WO2024077697A1 - 储能设备、控制设备及并机系统 - Google Patents

储能设备、控制设备及并机系统 Download PDF

Info

Publication number
WO2024077697A1
WO2024077697A1 PCT/CN2022/130755 CN2022130755W WO2024077697A1 WO 2024077697 A1 WO2024077697 A1 WO 2024077697A1 CN 2022130755 W CN2022130755 W CN 2022130755W WO 2024077697 A1 WO2024077697 A1 WO 2024077697A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage device
module
power
connection
Prior art date
Application number
PCT/CN2022/130755
Other languages
English (en)
French (fr)
Inventor
陈龙扣
李刚
桂登宇
赵坤艺
Original Assignee
深圳市倍思科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市倍思科技有限公司 filed Critical 深圳市倍思科技有限公司
Publication of WO2024077697A1 publication Critical patent/WO2024077697A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present application relates to the technical field of electric energy processing, and in particular to an energy storage device, a control device and a parallel system.
  • the embodiments of the present application provide an energy storage device, a control device and a parallel system.
  • the present application provides an energy storage device, the device comprising:
  • a bidirectional inverter module is configured to convert the direct current (DC) electric energy stored in the energy storage device into a first alternating current (AC) electric energy;
  • An AC input module configured to receive a second AC power output by a first device; wherein the first device includes at least one other energy storage device;
  • a first communication module is configured to establish a first connection with a second device and receive a parallel command sent by the second device through the first connection; wherein the first connection at least includes a wireless communication connection; and the second device at least includes a control device of the energy storage device;
  • a first control module configured to control the energy storage device to switch to a parallel state based on the parallel instruction
  • the AC output module is configured to combine and output the first AC electric energy and the second AC electric energy when the energy storage device is in the parallel state.
  • the embodiment of the present application further provides a control device, the control device comprising a second communication module and a second control module, wherein:
  • the second control module is configured to generate a parallel command
  • the second communication module is configured to establish a first connection with the energy storage device, and send the parallel command to the energy storage device through the first connection to control the energy storage device to switch to a parallel state; wherein the first connection includes at least a wireless communication connection.
  • An embodiment of the present application further provides a parallel system, which includes at least two energy storage devices as described above, and a control device as described above.
  • the first communication module can establish a first connection with the second device that at least includes a wireless communication connection, and receive a parallel command sent by the second device through the first connection, thereby realizing flexible and safe wireless control of the energy storage device through the second device; and the first control module can control the energy storage device to switch to the parallel state based on the parallel command, thereby realizing wireless and flexible control of the working state of the energy storage device; at the same time, when the energy storage device is in the parallel state, the AC output module can combine and output the second AC power received by the AC input module and the first AC power output by the bidirectional inverter module, thereby not only realizing strict and safe control of the combined output of power, but also greatly improving the flexibility of the parallel operation; on the other hand, the energy storage device can intelligently perform parallel configuration under the wireless control of the second device, so that the energy storage device can realize parallel configuration in a controllable, intelligent and flexible manner.
  • FIG1 is a schematic diagram of the structure of an energy storage device provided in an embodiment of the present application.
  • FIG2 is another schematic diagram of the structure of the energy storage device provided in an embodiment of the present application.
  • FIG3 is another schematic diagram of the structure of an energy storage device provided in an embodiment of the present application.
  • FIG4 is a circuit diagram of some modules in the energy storage device provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of power transmission between a first energy storage device and a second energy storage device in a parallel connection state provided by an embodiment of the present application;
  • FIG6 is a schematic diagram of the structure of a control device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a parallel system provided in an embodiment of the present application.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • at least one herein represents any combination of at least two of any one or more of a plurality of.
  • including at least one of A, B, and C can represent including any one or more elements selected from the set consisting of A, B, and C.
  • Outdoor sports have become a popular form of leisure and entertainment for people in their spare time, and high-quality outdoor sports require the support of a variety of equipment and devices.
  • equipment or devices used in home scenes such as small household appliances such as rice cookers and electric kettles, to outdoor sports scenes.
  • Such equipment requires the help of power supply equipment to provide matching and stable power to operate normally.
  • outdoor portable energy storage devices such as outdoor power supplies have been widely welcomed in outdoor scenes.
  • a single outdoor power supply usually cannot meet the power consumption needs of various power-consuming devices.
  • the output power of the outdoor power supply needs to be designed to be greater than 2KW.
  • such an output power range will inevitably lead to a sudden increase in the size and weight of the outdoor power supply, which will make a single outdoor power supply lose its advantage of portability.
  • the related art In order to reduce the negative impact on the portability of outdoor power supplies, the related art also proposes to configure multiple outdoor power supplies in parallel to meet the power consumption requirements of most household appliances.
  • the parallel configuration scheme in the related art requires the parallel configuration personnel to have rich parallel configuration experience and circuit connection inspection knowledge. Therefore, such a parallel configuration method lacks flexibility.
  • the embodiments of the present application provide an energy storage device, a control device and a parallel system.
  • the first communication module can establish a first connection with the control device of the energy storage device, that is, the second device, and receive the parallel command sent by the second device through the first connection.
  • the first control module can control the energy storage device to switch to the parallel state based on the parallel command, so that it can combine and output the second AC power input by other energy storage devices and the first AC power output by the bidirectional inverter module of the energy storage device, so that the energy storage device can automatically and intelligently perform parallel configuration and power output, and the energy storage device can intelligently perform parallel configuration under the wireless control of the second device, so that the energy storage device can controllably, intelligently and flexibly realize parallel configuration.
  • FIG1 is a schematic diagram of the structure of the energy storage device provided in the present application embodiment.
  • the device may include: a bidirectional inverter module 101, an AC input module 102, a first communication module 103, a first control module 104, and an AC output module 105; wherein:
  • the bidirectional inverter module 101 is configured to convert the DC power stored in the energy storage device 1 into the first AC power; the AC input module 102 is configured to receive the second AC power output by the first device; the first communication module 103 is configured to establish a first connection with the second device and receive a parallel command sent by the second device through the first connection; the first control module 104 is configured to control the energy storage device 1 to switch to the parallel state based on the parallel command; the AC output module 105 is configured to combine and output the first AC power and the second AC power when the energy storage device is in the parallel state.
  • the first device includes at least one other energy storage device; the first connection includes at least a wireless communication connection; and the second device includes at least a control device of the energy storage device 1.
  • the energy storage device 1 may also include an energy storage module (not shown in the figure), which is configured to store DC power; illustratively, the energy storage device 1 can realize the functions of an outdoor power supply in the related technology, such as converting AC mains power into DC for storage, and providing power to peripheral power-consuming devices through the stored DC.
  • an energy storage module (not shown in the figure), which is configured to store DC power; illustratively, the energy storage device 1 can realize the functions of an outdoor power supply in the related technology, such as converting AC mains power into DC for storage, and providing power to peripheral power-consuming devices through the stored DC.
  • the bidirectional inverter module 101 can convert the AC power input by the AC input module 102 into DC power and store it in the energy storage module;
  • the energy storage module can be a module separately provided in the energy storage device 1, and the module can establish electrical connections with the AC input module 102 and the first control module 104 respectively;
  • the energy storage module can be integrated with the bidirectional inverter module 101 or other modules in the energy storage device 1, and the embodiments of the present application are not limited to this.
  • the AC input module 102 may include one port, that is, the AC input module 102 may establish an electrical connection with a single other energy storage device and receive a second AC power output by the single other energy storage device; exemplarily, the AC input module 102 may include multiple ports. If the AC output ports of multiple other energy storage devices are respectively connected to the multiple ports of the AC input module 102, the AC input module 102 may simultaneously receive the second AC power output by multiple other energy storage devices; exemplarily, when the AC input module 102 may include multiple ports, the types of the multiple AC ports may be different or the same, and this is not limited to the embodiments of the present application.
  • the second AC power may include AC power output by the bidirectional inverter module of the first device, AC power input by other devices such as a third device received by the first device, and may also include the sum of AC power output by the bidirectional inverter module of the first device and AC power input by the third device.
  • the first connection may include a short-range wireless communication connection, such as a Wi-Fi connection, a Bluetooth (BT) connection, and a near field communication (NFC) connection, etc.
  • the first communication module 103 may include a Wi-Fi module, a BT module, or an NFC module; exemplarily, the first communication module 103 may implement a variety of short-range wireless communication functions, for example, the first communication module 103 may integrate at least two of the Wi-Fi module, the BT module, and the NFC module.
  • the first connection may include a long-distance wireless communication connection, such as a mobile communication connection.
  • the first communication module 103 may include a module capable of establishing a wireless communication connection with a base station or a mobile edge computing (MEC) device; exemplarily, the first communication module 103 may implement a wireless communication function corresponding to at least one wireless mobile communication standard, which is not limited to the embodiments of the present application.
  • MEC mobile edge computing
  • a wired connection may also be established between the first communication module 103 and the second device, such as by connecting an input/output (I/O) port of the first communication module 103 and an I/O port of the second device via a data cable, thereby establishing a wired connection between the two.
  • I/O input/output
  • the second device may include a host device capable of controlling the energy storage device 1; illustratively, the second device may send instructions to the energy storage device 1, or receive data sent by the energy storage device 1, and generate indication information based on at least one of the data sent by the energy storage device 1, the data input by the user to the second device, or the data automatically generated by the second device, and then send the indication information to the energy storage device 1 through the first communication module 103.
  • the second device may include a host device capable of controlling the energy storage device 1; illustratively, the second device may send instructions to the energy storage device 1, or receive data sent by the energy storage device 1, and generate indication information based on at least one of the data sent by the energy storage device 1, the data input by the user to the second device, or the data automatically generated by the second device, and then send the indication information to the energy storage device 1 through the first communication module 103.
  • the second device may include a computer device; exemplarily, the second device may include a mobile terminal device, for example, the second device may include a smart phone and/or a smart wearable device; exemplarily, the first communication module 103 may establish a first connection with multiple second devices; exemplarily, the type of each of the multiple second devices may be different; exemplarily, the format of the first connection corresponding to each of the multiple second devices may be different.
  • the first communication module 103 can send the parallel instruction to the first control module 104, and the first control module 104 controls the energy storage device 1 to switch to the parallel state;
  • the parallel instruction can be embodied in the form of characters, numbers, or a combination of characters and numbers;
  • a data transmission protocol between the second device and the energy storage device can be pre-set, and the second device can encapsulate and package the parallel instruction according to the data transmission protocol to obtain a data packet containing the parallel instruction, and the first control module 104 can parse the data packet it receives based on the data transmission protocol to obtain the parallel instruction.
  • the first control module 104 can control the bidirectional inverter module 101 to convert direct current DC into first AC power, and control the AC input module 102 to receive the second AC power output by the first device under the condition that the energy storage device 1 is switched to the parallel state, and control the bidirectional inverter module 101 to transmit the first AC power to the AC output module 105, and control the AC input module 102 to transmit the second AC power to the AC output module 105; exemplarily, if the energy storage device 1 is not switched to the parallel state, the first control module 104 can control at least one of the bidirectional inverter module 101 and the AC input module 102 not to transmit AC power to the AC output module 105.
  • electrical connections can be established between the AC output module 105 and the first control module 104, the AC input module 102 and the bidirectional inverter module 101, respectively, so that the AC output module 105 can receive the second AC power transmitted by the AC input module 102 and the first AC power output by the bidirectional inverter module 101, and when the energy storage device 1 is in a parallel state, based on the control of the first control module 104, the first AC power and the second AC power are combined and output.
  • the first control module 104 may include at least one of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processing device (DSPD), a programmable logic device (PLD), a field programmable gate array (FPGA), a central processing unit (CPU), a controller, a microcontroller, and a microprocessor unit (MCU).
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • CPU central processing unit
  • controller a controller
  • microcontroller a microcontroller
  • MCU microprocessor unit
  • the first communication module can establish a first connection with the second device that at least includes a wireless communication connection, and receive the parallel command sent by the second device through the first connection, thereby realizing flexible and safe wireless control of the energy storage device through the second device; and the first control module can control the energy storage device to switch to the parallel state based on the parallel command, thereby realizing wireless and flexible control of the working state of the energy storage device; at the same time, when the energy storage device is in the parallel state, the AC output module can combine and output the second AC power received by the AC input module and the first AC power output by the bidirectional inverter module, thereby not only realizing strict and safe control of the combined output of power, but also greatly improving the flexibility of the parallel operation; on the other hand, the energy storage device can intelligently perform parallel configuration under the wireless control of the second device, so that the energy storage device can controllably, intelligently and flexibly realize parallel configuration.
