WO2024077964A1 - 一种多层结构滤波器及车载电源dcdc转换装置 - Google Patents

一种多层结构滤波器及车载电源dcdc转换装置 Download PDF

Info

Publication number
WO2024077964A1
WO2024077964A1 PCT/CN2023/096103 CN2023096103W WO2024077964A1 WO 2024077964 A1 WO2024077964 A1 WO 2024077964A1 CN 2023096103 W CN2023096103 W CN 2023096103W WO 2024077964 A1 WO2024077964 A1 WO 2024077964A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
layer pcb
inductor
filter
stage
Prior art date
Application number
PCT/CN2023/096103
Other languages
English (en)
French (fr)
Inventor
冯颖盈
姚顺
刘骥
何瑶
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2024077964A1 publication Critical patent/WO2024077964A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to the technical field of DCDC converters, and in particular to a multi-layer structure filter and a vehicle-mounted power supply DCDC converter device using the same.
  • the present invention proposes a multi-layer structure filter and an on-board power DCDC converter device using the same.
  • the technical solution adopted by the present invention is:
  • the present invention proposes a multi-layer structure filter, comprising:
  • N layers of PCB are arranged in order from top to bottom, N is greater than or equal to 3;
  • N-1 levels of output inductors are arranged in sequence from top to bottom, and each level of output inductor is connected to adjacent upper and lower PCB layers through its input end and output end;
  • N-1 levels of output capacitors are arranged in sequence from top to bottom, and each level of output capacitors is connected to the second to Nth layers of PCB respectively;
  • the filter output terminal is connected to the output end of the N-1th stage output inductor.
  • the input end and the output end of the first-stage output inductor are respectively connected to the first-layer PCB and the second-layer PCB
  • the input end and the output end of the second-stage output inductor are respectively connected to the second-layer PCB and the third-layer PCB
  • the first-stage output capacitor and the second-stage output capacitor are respectively connected to the second-layer PCB and the third-layer PCB
  • the filter output terminal is connected to the output end of the second-stage output inductor.
  • the first-stage output inductor comprises: a first magnetic core and at least two windings arranged in the first magnetic core and connected in parallel with each other, a first input pin and an output pin are arranged on a top mounting surface of the first magnetic core, an end of the first input pin away from the first magnetic core is higher than an end of the output pin away from the first magnetic core, the first input pin and the output pin are respectively connected to a first layer PCB and a second layer PCB, and a top mounting surface of the first magnetic core abuts against a bottom surface of the second layer PCB;
  • the first-stage output capacitor comprises: at least one first housing mounted on the bottom surface of the second-layer PCB and a capacitive device disposed in the first housing;
  • the second-stage output inductor includes: a second magnetic core and a winding arranged in the second magnetic core, a second input pin is arranged on the top end surface of the second magnetic core, an output copper bar is arranged on the bottom end surface of the second magnetic core, and the second input pin and the output copper bar are respectively connected to the second layer PCB and the third layer PCB;
  • the second-stage output capacitor includes: a second housing mounted on the bottom surface of the third-layer PCB and a capacitor device within the second housing;
  • the filter output terminal is connected to the output copper busbar.
  • the input end and the output end of the third-level output inductor are respectively connected to the second-layer PCB and the third-layer PCB
  • the input end and the output end of the fourth-level output inductor are respectively connected to the third-layer PCB and the second-layer PCB
  • the fourth-level output capacitor is connected to the fourth-layer PCB
  • the filter output terminal is connected to the output end of the third-level output inductor.
  • the winding of the first-stage output inductor is formed by winding a copper bar with multiple turns
  • the winding of the second-stage output inductor is formed by winding a copper bar with a single turn.
  • one end of the output copper bar is vertically connected to the bottom surface of the second magnetic core, the other end of the output copper bar passes through the third layer PCB and is affixed to the bottom surface of the third layer PCB, the first input pin passes through the second layer PCB and is soldered to the first layer PCB, and the output pin and the second input pin are soldered to the second layer PCB.
  • the filter output terminal comprises:
  • a mounting base an output port arranged at one end of the mounting base, a connecting copper bar arranged at the other end of the mounting base, a mounting screw hole is arranged at the end of the connecting copper bar away from the mounting base, and a connecting screw hole matching the mounting screw hole is arranged at the other end of the output copper bar, and the filter output terminal is connected to the output copper bar by passing a fixing screw through the mounting screw hole and the connecting screw hole.
