WO2024075852A1 - Machine learning device, information processing device, reasoning device, machine learning method, control conditions prediction method, and reasoning method - Google Patents

Machine learning device, information processing device, reasoning device, machine learning method, control conditions prediction method, and reasoning method Download PDF

Info

Publication number
WO2024075852A1
WO2024075852A1 PCT/JP2023/036657 JP2023036657W WO2024075852A1 WO 2024075852 A1 WO2024075852 A1 WO 2024075852A1 JP 2023036657 W JP2023036657 W JP 2023036657W WO 2024075852 A1 WO2024075852 A1 WO 2024075852A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
learning
heating device
temperature control
input parameters
Prior art date
Application number
PCT/JP2023/036657
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 田所
七勢 大竹
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Publication of WO2024075852A1 publication Critical patent/WO2024075852A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This disclosure relates to a machine learning device, an information processing device, an inference device, a machine learning method, a control condition prediction method, and an inference method.
  • a heating device equipped with multiple infrared heaters is used to heat the preforms being blown into hollow containers by a blow molding device while they are being transported (for example, Patent Document 1).
  • the present disclosure aims to provide a machine learning device, an information processing device, an inference device, a machine learning method, a control condition prediction method, and an inference method that can easily derive the control conditions of a heating device.
  • the machine learning device of the present disclosure includes: A machine learning device that generates a learning model for predicting a control condition of a heating device that heats a temperature control target, a learning data storage unit that stores one or more pieces of learning data; a machine learning control unit that causes the learning model to learn based on the one or more pieces of learning data; A machine learning model storage unit that stores the learned learning model; Equipped with Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters, the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
  • the learning input parameters are composed of at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
  • the machine learning device, information processing device, inference device, machine learning method, control condition prediction method, and inference method disclosed herein make it possible to easily determine control conditions.
  • FIG. 1 is a schematic diagram showing a heating system according to a first embodiment.
  • FIG. 2 is a side view showing the heating device of FIG. 1 .
  • FIG. 2 is a configuration diagram showing the machine learning device of FIG. 1.
  • FIG. 4 is a conceptual diagram showing elements of machine learning implemented by the machine learning device of FIG. 3 .
  • FIG. 2 is a configuration diagram showing the information processing device of FIG. 1;
  • FIG. 1 is a diagram illustrating the hardware configuration of a computer.
  • 2 is a flowchart showing a machine learning method performed by the machine learning device of FIG. 1 .
  • 4 is a flowchart showing a control condition prediction method by the information processing device of FIG. 1 .
  • FIG. 11 is a schematic diagram showing a heating device and a transport device according to a second embodiment.
  • Fig. 1 is a schematic diagram showing a heating system 1 according to embodiment 1.
  • Fig. 2 is a side view showing the heating device 10 of Fig. 1.
  • the heating system 1 includes the heating device 10, a machine learning device 40, an information processing device 50, a control device 60, and a network 70 connecting the respective devices.
  • the heating system 1 is installed in a production system that produces containers such as PET bottles.
  • the containers are produced by molding preforms 200 produced from the container raw material using a blow molding device (not shown).
  • the heating system 1 disclosed herein is a system that handles the pre-processing of the blow molding device, and is a system that heats the preform 200, which is an object of temperature control.
  • the preforms 200 are molded from the container raw material by an injection molding machine (not shown).
  • the molded preforms 200 are successively carried into the heating system 1 and heated.
  • the heated preforms 200 are successively fed to the blow molding device in the next process and molded into containers.
  • the heating device 10 has a heating device main body 11, a plurality of heaters 14 as heat sources arranged in the heating device main body 11, a heater power supply (not shown) that supplies power to each heater 14, a blower device 17 arranged in the heating device main body 11, and a conveying device 30.
  • the heating device main body 11 has a heating passage 12, which is a long, tunnel-shaped space, formed along the longitudinal direction.
  • the heating passage 12 is large enough for the preform 200 to pass through.
  • the preform 200 can pass through the heating passage 12 from the entrance side to the exit side. The transportation of the preform 200 within the heating passage 12 will be explained later.
  • Each heater 14 is a long near-infrared heater. Each heater 14 is arranged along the longitudinal direction of the heating passage 12. Note that, in addition to long near-infrared heaters, different types of heaters can be used for each heater 14.
  • Each heater 14 can heat the preform 200 in the heating passage 12 inside the heating device main body 11.
  • Each heater 14 is electrically connected to a heater power supply, and can heat the inside of the heating device main body 11 with the power supplied from the heater power supply. Therefore, the heating space of the heating device 10 is defined by the heating device main body 11.
  • the heater power supply can adjust the amount of power supplied to each heater 14 according to commands from the control device 60.
  • Each heater 14 radiates an amount of heat according to the amount of power supplied to it.
  • the amount of heat radiated from each heater 14 can be controlled.
  • the blower device 17 has a blower 18, which is an air source, a blower duct 19, and a blower power source (not shown).
  • the blower 18 is disposed on the inlet side of the heating passage 12.
  • the blower duct 19 is a pipe-shaped object.
  • the longitudinal direction of the air blower duct 19 is aligned with the longitudinal direction of the heating passage 12 and is disposed within the heating passage 12.
