WO2024078135A1 - 拓扑组网识别方法、装置、电子设备及存储介质 - Google Patents

拓扑组网识别方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024078135A1
WO2024078135A1 PCT/CN2023/113787 CN2023113787W WO2024078135A1 WO 2024078135 A1 WO2024078135 A1 WO 2024078135A1 CN 2023113787 W CN2023113787 W CN 2023113787W WO 2024078135 A1 WO2024078135 A1 WO 2024078135A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
alarm
wavelength
information
unit
Prior art date
Application number
PCT/CN2023/113787
Other languages
English (en)
French (fr)
Inventor
王宇杰
杨铭如
林桂香
陈作潮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024078135A1 publication Critical patent/WO2024078135A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of communication technology, and in particular to a topology networking identification method, device, electronic equipment and storage medium.
  • the entire fronthaul link is roughly divided into the building baseband unit (BBU) side equipment + pigtail, near-end wavelength splitter, trunk fiber, remote wavelength splitter, and remote radio unit (RRU) side equipment + pigtail.
  • BBU building baseband unit
  • RRU remote radio unit
  • the current topology network identification method is based on expert rules, especially based on the transmission distance from the RF unit to the connected baseband unit BBU port and the wavelength of the optical module. According to the principle that the difference in the corresponding transmission distance of any two RF units is not greater than the empirical threshold and the corresponding optical module wavelengths are different, multiple RF units are divided into a wavelength division device group. This identification method is highly dependent on the measurement accuracy of the transmission distance. In application scenarios such as link failure and baseband unit connection to multiple sets of wavelength division equipment, it is impossible to quickly obtain the topology network diagram of the wavelength division equipment, and it is impossible to guarantee the accuracy and real-time performance of topology network identification, which affects the maintenance convenience of the network unit.
  • Embodiments of the present invention provide a topology networking identification method, device, electronic device and storage medium.
  • a topology networking identification method includes: obtaining wavelength information of multiple baseband units and radio frequency units, wherein the wavelength information includes the main wavelength of the optical module between the baseband unit and the radio frequency unit; collecting link alarm information of the radio frequency unit to obtain an alarm set; clustering the alarm set to obtain multiple alarm groups; and according to the wavelength information, dividing the radio frequency unit in the alarm group and the baseband unit connected to the radio frequency unit into the same wavelength division device group.
  • the topology networking identification device includes an acquisition module, a collection module, a processing module and an identification module.
  • the acquisition module is configured to acquire wavelength information of multiple baseband units and radio frequency units, wherein the wavelength information includes the main wavelength of the optical module between the baseband unit and the radio frequency unit.
  • the acquisition module is configured to collect link alarm information of the radio frequency unit to obtain an alarm set.
  • the processing module is configured to cluster the alarm set to obtain multiple alarm groups.
  • the identification module is configured to classify the radio frequency unit in the alarm group and the baseband unit connected to the radio frequency unit into the same wavelength division device group according to the wavelength information.
  • an electronic device provided by an embodiment of the present invention includes a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the computer program to execute the topology networking identification method provided by an embodiment of the present invention.
  • a computer-readable storage medium provided in an embodiment of the present invention stores a computer program, and when the computer program is executed by a processor, the topology networking identification method provided in an embodiment of the present invention is executed.
  • FIG1 is a structural diagram of a topological network provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a flow chart of a topology networking identification method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a specific implementation process of another embodiment of step S2000 in FIG2 ;
  • FIG4 is a schematic diagram of a specific implementation process of another embodiment of step S3000 in FIG2 ;
  • FIG5 is a structural diagram of the alarm group in FIG4 ;
  • FIG. 6 is a schematic diagram of a specific implementation process of another embodiment of step S4000 in FIG. 2
  • FIG. 7 is a schematic diagram of a specific implementation process of another embodiment of step S4300 in FIG. 6 ;
  • FIG8 is a schematic diagram of a specific implementation process of another embodiment of step S4000 in FIG2 ;
  • FIG9 is a schematic diagram of the structure of a topology networking identification device provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • At least one of the following and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one of a, b and c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or plural.
  • the topology networking identification method involved in the embodiment of the present application is based on a centralized wireless access network.
  • CRAN equipment has become the mainstream deployment form of network equipment.
  • the BBU and RRU of the network equipment are connected by optical fiber, and the distance between the BBU and the RRU is relatively far.
  • wavelength division multiplexing (WDM) technology can be used to realize optical fiber multiplexing, that is, multiple radio frequency units multiplex one optical fiber to improve the utilization rate of the optical fiber.
  • the topology network identification method is based on expert rules, especially based on the transmission distance from the RF unit to the connected baseband unit port and the wavelength of the optical module. According to the principle that the difference in the corresponding transmission distances of any two RF units is not greater than the empirical threshold and the corresponding optical module wavelengths are different, multiple RF units are divided into a wavelength division device group.
  • this method currently has the following problems: if the link between the RF unit and the baseband unit is abnormal, the existing topology network identification method cannot obtain the wavelength division device topology network in time because the corresponding transmission distance cannot be collected; secondly, the expert rules are heavily dependent on the empirical threshold of the transmission distance. In practical applications, time delay is usually used to measure the transmission distance of the optical path. This measurement method has large errors and unstable measurement results. The transmission distance error threshold set on this basis is prone to misjudgment of topology network identification. Finally, in a scenario where a baseband unit is connected to multiple sets of wavelength division equipment, the same type of wavelength division equipment can be connected under the same baseband board. The transmission distances of multiple RF units in multiple wavelength division equipment groups are similar and the wavelength ranges of the optical modules are also the same. It is obviously impossible to effectively identify which RF units belong to the same wavelength division equipment group by using only expert rules.
  • the embodiments of the present application provide a topology networking identification method, device, electronic device and computer-readable storage medium, by acquiring wavelength information of multiple baseband units and radio frequency units, wherein the wavelength information includes the main wavelength of the optical module between the baseband unit and the radio frequency unit; collecting link alarm information of the radio frequency unit to obtain an alarm set; clustering The alarm set is processed to obtain multiple alarm groups; the radio frequency units in the alarm group and the baseband units connected to the radio frequency units are divided into the same wavelength division equipment group according to the wavelength information, which can quickly and accurately identify the topology of the wireless access network, thereby improving the accuracy of topology identification and the convenience of maintenance of network units.