  • the first control module 104 is further configured to control the working state of the bidirectional inverter module 101 to switch from the first state to the second state based on the power balancing instruction.
  • the parameters of the first AC electric energy output by the bidirectional inverter module 101 in the first state are different from the parameters of the first AC electric energy output by the bidirectional inverter module 101 in the second state.
  • the first control module 104 may control the working state of the bidirectional inverter module 101 to switch from the first state to the second state based on the power balancing instruction when the energy storage device 1 is in the parallel state.
  • the parameters of the first AC electrical energy may include at least one of the phase, amplitude, frequency, voltage, current and power of the first AC electrical energy; exemplarily, the parameters of the first AC electrical energy output by the bidirectional inverter module 101 in the first state are different from the parameters of the first AC electrical energy output by the bidirectional inverter module 101 in the second state, which may include at least one of the phase, amplitude, frequency, voltage, current and power of the first AC electrical energy.
  • the power balancing instruction may include an instruction to instruct the bidirectional inverter module 101 of the energy storage device 1 to maintain the current stable state of at least one of the phase, amplitude, frequency, voltage, current and power of the first AC power output by the bidirectional inverter module 101; exemplarily, the power balancing instruction may also include an instruction to adjust at least one of the phase, amplitude, frequency, voltage, current and power of the first AC power output by the bidirectional inverter module 101 to a specified state, wherein the specified state may be included in the power balancing instruction; exemplarily, the power balancing instruction may also include a strategy to instruct the bidirectional inverter module 101 to adjust at least one of the phase, amplitude, frequency, voltage, current and power of the first AC power, a start adjustment time, an adjustment process duration, an adjustment step, and at least one of an adjustment direction.
  • the working state of the bidirectional inverter module 101 may be adjusted based on the target power required by the AC power consuming device, so that the second state can match the target power.
  • the first control module in the energy storage device can control the working state of the bidirectional inverter module to switch from the first state to the second state based on the power balancing instruction, thereby realizing automatic and targeted control of the working state of the bidirectional inverter module; and, the parameters of the first AC electric energy output by the bidirectional inverter module in the first state and in the second state are different, thereby realizing fine-grained adjustment of the first AC electric energy output by the bidirectional inverter module; at the same time, through the above-mentioned adjustment operation, the safety and controllability of the working state of the bidirectional inverter module and even the energy storage device can also be improved during the parallel connection process.
  • the first communication module 103 is further configured to receive an energy balancing instruction sent by the second device through the first connection.
  • the power balancing instruction may be sent by the user instructing the second device; illustratively, the user may input the power balancing instruction to the second device in real time and dynamically according to the parallel operation requirements or personal needs, and instruct the second device to send the power balancing instruction to the energy storage device 1.
  • the second device can generate an energy balancing instruction based on environmental parameters;
  • the environmental parameters may include current parameters of the environment in which the energy storage device 1 is located, such as parameters such as temperature, humidity, light intensity, and ventilation status of the environment in which the energy storage device 1 is located at the current moment, wherein the above-mentioned parameters such as temperature, humidity, light intensity, and ventilation status can have a positive or negative impact on the heating state of the energy storage device 1 during the parallel operation process, and therefore, the second device can generate an energy balancing instruction based on the above-mentioned parameters;
  • the current parameters of the environment in which the energy storage device 1 is located can be determined based on the collected data of the sensor device and/or the image acquisition device, and can also be obtained from other devices;
  • the above-mentioned sensor device and/or the image acquisition device can be set in the energy storage device 1, and can also be set in the second device, and the embodiments of the present application are not limited to this.
  • environmental parameters may include parameters obtained by predicting the future state of the environment in which the energy storage device 1 is located.
  • the second device may establish a communication connection with the network side, and the second device may obtain the setting location of the energy storage device 1. Then, based on the setting location, the second device may obtain the temperature, humidity, rainfall, wind force and other change trends at the setting location of the energy storage device 1 in the future period from the network side.
  • the second device may generate an energy balancing instruction.
  • the second device can send an energy balancing instruction when the target power required by the AC power consuming device and the degree of matching between the sum of the combined first AC power and the second AC power output by the energy storage device 1 is less than or equal to a matching threshold, so that the sum of the combined first AC power and the second AC power output by the energy storage device 1 can match the target power.
  • the first communication module is also configured to receive the power balancing instruction sent by the second device through the first connection, thereby realizing the wireless and safe control of the working state of the bidirectional inverter module by the second device through the first communication module, thereby improving the flexibility of controlling the working state of the bidirectional inverter module in the energy storage device.
  • the first communication module 103 is also configured to send the first data to the second device through the first connection, so that the second device can determine whether to send the power balancing instruction to the energy storage device 1 based on the first data and the second data, or based on the first data.
  • the first data at least includes the remaining power of DC power; the second data at least includes the remaining power of DC in the first device.
  • the first data may also include the continuous working time of the bidirectional inverter module 101 in the energy storage device 1 and/or the heating state of the energy storage device 1; correspondingly, the second data may also include the continuous working time of the bidirectional inverter module in the first device and/or the heating state of the first device.
  • a wireless communication connection is also established between the second device and other energy storage devices in the first device, so the second device can receive the second data through the wireless communication connection between it and other energy storage devices.
  • the energy storage device and the first device can send the first data and the second data to the second device in real time; illustratively, the energy storage device and the first device can send the first data and the second data to the second device respectively based on the data transmission protocol between them and the second device at a specified time interval, or when it is detected that the remaining DC power is lower than the power threshold, or when it is detected that the decrease rate of the remaining DC power is greater than the change rate threshold.
  • the second device may send an energy balancing instruction to the energy storage device 1 when the first data is less than the first threshold, or when the absolute value of the difference between the first data and the second data is greater than or equal to the second threshold; exemplarily, the second device may not send an energy balancing instruction when the first data is greater than or equal to the first threshold, or when the absolute value of the difference between the first data and the second data is less than the second threshold; wherein the first threshold and the second threshold may be determined according to the actual demand for power output during the parallel operation, and may also be determined or adjusted according to the output power of the bidirectional inverter module in the energy storage device 1 and the first device as the remaining power of the DC power changes, and the embodiments of the present application are not limited to this.
  • the second device can send an energy balancing instruction to the energy storage device 1 and at least some of the devices in the first device based on the target power required by the AC power consuming device, so that the energy storage device 1 and at least some of the devices in the first device can adjust the working state of the bidirectional inverter module based on the energy balancing instruction, so that the bidirectional inverter modules of the energy storage device 1 and at least some of the devices in the first device output AC power that is balanced and matched in terms of phase, amplitude, frequency, voltage, current, and power, thereby improving the safe and stable transmission of AC power during the parallel operation.
  • the first communication module of the energy storage device can send the first data to the second device through the first connection, and the first data at least includes the remaining power of the DC power, so that the second device can obtain the remaining power of the DC stored in the energy storage device in real time, thereby providing accurate data basis for the second device to determine whether to send an energy balancing instruction, and can also improve the pertinence of the sending of the energy balancing instruction, and reduce the frequent interference with the working state of the bidirectional inverter module caused by the arbitrary sending of the energy balancing instruction; and the second device can determine whether to generate an energy balancing instruction based on the first data, or the first data and the second data, so that during the parallel operation, the second device can obtain the DC remaining power of all energy storage devices in the parallel state, and then the energy balancing instruction generated by the second device can achieve comprehensive control of all energy storage devices in the parallel state, thereby improving the safety of parallel power transmission.
  • the first communication module 103 is further configured to establish a second connection with the first device, and receive the power output status of the first device through the second connection; the first control module 104 is configured to generate a power balancing instruction based on the parameters of the first AC power and the power output status of the first device.
  • the second connection may include a wireless communication connection, and the second connection at this time may be established through a wireless communication module between each energy storage device; exemplarily, the second connection may include a short-range wireless communication connection, such as a BT connection, a Wi-Fi connection, and an NFC connection.
  • a short-range wireless communication connection such as a BT connection, a Wi-Fi connection, and an NFC connection.
  • the second connection may also include a wired connection.
  • data transmission between the energy storage device 1 and the first device may be achieved through an electric energy transmission cable therebetween, which is not limited in this embodiment of the present application.
  • the power output state of the first device may include a change state of at least one of the amplitude, phase, frequency, and power of at least part of the power in the second AC power, wherein at least part of the power in the second AC power may include AC power output by the bidirectional inverter module of the first device and/or AC power input to the first device; exemplarily, the power output state of the first device may also include the amount of remaining DC in the first device and/or the heating state of the first device, etc.
  • the parameter of the first AC electric energy may have a meaning similar to that of the first data in the aforementioned embodiment, and will not be described in detail herein.
  • the first control module 104 may analyze the parameters of the first AC electric energy and the electric energy output state of the first device to obtain an analysis result.
  • an electric energy balancing instruction may not be generated; illustratively, when the analysis result indicates that the electric energy output state of the energy storage device 1 and/or the electric energy output state of the first device have a negative impact on the stable and safe output of electric energy during the parallel operation, an electric energy balancing instruction may be generated and sent to the energy storage device 1 and the first device, respectively.
  • the first communication module in the energy storage device can establish a second connection with the first device, and receive the power output status of the first device through the second connection, so that the power output status of the energy storage devices in the parallel state can be synchronized in real time; and the first control module can generate power balancing instructions based on the parameters of the first AC power and the power output status of the first device, which not only improves the accuracy of the power balancing instructions, but also enables the energy storage device to automatically and intelligently generate power balancing instructions, so that any energy storage device participating in the parallel operation can intelligently, in real time and accurately generate power balancing instructions, thereby improving the flexibility of the power operation of any energy storage device participating in the parallel operation.
  • the first communication module 103 is further configured to send third data to the second device through the first connection, so that the second device controls the state of the energy storage device 1 based on the third data.
  • the third data at least includes data related to the working status of the energy storage device 1 .
  • the third data may include the working state of the energy storage device 1, such as the parallel state, charging state, power output state of the energy storage device 1 in non-parallel mode, etc.; exemplarily, the third data may include the working state of at least one module in the energy storage device 1, such as the power conversion efficiency of the bidirectional inverter module 101, etc.
  • the third data may include the connection status of the energy storage device 1; exemplarily, the above-mentioned connection status may include a wireless connection status, such as a mode of establishing a connection between the energy storage device 1 and a device in the first device, the number of connections established between the energy storage device 1 and the devices in the first device, and the duration of the connection between the energy storage device 1 and the devices in the first device; exemplarily, the above-mentioned connection status may include an electrical connection status, such as whether the power transmission cable between the energy storage device 1 and the first device is connected normally. Exemplarily, if the connection is normal, the second device can send a parallel command to the energy storage device 1 and the first device to control the energy storage device 1 and the first device to switch to the parallel state.
  • a wireless connection status such as a mode of establishing a connection between the energy storage device 1 and a device in the first device, the number of connections established between the energy storage device 1 and the devices in the first device, and the duration of the connection between the energy storage device 1 and
  • the third data may include data such as the heating state of the energy storage device 1 and/or the continuous working time of the energy storage device 1 .
  • the second device can analyze and judge based on the third data of the parallel demand. If the working state of the energy storage device 1 cannot meet the safety conditions and/or stability conditions in the parallel demand, the energy storage device can be controlled to exit the parallel state and switch to the non-parallel state, or an energy balancing instruction can be sent to the energy storage device 1, so that the first control module 104 can adjust the working state of the bidirectional inverter module 101 based on the energy balancing instruction, so that the working state of the energy storage device 1 can meet the safety conditions and/or stability conditions in the parallel demand.
  • the first communication module can send data associated with the working status of the energy storage device, that is, the third data to the second device through the first connection, so that the second device can obtain the actual working status of the energy storage device in real time; and the second device controls the working status of the energy storage device based on the third data, thereby realizing accurate and real-time control of the working status of the energy storage device.
  • the energy storage device 1 provided in the embodiments of the present application further includes a detection module 106.
