WO2024078090A1 - 用于多联机空调控制的方法及装置、多联机空调、存储介质 - Google Patents

用于多联机空调控制的方法及装置、多联机空调、存储介质 Download PDF

Info

Publication number
WO2024078090A1
WO2024078090A1 PCT/CN2023/108930 CN2023108930W WO2024078090A1 WO 2024078090 A1 WO2024078090 A1 WO 2024078090A1 CN 2023108930 W CN2023108930 W CN 2023108930W WO 2024078090 A1 WO2024078090 A1 WO 2024078090A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
target
standby
indoor
units
Prior art date
Application number
PCT/CN2023/108930
Other languages
English (en)
French (fr)
Inventor
李旭
毛守博
罗建文
徐晶
张义
沈英焱
刘晓凯
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2024078090A1 publication Critical patent/WO2024078090A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a method and device for controlling a multi-split air conditioner, a multi-split air conditioner, and a storage medium.
  • the over-ratio of a multi-split air conditioner is the ratio of the sum of all indoor unit loads to the outdoor unit load.
  • the over-ratio is generally recommended to be between 120% and 150% when selecting and installing. In this case, it is usually not recommended that the user start the load exceeding 100%. If the user turns on more than the specified ratio of indoor units at the same time, the outdoor unit will not be started. This will give users a poor experience and may even lead to complaints.
  • the related technology discloses a control method for a multi-split air conditioner, including: receiving an instruction to turn on a target standby indoor unit; judging whether the target standby indoor unit meets the power-on condition, wherein the power-on condition includes Qin : Qout ⁇ K, Qin is the sum of the load of the target standby indoor unit and the load of all running indoor units, Qout is the load of the outdoor unit, and K is the quota coefficient; if the target standby indoor unit meets the power-on condition, the target standby indoor unit is controlled to be powered on; if the target standby indoor unit does not meet the power-on condition, the target standby indoor unit is controlled to enter a waiting queue until the target standby indoor unit is powered on when the power-on condition is met.
  • the embodiments of the present disclosure provide a method and device for controlling a multi-split air conditioner, a multi-split air conditioner, and a storage medium, which can improve the flexibility of indoor unit operation control when the multi-split air conditioner is over-equipped and the indoor unit is overloaded.
  • a method for controlling a multi-split air conditioner includes: receiving a power-on instruction of a first target indoor unit; when the total operating load of the indoor units is less than or equal to the operating load of the outdoor units, operating the first target indoor unit according to the instruction; when the total operating load of the indoor units is greater than the operating load of the outdoor units, determining whether the priority of the first target indoor unit is greater than or equal to a priority threshold, and if so, operating the first target indoor unit according to the instruction and adjusting one or more of the second target indoor units to standby; wherein the second target indoor unit is a low-priority indoor unit in operation.
  • the method before adjusting one or more of the second target indoor units to standby mode, the method also includes: accumulating the operating loads of one or more of the second target indoor units in order of priority of the indoor units in the second target indoor units from low to high until the accumulated operating load is greater than or equal to the operating load of the first target indoor unit; and determining one or more of the second target indoor units as indoor units that need to be on standby.
  • the method further includes: determining whether the first target indoor unit is in operation or standby according to the indoor ambient temperature, target temperature and operating load of the first target indoor unit.
  • the first target indoor unit controls part of the second target indoor units to standby mode; otherwise, the first target indoor unit is controlled to be in standby mode; wherein, T ao-m is the indoor ambient temperature of the first target indoor unit, T set-m is the target temperature of the first target indoor unit, and Q m is the operating load of the first target indoor unit.
  • ⁇ T m satisfies a first condition, including: ⁇ T m > T 1 ; wherein T 1 is a first temperature difference threshold.
  • Q m satisfies the second condition, including: Q m ⁇ Q z ; wherein Q z is the total operating load of the third target indoor unit; the third target indoor unit is an indoor unit in which the absolute value of the temperature difference between the indoor ambient temperature and the target temperature in the second target indoor unit is less than or equal to the second temperature difference threshold T 2 .
  • the method before adjusting some of the second target indoor units to standby mode, the method further includes: determining a third target indoor unit based on the indoor ambient temperature and target temperature of the second target indoor unit; and determining an indoor unit that needs to be on standby mode based on an operating load of the third target indoor unit.
  • , obtaining the absolute value of the temperature difference of the i-th indoor unit in the second target indoor unit; judging whether ⁇ T mi is less than or equal to T 2 , obtaining the indoor units whose absolute value of the temperature difference is less than or equal to T 2 ; determining all indoor units whose absolute value of the temperature difference is less than or equal to T 2 as the third target indoor unit; wherein, T ao-mi is the indoor ambient temperature of the i-th indoor unit in the second target indoor unit, T set-mi is the target temperature of the i-th indoor unit in the second target indoor unit, i 1,...,n, n is the number of the second target indoor units; and T 2 is the second temperature difference threshold.
  • the minimum p value, p is a positive integer; the first p indoor units in the third target indoor unit are determined as indoor units that need to be on standby; wherein Q m is the operating load of the first target indoor unit.
  • the method also includes: calculating the absolute value of the temperature difference between the indoor ambient temperature and the target temperature of each indoor unit in the second target indoor unit; putting the indoor units whose absolute value of the temperature difference is in the first temperature difference interval on standby; operating the indoor units whose absolute value of the temperature difference is in the second temperature difference interval at a low wind speed; and operating the indoor units whose absolute value of the temperature difference is in the third temperature difference interval at a medium wind speed.
  • the method further includes: sorting all standby indoor units according to the standby operation priority rule; when the standby indoor unit operation conditions are met, operating the standby indoor units in order of standby operation priority from high to low.
  • the device for controlling a multi-split air conditioner includes a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for controlling a multi-split air conditioner when running the program instructions.
  • the multi-split air conditioner includes an air conditioner main body; and the above-mentioned device for controlling the multi-split air conditioner is installed in the air conditioner main body.
  • the storage medium stores program instructions, and when the program instructions are run, the above-mentioned method for controlling a multi-split air conditioner is executed.
  • the method and device for controlling a multi-split air conditioner, a multi-split air conditioner, and a storage medium provided in the embodiments of the present disclosure can achieve the following technical effects:
  • the first target indoor unit can be operated according to the priority of the indoor unit. At the same time, some low-priority indoor units in operation need to be put on standby to avoid overload operation. Priority represents the priority needs of users.
  • Related technology In the case of an indoor unit overloaded and turned on, the first target indoor unit needs to wait on standby and operate in the order of standby. Compared with the related technology, it can improve the flexibility of indoor unit operation control when the multi-split air conditioner is over-equipped and the indoor unit is overloaded and turned on.
  • FIG1 is a schematic diagram of a method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure
  • FIG2 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure
  • FIG3 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure
  • FIG4 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure
  • FIG6 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure.
  • FIG9 is a schematic diagram of another method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a device for controlling a multi-split air conditioner provided in an embodiment of the present disclosure.
  • the terms “upper”, “lower”, “inside”, “middle”, “outside”, “front”, “back” and the like indicate directions or positional relationships based on the directions or positional relationships shown in the accompanying drawings. These terms are mainly intended to better describe the embodiments of the present disclosure and their embodiments, and are not intended to limit the indicated devices, elements or components to have specific directions, or to be constructed and operated in specific directions. Moreover, in addition to being used to indicate directions or positional relationships, some of the above terms may also be used to indicate other meanings. For example, the term “upper” may also be used to indicate a certain dependency or connection relationship in certain circumstances. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure may be understood according to specific circumstances.
  • the character "/" indicates that the preceding and following objects are in an "or" relationship.
  • A/B indicates: A or B.
  • a and/or B means: A or B, or, A and B.
  • correspondence may refer to an association relationship or a binding relationship.
  • correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • Multi-split air conditioners usually choose an over-configuration configuration, that is, the sum of the loads of all indoor units of the multi-split air conditioner is greater than the rated load of the outdoor unit.
  • the disclosed embodiment provides a multi-split air conditioner, comprising a plurality of indoor units, an outdoor unit, and a processor.
  • the processor can control the operation of the plurality of indoor units. In the case of overload startup, the processor can control the operation or standby of the newly started indoor units and the running indoor units, and can control the operation sequence of the standby indoor units.
  • some indoor units are in operation, and the rest are in standby or shutdown.
  • the present disclosure provides a method for controlling a multi-split air conditioner.
  • the law includes:
  • the processor receives a startup instruction of a first target indoor unit.
  • the first target indoor unit is an indoor unit that the user is turning on and running.
  • user A uses a remote control to turn on the indoor unit in the room and sets it to heat at 26°C.
  • the processor can receive the first target indoor unit's turn-on and heating operation instruction.
  • the total operation load of the indoor units is the sum of the load of the operating indoor units, the load of the standby indoor units, and the load of the first target indoor unit.
  • the total operation load of the indoor units is the sum of the load of the operating indoor units and the load of the first target indoor unit.
  • the operation load of the outdoor unit is the rated load of the outdoor unit. If the total operation load of the indoor units is less than or equal to the operation load of the outdoor units, it means that after the first target indoor unit is operated, there will be no overload operation. Therefore, in this case, the first target indoor unit can be operated according to the instruction.
  • the processor determines whether the priority of the first target indoor unit is greater than or equal to the priority threshold. If so, the processor operates the first target indoor unit according to the instruction and adjusts one or more of the second target indoor units to standby; wherein the second target indoor unit is a low-priority indoor unit in operation.
  • the total operating load of the indoor unit is greater than the operating load of the outdoor unit, indicating that the first target indoor unit will be overloaded after operation. Therefore, in this case, the first target indoor unit cannot be directly operated according to the instruction.
  • the priority of the indoor unit is set in advance. For example, the priority of the indoor unit is set using the indoor unit code. The smaller the indoor unit code, the higher the priority. Different indoor units are set with different indoor unit codes.
  • the priority threshold can be set according to user needs. For example, the priority threshold can be set to the priority of the indoor unit with the indoor unit code of 4. Then, the priority of the indoor units with indoor unit codes of 1, 2, and 3 is greater than the priority threshold.
  • a low-priority indoor unit is an indoor unit with a priority less than the priority threshold.
  • a low-priority indoor unit is an indoor unit with a priority less than the priority of the first target indoor unit.
  • the first target indoor unit in the case where the indoor unit is overloaded and turned on, can be operated according to the priority of the indoor unit. At the same time, some low-priority indoor units in operation need to be put on standby to avoid overload operation. Priority represents the priority needs of the user.
  • the first target indoor unit needs to wait on standby and operate in the order of standby.
  • the present method can improve the flexibility of indoor unit operation control when the multi-split air conditioner is overloaded and the indoor unit is overloaded and turned on.
  • the method further includes: the processor accumulates the operating loads of one or more indoor units in the second target indoor unit in order of priority of the indoor units in the second target indoor unit from low to high, until the accumulated operating load is greater than or equal to the operating load of the first target indoor unit.
  • the processor determines one or more indoor units in the second target indoor unit as indoor units that need to be on standby. For example, there are 4 second target indoor units, and the indoor unit codes are 7, 8, 9, and 10 respectively. The smaller the indoor unit code, the higher the priority. Then, the operating load of the indoor unit with the indoor unit code of 10 is accumulated in sequence.
  • Each accumulation is compared with the operating load of the first target indoor unit, and when the accumulated operating load begins to be greater than or equal to the operating load of the first target indoor unit, the accumulation is stopped.
  • the operating load of the first target indoor unit is 3500W
  • the operating load of the indoor unit with the indoor unit code of 10 is 2500W
  • the operating load of the indoor unit with the indoor unit code of 9 is 2500W.
  • the cumulative operating load of the indoor unit with the indoor unit code of 10 and the indoor unit with the indoor unit code of 9 is greater than the operating load of the first target indoor unit. Therefore, the indoor unit with the indoor unit code of 10 and the indoor unit with the indoor unit code of 9 are determined as the indoor units that need to be on standby.
  • the indoor units with high priority are operated first, and the indoor units with the lowest priority are put on standby. While avoiding the overload operation of the multi-split air conditioner, it can be ensured that the indoor units with high user priority requirements are operated first. Thereby, when the multi-split air conditioner is over-equipped and the indoor unit is overloaded and turned on, the flexibility of the indoor unit operation control is improved, and the user experience is improved.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • S201 The processor receives a startup instruction of a first target indoor unit.
  • the processor determines whether the priority of the first target indoor unit is greater than or equal to the priority threshold. If so, the processor accumulates the operating loads of one or more indoor units in the second target indoor units in order of the priorities of the indoor units in the second target indoor units from low to high until the accumulated operating load is greater than or equal to the operating load of the first target indoor unit.