  • FIG 2 shows a process of a topology network identification method provided in an embodiment of the present application.
  • the topology network identification method in the embodiment of the present application includes the following steps:
  • S1000 Acquire wavelength information of multiple baseband units and radio frequency units, where the wavelength information includes a main wavelength of an optical module between the baseband unit and the radio frequency unit.
  • the baseband unit and the radio frequency unit are each provided with a one-to-one corresponding optical module
  • the optical module on the baseband unit is connected to the wavelength division device through a pigtail
  • the optical module on the radio frequency unit is also connected to the wavelength division device through a pigtail.
  • the wavelength division devices are then connected through a trunk optical fiber to achieve the connection between the baseband unit and the radio frequency unit.
  • the wavelength division equipment used in the network equipment will standardize the wavelength of the optical module of the RRU port and the BBU port, where different wavelength division equipment has different specifications for the main wavelength of the optical module of the RRU port and the BBU port.
  • the wavelength of the optical module of the RRU port can be 1271nm, 1291nm and 1311nm
  • the wavelength of the optical module of the BBU port can be 1331nm, 1351nm and 1371nm.
  • the network management server can obtain the asset information of the optical modules of multiple baseband units and the optical modules of the radio frequency unit through the query instruction, and then read the wavelength information of the baseband unit and the radio frequency unit, which belongs to the prior art and will not be repeated here.
  • S2000 Collect link alarm information of the radio frequency unit to obtain an alarm set.
  • the RF unit may cause an abnormality in the communication link between the RF unit and the baseband unit due to reasons such as RRU AC power failure, RRU DC power failure, no power on or abnormal operation; optical fiber or cable failure between the BBU and RRU or between the upper and lower RRUs; BBU or RRU optical module failure; RRU or BBU single board hardware failure, etc., and then report the link alarm information of the RF unit, which is collected and stored by the network management server. It is understandable that the network management server can query and store the link alarm information of the RF unit through instructions, and then read the RF unit and reporting time corresponding to the link alarm information, which belongs to the existing technology and will not be repeated here.
  • step S2000 at least includes the following steps:
  • the network management service The device can obtain the link alarm information reported by the radio frequency unit.
  • the specific reasons for the link alarm information are as follows: when the BBU and the lower-level RRU connection link adopts an optical interface, it may be that the optical fiber connector or optical module of the BBU or the lower-level RRU is not plugged in tightly, or the optical fiber link is faulty; in a multi-mode scenario, the BBU interconnection cable is abnormal or the optical module of the BBU interconnection port is faulty; the BBU or the lower-level radio frequency unit is operating abnormally or has a hardware failure.
  • the radio frequency unit actively reports the link alarm information to the network management server so that the network management server can promptly grasp the link status between the radio frequency unit and the baseband unit.
  • the link alarm information of the radio frequency unit includes but is not limited to the radio frequency unit ID, the baseband unit ID connected to the radio frequency unit, the alarm content and the reporting time. Therefore, the link alarm information can be arranged according to the reporting time of the link alarm information to generate an alarm set, which is convenient for analyzing and processing the link alarm information. It is understandable that the link alarm information can be arranged in the positive order according to the chronological order of the reporting time of the link alarm information, and the link alarm information can also be arranged in the reverse order according to the chronological order of the reporting time of the link alarm information, so as to improve the processing efficiency of the network management server for the link alarm information.
  • S3000 Cluster the alarm set to obtain multiple alarm groups.
  • clustering is the use of morphological operators to cluster and merge adjacent similar classification areas.
  • Clustering is a concept in data mining, which is to divide a data set into different classes or clusters according to a specific standard (such as distance), so that the similarity of data objects in the same cluster is as large as possible, and the difference of data objects not in the same cluster is as large as possible. That is, after clustering, data of the same category are gathered together as much as possible, and data of different categories are separated as much as possible.
  • the time interval is used as the sample distance, and the alarm set is clustered to output multiple alarm groups that are highly concentrated in time.
  • the density-based clustering algorithm (Density-Based Spatial Clustering of Applications with Noise, DBSCAN) is adopted in the embodiment of the present application, which is a more representative clustering algorithm. Unlike the partitioning and hierarchical clustering methods, it defines a cluster as the maximum set of density-connected points, can divide areas with sufficiently high density into clusters, and can find clusters of any shape in the spatial database of noise.
  • DBSCAN is a density-based spatial clustering algorithm. It does not need to define the number of clusters, but divides areas with sufficiently high density into clusters and finds clusters of any shape in noisy data. In this algorithm, a cluster is defined as the maximum set of density-connected points. Two important parameters in the algorithm: distance threshold and quantity threshold (minpoints). Through these two parameters, the alarm group can be screened out, that is, the number of link alarm information that meets the distance threshold in the alarm group is greater than the quantity threshold.
  • step S3000 at least includes the following steps:
  • the reporting time of the link alarm information in the same alarm group is made as close as possible, and at the same time, the reporting time difference of the link alarm information in different alarm groups is made as large as possible.
  • S3200 Gather link alarm information whose sample distance is less than or equal to a preset distance threshold, and generate multiple alarm groups.
  • the link alarm information with sample distance less than or equal to the distance threshold can be collected and classified to form an alarm group.
  • network element A reported the link alarm information alm1, alm2, alm3, alm4 and alm5 of different RRUs under its jurisdiction at t1, t1+1, t1+2, t1+3, and t2 (in seconds), where t2>t1+4, and the preset distance threshold is 1S.
  • the time intervals of alm1, alm2, alm3 and alm4 meet the condition of being less than or equal to the preset distance threshold, and the time interval of alm5 is greater than the preset distance threshold, thereby obtaining the alarm group ⁇ alm1, alm2, alm3, alm4 ⁇ .
  • the number of link alarm information in the alarm group is counted through instructions so that the network management server can determine whether the number of link alarm information meets the link alarm information within the sample distance that is greater than or equal to minpoints, that is, the core object in the cluster analysis.
  • the alarm group when the number of link alarm information is less than the preset number threshold, since the alarm group is in the alarm group of the core object and does not belong to the core object, the alarm group needs to be regarded as a noise point in the cluster analysis and removed.
