WO2024077712A1 - Method and apparatus for determining exposure parameter, storage medium, and program product - Google Patents

Method and apparatus for determining exposure parameter, storage medium, and program product Download PDF

Info

Publication number
WO2024077712A1
WO2024077712A1 PCT/CN2022/132985 CN2022132985W WO2024077712A1 WO 2024077712 A1 WO2024077712 A1 WO 2024077712A1 CN 2022132985 W CN2022132985 W CN 2022132985W WO 2024077712 A1 WO2024077712 A1 WO 2024077712A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure parameter
exposure
training data
determining
historical
Prior art date
Application number
PCT/CN2022/132985
Other languages
French (fr)
Inventor
Mengnan JIAO
Xishuai PENG
Yunzhe ZOU
Original Assignee
Siemens Shanghai Medical Equipment Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Shanghai Medical Equipment Ltd. filed Critical Siemens Shanghai Medical Equipment Ltd.
Publication of WO2024077712A1 publication Critical patent/WO2024077712A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/589Setting distance between source unit and patient
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Definitions

  • the present invention relates to the field of medical imaging technologies, and in particular, to a method and an apparatus for determining an exposure parameter in X-ray imaging, a storage medium, and a program product.
  • X-rays are electromagnetic radiation with wavelengths between ultraviolet and gamma rays. X-rays are penetrable and have different penetrability to substances of different densities. In medicine, X-rays are used to project human organs and bones to form medical images.
  • An X-ray imaging system typically includes an X-ray generator assembly, a bucky-wall-stand (BWS) assembly, an inspection table assembly, a box assembly including a flat panel detector, a control host located remotely, and the like.
  • the X-ray generator uses a high voltage provided by a high voltage generator to emit X-rays that penetrate and illuminate an imaging object, and forms medical image information of the imaging object on the flat panel detector.
  • the flat panel detector sends the medical image information to the control host.
  • the imaging object may stand near the BWS assembly or lie on the inspection table assembly to respectively receive X-ray imaging on parts such as the skull, the chest, the abdomen, and the joints.
  • X-ray exposure parameters for example, tube voltage, tube current, and exposure time
  • X-ray exposure parameters are mainly set according to personal experience of technicians, which is difficult to implement.
  • the implementations of the present invention provide a method and an apparatus for determining an exposure parameter in X-ray imaging, a storage medium, and a program product.
  • a method for determining an exposure parameter in X-ray imaging including:
  • the exposure parameter prediction model inputting the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations;
  • the exposure parameter is automatically determined according to the thickness value of the imaging object, which improves the exposure accuracy and reduces the manual difficulty. Moreover, the correlation between the thickness value of the imaging object and the exposure parameter is considered in the process of automatically determining the exposure parameter, which further improves the accuracy of the parameter.
  • the method further includes:
  • the artificial neural network is introduced into the exposure parameter prediction process, which further reduces the difficulty of implementation.
  • the method further includes:
  • the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values;
  • the exposure parameter predicted value is adjusted through the exposure parameter historical adjusted values, which introduces the adjustment preference habit, implements the determination of the exposure parameter in a manner related to the adjustment operation, and is suitable for the customization situation.
  • the method further includes:
  • the artificial neural network is introduced into the exposure parameter adjustment process, which further reduces the difficulty of implementation.
  • the first training data is derived from log data of a plurality of X-ray imaging units.
  • the second training data is derived from log data of same X-ray imaging units, or the second training data is derived from log data of same X-ray imaging operators in the same X-ray imaging units.
  • the first training data is derived from log data of a plurality of X-ray imaging units, and the trained exposure parameter prediction model is a widely applicable general model.
  • the second training data is from the same X-ray imaging units or the same X-ray imaging operators, and the trained exposure parameter adjustment model is applicable to the same X-ray imaging units or the same X-ray imaging operators, which is a customized model.
  • the determining a thickness value of an imaging object includes:
  • determining a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object;
  • the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object.
  • the automatic determination of the thickness value of the imaging object is further implemented, which reduces the tedious work of manually measuring the thickness value of the imaging object.
  • An apparatus for determining an exposure parameter in X-ray imaging including:
  • a determining module configured to determine an X-ray imaging protocol and a thickness value of an imaging object
  • a first input module configured to input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations;
  • a first receiving module configured to receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
  • the exposure parameter is automatically determined according to the thickness value of the imaging object, which improves the exposure accuracy and reduces the manual difficulty. Moreover, the correlation between the thickness value of the imaging object and the exposure parameter is considered in the process of automatically determining the exposure parameter, which further improves the accuracy of the parameter.
  • the apparatus further includes:
  • a first training module configured to establish a first artificial neural network model; input the first training data into the first artificial neural network model; and train the first artificial neural network model into the exposure parameter prediction model by using the first training data.
  • the artificial neural network is introduced into the exposure parameter prediction process, which further reduces the difficulty of implementation.
  • the apparatus further includes:
  • a second input module configured to input the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values;
  • a second receiving module configured to receive, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value
  • an exposure module configured to perform an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
  • the exposure parameter predicted value is adjusted through the exposure parameter historical adjusted values, which introduces the adjustment preference habit, implements the determination of the exposure parameter in a manner related to the adjustment operation, and is suitable for the customization situation.
  • the apparatus further includes:
  • a second training module configured to establish a second artificial neural network model; input the second training data into the second artificial neural network model; and train the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
  • the artificial neural network is introduced into the exposure parameter adjustment process, which further reduces the difficulty of implementation.
  • the determining module is configured to determine a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object; determine a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and determine the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object.
  • the first training data is derived from log data of a plurality of X-ray imaging units, and the trained exposure parameter prediction model is a widely applicable general model.
  • the second training data is from the same X-ray imaging units or the same X-ray imaging operators, and the trained exposure parameter adjustment model is applicable to the same X-ray imaging units or the same X-ray imaging operators, which is a customized model.
  • An apparatus for determining an exposure parameter in X-ray imaging including: a processor and a memory, where
  • the memory stores an application program executable by the processor, to enable the processor to perform the method for determining an exposure parameter in X-ray imaging according to any one of foregoing aspects.
  • a computer-readable storage medium storing computer-readable instructions, where the computer-readable instructions, when executed by the processor, implements the method for determining an exposure parameter in X-ray imaging according to any one of the foregoing aspects.
  • a computer program product including a computer program, where the computer program, when executed by a processor, implements the method for determining an exposure parameter in X-ray imaging according to any one of the foregoing aspects.
  • FIG. 1 is a flowchart of a method for determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
  • FIG. 2 is an exemplary process diagram of determining a thickness value of an imaging object in X-ray imaging according to an implementation of the present invention.
  • FIG. 3 is an exemplary process diagram of determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
  • FIG. 4 is an exemplary schematic diagram of a human-computer interaction process of X-ray imaging according to an implementation of the present invention.
  • FIG. 5 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
  • FIG. 6 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging with a memory-processor architecture according to an implementation of the present invention.
  • the implementations of the present invention take into account the correlation between a thickness value of an imaging object and an exposure parameter (normally, a larger thickness value of the imaging object indicates a larger exposure parameter) .
  • the exposure parameter is automatically determined according to the thickness value of the imaging object, which not only improves the exposure accuracy, but also reduces the manual difficulty.
  • FIG. 1 is a flowchart of a method for determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
  • the method shown in FIG. 1 may be performed by a controller.
  • the controller may be implemented as a control host integrated into an X-ray imaging system or as a control unit independent from the control host.
  • the method 100 includes the following steps:
  • Step 101 Determine an X-ray imaging protocol and a thickness value of an imaging object.
  • the imaging object is an object on which X-ray imaging needs to be performed.
  • the imaging object may be an organism or an inanimate object, and the implementations of the present invention do not limit the specific characteristics of the imaging object.
  • the X-ray imaging protocol is a specific protocol (for example, an organ protocol (OGP) ) used in the process of performing X-ray imaging on the imaging object.
  • the X-ray imaging protocol may be determined based on a selection operation of the user in a human-computer interaction interface.
  • the thickness value of the imaging object may be measured manually by the staff using a ruler.
  • the implementations of the present invention further provide a technical solution for automatically determining the thickness value of the imaging object, which can automatically determine the thickness value of the imaging object based on a three-dimensional image of the imaging object, to reduce the tedious work of manually measuring the thickness value.
  • a camera component may be used to shoot the imaging object to obtain the three-dimensional image of the imaging object, and the three-dimensional image of the imaging object may be alternatively obtained from a storage medium (for example, the cloud or local database) , where the three-dimensional image is obtained by shooting the to-be-detected object by using the camera component.
  • the three-dimensional image may be sent to the controller executing the process in FIG. 1 through a wired or wireless interface.
  • the wired interface includes at least one of the following: a general serial bus interface, a controller local area network interface, a serial port, and the like; and the wireless interface includes at least one of the following: an infrared interface, a near field communication interface, a Bluetooth interface, a Zigbee interface, a wireless broadband interface, and the like.