  • S203 The processor determines one or more indoor units among the second target indoor units as indoor units that need to be in standby mode.
  • S204 The processor operates the first target indoor unit according to the instruction and adjusts one or more indoor units of the second target indoor units to standby mode.
  • the second target indoor unit is a running low-priority indoor unit.
  • the first target indoor unit in the case where the indoor unit is overloaded and turned on, can be operated according to the priority of the indoor unit. At the same time, some low-priority indoor units in operation need to be put on standby to avoid overload operation. Priority represents the priority needs of the user. Indoor units with high priorities are run first, and indoor units with the lowest priorities are put on standby. While avoiding overload operation of the multi-split air conditioner, it can be ensured that indoor units with high user priority needs are run first. Thereby, when the multi-split air conditioner is overloaded and the indoor unit is overloaded and turned on, the flexibility of the indoor unit operation control is improved and the user experience is improved.
  • the method further includes: the processor determines whether the first target indoor unit is running or on standby according to the indoor ambient temperature, target temperature and operating load of the first target indoor unit.
  • the indoor ambient temperature is the real-time ambient temperature of the room where the indoor unit is located
  • the target temperature is the set temperature of the indoor unit.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • S301 The processor receives a startup instruction of a first target indoor unit.
  • the processor determines whether the total operating load of the indoor unit is less than or equal to the operating load of the outdoor unit. If yes, execute step S303. Otherwise, execute step S304.
  • S303 The processor operates the first target indoor unit according to the instruction.
  • step S304 the processor determines whether the priority of the first target indoor unit is greater than or equal to the priority threshold. If yes, execute step S305. Otherwise, execute step S306.
  • the processor operates the first target indoor unit according to the instruction and adjusts one or more of the second target indoor units to standby mode; wherein the second target indoor unit is a low-priority indoor unit in operation.
  • S306 The processor determines whether the first target indoor unit is in operation or standby according to the indoor ambient temperature, the target temperature and the operation load of the first target indoor unit.
  • the first target indoor unit in the case where the indoor unit is overloaded and turned on, can be operated according to the priority of the indoor unit. At the same time, some low-priority indoor units in operation need to be put on standby to avoid overload operation. Priority represents the priority needs of the user. Indoor units with high priorities are run first, and indoor units with the lowest priorities are put on standby. While avoiding overload operation of the multi-split air conditioner, it can be ensured that indoor units with high user priority needs are run first. In the case where the priority of the first target indoor unit is low, it can be determined whether to run the first target indoor unit based on the indoor ambient temperature, target temperature and operating load of the first target indoor unit, thereby ensuring the user's comfort to a high degree. Thereby, when the multi-split air conditioner is overloaded and the indoor unit is overloaded and turned on, the flexibility of the indoor unit operation control is improved, and the user experience is improved.
  • T ao-m is the indoor ambient temperature of the first target indoor unit
  • T set-m is the target temperature of the first target indoor unit
  • Q m is the operating load of the first target indoor unit.
  • ⁇ T m satisfies the first condition including: ⁇ T m > T 1 .
  • T 1 is the first temperature difference threshold.
  • the value range of T 1 is [3°C, 7°C].
  • T 1 is 3°C, 5°C or 7°C.
  • Q m satisfies the second condition including: Q m ⁇ Q z .
  • Q z is the total operating load of the third target indoor unit; the third target indoor unit is the indoor unit in which the absolute value of the temperature difference between the indoor ambient temperature and the target temperature in the second target indoor unit is less than or equal to the second temperature difference threshold value T 2.
  • the value range of T 2 is [2°C, 4°C].
  • T 2 is 2°C, 3°C or 4°C.
  • the indoor unit standby with the temperature difference between the indoor ambient temperature and the target temperature less than or equal to a certain value will not make the user feel uncomfortable, and at the same time, the first target indoor unit with a larger temperature difference can be operated preferentially. Therefore, when the multi-split air conditioner is over-equipped and the indoor unit is overloaded and turned on, the flexibility of indoor unit operation control is improved, and the user experience is improved.
  • the method further includes: the processor determines a third target indoor unit according to the indoor ambient temperature and the target temperature of the second target indoor unit.
  • the processor determines the indoor unit that needs to be on standby according to the operating load of the third target indoor unit.
  • the third target indoor unit that needs to be on standby is determined according to the indoor ambient temperature and the target temperature, and the first target indoor unit can be operated preferentially.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • S401 The processor receives a power-on instruction of a first target indoor unit.
  • the processor determines whether the total operating load of the indoor unit is less than or equal to the operating load of the outdoor unit. If yes, execute step S403. Otherwise, execute step S404.
  • S403 The processor operates the first target indoor unit according to the instruction.
  • the processor determines whether the priority of the first target indoor unit is greater than or equal to the priority threshold. If yes, execute step S405. Otherwise, execute steps S406 to S407.
  • the processor operates the first target indoor unit according to the instruction and adjusts one or more of the second target indoor units to standby mode; wherein the second target indoor unit is a low-priority indoor unit in operation.
  • the processor determines whether ⁇ T m satisfies the first condition, and whether Q m satisfies the second condition, if yes, then executes steps S408 to S410. Otherwise, executes step S411.
  • Q m is the operating load of the first target indoor unit.
  • the processor determines a third target indoor unit according to the indoor ambient temperature of the second target indoor unit and the target temperature.
  • S409 The processor determines an indoor unit that needs to be on standby according to the operating load of the third target indoor unit.
  • S410 The processor operates the first target indoor unit according to the instruction and adjusts the indoor units that need to be in standby mode among the second target indoor units to standby mode.
  • the processor controls the first target indoor unit to standby.
  • the first target indoor unit when the indoor unit is overloaded and turned on, the first target indoor unit can be operated according to the priority of the indoor unit. At the same time, some low-priority indoor units in operation need to be put on standby to avoid overload operation. Priority represents the priority of the user. Demand. The indoor units with high priority are run first, and the indoor units with the lowest priority are put on standby. In order to avoid overload of the multi-split air conditioner, the indoor units with high user priority demand can be run first. In the case where the first target indoor unit has a low priority, the third target indoor unit that needs to be put on standby is determined according to the indoor ambient temperature and the target temperature, and the first target indoor unit can be run first, thus ensuring the user's comfort to a high degree. Therefore, when the multi-split air conditioner is over-equipped and the indoor unit is overloaded, the flexibility of indoor unit operation control is improved, and the user experience is improved.
  • the processor determines whether ⁇ T mi is less than or equal to T 2 , and obtains the indoor unit with the absolute value of the temperature difference less than or equal to T 2.
  • the processor determines all indoor units with the absolute value of the temperature difference less than or equal to T 2 as the third target indoor unit.
  • Tao-mi is the indoor ambient temperature of the i-th indoor unit in the second target indoor unit
  • T set-mi is the target temperature of the i-th indoor unit in the second target indoor unit
  • T 2 is the second temperature difference threshold.
  • the processor calculates the indoor unit that needs to be on standby according to the absolute value of the temperature difference of the indoor units in the third target indoor unit from small to large.
  • the minimum p value, p is a positive integer.
  • the processor determines the first p indoor units in the third target indoor unit as the indoor units that need to be on standby. Among them, Q m is the operating load of the first target indoor unit.
  • the absolute values of the temperature differences are 2°C, 3°C, 2.5°C, and 1°C, respectively, and the corresponding operating loads are 2000W, 2500W, 2000W, and 1500W, respectively.
  • Q m 3000W
  • Q 2 2000W
  • Q 3 2000W
  • Q 4 2500W, respectively, according to the order of the absolute value of the temperature difference of the indoor units from small to large.
  • the cumulative sum is calculated in sequence to make The minimum p value is 2. Therefore, the first two indoor units in the third target indoor unit are determined as the indoor units that need to be on standby.
  • the indoor units with a smaller temperature difference on standby will not make the user feel uncomfortable.
  • the first target indoor unit with a larger temperature difference can be operated preferentially. Therefore, when the multi-split air conditioner is over-equipped and the indoor unit is overloaded and turned on, the flexibility of indoor unit operation control is improved, and the user experience is improved.
  • the method further includes: the processor calculates the absolute value of the temperature difference between the indoor ambient temperature of each indoor unit in the second target indoor unit and the target temperature.
  • the processor puts the indoor units whose absolute value of the temperature difference is in the first temperature difference interval into standby mode.
  • the processor runs the indoor units whose absolute value of the temperature difference is in the second temperature difference interval at a low wind speed.
  • the processor runs the indoor units whose absolute value of the temperature difference is in the third temperature difference interval at a medium wind speed.
  • the first temperature difference interval is [T 3 , T 4 )
  • the second temperature difference interval is [T 4 , T 5 )
  • the third temperature difference interval is [T 5 , T 6 ).
  • T 3 is the third temperature difference threshold
  • T 4 is the fourth temperature difference threshold
  • T 5 is the fifth temperature difference threshold
  • T 6 is the sixth temperature difference threshold.
  • the value range of T 3 is [0°C, 1°C].
  • T 3 is 0°C, 0.5°C or 1°C.
  • the value range of T 4 is [1°C, 2°C].
  • T4 is 1°C, 1.5°C or 2°C.
  • the value range of T5 is [2°C, 3°C].
  • T5 is 2°C, 2.5°C or 3°C.
  • the value range of T6 is [3°C, 4°C].
  • T6 is 3°C, 3.5°C or 4°C.
  • the refrigerant When the indoor ambient temperature is close to the target temperature, the refrigerant is redistributed by reducing the wind speed of the indoor unit to ensure that the indoor unit operates with a small load demand. It will not reach the target temperature quickly, enter standby, and then start again after the indoor ambient temperature drops. In this way, it can avoid too large changes in the demand for the entire machine load, which affects the frequency of the compressor and the reliability of the entire machine. Thereby, the reliability of the compressor operation is improved.
  • the method further includes: the processor sorts all the standby indoor units according to the standby operation priority rule.
  • the processor operates the standby indoor units in the order of high to low standby operation priorities.
  • the standby operation priority refers to the order in which all the standby indoor units are operated when the standby indoor unit operation conditions are met. The first one to be operated represents a high standby operation priority, and the later one to be operated represents a low standby operation priority. In this way, when the indoor unit is overloaded and turned on, In the case where the operating conditions of the standby indoor unit are met, the standby indoor unit can be operated from high to low according to the operating priority order of the standby indoor unit.
  • the operating priority represents the user's priority operating needs.
  • Related technologies When the indoor unit is overloaded and turned on, the indoor unit needs to be operated in the standby order after waiting. Compared with the related technologies, this method can operate according to user needs when the multi-split air conditioner is over-equipped and there is a standby indoor unit, thereby improving the flexibility of the standby indoor unit operation control.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • S501 In the case where there are standby indoor units, the processor sorts all the standby indoor units according to the standby operation priority rule.
  • S503 The processor receives a power-on instruction of the first target indoor unit.
  • the processor determines whether the priority of the first target indoor unit is greater than or equal to the priority threshold. If so, the processor operates the first target indoor unit according to the instruction and adjusts one or more of the second target indoor units to standby; wherein the second target indoor unit is a low-priority indoor unit in operation.
  • the standby indoor unit when the indoor unit is overloaded and turned on, and when the operating conditions of the standby indoor unit are met, the standby indoor unit can be operated in descending order of operating priority.
  • the operating priority represents the user's priority operating needs.
  • the first target indoor unit can be operated according to the priority of the indoor unit.
  • some low-priority indoor units in operation need to be put on standby to avoid overload operation.
  • the priority represents the user's priority needs.
  • the multi-split air conditioner when the multi-split air conditioner is overloaded and the indoor unit is overloaded and turned on, it can be operated according to the user's needs, thereby improving the flexibility of indoor unit operation control.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • the processor sorts all the standby indoor units according to the standby operation priority rule.
  • the standby indoor unit when the indoor unit is overloaded and turned on, if the operating conditions of the standby indoor unit are met, the standby indoor unit can be operated in descending order of operation priority.
  • the operation priority represents the user's priority operation demand. Therefore, when the multi-split air conditioner is overloaded and there is a standby indoor unit, it can be operated according to the user's demand, which improves the flexibility of the standby indoor unit operation control.
  • the standby operation priority rules include: the standby operation priority of the first type of standby indoor unit is higher than the standby operation priority of the second type of standby indoor unit.
  • the first type of standby indoor unit is a standby indoor unit that receives a user priority operation instruction during the standby period
  • the second type of standby indoor unit is a standby indoor unit that does not receive a user priority operation instruction during the standby period.
  • the priority operation instruction can be a custom function of the air conditioner. For example, set a standby priority operation button, or set a standby priority operation operation.
  • the standby priority operation operation can be an operation in which the user turns off the indoor unit and then restarts it after it is on standby.