  • the present invention also provides a vehicle-mounted power supply DCDC conversion device, including a housing, and also includes a multilayer structure filter as claimed in any one of claims 1 to 7 installed on the housing, and a power switch tube, a transformer and a secondary side switch tube connected to the first layer PCB.
  • the housing forms a cavity for separating the shielding inductor between the first-stage output inductor and the second-stage output inductor.
  • a heat conducting member is filled between the first-stage output inductor and the second-stage output inductor and the housing.
  • the multilayer structure filter and the vehicle-mounted power supply DCDC conversion device using the same propose a multilayer structure filter design scheme for the output filter in the DCDC converter of the power conversion product of the vehicle-mounted power supply, which can achieve the miniaturization of the filter and save the installation space while better realizing the heat dissipation, filtering, shielding and other performances of the large current path at the output end of the DCDC converter.
  • FIG1 is a schematic diagram of a circuit topology of an embodiment of a multilayer structure filter of the present invention.
  • FIG2 is a schematic diagram of an inductor device of an embodiment of a multilayer structure filter of the present invention.
  • FIG3 is a schematic diagram of the overall structure of an embodiment of a multilayer structure filter of the present invention.
  • FIG. 4 is a schematic diagram of a vehicle power supply DCDC conversion device according to an embodiment of the multilayer structure filter of the present invention.
  • First-stage output inductor 11. First magnetic core; 12. First input pin; 13. Output pin; 14. Magnetic core seat; 2. First-layer PCB; 3. Second-layer PCB; 31. First-stage output capacitor; 311. First shell; 4. Second-stage output inductor; 41. Filter output terminal; 411. Mounting seat; 412. Output port; 413. Connecting copper busbar; 42. Second magnetic core; 43. Second input pin; 44. Output copper busbar; 441. Connecting screw hole; 5. Third-layer PCB; 51. Second-stage output capacitor; 511. Second shell; 6. Winding; 7. Primary power switch tube; 8. Transformer; 9. Secondary switch tube; 10. Casing.
  • the present invention provides a multilayer structure filter, including: N layers of PCBs arranged in sequence from top to bottom, N is greater than or equal to 3; N-1 levels of output inductors arranged in sequence from top to bottom, each level of output inductors is correspondingly connected to adjacent upper and lower PCBs through its input end and output end; N-1 levels of output capacitors arranged in sequence from top to bottom, each level of output capacitors is correspondingly connected to the second to Nth layers of PCBs; and a filter output terminal 41 is connected to the output end of the N-1th level of output inductor.
  • Figure 1 is a schematic diagram of a full-bridge topology with primary and secondary isolation for a typical DCDC circuit topology. It includes a primary power switch tube 7, a transformer 8, a secondary switch tube 9, a first-stage output inductor 1, a first-stage output capacitor 31, a second-stage output inductor 4, and a second-stage output capacitor 51. Since the DCDC output voltage is about 14V and the output power is above 2 or 3KW, the output current of the DCDC is generally relatively large, about one or two hundred amperes or even larger.
  • the present invention proposes a design of a filter on the high current path on the output side of the DCDC circuit topology, that is, the part shown in the dotted box in Figure 1, which is composed of a first-stage output inductor 1, a first-stage output capacitor 31, a second-stage output inductor 4, and a second-stage output capacitor 51.
  • the first-stage output inductor 1 includes: a first magnetic core 11 and at least two windings 6 arranged in parallel in the first magnetic core 11.
  • the top mounting surface of the first magnetic core 11 is provided with a first input pin 12 and an output pin 13.
  • the end of the first input pin 12 away from the first magnetic core 11 is higher than the end of the output pin 13 away from the first magnetic core 11.
  • the first input pin 12 and the output pin 13 are respectively connected to the first layer PCB 2 and the second layer PCB 3.
  • the top mounting surface of the first magnetic core 11 abuts against the bottom surface of the second layer PCB 3.
  • three or more windings 6 are arranged in parallel in the first magnetic core 11.
  • a certain height difference is formed between the first input pin 12 and the output pin 13, which can be welded on PCBs of different levels, and finally together with the external first magnetic core 11 and the magnetic core seat 14 or the shell of the first magnetic core 11, a complete first-stage output inductor 1 is formed.