  • the specific steps of determining the thickness value of the imaging object include: step (1) : determining a distance (Source to Object Surface Distance, SOSD) between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object; step (2) : determining a thickness value of the imaging object at the surface point based on a distance (Source to Image Distance, SID) between the X-ray source and an imaging surface, a distance (Table to Detector Distance, TDD) between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and step (3) : determining the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object, and the like.
  • SOSD Source to Object Surface Distance
  • the contact plate is the plate touched by the to-be-detected object in the X-ray application.
  • the contact plate can isolate the to-be-detected object and the imaging surface.
  • the contact plate generally has the following meanings:
  • the contact plate is the table plate of the inspection table.
  • the contact plate is a support plate used to assist the to-be-detected object to stand.
  • the contact plate is a panel of a box assembly, where a flat panel detector is inserted into the box assembly.
  • the contact plate is a panel touched by the flat panel detector and the to-be-detected object.
  • Both the distance between the X-ray source and the imaging surface and the distance between the contact plate and the detector correspond to the X-ray imaging protocol.
  • both the distance between the X-ray source and the imaging surface and the distance between the contact plate and the detector are known values.
  • FIG. 2 is an exemplary process diagram of determining a thickness value of an imaging object in X-ray imaging according to an implementation of the present invention.
  • an exemplary process of determining the thickness value of the imaging object is described using whole spine imaging as an example.
  • a to-be-detected object 75 stands at a support plate 76.
  • the left or right shoulder thereof is a specific surface point C of the whole spine imaging.
  • a distance between an X-ray source (usually located in an X-ray tube) in an X-ray generator assembly 77 and an imaging surface of a flat panel detector in a box assembly 78 is SID; a distance between the support plate 76 and the flat panel detector in the box assembly 78 is TDD; and a distance between a spinal datum line 79 and the support plate 76 is TOD, that is, the thickness value of the imaging object.
  • a thickness value at each surface point can be calculated in the whole spine imaging.
  • a minimum value is selected from thickness values at all surface points and used as the thickness value of the imaging object in step 101.
  • an average thickness value is calculated based on the thickness values at all surface points and used as the thickness value of the imaging object in step 101.
  • Step 102 Input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations.
  • the exposure parameter may include at least one of: tube voltage, tube current, exposure time, exposure dose, product of tube current and exposure time, and exposure density.
  • the method 100 further includes: establishing a first artificial neural network model; inputting the first training data into the first artificial neural network model; and training the first artificial neural network model into the exposure parameter prediction model by using the first training data. Therefore, the artificial neural network is introduced into the exposure parameter prediction process, which further reduces the difficulty of implementation.
  • Step 103 Receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
  • the exposure parameter value predicted by the exposure parameter prediction model based on the inputted thickness value is the exposure parameter predicted value.
  • An exposure operation may be performed on the imaging object based on the exposure parameter predicted value to generate an X-ray image.
  • the exposure parameter predicted value is outputted through the exposure parameter prediction model, and the exposure parameter predicted value can be directly used to perform the exposure operation on the imaging object, so that the exposure parameter can be determined in a general manner independent of the adjustment operation, improving the exposure efficiency.
  • the exposure parameter predicted value may be further automatically adjusted based on the preferences of the technicians.
  • the method 100 further includes: inputting the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values; receiving, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and performing an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
  • the meaning of the exposure parameter historical predicted values is: predicted values that are historically outputted by the exposure parameter prediction model for the exposure parameter.
  • the meaning of the exposure parameter historical adjusted values is: actual values of the exposure parameter obtained after the exposure parameter historical predicted values are historically adjusted (usually adjusted manually by the technicians) .
  • the meaning of the exposure parameter adjusted value is: an actual value of the exposure parameter obtained after the exposure parameter predicted value inputted into exposure parameter adjustment model is adjusted. Therefore, the exposure parameter adjusted value outputted by the exposure parameter adjustment model is used as the actual value of the adjusted exposure parameter, which can be directly applied to the exposure operation.
  • the exposure parameter adjustment model trained by using the exposure parameter historical predicted values outputted by the exposure parameter prediction model and the exposure parameter historical adjusted values (usually adjusted manually by the technicians) corresponding to the exposure parameter historical predicted values includes the correlation between the exposure parameter historical predicted values and the exposure parameter historical adjusted values, thereby manifesting the adjustment preferences of the technicians. Therefore, the accuracy of the exposure parameter can be further improved.
  • the exposure parameter adjusted value is outputted by the exposure parameter prediction model and exposure parameter adjustment model, and the exposure parameter adjusted value can be directly used for performing the exposure operation on the imaging object and further reflects the adjustment preferences of the technicians, so that the exposure parameter can be determined in a dedicated manner related to the adjustment operation, improving the accuracy of the exposure parameter.
  • the method 100 further includes: establishing a second artificial neural network model; inputting the second training data into the second artificial neural network model; and training the second artificial neural network model into the exposure parameter adjustment model by using the second training data. Therefore, the artificial neural network is introduced into the exposure parameter adjustment process, which further reduces the difficulty of implementation.
  • An X-ray imaging unit may be a specific medical institution, such as a hospital or a physical examination institution.
  • An X-ray imaging operator may be an individual, such as a technician, who operates the X-ray imaging system in the X-ray imaging unit.
  • the first training data is derived from log data of a plurality of X-ray imaging units; and the second training data is derived from log data of same X-ray imaging units.
  • the exposure parameter prediction model trained based on the first training data is a general model widely applicable to all X-ray imaging units.
  • the exposure parameter adjustment model trained based on the second training data is a customized model applicable to the same X-ray imaging units.
  • the first training data is derived from log data of hospitals A, B, and C.
  • the first training data further includes: (1) exposure parameter historical values in historical exposure operations of the hospital A and historical thickness values of historical exposure operations of the hospital A; (2) exposure parameter historical values in historical exposure operations of the hospital B and historical thickness values of historical exposure operations of the hospital B; and (3) exposure parameter historical values in historical exposure operations of the hospital C and historical thickness values of historical exposure operations of the hospital C.
  • the exposure parameter prediction model trained based on the first training data is a general model widely applicable to various hospitals (for example, the hospitals A to C that provide the first training data, and a hospital D that does not provide the first training data) .
  • each hospital may use the exposure parameter prediction model to determine an exposure parameter predicted value in a respective X-ray imaging operation.
  • second training data of the hospital A may be used to adjust the exposure parameter prediction model delivered to the hospital A.
  • the second training data of the hospital A further includes: exposure parameter historical predicted values historically outputted by the hospital A using the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, technicians of the hospital A manually adjust the exposure parameter historical predicted values to exposure parameter historical adjusted values) .
  • the exposure parameter adjustment model trained based on the second training data of the hospital A is a customized model applicable to the hospital A.
  • the output of the exposure parameter prediction model delivered to the hospital A is connected to the input by the customized model applicable to the hospital A, so that the exposure parameter prediction model delivered to the hospital A and the customized model of the hospital A can be connected to form an adjusted exposure parameter prediction model applicable to the hospital A.
  • second training data of the hospital C may be used to adjust the exposure parameter prediction model delivered to the hospital C.
  • the second training data of the hospital C includes: exposure parameter historical predicted values historically outputted by the hospital C using the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, technicians of the hospital C manually adjust the exposure parameter historical predicted values to exposure parameter historical adjusted values) .
  • the exposure parameter adjustment model trained based on the second training data of the hospital C is a customized model applicable to the hospital C.
  • the output of the exposure parameter prediction model delivered to the hospital C is connected to the input by the customized model applicable to the hospital C, so that the exposure parameter prediction model delivered to the hospital C and the customized model of the hospital C can be connected to form an adjusted exposure parameter prediction model applicable to the hospital C.
  • the first training data is derived from log data of a plurality of X-ray imaging units; and the second training data is derived from log data of same X-ray imaging operators in the same X-ray imaging units.
  • the exposure parameter prediction model trained based on the first training data is a general model widely applicable to all X-ray imaging units.
  • the exposure parameter adjustment model trained based on the second training data is a customized model applicable to the same X-ray imaging operators in the same X-ray imaging units.
  • the first training data is derived from log data of hospitals A, B, and C.
  • the first training data further includes: (1) exposure parameter historical values in historical exposure operations of the hospital A and historical thickness values of historical exposure operations of the hospital A; (2) exposure parameter historical values in historical exposure operations of the hospital B and historical thickness values of historical exposure operations of the hospital B; and (3) exposure parameter historical values in historical exposure operations of the hospital C and historical thickness values of historical exposure operations of the hospital C.
  • the exposure parameter prediction model trained based on the first training data is a general model widely applicable to various hospitals (for example, the hospitals A to C that provide the first training data, and a hospital D that does not provide the first training data) .
  • each hospital may use the exposure parameter prediction model to determine an exposure parameter predicted value in a respective X-ray imaging operation.
  • second training data of a technician Zhang San in the hospital A may be used to adjust the exposure parameter prediction model delivered to the hospital A.