  • the preset number threshold is 2, then when the number of link alarm information is less than 2, the alarm group is removed.
  • the alarm group ⁇ alm1, alm2, alm3, alm4 ⁇ obtained in the above steps has a number of link alarm information of 4, which is greater than the number threshold, so the alarm group is retained.
  • S4000 groups the radio frequency units in the alarm group and the baseband units connected to the radio frequency units into the same wavelength division device group.
  • the alarm group obtained after the cluster analysis in the above steps has a high probability that the RF unit corresponding to the link alarm information and the baseband unit connected to the RF unit are connected to the same set of wavelength division equipment.
  • step S4000 at least includes the following steps:
  • S4100 Determine a baseband unit connected to a radio frequency unit in an alarm group according to a connection relationship between the radio frequency unit and the baseband unit.
  • the data information collected by the RF unit is transmitted to the baseband unit through optical fiber and wavelength division equipment. Therefore, the connection relationship between the RF unit and the baseband unit can be obtained through the data configuration of the network management server.
  • the RF unit corresponding to the link alarm information and the baseband unit connected to the RF unit in the alarm group can be determined.
  • the network management server obtains the connection relationship between the RF unit and the baseband unit through configuration management between the RF unit and the baseband unit, which belongs to the prior art and will not be repeated here.
  • the wavelength information of multiple baseband units and radio frequency units is obtained by the above step S1000, and the wavelength information includes the main wavelength of the optical module between the baseband unit and the radio frequency unit. Therefore, after obtaining the corresponding baseband unit and radio frequency unit in the alarm group, the main wavelength of the optical module between the baseband unit and the radio frequency unit in the alarm group can be obtained by matching through the network element ID. Among them, the matching operation of the wavelength information of the baseband unit and the radio frequency unit is completed by the network management server, which also belongs to the prior art and will not be repeated here.
  • step S4300 at least includes the following steps:
  • the ports of the radio frequency unit and the baseband unit are sorted according to the size of the main wavelength of the optical module.
  • the port sorting set is shown in the following Table 1. As can be seen from Table 1, the ports of the radio frequency unit and the baseband unit are sorted in the order of increasing main wavelength of the optical module, so as to facilitate statistics and calculation of the main wavelength of the optical module.
  • S4320 Calculate the difference in wavelength information between any adjacent ports in the port sorting set.
  • the wavelength division device has strict specifications and requirements for the wavelength of the optical module, and the difference in wavelength information between adjacent ports must be equal to avoid affecting the data configuration and data transmission of the wavelength division device.
  • the difference of each wavelength information is within the preset wavelength range
  • the main wavelengths of the ports of the RF unit and the ports of the baseband unit are arranged in increasing or decreasing order, which meets the wavelength specification of the optical module of the wavelength division device.
  • the difference of each wavelength information is within the preset wavelength range, which can be further limited to the difference of each wavelength information being 20nm.
  • the difference of the wavelength information of the ports of the RF unit and the ports of the baseband unit shown in Table 1 is 20nm, and the RF unit and the baseband unit can be grouped into the same wavelength division device group.
  • the qualified RF units and baseband units are divided into the same wavelength division equipment group, the topological networking is accurately identified, and then the RF units and baseband units are directly stored in the database according to the network element ID, so that the network management server can call and modify the topological networking data.
  • the wavelength division equipment involved in the present application is not limited to 6-wavelength CWDM wavelength division equipment, but can also be 12-wavelength CWDM wavelength division equipment, 18-wavelength CWDM wavelength division equipment, and can also be other wavelength division equipment, such as dense wavelength division multiplexing (Dense Wavelength Division Multiplexing, DWDM) wavelength division equipment, fine wavelength division multiplexing (Lan Wavelength Division Multiplexing, LWDM) wavelength division equipment, etc.
  • dense wavelength division multiplexing Den Wavelength Division Multiplexing, DWDM
  • fine wavelength division multiplexing Lan Wavelength Division Multiplexing
  • step S4000 at least includes the following steps:
  • the RF unit when the RF unit adds link alarm information, it can quickly locate the corresponding wavelength division device group through the RF unit ID and the RRU port identification number to ensure the accuracy of the positioning of the link alarm information of the RF unit. It is understandable that the network management server obtains the newly added link alarm information of the RF unit and obtains the information of the RF unit, which belongs to the prior art and will not be repeated here.
  • the network management server can obtain the link alarm information of the remaining ports of the radio frequency unit in the wavelength division device group.
  • the fault point can be quickly located as the wavelength division device between the radio frequency unit and the baseband unit or the trunk optical fiber between the wavelength division devices, which improves the efficiency of fault analysis and positioning accuracy.
  • the embodiment of the present application obtains wavelength information of multiple baseband units and radio frequency units, wherein the wavelength information includes the main wavelength of the optical module between the baseband unit and the radio frequency unit; collects link alarm information of the radio frequency unit to obtain an alarm set; clusters the alarm set to obtain multiple alarm groups; and according to the wavelength information, groups the radio frequency units in the alarm group and the baseband units connected to the radio frequency units into the same wavelength division device group, thereby being able to quickly and accurately identify the topology of the wireless access network, facilitating rapid and accurate analysis and location of new faults, and improving the accuracy of topology identification and the convenience of maintenance of network units.
  • FIG. 9 is a structural diagram of the topological networking identification device 500 provided in an embodiment of the present application.
  • the entire process of the topological networking identification method provided in an embodiment of the present application involves the following modules in the topological networking identification device 500: an acquisition module 510, a collection module 520, a processing module 530 and an identification module 540.
  • the acquisition module 510 is configured to acquire wavelength information of a plurality of baseband units and radio frequency units, wherein the wavelength information includes a main wavelength of an optical module between the baseband unit and the radio frequency unit;
  • the collection module 520 is configured to collect link alarm information of the radio frequency unit to obtain an alarm set
  • the processing module 530 is configured to cluster the alarm set to obtain multiple alarm groups
  • the identification module 540 is configured to classify the radio frequency units in the alarm group and the baseband units connected to the radio frequency units into the same wavelength division device group according to the wavelength information.
  • FIG10 shows an electronic device 600 provided in an embodiment of the present application.