  • FIG2 is another structural schematic diagram of the energy storage device provided in the embodiments of the present application.
  • the detection module 106 is configured to obtain a first parameter and a second parameter, and detect the first parameter and the second parameter to obtain a detection result;
  • the first communication module 103 is configured to send the detection result to the second device through the first connection, so that the second device can generate a parallel command based on the detection result.
  • the first parameter includes parameters of the first AC electric energy; and the second parameter includes parameters of the second AC electric energy.
  • the first parameter may include parameters such as amplitude, frequency, phase, voltage, current and power of the first AC electric energy; the second parameter may include parameters such as amplitude, frequency, phase, voltage, current and power of the second AC electric energy.
  • the second AC power can be received through the AC input module 102, and the second AC power can be detected through the detection module 106 to obtain a second parameter; exemplarily, the first device can send the second parameter to the first communication module 103 of the energy storage device 1 through the second connection, and the first communication module 103 can transmit the second parameter to the detection module 106.
  • the detection module 106 may detect the first AC power to obtain the first parameter.
  • an electrical connection is established between the detection module 106 and the first control module 104 , the first communication module 103 , the AC input module 102 and the bidirectional inverter module 101 , so that data transmission between the detection module 106 and the above modules can be achieved.
  • the detection module 106 may perform type matching on the parameters in the first parameter and the parameters in the second parameter, and in the case of type matching, compare the numerical values corresponding to the parameters, and determine the comparison result as the detection result.
  • the second device after receiving the detection result, can generate a parallel command when the detection result indicates that the first parameter matches the second parameter, and can also generate an instruction not to execute the parallel configuration when the first parameter does not match the second parameter, and output or send the instruction to the energy storage device 1 to facilitate the user to perform fault detection on the above instructions.
  • the detection module included in the energy storage device 1 provided in the embodiment of the present application can detect the first parameter of the first AC electric energy and the second parameter of the second AC electric energy to obtain the detection result, so that the energy storage device can obtain the parameter detection results between each energy storage device in real time and accurately; and, the detection result is sent to the second device through the first communication module, and the second device determines whether to generate a parallel command, so that the upper computer control function of the second device can be fully utilized, and the separation of the parallel power conversion output and control function is realized.
  • the first communication module 103 is configured to send the detection result to the second device through the first connection if the detection result indicates that the first parameter matches the second parameter.
  • the detection result may not be sent to the second device.
  • the detection result may be output to prompt the user that the first parameter does not match the second parameter.
  • the detection result indicates that the first parameter does not match the second parameter
  • information that the first parameter does not match the second parameter may be sent to the second device.
  • the second device may output information that the first parameter does not match the second parameter so that the user can quickly determine the reason why the first parameter does not match the second parameter.
  • the first communication module can send the detection result to the second device through the first connection under the condition that the detection result indicates that the first parameter matches the second parameter.
  • the energy consumption caused by arbitrarily sending the detection result to specify the second device is reduced, and the efficiency of the second device in generating parallel instructions based on the detection result can also be improved.
  • the energy storage device 1 provided in the embodiments of the present application further includes a switch module 107.
  • FIG3 is another structural schematic diagram of the energy storage device 1 provided in the embodiments of the present application.
  • the first control module 104 is configured to control the switch state of the switch module 107 to switch to a third state after receiving a parallel operation instruction, so as to establish a third connection between the AC input module 102 and the AC output module 105.
  • the third connection may be an electrical connection.
  • the switch module 107 can be arranged between the detection module 106 and the AC output module 105; exemplarily, the detection module 106 can output the first AC power and the second AC power through the first branch and the second branch respectively; exemplarily, the switch module 107 can be arranged on the second branch; exemplarily, the switch module 107 can realize the connection or disconnection of the second branch by switching the switch state, thereby realizing the control of the connection state of the third connection between the AC input module 102 and the AC output module 105.
  • the third state may include a closed state; illustratively, the switch module 107 may include a first switch unit (not shown in the figure), and the first switch unit may be arranged in the second branch.
  • the first control module 104 may control the first switch unit to switch to a closed state, thereby establishing a third connection between the AC input module 102 and the AC output module 105, so that the AC power input from the first device to the energy storage device 1 can be output through the AC output module 105.
  • the switch module in the energy storage device provided in the embodiment of the present application can be switched to the third state under the control of the first control module after the first control module receives the parallel operation instruction, thereby realizing the real-time control of the switch module state by the first control module according to the working state of the energy storage device; and after the switch module is switched to the third state, a third connection between the AC input module and the AC output module can be established, so that the second AC electric energy input from the first device to the energy storage device can be quickly output through the AC output module.
  • the energy storage device 1 provided in the embodiments of the present application further includes a switch module 107, wherein the first control module 104 is configured to control the state of the switch module 107 to switch to a fourth state after acquiring the target information, so as to disconnect the fourth connection between the bidirectional inverter module 101 and the AC output module 105.
  • the target information at least includes information that the energy storage device 1 is in an abnormal state.
  • the energy storage device 1 being in an abnormal state may include that the working state of at least one module in the energy storage device 1 is abnormal; illustratively, the above abnormal state may include a state in which the amount of remaining DC in the energy storage module of the energy storage device 1 is insufficient.
  • the target information may also include an instruction issued by the second device to stop the parallel state.
  • the fourth state may include a disconnected state; exemplarily, a second switch unit (not shown in the figure) in the switch module 107 may be arranged between the detection module 106 and the AC power output module 105, so that the first control module 104 disconnects the fourth connection by controlling the second switch unit to switch to the disconnected state; exemplarily, the fourth connection may be an electrical connection.
  • the first control module in the energy storage device provided in the embodiment of the present application can control the switch state of the switch module to switch to the fourth state after acquiring the target information, and the target information at least includes information that the energy storage device is in an abnormal state.
  • the fourth connection can be controlled in real time, thereby reducing the risk of still outputting electric energy when the energy storage device is in an abnormal state, thereby realizing active protection of the energy storage device during the parallel operation process.
  • the AC output module 105 is configured to output the second AC electric energy when the fourth connection is disconnected and the energy storage device is in a parallel state.
  • the first control module 104 can control the switch module 107 to maintain the third state, so that the AC output module 105 can output the second AC power.
  • the first communication module 103 can send the abnormal state to the second device through the first connection so that the second device can generate an energy balancing instruction, and send the energy balancing instruction to other energy storage devices in normal state participating in the parallel operation so that these energy storage devices can balance the energy output, thereby improving the stability and continuity of the energy output during the parallel operation.
  • the AC output module in the energy storage device provided in the embodiment of the present application can output the second AC power when the fourth connection is disconnected and the energy storage device is in a parallel state, thereby reducing the impact of the abnormal state of the energy storage device on the parallel power output, thereby improving the stability and continuity of the power output of the parallel energy storage device.
  • the first communication module 103 in the energy storage device 1 provided in the embodiment of the present application is also configured to receive a device identifier issued by the second device through the first connection; the first control module 104 is configured to control the AC input module 102 to receive the second AC power when the device identifier is not a specified identifier.
  • the first control module 104 may control the AC input module 102 to be in a non-working state so as not to receive the second AC power.
  • the device identification can be input by a user to the second device; exemplarily, the device identification can be an identification automatically set by the second device for each energy storage device with which a communication connection is established; exemplarily, the second device can generate a device identification based on at least one of the time sequence of establishing a communication connection with it, the format type of the communication connection, the stability of the communication connection, and the amount of remaining DC in each energy storage device.
  • the device identification may be embodied in the form of characters and/or numbers, for example, the device identification of the first energy storage device may be 1, and the device identification of the second energy storage device may be 2; illustratively, the maximum value in the device identification may be the number of energy storage devices that have established a second connection with the second device, for example, if there are n energy storage devices that have established a communication connection with the second device, then the maximum value of the device identification may be n, where n may be an integer greater than or equal to 2.
  • the designated identifier may be sent by the second device to the energy storage device 1; exemplarily, the designated identifier may be any one of a plurality of pre-set device identifiers; exemplarily, the designated identifier may be the minimum value of the device identifier, such as 1; exemplarily, the numbering of the device identifiers may reflect the parallel order of the energy storage devices during the parallel operation, for example, the AC power output by the AC output module of the energy storage device with the device identifier k may be input to the AC input module of the energy storage device with the device identifier k+1, where k is an integer greater than 1; exemplarily, when the device identifier is the designated identifier, such as the device identifier is 1, the AC input module of the first energy storage device cannot receive the AC power output by other energy storage devices, but can only input the AC power output by the other energy storage devices into the second energy storage device.
  • the first to n-1th energy storage devices among the multiple energy storage devices involved in the parallel setting can be referred to as slave power output devices, and the nth energy storage device can be referred to as the master power output device;
  • the AC input module of the master power output device can receive the AC power output by the first to n-1th energy storage devices, and combine the AC power output by the first to n-1th energy storage devices with the AC power output by itself for output;
  • the AC output module of the master power output device can be connected to a power consuming device.
  • the first communication module can receive the device identification issued by the second device through the first connection; and the first control module can control the AC input module to receive the second AC power when the device identification is not a specified identification.
  • the second device can simply and efficiently control the working state of the AC input module of the energy storage device by sending the device identification; and the energy storage device can flexibly control the working state of the AC input module by judging the relationship between the received device identification and the specified identification, and can determine the role information of the energy storage device in the parallel device group, thereby laying the foundation for the stable and safe transmission of AC power during the parallel process.
  • the AC input module 102 includes a first connector, which matches the female connector of the AC power line; the AC output module 105 includes a second connector; the second connector matches the male connector of the AC power line.
  • each first connector may be matched with a female connector of an AC power cord
  • each second connector may be matched with a male connector of an AC power cord
  • the AC input module of the energy storage device provided in the embodiment of the present application includes a first connector that matches the female connector of the AC power line, and the AC output module includes a second connector that matches the male connector of the AC power line, so that the energy storage device can receive the second AC power sent by the first device through the AC power line, and can also output the first AC power, or the combined power of the first AC power and the second AC power, or the second AC power through the AC power line, thereby reducing the dependence on a specific parallel line, further improving the flexibility of the parallel operation, and reducing the equipment cost of the parallel operation.
  • FIG. 4 is a circuit schematic diagram of some modules in the energy storage device provided in an embodiment of the present application.
  • the bidirectional inverter module 101 can be a full-bridge inverter circuit composed of four metal-oxide-semiconductor field-effect transistors (MOSFET) Q1, Q2, Q3 and Q4, which can receive DC power in the energy storage module through the Vbus port and convert the DC power into the first AC power through the above-mentioned full-bridge inverter circuit.
  • MOSFET metal-oxide-semiconductor field-effect transistors
  • the AC input module 102 can receive the second AC power sent by the first device through the live wire and the neutral wire;
  • the detection module 106 can include a first detection unit H1 and a second detection unit H2, wherein the first detection unit H1 and the second detection unit H2 can respectively implement current detection of the first AC power and the second AC power;
  • the first detection unit H1 and the second detection unit H2 can respectively be Hall devices, wherein ports 5 to 8 of the first detection unit H1 and the second detection unit H2 are respectively configured to be grounded, connected to a reference voltage, and connected to the first control unit.
  • the module outputs the detection result and connects to a 3.3V bias voltage; ports 3 and 4 of the first detection unit H1 are respectively configured to connect to the first AC power, and ports 1 and 2 are respectively configured to output the first AC power to port 4 of the second detection unit; ports 1 and 2 of the second detection unit H2 are respectively configured to connect to the second AC power, port 3 can be left floating, port 4 can output the second AC power and merge it with the first AC power, and then the merged first AC power and second AC power are transmitted to the AC output module 105, and output through the live wire and neutral wire of the AC output module 105.
  • the first control module can control the switches K1 and K2 in the switch module 107 to be in an open state, and the AC input module 102 cannot receive the second AC power transmitted by the first device.
  • the first control module can control the energy storage device to switch to the parallel state, and control switches K1 to K3 to switch to the closed state.
  • the AC input module 102 can receive the second AC power transmitted by the first device, and transmit the second AC power to the second detection unit H2.
  • the first AC power output by the bidirectional inverter module 101 is transmitted to the first detection unit H1, and the first AC power is transmitted to the port 4 of the second detection unit H2 through ports 1 and 2 of the first detection unit H1, and the first AC power and the second AC power are merged here.
