and 0.35.
S402: obtaining a candidate spacing of a required separation between a second running trajectory and a first running trajectory according to the operating parameter.
Taking the candidate spacing obtained through the data range as an example, the range of the average torque of the operation disc of the intelligent operation device may be 0 to 1000, the corresponding first data range may be (20, 700] , the second data range may be (700, 800] , and the third data range may be (800, 1000] ; the range of the deviation parameter of the intelligent operation device is 0%to 100%, the corresponding first data range may be [0%, 10%) , the second data range may be [10%, 20%) , and the third data range may be [20%, 100%] ; the range of the positioning parameter of the intelligent operation device may be 0 to 1, the corresponding first data range may be [0, 0.3) , the second data range may be [0.3, 0.8) , and the third data range may be [0.8, 1] .
Assuming that the current spacing is 5 cm, when each parameter falls within the corresponding data range, the current spacing is fixedly adjusted by 1 cm on the basic of the current spacing to obtain the candidate spacing of the parameter. That is, the current spacing is reduced by 1 cm to obtain the candidate spacing corresponding to the average torque of the operation disc of the intelligent operation device of 4 cm; the current spacing is expanded by 1 cm to obtain the candidate spacing corresponding to the deviation parameter of the intelligent operation device of 6 cm; and the current spacing is maintained to obtain the candidate spacing corresponding to the positioning parameter of the intelligent operation device of 5 cm.
S403: determining a target spacing of the required separation between the second running trajectory and the first running trajectory according to the candidate spacing.
Taking the example of determining the target spacing from the candidate spacing according to the priority of each parameter, assuming that the priority of the above three parameters is the average torque of the operation disc of the intelligent operation device > the deviation parameter of the intelligent operation device > the  positioning parameter of the intelligent operation device, the candidate spacing of the data with the highest priority is taken as the target spacing, i.e., the target spacing is the candidate spacing of 4 cm corresponding to the average torque of the operation disc of the intelligent operation device.
S404: determining the second running trajectory according to the target spacing.
The intelligent operation device determines a position of the starting point of the second running trajectory according to the target spacing of 4 cm (i.e., the spacing between the second running trajectory and the first running trajectory is 4 cm) , the distance between the position and the first running trajectory is 4 cm, and the second running trajectory may, for example, be parallel to and run in an opposite direction to the first running trajectory.
S405: operating according to the second running trajectory.
The intelligent operation device first moves to the position of the starting point of the second running trajectory mentioned above, and then starts from the position of the starting point, and starts running in a direction opposite to the direction of the first running trajectory.
The detailed content of the method involved in the embodiments of the present application has been explained in detail in the aforementioned embodiments, and will not be repeated here. It should be understood that the embodiments of the present application are only an illustration for a case of the foregoing embodiments by an example, and the implementation of the present application is not limited to the foregoing examples, as long as a method capable of achieving what is designed in the foregoing embodiments is acceptable.
FIG. 5 is a structural schematic diagram of a control apparatus for an intelligent operation device provided by an embodiment of the present application. As illustrated in FIG. 5, including: a first obtaining module 11, a second obtaining module 12, and a control module 13.
The first obtaining module 11 is configured to control the intelligent operation device to operate along a first running trajectory, obtain an operating  parameter of the intelligent operation device, where the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object.
The second obtaining module 12 is configured to obtain a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter, where the second running trajectory is a next running trajectory after the first running track.
The control module 13 is configured to control the intelligent operation device to operate along the second running trajectory according to the target spacing.
In a possible implementation, the operating parameter includes at least one of the following parameters:
a target torque of an operation disc of the intelligent operation device, a deviation parameter of the intelligent operation device, and a positioning parameter of the intelligent operation device, wherein the deviation parameter is used to characterize a degree of deviation of the first running trajectory of the intelligent operation device, and the positioning parameter is used to characterize positioning quality of the intelligent operation device on the first running trajectory. The second obtaining module 12 is specifically configured to, if the operating parameter includes at least two parameters, determine a target parameter from the at least two parameters according to a priority of each parameter, and obtain the target spacing according to the target parameter.
In the implementation, the second obtaining module 12 is specifically configured to obtain a candidate spacing corresponding to each parameter according to each parameter if the operating parameter includes at least two parameters, and obtain the target spacing according to the candidate spacing corresponding to each parameter.
Optionally, the second obtaining module 12 is specifically configured to compare each parameter and a corresponding threshold, adopt a spacing adjustment manner corresponding to a size relationship between each parameter and the corresponding threshold, and obtain the candidate spacing corresponding to the  parameter according to a current spacing.