  • the electronic device 600 includes but is not limited to:
  • Memory 601 configured to store programs
  • the processor 602 is configured to execute the program stored in the memory 601.
  • the processor 602 executes the program stored in the memory 601
  • the processor 602 is configured to execute the above-mentioned topology networking identification method.
  • the processor 602 and the memory 601 may be connected via a bus or other means.
  • the memory 601 is a non-transient computer-readable storage medium that can be used to store non-transient software programs and non-transient computer executable programs, such as the topology networking identification method described in any embodiment of the present application.
  • the processor 602 implements the above-mentioned topology networking identification method by running the non-transient software programs and instructions stored in the memory 601.
  • the memory 601 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application required for at least one function; the data storage area may store and execute the above-mentioned topological networking identification method.
  • the memory 601 may include a high-speed random access memory, and may also include a non-transient memory, such as at least one disk storage device, a flash memory device, or other non-transient solid-state storage device.
  • the memory 601 may optionally include a memory remotely arranged relative to the processor 602, and these remote memories may be connected to the processor 602 via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the non-transient software programs and instructions required to implement the above-mentioned topology networking identification method are stored in the memory 601, and when executed by one or more processors 602, the topology networking identification method provided by any embodiment of the present application is executed.
  • the embodiment of the present application also provides a storage medium storing computer executable instructions, and the computer executable instructions are used to execute the above-mentioned topology networking identification method.
  • the storage medium stores computer executable instructions, which are executed by one or more control processors 602, for example, by a processor 602 in the above-mentioned electronic device 600, so that the above-mentioned one or more processors 602 can execute the topology networking identification method provided in any embodiment of the present application.
  • computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storing information (such as computer readable instructions, data structures, program modules or other data).
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种拓扑组网识别方法、装置、电子设备及存储介质,其中所述方法包括:获取多个基带单元和射频单元的波长信息,其中,波长信息包括基带单元和射频单元之间光模块的主波长(S1000);采集射频单元的链路告警信息,得到告警集合(S2000);聚类处理告警集合,得到多个告警组(S3000);以及根据波长信息,将告警组内的射频单元和与射频单元相连的基带单元分入同一个波分设备组(S4000)。

Description

拓扑组网识别方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为202211245041.8、申请日为2022年10月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信技术领域,特别是涉及一种拓扑组网识别方法、装置、电子设备及存储介质。
背景技术
随着集中式无线接入网(Centralized Radio Access NetWork,CRAN),尤其是在网络中引入无源的波分复用器(Optical Multiplexer Demultiplexer,OMD)后,整个前传链路大致分为室内基带单元(Building Baseband Unite,BBU)侧设备+尾纤、近端波分器、主干光纤、远端波分器、射频单元(Remote Radio Unit,RRU)侧设备+尾纤。由于OMD为无源设备,监控端无法对OMD进行有效建模和监控,进而导致了波分器和主干光纤故障定界定位的困难,给运营商带来了高昂的运维成本。