  • the merged first AC power and the second AC power can be output to the AC power consuming device or the AC input module of the next energy storage device through the AC output module 105.
  • Fig. 5 is a schematic diagram of the structure of power transmission between the first energy storage device and the second energy storage device in parallel connection according to an embodiment of the present application. As shown in Fig. 5, the first energy storage device 2 and the second energy storage device 3 can both be the energy storage device 1 provided in the above embodiment.
  • the first energy storage device 2 may include a first input module 201, a first inversion processing module 202, a first frequency detection unit 203, a second frequency detection unit 204, a first current detection unit 205, a second current detection unit 206, a first switch 207, a second switch 208, a first MCU 209, and a first output module 210.
  • the structure of the second energy storage device 2 is the same as that of the first energy storage device 2, and will not be repeated here.
  • the first input module 201, the first inverter processing module 202, the first output module 210 and the first MCU 209 can be the AC input module, bidirectional inverter module, AC output module and the first control module in the aforementioned embodiments respectively;
  • the second input module 301, the second inverter processing module 302, the second output module 310 and the second MCU 309 can be the AC input module, bidirectional inverter module, AC output module and the first control module in the aforementioned embodiments respectively.
  • the first frequency detection unit 203, the second frequency detection unit 204, the first current detection unit 205 and the second current detection unit 206 can constitute the detection module in the aforementioned embodiment; the first switch 207 and the second switch 208 can constitute the switch module in the aforementioned embodiment; illustratively, the first communication module can be integrated in the first MCU 209.
  • the third frequency detection unit 303, the fourth frequency detection unit 304, the third current detection unit 305 and the fourth current detection unit 306 can constitute the detection module in the aforementioned embodiment; the third switch 307 and the fourth switch 308 can constitute the switch module in the aforementioned embodiment; illustratively, the second communication module can be integrated in the second MCU 309.
  • the first energy storage device 2 and the second energy storage device 3 after the first energy storage device 2 and the second energy storage device 3 receive the parallel operation instruction sent by the second device, they can switch to the parallel operation state under the control of the first MCU 209 and the second MCU 309, respectively; exemplarily, the first energy storage device 2 and the second energy storage device 3 can also determine that the first energy storage device 2 is a slave power output device and the second energy storage device 3 is a master power output device according to the device identification sent by the second device, so that the first input module 201 of the first energy storage device 2 is in a non-working state and the second switch 208 is in a disconnected state, while the second input module 301 of the second energy storage device 3 is in a working state, so that it can receive the AC power output by the first output module 210 of the first energy storage device 2.
  • the first MCU 209 can control the first switch 207 to switch to a closed state, so that the AC power output by the first inverter processing module 202, that is, the second AC power in the aforementioned embodiment, is transmitted to the second input module 301 of the second energy storage device 3 through the first frequency detection unit 203 and the first current detection unit 205, the path between the first switch 207 and the first output module 210.
  • the second input module 301 can transmit the first AC power to the third frequency detection unit 303, so that it can perform frequency detection on the first AC power to obtain the first parameter, and at the same time, the fourth frequency detection unit 304 can perform frequency detection on the second AC power to obtain the second parameter; exemplarily, the third frequency detection unit 303 and the fourth frequency detection unit 304 can respectively send the first parameter and the second parameter to the second MCU 309, so that the second MCU 309 can determine whether to perform a parallel operation; exemplarily, if the second MCU 309 determines that the parallel operation can be performed, the result of being able to perform the parallel operation can be sent to the second device, and the third switch 307 and the fourth switch 308 can be controlled to switch to a closed state respectively.
  • the first AC power is detected by the third current measuring unit 305 and the second AC power is detected by the fourth current detection unit 306, they can be merged at the third switch 307, and the merged result can be transmitted to the second output module 301 for output to the next energy storage device, or to the AC power consumption device.
  • any energy storage device can send DC residual power to the second device so that the second device can determine whether to send power balancing instructions to each energy storage device, thereby performing power balancing operations between each energy storage device, thereby improving the stability of power output.
  • the second inverter processing module 302 can be automatically controlled to stop working or disconnect the transmission path of the first AC power, or based on the control of the second device, but the fourth switch 308 is still kept in a closed state, so that the second AC power can be stably output.
  • the first energy storage device 2 and the second energy storage device 3 may be connected via an AC power line, thereby achieving transmission of the second AC electric energy.
  • the energy storage device provided in the embodiment of the present application can automatically perform parallel operations, and can handle abnormal conditions in real time during the parallel transmission of electric energy, thereby ensuring the stable output of electric energy in the parallel state.
  • the hardware cost of parallel power transmission can also be reduced.
  • the parallel connection is achieved based on the wireless control of the second device, which greatly improves the flexibility of the parallel operation.
  • FIG6 is a schematic diagram of the structure of the control device 6 provided in the embodiment of the present application.
  • the device may include a second communication module 601 and a second control module 602, wherein:
  • the second control module 602 is configured to generate a parallel command; the second communication module 601 is configured to establish a first connection with the energy storage device, and send a parallel command to the energy storage device through the first connection to control the energy storage device to switch to a parallel state.
  • the first connection at least includes a wireless communication connection.
  • control device 6 may generate a parallel operation instruction when receiving the state parameter fed back by the energy storage device through the first connection and determining that the energy storage device is capable of stably outputting AC power.
  • control device provided in the embodiment of the present application can send the parallel command generated by it to the energy storage device through the first connection between it and the energy storage device, thereby realizing remote control of the parallel status of the energy storage device and improving the flexibility and safety of the parallel configuration of the energy storage device.
  • the second communication module 601 in the control device provided in the embodiment of the present application is configured to receive the first data sent by the energy storage device, and to receive the second data sent by the first device; the second control module 602 is configured to determine whether to send an energy balancing instruction to the energy storage device based on the first data and the second data, or based on the first data.
  • the first data includes the remaining amount of DC power in the energy storage device; the second data includes the remaining amount of DC power in the first device; and the first device includes at least one other energy storage device.
  • the second control module 602 may also determine whether to send a power balancing instruction to the first device.
  • the control device provided in the embodiment of the present application can determine whether to send an energy balancing instruction to the energy storage device based on the first data and the second data respectively sent by the energy storage device and the first device with which a communication connection is established. This can not only improve the accuracy of the energy balancing instruction, so that the control device can achieve accurate control of the energy output state of the energy storage device, but also the control device can comprehensively, real-time and accurately obtain the energy output state of each energy storage device participating in the parallel operation through the first data and the second data, thereby providing a data basis for the control device to accurately control the energy storage device in real time.
  • the second communication module 601 is configured to receive third data sent by the energy storage device; the second control module 602 is configured to control the working state of the energy storage device through the second communication module based on the third data.
  • the third data at least includes data associated with the working status of the energy storage device.
  • control device provided in the embodiment of the present application can obtain the third data sent by the energy storage device and associated with the working status of the energy storage device, so that the control device can obtain the working status of the energy storage device in real time and accurately; and the control device can control the working status of the energy storage device based on the third data, thereby improving the stability and safety of power processing and power transmission of the energy storage device during the parallel operation process.
  • the second communication module 601 is configured to receive the detection result sent by the energy storage device; and the second control module 602 is configured to generate a parallel command based on the detection result.
  • the detection result includes the results of detecting the first parameter and the second parameter;
  • the first parameter includes the parameter of the first AC electric energy output by the bidirectional inverter module of the energy storage device;
  • the second parameter includes the parameter of the second AC electric energy received by the AC input module of the energy storage device.
  • the second control module of the control device provided in the embodiment of the present application generates a parallel command based on the detection results of the parameters of the first AC power and the parameters of the second AC power transmitted by the energy storage device, thereby improving the accuracy of the parallel command and also improving the safety and stability of the parallel operation.
  • control device provided in the embodiments of the present application also includes an input module, which is configured to receive device identifiers set for the energy storage device and the first device; a second communication module 601 is configured to send the device identifier of the energy storage device to the energy storage device so that the energy storage device can control the working state of the AC input module in the energy storage device.
  • control device provided in the embodiment of the present application is capable of receiving the device identification set for each energy storage device, and sending the device identification to the energy storage device, so that the energy storage device can control the working state of the AC input module based on the device identification, thereby realizing targeted control of the working state of the AC input module in the energy storage device under user control.
  • FIG7 is a schematic diagram of the structure of the parallel system 7 provided in the embodiments of the present application.
  • the parallel system 7 includes at least two energy storage devices as in the aforementioned embodiments, such as a first energy storage device 2 and a second energy storage device 3, and also includes a control device 6 as provided in any of the previous embodiments.
  • a wireless communication connection is established between the first energy storage device 2 and the second energy storage device 3 and the control device 6 respectively, that is, the first connection in the aforementioned embodiment; illustratively, a wireless or wired communication connection can also be established between the first energy storage device 2 and the second energy storage device 3, that is, the second connection in the aforementioned embodiment.
  • data transmission between the control device 6 and the first energy storage device 2 and the second energy storage device 3, and between the first energy storage device 2 and the second energy storage device 3 may be the same as in the aforementioned embodiment, which will not be described in detail here.
  • These computer-readable program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine, so that when these instructions are executed by the processor of the computer or other programmable data processing device, a device that implements the functions/actions specified in one or more blocks in the block diagram is generated.
  • These computer-readable program instructions can also be stored in a computer-readable storage medium, and these instructions cause the computer, programmable data processing device, and/or other equipment to work in a specific manner, so that the computer-readable medium storing the instructions includes a manufactured product, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the block diagram.
  • Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device so that a series of operating steps are performed on the computer, other programmable data processing apparatus, or other device to produce a computer-implemented process, thereby causing the instructions executed on the computer, other programmable data processing apparatus, or other device to implement the functions/actions specified in one or more boxes in the flowchart and/or block diagram.
  • each box in the block diagram can represent a part of a module, a program segment or an instruction, and a part of the module, a program segment or an instruction includes one or more executable instructions for realizing the specified logical function.
  • the functions marked in the box can also occur in a sequence different from that marked in the accompanying drawings. For example, two continuous boxes can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each box in the block diagram, and the combination of the boxes in the block diagram can be implemented by a dedicated hardware-based system that performs a specified function or action, or can be implemented by a combination of dedicated hardware and computer instructions.
  • the computer program product can be implemented in hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium.
  • the computer program product is embodied as a software product, such as a software development kit (SDK).
  • SDK software development kit
  • the product using the technical solution of the embodiment of the present application has clearly informed the personal information processing rules and obtained the individual's voluntary consent before processing the personal information.
  • the technical solution of the embodiment of the present application involves sensitive personal information
  • the product using the technical solution of the embodiment of the present application has obtained the individual's separate consent before processing the sensitive personal information, and at the same time meets the requirement of "explicit consent". For example, at a personal information collection device such as a camera, a clear and prominent sign is set to inform that the personal information collection scope has been entered and personal information will be collected.
  • the personal information processing rules may include information such as the personal information processor, the purpose of personal information processing, the processing method, and the type of personal information processed.
  • the present application discloses an energy storage device, a control device and a parallel system
  • the energy storage device includes: a bidirectional inverter module, configured to convert the direct current (DC) electric energy stored in the energy storage device into a first AC electric energy; an AC input module, configured to receive a second AC electric energy output by a first device; wherein the first device includes at least one other energy storage device; a first communication module, configured to establish a first connection with a second device, and receive a parallel command sent by the second device through the first connection; wherein the first connection includes at least a wireless communication connection; the second device includes at least a control device of the energy storage device; a first control module, configured to control the energy storage device to switch to a parallel state based on the parallel command; and an AC output module, configured to combine and output the first AC electric energy and the second AC electric energy when the energy storage device is in the parallel state.
  • DC direct current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种储能设备、控制设备及并机系统,储能设备包括:双向逆变模块,被配置为将储能设备中存储的直流DC电能转换为第一AC电能;AC输入模块,被配置为接收第一设备输出的第二AC电能;第一设备包括至少一个其它储能设备;第一通信模块,被配置为与第二设备建立第一连接,并通过第一连接接收第二设备发送的并机指令;其中,第一连接至少包括无线通信连接;第二设备至少包括储能设备的控制设备;第一控制模块,被配置为基于并机指令控制储能设备切换至并机状态;AC输出模块,被配置为在储能设备处于并机状态时,对第一AC电能以及第二AC电能进行合并输出。本申请公开的储能设备能够可控的、且智能而灵活的切换至并机状态。