  • the second training data of the technician Zhang San includes: exposure parameter historical predicted values historically outputted by the technician Zhang San using the exposure parameter prediction model, and exposure parameter historical adjusted values obtained after the technician Zhang San adjusts the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, the technician Zhang San manually adjusts the exposure parameter historical predicted values to exposure parameter historical adjusted values) .
  • the exposure parameter adjustment model trained based on the second training data of the technician Zhang San is a customized model applicable to the technician Zhang San.
  • the output of the exposure parameter prediction model delivered to the hospital A is connected to the input by the customized model applicable to the technician Zhang San, so that the exposure parameter prediction model delivered to the hospital A and the customized model of the technician Zhang San can be connected to form an adjusted exposure parameter prediction model applicable to the technician Zhang San in the hospital A.
  • second training data of the technician Li Si in the hospital C may be used to adjust the exposure parameter prediction model delivered to the hospital C.
  • the second training data of the technician Li Si includes: exposure parameter historical predicted values historically outputted by the technician Li Si using the exposure parameter prediction model, and exposure parameter historical adjusted values obtained after the technician Li Si adjusts the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, the technician Li Si manually adjusts the exposure parameter historical predicted values to exposure parameter historical adjusted values) .
  • the exposure parameter adjustment model trained based on the second training data of the technician Li Si is a customized model applicable to the technician Li Si.
  • the output of the exposure parameter prediction model delivered to the hospital C is connected to the input by the customized model applicable to the technician Li Si, so that the exposure parameter prediction model delivered to the hospital C and the customized model of the technician Li Si can be connected to form an adjusted exposure parameter prediction model applicable to the technician Li Si.
  • FIG. 3 is an exemplary process diagram of determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
  • a technician 10 of each hospital performs imaging protocol selection processing 11 through a human-computer interaction interface on a control host to select an imaging protocol.
  • the control host displays an initial exposure parameter value (usually pre-set) corresponding to the imaging protocol.
  • the technician 10 performs exposure parameter adjustment processing 12 to manually adjust the initial exposure parameter value, and uses the manually adjusted exposure parameter to perform an exposure operation.
  • the control host determines a thickness value of an imaging object in the exposure operation.
  • the control host generates log data 13 including the exposure parameter and the thickness value in the exposure operation.
  • the control host sends the log data 13 to a database 15 in a cloud 14.
  • the cloud 14 extracts, from the database 15, exposure parameter values in exposure operations of various hospitals that are historical data and thickness values in the exposure operations as first training data.
  • First model training processing 16 is performed on a first artificial neural network model based on the first training data, to train a general exposure parameter prediction model 19 widely applicable to all hospitals.
  • the cloud 14 delivers the general exposure parameter prediction model 19 to each hospital, and each hospital can use the exposure parameter prediction model 19 to automatically predict an exposure parameter.
  • the control host of each hospital further sends log data in the process of using the exposure parameter prediction model 19 to the database 15.
  • the cloud 14 further extracts, from the database 15, exposure parameter historical predicted values predicted by a specific hospital using the exposure parameter prediction model 19 and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values as the second training data.
  • Second model training processing 17 is performed on a second artificial neural network model based on the second training data to obtain an exposure parameter adjustment model for the specific hospital.
  • the output of the exposure parameter prediction model 19 delivered to the specific hospital is connected to the input by the exposure parameter adjustment model of the specific hospital, to form an adjusted exposure parameter prediction model 18 applicable to the specific hospital.
  • the exposure parameter prediction model 18 is a dedicated model of the specific hospital. Similarly, a dedicated model can be generated for each hospital.
  • the technician at each hospital may then select a model from the general exposure parameter prediction model 19 or the exposure parameter prediction model 18 that is applicable to the hospital to perform the exposure operation.
  • the technician 10 needs to perform imaging protocol selection processing 21, and performs exposure processing 22 based on an exposure parameter determined by a selected model.
  • FIG. 4 is an exemplary schematic diagram of a human-computer interaction process of X-ray imaging according to an implementation of the present invention. Based on the human-computer interaction process in FIG. 4, the training data can be conveniently acquired.
  • human-computer interaction 30 includes a to-be-detected object information display area 31, an imaging protocol display area 35, an exposure button 38, and an exposure parameter display area 40.
  • a to-be-detected object identifier 32, a to-be-detected object gender 33, and a to-be-detected object age 34 are displayed in the to-be-detected object information display area 31.
  • a left side neck imaging protocol 36 and a right side neck imaging protocol 37 are exemplarily displayed for users to select specific imaging protocols.
  • the technician 10 can adjust the specific values of the tube voltage 41, the tube current 42, the exposure time 43, the exposure dose 44, and the exposure density 45.
  • the exposure button 38 is triggered, so that exposure can be performed according to the adjusted exposure parameter.
  • FIG. 5 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
  • an apparatus 500 for determining an exposure parameter in X-ray imaging includes:
  • a determining module 501 configured to determine an X-ray imaging protocol and a thickness value of an imaging object
  • a first input module 502 configured to input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations;
  • a first receiving module 503 configured to receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
  • the apparatus further includes:
  • a first training module 504 configured to establish a first artificial neural network model; input the first training data into the first artificial neural network model; and train the first artificial neural network model into the exposure parameter prediction model by using the first training data.
  • the apparatus further includes: a second input module 505, configured to input the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values; a second receiving module 506, configured to receive, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and an exposure module 507, configured to perform an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
  • a second input module 505 configured to input the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values
  • a second receiving module 506 configured to receive, from the exposure parameter
  • the apparatus further includes: a second training module 508, configured to establish a second artificial neural network model; input the second training data into the second artificial neural network model; and train the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
  • a second training module 508 configured to establish a second artificial neural network model; input the second training data into the second artificial neural network model; and train the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
  • the determining module 501 is configured to determine a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object; determine a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and determine the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object.
  • FIG. 6 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging with a memory-processor architecture according to an implementation of the present invention.
  • the apparatus 600 for determining an exposure parameter in X-ray imaging includes a processor 601, a memory 602, and a computer program stored on memory 602 and capable of being run on the processor 601, where the computer program, when executed by the processor 601, implements any of the foregoing method for determining an exposure parameter in X-ray imaging.
  • the memory 602 may be further implemented into a variety of storage media such as an electrically erasable programmable read-only memory (EEPROM) , a flash memory, and a programmable program read-only memory (PROM) .
  • the processor 601 may be implemented to include one or more central processing units or one or more field programmable gate arrays, where the field programmable gate array integrates one or more central processing unit cores.
  • the central processing unit or the central processing unit core may be implemented as CPU, MCU, DSP, or the like.
  • Hardware modules in the implementations may be implemented in a mechanic manner or an electronic manner.
  • a hardware module may include specially designed permanent circuits or logic devices (for example, an application-specific processor such as an FPGA or an ASIC) to complete specific operations.
  • the hardware module may also include temporarily configured programmable logic devices or circuits (for example, including a general processor or another programmable processor) to perform specific operations.
  • the hardware module is implemented by specifically using the mechanical manner, using the application-specific permanent circuits, or using the temporarily configured circuits (for example, configured by software) , which can be decided according to consideration of costs and time.
  • the present invention further provides a machine readable storage medium, storing instructions used for causing a machine to execute the method described in this specification.
  • a system or an apparatus that is equipped with a storage medium may be provided.
  • the storage medium stores software program code that implements functions of any implementation in the foregoing embodiments, and a computer (a CPU or an MPU) of the system or the apparatus is enabled to read and execute the program code stored in the storage medium.
  • a program code based instruction may also be used to enable an operating system or the like running in the computer to complete some or all actual operations.
  • the program code read from the storage medium may also be written into a memory that is disposed in an expansion board inserted in the computer, or may be written into a memory that is disposed in an expansion unit connected to the computer, and then a CPU or the like that is installed on the expansion board or expansion unit may be enabled to execute some or all actual operations based on the instructions of the program code, to implement the functions of any one of the foregoing implementations.
  • Implementations of the storage medium for providing the program code may include a floppy disk, a hard disk, a magneto-optical disk, an optical memory (for example, a CD-ROM, a CD-R, a CD-RW, a DVD-ROM, a DVD-RAM, a DVD-RW, and a DVD+RW) , a magnetic tape, a non-volatile storage card, and a ROM.
  • the program code may be downloaded from a server computer or a cloud by using a communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Software Systems (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The implementations of the present invention disclose a method and an apparatus for determining an exposure parameter in X-ray imaging, a storage medium, and a program product. The method includes: determining an X-ray imaging protocol and a thickness value of an imaging object; inputting the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations; and receiving, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value. In the implementations of the present invention, the exposure parameter is automatically determined according to the thickness value of the imaging object, which improves the exposure accuracy and reduces the manual difficulty. In the implementations of the present invention, the exposure parameter can be determined in a general manner independent of the adjustment operation or in a dedicated manner related to the adjustment operation, and the automatic determination of the thickness value is further implemented.