目前的拓扑组网识别方法是基于专家规则,尤其是基于射频单元到所连基带单元BBU端口的传输距离和光模块波长,按照任意两个射频单元对应传输距离之差不大于经验阈值且对应光模块波长不同原则,将多个射频单元划分入一个波分设备组。这种识别方法高度依赖传输距离的测量精准性,在链路故障、基带单元连接多套波分设备等应用场景中无法快速地获取波分设备的拓扑组网图,无法保证拓扑组网识别的准确性和实时性,影响了网络单元的维护便利性。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种拓扑组网识别方法、装置、电子设备及存储介质。
第一方面,本发明实施例提供的拓扑组网识别方法包括:获取多个基带单元和射频单元的波长信息,其中,所述波长信息包括所述基带单元和所述射频单元之间光模块的主波长;采集所述射频单元的链路告警信息,得到告警集合;聚类处理所述告警集合,得到多个告警组;以及根据所述波长信息,将所述告警组内的所述射频单元和与所述射频单元相连的所述基带单元分入同一个波分设备组。
第二方面,本发明实施例提供的拓扑组网识别装置包括获取模块、采集模块、处理模块和识别模块。获取模块被设置为获取多个基带单元和射频单元的波长信息,其中,所述波长信息包括所述基带单元和所述射频单元之间光模块的主波长。采集模块被设置为采集所述射频单元的链路告警信息,得到告警集合。处理模块被设置为聚类处理所述告警集合,得到多个告警组。识别模块被设置为根据所述波长信息,将所述告警组内的所述射频单元和与所述射频单元相连的所述基带单元分入同一个波分设备组。
第三方面,本发明实施例提供的电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中所述处理器运行所述计算机程序以执行本发明实施例提供的拓扑组网识别方法。
第四方面,本发明实施例提供的计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行本发明实施例提供的拓扑组网识别方法。
附图说明
图1是本申请实施例提供的一种拓扑组网的结构图;
图2是本申请实施例提供的一种拓扑组网识别方法的流程示意图;
图3是图2中步骤S2000的另一实施例的具体实现过程示意图;
图4是图2中步骤S3000的另一实施例的具体实现过程示意图;
图5是图4中告警组的结构图;
图6是图2中步骤S4000的另一实施例的具体实现过程示意图
图7是图6中步骤S4300的另一实施例的具体实现过程示意图;
图8是图2中步骤S4000的另一实施例的具体实现过程示意图;
图9是本申请实施例提供的一种拓扑组网识别装置的结构示意图;以及
图10是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关 系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例涉及的拓扑组网识别方法,是基于集中式无线接入网。目前CRAN设备已经是网络设备的主流部署形态,网络设备的BBU与RRU之间通过光纤连接,而BBU与RRU之间的距离较远,为了节约光纤资源,可以采用波分复用(Wavelength Division Multiplexing,WDM)技术实现光纤复用,即多个射频单元复用一根光纤,以提高了光纤的利用率。如图1所示,本申请实施例提供的一种拓扑组网的结构图可以看出,在CRAN组网引入OMD后,整个前传链路大致分为BBU侧设备+尾纤、近端波分器、主干光纤、远端波分器、RRU侧设备+尾纤。由于OMD无源,网管端上无法对OMD进行有效的建模和监控,进而导致了波分设备和主干光纤的故障难以进行快速的定界定位,给运营商带来了高昂的运维成本。
为了保证网络性能测量系统能监测网络当前运行状态,准确测量网络单元之间的时延值,现有技术中,拓扑组网识别方法是基于专家规则,尤其是基于射频单元到所连基带单元端口的传输距离和光模块波长,按照任意两个射频单元对应传输距离之差不大于经验阈值且对应光模块波长不同原则,将多个射频单元划分入一个波分设备组。但是该方法目前存在以下问题:如果射频单元到基带单元之间链路异常,由于无法采集对应传输距离,现有的拓扑组网识别方法无法及时得到波分设备拓扑组网;其次,专家规则严重依赖传输距离经验阈值。在实际应用中,通常采用时延来测量光路传输距离,这种测量方法误差大且测量结果不稳定,在此基础上设置的传输距离误差阈值,容易带来拓扑组网识别的误判;最后,在一个基带单元连接多套波分设备场景中,同一个基带板下能连接同一种类型波分设备,多个波分设备组的多个射频单元传输距离相近且光模块波长范围也一样,仅使用专家规则显然无法有效识别哪些射频单元同属于一个波分设备组。
基于以上,本申请实施例提供一种拓扑组网识别方法、装置、电子设备和计算机可读存储介质,通过获取多个基带单元和射频单元的波长信息,其中,波长信息包括基带单元和射频单元之间光模块的主波长;采集射频单元的链路告警信息,得到告警集合;聚类处 理告警集合,得到多个告警组;根据波长信息,将告警组内的射频单元和与射频单元相连的基带单元分入同一个波分设备组,能够快速准确地识别出无线接入网的拓扑组网,提高了拓扑组网识别的准确性和网络单元的维护便利性。
请参见图2,图2示出了本申请实施例提供的一种拓扑组网识别方法的流程。如图2所示,本申请实施例的拓扑组网识别方法包括以下步骤:
S1000,获取多个基带单元和射频单元的波长信息,其中,波长信息包括基带单元和射频单元之间光模块的主波长。
可以理解的是,随着CRAN设备的广泛应用,多个射频单元复用一根光纤与基带单元连接。其中,基带单元和射频单元上均设有一一对应的光模块,基带单元上的光模块通过尾纤与波分设备连接,射频单元上的光模块同样通过尾纤与波分设备连接。波分设备之间再通过主干光纤,以实现基带单元和射频单元之间的连接。可以理解的是,采用WDM技术实现光纤复用,提高了BBU与RRU之间的光纤利用率,属于现有技术,此处不再赘述。
可以理解的是,网络设备中采用的波分设备会对RRU端口和BBU端口的光模块波长进行规范,其中不同波分设备对RRU端口和BBU端口的光模块的主波长的规范不同,以波分设备为6波的稀疏波分设备(Coarse Wavelength Division Multiplexer,CWDM)为例,根据6波的CWDM波分设备对光模块波长规范,RRU端口的光模块波长可以为1271nm、1291nm和1311nm,BBU端口的光模块波长可以为1331nm、1351nm和1371nm。可以理解的是,网管服务器能通过查询指令获取多个基带单元的光模块和射频单元的光模块的资产信息,进而读取基带单元和射频单元的波长信息,属于现有技术,此处不再赘述。
S2000,采集射频单元的链路告警信息,得到告警集合。
可以理解的是,在无线网络的运行过程中,射频单元会因为RRU交流掉电、RRU直流掉电、未上电或运行异常;BBU与RRU之间或者上下级RRU之间的光纤或者电缆故障;BBU或RRU光模块故障;RRU或BBU单板硬件故障等原因,导致射频单元与基带单元之间的通信链路发生异常,进而上报射频单元的链路告警信息,并被网管服务器采集和存储。可以理解的是,网管服务器能通过指令查询和存储射频单元的链路告警信息,进而读取链路告警信息对应的射频单元和上报时间,属于现有技术,此处不再赘述。
请参见图3,图3示出了上述步骤S2000的另一实施例的具体实现过程示意图。如图3所示,步骤S2000至少包括以下步骤:
S2100,获取射频单元的链路告警信息。