Description

储能设备、控制设备及并机系统
相关申请的交叉引用
本申请要求2022年10月14日提交的中国专利申请号为202211262053.1、申请人为深圳市倍思科技有限公司,申请名称为“储能设备、控制设备及并机系统”的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及电能处理技术领域,尤其涉及一种储能设备、控制设备及并机系统。
背景技术
在实际应用中,若电能输出设备输出的电能无法满足电能消耗设备的电能需求,则需要用户借助于自己的并机配置经验,对特定的电能输出设备并机配置。这样的并机配置方式灵活性不足。
发明内容
基于以上问题,本申请实施例提供了一种储能设备、控制设备及并机系统。
本申请实施例提供的技术方案是这样的:
本申请实施例提供了一种储能设备,所述设备包括:
双向逆变模块,被配置为将所述储能设备中存储的直流(Direct Current,DC)电能转换为第一交流(Alternating Current,AC)电能;
AC输入模块,被配置为接收第一设备输出的第二AC电能;其中,所述第一设备包括至少一个其它储能设备;
第一通信模块,被配置为与第二设备建立第一连接,并通过所述第一连接接收所述第二设备发送的并机指令;其中,所述第一连接至少包括无线通信连接;所述第二设备至少包括所述储能设备的控制设备;
第一控制模块,被配置为基于所述并机指令控制所述储能设备切换至并机状态;
AC输出模块,被配置为在所述储能设备处于所述并机状态时,对所述第一AC电能以及所述第二AC电能进行合并输出。
本申请实施例还提供了一种控制设备,所述控制设备包括第二通信模块以及第二控制模块,其中:
所述第二控制模块,被配置为生成并机指令;
所述第二通信模块,被配置为与储能设备建立第一连接,通过所述第一连接发送所述并机指令至所述储能设备,以控制所述储能设备切换至并机状态;其中,所述第一连接至少包括无线通信连接。
本申请实施例还提供了一种并机系统,所述并机系统包括至少两个如前任一所述的储能设备、以及如前任一所述的控制设备。
本申请实施例提供的储能设备中,第一通信模块能够与第二设备建立至少包括无线通信连接的第一连接,并通过第一连接接收第二设备发送的并机指令,实现了通过第二设备对储能设备的灵活且安全的无线控制;并且,第一控制模块能够基于并机指令控制储能设备切换至并机状态,从而实现了对储能设备的工作状态的无线灵活控制;与此同时,AC输出模块在储能设备处于并机状态时,能够将AC输入模块接收的第二AC电能、以及双向逆变模块输出的第一AC电能进行合并输出,从而不仅实现了电能合并输出的严格和安全控制,进而大大提高了并机操作的灵活性;另一方面,储能设备在第二设备的无线控制下能够智能的进行并机配置,从而使得储能设备能够可控的、且智能而灵活的实现并机配置。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本申请。根据下面参考附图对示例性实施例的详细说明,本申请的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本申请的实施例,并与说明书一起用于说明本申请的技术方案。
图1为本申请实施例提供的储能设备的结构示意图;
图2为本申请实施例提供的储能设备的另一结构示意图;
图3为本申请实施例提供的储能设备的又一结构示意图;
图4为本申请实施例提供的储能设备中部分模块的电路原理图;
图5为本申请实施例提供的处于并机连接状态的第一储能设备与第二储能设备之间电能传输的结构示意图;
图6为本申请实施例提供的控制设备的结构示意图;
图7为本申请实施例提供的并机系统的结构示意图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
户外运动已经成为人们在闲暇时段推崇的休闲娱乐方式,而高质量的户外运动需要多样化的装备以及设备的支持。与此同时,为了降低户外运动的成本,人们通常会将居家场景中使用的装备或设备、比如电饭煲以及电热水壶等小型家电,应用到户外运动的场景中来,这类设备需要借助于电能供给设备提供匹配且稳定的电能才能正常运行。
针对以上技术问题,在户外场景中户外便携式储能设备比如户外电源受到了广泛的欢迎。然而,单一的户外电源通常无法满足各种电能消耗设备的电能使用需求,同时,若设计单台能够满足大部分的家用电器电能消耗需求的户外电源,则需要将户外电源的输出功率设计在大于2KW的范围。然而,这样的输出功率范围势必导致户外电源体积以及重量的骤然增大,从而使得单台户外电源失去便携性这一优势。
为了降低对户外电源的便携性的消极影响,相关技术中还提出了对多台户外电源进行并机配置,以满足大部分家用电器的电能消耗需求。然而,相关技术中的并机配置方案,需要并机配置人员具备丰富的并机配置经验以及电路连接检查知识。因此,这样的并机配置方式灵活性不足。
基于以上问题,本申请实施例提供了一种储能设备、控制设备及并机系统。本申请实施例提供的储能设备中,第一通信模块能够与储能设备的控制设备即第二设备建立第一连接,并通过第一连接接收第二设备发送的并机指令,第一控制模块能够基于并机指令控制储能设备切换至并机状态,使得其能够将其它储能设备输入的第二AC电能与储能设备的双向逆变模块输出的第一AC电能进行合并输出,从而使得储能设备能够自动的、智能的进行并机配置以及电能输出,并且,储能设备在第二设备的无线控制下能够智能的进行并机配置,从而使得储能设备能够可控的、且智能而灵活的实现并机配置。
本申请实施例首先提供了一种储能设备,图1为本申请实施例提供的储能设备的结构示意图。如图1所示,该设备可以包括:双向逆变模块101、AC输入模块102、第一通信模块103、第一控制模块104以及AC输出模块105;其中:
双向逆变模块101,被配置为将储能设备1中存储的DC电能转换为第一AC电能;AC输入模块102,被配置为接收第一设备输出的第二AC电能;第一通信模块103,被配置为与第二设备建立第一连接,并通过第一连接接收第二设备发送的并机指令;第一控制模块104,被配置为基于并机指令控制储能设备1切换至并机状态;AC输出模块105,被配置为在储能设备处于并机状态时,对第一AC电能以及第二AC电能进行合并输出。
其中,第一设备包括至少一个其它储能设备;第一连接至少包括无线通信连接;第二设备至少包括储能设备1的控制设备。
在一种实施方式中,储能设备1还可以包括储能模块(图中未示出),被配置为存储DC电能;示例性地,储能设备1能够实现相关技术中户外电源的功能,比如将市电AC转换为DC进行存储,以及通过其所存储的DC为外围耗电设备提供电能。
在一种实施方式中,双向逆变模块101可以将AC输入模块102输入的AC电能转换为DC电能,并存储在储能模块中;示例性地,储能模块可以是储能设备1中单独设置的模块,该模块可以与AC输入模块102、第一控制模块104之间分别建立有电性连接;示例性地,储能模块可以与双向逆变模块101或储能设备1中的其它模块集成在一起,本申请实施例对此不作限定。
在一种实施方式中,AC输入模块102可以包括一个端口,即AC输入模块102可以与单个其它储能设备建立电性连接,并接收单个其它储能设备输出的第二AC电能;示例性地,AC输入模块102可以包括多个端口,若多个其它储能设备的AC输出端口分别连接至AC输入模块102的多个端口,AC输入模块102可以同时接收多个其它储能设备输出的第二AC电能;示例性地,在AC输入模块102可以包括多个端口的情况下,多个AC端口的类型可以不同或相同,本申请实施例对此不作限定。
在一种实施方式中,第二AC电能可以包括第一设备的双向逆变模块输出的AC电能、第一设备接收的其它设备比如第三设备输入的AC电能,还可以包括第一设备的双向逆变模块输出的AC电能、与第三设备输入的AC电能的总和。
在一种实施方式中,第一连接可以包括近距离的无线通信连接,比如Wi-Fi连接、蓝牙(Bluetooth,BT)连接以及近场通信(Near Field Communication,NFC)连接等,相应的,第一通信模块103可以包括Wi-Fi模块、BT模块或NFC模块;示例性地,第一通信模块103可以实现多种近距离的无线通信功能,比如,第一通信模块103可以集成有Wi-Fi模块、BT模块以及NFC模块中的至少两种。
在一种实施方式中,第一连接可以包括远距离的无线通信连接,比如移动通信连接,相应的,第一通信模块103可以包括能够与基站或移动边缘计算(Mobile Edge Computing,MEC)设备建立无线通信连接的模块;示例性地,第一通信模块103可以实现至少一种无线移动通信制式对应的无线通信功能,本申请实施例对此不作限定。
在一种实施方式中,第一通信模块103与第二设备之间还可以建立有线连接,比如通过数据线连接第一通信模块103的输入输出(Input/Output,I/O)端口和第二设备的I/O端口,从而建立二者之间的有线连接。
在一种实施方式中,第二设备可以包括能够控制储能设备1的上位机设备;示例性地,第二设备可以发送指令至储能设备1,也可以接收储能设备1发送的数据,并根据储能设备1发送的数据、用户输入至第二设备的数据或者第二设备自动生成的数据中的至少一种,生成指示信息,然后通过第一通信模块103将指示信息发送至储能设备1。
在一种实施方式中,第二设备可以包括计算机设备;示例性地,第二设备可以包括移动终端设备,比如,第二设备可以包括智能手机和/或智能穿戴设备等;示例性地,第一通信模块103可以与多个第二设备建立第一连接;示例性地,多个第二设备中的各个设备的类型可 以不同;示例性地,多个第二设备中各个设备对应的第一连接的制式可以不同。
在一种实施方式中,第一通信模块103接收到并机指令之后,可以将并机指令发送至第一控制模块104,并由第一控制模块104控制储能设备1切换至并机状态;示例性地,并机指令可以以字符、数字、或字符与数字组合的形式体现;示例性地,可以预先设置第二设备与储能设备之间的数据传输协议,第二设备可以依据该数据传输协议对并机指令进行封装打包得到包含并机指令的数据包,而第一控制模块104可以基于该数据传输协议对其接收到的数据包进行解析得到并机指令。
在一种实施方式中,第一控制模块104可以在储能设备1切换至并机状态的条件下,控制双向逆变模块101将直流DC转换为第一AC电能、同时控制AC输入模块102接收第一设备输出的第二AC电能,并控制双向逆变模块101将第一AC电能传输至AC输出模块105、控制AC输入模块102将第二AC电能传输至AC输出模块105;示例性地,若储能设备1未切换至并机状态,则第一控制模块104可以控制双向逆变模块101以及AC输入模块102中的至少一个模块不传输AC电能至AC输出模块105。
在一种实施方式中,AC输出模块105与第一控制模块104、AC输入模块102以及双向逆变模块101之间可以分别建立有电性连接,从而使得AC输出模块105能够接收AC输入模块102传输的第二AC电能、以及双向逆变模块101输出的第一AC电能,并在储能设备1处于并机状态的条件下,基于第一控制模块104的控制,对第一AC电能以及第二AC电能进行合并输出。
在一种实施方式中,第一控制模块104可以包括特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理单元(Microcontroller Unit,MCU)中的至少一种。
由以上可知,本申请实施例提供的储能设备中,第一通信模块能够与第二设备建立至少包括无线通信连接的第一连接,并通过第一连接接收第二设备发送的并机指令,实现了通过第二设备对储能设备的灵活且安全的无线控制;并且,第一控制模块能够基于并机指令控制储能设备切换至并机状态,从而实现了对储能设备的工作状态的无线灵活控制;与此同时,AC输出模块在储能设备处于并机状态时,能够将AC输入模块接收的第二AC电能、以及双向逆变模块输出的第一AC电能进行合并输出,从而不仅实现了电能合并输出的严格和安全控制,进而大大提高了并机操作的灵活性;另一方面,储能设备在第二设备的无线控制下能够智能的进行并机配置,从而使得储能设备能够可控的、且智能而灵活的实现并机配置
基于前述实施例,本申请实施例提供的储能设备1中,第一控制模块104,还被配置为基于电能均衡指令控制双向逆变模块101的工作状态从第一状态切换至第二状态。
其中,双向逆变模块101在第一状态下输出的第一AC电能的参数、与双向逆变模块101在第二状态下输出的第一AC电能的参数不同。
在一种实施方式中,第一控制模块104,可以在储能设备1处于并机状态时,基于电能均衡指令控制双向逆变模块101的工作状态从第一状态切换至第二状态。
在一种实施方式中,第一AC电能的参数可以包括第一AC电能的相位、幅度、频率、电压、电流以及功率中的至少一种;示例性地,双向逆变模块101在第一状态下输出第一AC电能的参数、与其在第二状态下输出第一AC电能的参数不同,可以包括第一AC电能的相位、幅度、频率、电压、电流以及功率中的至少一种不同。
在一种实施方式中,电能均衡指令可以包括指示储能设备1的双向逆变模块101输出的第一AC电能的相位、幅度、频率、电压、电流以及功率中的至少之一、保持当前所处的平稳状态的指令;示例性地,电能均衡指令还可以包括调整双向逆变模块101输出的第一AC电能的相位、幅度、频率、电压、电流以及功率中的至少之一、至指定状态的指令,其中,指定状态可以包含在电能均衡指令中;示例性地,电能均衡指令还可以包括指示双向逆变模块101 调整第一AC电能的相位、幅度、频率、电压、电流以及功率中的至少之一的策略、启动调整时间、调整过程持续时间、调整步长、以及调整方向中的至少之一。
在一种实施方式中,可以基于AC耗电设备所需的目标功率对双向逆变模块101的工作状态进行调整,从而使得第二状态能够与目标功率匹配。
由以上可知,本申请实施例提供的储能设备中的第一控制模块,能够基于电能均衡指令控制双向逆变模块的工作状态从第一状态切换至第二状态,从而实现了对双向逆变模块的工作状态的自动化的、针对性的控制;并且,双向逆变模块在第一状态下与其在第二状态下输出的第一AC电能的参数不同,从而实现了对双向逆变模块输出的第一AC电能的细粒度调整;与此同时,通过上述调整操作,还能提高在并机过程中,双向逆变模块乃至储能设备工作状态的安全性和可控性。
基于前述实施例,本申请实施例提供的储能设备中,第一通信模块103,还被配置为通过第一连接接收第二设备发送的电能均衡指令。
在一种实施方式中,电能均衡指令可以是用户指示第二设备发送的;示例性地,用户可以根据并机需求或个人需求实时的、动态的输入电能均衡指令至至第二设备,并指示第二设备发送电能均衡指令至储能设备1。
在一种实施方式中,第二设备可以基于环境参数生成电能均衡指令;示例性地,环境参数可以包括储能设备1所处环境的当前参数,比如储能设备1所处环境在当前时刻的温度、湿度、光照强度以及通风状态等参数,其中,上述温度、湿度、光照强度以及通风状态等参数,可以对储能设备1在并机过程中的发热状态产生积极或消极影响,因此,第二设备可以基于上述参数生成电能均衡指令;示例性地,储能设备1所处环境的当前参数,可以基于传感器装置和/或图像采集装置的采集数据而确定,还可以从其它设备中获取;示例性地,上述传感器装置和/或图像采集装置可以设置在储能设备1中,也可以设置在第二设备中,本申请实施例对此不作限定。
示例性地,环境参数可以包括对储能设备1所处环境的未来状态进行预测得到的参数,比如第二设备可以与网络侧建立有通信连接,第二设备可以获得储能设备1的设置位置,然后根据该设置位置从网络侧获取未来时段内、储能设备1的设置位置处的温度、湿度、降雨以及风力等变化趋势,在上述变化趋势对储能设备1的并机状态产生消极影响时,第二设备可以生成电能均衡指令。