  • the two sets of parallel windings 6 of the first-stage output inductor 1 are both formed by winding multiple turns of flat copper bars, and the winding 6 of the second-stage output inductor 4 is formed by a single-turn copper bar.
  • the first-stage output capacitor 31 includes: at least one first shell 311 installed on the bottom surface of the second-layer PCB3 and a capacitive device arranged in the first shell 311; as a preferred embodiment, the first-stage output capacitor 31 includes two first shells 311 installed on the bottom surface of the second-layer PCB3.
  • the second-stage output inductor 4 includes: a second magnetic core 42 and a winding 6 arranged in the second magnetic core 42.
  • the top surface of the second magnetic core 42 is provided with a second input pin 43
  • the bottom surface of the second magnetic core 42 is provided with an output copper bar 44.
  • the second input pin 43 and the output copper bar 44 are respectively connected to the second layer PCB 3 and the third layer PCB 5.
  • the second input pin 43 and the output copper bar 44 can form a flexible height difference and matching method to connect the front and rear stages, and the second magnetic core 42 is sleeved on the outside of the copper bar winding 6 to finally form the second-stage output inductor 4.
  • the second-stage output capacitor 51 comprises: a second housing 511 mounted on the bottom surface of the third-layer PCB 5 and a capacitor device within the second housing 511;
  • the filter output terminal 41 is connected to the output copper bar 44.
  • the output copper bar 44 is W-shaped, one end of the output copper bar 44 is vertically connected to the bottom end surface of the second magnetic core 42, the other end of the output copper bar 44 passes through the third layer PCB5 and is attached to the bottom surface of the third layer PCB5, the first input pin 12 passes through the second layer PCB3 and is welded to the first layer PCB2, and the output pin 13 and the second input pin 43 are welded to the second layer PCB3.
  • the output copper bar 44 can also be L-shaped or other shapes.
  • the filter output terminal 41 includes: a mounting base 411, an output port 412 arranged at one end of the mounting base 411, a connecting copper busbar 413 arranged at the other end of the mounting base 411, a mounting screw hole is provided at the end of the connecting copper busbar 413 away from the mounting base 411, and a connecting screw hole 441 matching the mounting screw hole is provided at the other end of the output copper busbar 44, and the filter output terminal 41 is threadedly connected to the output copper busbar 44 by passing a fixing screw through the mounting screw hole and the connecting screw hole 441.
  • the above-mentioned welding and threaded connections can be replaced by ordinary welding, resistance welding, laser welding, screw connection, riveting connection, etc. according to the specific conditions of the connection points.
  • the input end and the output end of the first-stage output inductor 1 are respectively connected to the first-layer PCB2 and the second-layer PCB3, the input end and the output end of the second-stage output inductor 4 are respectively connected to the second-layer PCB3 and the third-layer PCB5, the first-stage output capacitor 31 and the second-stage output capacitor 51 are respectively connected to the second-layer PCB3 and the third-layer PCB5, and the filter output terminal 41 is connected to the output end of the second-stage output inductor 4; the input end and the output end of the third-stage output inductor are respectively connected to the second-layer PCB3 and the third-layer PCB5, the input end and the output end of the fourth-stage output inductor are respectively connected to the third-layer PCB5 and the second-layer PCB3, the fourth-stage output capacitor is connected to the fourth-layer PCB, and the filter output terminal 41 is connected to the output end of the third-stage output
  • N may also be equal to 5 or a value higher than 5.
  • the present invention also provides a vehicle-mounted power DCDC conversion device, including a housing 10, and also includes the above-mentioned multi-layer structure filter installed on the housing 10, connected to the power switch tube on the first layer PCB2, the transformer 8 and the secondary side switch tube 9.
  • the housing 10 forms a cavity (not shown in the figure) between the first-stage output inductor 1 and the second-stage output inductor 4 for separating the shielding inductor.
  • a heat conducting member (not shown in the figure) is filled between the first-stage output inductor 1 and the second-stage output inductor 4 and the housing 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提出一种多层结构滤波器及车载电源DCDC转换装置,其中多层结构滤波器包括从上往下依次间隔设置的N层PCB,N大于或等于3;从上往下依次间隔设置的N-1级输出电感,每级输出电感分别通过其输入端和输出端对应连接于相邻上下层PCB;从上往下依次间隔设置的N-1级输出电容,每级输出电容分别对应连接于第二层至第N层PCB;滤波器输出端子,连接于第N-1级输出电感的输出端。该多层结构滤波器及应用其的车载电源DCDC转换装置,针对车载电源功率转换产品DCDC转换器中输出端滤波器,提出一种多层结构滤波器,实现滤波器小型化节省安装空间,同时更好地实现DCDC转换器输出端大电流路径的散热、滤波和屏蔽功能。