  • the user's issuance of a priority operation instruction means that the user urgently needs the indoor unit to run as soon as possible.
  • the standby indoor unit can operate according to user needs. Thereby, the flexibility of the standby indoor unit operation control is improved, and the user experience is improved.
  • the standby operation priority rule also includes: when there are multiple first-class standby indoor units, the later the time of receiving the user priority operation instruction, the higher the standby operation priority of the corresponding standby indoor unit.
  • the later the user priority operation time is, the greater the user's demand for the standby indoor unit operation, and therefore the higher the standby operation priority.
  • the standby operation priority rule also includes: when there are multiple second-type standby indoor units, the standby operation priority of the standby indoor unit in the room where there is someone is higher than the standby operation priority of the standby indoor unit in the room where there is no one.
  • the presence of someone in the room indicates that the corresponding standby indoor unit has a greater operating demand.
  • the standby operation priority rule also includes: among the second-type standby indoor units in the rooms where people are, the higher the priority of the indoor unit, the higher the standby operation priority.
  • the second-type standby indoor units in the rooms where no one is the higher the priority of the indoor unit, the higher the standby operation priority.
  • the standby indoor unit operation condition includes: the processor calculates the total load of the first q standby indoor units in descending order of standby operation priority.
  • the processor calculates the total load of the first q standby indoor units in descending order of standby operation priority.
  • q is a positive integer.
  • Qdaiyuan Qoutai - Qinianyun
  • Qoutai is the operating load of the outdoor unit
  • Qinianyun is the total load of the running indoor units
  • Qiniandaiu is the load of the uth standby indoor unit
  • u 1, ..., w, w is the number of standby indoor units.
  • the loads are 1500W, 2000W, and 2000W in order of standby operation priority from high to low
  • the operating load of the outdoor unit is 12000W
  • the total load of the running indoor units is 8000W.
  • Qdaiyuan is 4000W, from which it can be calculated that there is a q value that makes Qs ⁇ Qdaiyuan , where q is 1 or 2.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • the processor sorts all the standby indoor units according to the standby operation priority rule.
  • the processor calculates the total load of the first q standby indoor units in descending order of standby operation priority.
  • Q ⁇ u is the load of the u-th standby indoor unit
  • u 1, ..., w
  • w is the number of standby indoor units.
  • step S703 the processor determines whether there is a q value that makes Qs ⁇ Qto be allowed , where q is a positive integer. If yes, step S704 is executed. Otherwise, the processor returns to step S701.
  • Qto be allowed Qouter - Qinner
  • Qouter is the operating load of the outdoor unit
  • Qinner is the total load of the running indoor units.
  • S704 The processor operates the standby indoor unit in order of standby operation priority from high to low.
  • the indoor unit when the indoor unit is overloaded and turned on, and when the rated load of the outdoor unit is greater than the operating load of the operating indoor unit, it can be determined by calculation whether the standby indoor unit is currently allowed to operate.
  • the standby indoor unit When the operating conditions of the standby indoor unit are met, the standby indoor unit can be operated in descending order of operating priority.
  • the operating priority represents the user's priority operating requirements.
  • the multi-split air conditioner is over-equipped and the indoor unit is overloaded and turned on, it can be ensured that the operating indoor unit is not overloaded, and the standby indoor unit can be operated according to the user's needs. Thereby, the flexibility of the standby indoor unit operation control is improved, and the user experience is improved.
  • the processor operates the standby indoor units in order of standby operation priority from high to low, including: the processor calculates the maximum q value that makes Qs ⁇ Qdaiyuan.
  • the processor operates the first q standby indoor units in order of standby operation priority from high to low. For example, there are 3 standby indoor units, and the loads are 1500W, 2000W, and 2000W in order of standby operation priority from high to low, the operating load of the outdoor unit is 12000W, and the total load of the running indoor units is 8000W.
  • Qdaiyuan is 4000W, and there is a q value that makes Qs ⁇ Qdaiyuan, and the maximum q value is 2.
  • the embodiment of the present disclosure provides another method for controlling a multi-split air conditioner, including:
  • the processor sorts all the standby indoor units according to the standby operation priority rule.
  • the processor calculates the total load of the first q standby indoor units in descending order of standby operation priority.
  • Q ⁇ u is the load of the u-th standby indoor unit
  • u 1, ..., w
  • w is the number of standby indoor units.
  • the processor determines whether there is a q value that makes Qs ⁇ Qto be allowed , where q is a positive integer. If yes, then execute steps S804 to S805. Otherwise, return to execute step S801.
  • Qto be allowed Qouter - Qinner
  • Qouter is the operating load of the outdoor unit
  • Qinner is the total load of the running indoor units.
  • S804 The processor calculates and obtains a maximum q value that satisfies Qs ⁇ Q .
  • S805 The processor operates the first q standby indoor units in order of standby operation priority from high to low.
  • the indoor unit when the indoor unit is overloaded and turned on, and when the rated load of the outdoor unit is greater than the operating load of the operating indoor unit, it can be determined by calculation whether the standby indoor unit is currently allowed to operate.
  • the standby indoor unit When the operating conditions of the standby indoor unit are met, the standby indoor unit can be operated in descending order of operating priority.
  • the operating priority represents the user's priority operating requirements.
  • the multi-split air conditioner is over-equipped and the indoor unit is overloaded and turned on, it can be ensured that the operating indoor unit is not overloaded, and the standby indoor unit can be operated according to the user's needs. Thereby, the flexibility of the standby indoor unit operation control is improved, and the user experience is improved.
  • FIG9 Another method for controlling the multi-split air conditioner is shown in FIG9 , including:
  • step S902 determine whether the total operating load of the indoor unit is less than or equal to the operating load of the outdoor unit. If yes, execute step S903. Otherwise, execute step S904. For example, if the operating load of the outdoor unit is 12000W and the total operating load of the indoor unit is 14000W, execute step S904.
  • step S904 determine whether the priority of the first target indoor unit is greater than or equal to the priority threshold. If yes, execute steps S905 to S907. Otherwise, execute steps S908 to S909.
  • the priority of the indoor unit is encoded, and the indoor unit is encoded from small to large according to the priority level. The smaller the code, the higher the priority. For example, the priority threshold is code 3, and the first target indoor unit is code 2, then the priority of the first target indoor unit is greater than the priority threshold. Then, execute steps S905 to S907. For example, the priority threshold is code 3, and the first target indoor unit is code 4, then the priority of the first target indoor unit is less than the priority threshold. Then, execute steps S908 to S909.
  • the second target indoor unit is a low-priority indoor unit in operation.
  • the indoor unit codes are 10, 9, 8, and 7 respectively.
  • the smaller the indoor unit code the higher the priority.
  • the operating load of the first target indoor unit is 3500W
  • the operating load of the indoor unit with the indoor unit code of 10 is 2500W
  • the operating load of the indoor unit with the indoor unit code of 9 is 2500W.
  • the cumulative operating loads of the indoor unit with the indoor unit code of 10 and the indoor unit code of 9 are greater than the operating load of the first target indoor unit.
  • step S906 Determine one or more indoor units in the second target indoor units as indoor units that need to be on standby. For example, according to the example in step S905, determine the indoor unit with the indoor unit code of 10 and the indoor unit with the indoor unit code of 9 as indoor units that need to be on standby.
  • step S907 operate the first target indoor unit according to the instruction and adjust one or more indoor units in the second target indoor unit to standby mode. For example, according to the example in step S906, adjust the indoor unit with the indoor unit code of 10 and the indoor unit with the indoor unit code of 9 to standby mode.
  • ⁇ T m
  • step S909 determine whether ⁇ T m satisfies the first condition, and whether Q m satisfies the second condition. If yes, execute steps S910 to S916. Otherwise, execute step S917.
  • Q m is the operating load of the first target indoor unit.
  • the first condition is ⁇ T m > 3°C
  • the second condition is Q m ⁇ 3500W.
  • ⁇ T m is 11°C and Q m is 2500W
  • steps S910 to S916 For example, ⁇ T m is 11°C and Q m is 4000W, then execute step S917.
  • ⁇ T mi
  • the absolute value of the temperature difference of the i-th indoor unit in the second target indoor unit.
  • T set-mi is the target temperature of the i-th indoor unit in the second target indoor unit
  • i 1,...,n
  • n the number of the second target indoor units.
  • ⁇ T m1 is calculated to be 8°C
  • ⁇ T m2 is 2°C
  • ⁇ T m3 3°C
  • ⁇ T m4 7°C
  • ⁇ T m5 10°C.
  • T 2 is a second temperature difference threshold.
  • T 2 is 3°C.
  • indoor units corresponding to ⁇ T m2 and ⁇ T m3 meet the condition that ⁇ T mi is less than or equal to T 2 .
  • S912 All indoor units whose absolute temperature difference is less than or equal to T 2 are determined as third target indoor units. For example, according to the examples of steps S910 and S911, the indoor units corresponding to ⁇ T m2 and ⁇ T m3 are determined as third target indoor units.
  • the minimum p value, p is a positive integer.
  • the absolute values of temperature difference are 2°C and 3°C respectively, and the corresponding operating loads are 2000W and 1500W respectively.
  • Qm is 3000W
  • S915 Determine the first p indoor units among the third target indoor units as indoor units that need to be on standby. For example, according to the example of step S914, determine the first p indoor units among the third target indoor units as indoor units that need to be on standby.
  • S916 operate the first target indoor unit according to the instruction and adjust the indoor units that need to be in standby mode among the second target indoor units to be in standby mode.
  • the embodiment of the present disclosure provides another device 300 for controlling a multi-split air conditioner, including a processor 100 and a memory 101 storing program instructions.
  • the device may also include a communication interface 102 and a bus 103.
  • the processor 100, the communication interface 102, and the memory 101 may communicate with each other through the bus 103.
  • the communication interface 102 may be used for information transmission.
  • the processor 100 may call the logic instructions in the memory 101 to execute the method for device detection of the above embodiment.
  • logic instructions in the memory 101 described above may be implemented in the form of software functional units and when sold or used as independent products, may be stored in a computer-readable storage medium.
  • the memory 101 can be used to store software programs, computer executable programs, such as program instructions/modules corresponding to the method in the embodiment of the present disclosure.
  • the processor 100 executes the functional application and data processing by running the program instructions/modules stored in the memory 101, that is, implements the method for device detection in the above embodiment.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application required for at least one function; the data storage area may store data created according to the use of the terminal device, etc.
  • the memory 101 may include a high-speed random access memory and may also include a non-volatile memory.
  • the embodiment of the present disclosure provides a multi-split air conditioner, including an air conditioner main body, and the above-mentioned device 300 for controlling the multi-split air conditioner.
  • the device 300 for controlling the multi-split air conditioner is installed on the air conditioner main body.
  • the air conditioner main body includes multiple indoor units, outdoor units, or the air conditioner main body includes multiple indoor units, outdoor units and a control unit.
  • the device 300 for controlling the multi-split air conditioner can be installed on the indoor unit, the outdoor unit or the control unit.
  • the installation relationship described here is not limited to placement inside the product, but also includes installation connections with other components of the product, including but not limited to physical connections, electrical connections or signal transmission connections. It can be understood by those skilled in the art that the device 300 for equipment detection can be adapted to a feasible product main body, thereby realizing other feasible embodiments.
  • An embodiment of the present disclosure provides a computer-readable storage medium storing computer-executable instructions, wherein the computer-executable instructions are configured to execute the above-mentioned method for device detection.
  • the computer-readable storage medium may be a transient computer-readable storage medium or a non-transient computer-readable storage medium. quality.
  • the embodiment of the present disclosure provides a computer program.
  • the computer program When the computer program is executed by a computer, the computer is enabled to implement the above-mentioned method for device detection.
  • An embodiment of the present disclosure provides a computer program product, which includes computer instructions stored on a computer-readable storage medium.
  • the program instructions When executed by a computer, the computer implements the above-mentioned method for device detection.
  • the technical solution of the embodiment of the present disclosure may be embodied in the form of a software product, which is stored in a storage medium and includes one or more instructions for enabling a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method of the embodiment of the present disclosure.
  • the aforementioned storage medium may be a non-transient storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes, or a transient storage medium.
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more associated listings.
  • the term “comprise” and its variants “comprises” and/or including (comprising) refer to the existence of stated features, wholes, steps, operations, elements, and/or components, but do not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components and/or groups of these.
  • the elements defined by the sentence “including a " do not exclude the existence of other identical elements in the process, method or device including the elements.
  • each embodiment may focus on the differences from other embodiments, and the same or similar parts between the embodiments may refer to each other. For the methods, products, etc. disclosed in the embodiments, if they correspond to the method part disclosed in the embodiments, then the relevant parts can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units can be only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection between each other shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated in a processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit.
  • each box in the flowchart or block diagram may represent a module, a program segment, or a portion of code.
  • the module, program segment or part of the code includes one or more executable instructions for realizing the specified logical function.
  • the functions marked in the box can also occur in an order different from that marked in the accompanying drawings. For example, two consecutive boxes can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, which can depend on the functions involved.