  • One open end of the air blower duct 19 opens toward the outside of the heating device 10 at the inlet side of the heating passage 12, and the other open end of the air blower duct 19 opens toward the outside of the heating device 10 at the outlet side of the heating passage 12.
  • the air duct 19 has multiple through holes (not shown).
  • the blower 18 is connected to the open end of the air duct 19 on the inlet side.
  • the blower 18 can send air into the air duct 19 from the open end of the air duct 19 on the inlet side.
  • the air sent into the air duct 19 by the blower 18 flows through the air duct 19.
  • the air flowing through the air duct 19 is further sent into the heating passage 12 through a number of through holes, and is also released into the atmosphere from the open end of the air duct 19 on the outlet side. That is, the air sent by the blower 18 is sent into the heating space via the air duct 19.
  • the blower power supply can control the amount of power supplied to the blower 18 according to commands from the control device 60.
  • the control device 60 controls the amount of power supplied to the blower 18, thereby controlling the blower 18 and the flow rate of air sent into and flowing through the air duct 19.
  • the conveying device 30 has a conveying device main body 31 and a conveying control unit 32.
  • the conveying device main body 31 is a conveyor.
  • the conveying device main body 31 can support a plurality of preforms 200.
  • the conveying device main body 31 is positioned so that the preforms 200 it supports pass through the heating passage 12.
  • the conveying device body 31 can rotatably support the multiple preforms 200 in an upright state.
  • the conveying device body 31 has a rotation mechanism (not shown) and can impart a rotational motion to each of the multiple preforms 200 in an upright state. Therefore, the conveying device body 31 can convey the preforms 200 through the heating passage 12 while imparting a rotational motion to the upright preforms 200. In other words, each preform 200 supported by the conveying device body 31 can pass through the heating space while rotating in an upright state.
  • the conveying control unit 32 can control the conveying speed of the conveying device main body 31 based on commands from the control device 60. By controlling the conveying speed of the conveying device main body 31, the time that the preform 200 stays in the heating passage 12 can be controlled. Furthermore, the conveying control unit 32 can control the rotational speed of the rotational motion of the preform 200 by controlling the rotation mechanism of the conveying device main body 31 based on commands from the control device 60. That is, the conveying control unit 32 can control at least one of the conveying speed of the conveying device main body 31 and the rotational speed of the rotational motion of the preform 200 based on commands from the control device 60.
  • the machine learning device 40 is a device that operates as the main subject of the learning phase of machine learning.
  • FIG. 3 is a configuration diagram showing the machine learning device 40 of FIG. 1.
  • FIG. 4 is a conceptual diagram showing the elements of machine learning performed by the machine learning device 40 of FIG. 3.
  • the machine learning device 40 has a machine learning control unit 41, a machine learning communication unit 42, a learning data storage unit 43, and a machine learning model storage unit 44.
  • the machine learning control unit 41 generates a learning model 45 that provides output information corresponding to input information.
  • the machine learning control unit 41 uses one or more pieces of learning data 46 to generate the learning model 45.
  • the learning data 46 is composed of learning input parameters 101a and learning control conditions 101b, which are control conditions for the heating device 10 that correspond to the learning input parameters 101a.
  • the learning data 46 is data used as training data, verification data, and test data, which are teacher data in supervised learning.
  • the learning control conditions 101b are data used as correct answer labels in supervised learning.
  • the learning input parameters 101a and the learning control conditions 101b which are the control conditions of the heating device 10 corresponding to the learning input parameters 101a, represent data in a state in which the input parameters 100a prepared by the operator and the control conditions 100 of the heating device 10 corresponding to the input parameters 100a are stored in the learning data storage unit 43 as the learning data 46.
  • the machine learning control unit 41 can cause the learning model 45 to learn the correlation between the learning input parameters 101a and the learning control conditions 101b in one or more pieces of learning data 46. This allows the machine learning control unit 41 to generate a learned learning model 45.
  • the learning model 45 employs a neural network structure.
  • the learning model 45 has an input layer 45a, an intermediate layer 45b, and an output layer 45c.
  • the input layer 45a has a number of neurons corresponding to the number of parameters in the learning input parameters 101a.
  • the output layer 45c has a number of neurons corresponding to the number of conditions in the learning control conditions 101b.
  • each layer there are synapses (not shown) that connect each neuron. Weights can be assigned to each synapse.
  • the machine learning control unit 41 adjusts a group of weight parameters consisting of the weights of each synapse through machine learning.
  • the group of weight parameters is reflected in the learning model 45.
  • each parameter of the learning input parameters 101a is input to each neuron of the input layer 45a, and the learning result control condition 101c of the heating device 10 corresponding to the learning input parameters 101a is output through the learning model 45.
  • the machine learning control unit 41 examines the value of the learning result control condition 101c and adjusts the weight of each synapse based on the result of the examination.
  • the learning control conditions 101b are output as numerical values normalized to a predetermined range (e.g., 0 to 1).
  • the learning control conditions 101b are output as scores (accuracies) for each class as numerical values normalized to a predetermined range (e.g., 0 to 1).
  • the learning data storage unit 43 can store multiple pieces of learning data 46 as a database.
  • the specific configuration of the database that constitutes the learning data storage unit 43 can be designed as appropriate.
  • the learning data storage unit 43 receives input parameters 100a and control conditions 100b corresponding to the input parameters 100a from an operator using an operation terminal (not shown).