Description

METHOD AND APPARATUS FOR DETERMINING EXPOSURE PARAMETER, STORAGE MEDIUM, AND PROGRAM PRODUCT TECHNICAL FIELD
The present invention relates to the field of medical imaging technologies, and in particular, to a method and an apparatus for determining an exposure parameter in X-ray imaging, a storage medium, and a program product.
BACKGROUND
X-rays are electromagnetic radiation with wavelengths between ultraviolet and gamma rays. X-rays are penetrable and have different penetrability to substances of different densities. In medicine, X-rays are used to project human organs and bones to form medical images. An X-ray imaging system typically includes an X-ray generator assembly, a bucky-wall-stand (BWS) assembly, an inspection table assembly, a box assembly including a flat panel detector, a control host located remotely, and the like. The X-ray generator uses a high voltage provided by a high voltage generator to emit X-rays that penetrate and illuminate an imaging object, and forms medical image information of the imaging object on the flat panel detector. The flat panel detector sends the medical image information to the control host. The imaging object may stand near the BWS assembly or lie on the inspection table assembly to respectively receive X-ray imaging on parts such as the skull, the chest, the abdomen, and the joints.
In X-ray imaging, X-ray exposure parameters (for example, tube voltage, tube current, and exposure time) have a great impact on X-ray image quality. At present, X-ray exposure parameters are mainly set according to personal experience of technicians, which is difficult to implement.
SUMMARY
The implementations of the present invention provide a method and an apparatus for determining an exposure parameter in X-ray imaging, a storage medium, and a program product.
The technical solutions of the implementations of the present invention include:
A method for determining an exposure parameter in X-ray imaging is provided,  including:
determining an X-ray imaging protocol and a thickness value of an imaging object;
inputting the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations; and
receiving, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
As can be seen, in the implementations of the present invention, the exposure parameter is automatically determined according to the thickness value of the imaging object, which improves the exposure accuracy and reduces the manual difficulty. Moreover, the correlation between the thickness value of the imaging object and the exposure parameter is considered in the process of automatically determining the exposure parameter, which further improves the accuracy of the parameter.
In an exemplary implementation, the method further includes:
establishing a first artificial neural network model;
inputting the first training data into the first artificial neural network model; and
training the first artificial neural network model into the exposure parameter prediction model by using the first training data.
Therefore, the artificial neural network is introduced into the exposure parameter prediction process, which further reduces the difficulty of implementation.
In an exemplary implementation, the method further includes:
inputting the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values;
receiving, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and
performing an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
As can be seen, in the implementations of the present invention, the exposure parameter  predicted value is adjusted through the exposure parameter historical adjusted values, which introduces the adjustment preference habit, implements the determination of the exposure parameter in a manner related to the adjustment operation, and is suitable for the customization situation.
In an exemplary implementation, the method further includes:
establishing a second artificial neural network model;
inputting the second training data into the second artificial neural network model; and
training the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
Therefore, the artificial neural network is introduced into the exposure parameter adjustment process, which further reduces the difficulty of implementation.
In an exemplary implementation, the first training data is derived from log data of a plurality of X-ray imaging units; and
the second training data is derived from log data of same X-ray imaging units, or the second training data is derived from log data of same X-ray imaging operators in the same X-ray imaging units.
As can be seen, the first training data is derived from log data of a plurality of X-ray imaging units, and the trained exposure parameter prediction model is a widely applicable general model. The second training data is from the same X-ray imaging units or the same X-ray imaging operators, and the trained exposure parameter adjustment model is applicable to the same X-ray imaging units or the same X-ray imaging operators, which is a customized model.
In an exemplary implementation, the determining a thickness value of an imaging object includes:
determining a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object;
determining a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and
determining the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where
the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object.
Therefore, in the implementations of the present invention, the automatic determination of the thickness value of the imaging object is further implemented, which reduces the tedious work of manually measuring the thickness value of the imaging object.
An apparatus for determining an exposure parameter in X-ray imaging is provided, including:
a determining module, configured to determine an X-ray imaging protocol and a thickness value of an imaging object;
a first input module, configured to input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations; and
a first receiving module, configured to receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
As can be seen, in the implementations of the present invention, the exposure parameter is automatically determined according to the thickness value of the imaging object, which improves the exposure accuracy and reduces the manual difficulty. Moreover, the correlation between the thickness value of the imaging object and the exposure parameter is considered in the process of automatically determining the exposure parameter, which further improves the accuracy of the parameter.
In an exemplary implementation, the apparatus further includes:
a first training module, configured to establish a first artificial neural network model; input the first training data into the first artificial neural network model; and train the first artificial neural network model into the exposure parameter prediction model by using the first training data.
Therefore, the artificial neural network is introduced into the exposure parameter prediction process, which further reduces the difficulty of implementation.
In an exemplary implementation, the apparatus further includes:
a second input module, configured to input the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted  values;
a second receiving module, configured to receive, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and
an exposure module, configured to perform an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
As can be seen, in the implementations of the present invention, the exposure parameter predicted value is adjusted through the exposure parameter historical adjusted values, which introduces the adjustment preference habit, implements the determination of the exposure parameter in a manner related to the adjustment operation, and is suitable for the customization situation.
In an exemplary implementation, the apparatus further includes:
a second training module, configured to establish a second artificial neural network model; input the second training data into the second artificial neural network model; and train the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
Therefore, the artificial neural network is introduced into the exposure parameter adjustment process, which further reduces the difficulty of implementation.
In an exemplary implementation, the determining module is configured to determine a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object; determine a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and determine the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object.
As can be seen, the first training data is derived from log data of a plurality of X-ray imaging units, and the trained exposure parameter prediction model is a widely applicable general model. The second training data is from the same X-ray imaging units or the same X-ray imaging operators, and the trained exposure parameter adjustment model is applicable to the same X-ray imaging units or the same X-ray imaging operators, which is a customized model.
An apparatus for determining an exposure parameter in X-ray imaging is provided,  including: a processor and a memory, where
the memory stores an application program executable by the processor, to enable the processor to perform the method for determining an exposure parameter in X-ray imaging according to any one of foregoing aspects.
A computer-readable storage medium is provided, storing computer-readable instructions, where the computer-readable instructions, when executed by the processor, implements the method for determining an exposure parameter in X-ray imaging according to any one of the foregoing aspects.
A computer program product is provided, including a computer program, where the computer program, when executed by a processor, implements the method for determining an exposure parameter in X-ray imaging according to any one of the foregoing aspects.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flowchart of a method for determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
FIG. 2 is an exemplary process diagram of determining a thickness value of an imaging object in X-ray imaging according to an implementation of the present invention.
FIG. 3 is an exemplary process diagram of determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
FIG. 4 is an exemplary schematic diagram of a human-computer interaction process of X-ray imaging according to an implementation of the present invention.
FIG. 5 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
FIG. 6 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging with a memory-processor architecture according to an implementation of the present invention.
Reference numerals are as follows:
Figure PCTCN2022132985-appb-000001
Figure PCTCN2022132985-appb-000002
Figure PCTCN2022132985-appb-000003
DETAILED DESCRIPTION
To make the technical solutions and advantages of the present invention clearer and more comprehensible, the following further describes the present invention in detail with reference to the accompanying drawings and implementations. It should be understood that the specific implementations described herein are merely used to illustratively explain the present invention but are not intended to limit the protection scope of the present invention.