Optionally, the second obtaining module 12 is specifically configured to determine a data range where the parameter falls into according to the parameter, and a first data range, a second data range, and a third data range corresponding to the parameter, and
adopt a spacing adjustment manner corresponding to a data range where the parameter falls into, and obtain the candidate spacing corresponding to the parameter according to a current spacing. A starting point of the second data range is greater than an endpoint of the first data range, and a starting point of the third data range is greater than an endpoint of the second data range.
In the above two implementations, the second obtaining module 12 is specifically configured to reduce the current spacing to obtain the candidate spacing corresponding to the parameter if a difference between the current spacing and a first preset spacing is greater than a first preset difference threshold, and increase the current spacing to obtain the candidate spacing corresponding to the parameter if a difference between the current spacing and a second preset spacing is greater than a second preset difference threshold.
In a possible implementation, the second obtaining module 12 is specifically configured to obtain the target spacing according to a weight of each parameter and the corresponding candidate spacing, or, use a candidate spacing corresponding to a parameter with a highest priority as the target spacing according to a priority of each parameter, or, use a minimum candidate spacing among the candidate spacing corresponding to each parameter as the target spacing, or, use a maximum candidate spacing among the candidate spacing corresponding to each parameter as the target spacing, or, use an average value of the candidate spacing corresponding to each parameter as the target spacing.
In a possible implementation, the first obtaining module 11 is specifically configured to obtain operating data of the intelligent operation device on the first running trajectory, and obtain the operating parameter according to the operating data.
The control apparatus for the intelligent operation device provided in the  embodiment of the present application may perform the control method for the intelligent operation device in the above method embodiments, and its realization principle and technical effect are similar and will not be repeated herein.
FIG. 6 is a structural schematic diagram of an electronic device provided by an embodiment of the present application. Where the electronic device is used to perform the previously described control method for an intelligent operation device. The electronic device may, for example, be an intelligent operation device as described previously, or a processing chip in the intelligent operation device, or a device or cloud platform for providing an operational instruction to the intelligent operation device. As illustrated in FIG. 6, the electronic device 600 may include: at least one processor 601, a memory 602, and, in one possible implementation, a communication interface 603.
The memory 602 is configured to store a program. Specifically, the program may comprise a program code, the program code includes a computer operation instruction.
The memory 602 may comprise a high-speed RAM memory or may also comprise a non-volatile memory (non-volatile memory) , such as at least one magnetic disk memory.
The processor 601 is configured to execute the computer-executable instruction stored in the memory 602 to implement the method described in the aforementioned method embodiments. Where the processor 601 may be a CPU, or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , or one or more integrated circuits configured to implement the embodiments of the present application.
Optionally, the processor 601 may communicate and interact with an external device through the communication interface 603. When the electronic device is a device or a cloud platform for providing an operation instruction to the intelligent operation device, the external device referred to herein may, for example, be the intelligent operation device.
In a specific implementation, if the communication interface 603, the  memory 602, and the processor 601 are implemented independently, the communication interface 603, the memory 602, and the processor 601 may be connected to each other via a bus and complete communication with each other. The bus can be an industry standard architecture (Industry Standard Architecture, ISA) bus, a peripheral component (Peripheral Component, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus. The bus may be classified as an address bus, a data bus, a control bus, etc., but this does not mean that there is only one bus or one type of bus.
Optionally, in a specific implementation, if the communication interface 603, the memory 602, and the processor 601 are integrated and implemented on a single chip, the communication interface 603, the memory 602, and the processor 601 may complete the communication through an internal interface.
The present application also provides a computer-readable storage medium, the computer-readable storage medium may include: a USB flash drive, a removable hard disk drive, a read-only memory (ROM, Read-Only Memory) , a random access memory (RAM, Random Access Memory) , a magnetic disk, or a compact disc and other kinds of media that can store a program code, and in particular, the computer-readable storage medium is stored with a program instruction, and the program instruction is used in the method in the above embodiments.
The present application also provides a computer program product that includes an execution instruction that are stored in a readable storage medium. The at least one processor of the electronic device may read the execution instruction from the readable storage medium, and the at least one processor executes the execution instruction to enable the electronic device to implement the control method for the intelligent operation device provided by the various embodiments described above.
Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application, not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, a person of ordinary skill in the art should understand that it is still possible to make a modification to the technical solutions as recorded in the foregoing  embodiments, or make an equivalent replacement of some or all of the technical features therein; and such modification or replacement do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the various embodiments of the present application.