  • the input parameters 100a and control conditions 100b input to the learning data storage unit 43 are stored as learning input parameters 101a and learning control conditions 101b, respectively. Therefore, the learning control conditions 101b correspond to the learning input parameters 101a. As a result, one piece of learning data 46 is stored.
  • Data from a known heating operation is used for the learning input parameters 101a and the learning control conditions 101b. That is, the input parameters 100a and control conditions 100b from a known heating operation are input as the input parameters 100a and control conditions 100b input to the learning data storage unit 43 as the basis for the learning input parameters 101a and the learning control conditions 101b.
  • the known heating operation is preferably a past heating operation using the heating device 10.
  • the data actually used in the past heating operation using the heating device 10 is data with a track record of subsequent production of containers using a blow molding machine.
  • the data actually used in past heating operations is data that can produce containers with shape accuracy within an acceptable range. Therefore, since the correlation between the input parameters 100a and the control conditions 100b actually used in past heating operations is valid, it is desirable to use such data as learning data 46 for machine learning.
  • data on known heating operations may be data actually used in past heating operations, or data created by simulations or experienced workers, for example.
  • the input parameters 100a are parameters that are taken into consideration in order to calculate the control conditions 100b for controlling each device of the heating system 1.
  • the input parameters 100a are parameters related to the preform 200, parameters related to the heating device 10, and parameters related to the relationship between the preform 200 and the heating device 10.
  • the input parameters 100a are composed of at least one of the material information, shape information, initial temperature information, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10 of the preform 200.
  • the material information of the preform 200 is at least one of the light transmittance, reflection, and refractive index of the preform 200, the L value which is color brightness information, the RGB value as color information, density information, specific heat information, and thermal conductivity information.
  • the material information can be obtained by measuring the preform 200 in advance. Any known method can be appropriately adopted as the method for measuring the material information.
  • the shape information of the preform 200 is at least one of design drawing information as shape information read from the design drawing of the preform 200, shape image information as shape information read from the shape image, dimensional information, and shape tracing measurement/scanning information.
  • design drawing information as shape information read from the design drawing of the preform 200
  • shape image information as shape information read from the shape image
  • dimensional information dimensional information
  • shape tracing measurement/scanning information When reading shape information from the design drawing of the preform 200, the design drawing of the preform 200 is provided to a computer in advance, and the computer reads the shape information of the preform 200 from the design drawing, thereby obtaining the shape information of the preform 200.
  • the shape image is image information captured by an imaging device.
  • the shape information of the preform 200 can be obtained from the image information.
  • the dimensional information can be obtained by having the worker input the required information of the dimensions of the preform 200 in advance.
  • the shape tracing measurement/scanning information is the shape information of the preform 200 that is grasped by scanning the shape of the preform 200 with a well-known scanning device.
  • the initial temperature information of the preform 200 can be obtained by measuring the temperature of the preform 200 before the preform 200 is provided to the heating system 1.
  • the target temperature distribution information of the heating device 10 is information that indicates the ideal temperature distribution inside the heating passage 12 during the heating operation.
  • the ideal temperature distribution inside the heating passage 12 can be calculated and obtained by prior analysis, etc.
  • the thermal environment information of the heating device 10 includes at least one of the following information: distance information from each heater 14 of the heating device 10 to the preform 200, position, irradiation direction, and irradiation angle information of each heater 14, dimensional information of the heating device 10, heat diffusion information outside the heating device 10, and ambient temperature and humidity information of the heating device 10.
  • the distance in the distance information from each heater 14 of the heating device 10 to the preform 200 is the distance in the direction perpendicular to the transport direction of the preform 200.
  • Information on the distance between the preform 200 and each heater 14 can be obtained by an operator calculating and inputting the distance in advance, or by inputting the respective design drawings into a computer and analyzing the computer.
  • Information on the position, irradiation direction, and irradiation angle of each heater 14 can be obtained by inputting the design drawings of the heating device 10 into a computer and analyzing the computer.
  • Information on heat diffusion outside the heating device 10 can be obtained by computer simulation analysis, etc.
  • Information on the ambient temperature and humidity of the heating device 10 can be obtained by measuring the temperature and humidity around the heating device 10.
  • the dimensional information of the heating device 10 can be obtained in advance by the worker inputting the required dimensional values of the heating device 10.
  • the control conditions 100b are the control conditions for the heating device 10, the blower device 17, and the conveying device 30. Specifically, they are the output command value for the blower 18, the output command value for the conveying device 30, and the output command value for each heater 14.
  • Each output command value is an arbitrary value between 0 and 100.
  • Each output command value is the output value of each device when the maximum output of the corresponding device is set to 100.
  • the command to each heater 14 may not only be an output command value that is an arbitrary value between 0 and 100, but may also be an ON/OFF command for each heater 14.
  • the command to each heater 14 may be the time of the ON command for each heater 14, the time of the OFF command, or the ratio of the time of the ON command to the time of the OFF command.
  • the machine learning control unit 41 can extract any one or more pieces of learning data 46 from the multiple pieces of learning data 46 stored in the learning data storage unit 43, and use them for machine learning.
  • the machine learning model storage unit 44 is a database that stores the trained learning model 45 generated by the machine learning control unit 41, i.e., the adjusted weight parameter group.