For brief and intuitive description, the following describes the solutions of the present invention by describing several typical implementations. A large quantity of details in the implementations is merely used for helping understand the solutions of the present invention. However, obviously, implementation of the technical solutions of the present invention is not limited to these details. To avoid obscuring the solutions of the present invention, some implementations are not described in detail, but only a framework is provided. In the following text, "include" refers to "include but is not limited to" , and "according to …" refers to "according to at least …, but not being limited only to according to …" . Because of Chinese language habits, the following does not particularly specify the quantity of a component, which means that the component may be one or more, or can be understood as at least one.
In view of the defect of setting X-ray exposure parameters according to the personal experience of technicians in the related art, the implementations of the present invention take into account the correlation between a thickness value of an imaging object and an exposure parameter (normally, a larger thickness value of the imaging object indicates a larger exposure parameter) . The exposure parameter is automatically determined according to the thickness value of the imaging object, which not only improves the exposure accuracy, but  also reduces the manual difficulty.
FIG. 1 is a flowchart of a method for determining an exposure parameter in X-ray imaging according to an implementation of the present invention. Preferably, the method shown in FIG. 1 may be performed by a controller. The controller may be implemented as a control host integrated into an X-ray imaging system or as a control unit independent from the control host.
As shown in FIG. 1, the method 100 includes the following steps:
Step 101: Determine an X-ray imaging protocol and a thickness value of an imaging object.
The imaging object is an object on which X-ray imaging needs to be performed. The imaging object may be an organism or an inanimate object, and the implementations of the present invention do not limit the specific characteristics of the imaging object. The X-ray imaging protocol is a specific protocol (for example, an organ protocol (OGP) ) used in the process of performing X-ray imaging on the imaging object. The X-ray imaging protocol may be determined based on a selection operation of the user in a human-computer interaction interface.
In an optional implementation, the thickness value of the imaging object may be measured manually by the staff using a ruler. Preferably, considering many defects of manually measuring the thickness value of the imaging object by using the ruler, the implementations of the present invention further provide a technical solution for automatically determining the thickness value of the imaging object, which can automatically determine the thickness value of the imaging object based on a three-dimensional image of the imaging object, to reduce the tedious work of manually measuring the thickness value.
A camera component may be used to shoot the imaging object to obtain the three-dimensional image of the imaging object, and the three-dimensional image of the imaging object may be alternatively obtained from a storage medium (for example, the cloud or local database) , where the three-dimensional image is obtained by shooting the to-be-detected object by using the camera component. After the camera component acquires the three-dimensional image of the imaging object, the three-dimensional image may be sent to the controller executing the process in FIG. 1 through a wired or wireless interface. Preferably, the wired interface includes at least one of the following: a general serial bus interface, a controller local area network interface, a serial port, and the like; and the wireless interface includes at least one of the following: an infrared interface, a near field communication interface, a Bluetooth interface, a Zigbee interface, a wireless broadband  interface, and the like.
In an exemplary implementation, the specific steps of determining the thickness value of the imaging object include: step (1) : determining a distance (Source to Object Surface Distance, SOSD) between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object; step (2) : determining a thickness value of the imaging object at the surface point based on a distance (Source to Image Distance, SID) between the X-ray source and an imaging surface, a distance (Table to Detector Distance, TDD) between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and step (3) : determining the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object, and the like.
The contact plate is the plate touched by the to-be-detected object in the X-ray application. The contact plate can isolate the to-be-detected object and the imaging surface. The contact plate generally has the following meanings:
(1) When the X-ray imaging system operates in an inspection table mode, the contact plate is the table plate of the inspection table.
(2) When the X-ray imaging system operates in a bucky-wall-stand mode in a whole spine imaging protocol, the contact plate is a support plate used to assist the to-be-detected object to stand.
(3) When the X-ray imaging system operates in a bucky-wall-stand mode in a non-whole spine imaging protocol (for example, a chest imaging protocol, or a knee imaging protocol) , the contact plate is a panel of a box assembly, where a flat panel detector is inserted into the box assembly.
(4) When the X-ray imaging system operates in a free exposure mode (that is, the to-be-detected object is in direct contact with the flat panel detector) , the contact plate is a panel touched by the flat panel detector and the to-be-detected object.
Both the distance between the X-ray source and the imaging surface and the distance between the contact plate and the detector correspond to the X-ray imaging protocol. When the X-ray imaging protocol is determined, both the distance between the X-ray source and the imaging surface and the distance between the contact plate and the detector are known values.
FIG. 2 is an exemplary process diagram of determining a thickness value of an imaging  object in X-ray imaging according to an implementation of the present invention. In FIG. 2, an exemplary process of determining the thickness value of the imaging object is described using whole spine imaging as an example.
A to-be-detected object 75 stands at a support plate 76. For example, the left or right shoulder thereof is a specific surface point C of the whole spine imaging. A distance between an X-ray source (usually located in an X-ray tube) in an X-ray generator assembly 77 and an imaging surface of a flat panel detector in a box assembly 78 is SID; a distance between the support plate 76 and the flat panel detector in the box assembly 78 is TDD; and a distance between a spinal datum line 79 and the support plate 76 is TOD, that is, the thickness value of the imaging object.
A distance between the X-ray source and the surface point C is SOSDc, where SOSDc=R*Ip+T; R is a rotation matrix between a camera component coordinate system of the three-dimensional image formed by shooting the to-be-detected object 75 and an X-ray tube coordinate system; Ip is a transformation matrix between the camera component coordinate system and the X-ray tube coordinate system; and T is a depth value of the point C (T may be determined based on the three-dimensional image) .
A thickness value TODc at the surface point C may be determined based on SOSDc, where TODc= SID-TDD-SOSDc.
Similarly, a thickness value at each surface point can be calculated in the whole spine imaging. In an implementation, a minimum value is selected from thickness values at all surface points and used as the thickness value of the imaging object in step 101. In an implementation, an average thickness value is calculated based on the thickness values at all surface points and used as the thickness value of the imaging object in step 101.
The typical example of the thickness value of the imaging object is exemplarily described above. A person skilled in the art may realize that the description is merely exemplary and is not used to limit the protection scope of the implementations of the present invention.
Step 102: Input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations.
It can be seen that the correlation between the thickness value of the imaging object and the exposure parameter is included in the exposure parameter prediction model trained by  using the exposure parameter historical values in the historical exposure operations and the historical thickness values in the historical exposure operations. Therefore, the exposure parameter prediction model can improve the accuracy of the exposure parameter. The exposure parameter may include at least one of: tube voltage, tube current, exposure time, exposure dose, product of tube current and exposure time, and exposure density.
In an exemplary implementation, the method 100 further includes: establishing a first artificial neural network model; inputting the first training data into the first artificial neural network model; and training the first artificial neural network model into the exposure parameter prediction model by using the first training data. Therefore, the artificial neural network is introduced into the exposure parameter prediction process, which further reduces the difficulty of implementation.
Step 103: Receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
The exposure parameter value predicted by the exposure parameter prediction model based on the inputted thickness value is the exposure parameter predicted value. An exposure operation may be performed on the imaging object based on the exposure parameter predicted value to generate an X-ray image.
Therefore, in the implementations of the present invention, the exposure parameter predicted value is outputted through the exposure parameter prediction model, and the exposure parameter predicted value can be directly used to perform the exposure operation on the imaging object, so that the exposure parameter can be determined in a general manner independent of the adjustment operation, improving the exposure efficiency.
Considering that technicians usually adjust the automatically determined exposure parameter predicted value based on personal habits, the exposure parameter predicted value may be further automatically adjusted based on the preferences of the technicians.