可以理解的是,在射频单元与基带单元之间的通信链路发生异常的情况下,网管服务 器能获取由射频单元上报的链路告警信息。在实际应用中,导致链路告警信息的具体原因如下:在BBU和下级RRU连接链路采用光接口时,可能是BBU或下级RRU的光纤接头或光模块未插紧,或光纤链路故障;在多模的场景下,BBU互联线缆异常或者BBU互联端口光模块故障;BBU或下级射频单元运行异常或硬件故障。当射频单元与基带单元之间的通信链路发生异常,射频单元主动向网管服务器上报链路告警信息,以使网管服务器及时掌握射频单元与基带单元之间的链路情况。
S2200,根据链路告警信息的上报时间的先后顺序正序或者倒序排列链路告警信息,以生成告警集合。
可以理解的是,射频单元的链路告警信息包括但不仅限于射频单元ID、与射频单元相连的基带单元ID、告警内容以及上报时间。因此,能通过链路告警信息的上报时间对链路告警信息进行排列,生成告警集合,便于对链路告警信息进行分析处理。可以理解的是,能根据链路告警信息的上报时间的先后顺序正序排列链路告警信息,也能根据链路告警信息的上报时间的先后顺序倒序排列链路告警信息,提高网管服务器对链路告警信息的处理效率。
S3000,聚类处理告警集合,得到多个告警组。
可以理解的是,聚类处理是运用形态学算子将临近的类似分类区域聚类并合并。聚类是数据挖掘中的概念,就是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。也即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。本申请实施例中,以时间间隔作为样本距离,通过对告警集合进行聚类处理,输出在时间上高度集中的多个告警组。
可以理解的是,本申请实施例中采用基于密度的聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN),这是一个比较有代表性的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。DBSCAN是一种基于密度的空间聚类算法,它不需要定义簇的个数,而是将具有足够高密度的区域划分为簇,并在有噪声的数据中发现任意形状的簇,在此算法中将簇定义为密度相连的点的最大集合。算法中两个重要参数:距离阈值和数量阈值(minpoints)。通过这两个参数,可以筛选出告警组,即告警组内满足距离阈值的链路告警信息的数量大于数量阈值。
请参见图4,图4示出了上述步骤S3000的另一实施例的具体实现过程示意图。如图 4所示,步骤S3000至少包括以下步骤:
S3100,以时间间隔作为样本距离,对告警集合进行聚类处理,其中,时间间隔等于上报时间与当前时间之差。
可以理解的是,按照时间间隔作为样本距离,把告警集合分割成不同的告警组,使得同一个告警组内的链路告警信息的上报时间尽可能接近,同时,不在同一个告警组内的链路告警信息的上报时间的差距尽可能大。
S3200,汇集样本距离小于等于预设的距离阈值的链路告警信息,生成多个告警组。
可以理解的是,通过预设距离阈值,能将样本距离小于等于距离阈值的链路告警信息进行汇集归类,组成告警组。示例性的,如图5所示,本申请实施例中,网元A分别在t1、t1+1、t1+2、t1+3、t2时刻(单位为s)上报了下辖不同RRU的链路告警信息alm1、alm2、alm3、alm4和alm5,其中t2>t1+4,预设的距离阈值为1S。因此,alm1、alm2、alm3和alm4的时间间隔满足小于等于预设的距离阈值的条件,而alm5的时间间隔大于预设的距离阈值,由此得到告警组{alm1,alm2,alm3,alm4}。
S3300,获取告警组内链路告警信息的数量。
可以理解的是,在生成多个告警组后,通过指令统计告警组内链路告警信息的数量,以便于网管服务器判断链路告警信息的数量是否满足样本距离内链路告警信息的数量大于等于minpoints的链路告警信息,即聚类分析中的核心对象。
S3400,在链路告警信息的数量小于预设的数量阈值的情况下,去除告警组。
可以理解的是,在链路告警信息的数量小于预设的数量阈值的情况下,由于该告警组与核心对象的告警组内,且不属于核心对象,故需要把该告警组视为聚类分析中的噪声点,并对其进行去除处理。示例性的,预设的数量阈值取值为2,则在链路告警信息的数量小于2的情况下,去除该告警组。上述步骤中获取的告警组{alm1,alm2,alm3,alm4},链路告警信息的数量为4,大于数量阈值,则该告警组予以保留。
可以理解的是,上述步骤S3100至S3400,等效于在密度聚类分析中设置邻域参数(e=1,minPts=2),其中,e为距离阈值,minPts为数量阈值。
S4000,根据波长信息,将告警组内的射频单元和与射频单元相连的基带单元分入同一个波分设备组。
可以理解的是,由上述步骤的聚类分析后获取的告警组,其链路告警信息所对应的射频单元、与射频单元相连的基带单元大概率连接到同一套波分设备上。为确保射频单元、射频单元连接到同一波分设备,需要通过分析射频单元的光模块与射频单元的光模块的主 波长,判断是否满足波分设备的光模块波长规范。
请参见图6,图6示出了上述步骤S4000的另一实施例的具体实现过程示意图。如图6所示,步骤S4000至少包括以下步骤:
S4100,根据射频单元和基带单元的连接关系,确定与告警组内的射频单元相连的基带单元。
可以理解的是,由射频单元采集的数据信息通过光纤和波分设备传送到基带单元,因此,射频单元和基带单元的连接关系能通过网管服务器的数据配置获得。通过获取告警组,能确定与链路告警信息对应的射频单元,以及与告警组内的射频单元相连的基带单元。应该理解的是,网管服务器通过射频单元和基带单元之间配置管理,获取射频单元和基带单元的连接关系属于现有技术,此处不再赘述。
S4200,匹配基带单元和射频单元的波长信息。
可以理解的是,由上述步骤S1000获取了多个基带单元和射频单元的波长信息,并且,波长信息包括基带单元和射频单元之间光模块的主波长。因此,在获取告警组内对应的基带单元和射频单元后,能通过网元ID进行匹配,获取告警组内基带单元和射频单元之间光模块的主波长。其中,基带单元和射频单元的波长信息的匹配操作由网管服务器完成,同样属于现有技术,此处不再赘述。
S4300,在基带单元和射频单元的波长信息的差值位于预设的波长范围的情况下,将射频单元和基带单元分入同一个波分设备组。
可以理解的是,在获取基带单元和射频单元的波长信息后,需要判断基带单元和射频单元之间光模块的主波长是否满足波分设备的光模块波长规范,进而对告警组内的基带单元和射频单元进行分组处理。
请参见图7,图7示出了上述步骤S4300的另一实施例的具体实现过程示意图。如图7所示,步骤S4300至少包括以下步骤:
S4310,根据波长信息对告警组内射频单元的端口和基带单元的端口进行排序,得到端口排序集合。
可以理解的是,由上述步骤S4200获得与基带单元和射频单元匹配的波长信息后,并根据光模块的主波长的大小对射频单元的端口和基带单元的端口进行排序。示例性的,端口排序集合如下表1所示。如表1可见,按照光模块的主波长递增的顺序,对射频单元的端口和基带单元的端口进行排序,以便于对光模块的主波长进行统计和计算。
表1:端口排序集合表
S4320,计算端口排序集合内的任意相邻端口之间的波长信息的差值。
可以理解的是,在获取端口排序集合后,计算任意相邻端口之间的波长信息的差值,就能确定光模块的主波长是否满足波分设备的光模块波长规范。可以理解的是,波分设备对光模块波长有严格的规范和要求,相邻端口之间的波长信息的差值必须相等,以免影响波分设备的数据配置和数据传送。
S4330,在各个波长信息的差值位于预设的波长范围的情况下,将射频单元和基带单元分入同一个波分设备组。
可以理解的是,在各个波长信息的差值位于预设的波长范围的情况下,则射频单元的端口和基带单元的端口的主波长呈递增或者递减排列,符合波分设备的光模块波长规范。示例性的,各个波长信息的差值位于预设的波长范围,能进一步限定为各个波长信息的差值均为20nm,如表1所示的射频单元的端口和基带单元的端口的波长信息的差值均为20nm,则可将射频单元和基带单元分入同一个波分设备组。