  • the machine learning communication unit 42 is a communication interface unit.
  • the machine learning communication unit 42 is connected to an external device via the network 70, and is therefore capable of transmitting and receiving various types of data.
  • the trained learning model 45 stored in the machine learning model storage unit 44 is provided to the information processing device 50 via the network 70, a storage medium, etc.
  • the learning data storage unit 43 and the machine learning model storage unit 44 are shown as separate storage units, but they may be configured as a single storage unit.
  • FIG. 5 is a schematic diagram showing the information processing device 50 of FIG. 1.
  • the information processing device 50 is a device that operates as the main body of the inference phase of machine learning.
  • the information processing device 50 uses the learning model 45 generated by the machine learning device 40 to predict new control conditions 102b of the heating device 10 that correspond to newly input input parameters for prediction 102a.
  • the information processing device 50 has an information processing control unit 51, an information processing model storage unit 55, and an information processing communication unit 56.
  • the information processing control unit 51 has an information acquisition unit 52, an information prediction unit 53, and an output processing unit 54.
  • the information acquisition unit 52 acquires prediction input parameters 102a input by the worker via an operation terminal (not shown).
  • the prediction input parameters 102a are input parameters for a new heating operation, which is a heating operation in which a new heating device 10 is used for heating.
  • new control conditions 102b The control conditions for a new heating operation using the heating device 10 corresponding to the prediction input parameters 102a are referred to as new control conditions 102b.
  • the information prediction unit 53 predicts new control conditions 102b by inputting the prediction input parameters 102a acquired by the information acquisition unit 52 into the learning model 45.
  • the output processing unit 54 outputs the new control conditions 102b predicted by the information prediction unit 53 to the information processing and communication unit 56.
  • the information prediction unit 53 can select and use one learning model 45 from among the multiple learning models 45 stored in the information processing model storage unit 55.
  • the information processing model storage unit 55 is a database that stores the trained learning models 45 used by the information prediction unit 53.
  • the information processing model storage unit 55 can store multiple trained learning models 45 input from the machine learning device 40.
  • Each of the multiple learning models 45 is a multiple trained model that differs in, for example, machine learning method, type of data included in learning input parameters 101a, type of data included in learning control conditions 101b, etc.
  • the information processing model storage unit 55 may be replaced by a storage unit of an external computer such as a server-type computer or a cloud-type computer. In that case, the information prediction unit 53 can access the storage unit of the external computer to acquire the learning model 45.
  • the information processing and communication unit 56 is connected to be able to communicate with devices outside the heating system 1 via the network 70.
  • the information processing and communication unit 56 is a communication interface unit that transmits and receives various types of data.
  • the information processing and communication unit 56 can output the new control conditions 102b output by the output processing unit 54 to the information processing and communication unit 56.
  • the control device 60 can control each device of the heating system 1.
  • the control device 60 can control each device of the heating system 1 based on the new control condition 102b transmitted from the information processing device 50.
  • the control device 60 outputs the output command value for the blower 18 among the new control conditions 102b to the blower power supply.
  • the blower power supply controls the blower 18 based on the input output command value. This makes it possible to control the flow rate of air flowing through the blower duct 19.
  • the control device 60 outputs the output command value for the conveying device 30 among the new control conditions 102b to the conveying control unit 32.
  • the conveying control unit 32 controls the conveying device 30 based on the input output command value. This makes it possible to control at least one of the conveying speed of the conveying device main body 31 and the rotational speed of the rotational motion of the preform 200.
  • the control device 60 outputs the output command values for each heater 14 in the new control condition 102b to the heater power supply.
  • the heater power supply controls each heater 14 based on the input output command values. This makes it possible to control the output of each heater 14.
  • FIG. 6 is a hardware configuration diagram of the computer 900.
  • the machine learning device 40 and the information processing device 50 of the heating system 1 are configured by a general-purpose or dedicated computer 900.
  • the computer 900 includes a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, a communication interface unit 922, an external device interface unit 924, an input/output device interface unit 926, and a media input/output unit 928. Note that the above components may be omitted as appropriate depending on the application for which the computer 900 is used.
  • the processor 912 is composed of one or more arithmetic processing devices (CPU (Central Processing Unit), MPU (Micro-processing unit), DSP (digital signal processor), GPU (Graphics Processing Unit), etc.) and operates as a control unit that oversees the entire computer 900.
  • CPU Central Processing Unit
  • MPU Micro-processing unit
  • DSP digital signal processor
  • GPU Graphics Processing Unit
  • Memory 914 stores various data and programs 930, and is composed of, for example, volatile memory (DRAM, SRAM, etc.) that functions as main memory, non-volatile memory (ROM), flash memory, etc.
  • volatile memory DRAM, SRAM, etc.
  • ROM non-volatile memory
  • flash memory etc.
  • the input device 916 is, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit.
  • the output device 917 is, for example, a sound output device including voice, a vibration device, etc., and functions as an output unit.
  • the display device 918 is, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit.
  • the input device 916 and the display device 918 may be configured as one unit, such as a touch panel display.
  • the storage device 920 is configured, for example, as an HDD, SSD (Solid State Drive), etc., and functions as a memory unit.
  • the storage device 920 stores various data necessary for the execution of the operating system and the program 930.