In an exemplary implementation, the method 100 further includes: inputting the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values; receiving, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and performing an exposure operation on the imaging object  based on the exposure parameter adjusted value to generate an X-ray image. The meaning of the exposure parameter historical predicted values is: predicted values that are historically outputted by the exposure parameter prediction model for the exposure parameter. The meaning of the exposure parameter historical adjusted values is: actual values of the exposure parameter obtained after the exposure parameter historical predicted values are historically adjusted (usually adjusted manually by the technicians) . The meaning of the exposure parameter adjusted value is: an actual value of the exposure parameter obtained after the exposure parameter predicted value inputted into exposure parameter adjustment model is adjusted. Therefore, the exposure parameter adjusted value outputted by the exposure parameter adjustment model is used as the actual value of the adjusted exposure parameter, which can be directly applied to the exposure operation.
As can be seen, the exposure parameter adjustment model trained by using the exposure parameter historical predicted values outputted by the exposure parameter prediction model and the exposure parameter historical adjusted values (usually adjusted manually by the technicians) corresponding to the exposure parameter historical predicted values includes the correlation between the exposure parameter historical predicted values and the exposure parameter historical adjusted values, thereby manifesting the adjustment preferences of the technicians. Therefore, the accuracy of the exposure parameter can be further improved.
Therefore, in the implementations of the present invention, the exposure parameter adjusted value is outputted by the exposure parameter prediction model and exposure parameter adjustment model, and the exposure parameter adjusted value can be directly used for performing the exposure operation on the imaging object and further reflects the adjustment preferences of the technicians, so that the exposure parameter can be determined in a dedicated manner related to the adjustment operation, improving the accuracy of the exposure parameter.
In an exemplary implementation, the method 100 further includes: establishing a second artificial neural network model; inputting the second training data into the second artificial neural network model; and training the second artificial neural network model into the exposure parameter adjustment model by using the second training data. Therefore, the artificial neural network is introduced into the exposure parameter adjustment process, which further reduces the difficulty of implementation.
The first training data and the second training data are described in detail below. An X-ray imaging unit may be a specific medical institution, such as a hospital or a physical examination institution. An X-ray imaging operator may be an individual, such as a  technician, who operates the X-ray imaging system in the X-ray imaging unit.
In a first case, the first training data is derived from log data of a plurality of X-ray imaging units; and the second training data is derived from log data of same X-ray imaging units.
In the first case, the exposure parameter prediction model trained based on the first training data is a general model widely applicable to all X-ray imaging units. The exposure parameter adjustment model trained based on the second training data is a customized model applicable to the same X-ray imaging units.
For example, the first training data is derived from log data of hospitals A, B, and C. The first training data further includes: (1) exposure parameter historical values in historical exposure operations of the hospital A and historical thickness values of historical exposure operations of the hospital A; (2) exposure parameter historical values in historical exposure operations of the hospital B and historical thickness values of historical exposure operations of the hospital B; and (3) exposure parameter historical values in historical exposure operations of the hospital C and historical thickness values of historical exposure operations of the hospital C. The exposure parameter prediction model trained based on the first training data is a general model widely applicable to various hospitals (for example, the hospitals A to C that provide the first training data, and a hospital D that does not provide the first training data) .
After the exposure parameter prediction model is delivered to each hospital, each hospital may use the exposure parameter prediction model to determine an exposure parameter predicted value in a respective X-ray imaging operation.
In addition, second training data of the hospital A may be used to adjust the exposure parameter prediction model delivered to the hospital A. The second training data of the hospital A further includes: exposure parameter historical predicted values historically outputted by the hospital A using the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, technicians of the hospital A manually adjust the exposure parameter historical predicted values to exposure parameter historical adjusted values) . The exposure parameter adjustment model trained based on the second training data of the hospital A is a customized model applicable to the hospital A. The output of the exposure parameter prediction model delivered to the hospital A is connected to the input by the customized model applicable to the hospital A, so that the exposure parameter prediction model delivered to the hospital A and the  customized model of the hospital A can be connected to form an adjusted exposure parameter prediction model applicable to the hospital A.
Similarly, second training data of the hospital C may be used to adjust the exposure parameter prediction model delivered to the hospital C. The second training data of the hospital C includes: exposure parameter historical predicted values historically outputted by the hospital C using the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, technicians of the hospital C manually adjust the exposure parameter historical predicted values to exposure parameter historical adjusted values) . The exposure parameter adjustment model trained based on the second training data of the hospital C is a customized model applicable to the hospital C. The output of the exposure parameter prediction model delivered to the hospital C is connected to the input by the customized model applicable to the hospital C, so that the exposure parameter prediction model delivered to the hospital C and the customized model of the hospital C can be connected to form an adjusted exposure parameter prediction model applicable to the hospital C.
In a second case, the first training data is derived from log data of a plurality of X-ray imaging units; and the second training data is derived from log data of same X-ray imaging operators in the same X-ray imaging units.
In the second case, the exposure parameter prediction model trained based on the first training data is a general model widely applicable to all X-ray imaging units. The exposure parameter adjustment model trained based on the second training data is a customized model applicable to the same X-ray imaging operators in the same X-ray imaging units.
For example, the first training data is derived from log data of hospitals A, B, and C. The first training data further includes: (1) exposure parameter historical values in historical exposure operations of the hospital A and historical thickness values of historical exposure operations of the hospital A; (2) exposure parameter historical values in historical exposure operations of the hospital B and historical thickness values of historical exposure operations of the hospital B; and (3) exposure parameter historical values in historical exposure operations of the hospital C and historical thickness values of historical exposure operations of the hospital C. The exposure parameter prediction model trained based on the first training data is a general model widely applicable to various hospitals (for example, the hospitals A to C that provide the first training data, and a hospital D that does not provide the first training data) .
After the exposure parameter prediction model is delivered to each hospital, each hospital may use the exposure parameter prediction model to determine an exposure parameter predicted value in a respective X-ray imaging operation.
In addition, second training data of a technician Zhang San in the hospital A may be used to adjust the exposure parameter prediction model delivered to the hospital A. The second training data of the technician Zhang San includes: exposure parameter historical predicted values historically outputted by the technician Zhang San using the exposure parameter prediction model, and exposure parameter historical adjusted values obtained after the technician Zhang San adjusts the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, the technician Zhang San manually adjusts the exposure parameter historical predicted values to exposure parameter historical adjusted values) . The exposure parameter adjustment model trained based on the second training data of the technician Zhang San is a customized model applicable to the technician Zhang San. The output of the exposure parameter prediction model delivered to the hospital A is connected to the input by the customized model applicable to the technician Zhang San, so that the exposure parameter prediction model delivered to the hospital A and the customized model of the technician Zhang San can be connected to form an adjusted exposure parameter prediction model applicable to the technician Zhang San in the hospital A.
Similarly, second training data of the technician Li Si in the hospital C may be used to adjust the exposure parameter prediction model delivered to the hospital C. The second training data of the technician Li Si includes: exposure parameter historical predicted values historically outputted by the technician Li Si using the exposure parameter prediction model, and exposure parameter historical adjusted values obtained after the technician Li Si adjusts the exposure parameter historical predicted values (after observing the exposure parameter historical predicted values, the technician Li Si manually adjusts the exposure parameter historical predicted values to exposure parameter historical adjusted values) . The exposure parameter adjustment model trained based on the second training data of the technician Li Si is a customized model applicable to the technician Li Si. The output of the exposure parameter prediction model delivered to the hospital C is connected to the input by the customized model applicable to the technician Li Si, so that the exposure parameter prediction model delivered to the hospital C and the customized model of the technician Li Si can be connected to form an adjusted exposure parameter prediction model applicable to the technician Li Si.
FIG. 3 is an exemplary process diagram of determining an exposure parameter in X-ray imaging according to an implementation of the present invention.