Description

一种多层结构滤波器及车载电源DCDC转换装置 技术领域
本发明涉及DCDC转换器技术领域,特别是涉及一种多层结构滤波器及应用其的车载电源DCDC转换装置。
背景技术
随着新能源汽车技术的发展,车载智能设备逐步增加,对于车载电源产品DCDC转换器的输出功率需求持续上升,同时对于车载电源产品DCDC转换器小型化的需求也逐步提升,以便节约安装空间,使得整车拥有更多的空间布置新增的这些智能设备,提升新能源汽车的智能化、集成化以及舒适性水平。而车载电源产品DCDC转换器的输出功率提升后,输出电流随之增大,对于其输出端大电流滤波器的设计提出了更高的挑战。
因此,提供一种适用于车载电源产品DCDC转换器输出端的小型化、大电流滤波器是本领域亟待解决的技术问题。
发明内容
本发明为了解决上述现有技术中缺乏一种适用于车载电源产品DCDC转换器输出端的小型化、大电流滤波器的技术问题,提出一种多层结构滤波器及应用其的车载电源DCDC转换装置。
为解决以上技术问题,本发明采用的技术方案是:
本发明提出了一种多层结构滤波器,包括:
从上往下依次间隔设置的N层PCB,N大于或等于3;
从上往下依次间隔设置的N-1级输出电感,每级输出电感分别通过其输入端和输出端对应连接于相邻上下层PCB;
从上往下依次间隔设置的N-1级输出电容,每级输出电容分别对应连接于第二层至第N层PCB;
滤波器输出端子,连接于第N-1级输出电感的输出端。
优选地,当N等于3时,第一级输出电感的输入端和输出端分别对应连接于第一层PCB和第二层PCB,第二级输出电感的输入端和输出端分别对应连接于第二层PCB和第三层PCB,第一级输出电容和第二级输出电容分别对应连接于第二层PCB和第三层PCB,滤波器输出端子连接于第二级输出电感的输出端。
优选地,第一级输出电感包括:第一磁芯和设于第一磁芯内的且相互并联的至少两个绕组,第一磁芯的顶端安装面设有第一输入引脚和输出引脚,第一输入引脚远离第一磁芯的末端高于输出引脚远离第一磁芯的末端,第一输入引脚和输出引脚分别对应连接于第一层PCB和第二层PCB,第一磁芯的顶端安装面抵接于第二层PCB的底面;
第一级输出电容包括:至少一个安装于第二层PCB的底面的第一壳体和设于第一壳体内的电容器件;
第二级输出电感包括:第二磁芯和设于第二磁芯内的一个绕组,第二磁芯的顶端面设有第二输入引脚,第二磁芯的底端面设有输出铜排,第二输入引脚和输出铜排分别对应连接于第二层PCB和第三层PCB;
第二级输出电容包括:安装于第三层PCB的底面的第二壳体和第二壳体内的电容器件;
滤波器输出端子连接于输出铜排。
优选地,当N等于4时,第三级输出电感的输入端和输出端分别对应连接于第二层PCB和第三层PCB,第四级输出电感的输入端和输出端分别对应连接于第三层PCB和第二层PCB,第四级输出电容连接于第四层PCB,滤波器输出端子连接于第三级输出电感的输出端。
优选地,第一级输出电感的绕组采用铜排绕制多匝形成,第二级输出电感的绕组采用单匝铜排形成。
优选地,输出铜排的一端垂直连接于第二磁芯的底端面,输出铜排的另一端穿过第三层PCB后贴敷于第三层PCB的底面,第一输入引脚穿过第二层PCB后焊接于第一层PCB,输出引脚和第二输入引脚焊接于第二层PCB。
优选地,滤波器输出端子包括:
安装座,设于安装座一端的输出端口,设于安装座另一端的连接铜排,连接铜排远离安装座的一端设有安装螺孔,输出铜排的另一端设有与安装螺孔相匹配的连接螺孔,通过固定螺丝穿过安装螺孔和连接螺孔将滤波器输出端子连接于输出铜排。
本发明还提供一种车载电源DCDC转换装置,包括机壳,还包括安装于机壳上的如权利要求1-7任一项的多层结构滤波器,连接于第一层PCB上的功率开关管、变压器和副边开关管。
进一步地,机壳在第一级输出电感和第二级输出电感之间形成用于分隔屏蔽电感的容腔。
进一步地,第一级输出电感和第二级输出电感与机壳之间填充导热件。