  • the communication interface unit 922 is connected to a network 940 such as the Internet or an intranet by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from other computers in accordance with a specific communication standard.
  • the network 940 may be the same as the network 70.
  • the external device interface unit 924 is connected to an external device 950 such as a camera, printer, scanner, or reader/writer via a wired or wireless connection, and functions as a communication unit that transmits and receives data to and from the external device 950 in accordance with a specified communication standard.
  • an external device 950 such as a camera, printer, scanner, or reader/writer via a wired or wireless connection
  • the input/output device interface unit 926 is connected to input/output devices 960 such as various sensors and actuators, and functions as a communication unit that transmits and receives various signals and data between the input/output devices 960, such as detection signals from sensors and control signals to actuators.
  • the media input/output unit 928 is composed of a drive device such as a DVD drive or a CD drive, and reads and writes data from and to the media 970, which is a storage medium such as a DVD or a CD.
  • the processor 912 calls up the program 930 stored in the storage device 920 into the memory 914, executes it, and controls each part of the computer 900 via the bus 910.
  • the program 930 may be stored in the memory 914 instead of the storage device 920.
  • the program 930 may be recorded on the medium 970 in an installable file format or an executable file format, and provided to the computer 900 via the media input/output unit 928.
  • the program 930 may be provided to the computer 900 by downloading it over the network 940 via the communication interface unit 922.
  • the computer 900 may realize the various functions realized by the processor 912 executing the program 930 using hardware such as an FPGA or ASIC.
  • the computer 900 may be, for example, a stationary computer or a portable computer, and may be any type of electronic device.
  • the computer 900 may be a client-type computer, a server-type computer, or a cloud-type computer.
  • the computer 900 may also be applied to devices other than the machine learning device 40 and the information processing device 50 of the heating system 1.
  • Figure 7 is a flowchart showing the machine learning method by the machine learning device 40 of Figure 1.
  • the operator inputs one or more pieces of learning data 46 in advance and stores them in the learning data storage unit 43.
  • the number of pieces of learning data 46 to be stored is set taking into consideration the inference accuracy required for the learning model 45 that is ultimately obtained.
  • a learning model preparation process is carried out as step S100.
  • the machine learning control unit 41 prepares a learning model 45 before learning.
  • the weights of each synapse are set to initial values.
  • a machine learning process is performed in step S110.
  • a learning data acquisition process is performed in step S111.
  • the machine learning control unit 41 randomly acquires one piece of learning data 46 from the multiple pieces of learning data 46 stored in the learning data storage unit 43.
  • step S112 an inference result output process is carried out as step S112.
  • the machine learning control unit 41 inputs the learning input parameters 101a contained in one acquired piece of learning data 46 to the input layer 45a of the prepared learning model 45.
  • the learning result control condition 101c is output as an inference result from the output layer 45c of the learning model 45.
  • the learning result control condition 101c output as the inference result is generated by the learning model 45 before or during learning. Therefore, the learning result control condition 101c is different from the learning control condition 101b, which is the correct label included in the learning data 46.
  • step S113 a weight adjustment process is performed in step S113.
  • the machine learning control unit 41 compares the learning control conditions 101b in the learning data 46 acquired in step S111, which is the correct label, with the learning result control conditions 101c output as the inference result in step S112. Based on this comparison, the machine learning control unit 41 performs backprovisioning, which is a process of adjusting the weights of each synapse, and performs machine learning.
  • the machine learning control unit 41 causes the learning model 45 to learn the correlation between the learning input parameters 101a and the learning control conditions 101b.
  • a machine learning end determination process is performed as step S114.
  • the machine learning control unit 41 determines whether a predetermined learning end condition has been met. This determination is performed, for example, based on the evaluation value of an error function based on the learning control condition 101b, which is the correct label, and the learning result control condition 101c, and the remaining amount of unlearned learning data 46 stored in the learning data storage unit 43, etc.
  • step S114 the machine learning control unit 41 determines that the learning termination condition has not been met and that machine learning is to continue, i.e., if step S114 returns No, the process returns to step S111. In this way, the processes of steps S111 to S114 are performed multiple times on the unlearned learning data 46 for the learning model 45 being trained.
  • step S114 if the machine learning control unit 41 determines that the learning end condition is met and machine learning is to be ended, i.e., if step S114 returns Yes, the process proceeds to step S120.
  • step S120 a trained model storage process is performed.
  • the machine learning control unit 41 stores the trained learning model 45 in which the weights of each synapse have been adjusted, i.e., the learning model 45 reflecting the adjusted weight parameter group, in the machine learning model storage unit 44. This ends the machine learning method.
  • Figure 8 is a flowchart showing a method for predicting learning control conditions using the information processing device 50 of Figure 1.
  • the prediction input parameter acquisition process is carried out as step S200.
  • the operator inputs the prediction input parameters 102a to the information processing device 50, and the information acquisition unit 52 acquires the prediction input parameters 102a.
  • step S210 a prediction process is carried out as step S210.
  • the information prediction unit 53 inputs the prediction input parameters 102a acquired in step S200 to the learning model 45. As a result, the information prediction unit 53 predicts new control conditions 102b corresponding to the prediction input parameters 102a.
  • step S220 the output processing step is carried out as step S220.