Abstract

一种用于多联机空调控制的方法,包括:接收第一目标室内机的开机运行指令;在室内机的总运行负荷小于或等于室外机的运行负荷的情况下,按指令运行第一目标室内机;在室内机的总运行负荷大于室外机的运行负荷的情况下,判断第一目标室内机的优先级是否大于或等于优先级阈值,如果是则按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。该方法能够在多联机空调超配且室内机超负荷开机的情况下,提高室内机运行控制的灵活性。

Description

用于多联机空调控制的方法及装置、多联机空调、存储介质
本申请基于申请号为202211255380.4、申请日为2022年10月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于多联机空调控制的方法及装置、多联机空调、存储介质。
背景技术
多联机空调的超配比为所有室内机负荷之和与室外机负荷之比。为了节省成本,在选型安装时超配比一般会建议在120%~150%。在此种情况下,通常不建议用户开机负荷超过100%,若用户同时开启的室内机超过限定比例,则不启动室外机。这样,给用户带来使用效果体验差,甚至会出现抱怨投诉。
相关技术公开了一种多联机空调的控制方法,包括:接收开启目标待机室内机的指令;判断目标待机室内机是否满足开机条件,其中,开机条件包括Q:Q≤K,Q为目标待机室内机的负荷与所有运行中室内机的负荷之和,Q为室外机的负荷,K为配额系数;若目标待机室内机满足开机条件,则控制目标待机室内机开机;若目标待机室内机不满足开机条件,则控制目标待机室内机进入等待队列,直至目标待机室内机在满足开机条件的情况下开机。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
该技术虽然能够实现在装配多联机空调时,不用限制多联机空调的超配比,也不会出现同时运行的室内机过多,超出室外机的负荷能力的问题。但是相关技术在超负荷开机的情况下,目标室内机需待机等待按待机先后顺序运行,无法按需求进行控制。因此,相关技术在多联机空调超配且室内机超负荷开机的情况下,室内机运行控制的灵活性差。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于多联机空调控制的方法及装置、多联机空调、存储介质,能够在多联机空调超配且室内机超负荷开机的情况下,提高室内机运行控制的灵活性。
在一些实施例中,用于多联机空调控制的方法包括:接收第一目标室内机的开机运行指令;在室内机的总运行负荷小于或等于室外机的运行负荷的情况下,按指令运行第一目标室内机;在室内机的总运行负荷大于室外机的运行负荷的情况下,判断第一目标室内机的优先级是否大于或等于优先级阈值,如果是则按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。
可选地,在将第二目标室内机中的一台或多台室内机调整为待机前,该方法还包括:按第二目标室内机中室内机的优先级从低到高的顺序,累加第二目标室内机中的一台或多台室内机的运行负荷,直至累加的运行负荷大于或等于第一目标室内机的运行负荷;将第二目标室内机中的一台或多台室内机确定为需要待机的室内机。
可选地,在第一目标室内机的优先级小于优先级阈值的情况下,该方法还包括:根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机。
可选地,根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机,包括:计算ΔTm=∣Tao-m-Tset-m∣;如果ΔTm满足第一条件,且,Qm满足第二条件,则按指令运行 第一目标室内机并将第二目标室内机中的部分室内机调整为待机;否则,控制第一目标室内机待机;其中,Tao-m为第一目标室内机的室内环境温度,Tset-m为第一目标室内机的目标温度,Qm为第一目标室内机的运行负荷。
可选地,ΔTm满足第一条件,包括:ΔTm>T1;其中,T1为第一温度差阈值。
可选地,Qm满足第二条件,包括:Qm≤Qz;其中,Qz为第三目标室内机的总运行负荷;第三目标室内机为第二目标室内机中室内环境温度与目标温度的温差绝对值小于或等于第二温度差阈值T2的室内机。
可选地,在将第二目标室内机中的部分室内机调整为待机前,该方法还包括:根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机;根据第三目标室内机的运行负荷确定需要待机的室内机。
可选地,根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机,包括:计算ΔTmi=∣Tao-mi-Tset-mi∣,获得第二目标室内机中第i台室内机的温差绝对值;判断ΔTmi是否小于或等于T2,获得温差绝对值小于或等于T2的室内机;将所有温差绝对值小于或等于T2的室内机确定为第三目标室内机;其中,Tao-mi为第二目标室内机中第i台室内机的室内环境温度,Tset-mi为第二目标室内机中第i台室内机的目标温度,i=1,...,n,n为第二目标室内机的数量;T2为第二温度差阈值。
可选地,根据第三目标室内机的运行负荷确定需要待机的室内机,包括:获取第三目标室内机中第j台室内机的运行负荷Qj,j=1,...,m,m为第三目标室内机的数量;按第三目标室内机中室内机的温差绝对值从小到大的顺序,计算使的最小p值,p为正整数;将第三目标室内机中前p台室内机确定为需要待机的室内机;其中,Qm为第一目标室内机的运行负荷。
可选地,该方法还包括:计算第二目标室内机中每台室内机的室内环境温度和目标温度的温差绝对值;将温差绝对值处于第一温差区间的室内机待机;将温差绝对值处于第二温差区间的室内机按低风速运行;将温差绝对值处于第三温差区间的室内机按中风速运行。
可选地,在存在待机室内机的情况下,该方法还包括:对所有待机室内机按待机运行优先级高低规则进行排序;在满足待机室内机运行条件的情况下,按待机运行优先级从高到低的顺序运行待机室内机。
在一些实施例中,用于多联机空调控制的装置包括处理器和存储有程序指令的存储器,处理器被配置为在运行程序指令时,执行上述的用于多联机空调控制的方法。
在一些实施例中,多联机空调包括空调主体;和,上述的用于多联机空调控制的装置,被安装于空调主体。
在一些实施例中,存储介质,存储有程序指令,程序指令在运行时,执行上述的用于多联机空调控制的方法。
本公开实施例提供的用于多联机空调控制的方法及装置、多联机空调、存储介质,可以实现以下技术效果:
在室内机超负荷开机的情况下,第一目标室内机可以根据室内机的优先级进行运行。同时,需要将运行中部分低优先级的室内机待机,以避免超负荷运行。优先级代表了用户的优先需求。相关技术在室内机超负荷开机的情况下,第一目标室内机需待机等待,并按待机先后顺序运行。与相关技术相比,能够在多联机空调超配且室内机超负荷开机的情况下,提高室内机运行控制的灵活性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施 例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于多联机空调控制的方法的示意图;
图2是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图3是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图4是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图5是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图6是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图7是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图8是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图9是本公开实施例提供的另一个用于多联机空调控制的方法的示意图;
图10是本公开实施例提供的一个用于多联机空调控制的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
另外,术语“设置”应做广义理解。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
多联机空调通常选择超配配置,即多联机空调所有室内机负荷之和大于室外机额定负荷。
本公开实施例提供一种多联机空调,包括多个室内机、室外机和处理器。处理器可以对多个室内机的运行进行控制。在超负荷开机的情况下,处理器可以对新开机运行的室内机和正在运行的室内机的运行或待机进行控制,并且可以对待机室内机的运行顺序进行控制。多联机空调在运行过程中,部分室内机处于运行状态,其余室内机处于待机状态或关机状态。
结合上述的多联机空调,本公开实施例提供一种用于多联机空调控制的方法。如图1所示,该方 法包括:
S101,处理器接收第一目标室内机的开机运行指令。
第一目标室内机为用户正在开机需求运行的一个室内机。例如,A用户使用遥控器打开所在房间的室内机,并设置为制热运行26℃。此时,处理器可以接收第一目标室内机的开机制热运行指令。
S102,在室内机的总运行负荷小于或等于室外机的运行负荷的情况下,处理器按指令运行第一目标室内机。
多联机空调在部分室内机处于运行状态的情况下,其余室内机处于待机状态或关机状态。在室内机存在待机室内机的情况下,室内机的总运行负荷为运行室内机的负荷、待机室内机的负荷和第一目标室内机的负荷之和。在室内机不存在待机室内机的情况下,室内机的总运行负荷为运行室内机的负荷和第一目标室内机的负荷之和。室外机的运行负荷为室外机的额定负荷。室内机的总运行负荷小于或等于室外机的运行负荷说明第一目标室内机运行后,不会出现超负荷运行的情况,因此在此种情况下可以按指令运行第一目标室内机。
S103,在室内机的总运行负荷大于室外机的运行负荷的情况下,处理器判断第一目标室内机的优先级是否大于或等于优先级阈值,如果是则处理器按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。
室内机的总运行负荷大于室外机的运行负荷说明第一目标室内机运行后,会出现超负荷运行的情况,因此在此种情况下不可以直接按指令运行第一目标室内机。室内机的优先级为提前设定的。例如,利用室内机内机编码对室内机的优先级进行设定,内机编码越小优先级越高。不同的室内机设置不同的内机编码。优先级阈值可以根据用户的需求进行设置。例如,可以设置优先级阈值为内机编码为4的室内机的优先级。那么,内机编码为1、2、3的室内机的优先级大于优先级阈值。低优先级室内机为优先级小于优先级阈值的室内机。或者,低优先级室内机为优先级小于第一目标室内机的优先级的室内机。
本公开实施例中,在室内机超负荷开机的情况下,第一目标室内机可以根据室内机的优先级进行运行。同时,需要将运行中部分低优先级的室内机待机,以避免超负荷运行。优先级代表了用户的优先需求。相关技术在室内机超负荷开机的情况下,第一目标室内机需待机等待,并按待机先后顺序运行。与相关技术相比,本方法能够在多联机空调超配且室内机超负荷开机的情况下,提高室内机运行控制的灵活性。
可选地,在处理器将第二目标室内机中的一台或多台室内机调整为待机前,该方法还包括:处理器按第二目标室内机中室内机的优先级从低到高的顺序,累加第二目标室内机中的一台或多台室内机的运行负荷,直至累加的运行负荷大于或等于第一目标室内机的运行负荷。处理器将第二目标室内机中的一台或多台室内机确定为需要待机的室内机。例如,第二目标室内机有4台,内机编码分别为7、8、9、10。内机编码越小,优先级越高。那么,从内机编码为10的室内机的运行负荷开始依次累加。每累加一次与第一目标室内机的运行负荷进行比较,在累加的运行负荷开始大于或等于第一目标室内机的运行负荷的情况下,停止累加。例如,第一目标室内机的运行负荷为3500W,内机编码为10的室内机的运行负荷为2500W,内机编码为9的室内机的运行负荷为2500W。那么,内机编码为10的室内机和内机编码为9的室内机的运行负荷累加已经大于第一目标室内机的运行负荷。因此,将内机编码为10的室内机和内机编码为9的室内机确定为需要待机的室内机。这样,优先运行优先级高的室内机,将优先级最低的室内机待机。在避免多联机空调超负荷运行的情况下,可以保证用户优先级需求高的室内机优先运行。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
结合图2所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S201,处理器接收第一目标室内机的开机运行指令。
S202,在室内机的总运行负荷大于室外机的运行负荷的情况下,处理器判断第一目标室内机的优先级是否大于或等于优先级阈值,如果是则处理器按第二目标室内机中室内机的优先级从低到高的顺序,累加第二目标室内机中的一台或多台室内机的运行负荷,直至累加的运行负荷大于或等于第一目标室内机的运行负荷。