与现有技术比较,本发明提供的多层结构滤波器及应用其的车载电源DCDC转换装置,针对车载电源的功率转换产品DCDC转换器中的输出端滤波器,提出了一种多层结构的滤波器设计方案,在实现滤波器小型化节省安装空间的同时,能够更好的实现DCDC转换器输出端大电流路径的散热、滤波、屏蔽等性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的多层结构滤波器的实施例的电路拓扑示意图;
图2为本发明的多层结构滤波器的实施例的电感器件示意图;
图3为本发明的多层结构滤波器的实施例的整体结构示意图;
图4为本发明的多层结构滤波器的实施例的车载电源DCDC转换装置示意图。
其中,图中各附图主要标记:
1、第一级输出电感;11、第一磁芯;12、第一输入引脚;13、输出引脚;14、磁芯座;2、第一层PCB;3、第二层PCB;31、第一级输出电容;311、第一壳体;4、第二级输出电感;41、滤波器输出端子;411、安装座;412、输出端口;413、连接铜排;42、第二磁芯;43、第二输入引脚;44、输出铜排;441、连接螺孔;5、第三层PCB;51、第二级输出电容;511、第二壳体;6、绕组;7、原边功率开关管;8、变压器;9、副边开关管;10、机壳。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图1-4及实施例,对本发明的原理及结构进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请一并参阅图1-4,本发明提供一种多层结构滤波器,包括:从上往下依次间隔设置的N层PCB,N大于或等于3;从上往下依次间隔设置的N-1级输出电感,每级输出电感分别通过其输入端和输出端对应连接于相邻上下层PCB;从上往下依次间隔设置的N-1级输出电容,每级输出电容分别对应连接于第二层至第N层PCB;滤波器输出端子41,连接于第N-1级输出电感的输出端。
请参阅图1,为典型的DCDC电路拓扑为原副边隔离的全桥拓扑示意图。包括原边功率开关管7、变压器8、副边开关管9、第一级输出电感1、第一级输出电容31、第二级输出电感4和第二级输出电容51。由于DCDC输出电压为14V左右、输出功率为2、3KW以上,导致DCDC的输出电流普遍比较大,约为一两百安甚至更大的级别。本发明提出针对DCDC电路拓扑输出侧的大电流路径上的滤波器的设计,即图1中虚线框所示的部分,由第一级输出电感1、第一级输出电容31、第二级输出电感4和第二级输出电容51构成。
请一并参阅图1-4,在本发明提供的实施例一中,当N等于3时,第一级输出电感1的输入端和输出端分别对应连接于第一层PCB2和第二层PCB3,第二级输出电感4的输入端和输出端分别对应连接于第二层PCB3和第三层PCB5,第一级输出电容31和第二级输出电容51分别对应连接于第二层PCB3和第三层PCB5,滤波器输出端子41连接于第二级输出电感4的输出端。
请参阅图2、3,在本实施例中,第一级输出电感1包括:第一磁芯11和设于第一磁芯11内的且相互并联的至少两个绕组6,第一磁芯11的顶端安装面设有第一输入引脚12和输出引脚13,第一输入引脚12远离第一磁芯11的末端高于输出引脚13远离第一磁芯11的末端,第一输入引脚12和输出引脚13分别对应连接于第一层PCB2和第二层PCB3,第一磁芯11的顶端安装面抵接于第二层PCB3的底面;在其它实施方式中,第一磁芯11内的且相互并联的三个或更多的绕组6。第一输入引脚12和输出引脚13之间形成一定的高度差,可以焊接在不同层级的PCB上,最后与外部的第一磁芯11及第一磁芯11的磁芯座14或外壳一起构成完整的第一级输出电感1。