  • the output processing unit 54 transmits the new control conditions 102b generated in step S210 to the control device 60. This completes the prediction and output of the new control conditions 102b.
  • the control device 60 can control each device of the heating system 1 based on the new control conditions 102b input from the output processing unit 54.
  • the present disclosure can also be provided in the form of a machine learning program that is a program that causes the computer 900 to function as each unit of the machine learning device 40, or a machine learning program that is a program that causes the computer 900 to execute each step of the machine learning method.
  • the present disclosure can also be provided in the form of a program for causing the computer 900 to function as each component of the heating system 1, or a learning control condition prediction program that is a program for causing the computer 900 to execute each step of the learning control condition prediction method according to the above embodiment.
  • the machine learning device 40 can generate a learning model 45 for predicting new control conditions 102b of the heating device 10 that heats the preform 200.
  • the machine learning device 40 also includes a learning data storage unit 43 that stores one or more pieces of learning data 46, a machine learning control unit 41 that causes the learning model 45 to learn based on the one or more pieces of learning data 46, and a machine learning model storage unit 44 that stores the learned learning model 45.
  • Each piece of learning data 46 is composed of learning input parameters 101a and learning control conditions 101b of the heating device 10 that correspond to the learning input parameters 101a.
  • the learning model 45 also learns the correlation between the learning input parameters 101a and the learning control conditions 101b in the learning data 46.
  • the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10.
  • the machine learning control unit 41 can acquire a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, using the acquired learning model 45, the new control conditions 102b of the heating device 10 can be easily derived.
  • by controlling the heating device under the new control conditions 102b it is possible to prevent poor heating of the preform 200, and by molding the preform 200 in a good heating state with a blow molding device, it is possible to produce a product having appropriate finished dimensions.
  • the material information of the preform 200 is at least one of the light transmission/reflection/refractive index information of the preform 200, the color brightness information of the preform 200, the color information of the preform 200, the density information of the preform 200, the specific heat information of the preform 200, and the thermal conductivity information of the preform 200.
  • new control conditions 102b for the heating device 10 can be easily derived using a learning model 45 that has learned the correlation between the learning input parameters 101a, including at least one of the light transmission/reflection/refractive index information of the preform 200, the color brightness information of the preform 200, the color information of the preform 200, the density information of the preform 200, the specific heat information of the preform 200, and the thermal conductivity information of the preform 200, and the learning control conditions 101b.
  • the shape information of the preform 200 is at least one of the design drawing information of the preform 200, the shape image information of the preform 200, the dimensional information of the preform 200, and the shape tracing measurement/scanning information of the preform 200.
  • the learning input parameters 101a include at least one of the design drawing information of the preform 200, the shape image information of the preform 200, the dimensional information of the preform 200, and the shape tracing measurement/scanning information of the preform 200. Therefore, new control conditions 102b of the heating device 10 can be easily derived using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b.
  • the thermal environment information of the heating device 10 is at least one of the following: distance information from the heaters 14 of the heating device 10 to the preform 200; information on the position, irradiation direction, and irradiation angle of the heaters 14 of the heating device 10; dimensional information of the heating device 10; information on thermal diffusion to the outside of the heating device 10; and information on the ambient temperature and humidity of the heating device 10.
  • the learning input parameters 101a include at least one of the following: distance information from the heaters 14 of the heating device 10 to the preform 200; information on the position, irradiation direction, and irradiation angle of the heaters 14 of the heating device 10; dimensional information of the heating device 10; information on thermal diffusion to the outside of the heating device 10; and information on the ambient temperature and humidity of the heating device 10. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b.
  • the heating device 10 has a heating device main body 11 having a heating passage 12, and an air blower 17, and the air blower 17 has a blower 18 and an air duct 19 for sending air from the blower 18 into the heating passage 12.
  • the learning control condition 101b is the flow rate of air flowing through the air duct 19. This makes it possible to obtain a new control condition 102b, which is the flow rate of air flowing through the air duct 19, by using the learning model 45 that has learned the correlation between the learning input parameter 101a and the learning control condition 101b. Therefore, the new control condition 102b of the heating device 10 can be easily derived.
  • the heating device 10 has a heating device main body 11 having a heating passage 12, and a conveying device 30 that conveys the preform 200 while rotating the preform 200 in the heating space.
  • the learning control condition 101b is at least one of the conveying speed of the conveying device 30 and the rotational speed of the rotational motion of the preform 200.
  • a new control condition 102b which is at least one of the conveying speed of the preform 200 conveyed by the conveying device main body 31 and the rotational speed of the rotational motion of the preform 200, can be obtained using a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control condition 102b of the heating device 10 can be easily derived.
  • the learning control conditions 101b are output command values for each heater 14 of the heating device 10. This makes it possible to obtain new control conditions 102b, which are output command values for each heater 14, using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b for the heating device 10 can be easily derived.
  • the new control conditions 102b of the heating device 10 can be predicted based on the prediction input parameters 102a consisting of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10.
  • the information processing device 50 also includes an information acquisition unit 52 that acquires the prediction input parameters 102a, and an information prediction unit 53 that predicts the new control conditions 102b.
  • the information prediction unit 53 also predicts the new control conditions 102b by inputting the prediction input parameters 102a to a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b of the heating device 10 corresponding to the learning input parameters 101a by machine learning.