在一种实施方式中,第二设备可以在AC耗电设备所需的目标功率、储能设备1输出的合并后的第一AC电能与第二AC电能之和匹配程度小于或等于匹配阈值的情况下,发送电能均衡指令,以使得储能设备1输出的合并后的第一AC电能与第二AC电能之和能够与目标功率匹配。
由以上可知,本申请实施例提供的储能设备1中,第一通信模块还被配置为通过第一连接接收第二设备发送的电能均衡指令,从而实现了第二设备通过第一通信模块对双向逆变模块的工作状态的无线的安全控制,提高了对储能设备中双向逆变模块的工作状态控制的灵活性。
基于前述实施例,本申请实施例提供的储能设备1中,第一通信模块103,还被配置为通过第一连接发送第一数据至第二设备,以供第二设备基于第一数据以及第二数据、或者基于第一数据确定是否发送电能均衡指令至储能设备1。
其中,第一数据至少包括DC电能的剩余电量;第二数据至少包括第一设备中DC的剩余电量。
在一种实施方式中,第一数据还可以包括储能设备1中双向逆变模块101的持续工作时间和/或储能设备1的发热状态;相应的,第二数据还可以包括第一设备中双向逆变模块的持续工作时间和/或第一设备的发热状态。
在一种实施方式中,第二设备与第一设备中的其它储能设备之间也建立有无线通信连接,因此,第二设备可以通过其与其它储能设备之间的无线通信连接接收第二数据。
在一种实施方式中,储能设备以及第一设备可以实时的发送第一数据以及第二数据至第二设备;示例性地,储能设备以及第一设备可以基于它们与第二设备之间的数据传输协议,以指定的时间间隔、或检测到DC电能剩余电量低于电能阈值、或检测到DC电能剩余电量的下降率大于变化率阈值的情况下,分别发送第一数据以及第二数据至第二设备。
在一种实施方式中,第二设备可以在第一数据小于第一阈值的情况下、或者第一数据与第二数据之差的绝对值大于或等于第二阈值的情况下,向储能设备1发送电能均衡指令;示例性地,第二设备可以在第一数据大于或等于第一阈值、或者第一数据与第二数据之差的绝对值小于第二阈值的情况下,不发送电能均衡指令;其中,第一阈值以及第二阈值可以根据并机过程中电能输出的实际需求而确定,还可以根据储能设备1以及第一设备中的双向逆变模块的输出电能随DC电能的剩余电量的变化状态而确定或调整,本申请实施例对此不作限定。
在一种实施方式中,第二设备可以基于AC耗电设备所需的目标功率,向储能设备1以及第一设备中的至少部分设备发送电能均衡指令,以供储能设备1以及第一设备中的至少部分设备基于电能均衡指令,调整双向逆变模块的工作状态,从而使得储能设备1以及第一设备中的至少部分设备的双向逆变模块,输出的AC电能在相位、幅度、频率、电压、电流以及功率等维度均衡匹配,从而提高并机过程中AC电能的安全稳定传输。
由以上可知,本申请实施例提供的储能设备的第一通信模块,能够通过第一连接发送第一数据至第二设备,且第一数据至少包括DC电能的剩余电量,从而使得第二设备能够实时的获取储能设备中存储的DC的剩余电量,进而为第二设备确定是否发送电能均衡指令提供精确数据依据,也能改善电能均衡指令发送的针对性,降低随意发送电能均衡指令而导致的对双向逆变模块的工作状态的频繁干扰;并且,第二设备能够基于第一数据、或者第一数据以及第二数据确定是否生成电能均衡指令,从而使得并机过程中,第二设备能够获得处于并机状态的所有储能设备中DC剩余电量,进而使得第二设备生成的电能均衡指令能够实现对处于并机状态的所有储能设备的全面控制,提高并机电能传输的安全性。
基于前述实施例,本申请实施例提供的储能设备1中,第一通信模块103,还被配置为与第一设备建立第二连接,通过第二连接接收第一设备的电能输出状态;第一控制模块104,被配置为基于第一AC电能的参数以及第一设备的电能输出状态,生成电能均衡指令。
在一种实施方式中,第二连接可以包括无线通信连接,此时的第二连接可以通过各个储能设备之间的无线通信模块建立;示例性地,第二连接可以包括近距离无线通信连接,比如BT连接、Wi-Fi连接以及NFC连接等。
在一种实施方式中,第二连接还可以包括有线连接,此时,储能设备1与第一设备之间的数据传输可以通过它们之间的电能传输线缆实现,本申请实施例对此不作限定。
在一种实施方式中,第一设备的电能输出状态,可以包括第二AC电能中的至少部分电能的幅度、相位、频率、功率中的至少之一的变化状态,其中,第二AC电能中的至少部分电能,可以包括第一设备的双向逆变模块输出的AC电能和/或输入至第一设备的AC电能;示例性地,第一设备的电能输出状态还可以包括第一设备中剩余DC的数量和/或第一设备的发热状态等。
在一种实施方式中,第一AC电能的参数可以与前述实施例中的第一数据的含义类似,此处不再赘述。
在一种实施方式中,第一控制模块104,可以对第一AC电能的参数以及第一设备的电能输出状态进行分析得到分析结果,在分析结果表示储能设备1的电能输出状态以及第一设备的电能输出状态能够保障并机过程中的电能稳定安全输出时,可以不生成电能均衡指令;示例性地,在分析结果表示储能设备1的电能输出状态和/或第一设备的电能输出状态,对并机过程中的电能稳定安全输出产生消极影响时,可以生成电能均衡指令,并将电能均衡指令分别发送至储能设备1以及第一设备。
由以上可知,本申请实施例提供的储能设备中的第一通信模块,能够与第一设备建立第 二连接,并通过第二连接接收第一设备的电能输出状态,从而使得处于并机状态的储能设备之间能够实现电能输出状态的实时同步;并且,第一控制模块能够基于第一AC电能的参数、以及第一设备的电能输出状态生成电能均衡指令,不仅提高了电能均衡指令的精准度,而且储能设备能够自动的、智能的生成电能均衡指令,从而使得参与并机的任一储能设备均能智能的、实时且精确的生成电能均衡指令,提高了参与并机的任一储能设备的电能均能操作的灵活性。
基于前述实施例,本申请实施例通过的储能设备中,第一通信模块103,还被配置为通过第一连接发送第三数据至第二设备,以供第二设备基于第三数据控制储能设备1的状态。
其中,第三数据至少包括储能设备1的工作状态关联的数据。
在一种实施方式中,第三数据可以包括储能设备1的工作状态,比如储能设备1所处的并机状态、充电状态、非并机模式的电能输出状态等;示例性地,第三数据可以包括储能设备1中至少一个模块的工作状态,比如双向逆变模块101的电能转换效率等。
在一种实施方式中,第三数据可以包括储能设备1的连接状态;示例性地,上述连接状态可以包括无线连接状态,比如储能设备1与第一设备中的设备建立连接的制式、储能设备1与第一设备中的设备建立连接的数量、以及储能设备1与第一设备中的设备之间的连接持续时间中的至少一种;示例性地,上述连接状态可以包括电性连接状态,比如储能设备1与第一设备之间的电能传输线缆是否连接正常,示例性地,若连接正常,第二设备可以向储能设备1以及第一设备发送并机指令,以控制储能设备1以及第一设备切换至并机状态。
在一种实施方式中,第三数据可以包括储能设备1的发热状态和/或储能设备1的持续工作时间等数据。
在一种实施方式中,第二设备可以根据并机需求第三数据进行分析判断,若储能设备1的工作状态不能满足并机需求中的安全性条件和/或稳定性条件,则可以控制储能设备退出并机状态,切换至非并机状态,或者向储能设备1发送电能均衡指令,供第一控制模块104基于电能均衡指令调整双向逆变模块101的工作状态,从而使得储能设备1的工作状态能够满足并机需求中的安全性条件和/或稳定性条件。
由以上可知,本申请实施例提供的储能设备中,第一通信模块能够通过第一连接发送储能设备的工作状态关联的数据即第三数据至第二设备,从而使得第二设备能够实时的获得储能设备的实际工作状态;并且,第二设备基于第三数据控制储能设备的工作状态,实现了对储能设备的工作状态的精确的以及实时的控制。
基于前述实施例,本申请实施例提供的储能设备1还包括检测模块106,图2为本申请实施例提供的储能设备的另一结构示意图,如图2所示,检测模块106,被配置为获取第一参数以及第二参数,并对第一参数以及第二参数进行检测,得到检测结果;第一通信模块103,被配置为将检测结果通过第一连接发送至第二设备,以供第二设备基于检测结果生成并机指令。
其中,第一参数包括第一AC电能的参数;第二参数包括第二AC电能的参数。
在一种实施方式中,第一参数可以包括第一AC电能的幅值、频率、相位、电压、电流以及功率等参数;第二参数可以包括第二AC电能的幅值、频率、相位、电压、电流以及功率等参数。
在一种实施方式中,在储能设备1切换至并机状态之前,可以通过AC输入模块102接收第二AC电能,并通过检测模块106对第二AC电能进行检测,得到第二参数;示例性地,第一设备可以通过第二连接发送第二参数至储能设备1的第一通信模块103,第一通信模块103可以将第二参数传输至检测模块106。
在一种实施方式中,检测模块106可以对第一AC电能进行检测,从而获取第一参数。
在一种实施方式中,检测模块106与第一控制模块104、第一通信模块103、AC输入模块102以及双向逆变模块101之间建立有电性连接,从而能够实现检测模块106与上述各个模块之间的数据传输。
在一种实施方式中,检测模块106可以对第一参数中的参数以及第二参数中的参数进行类型匹配,在类型匹配的情况下,对各个参数对应的数值大小进行比较,并将比较结果确定为检测结果。
在一种实施方式中,第二设备接收到检测结果后,可以在检测结果表示第一参数与第二参数匹配的情况下,生成并机指令,还可以在第一参数与第二参数不匹配的情况下,生成不执行并机配置的指令,并将该指令输出或发送至储能设备1,以便于用户针对上述指令进行故障检测。
由以上可知,本申请实施例提供的储能设备1所包含的检测模块,能够对第一AC电能的第一参数以及第二AC电能的第二参数进行检测,得到检测结果,从而使得储能设备能够实时且精确的获得各个储能设备之间的参数检测结果;并且,通过第一通信模块发送检测结果至第二设备,由第二设备确定是否生成并机指令,从而能够充分发挥第二设备的上位机控制功能,实现了并机电能转换输出与控制功能的分离。
基于前述实施例,本申请实施例提供的储能设备1中,第一通信模块103,被配置为若检测结果表示第一参数与第二参数匹配,通过第一连接发送检测结果至第二设备。
示例性地,若检测结果表示第一参数与第二参数不匹配,则可以不发送检测结果至第二设备,比如可以输出检测结果以提示用户第一参数与第二参数不匹配;示例性地,若检测结果表示第一参数与第二参数不匹配,则可以发送第一参数与第二参数不匹配的信息至第二设备;示例性地,第二设备可以输出第一参数与第二参数不匹配的信息,以便于用户能够快速确定第一参数与第二参数不匹配的原因。
由以上可知,本申请实施例提供的储能设备中,第一通信模块能够在检测结果表示第一参数与第二参数匹配的条件下,通过第一连接发送检测结果至第二设备,如此,减少了任意发送检测结果指定第二设备导致的电能消耗,也能够提高第二设备基于检测结果生成并机指令的效率。
基于前述实施例,本申请实施例提供的储能设备1,还包括开关模块107,图3为本申请实施例提供的储能设备1的又一结构示意图,如图3所示,第一控制模块104,被配置为在接收到并机指令后,控制开关模块107的开关状态切换至第三状态,以建立AC输入模块102与AC输出模块105之间的第三连接。
在一种实施方式中,第三连接可以为电性连接。
在一种实施方式中,开关模块107可以设置在检测模块106与AC输出模块105之间;示例性地,检测模块106可以通过第一支路以及第二支路分别输出第一AC电能以及第二AC电能;示例性地,开关模块107可以设置在第二支路上;示例性地,开关模块107通过切换开关状态可以实现第二支路的连通或断开,从而实现对AC输入模块102与AC输出模块105之间第三连接的连接状态的控制。
在一种实施方式中,第三状态可以包括闭合状态;示例性地,开关模块107可以包括第一开关单元(图中未示出),第一开关单元可以设置在第二支路,第一控制模块104接收到并机指令之后,可以控制第一开关单元切换至闭合状态,从而建立AC输入模块102与AC输出模块105之间的第三连接,进而使得第一设备输入至储能设备1的AC电能能够通过AC输出模块105输出。
由以上可知,本申请实施例提供的储能设备中的开关模块,能够在第一控制模块接收到并机指令之后,在第一控制模块的控制下切换至第三状态,从而实现了第一控制模块根据储能设备的工作状态对开关模块状态的实时控制;并且,开关模块切换至第三状态之后,能够建立AC输入模块与AC输出模块之间的第三连接,从而使得第一设备输入至储能设备的第二AC电能能够通过AC输出模块快速输出。
基于前述实施例,本申请实施例提供的储能设备1还包括开关模块107,其中,第一控制模块104,被配置为在获取到目标信息后,控制开关模块107的状态切换至第四状态,以断开双向逆变模块101与AC输出模块105之间的第四连接。
其中,目标信息至少包括储能设备1处于异常状态的信息。
在一种实施方式中,储能设备1处于异常状态可以包括储能设备1中的至少一个模块的工作状态异常;示例性地,上述异常状态可以包括储能设备1的储能模块中剩余DC的数量不足的状态。
在一种实施方式中,目标信息还可以包括第二设备下发的停止并机状态的指令。
在一种实施方式中,第四状态可以包括断开状态;示例性地,开关模块107中的第二开关单元(图中未示出)可以设置在检测模块106与AC电能输出模块105之间,因此,第一控制模块104通过控制第二开关单元切换至断开状态,从而断开第四连接;示例性地,第四连接可以为电性连接。
由以上可知,本申请实施例提供的储能设备中的第一控制模块,在获取到目标信息之后,能够控制开关模块的开关状态切换至第四状态,且目标信息至少包括储能设备处于异常状态的信息,如此,能够在储能设备切换至异常状态之后,实时的对第四连接进行控制,从而能够降低储能设备异常状态时依然输出电能产生的风险,进而实现了在并机过程中对储能设备的主动保护。
基于前述实施例,本申请实施例提供的储能设备1中,AC输出模块105,被配置为在第四连接断开、且储能设备处于并机状态时,输出第二AC电能。
示例性地,在第四连接断开、且储能设备处于并机状态时,若AC输入模块102仍然能够接收第一设备传输的第二AC电能,则第一控制模块104可以控制开关模块107保持第三状态,从而使得AC输出模块105可以将第二AC电能输出。
示例性地,在储能设备1处于异常状态时,第一通信模块103可以通过第一连接将异常状态发送至第二设备,以供第二设备生成电能均衡指令,并将电能均衡指令发送至参与并机的其它正常状态的储能设备,以供这些储能设备进行电能输出均衡,从而改善并机过程中电能输出的稳定性和持续性。
由以上可知,本申请实施例提供的储能设备中的AC输出模块,能够在第四连接断开、且储能设备处于并机状态时,输出第二AC电能,从而能够降低储能设备异常状态对并机电能输出的影响,进而提高并机的储能设备的电能输出的稳定性和持续性。
基于前述实施例,本申请实施例提供的储能设备1中的第一通信模块103,还被配置为通过第一连接接收第二设备下发的设备标识;第一控制模块104,被配置为在设备标识不为指定标识时,控制AC输入模块102接收第二AC电能。
示例性地,若设备标识为指定标识,则第一控制模块104可以控制AC输入模块102处于非工作状态,从而不接收第二AC电能。
在一种实施方式中,设备标识可以是用户输入至第二设备的;示例性地,设备标识可以是第二设备为与其建立有通信连接的各个储能设备自动设置的标识;示例性地,第二设备可以根据与其建立通信连接的时间顺序、通信连接的制式类型、通信连接的稳定性、各个储能设备中剩余DC的数量中的至少一种生成设备标识。
在一种实施方式中,设备标识可以通过字符和/或数字的形式体现,比如第一个储能设备的设备标识可以为1,第二个储能设备的设备标识可以为2;示例性地,设备标识中的最大值可以为与第二设备建立有第二连接的储能设备的数量,比如,若有n个储能设备与第二设备建立有通信连接,则设备标识的最大值可以为n,其中,n可以为大于或等于2的整数。