Claims (13)

  1. A control method for an intelligent operation device, comprising:
    controlling the intelligent operation device to operate along a first running trajectory, obtaining an operating parameter of the intelligent operation device, wherein the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object;
    obtaining a target spacing of a required separation between a second running trajectory and the first running trajectory according to the operating parameter, wherein the second running trajectory is a next running trajectory after the first running track; and
    controlling the intelligent operation device to operate along the second running trajectory according to the target spacing.
  2. The method according to claim 1, wherein the operating parameter comprises at least one of the following parameters:
    a target torque of an operation disc of the intelligent operation device, a deviation parameter of the intelligent operation device, and a positioning parameter of the intelligent operation device, wherein the deviation parameter is used to characterize a degree of deviation of the first running trajectory of the intelligent operation device, and the positioning parameter is used to characterize positioning quality of the intelligent operation device on the first running trajectory.
  3. The method according to claim 2, wherein the obtaining the target spacing of the required separation between the second running trajectory and the first running trajectory according to the operating parameter comprises:
    if the operating parameter comprises at least two parameters, obtaining a candidate spacing corresponding to each parameter according to each parameter; and
    obtaining the target spacing according to the candidate spacing corresponding to each parameter.
  4. The method according to claim 3, wherein the obtaining the candidate  spacing corresponding to each parameter according to each parameter comprises:
    comparing each parameter with a corresponding threshold; and
    adopting a spacing adjustment manner corresponding to a size relationship between each parameter and the corresponding threshold, and obtaining the candidate spacing corresponding to the parameter according to a current spacing.
  5. The method according to claim 3 or 4, wherein the obtaining the candidate spacing corresponding to each parameter according to each parameter comprises:
    determining a data range where the parameter falls into according to the parameter, and a first data range, a second data range, and a third data range corresponding to the parameter; wherein a starting point of the second data range is greater than an endpoint of the first data range, and a starting point of the third data range is greater than an endpoint of the second data range; and
    adopting a spacing adjustment manner corresponding to a data range where the parameter falls into, and obtaining the candidate spacing corresponding to the parameter according to a current spacing.
  6. The method according to claim 4 or 5, wherein if the spacing adjustment manner is to reduce the current spacing, the obtaining the candidate spacing corresponding to the parameter according to the current spacing comprises:
    if a difference between the current spacing and a first preset spacing is greater than a first preset difference threshold, reducing the current spacing to obtain the candidate spacing corresponding to the parameter; and
    if the spacing adjustment manner is to increase the current spacing, the obtaining the candidate spacing corresponding to the parameter according to the current spacing comprises:
    if a difference between the current spacing and a second preset spacing is greater than a second preset difference threshold, increasing the current spacing to obtain the candidate spacing corresponding to the parameter.
  7. The method according to any one of claims 3 to 5, wherein the obtaining the target spacing according to the candidate spacing corresponding to each parameter comprises:
    obtaining the target spacing according to a weight of each parameter and the corresponding candidate spacing; or
    using a candidate spacing corresponding to a parameter with a highest priority as the target spacing according to a priority of each parameter; or
    using a minimum candidate spacing among the candidate spacing corresponding to each parameter as the target spacing; or
    using a maximum candidate spacing among the candidate spacing corresponding to each parameter as the target spacing; or
    using an average value of the candidate spacing corresponding to each parameter as the target spacing.
  8. The method according to claim 2, wherein the obtaining the target spacing of the required separation between the second running trajectory and the first running trajectory according to the operating parameter comprises:
    if the operating parameter comprises at least two parameters, determining a target parameter from the at least two parameters according to a priority of each parameter; and
    obtaining the target spacing according to the target parameter.
  9. The method according to any one of claims 1 to 8, wherein the obtaining the operating parameter of the intelligent operation device comprises:
    obtaining operating data of the intelligent operation device on the first running trajectory; and
    obtaining the operating parameter according to the operating data.
  10. A control apparatus for an intelligent operation device, comprising:
    a first obtaining module, configured to control the intelligent operation device to operate along a first running trajectory, obtain an operating parameter of the intelligent operation device, wherein the operating parameter characterizes an operation condition of the intelligent operation device on the first running trajectory for an operation object;
    a second obtaining module, configured to obtain a target spacing of a required separation between a second running trajectory and the first running trajectory  according to the operating parameter, wherein the second running trajectory is a next running trajectory after the first running track; and
    a control module, configured to control the intelligent operation device to operate along the second running trajectory according to the target spacing.
  11. An electronic device, comprising: a processor, and a memory communicatively connected with the processor;
    wherein the memory has a computer executable instruction stored therein; and
    the processor executes the computer-executable instruction stored in the memory to implement the method according to any one of claims 1 to 9.
  12. A computer readable storage medium, wherein the computer readable storage medium stores a computer-executable instruction, wherein when the computer-executable instruction is executed by a processor, the control method for an intelligent operation device according to any one of claims 1 to 9 is implemented.
  13. A computer program product, comprising a computer program, wherein when the computer program is executed by a processor, the method according to any one of claims 1 to 9 is implemented.
PCT/CN2023/123802 2022-10-10 2023-10-10 Control method and apparatus for intelligent operation device, device, medium and program product WO2024078499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211232852.4 2022-10-10
CN202211232852.4A CN115511916A (en) 2022-10-10 2022-10-10 Intelligent operation equipment control method, device, equipment, medium and program product