作为优选的实施方式,第一级输出电感1的两组并联的绕组6均采用扁平铜排绕制多匝形成,第二级输出电感4的绕组6采用单匝铜排形成。从电路拓扑上各位置器件的工作特性分析,第一级输出电感1中存在一定的开关频率电流分量,同时需要的感量相对大一些,故采用薄铜片绕制多匝形成绕组6且并联使用,以提升感量及降低趋肤效应;第二级输出电感4中开关频率的成分相对较小可基本忽略,同时感量需求相对小一些,故使用铜排构成单匝电感绕组6。
请参阅图2、3,在本实施例中,第一级输出电容31包括:至少一个安装于第二层PCB3的底面的第一壳体311和设于第一壳体311内的电容器件;作为优选的实施方式,第一级输出电容31包括两个安装于第二层PCB3的底面的第一壳体311。
请参阅图2、3,在本实施例中,第二级输出电感4包括:第二磁芯42和设于第二磁芯42内的一个绕组6,第二磁芯42的顶端面设有第二输入引脚43,第二磁芯42的底端面设有输出铜排44,第二输入引脚43和输出铜排44分别对应连接于第二层PCB3和第三层PCB5。根据实际结构匹配的需求,第二输入引脚43和输出铜排44可以形成灵活的高度差及匹配方式连接前后级,并由第二磁芯42套在铜排绕组6外部最终形成第二级输出电感4。
在本实施例中,第二级输出电容51包括:安装于第三层PCB5的底面的第二壳体511和第二壳体511内的电容器件;
请参阅图2、3,在本实施例中,滤波器输出端子41连接于输出铜排44。作为优选的实施方式,输出铜排44呈W型,输出铜排44的一端垂直连接于第二磁芯42的底端面,输出铜排44的另一端穿过第三层PCB5后贴敷于第三层PCB5的底面,第一输入引脚12穿过第二层PCB3后焊接于第一层PCB2,输出引脚13和第二输入引脚43焊接于第二层PCB3。在其它实施例中,输出铜排44也可以呈L型或其它形状。
在本实施例中,滤波器输出端子41包括:安装座411,设于安装座411一端的输出端口412,设于安装座411另一端的连接铜排413,连接铜排413远离安装座411的一端设有安装螺孔,输出铜排44的另一端设有与安装螺孔相匹配的连接螺孔441,通过固定螺丝穿过安装螺孔和连接螺孔441将滤波器输出端子41螺纹连接于输出铜排44。
在其它实施方式中,上述焊接和螺纹连接可根据连接点具体情况采用普通焊接、电阻焊、激光焊、螺钉连接、铆压连接等方式进行替换。
在本发明提供的实施例二中(图中未示出),当N等于4时,第一级输出电感1的输入端和输出端分别对应连接于第一层PCB2和第二层PCB3,第二级输出电感4的输入端和输出端分别对应连接于第二层PCB3和第三层PCB5,第一级输出电容31和第二级输出电容51分别对应连接于第二层PCB3和第三层PCB5,滤波器输出端子41连接于第二级输出电感4的输出端;第三级输出电感的输入端和输出端分别对应连接于第二层PCB3和第三层PCB5,第四级输出电感的输入端和输出端分别对应连接于第三层PCB5和第二层PCB3,第四级输出电容连接于第四层PCB,滤波器输出端子41连接于第三级输出电感的输出端。
在其它实施例中(图中未示出),N还可以等于5或高于5的数值。
请参阅图4,本发明还提供一种车载电源DCDC转换装置,包括机壳10,还包括安装于机壳10上的上述多层结构滤波器,连接于第一层PCB2上的功率开关管、变压器8和副边开关管9。
在本实施例中,机壳10在第一级输出电感1和第二级输出电感4之间形成用于分隔屏蔽电感的容腔(图中未示出)。
在本实施例中,第一级输出电感1和第二级输出电感4与机壳10之间填充导热件(图中未示出)。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多层结构滤波器,其特征在于,包括:
    从上往下依次间隔设置的N层PCB,所述N大于或等于3;
    从上往下依次间隔设置的N-1级输出电感,每级输出电感分别通过其输入端和输出端对应连接于相邻上下层PCB;
    从上往下依次间隔设置的N-1级输出电容,每级输出电容分别对应连接于第二层至第N层PCB;