technician 10 of each hospital performs imaging protocol selection processing 11 through a human-computer interaction interface on a control host to select an imaging protocol. The control host displays an initial exposure parameter value (usually pre-set) corresponding to the imaging protocol. The technician 10 performs exposure parameter adjustment processing 12 to manually adjust the initial exposure parameter value, and uses the manually adjusted exposure parameter to perform an exposure operation. The control host determines a thickness value of an imaging object in the exposure operation. The control host generates log data 13 including the exposure parameter and the thickness value in the exposure operation. The control host sends the log data 13 to a database 15 in a cloud 14.
The cloud 14 extracts, from the database 15, exposure parameter values in exposure operations of various hospitals that are historical data and thickness values in the exposure operations as first training data. First model training processing 16 is performed on a first artificial neural network model based on the first training data, to train a general exposure parameter prediction model 19 widely applicable to all hospitals.
The cloud 14 delivers the general exposure parameter prediction model 19 to each hospital, and each hospital can use the exposure parameter prediction model 19 to automatically predict an exposure parameter. The control host of each hospital further sends log data in the process of using the exposure parameter prediction model 19 to the database 15.
The cloud 14 further extracts, from the database 15, exposure parameter historical predicted values predicted by a specific hospital using the exposure parameter prediction model 19 and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values as the second training data. Second model training processing 17 is performed on a second artificial neural network model based on the second training data to obtain an exposure parameter adjustment model for the specific hospital. The output of the exposure parameter prediction model 19 delivered to the specific hospital is connected to the input by the exposure parameter adjustment model of the specific hospital, to form an adjusted exposure parameter prediction model 18 applicable to the specific hospital. The exposure parameter prediction model 18 is a dedicated model of the specific hospital. Similarly, a dedicated model can be generated for each hospital.
The technician at each hospital may then select a model from the general exposure parameter prediction model 19 or the exposure parameter prediction model 18 that is  applicable to the hospital to perform the exposure operation. In the specific exposure operation, the technician 10 needs to perform imaging protocol selection processing 21, and performs exposure processing 22 based on an exposure parameter determined by a selected model.
FIG. 4 is an exemplary schematic diagram of a human-computer interaction process of X-ray imaging according to an implementation of the present invention. Based on the human-computer interaction process in FIG. 4, the training data can be conveniently acquired. In FIG. 4, human-computer interaction 30 includes a to-be-detected object information display area 31, an imaging protocol display area 35, an exposure button 38, and an exposure parameter display area 40. A to-be-detected object identifier 32, a to-be-detected object gender 33, and a to-be-detected object age 34 are displayed in the to-be-detected object information display area 31.
In the imaging protocol display area 35, a left side neck imaging protocol 36 and a right side neck imaging protocol 37 are exemplarily displayed for users to select specific imaging protocols.
In the exposure parameter display area 40, specific values of tube voltage 41, tube current 42, exposure time 43, exposure dose 44, and exposure density 45 are displayed. Moreover, the technician 10 can adjust the specific values of the tube voltage 41, the tube current 42, the exposure time 43, the exposure dose 44, and the exposure density 45.
After the technician completes the adjustment, the exposure button 38 is triggered, so that exposure can be performed according to the adjusted exposure parameter.
FIG. 5 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging according to an implementation of the present invention. As shown in FIG. 5, an apparatus 500 for determining an exposure parameter in X-ray imaging includes:
a determining module 501, configured to determine an X-ray imaging protocol and a thickness value of an imaging object;
first input module 502, configured to input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, where the exposure parameter prediction model is trained based on first training data, and the first training data includes exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations; and
first receiving module 503, configured to receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness  value.
In an exemplary implementation, the apparatus further includes:
first training module 504, configured to establish a first artificial neural network model; input the first training data into the first artificial neural network model; and train the first artificial neural network model into the exposure parameter prediction model by using the first training data.
In an exemplary implementation, the apparatus further includes: a second input module 505, configured to input the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, where the exposure parameter adjustment model is obtained based on second training data, and the second training data includes exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values; a second receiving module 506, configured to receive, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and an exposure module 507, configured to perform an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
In an exemplary implementation, the apparatus further includes: a second training module 508, configured to establish a second artificial neural network model; input the second training data into the second artificial neural network model; and train the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
In an exemplary implementation, the determining module 501 is configured to determine a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image including the imaging object; determine a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and determine the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, where the thickness value of the imaging object includes a minimum thickness value of the imaging object or an average thickness value of the imaging object.
FIG. 6 is a structural diagram of an apparatus for determining an exposure parameter in X-ray imaging with a memory-processor architecture according to an implementation of the present invention.
As shown in FIG. 6, the apparatus 600 for determining an exposure parameter in X-ray imaging includes a processor 601, a memory 602, and a computer program stored on memory 602 and capable of being run on the processor 601, where the computer program, when executed by the processor 601, implements any of the foregoing method for determining an exposure parameter in X-ray imaging. The memory 602 may be further implemented into a variety of storage media such as an electrically erasable programmable read-only memory (EEPROM) , a flash memory, and a programmable program read-only memory (PROM) . The processor 601 may be implemented to include one or more central processing units or one or more field programmable gate arrays, where the field programmable gate array integrates one or more central processing unit cores. Specifically, the central processing unit or the central processing unit core may be implemented as CPU, MCU, DSP, or the like.
It should be noted that, not all steps and modules in the foregoing procedures and structural diagrams are necessary, and some steps or modules may be omitted according to actual needs. An execution sequence of the steps is not fixed, and may be adjusted according to needs. Division of the modules is merely functional division for ease of description. During actual implementation, one module may be implemented separately by a plurality of modules, and functions of the plurality of modules may alternatively be implemented by the same module. The modules may be located in the same device or in different devices.
Hardware modules in the implementations may be implemented in a mechanic manner or an electronic manner. For example, a hardware module may include specially designed permanent circuits or logic devices (for example, an application-specific processor such as an FPGA or an ASIC) to complete specific operations. The hardware module may also include temporarily configured programmable logic devices or circuits (for example, including a general processor or another programmable processor) to perform specific operations. The hardware module is implemented by specifically using the mechanical manner, using the application-specific permanent circuits, or using the temporarily configured circuits (for example, configured by software) , which can be decided according to consideration of costs and time.
The present invention further provides a machine readable storage medium, storing instructions used for causing a machine to execute the method described in this specification. Specifically, a system or an apparatus that is equipped with a storage medium may be provided. The storage medium stores software program code that implements functions of any implementation in the foregoing embodiments, and a computer (a CPU or an MPU) of the system or the apparatus is enabled to read and execute the program code stored in the  storage medium. In addition, a program code based instruction may also be used to enable an operating system or the like running in the computer to complete some or all actual operations. The program code read from the storage medium may also be written into a memory that is disposed in an expansion board inserted in the computer, or may be written into a memory that is disposed in an expansion unit connected to the computer, and then a CPU or the like that is installed on the expansion board or expansion unit may be enabled to execute some or all actual operations based on the instructions of the program code, to implement the functions of any one of the foregoing implementations. Implementations of the storage medium for providing the program code may include a floppy disk, a hard disk, a magneto-optical disk, an optical memory (for example, a CD-ROM, a CD-R, a CD-RW, a DVD-ROM, a DVD-RAM, a DVD-RW, and a DVD+RW) , a magnetic tape, a non-volatile storage card, and a ROM. Optionally, the program code may be downloaded from a server computer or a cloud by using a communication network.
The foregoing descriptions are merely preferred implementations of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention shall fall within the protection scope of the present invention.