在一种实施方式中,指定标识可以为第二设备发送至储能设备1的;示例性地,指定标识可以是预先设定的、多个设备标识中的任一标识;示例性地,指定标识可以为设备标识的最小值,比如1;示例性地,设备标识的编号可以体现并机过程中各个储能设备的并机顺序,比如,设备标识为k的储能设备的AC输出模块输出的AC电能,可以输入至设备标识为k+1的储能设备的AC输入模块,其中,k为大于1的整数;示例性地,设备标识为指定标识时,比如设备标识为1,则第一个储能设备的AC输入模块无法接收其它储能设备输出的AC电能,而只能将其输出的AC电能输入至第二个储能设备。
在一种实施方式中,可以将参与并机设置的多个储能设备中的第一个至第n-1个储能设备称为从电能输出设备,而将第n个储能设备称为主电能输出设备;示例性地,主电能输出设备的AC输入模块能够接收第一个至第n-1个储能设备输出的AC电能,并将第一个至第n-1个储能设备输出的AC电能与其自身输出的AC电能进行合并输出;示例性地,主电能输出设备的AC输出模块可以连接至耗电设备。
由以上可知,本申请实施例提供的储能设备中,第一通信模块能够通过第一连接接收第二设备下发的设备标识;并且,第一控制模块能够在设备标识不为指定标识时,控制AC输入模块接收第二AC电能,如此,第二设备通过发送设备标识的形式,就能够简洁高效的控制储能设备的AC输入模块的工作状态;并且,储能设备通过判断其所收到的设备标识与指定标识之间的关系,就能够灵活的控制AC输入模块的工作状态,并能够确定储能设备在并机设备群中的角色信息,从而为并机过程AC电能的稳定安全传输奠定基础。
基于前述实施例,本申请实施例提供的储能设备1中,AC输入模块102包括第一接头,第一接头与AC电源线的母接头匹配;AC输出模块105包括第二接头;第二接头与AC电源线的公接头匹配。
在一种实施方式中,第一接头与第二接头的数量可以为多个,且各个第一接头可以分别与AC电源线的母接头匹配,各个第二接头可以分别与AC电源线的公接头匹配。
在实际应用中,具备并机功能的储能设备之间需要特定的并机线才能实现电能的传输。
而本申请实施例提供的储能设备的AC输入模块包括的第一接头与AC电源线的母接头匹配,且AC输出模块包括的第二接头与AC电源线的公接头匹配,从而使得储能设备能够通过AC电源线接收第一设备发送的第二AC电能,也能通过AC电源线输出第一AC电能、或第一AC电能与第二AC电能的合并电能、或第二AC电能,从而能够降低对特定的并机线的依赖,进一步提高了并机操作的灵活性,而且还能降低并机的设备成本。
图4为本申请实施例提供的储能设备中部分模块的电路原理图。
如图4所示,双向逆变模块101可以为由四个金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)Q1、Q2、Q3以及Q4组成的全桥逆变电路,其通过Vbus端口可以接收储能模块中的DC电能,并通过上述全桥逆变电路将DC电能转换为第一AC电能。
在图4中,AC输入模块102可以通过火线和零线接收第一设备发送的第二AC电能;在图4中,检测模块106可以包括第一检测单元H1以及第二检测单元H2,其中,第一检测单元H1以及第二检测单元H2可以分别实现对第一AC电能以及第二AC电能的电流检测;示例性地,第一检测单元H1以及第二检测单元H2可以分别为霍尔器件,其中,第一检测单元H1以及第二检测单元H2的端口5至8分别被配置为接地、接入参考电压、向第一控制模块输出检测结果以及接入3.3V的偏置电压;第一检测单元H1的端口3和4分别被配置为接入第一AC电能,端口1和2分别被配置为输出第一AC电能至第二检测单元的4端口;第二检测单元H2的端口1和2分别被配置为接入第二AC电能,端口3可以悬空设置,端口4可以输出第二AC电能,同时与第一AC电能进行合并,然后将合并后的第一AC电能以及第二AC电能传输至AC输出模块105,并通过AC输出模块105的火线和零线输出。
示例性地,在第一通信模块未接收到并机指令时,第一控制模块能够控制开关模块107中的开关K1以及开关K2处于断开状态,此时AC输入模块102无法接收第一设备传输的第二AC电能。
示例性地,在第一通信模块接收到并机指令后,第一控制模块可以控制储能设备切换至并机状态,并控制开关K1至开关K3均切换至闭合状态,此时AC输入模块102可以接收第一设备传输的第二AC电能,并将第二AC电能传输至第二检测单元H2,同时,双向逆变模块101输出的第一AC电能传输至第一检测单元H1,并通过第一检测单元H1的端口1和2将第一AC电能传输至第二检测单元H2的端口4,并在此处完成第一AC电能以及第二AC电能的合并,合并后的第一AC电能以及第二AC电能可以通过AC输出模块105输出至AC耗电设备、或下一 个储能设备的AC输入模块。
图5为本申请实施例提供的处于并机连接状态的第一储能设备与第二储能设备之间电能传输的结构示意图。如图5所示,第一储能设备2以及第二储能设备3可以均为前述实施例提供的储能设备1。
如图5所示,第一储能设备2可以包括第一输入模块201、第一逆变处理模块202、第一频率检测单元203、第二频率检测单元204、第一电流检测单元205、第二电流检测单元206、第一开关207、第二开关208、第一MCU 209以及第一输出模块210。第二储能设备2的结构组成与第一储能设备2相同,此处不再赘述。
其中,第一输入模块201、第一逆变处理模块202、第一输出模块210以及第一MCU 209可以分别为前述实施例中的AC输入模块、双向逆变模块、AC输出模块以及第一控制模块;第二输入模块301、第二逆变处理模块302、第二输出模块310以及第二MCU 309,可以分别为前述实施例中的AC输入模块、双向逆变模块、AC输出模块以及第一控制模块。
其中,第一频率检测单元203、第二频率检测单元204、第一电流检测单元205以及第二电流检测单元206,可以构成前述实施例中的检测模块;第一开关207以及第二开关208可以构成前述实施例中的开关模块;示例性地,第一通信模块可以集成在第一MCU 209中。
其中,第三频率检测单元303、第四频率检测单元304、第三电流检测单元305以及第四电流检测单元306可以构成前述实施例中的检测模块;第三开关307以及第四开关308可以构成前述实施例中的开关模块;示例性地,第二通信模块可以集成在第二MCU 309中。
示例性地,当第一储能设备2以及第二储能设备3接收到第二设备发送的并机指令之后,它们能够分别在第一MCU 209以及第二MCU 309的控制下切换至并机状态;示例性地,第一储能设备2以及第二储能设备3还可以根据第二设备发送的设备标识,确定第一储能设备2为从电能输出设备,第二储能设备3为主电能输出设备,从而使得第一储能设备2的第一输入模块201处于非工作状态、且第二开关208处于断开状态,而第二储能设备3的第二输入模块301处于工作状态,从而能够接收第一储能设备2的第一输出模块210输出的AC电能。
示例性地,第一MCU 209可以控制第一开关207切换至闭合状态,从而使得第一逆变处理模块202输出的AC电能即前述实施例中的第二AC电能、经过第一频率检测单元203以及第一电流检测单元205、第一开关207与第一输出模块210之间的通路,传输至第二储能设备3的第二输入模块301。
示例性地,第二输入模块301可以将第一AC电能传输至第三频率检测单元303,以供其对第一AC电能进行频率检测得到第一参数,同时,第四频率检测单元304可以对第二AC电能进行频率检测,得到第二参数;示例性地,第三频率检测单元303以及第四频率检测单元304可以分别将第一参数以及第二参数,发送至第二MCU 309,以供第二MCU 309确定是否执行并机操作;示例性地,若第二MCU 309确定能够执行并机操作,则可以将能够执行并机操作的结果发送至第二设备,同时还可以控制第三开关307以及第四开关308分别切换至闭合状态,如此,第一AC电能经过第三电流电测单元305的电流检测之后、第二AC电能经过第四电流检测单元306的电流检测之后,可以在第三开关307处进行合并,并将合并结果传输至第二输出模块301以供其输出至下一个储能设备,或输出至AC耗电设备。
示例性地,在并机输出电能的过程中,任一储能设备可以发送DC剩余电量至第二设备,以供第二设备确定是否发送电能均衡指令至各个储能设备,从而供各个储能设备之间执行电能均衡操作,从而改善电能输出的稳定性。
示例性地,若第二储能设备3检测到其中的至少一个模块状态异常,则可以自动的、或基于第二设备的控制而控制第二逆变处理模块302停止工作,或断开第一AC电能的传输通路,但仍然保持第四开关308的闭合状态,从而能够将第二AC电能稳定输出。
示例性地,第一储能设备2与第二储能设备3之间可以通过AC电源线连接,从而实现第二AC电能的传输。
由以上可知,本申请实施例提供的储能设备,能够自动的执行并机操作,且能够在并机 传输电能的过程中实时的处理异常状态,保障并机状态下电能的稳定输出,并且,通过AC电源线连接各个储能设备,还能降低并机电能传输的硬件成本;与此同时,基于第二设备的无线控制实现并机连接,也大大提高了并机操作的灵活性。
基于前述实施例,本申请实施例还提供了一种控制设备,图6为本申请实施例提供的控制设备6的结构示意图,如图6所示,该设备可以包括第二通信模块601以及第二控制模块602,其中:
第二控制模块602,被配置为生成并机指令;第二通信模块601,被配置为与储能设备建立第一连接,通过第一连接发送并机指令至储能设备,以控制储能设备切换至并机状态。
其中,第一连接至少包括无线通信连接。
在一种实施方式中,控制设备6可以在通过第一连接接收到储能设备反馈的状态参数,且确定储能设备能够稳定输出AC电能的情况下,生成并机指令。
由以上可知,本申请实施例提供的控制设备,通过其与储能设备之间的第一连接,能够发送其所生成的并机指令至储能设备,从而实现了对储能设备的并机状态的远程控制,提高了储能设备并机配置的灵活性和安全性。
基于前述实施例,本申请实施例提供的控制设备中的第二通信模块601,被配置为接收储能设备发送的第一数据,并接收第一设备发送的第二数据;第二控制模块602,被配置为基于第一数据以及第二数据、或基于第一数据,确定是否发送电能均衡指令至储能设备。
其中,第一数据包括储能设备中DC电能的剩余电量;第二数据包括第一设备中DC电能的剩余电量;第一设备包括至少一个其它储能设备。
示例性地,第二控制模块602,还可以确定是否发送电能均衡指令至第一设备。
由以上可知,本申请实施例提供的控制设备,能够基于与其建立有通信连接的储能设备以及第一设备分别发送的第一数据以及第二数据,确定是否发送电能均衡指令至储能设备,如此不仅能够提高电能均衡指令的精准度,使得控制设备能够实现对储能设备的电能输出状态的精准控制,而且控制设备通过第一数据以及第二数据能够全面、实时且精准的获取参与并机的每一储能设备的电能输出状态,从而为控制设备对储能设备的精准实时控制提供数据基础。
基于前述实施例,本申请实施例提供的控制设备中,第二通信模块601,被配置为接收储能设备发送的第三数据;第二控制模块602,被配置为基于第三数据通过第二通信模块控制储能设备的工作状态。
其中,第三数据至少包括与储能设备的工作状态关联的数据。
由以上可知,本申请实施例提供的控制设备,能够获得储能设备发送的与储能设备的工作状态关联的第三数据,从而使得控制设备能够实时的且精准的获得储能设备的工作状态;并且,控制设备能够基于第三数据控制储能设备的工作状态,从而能够提高储能设备在并机过程中电能处理以及电能传输的稳定性和安全性。
基于前述实施例,本申请实施例提供的控制设备6中,第二通信模块601,被配置为接收储能设备发送的检测结果;第二控制模块602,被配置为基于检测结果生成并机指令。
其中,检测结果包括针对第一参数与第二参数检测的结果;第一参数包括储能设备的双向逆变模块输出的第一AC电能的参数;第二参数包括储能设备的AC输入模块接收到的第二AC电能的参数。
由以上可知,本申请实施例提供的控制设备的第二控制模块,基于储能设备传输的针对第一AC电能的参数以及第二AC电能的参数的检测结果,生成并机指令,从而能够提高并机指令的精确程度,也能提高并机操作的安全性和稳定性。
基于前述实施例,本申请实施例提供的控制设备还包括输入模块,被配置为接收为储能设备以及第一设备设置的设备标识;第二通信模块601,被配置为将储能设备的设备标识发送至储能设备,以供储能设备控制储能设备中的AC输入模块的工作状态。
由以上可知,本申请实施例提供的控制设备,能够接收为各个储能设备设置的设备标识, 并将设备标识发送至储能设备,以供储能设备基于设备标识控制AC输入模块的工作状态,从而实现了在用户控制下对储能设备中AC输入模块工作状态的针对性控制。
基于前述实施例,本申请实施例还提供了一种并机系统,图7为本申请实施例提供的并机系统7的结构示意图,如图7所示,该并机系统7包括至少两个如前述实施例通的储能设备,比如第一储能设备2以及第二储能设备3,还包括如前任一实施例提供的控制设备6。
其中,第一储能设备2、第二储能设备3分别与控制设备6之间建立有无线通信连接,即前述实施例中的第一连接;示例性地,第一储能设备2与第二储能设备3之间还可以建立有无线或有线通信连接,即前述实施例中的第二连接。
示例性地,控制设备6与第一储能设备2以及第二储能设备3之间、第一储能设备2与第二储能设备3之间的数据传输可以与前述实施例相同,此处不再赘述。
这里参照根据本申请实施例装置(系统)框图描述了本申请的各个方面。应当理解,框图的每个方框以及框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的框图显示了根据本申请的多个实施例的装置和系统可能实现的体系架构、功能和操作。在这点上,框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图中的每个方框、以及框图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
若本申请实施例技术方案涉及个人信息,应用本申请实施例技术方案的产品在处理个人信息前,已明确告知个人信息处理规则,并取得个人自主同意。若本申请实施例技术方案涉及敏感个人信息,应用本申请实施例技术方案的产品在处理敏感个人信息前,已取得个人单独同意,并且同时满足“明示同意”的要求。例如,在摄像头等个人信息采集装置处,设置明确显著的标识告知已进入个人信息采集范围,将会对个人信息进行采集,若个人自愿进入采集范围即视为同意对其个人信息进行采集;或者在个人信息处理的装置上,利用明显的标识/信息告知个人信息处理规则的情况下,通过弹窗信息或请个人自行上传其个人信息等方式获得个人授权;其中,个人信息处理规则可包括个人信息处理者、个人信息处理目的、处理 方式以及处理的个人信息种类等信息。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
工业实用性
本申请公开了一种储能设备、控制设备及并机系统,其中,所述储能设备包括:双向逆变模块,被配置为将所述储能设备中存储的直流DC电能转换为第一AC电能;AC输入模块,被配置为接收第一设备输出的第二AC电能;其中,所述第一设备包括至少一个其它储能设备;第一通信模块,被配置为与第二设备建立第一连接,并通过所述第一连接接收所述第二设备发送的并机指令;其中,所述第一连接至少包括无线通信连接;所述第二设备至少包括所述储能设备的控制设备;第一控制模块,被配置为基于所述并机指令控制所述储能设备切换至并机状态;AC输出模块,被配置为在所述储能设备处于所述并机状态时,对所述第一AC电能以及所述第二AC电能进行合并输出。