  • the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. This makes it possible to predict the new control conditions 102b using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b.
  • the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45.
  • the heating device under the new control conditions 102b it is possible to prevent poor heating of the preform 200 and produce a product with appropriate finished dimensions.
  • a learning model 45 for predicting new control conditions 102b of the heating device 10 for heating the preform 200 can be generated.
  • the machine learning method includes a learning data storage process for storing one or more pieces of learning data 46, a machine learning process for training the learning model 45 based on the one or more pieces of learning data 46, and a trained model storage process for storing the trained learning model 45.
  • Each piece of learning data 46 is composed of learning input parameters 101a and learning control conditions 101b corresponding to the learning input parameters 101a.
  • the learning model 45 learns the correlation between the learning input parameters 101a and the learning control conditions 101b in the learning data 46.
  • the learning input parameters 101a are composed of at least one of material information of the preform 200, shape information of the preform 200, initial temperature information of the preform 200, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10. This makes it possible to obtain a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, using the obtained learning model 45, new control conditions 102b for the heating device 10 can be easily derived.
  • the new control conditions 102b of the heating device 10 can be predicted based on the prediction input parameters 102a, which are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10.
  • the control condition prediction method also includes a prediction input parameter acquisition step for acquiring the prediction input parameters 102a, and a prediction step for predicting the new control conditions 102b corresponding to the prediction input parameters 102a acquired by the prediction input parameter acquisition step.
  • the new control conditions 102b are predicted by inputting the prediction input parameters 102a into a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b of the heating device 10 corresponding to the learning input parameters 101a by machine learning.
  • the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. This makes it possible to predict the new control conditions 102b using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45.
  • Embodiment 2. 9 is a schematic diagram showing a heating device and a transport device according to embodiment 2.
  • the learning control conditions 101b and the new control conditions 102b are different from embodiment 1 in that the learning control conditions 101b and the new control conditions 102b include the time of the annealing treatment performed on the preform 200. That is, the learning control conditions 101b and the new control conditions 102b in embodiment 2 are the learning control conditions 101b and the new control conditions 102b in embodiment 1 with the time of the annealing treatment added.
  • the heating device 10 is different from embodiment 1 in that it has two heating device bodies 11 and five transport device bodies 31. The other configurations are the same as those in embodiment 1, so the description will be omitted.
  • the heating device 10 has a first heating device body 11a arranged on the upstream side and a second heating device body 11b arranged on the downstream side of the first heating device body 11a.
  • the specific configurations of the first heating device body 11a and the second heating device body 11b are similar to the specific configuration of the heating device body 11 in embodiment 1, so a description thereof will be omitted.
  • the conveying device 30 has an upstream conveying device body 31a, a first conveying device body 31b, an intermediate conveying device body 31c, a second conveying device body 31d, and a downstream conveying device body 31e.
  • the specific configurations of the upstream conveying device body 31a, the first conveying device body 31b, the intermediate conveying device body 31c, the second conveying device body 31d, and the downstream conveying device body 31e are similar to the specific configuration of the conveying device body 31 in embodiment 1, so a description thereof will be omitted.
  • the upstream conveying device body 31a, the first conveying device body 31b, the intermediate conveying device body 31c, the second conveying device body 31d, and the downstream conveying device body 31e are arranged so as to be connected in sequence.
  • the preform 200 conveyed by the upstream conveying device body 31a is conveyed in sequence from the upstream conveying device body 31a to the first conveying device body 31b, the intermediate conveying device body 31c, the second conveying device body 31d, and the downstream conveying device body 31e.
  • the first conveying device body 31b is disposed at a position where the preform 200 supported by the first conveying device body 31b passes through the heating passage 12 of the first heating device body 11a.
  • the second conveying device body 31d is disposed at a position where the preform 200 supported by the second conveying device body 31d passes through the heating passage 12 of the second heating device body 11b.
  • the preform 200 in order to perform an annealing process on the preform 200, the preform 200 is removed from the heating passage 12 and left as it is. Specifically, with the preform 200 placed on the intermediate conveying device body 31c, control is performed such as slowing down the conveying speed of the intermediate conveying device body 31c or temporarily stopping the conveying of the intermediate conveying device body 31c.
  • the control device 60 performs control such as slowing down the conveying speed of the intermediate conveying device body 31c or temporarily stopping the conveying of the intermediate conveying device body 31c according to that time.
  • the control device 60 causes the preform 200 on the intermediate conveying device body 31c to remain on the intermediate conveying device body 31c for a time equivalent to the time for annealing.
  • the preform 200 is placed outside the heating space of the heating device 10, and the annealing process is performed on the preform 200. This provides time for the annealing process to be performed on the preform 200.
  • the learning control conditions 101b are the time of the annealing treatment performed on the preform 200. This allows the appropriate annealing treatment time to be obtained using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, new control conditions 102b for the heating device 10 can be easily derived.
  • the present disclosure can be provided not only in the form of the information processing device 50, the learning control condition prediction method, or the learning control condition prediction program according to the first and second embodiments, but also in the form of an inference device, an inference method, or an inference program used to infer the learning control condition 101b.
  • the inference device, inference method, or inference program may include a memory and a processor, and the processor may execute a series of processes.