Publications (1)

Publication Number Publication Date
WO2024078499A1 true WO2024078499A1 (en) 2024-04-18

Family

ID=84507253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123802 WO2024078499A1 (en) 2022-10-10 2023-10-10 Control method and apparatus for intelligent operation device, device, medium and program product

Country Status (2)

Country Link
CN (1) CN115511916A (en)
WO (1) WO2024078499A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115511916A (en) * 2022-10-10 2022-12-23 未岚大陆(北京)科技有限公司 Intelligent operation equipment control method, device, equipment, medium and program product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985400A (en) * 2017-12-11 2018-05-04 中联重机股份有限公司 Operating area paths planning method and device
CN110018686A (en) * 2019-03-26 2019-07-16 宁波大叶园林设备股份有限公司 A kind of paths planning method of intelligent grass-removing
WO2020158295A1 (en) * 2019-02-01 2020-08-06 ヤンマー株式会社 Target route generation system for work vehicle
JP2020149472A (en) * 2019-03-14 2020-09-17 ヤンマーパワーテクノロジー株式会社 Route generation system
CN112896145A (en) * 2021-03-10 2021-06-04 浙江三一装备有限公司 Crawler type working machine control method and device and crawler type working machine
CN115511916A (en) * 2022-10-10 2022-12-23 未岚大陆(北京)科技有限公司 Intelligent operation equipment control method, device, equipment, medium and program product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451960A (en) * 2018-11-07 2019-03-12 王洋 A kind of weeder parameter determination method
CN110244721B (en) * 2019-06-05 2022-04-12 杭州飞步科技有限公司 Automatic driving control method, device, equipment and storage medium
CN111854744A (en) * 2020-07-17 2020-10-30 无锡卡尔曼导航技术有限公司 Operation method of GNSS single-point positioning and inertial navigation mower
CN114600622A (en) * 2022-03-14 2022-06-10 未岚大陆(北京)科技有限公司 Traveling path planning method, control device, mower and self-moving system
CN114830911B (en) * 2022-05-19 2023-08-01 苏州大学 Intelligent weeding method, intelligent weeding device and storage medium
CN114947627B (en) * 2022-08-01 2022-11-22 深圳市云鼠科技开发有限公司 Determination method, device, equipment and storage medium for initializing IMU of sweeper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985400A (en) * 2017-12-11 2018-05-04 中联重机股份有限公司 Operating area paths planning method and device
WO2020158295A1 (en) * 2019-02-01 2020-08-06 ヤンマー株式会社 Target route generation system for work vehicle
JP2020149472A (en) * 2019-03-14 2020-09-17 ヤンマーパワーテクノロジー株式会社 Route generation system
CN110018686A (en) * 2019-03-26 2019-07-16 宁波大叶园林设备股份有限公司 A kind of paths planning method of intelligent grass-removing
CN112896145A (en) * 2021-03-10 2021-06-04 浙江三一装备有限公司 Crawler type working machine control method and device and crawler type working machine
CN115511916A (en) * 2022-10-10 2022-12-23 未岚大陆(北京)科技有限公司 Intelligent operation equipment control method, device, equipment, medium and program product

Also Published As

Publication number Publication date
CN115511916A (en) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024078499A1 (en) Control method and apparatus for intelligent operation device, device, medium and program product
US11425857B2 (en) Work machine, control device and control program
US11301992B2 (en) Information processing device, water-supply system, information processing system and non-transitory computer readable medium storing program
US20210076563A1 (en) Automatic lawnmower
EP2767150B1 (en) Improved robotic work tool
US20220197295A1 (en) Robotic mower, and control method thereof
JP2019110790A (en) Combine control system
CN112040763A (en) Adaptive control of lawn mowers
CN114600622A (en) Traveling path planning method, control device, mower and self-moving system
US11882787B1 (en) Automatic sensitivity adjustment for an autonomous mower
JP2019110782A (en) Travel route calculation system
JP7155096B2 (en) Automatic driving route generation system
CN114521384B (en) Mowing method and system of intelligent mower
CN112868366A (en) Automatic travel control system, automatic travel route generation system, and combine
JP7460502B2 (en) Route setting device, route setting method, storage medium and program
CN115606393A (en) Mowing method and automatic mower
US11849668B1 (en) Autonomous vehicle navigation
US20240168496A1 (en) Server device
CN112558597B (en) Self-moving equipment
CN112462770B (en) Method for determining and determining boundaries
CN111190209A (en) Parallel cutting method and device for mower and mower
WO2023181188A1 (en) Autonomous lawnmower
WO2023181189A1 (en) Autonomous lawn mower
EP4272533A1 (en) Intelligent mower and control method and system therefor, and storage medium
CN112799388A (en) Working method of self-moving equipment and self-moving equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876701

Country of ref document: EP

Kind code of ref document: A1