Claims (14)

  1. A method (100) for determining an exposure parameter in X-ray imaging, comprising:
    determining an X-ray imaging protocol and a thickness value of an imaging object (101) ;
    inputting the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, wherein the exposure parameter prediction model is trained based on first training data, and the first training data comprises exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations (102) ; and
    receiving, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value (103) .
  2. The method (100) for determining an exposure parameter in X-ray imaging according to claim 1, further comprising:
    establishing a first artificial neural network model;
    inputting the first training data into the first artificial neural network model; and
    training the first artificial neural network model into the exposure parameter prediction model by using the first training data.
  3. The method (100) for determining an exposure parameter in X-ray imaging according to claim 1, further comprising:
    inputting the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, wherein the exposure parameter adjustment model is obtained based on second training data, and the second training data comprises exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values;
    receiving, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and
    performing an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
  4. The method (100) for determining an exposure parameter in X-ray imaging according to claim 3, further comprising:
    establishing a second artificial neural network model;
    inputting the second training data into the second artificial neural network model; and
    training the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
  5. The method (100) for determining an exposure parameter in X-ray imaging according to claim 3 or 4, wherein
    the first training data is derived from log data of a plurality of X-ray imaging units; and
    the second training data is derived from log data of same X-ray imaging units, or the second training data is derived from log data of same X-ray imaging operators in the same X-ray imaging units.
  6. The method (100) for determining an exposure parameter in X-ray imaging according to claim 1, wherein the determining a thickness value of an imaging object (101) comprises:
    determining a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image comprising the imaging object;
    determining a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and
    determining the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, wherein
    the thickness value of the imaging object comprises a minimum thickness value of the imaging object or an average thickness value of the imaging object.
  7. An apparatus (500) for determining an exposure parameter in X-ray imaging, comprising:
    a determining module (501) , configured to determine an X-ray imaging protocol and a thickness value of an imaging object;
    a first input module (502) , configured to input the thickness value into an exposure parameter prediction model corresponding to the X-ray imaging protocol, wherein the exposure parameter prediction model is trained based on first training data, and the first training data comprises exposure parameter historical values in historical exposure operations based on the X-ray imaging protocol and historical thickness values in the historical exposure operations; and
    a first receiving module (503) , configured to receive, from the exposure parameter prediction model, an exposure parameter predicted value determined based on the thickness value.
  8. The apparatus (500) for determining an exposure parameter in X-ray imaging according to claim 7, further comprising:
    a first training module (504) , configured to establish a first artificial neural network  model; input the first training data into the first artificial neural network model; and train the first artificial neural network model into the exposure parameter prediction model by using the first training data.
  9. The apparatus (500) for determining an exposure parameter in X-ray imaging according to claim 7, further comprising:
    a second input module (505) , configured to input the exposure parameter predicted value into an exposure parameter adjustment model corresponding to the exposure parameter prediction model, wherein the exposure parameter adjustment model is obtained based on second training data, and the second training data comprises exposure parameter historical predicted values historically outputted by the exposure parameter prediction model, and exposure parameter historical adjusted values corresponding to the exposure parameter historical predicted values;
    a second receiving module (506) , configured to receive, from the exposure parameter adjustment model, an exposure parameter adjusted value determined based on the exposure parameter predicted value; and
    an exposure module (507) , configured to perform an exposure operation on the imaging object based on the exposure parameter adjusted value to generate an X-ray image.
  10. The apparatus (500) for determining an exposure parameter in X-ray imaging according to claim 9, further comprising:
    a second training module (508) , configured to establish a second artificial neural network model; input the second training data into the second artificial neural network model; and train the second artificial neural network model into the exposure parameter adjustment model by using the second training data.
  11. The apparatus (500) for determining an exposure parameter in X-ray imaging according to claim 9 or 10, wherein
    the determining module (501) is configured to determine a distance between an X-ray source and a surface point of the imaging object based on a three-dimensional image comprising the imaging object; determine a thickness value of the imaging object at the surface point based on a distance between the X-ray source and an imaging surface, a distance between a contact plate and a detector, and the distance between the X-ray source and the surface point of the imaging object; and determine the thickness value of the imaging object based on the thickness value of the imaging object at the surface point, wherein the thickness value of the imaging object comprises a minimum thickness value of the imaging object or an average thickness value of the imaging object.
  12. An apparatus (600) for determining an exposure parameter in X-ray imaging, comprising: a processor (601) and a memory (602) , wherein
    the memory (602) stores an application program executable by the processor (601) , to enable the processor to perform the method (100) for determining an exposure parameter in X-ray imaging according to any one of claims 1 to 6.
  13. A computer-readable storage medium, storing computer-readable instructions, wherein the computer-readable instructions, when executed by the processor, implements the method (100) for determining an exposure parameter in X-ray imaging according to any one of claims 1 to 6.
  14. A computer program product, comprising a computer program, wherein the computer program, when executed by a processor, implements the method (100) for determining an exposure parameter in X-ray imaging according to any one of claims 1 to 6.
PCT/CN2022/132985 2022-10-09 2022-11-18 Method and apparatus for determining exposure parameter, storage medium, and program product WO2024077712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211224897.7A CN117911306A (en) 2022-10-09 2022-10-09 Method, apparatus, storage medium and program product for determining exposure parameters
CN202211224897.7 2022-10-09

Publications (1)

Publication Number Publication Date
WO2024077712A1 true WO2024077712A1 (en) 2024-04-18

Family

ID=84604202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132985 WO2024077712A1 (en) 2022-10-09 2022-11-18 Method and apparatus for determining exposure parameter, storage medium, and program product

Country Status (2)

Country Link
CN (1) CN117911306A (en)
WO (1) WO2024077712A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136498A1 (en) * 2003-01-09 2004-07-15 Omernick Jon Charles Optimized record technique selection in radiograpy and fluoroscopy applications
CN111631742A (en) * 2020-06-05 2020-09-08 上海联影医疗科技有限公司 X-ray imaging method and system based on surface light source
WO2021213412A1 (en) * 2020-04-20 2021-10-28 Shanghai United Imaging Healthcare Co., Ltd. Imaging systems and methods
US20220287664A1 (en) * 2021-03-11 2022-09-15 Fujifilm Corporation Estimation device, estimation method, and estimation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136498A1 (en) * 2003-01-09 2004-07-15 Omernick Jon Charles Optimized record technique selection in radiograpy and fluoroscopy applications
WO2021213412A1 (en) * 2020-04-20 2021-10-28 Shanghai United Imaging Healthcare Co., Ltd. Imaging systems and methods
CN111631742A (en) * 2020-06-05 2020-09-08 上海联影医疗科技有限公司 X-ray imaging method and system based on surface light source
US20220287664A1 (en) * 2021-03-11 2022-09-15 Fujifilm Corporation Estimation device, estimation method, and estimation program

Also Published As

Publication number Publication date
CN117911306A (en) 2024-04-19

Similar Documents

Publication Publication Date Title
US7769602B2 (en) Medical image creating system, medical image creating method and display controlling program
CN109938758B (en) Method and apparatus for ensuring proper positioning for radiological imaging recordings
CN104799877A (en) Dynamic diagnosis support information generation system
US9044197B2 (en) Method for x-ray dose tracking
EP3900617A1 (en) A method and apparatus based on 3d camera for automated measurement preparation in mri system
JP6104618B2 (en) X-ray diagnostic apparatus and control program
US11000239B2 (en) Methods, systems, and apparatus for determining radiation doses
TWI526195B (en) Medical device
WO2024077712A1 (en) Method and apparatus for determining exposure parameter, storage medium, and program product
JP6870765B1 (en) Dynamic quality control equipment, dynamic quality control program and dynamic quality control method
JP2005296091A (en) Image output control method and program
US11553891B2 (en) Automatic radiography exposure control using rapid probe exposure and learned scene analysis
EP3967234A1 (en) Positioning guidance system for x-ray exams
WO2023023956A1 (en) Method and apparatus for visualization of touch panel to object distance in x-ray imaging
WO2007114043A1 (en) Operation support system for medical image diagnosis apparatus and operation support program for medical image diagnosis apparatus
US20120219119A1 (en) Radiation imaging system, method for controlling the system, and computer-readable medium storing program therefor
CN114529498A (en) Method, device and storage medium for determining exposure area of X-ray imaging
US20240350105A1 (en) Method and apparatus for visualization of touch panel to object distance in x-ray imaging
WO2023023955A1 (en) Method and apparatus for determining touch panel to object distance in x-ray imaging
JP2004188094A (en) Radiographic apparatus and radiographic system
KR20160037024A (en) Apparatus and Method for supporting medical treatment based on personalized checklist
WO2024033425A1 (en) Method and apparatus for determining exposure parameters, storage medium and program product
JP2020130311A (en) Image processor, radiographic system, and program
CN114529499A (en) Method and device for determining exposure area of X-ray imaging and storage medium
US20220395247A1 (en) Radiation imaging system and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22830122

Country of ref document: EP

Kind code of ref document: A1