S203,处理器将第二目标室内机中的一台或多台室内机确定为需要待机的室内机。
S204,处理器按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机。
其中,第二目标室内机为运行中的低优先级室内机。
本公开实施例中,在室内机超负荷开机的情况下,第一目标室内机可以根据室内机的优先级进行运行。同时,需要将运行中部分低优先级的室内机待机,以避免超负荷运行。优先级代表了用户的优先需求。优先运行优先级高的室内机,将优先级最低的室内机待机。在避免多联机空调超负荷运行的情况下,可以保证用户优先级需求高的室内机优先运行。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,在第一目标室内机的优先级小于优先级阈值的情况下,该方法还包括:处理器根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机。室内环境温度为室内机所在房间的实时环境温度,目标温度为室内机的设定温度。这样,在第一目标室内机优先级低的情况下,根据第一目标室内机的室内环境温度、目标温度和运行负荷可以确定是否运行第一目标室内机,较高程度保证用户的舒适度。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
结合图3所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S301,处理器接收第一目标室内机的开机运行指令。
S302,处理器判断室内机的总运行负荷是否小于或等于室外机的运行负荷。如果是,则执行步骤S303。否则,执行步骤S304。
S303,处理器按指令运行第一目标室内机。
S304,处理器判断第一目标室内机的优先级是否大于或等于优先级阈值。如果是,则执行步骤S305。否则,执行步骤S306。
S305,处理器按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。
S306,处理器根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机。
本公开实施例中,在室内机超负荷开机的情况下,第一目标室内机可以根据室内机的优先级进行运行。同时,需要将运行中部分低优先级的室内机待机,以避免超负荷运行。优先级代表了用户的优先需求。优先运行优先级高的室内机,将优先级最低的室内机待机。在避免多联机空调超负荷运行的情况下,可以保证用户优先级需求高的室内机优先运行。在第一目标室内机优先级低的情况下,根据第一目标室内机的室内环境温度、目标温度和运行负荷可以确定是否运行第一目标室内机,较高程度保证用户的舒适度。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,处理器根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机包括:处理器计算ΔTm=∣Tao-m-Tset-m∣。如果ΔTm满足第一条件,且,Qm满足第二条件,则处理器按指令运行第一目标室内机并将第二目标室内机中的部分室内机调整为待机。否则,处理器控制 第一目标室内机待机。其中,Tao-m为第一目标室内机的室内环境温度,Tset-m为第一目标室内机的目标温度,Qm为第一目标室内机的运行负荷。这样,通过判断室内环境温度和目标温度的温度差,以及第一目标室内机的运行负荷,确定是否运行第一目标室内机。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,ΔTm满足第一条件包括:ΔTm>T1。其中,T1为第一温度差阈值。T1的取值范围为[3℃,7℃]。可选地,T1为3℃、5℃或7℃。在室内环境温度和目标温度的温度差超过一定值的情况下,说明用户此时所在室内的室内环境温度与人体适宜温度相差较大。这样,根据第一条件确定是否运行第一目标室内机,能够满足用户需求。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,Qm满足第二条件包括:Qm≤Qz。其中,Qz为第三目标室内机的总运行负荷;第三目标室内机为第二目标室内机中室内环境温度与目标温度的温差绝对值小于或等于第二温度差阈值T2的室内机。T2的取值范围为[2℃,4℃]。可选地,T2为2℃、3℃或4℃。这样,通过比较第一目标室内机的运行负荷和第三目标室内机的运行负荷,可以判断出室内环境温度和目标温度的温度差小于或等于一定值的室内机待机是否能够满足第一目标室内机的运行。温度差小于或等于一定值的室内机待机不会使用户感受到不适,同时,还可以优先运行温度差较大的第一目标室内机。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,在处理器将第二目标室内机中的部分室内机调整为待机前,该方法还包括:处理器根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机。处理器根据第三目标室内机的运行负荷确定需要待机的室内机。这样,根据室内环境温度和目标温度确定需要待机的第三目标室内机,可以优先运行第一目标室内机。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
结合图4所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S401,处理器接收第一目标室内机的开机运行指令。
S402,处理器判断室内机的总运行负荷是否小于或等于室外机的运行负荷。如果是,则执行步骤S403。否则,执行步骤S404。
S403,处理器按指令运行第一目标室内机。
S404,处理器判断第一目标室内机的优先级是否大于或等于优先级阈值。如果是,则执行步骤S405。否则,执行步骤S406至S407。
S405,处理器按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。
S406,处理器计算ΔTm=∣Tao-m-Tset-m∣。其中,Tao-m为第一目标室内机的室内环境温度,Tset-m为第一目标室内机的目标温度。
S407,处理器判断ΔTm是否满足第一条件,且,Qm是否满足第二条件,如果是,则执行步骤S408至S410。否则,执行步骤S411。其中,Qm为第一目标室内机的运行负荷。
S408,处理器根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机。
S409,处理器根据第三目标室内机的运行负荷确定需要待机的室内机。
S410,处理器按指令运行第一目标室内机并将第二目标室内机中的需要待机的室内机调整为待机。
S411,处理器控制第一目标室内机待机。
本公开实施例中,在室内机超负荷开机的情况下,第一目标室内机可以根据室内机的优先级进行运行。同时,需要将运行中部分低优先级的室内机待机,以避免超负荷运行。优先级代表了用户的优先 需求。优先运行优先级高的室内机,将优先级最低的室内机待机。在避免多联机空调超负荷运行的情况下,可以保证用户优先级需求高的室内机优先运行。在第一目标室内机优先级低的情况下,根据室内环境温度和目标温度确定需要待机的第三目标室内机,可以优先运行第一目标室内机,较高程度保证用户的舒适度。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,处理器根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机包括:处理器计算ΔTmi=∣Tao-mi-Tset-mi∣,获得第二目标室内机中第i台室内机的温差绝对值。处理器判断ΔTmi是否小于或等于T2,获得温差绝对值小于或等于T2的室内机。处理器将所有温差绝对值小于或等于T2的室内机确定为第三目标室内机。其中,Tao-mi为第二目标室内机中第i台室内机的室内环境温度,Tset-mi为第二目标室内机中第i台室内机的目标温度,i=1,...,n,n为第二目标室内机的数量;T2为第二温度差阈值。这样,通过判断出室内环境温度和目标温度的温度差小于或等于一定值的室内机并从中可以进一步确定出待机的室内机。温度差小于或等于一定值的室内机待机不会使用户感受到不适,同时,还可以优先运行温度差较大的第一目标室内机。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,处理器根据第三目标室内机的运行负荷确定需要待机的室内机包括:处理器获取第三目标室内机中第j台室内机的运行负荷Qj,j=1,...,m,m为第三目标室内机的数量。处理器按第三目标室内机中室内机的温差绝对值从小到大的顺序,计算使的最小p值,p为正整数。处理器将第三目标室内机中前p台室内机确定为需要待机的室内机。其中,Qm为第一目标室内机的运行负荷。例如,第三目标室内机有4台,温差绝对值分别为2℃、3℃、2.5℃、1℃,对应的运行负荷分别为2000W、2500W、2000W、1500W。如果Qm为3000W,按室内机的温差绝对值从小到大的顺序排序对应的室内机的运行负荷分别为Q1=1500W、Q2=2000W、Q3=2000W、Q4=2500W。那么,依次累加求和计算使的最小p值为2。因此,将第三目标室内机中前2台室内机确定为需要待机的室内机。这样,通过从室内环境温度和目标温度的温度差小于或等于一定值的室内机中确定出待机的室内机,将温度差更小的室内机待机不会使用户感受到不适。同时,还可以优先运行温度差较大的第一目标室内机。从而,能够在多联机空调超配且室内机超负荷开机的情况下,提高了室内机运行控制的灵活性,提高了用户体验。
可选地,该方法还包括:处理器计算第二目标室内机中每台室内机的室内环境温度和目标温度的温差绝对值。处理器将温差绝对值处于第一温差区间的室内机待机。处理器将温差绝对值处于第二温差区间的室内机按低风速运行。处理器将温差绝对值处于第三温差区间的室内机按中风速运行。第一温差区间为[T3,T4),第二温差区间为[T4,T5),第三温差区间为[T5,T6)。T3为第三温度差阈值,T4为第四温度差阈值,T5为第五温度差阈值,T6为第六温度差阈值。T6>T5>T4>T3。T3的取值范围为[0℃,1℃]。可选地,T3为0℃、0.5℃或1℃。T4的取值范围为[1℃,2℃]。可选地,T4为1℃、1.5℃或2℃。T5的取值范围为[2℃,3℃]。可选地,T5为2℃、2.5℃或3℃。T6的取值范围为[3℃,4℃]。可选地,T6为3℃、3.5℃或4℃。在室内环境温度接近目标温度的情况下,先通过降低室内机的风速使冷媒重新分配,确保室内机进行小负荷需求运转。不会快速达到目标温度,进入待机,然后室内环境温度降低后再往复启动。这样,可以避免整机负荷的需求变化太大,影响压缩机的频率及整机的可靠性。从而,提高了压缩机运行的可靠性。
可选地,在存在待机室内机的情况下,该方法还包括:处理器对所有待机室内机按待机运行优先级高低规则进行排序。在满足待机室内机运行条件的情况下,处理器按待机运行优先级从高到低的顺序运行待机室内机。待机运行优先级指在满足待机室内机运行条件的情况下,所有待机室内机运行的先后顺序,先运行的代表待机运行优先级高,后运行的代表待机运行优先级低。这样,在室内机超负荷开机 的情况下,在满足待机室内机运行条件的情况下,可以按待机室内机的运行优先级顺序从高到低运行。运行优先级代表了用户的优先运行需求。相关技术在室内机超负荷开机的情况下,室内机在待机等待后,需按待机先后顺序运行。与相关技术相比,本方法能够在多联机空调超配且存在待机室内机的情况下,按照用户需求情况运行,提高了待机室内机运行控制的灵活性。
结合图5所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S501,在存在待机室内机的情况下,处理器对所有待机室内机按待机运行优先级高低规则进行排序。
S502,在满足待机室内机运行条件的情况下,处理器按待机运行优先级从高到低的顺序运行待机室内机。
S503,处理器接收第一目标室内机的开机运行指令。
S504,在室内机的总运行负荷小于或等于室外机的运行负荷的情况下,处理器按指令运行第一目标室内机。
S505,在室内机的总运行负荷大于室外机的运行负荷的情况下,处理器判断第一目标室内机的优先级是否大于或等于优先级阈值,如果是则处理器按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。
本公开实施例中,在室内机超负荷开机的情况下,在满足待机室内机运行条件的情况下,可以按待机室内机的运行优先级顺序从高到低运行。运行优先级代表了用户的优先运行需求。在室内机超负荷开机的情况下,第一目标室内机可以根据室内机的优先级进行运行。同时,需要将运行中部分低优先级的室内机待机,以避免超负荷运行。优先级代表了用户的优先需求。从而,能够在多联机空调超配且室内机超负荷开机的情况下,按照用户需求情况运行,提高了室内机运行控制的灵活性。
结合图6所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S601,在存在待机室内机的情况下,处理器对所有待机室内机按待机运行优先级高低规则进行排序。