Claims (19)

  1. 一种储能设备,所述设备包括:
    双向逆变模块,被配置为将所述储能设备中存储的直流DC电能转换为第一AC电能;
    AC输入模块,被配置为接收第一设备输出的第二AC电能;其中,所述第一设备包括至少一个其它储能设备;
    第一通信模块,被配置为与第二设备建立第一连接,并通过所述第一连接接收所述第二设备发送的并机指令;其中,所述第一连接至少包括无线通信连接;所述第二设备至少包括所述储能设备的控制设备;
    第一控制模块,被配置为基于所述并机指令控制所述储能设备切换至并机状态;
    AC输出模块,被配置为在所述储能设备处于所述并机状态时,对所述第一AC电能以及所述第二AC电能进行合并输出。
  2. 根据权利要求1所述的设备,其中,所述第一控制模块,还被配置为基于电能均衡指令控制所述双向逆变模块的工作状态从第一状态切换至第二状态;其中,所述双向逆变模块在所述第一状态下输出的所述第一AC电能的参数、与所述双向逆变模块在所述第二状态下输出的所述第一AC电能的参数不同。
  3. 根据权利要求2所述的设备,其中,所述第一通信模块,还被配置为通过所述第一连接接收所述第二设备发送的所述电能均衡指令。
  4. 根据权利要求2所述的设备,其中,所述第一通信模块,还被配置为通过所述第一连接发送第一数据至所述第二设备,以供所述第二设备基于所述第一数据以及第二数据、或者基于所述第一数据确定是否发送所述电能均衡指令至所述储能设备;其中,所述第一数据至少包括所述DC电能的剩余电量;所述第二数据至少包括所述第一设备中DC电能的剩余电量。
  5. 根据权利要求2所述的设备,其中,所述第一通信模块,还被配置为与所述第一设备建立第二连接,通过所述第二连接接收所述第一设备的电能输出状态;
    所述第一控制模块,被配置为基于所述第一AC电能的参数以及所述第一设备的电能输出状态,生成所述电能均衡指令。
  6. 根据权利要求1所述的设备,其中,所述第一通信模块,还被配置为通过所述第一连接发送第三数据至所述第二设备,以供所述第二设备基于所述第三数据控制所述储能设备的工作状态;其中,所述第三数据至少包括所述储能设备的工作状态关联的数据。
  7. 根据权利要求1所述的设备,其中,所述设备还包括检测模块,被配置为获取第一参数以及第二参数,并对所述第一参数以及所述第二参数进行检测,得到检测结果;其中,所述第一参数包括所述第一AC电能的参数;所述第二参数包括所述第二AC电能的参数;
    所述第一通信模块,被配置为将所述检测结果通过所述第一连接发送至所述第二设备,以供所述第二设备基于所述检测结果生成所述并机指令。
  8. 根据权利要求7所述的设备,其中,所述第一通信模块,被配置为若所述检测结果表示所述第一参数与所述第二参数匹配,通过所述第一连接发送所述检测结果至所述第二设备。
  9. 根据权利要求1所述的设备,其中,所述设备还包括开关模块,其中:
    所述第一控制模块,被配置为在接收到所述并机指令后,控制所述开关模块的开关状态切换至第三状态,以建立所述AC输入模块与所述AC输出模块之间的第三连接。
  10. 根据权利要求1所述的设备,其中,所述设备还包括开关模块,其中:
    所述第一控制模块,被配置为在获取到目标信息后,控制所述开关模块的状态切换至第四状态,以断开所述双向逆变模块与所述AC输出模块之间的第四连接;其中,所述目标信息至少包括所述储能设备处于异常状态的信息。
  11. 根据权利要求10所述的设备,其中,所述AC输出模块,被配置为在所述第四连接断开、且所述储能设备处于所述并机状态时,输出所述第二AC电能。
  12. 根据权利要求1所述的设备,其中,所述第一通信模块,还被配置为通过所述第一 连接接收所述第二设备下发的设备标识;
    所述第一控制模块,被配置为在所述设备标识不为指定标识时,控制所述AC输入模块接收所述第二AC电能。
  13. 根据权利要求1所述的设备,其中,所述AC输入模块包括第一接头;所述第一接头与AC电源线的母接头匹配;所述AC输出模块包括第二接头;所述第二接头与所述AC电源线的公接头匹配。
  14. 一种控制设备,所述控制设备包括第二通信模块以及第二控制模块,其中:
    所述第二控制模块,被配置为生成并机指令;
    所述第二通信模块,被配置为与储能设备建立第一连接,通过所述第一连接发送所述并机指令至所述储能设备,以控制所述储能设备切换至并机状态;其中,所述第一连接至少包括无线通信连接。
  15. 根据权利要求14所述的设备,其中,所述第二通信模块,被配置为接收所述储能设备发送的第一数据,并接收第一设备发送的第二数据;其中,所述第一设备包括至少一个其它储能设备;所述第一数据包括所述储能设备中直流DC电能的剩余电量;所述第二数据包括所述第一设备中DC电能的剩余电量;
    所述第二控制模块,被配置为基于所述第一数据以及所述第二数据、或者基于所述第一数据,确定是否发送电能均衡指令至所述储能设备。
  16. 根据权利要求14所述的设备,其中,所述第二通信模块,被配置为接收所述储能设备发送的第三数据;其中,所述第三数据至少包括所述储能设备的工作状态关联的数据;
    所述第二控制模块,被配置为基于所述第三数据通过所述第二通信模块控制所述储能设备的工作状态。
  17. 根据权利要求14所述的设备,其中,所述第二通信模块,被配置为接收所述储能设备发送的检测结果;其中,检测结果包括针对第一参数与第二参数检测的结果;第一参数包括所述储能设备的双向逆变模块输出的第一AC电能的参数;第二参数包括所述储能设备的AC输入模块接收到的第二AC电能的参数;
    所述第二控制模块,被配置为基于所述检测结果生成所述并机指令。
  18. 根据权利要求14所述的设备,其中,所述设备还包括输入模块,被配置为接收为所述储能设备以及第一设备设置的设备标识;其中,所述第一设备包括至少一个其它储能设备;
    所述第二通信模块,被配置为获取并发送所述储能设备的设备标识至所述储能设备,以供所述储能设备控制所述储能设备中的AC输入模块的工作状态。
  19. 一种并机系统,所述并机系统包括至少两个如权利要求1至13任一所述的储能设备、以及如权利要求14至18任一所述的控制设备。
PCT/CN2022/130755 2022-10-14 2022-11-09 储能设备、控制设备及并机系统 WO2024077697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211262053.1 2022-10-14
CN202211262053.1A CN115912591A (zh) 2022-10-14 2022-10-14 储能设备、控制设备及并机系统

Publications (1)

Publication Number Publication Date
WO2024077697A1 true WO2024077697A1 (zh) 2024-04-18

Family

ID=86473436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130755 WO2024077697A1 (zh) 2022-10-14 2022-11-09 储能设备、控制设备及并机系统

Country Status (2)

Country Link
CN (1) CN115912591A (zh)
WO (1) WO2024077697A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600364A (zh) * 2020-06-19 2020-08-28 深圳市瑞能时代科技有限公司 便携储能设备及系统
CN111799835A (zh) * 2020-05-22 2020-10-20 国网浙江平阳县供电有限责任公司 一种基于并联式储能变流器系统的控制方法
CN215009681U (zh) * 2021-05-27 2021-12-03 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统
US20220037881A1 (en) * 2020-07-31 2022-02-03 Shenzhen Hello Tech Energy Co Ltd Energy storage power supply, parallel control device for energy storage power supplies, and parallel control method for energy storage power supplies
CN114142502A (zh) * 2021-10-27 2022-03-04 厦门科华数能科技有限公司 储能变流器并机控制方法及储能变流器
CN114709917A (zh) * 2022-04-29 2022-07-05 深圳市壹号能源科技有限公司 一种后备式储能系统利用wifi进行多机协同工作的排序方法及并机切换系统
CN114884181A (zh) * 2022-06-21 2022-08-09 松茸新能源科技(深圳)有限公司 一种便携储能双向acdc功率转换模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799835A (zh) * 2020-05-22 2020-10-20 国网浙江平阳县供电有限责任公司 一种基于并联式储能变流器系统的控制方法
CN111600364A (zh) * 2020-06-19 2020-08-28 深圳市瑞能时代科技有限公司 便携储能设备及系统
US20220037881A1 (en) * 2020-07-31 2022-02-03 Shenzhen Hello Tech Energy Co Ltd Energy storage power supply, parallel control device for energy storage power supplies, and parallel control method for energy storage power supplies
CN215009681U (zh) * 2021-05-27 2021-12-03 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统
CN114142502A (zh) * 2021-10-27 2022-03-04 厦门科华数能科技有限公司 储能变流器并机控制方法及储能变流器
CN114709917A (zh) * 2022-04-29 2022-07-05 深圳市壹号能源科技有限公司 一种后备式储能系统利用wifi进行多机协同工作的排序方法及并机切换系统
CN114884181A (zh) * 2022-06-21 2022-08-09 松茸新能源科技(深圳)有限公司 一种便携储能双向acdc功率转换模块

Also Published As

Publication number Publication date
CN115912591A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN104993562B (zh) 可直充电源适配器
CN103746434B (zh) 充电方法和系统
KR101719262B1 (ko) 충전기, 충전 단말기, 충전 시스템, 충전 제어방법, 프로그램 및 기록매체
CN104810909B (zh) 快速充电控制方法和系统
US11424601B2 (en) Externally configurable worksite power distribution box
CN110007487A (zh) 具有无线充电接收电路的眼镜、用于眼镜的眼镜盒及系统
CN104810879A (zh) 快速充电方法和系统
CN101449447A (zh) 用于平衡便携式设备之间的能量的方法和设备
JP2008312401A (ja) 充電システム、および車両
US20150130396A1 (en) Mobile device solar powered charging apparatus, method, and system
CN105098932B (zh) 一种充电方法、充电器和充电模组
JP2016218972A (ja) Usbハブ装置
CN112737028B (zh) 充电转换设备及充电控制方法
CN107968469A (zh) 充电系统、移动终端及充电器
CN218974478U (zh) 负载检测电路、供电设备及电子装置
CN108539830A (zh) 一种充电切换控制电路及控制方法
EP3309922A1 (en) Power storage system, power storage device, and operation method for power storage device
CN207518328U (zh) 一种终端设备及无线充电系统
CN109861038B (zh) 可自动切换连接模式的usb连接埠及其控制方法
WO2024077697A1 (zh) 储能设备、控制设备及并机系统
CN203466837U (zh) 一种网络摄像机的供电装置
CN103676919B (zh) 一种工业控制设备测试系统
CN110492575A (zh) 用于手持设备的快速充电系统及方法、手持设备
CN207967976U (zh) 充电系统、充电模块及移动终端
CN205490591U (zh) 具有poe电源适配功能的网络转接系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961879

Country of ref document: EP

Kind code of ref document: A1