    滤波器输出端子,连接于第N-1级输出电感的输出端。
  2. 如权利要求1所述的多层结构滤波器,其特征在于,当N等于3时,第一级输出电感的输入端和输出端分别对应连接于第一层PCB和第二层PCB,第二级输出电感的输入端和输出端分别对应连接于第二层PCB和第三层PCB,第一级输出电容和第二级输出电容分别对应连接于第二层PCB和第三层PCB,滤波器输出端子连接于所述第二级输出电感的输出端。
  3. 如权利要求2所述的多层结构滤波器,其特征在于,所述第一级输出电感包括:第一磁芯和设于所述第一磁芯内的且相互并联的至少两个绕组,所述第一磁芯的顶端安装面设有第一输入引脚和输出引脚,所述第一输入引脚远离所述第一磁芯的末端高于所述输出引脚远离所述第一磁芯的末端,所述第一输入引脚和所述输出引脚分别对应连接于所述第一层PCB和所述第二层PCB,所述第一磁芯的顶端安装面抵接于所述第二层PCB的底面;
    第一级输出电容包括:至少一个安装于所述第二层PCB的底面的第一壳体和设于所述第一壳体内的电容器件;
    第二级输出电感包括:第二磁芯和设于所述第二磁芯内的一个绕组,所述第二磁芯的顶端面设有第二输入引脚,所述第二磁芯的底端面设有输出铜排,所述第二输入引脚和输出铜排分别对应连接于所述第二层PCB和所述第三层PCB;
    第二级输出电容包括:安装于所述第三层PCB的底面的第二壳体和所述第二壳体内的电容器件;
    所述滤波器输出端子连接于所述输出铜排。
  4. 如权利要求2所述的多层结构滤波器,其特征在于,当N等于4时,第三级输出电感的输入端和输出端分别对应连接于第二层PCB和第三层PCB,第四级输出电感的输入端和输出端分别对应连接于第三层PCB和第二层PCB,第四级输出电容连接于第四层PCB,滤波器输出端子连接于所述第三级输出电感的输出端。
  5. 如权利要求3所述的多层结构滤波器,其特征在于,所述第一级输出电感的绕组采用铜排绕制多匝形成,所述第二级输出电感的绕组采用单匝铜排形成。
  6. 如权利要求3所述的多层结构滤波器,其特征在于,所述输出铜排的一端垂直连接于所述第二磁芯的底端面,所述输出铜排的另一端穿过所述第三层PCB后贴敷于所述第三层PCB的底面,所述第一输入引脚穿过所述第二层PCB后焊接于所述第一层PCB,所述输出引脚和所述第二输入引脚焊接于所述第二层PCB。
  7. 如权利要求6所述的多层结构滤波器,其特征在于,所述滤波器输出端子包括:
    安装座,设于所述安装座一端的输出端口,设于所述安装座另一端的连接铜排,所述连接铜排远离所述安装座的一端设有安装螺孔,所述输出铜排的另一端设有与所述安装螺孔相匹配的连接螺孔,通过固定螺丝穿过所述安装螺孔和所述连接螺孔将所述滤波器输出端子连接于所述输出铜排。
  8. 一种车载电源DCDC转换装置,包括机壳,其特征在于,还包括安装于所述机壳上的如权利要求2-7任一项所述的多层结构滤波器,连接于所述第一层PCB上的功率开关管、变压器和副边开关管。
  9. 如权利要求8所述的车载电源DCDC转换装置,其特征在于,所述机壳在第一级输出电感和第二级输出电感之间形成用于分隔屏蔽电感的容腔。
  10. 如权利要求8所述的车载电源DCDC转换装置,其特征在于,所述第一级输出电感和所述第二级输出电感与所述机壳之间填充导热件。
PCT/CN2023/096103 2022-10-10 2023-05-24 一种多层结构滤波器及车载电源dcdc转换装置 WO2024077964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211238276.4 2022-10-10
CN202211238276.4A CN115514335A (zh) 2022-10-10 2022-10-10 一种多层结构滤波器及车载电源dcdc转换装置