S602,在满足待机室内机运行条件的情况下,处理器按待机运行优先级从高到低的顺序运行待机室内机。
本公开实施例中,在室内机超负荷开机的情况下,在满足待机室内机运行条件的情况下,可以按待机室内机的运行优先级顺序从高到低运行。运行优先级代表了用户的优先运行需求。从而,能够在多联机空调超配且存在待机室内机的情况下,按照用户需求情况运行,提高了待机室内机运行控制的灵活性。
可选地,待机运行优先级高低规则包括:第一类待机室内机的待机运行优先级高于第二类待机室内机的待机运行优先级。其中,第一类待机室内机是在待机期间收到用户优先操作指令的待机室内机,第二类待机室内机是在待机期间未收到用户优先操作指令的待机室内机。优先操作指令可以为空调器自定义功能。例如,设置待机优先运行按键,或,设置待机优先运行操作。例如,待机优先运行操作可以为室内机待机后,用户将其关机后,重新开机的操作。用户发出优先操作指令代表用户急需室内机尽快运行。这样,在多联机空调超配且室内机超负荷开机的情况下,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
可选地,待机运行优先级高低规则还包括:在第一类待机室内机有多个的情况下,接收到用户优先操作指令的时间越靠后,则对应的待机室内机的待机运行优先级越高。用户优先操作的时间越靠后,说明用户对待机室内机运行的需求越大,因此待机运行优先级越高。这样,在多联机空调超配且室内机超负荷开机的情况下,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵 活性,提高了用户体验。
可选地,待机运行优先级高低规则还包括:在第二类待机室内机有多个的情况下,所在房间内有人的待机室内机的待机运行优先级高于所在房间内无人的待机室内机的待机运行优先级。所在房间内有人说明对应的待机室内机的运行需求更大。这样,在多联机空调超配且室内机超负荷开机的情况下,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
可选地,待机运行优先级高低规则还包括:在多个所在房间内有人的第二类待机室内机中,室内机的优先级越高,则待机运行优先级越高。在多个所在房间内无人的第二类待机室内机中,室内机的优先级越高,则待机运行优先级越高。这样,在多联机空调超配且室内机超负荷开机的情况下,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
可选地,待机室内机运行条件包括:处理器按待机运行优先级从高到低的顺序,计算前q个待机室内机的总负荷存在使Qs≤Q待允的q值,q为正整数。其中,Q待允=Q-Q内运,Q为室外机的运行负荷,Q内运为正在运行的室内机的总负荷;Q内待u为第u个待机室内机的负荷,u=1,...,w,w为待机室内机的数量。例如,有3台待机室内机,按待机运行优先级从高到低的顺序负荷分别为1500W、2000W、2000W,室外机的运行负荷为12000W,正在运行的室内机的总负荷为8000W。Q待允为4000W,由此可计算出存在使Qs≤Q待允的q值,q为1或2。这样,在多联机空调超配且室内机超负荷开机的情况下,保证运行室内机不超负荷,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
结合图7所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S701,在存在待机室内机的情况下,处理器对所有待机室内机按待机运行优先级高低规则进行排序。
S702,处理器按待机运行优先级从高到低的顺序,计算前q个待机室内机的总负荷 其中,Q内待u为第u个待机室内机的负荷,u=1,...,w,w为待机室内机的数量。
S703,处理器判断是否存在使Qs≤Q待允的q值,q为正整数。如果是,则执行步骤S704。否则,返回执行步骤S701。其中,Q待允=Q-Q内运,Q为室外机的运行负荷,Q内运为正在运行的室内机的总负荷。
S704,处理器按待机运行优先级从高到低的顺序运行待机室内机。
本公开实施例中,在室内机超负荷开机的情况下,在室外机额定负荷大于运行室内机的运行负荷的情况下,通过计算可以判定出当前是否允许待机室内机运行。在符合待机室内机运行条件的情况下,可以按待机室内机的运行优先级顺序从高到低运行。运行优先级代表了用户的优先运行需求。在多联机空调超配且室内机超负荷开机的情况下,可以保证运行室内机不超负荷,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
可选地,处理器按待机运行优先级从高到低的顺序运行待机室内机包括:处理器计算得到使Qs≤Q待允的最大q值。处理器按待机运行优先级从高到低的顺序运行前q个待机室内机。例如,有3台待机室内机,按待机运行优先级从高到低的顺序负荷分别为1500W、2000W、2000W,室外机的运行负荷为12000W,正在运行的室内机的总负荷为8000W。Q待允为4000W,存在使Qs≤Q待允的q值,最大q值为2。这样,在多联机空调超配且室内机超负荷开机的情况下,保证运行室内机不超负荷,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
结合图8所示,本公开实施例提供另一种用于多联机空调控制的方法,包括:
S801,在存在待机室内机的情况下,处理器对所有待机室内机按待机运行优先级高低规则进行排序。
S802,处理器按待机运行优先级从高到低的顺序,计算前q个待机室内机的总负荷 其中,Q内待u为第u个待机室内机的负荷,u=1,...,w,w为待机室内机的数量。
S803,处理器判断是否存在使Qs≤Q待允的q值,q为正整数。如果是,则执行步骤S804至S805。否则,返回执行步骤S801。其中,Q待允=Q-Q内运,Q为室外机的运行负荷,Q内运为正在运行的室内机的总负荷。
S804,处理器计算得到使Qs≤Q待允的最大q值。
S805,处理器按待机运行优先级从高到低的顺序运行前q个待机室内机。
本公开实施例中,在室内机超负荷开机的情况下,在室外机额定负荷大于运行室内机的运行负荷的情况下,通过计算可以判定出当前是否允许待机室内机运行。在符合待机室内机运行条件的情况下,可以按待机室内机的运行优先级顺序从高到低运行。运行优先级代表了用户的优先运行需求。在多联机空调超配且室内机超负荷开机的情况下,可以保证运行室内机不超负荷,待机室内机可以按照用户需求情况运行。从而,提高了待机室内机运行控制的灵活性,提高了用户体验。
在多联机空调实际运行的过程中,另一种用于多联机空调控制的方法如图9所示,包括:
S901,接收第一目标室内机的开机运行指令。
S902,判断室内机的总运行负荷是否小于或等于室外机的运行负荷。如果是,则执行步骤S903。否则,执行步骤S904。例如,室外机的运行负荷为12000W,室内机的总运行负荷为14000W,则执行步骤S904。
S903,按指令运行第一目标室内机。
S904,判断第一目标室内机的优先级是否大于或等于优先级阈值。如果是,则执行步骤S905至S907。否则,执行步骤S908至S909。例如,室内机的优先级采用编码的方式进行,对室内机按优先级高低从小到大进行编码。编码越小,优先级越高。例如,优先级阈值为编码3,第一目标室内机为编码2,则第一目标室内机的优先级大于优先级阈值。那么,执行步骤S905至S907。例如,优先级阈值为编码3,第一目标室内机为编码4,则第一目标室内机的优先级小于优先级阈值。那么,执行步骤S908至S909。
S905,按第二目标室内机中室内机的优先级从低到高的顺序,累加第二目标室内机中的一台或多台室内机的运行负荷,直至累加的运行负荷大于或等于第一目标室内机的运行负荷。其中,第二目标室内机为运行中的低优先级室内机。例如,第二目标室内机有4台,内机编码分别为10、9、8、7。内机编码越小,优先级越高。例如,第一目标室内机的运行负荷为3500W,内机编码为10的室内机的运行负荷为2500W,内机编码为9的室内机的运行负荷为2500W。那么,内机编码为10的室内机和内机编码为9的室内机的运行负荷累加已经大于第一目标室内机的运行负荷。
S906,将第二目标室内机中的一台或多台室内机确定为需要待机的室内机。例如,按步骤S905中的举例,将内机编码为10的室内机和内机编码为9的室内机确定为需要待机的室内机。
S907,按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机。例如,按步骤S906中的举例,将内机编码为10的室内机和内机编码为9的室内机调整为待机。
S908,计算ΔTm=∣Tao-m-Tset-m∣。其中,Tao-m为第一目标室内机的室内环境温度,Tset-m为第一目标室内机的目标温度。例如,Tao-m为12℃,Tset-m为23℃,则ΔTm为11℃。
S909,判断ΔTm是否满足第一条件,且,Qm是否满足第二条件,如果是,则执行步骤S910至S916。否则,执行步骤S917。其中,Qm为第一目标室内机的运行负荷。例如,第一条件为ΔTm>3℃,第二条件为Qm≤3500W。例如,ΔTm为11℃,Qm为2500W,则执行步骤S910至S916。例如,ΔTm为11℃,Qm为4000W,则执行步骤S917。
S910,计算ΔTmi=∣Tao-mi-Tset-mi∣,获得第二目标室内机中第i台室内机的温差绝对值。其中,Tao-mi 为第二目标室内机中第i台室内机的室内环境温度,Tset-mi为第二目标室内机中第i台室内机的目标温度,i=1,...,n,n为第二目标室内机的数量。例如,第二目标室内机有5台,计算获得ΔTm1为8℃、ΔTm2为2℃、ΔTm3为3℃、ΔTm4为7℃、ΔTm5为10℃。
S911,判断ΔTmi是否小于或等于T2,获得温差绝对值小于或等于T2的室内机。其中,T2为第二温度差阈值。例如,T2为3℃,根据步骤S910的举例,ΔTm2和ΔTm3对应的室内机符合ΔTmi小于或等于T2
S912,将所有温差绝对值小于或等于T2的室内机确定为第三目标室内机。例如,根据步骤S910和S911的举例,将ΔTm2和ΔTm3对应的室内机确定为第三目标室内机。
S913,获取第三目标室内机中第j台室内机的运行负荷Qj,j=1,...,m,m为第三目标室内机的数量。
S914,按第三目标室内机中室内机的温差绝对值从小到大的顺序,计算使的最小p值,p为正整数。例如,第三目标室内机有2台,温差绝对值分别为2℃、3℃,对应的运行负荷分别为2000W、1500W。如果Qm为3000W,按室内机的温差绝对值从小到大的顺序排序对应的室内机的运行负荷分别为Q1=1500W、Q2=2000W。那么,依次累加求和计算使的最小p值为2。
S915,将第三目标室内机中前p台室内机确定为需要待机的室内机。例如,根据步骤S914的举例,将第三目标室内机中前p台室内机确定为需要待机的室内机。
S916,按指令运行第一目标室内机并将第二目标室内机中的需要待机的室内机调整为待机。
S917,控制第一目标室内机待机。
结合图10所示,本公开实施例提供另一种用于多联机空调控制的装置300,包括处理器(processor)100和存储有程序指令的存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于设备检测的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于设备检测的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种多联机空调,包括空调主体,以及上述的用于多联机空调控制的装置300。用于多联机空调控制的装置300被安装于空调主体。可选地,空调主体包括多个室内机、室外机,或者,空调主体包括多个室内机、室外机和控制单元。用于多联机空调控制的装置300可以安装于室内机、室外机或控制单元。这里所表述的安装关系,并不仅限于在产品内部放置,还包括了与产品的其他元器件的安装连接,包括但不限于物理连接、电性连接或者信号传输连接等。本领域技术人员可以理解的是,用于设备检测的装置300可以适配于可行的产品主体,进而实现其他可行的实施例。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行上述用于设备检测的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介 质。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于设备检测的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于设备检测的方法。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个...”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部 分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (16)