可以理解的是,将符合条件的射频单元和基带单元分入同一个波分设备组,准确地识别出拓扑组网,然后直接按照网元ID把射频单元和基带单元存入数据库,以便于网管服务器对拓扑组网数据进行调用和修改。
可以理解的是,本申请涉及的波分设备不限于6波的CWDM波分设备,还可以是12波的CWDM波分设备、18波的CWDM波分设备,还可以是其它波分设备,如密集型光波复用(Dense Wavelength Division Multiplexing,DWDM)波分设备、细波分复用(Lan Wavelength Division Multiplexing,LWDM)波分设备等。
请参见图8,图8示出了上述步骤S4000的另一实施例的具体实现过程示意图。如图8所示,步骤S4000至少包括以下步骤:
S4400,在射频单元的链路告警信息新增的情况下,根据射频单元定位到与之对应的波分设备组。
可以理解的是,由上述步骤S4300把符合条件的射频单元和基带单元分入同一个波分设备组后,当射频单元新增链路告警信息,能通过射频单元的ID和RRU的端口识别号快速定位到对应的波分设备组,以保证射频单元的链路告警信息的定位精准性。可以理解的是,网管服务器通过获取射频单元的新增链路告警信息,并获取射频单元的信息,属于现有技术,此处不再赘述。
S4500,在波分设备组内射频单元的所有端口均存在链路告警信息的情况下,判定射频单元与基带单元之间的波分设备或波分设备之间的主干光纤发生故障。
可以理解的是,网管服务器在定位到链路告警信息对应的波分设备组后,能获取波分设备组内射频单元的其余端口的链路告警信息信息。在波分设备组内射频单元的所有端口均存在链路告警信息的情况下,则能判断出射频单元与基带单元之间链路出现故障,进而快速定位出故障点为射频单元与基带单元之间的波分设备或波分设备之间的主干光纤,提高了故障分析的效率和定位精准性。
本申请实施例通过获取多个基带单元和射频单元的波长信息,其中,波长信息包括基带单元和射频单元之间光模块的主波长;采集射频单元的链路告警信息,得到告警集合;聚类处理告警集合,得到多个告警组;根据波长信息,将告警组内的射频单元和与射频单元相连的基带单元分入同一个波分设备组,能够快速准确地识别出无线接入网的拓扑组网,便于对新增故障进行快速精准的分析和定位,提高了拓扑组网识别的准确性和网络单元的维护便利性。
参见图9,图9是本申请实施例提供的拓扑组网识别装置500的结构示意图,本申请实施例提供的拓扑组网识别方法的整个流程中涉及拓扑组网识别装置500中的以下模块:获取模块510、采集模块520、处理模块530和识别模块540。
其中,获取模块510,被设置为获取多个基带单元和射频单元的波长信息,其中,波长信息包括基带单元和射频单元之间光模块的主波长;
采集模块520,被设置为采集射频单元的链路告警信息,得到告警集合;
处理模块530,被设置为聚类处理告警集合,得到多个告警组;
识别模块540,被设置为根据波长信息,将告警组内的射频单元和与射频单元相连的基带单元分入同一个波分设备组。
需要说明的是,上述装置的模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
图10示出了本申请实施例提供的电子设备600。该电子设备600包括但不限于:
存储器601,被设置为存储程序;
处理器602,被设置为执行存储器601存储的程序,当处理器602执行存储器601存储的程序时,处理器602被设置为执行上述的拓扑组网识别方法。
处理器602和存储器601可以通过总线或者其他方式连接。
存储器601作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的拓扑组网识别方法。处理器602通过运行存储在存储器601中的非暂态软件程序以及指令,从而实现上述的拓扑组网识别方法。
存储器601可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的拓扑组网识别方法。此外,存储器601可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器601可选包括相对于处理器602远程设置的存储器,这些远程存储器可以通过网络连接至该处理器602。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的拓扑组网识别方法所需的非暂态软件程序以及指令存储在存储器601中,当被一个或者多个处理器602运行时,执行本申请任意实施例提供的拓扑组网识别方法。
本申请实施例还提供了一种存储介质,存储有计算机可执行指令,计算机可运行指令用于执行上述的拓扑组网识别方法。
在一实施例中,该存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器602运行,比如,被上述电子设备600中的一个处理器602运行,可使得上述一个或多个处理器602执行本申请任意实施例提供的拓扑组网识别方法。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本 领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (11)

  1. 一种拓扑组网识别方法,包括:
    获取多个基带单元和射频单元的波长信息,其中,所述波长信息包括所述基带单元和所述射频单元之间光模块的主波长;
    采集所述射频单元的链路告警信息,得到告警集合;
    聚类处理所述告警集合,得到多个告警组;以及
    根据所述波长信息,将所述告警组内的所述射频单元和与所述射频单元相连的所述基带单元分入同一个波分设备组。
  2. 根据权利要求1所述的方法,其中,所述采集所述射频单元的链路告警信息,得到告警集合,包括:
    获取所述射频单元的链路告警信息;以及
    根据所述链路告警信息的上报时间的先后顺序正序或者倒序排列所述链路告警信息,以生成所述告警集合。
  3. 根据权利要求1所述的方法,其中,所述聚类处理所述告警集合,得到多个告警组,包括:
    以时间间隔作为样本距离,对所述告警集合进行聚类处理,其中,所述时间间隔等于所述链路告警信息的上报时间与当前时间之差;以及
    汇集所述样本距离小于等于预设的距离阈值的所述链路告警信息,生成多个所述告警组。
  4. 根据权利要求1所述的方法,还包括:
    获取所述告警组内所述链路告警信息的数量;以及
    在所述链路告警信息的数量小于预设的数量阈值的情况下,去除所述告警组。
  5. 根据权利要求1所述的方法,其中,所述根据所述波长信息,将所述告警组内的所述射频单元和与之相连的所述基带单元分入同一个波分设备组,包括:
    根据所述射频单元和所述基带单元的连接关系,确定与所述告警组内的所述射频单元相连的所述基带单元;
    匹配所述基带单元和所述射频单元的所述波长信息;以及
    在所述基带单元和所述射频单元的所述波长信息的差值位于预设的波长范围的情况下,将所述射频单元和所述基带单元分入同一个波分设备组。
  6. 根据权利要求5所述的方法,其中,所述在所述基带单元和所述射频单元的所述波 长信息的差值位于预设的波长范围的情况下,将所述射频单元和所述基带单元分入同一个波分设备组,包括:
    根据所述波长信息对所述告警集合内所述射频单元的端口和所述基带单元的端口进行排序,得到端口排序集合;
    计算所述端口排序集合内的任意相邻端口之间的所述波长信息的差值;以及
    在各个所述波长信息的差值位于预设的波长范围的情况下,将所述射频单元和所述基带单元分入同一个波分设备组。
  7. 根据权利要求5所述的方法,其中,所述在所述基带单元和所述射频单元的所述波长信息的差值位于预设的波长范围的情况下,将所述射频单元和所述基带单元分入同一个波分设备组,包括:
    在所述基带单元和所述射频单元的所述波长信息的差值为20nm的情况下,将所述射频单元和所述基带单元分入同一个波分设备组。
  8. 根据权利要求1所述的方法,其中,在根据所述波长信息,将所述告警集合内的所述射频单元和与之相连的所述基带单元分入同一个波分设备组之后,还包括:
    在所述射频单元的链路告警信息新增的情况下,根据所述射频单元定位到与之对应的所述波分设备组;以及
    在所述波分设备组内所述射频单元的所有端口均存在链路告警信息的情况下,判定所述射频单元与所述基带单元之间的波分设备或所述波分设备之间的主干光纤发生故障。
  9. 一种拓扑组网识别装置,包括:
    获取模块,被设置为获取多个基带单元和射频单元的波长信息,其中,所述波长信息包括所述基带单元和所述射频单元之间光模块的主波长;
    采集模块,被设置为采集所述射频单元的链路告警信息,得到告警集合;
    处理模块,被设置为聚类处理所述告警集合,得到多个告警组;以及
    识别模块,被设置为根据所述波长信息,将所述告警组内的所述射频单元和与所述射频单元相连的所述基带单元分入同一个波分设备组。
  10. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中所述处理器运行所述计算机程序时以执行权利要求1至8任意一项所述的方法。
  11. 一种计算机可读存储介质,存储有计算机程序,其中所述计算机程序被处理器运行时执行权利要求1至8任意一项所述的方法。
PCT/CN2023/113787 2022-10-12 2023-08-18 拓扑组网识别方法、装置、电子设备及存储介质 WO2024078135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211245041.8A CN117915355A (zh) 2022-10-12 2022-10-12 拓扑组网识别方法、装置、电子设备及存储介质
CN202211245041.8 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024078135A1 true WO2024078135A1 (zh) 2024-04-18

Family

ID=90668698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113787 WO2024078135A1 (zh) 2022-10-12 2023-08-18 拓扑组网识别方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN117915355A (zh)
WO (1) WO2024078135A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029385A1 (zh) * 2011-09-02 2013-03-07 中兴通讯股份有限公司 数据交互系统及方法
WO2020114126A1 (zh) * 2018-12-05 2020-06-11 中兴通讯股份有限公司 光链路诊断方法、及相应的设备和存储介质
CN111355554A (zh) * 2018-12-20 2020-06-30 中兴通讯股份有限公司 路由合波器、路由合波方法、波分路由方法及网络系统
CN112492630A (zh) * 2019-09-11 2021-03-12 中国电信股份有限公司 基站设备的故障预测方法、装置和基站
CN113114357A (zh) * 2021-06-16 2021-07-13 中兴通讯股份有限公司 无源波分设备故障检测方法、装置、服务器和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029385A1 (zh) * 2011-09-02 2013-03-07 中兴通讯股份有限公司 数据交互系统及方法
WO2020114126A1 (zh) * 2018-12-05 2020-06-11 中兴通讯股份有限公司 光链路诊断方法、及相应的设备和存储介质
CN111355554A (zh) * 2018-12-20 2020-06-30 中兴通讯股份有限公司 路由合波器、路由合波方法、波分路由方法及网络系统
CN112492630A (zh) * 2019-09-11 2021-03-12 中国电信股份有限公司 基站设备的故障预测方法、装置和基站
CN113114357A (zh) * 2021-06-16 2021-07-13 中兴通讯股份有限公司 无源波分设备故障检测方法、装置、服务器和存储介质

Also Published As

Publication number Publication date
CN117915355A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
JP7434417B2 (ja) トポロジ処理方法、装置、及びシステム
CN112398680B (zh) 一种故障定界方法及设备
CN109756364A (zh) 一种基于日志分析的微服务性能优化系统和分析方法
US20210026341A1 (en) Network analysis program, network analysis device, and network analysis method
CN111884832B (zh) 一种获取无源网络拓扑信息的方法及相关设备
CN111338888B (zh) 一种数据统计方法、装置、电子设备及存储介质
CN106506226A (zh) 一种故障检测的启动方法及装置
CN108776856A (zh) 一种基于溯源关系的电力台账数据校验方法及装置
CN107204868B (zh) 一种任务运行监控信息获取方法和装置
WO2024078135A1 (zh) 拓扑组网识别方法、装置、电子设备及存储介质
CN104363142A (zh) 一种自动化数据中心网络性能瓶颈分析方法
CN115334381B (zh) 一种光网络无源分光器线路分析管理方法及系统
CN113162801B (zh) 一种告警分析方法、装置及存储介质
CN110995525A (zh) 一种基于维护矩阵的路由器检测方法
CN114860543A (zh) 异常检测方法、装置、设备与计算机可读存储介质
CN102783087A (zh) 基于管理分层的关联告警的方法和装置
CN113965445A (zh) 一种质差根因的定位方法、装置、计算机设备和存储介质
CN109494874A (zh) 一种配电自动化系统
CN111628901A (zh) 一种指标异常检测方法以及相关装置
EP4336883A1 (en) Modeling method, network element data processing method and apparatus, electronic device, and medium
WO2023093527A1 (zh) 告警关联规则生成方法、装置、电子设备和存储介质
RU2787892C1 (ru) Способ, устройство и система обработки топологии
CN110417624B (zh) 请求的统计方法、装置及存储介质
CN116089975A (zh) 一种端口稽核方法及装置
CN117376089A (zh) 一种基于智能云平台的多维监控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876340

Country of ref document: EP

Kind code of ref document: A1