Publications (1)

Publication Number Publication Date
WO2024077964A1 true WO2024077964A1 (zh) 2024-04-18

Family

ID=84508630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096103 WO2024077964A1 (zh) 2022-10-10 2023-05-24 一种多层结构滤波器及车载电源dcdc转换装置

Country Status (2)

Country Link
CN (1) CN115514335A (zh)
WO (1) WO2024077964A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514335A (zh) * 2022-10-10 2022-12-23 深圳威迈斯新能源股份有限公司 一种多层结构滤波器及车载电源dcdc转换装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076199A1 (en) * 2001-10-18 2003-04-24 Murata Manufacturing Co., Ltd. LC high-pass filter circuit device, laminated LC high-pass filter device, multiplexer, and radio communication apparatus
CN110022133A (zh) * 2019-04-24 2019-07-16 电子科技大学 一种小型化电感耦合型可调带通滤波器及其制备方法
CN209591755U (zh) * 2019-03-18 2019-11-05 东风汽车集团有限公司 一种直流-直流变换器用电感器组件
CN212543739U (zh) * 2020-08-05 2021-02-12 重庆大及电子科技有限公司 一种基于工装连接的电源滤波器
CN214476925U (zh) * 2021-01-29 2021-10-22 深圳市英威腾电气股份有限公司 一种多磁芯柱的多路输出电路及其结构
CN115514335A (zh) * 2022-10-10 2022-12-23 深圳威迈斯新能源股份有限公司 一种多层结构滤波器及车载电源dcdc转换装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076199A1 (en) * 2001-10-18 2003-04-24 Murata Manufacturing Co., Ltd. LC high-pass filter circuit device, laminated LC high-pass filter device, multiplexer, and radio communication apparatus
CN209591755U (zh) * 2019-03-18 2019-11-05 东风汽车集团有限公司 一种直流-直流变换器用电感器组件
CN110022133A (zh) * 2019-04-24 2019-07-16 电子科技大学 一种小型化电感耦合型可调带通滤波器及其制备方法
CN212543739U (zh) * 2020-08-05 2021-02-12 重庆大及电子科技有限公司 一种基于工装连接的电源滤波器
CN214476925U (zh) * 2021-01-29 2021-10-22 深圳市英威腾电气股份有限公司 一种多磁芯柱的多路输出电路及其结构
CN115514335A (zh) * 2022-10-10 2022-12-23 深圳威迈斯新能源股份有限公司 一种多层结构滤波器及车载电源dcdc转换装置

Also Published As

Publication number Publication date
CN115514335A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN103137305B (zh) 一种变压器导电结构及变压器
JP6421484B2 (ja) コイル部品、コイル部品複合体およびトランス、ならびに電源装置
WO2024077964A1 (zh) 一种多层结构滤波器及车载电源dcdc转换装置
CN113012894B (zh) 集成变压器及电源变换器
CN211480930U (zh) 用于电子产品中具有抗电磁干扰功能的混合式电源滤波器
CN204179927U (zh) 一种直流-直流变换器
CN113890361A (zh) 电源模块
TWI747508B (zh) 平板繞組變壓器
CN217769886U (zh) 一种磁集成组件、谐振变换器和电源
CN216980294U (zh) 一种多层绕组的平面变压器
CN218648791U (zh) 一种多层结构滤波器及车载电源dcdc转换装置
CN214101927U (zh) 叠层母排结构及大功率电力变换装置
CN210743710U (zh) 电源装置和噪声去除过滤器
CN209516901U (zh) 一种磁性元件变压器与功率半导体组件
CN114944760A (zh) 具有承载次级侧整流器组件的pcb的功率转换器变压器模块
CN114783742A (zh) 功率转换模块及其磁性组件
JP4227985B2 (ja) プリント回路基板を用いた電源
CN220606160U (zh) 一种多层电路板
CN217335432U (zh) 一种紧凑型的emc滤波器
CN220605757U (zh) 一种电源集成模块
CN219875692U (zh) 一种组合式滤波器及开关电源
US20240161966A1 (en) Planar magnetic component
CN219227565U (zh) 一种高压直流大功率机载滤波器
CN214175820U (zh) 一种平面变压器
CN217335443U (zh) 一种基于陶瓷平面变压器的隔离式dc-dc转换器模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876175

Country of ref document: EP

Kind code of ref document: A1