  1. 一种用于多联机空调控制的方法,其特征在于,包括:
    接收第一目标室内机的开机运行指令;
    在室内机的总运行负荷小于或等于室外机的运行负荷的情况下,按指令运行第一目标室内机;
    在室内机的总运行负荷大于室外机的运行负荷的情况下,判断第一目标室内机的优先级是否大于或等于优先级阈值,如果是则按指令运行第一目标室内机并将第二目标室内机中的一台或多台室内机调整为待机;其中,第二目标室内机为运行中的低优先级室内机。
  2. 根据权利要求1所述的方法,其特征在于,在将第二目标室内机中的一台或多台室内机调整为待机前,还包括:
    按第二目标室内机中室内机的优先级从低到高的顺序,累加第二目标室内机中的一台或多台室内机的运行负荷,直至累加的运行负荷大于或等于第一目标室内机的运行负荷;
    将所述第二目标室内机中的一台或多台室内机确定为需要待机的室内机。
  3. 根据权利要求1或2所述的方法,其特征在于,在第一目标室内机的优先级小于优先级阈值的情况下,还包括:
    根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机。
  4. 根据权利要求3所述的方法,其特征在于,根据第一目标室内机的室内环境温度、目标温度和运行负荷确定第一目标室内机运行或待机,包括:
    计算ΔTm=∣Tao-m-Tset-m∣;
    如果ΔTm满足第一条件,且,Qm满足第二条件,则按指令运行第一目标室内机并将第二目标室内机中的部分室内机调整为待机;否则,控制第一目标室内机待机;
    其中,Tao-m为第一目标室内机的室内环境温度,Tset-m为第一目标室内机的目标温度,Qm为第一目标室内机的运行负荷。
  5. 根据权利要求4所述的方法,其特征在于,ΔTm满足第一条件,包括:
    ΔTm>T1;其中,T1为第一温度差阈值。
  6. 根据权利要求4所述的方法,其特征在于,Qm满足第二条件,包括:
    Qm≤Qz
    其中,Qz为第三目标室内机的总运行负荷;第三目标室内机为第二目标室内机中室内环境温度与目标温度的温差绝对值小于或等于第二温度差阈值T2的室内机。
  7. 根据权利要求4所述的方法,其特征在于,在将第二目标室内机中的部分室内机调整为待机前,还包括:
    根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机;
    根据第三目标室内机的运行负荷确定需要待机的室内机。
  8. 根据权利要求7所述的方法,其特征在于,根据第二目标室内机的室内环境温度和目标温度确定第三目标室内机,包括:
    计算ΔTmi=∣Tao-mi-Tset-mi∣,获得第二目标室内机中第i台室内机的温差绝对值;
    判断ΔTmi是否小于或等于T2,获得温差绝对值小于或等于T2的室内机;
    将所有温差绝对值小于或等于T2的室内机确定为第三目标室内机;
    其中,Tao-mi为第二目标室内机中第i台室内机的室内环境温度,Tset-mi为第二目标室内机中第i台室内机的目标温度,i=1,...,n,n为第二目标室内机的数量;T2为第二温度差阈值。
  9. 根据权利要求8所述的方法,其特征在于,根据第三目标室内机的运行负荷确定需要待机的室内机,包括:
    获取第三目标室内机中第j台室内机的运行负荷Qj,j=1,...,m,m为第三目标室内机的数量;
    按第三目标室内机中室内机的温差绝对值从小到大的顺序,计算使的最小p值,p为正整数;
    将第三目标室内机中前p台室内机确定为需要待机的室内机;
    其中,Qm为第一目标室内机的运行负荷。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,还包括:
    计算第二目标室内机中每台室内机的室内环境温度和目标温度的温差绝对值;
    将温差绝对值处于第一温差区间的室内机待机;
    将温差绝对值处于第二温差区间的室内机按低风速运行;
    将温差绝对值处于第三温差区间的室内机按中风速运行。
  11. 根据权利要求10所述的方法,其特征在于,在存在待机室内机的情况下,所述方法还包括:
    对所有待机室内机按待机运行优先级高低规则进行排序;
    在满足待机室内机运行条件的情况下,按待机运行优先级从高到低的顺序运行待机室内机。
  12. 一种用于多联机空调控制的装置,包括处理器和存储有程序指令的存储器,其特征在于,处理器被配置为在运行程序指令时,执行如权利要求1至11任一项所述的用于多联机空调控制的方法。
  13. 一种多联机空调,其特征在于,包括:
    空调主体;和,
    如权利要求12所述的用于多联机空调控制的装置,被安装于所述空调主体。
  14. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至11任一项所述的用于多联机空调控制的方法。
  15. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至11任一项所述的用于多联机空调控制的方法。
  16. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至11任一项所述的用于多联机空调控制的方法。
PCT/CN2023/108930 2022-10-13 2023-07-24 用于多联机空调控制的方法及装置、多联机空调、存储介质 WO2024078090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211255380.4 2022-10-13
CN202211255380.4A CN117928061A (zh) 2022-10-13 2022-10-13 用于多联机空调控制的方法及装置、多联机空调、存储介质

Publications (1)

Publication Number Publication Date
WO2024078090A1 true WO2024078090A1 (zh) 2024-04-18

Family

ID=90668700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108930 WO2024078090A1 (zh) 2022-10-13 2023-07-24 用于多联机空调控制的方法及装置、多联机空调、存储介质

Country Status (2)

Country Link
CN (1) CN117928061A (zh)
WO (1) WO2024078090A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072492A (zh) * 1991-11-18 1993-05-26 三洋电机株式会社 空调器的控制装置
GB9812176D0 (en) * 1997-10-17 1998-08-05 Mitsubishi Electric Corp Air conditioning system
KR20030023395A (ko) * 2001-09-13 2003-03-19 만도공조 주식회사 멀티에어컨의 실내기 제어방법
CN1487248A (zh) * 2003-04-30 2004-04-07 海尔集团公司 一种配置室内机的一拖多空调器的控制方法
CN1707189A (zh) * 2004-06-07 2005-12-14 无锡小天鹅中央空调有限公司 一种多联体空调器室内机运行控制方法
JP2016008791A (ja) * 2014-06-25 2016-01-18 ダイキン工業株式会社 空気調和装置
CN105588299A (zh) * 2015-04-10 2016-05-18 青岛海信日立空调系统有限公司 一种多联式空调机组的控制方法及控制装置
CN108562019A (zh) * 2018-04-02 2018-09-21 广东美的暖通设备有限公司 空调系统的控制方法及控制系统、空调系统
CN112611091A (zh) * 2020-12-22 2021-04-06 宁波奥克斯电气股份有限公司 多联机空调及其控制方法
CN112797598A (zh) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 多联式空调的室内机控制方法、装置及空调器
CN115682278A (zh) * 2022-10-13 2023-02-03 青岛海尔空调电子有限公司 用于多联机空调控制的方法及装置、多联机空调、存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072492A (zh) * 1991-11-18 1993-05-26 三洋电机株式会社 空调器的控制装置
GB9812176D0 (en) * 1997-10-17 1998-08-05 Mitsubishi Electric Corp Air conditioning system
KR20030023395A (ko) * 2001-09-13 2003-03-19 만도공조 주식회사 멀티에어컨의 실내기 제어방법
CN1487248A (zh) * 2003-04-30 2004-04-07 海尔集团公司 一种配置室内机的一拖多空调器的控制方法
CN1707189A (zh) * 2004-06-07 2005-12-14 无锡小天鹅中央空调有限公司 一种多联体空调器室内机运行控制方法
JP2016008791A (ja) * 2014-06-25 2016-01-18 ダイキン工業株式会社 空気調和装置
CN105588299A (zh) * 2015-04-10 2016-05-18 青岛海信日立空调系统有限公司 一种多联式空调机组的控制方法及控制装置
CN108562019A (zh) * 2018-04-02 2018-09-21 广东美的暖通设备有限公司 空调系统的控制方法及控制系统、空调系统
CN112611091A (zh) * 2020-12-22 2021-04-06 宁波奥克斯电气股份有限公司 多联机空调及其控制方法
CN112797598A (zh) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 多联式空调的室内机控制方法、装置及空调器
CN115682278A (zh) * 2022-10-13 2023-02-03 青岛海尔空调电子有限公司 用于多联机空调控制的方法及装置、多联机空调、存储介质

Also Published As

Publication number Publication date
CN117928061A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US9122285B2 (en) Virtual thermostat system and method
JP6073000B1 (ja) 制御装置及び制御プログラム
CN111880490A (zh) 一种环境调节方法、装置、电子设备及存储介质
CN113531818B (zh) 用于空调的运行模式推送方法及装置、空调
CN113091244B (zh) 用于家电设备的控制方法、装置及设备
WO2024078090A1 (zh) 用于多联机空调控制的方法及装置、多联机空调、存储介质
EP2806522B1 (en) Demand regulating system, demand regulating apparatus, and consumer management apparatus
CN115682278A (zh) 用于多联机空调控制的方法及装置、多联机空调、存储介质
WO2016152669A1 (ja) デマンドレスポンス制御結果提示装置
CN116447720A (zh) 用于控制空调的方法、装置、电子设备及存储介质
CN115307274B (zh) 控制空调系统的主机的方法、设备和存储介质
CN110657556A (zh) 用于控制遥控器的方法和遥控器
CN113819635B (zh) 用于调节室内空气参数的方法、装置和智慧家庭系统
JP7107818B2 (ja) 電子機器、制御装置、電子機器の制御方法、および制御プログラム
CN111142645A (zh) 一种在额定功率下的运行策略控制方法、装置及线控器
CN114811854B (zh) 用于控制多联机空调系统的方法、装置及系统、存储介质
CN111858019A (zh) 任务调度方法、装置及计算机可读存储介质
CN114251819B (zh) 用于控制空调压缩机运行的方法及装置、空调
JP2015156767A (ja) 電力デマンド制御装置および方法
CN104949287B (zh) 空调器的控制方法和装置
WO2024078072A1 (zh) 用于控制空调的方法及装置、电子设备、存储介质
CN113359521B (zh) 用于家电设备控制的方法、装置及家电设备
KR20150117747A (ko) Plc 네트워크 기반의 원방감시 제어시스템 및 방법
CN114322253B (zh) 用于控制空调器的方法及装置、空调器、存储介质
JP6991106B2 (ja) デマンド制御装置及びプログラム