  • the series of processes includes an information acquisition process that acquires prediction input parameters 102a, and an inference process that infers new control conditions 102b based on the acquired learning input parameters 101a.
  • the inference device, inference method, or inference program it is possible to more easily apply the inference device, inference method, or inference program to various devices compared to implementing the heating system 1. It will be obvious to those skilled in the art that when the inference device, inference method, or inference program infers the new control condition 102b, the prediction method implemented by the information prediction unit 53 may be applied using the trained learning model 45 generated by the machine learning method in the information processing device 50 in embodiment 1.
  • the inference device includes a memory and a processor, and can infer new control conditions 102b of the heating device 10 that heats the preform 200.
  • the processor also executes an information acquisition process to acquire prediction input parameters 102a consisting of at least one of material information of the preform 200, shape information of the preform 200, initial temperature information of the preform 200, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10, and an inference process to infer new control conditions 102b of the heating device 10 based on the prediction input parameters 102a acquired in the information acquisition process.
  • the inference method is executed by an inference device having a memory and a processor to infer new control conditions 102b of the heating device 10 that heats the preform 200.
  • the processor also executes an information acquisition step of acquiring prediction input parameters 102a consisting of at least one of material information of the preform 200, shape information of the preform 200, initial temperature information of the preform 200, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10, and a prediction step of predicting new control conditions 102b corresponding to the prediction input parameters 102a acquired by the information acquisition step.
  • the new control conditions are predicted by inputting the prediction input parameters 102a into a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b of the heating device 10 corresponding to the learning input parameters 101a by machine learning.
  • the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. This makes it possible to predict the new control conditions 102b using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45.
  • the heating system 1 in the first and second embodiments heats the preform 200.
  • the heating system 1 can be a system adapted to various temperature control targets.
  • the input parameters 100a and the control conditions 100b can be suitably selected based on the heating device and the temperature control target to be applied.
  • the learning control conditions 101b and the new control conditions 102b are the flow rate of air flowing through the air blower duct 19, the conveying speed of the conveying device 30, the rotational speed of the rotational motion of the preform 200, the time of the annealing treatment performed on the preform 200, and the output command values of the multiple heaters 14.
  • the heating system 1 appropriate control conditions can be set.
  • the machine learning device 40, the information processing device 50, and the control device 60 are configured as separate devices. However, this is not limited to this.
  • the machine learning device 40, the information processing device 50, and the control device 60 may be configured as a single device.
  • any two of the three devices may be configured as a single device.
  • the learning model 45 generated by the machine learning device 40 is transmitted to the information processing device 50 via the network 70, and the new control condition 102b predicted by the information processing device 50 is transmitted to the control device 60 via the network 70.
  • the machine learning device 40 and the information processing device 50 do not have to be connected to the heating system 1 via the network 70.
  • the machine learning device 40 and the information processing device 50 may be arranged independently.
  • the learning model 45 generated by the machine learning device 40 may be transmitted to the information processing device 50 manually.
  • the new control condition 102b predicted by the information processing device 50 may be transmitted to the control device 60 manually.
  • a neural network is adopted as the learning model 45 that realizes machine learning by the machine learning control unit 41.
  • Other machine learning models may be adopted as the learning model 45.
  • Other machine learning models include tree types such as decision trees and regression trees, ensemble learning such as bagging and boosting, recurrent neural networks, convolutional neural networks, neural net types (including deep learning) such as LSTM, clustering types such as hierarchical clustering, non-hierarchical clustering, k-nearest neighbors, and k-means, multivariate analyses such as principal component analysis, factor analysis, and logistic regression, and support vector machines.
  • the air blowing device 17 has a blower 18 as an air blowing source.
  • the air blowing source may be, for example, a pressure supply source that stores high-pressure air.
  • the flow rate of air sent from the pressure supply source to the air blower duct 19 can be controlled by controlling a flow valve or the like provided in the pressure supply source.
  • the annealing process is performed on the preform 200 on the intermediate conveying device body 31c.
  • the annealing process may be performed on the preform 200 on the downstream conveying device body 31e.
  • the annealing process time can be given to the preform 200 on the downstream conveying device body 31e by controlling the downstream conveying device body 31e.
  • the second embodiment there are five conveying device bodies 31 and two heating device bodies 11.
  • this is not limited to this.
  • the number of conveying device bodies 31 and heating device bodies 11 can be set appropriately.
  • the annealing process may be performed on the preforms 200 on any of the conveying device bodies 31.
  • a machine learning device that generates a learning model for predicting a control condition of a heating device that heats a temperature control target, a learning data storage unit that stores one or more pieces of learning data; a machine learning control unit that causes the learning model to learn based on the one or more pieces of learning data; A machine learning model storage unit that stores the learned learning model; Equipped with Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters, the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
  • the learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
  • the material information is at least one of light transmission/reflection/refractive index information of the temperature control object, color brightness information of the temperature control object, color information of the temperature control object, density information of the temperature control object, specific heat information of the temperature control object, and thermal conductivity information of the temperature control object.
  • the machine learning device of claim 1. (Appendix 3)
  • the shape information is at least one of design drawing information of the temperature control object, shape image information of the temperature control object, dimensional information of the temperature control object, and shape tracing measurement/scanning information of the temperature control object. 3.
  • the thermal environment information is at least one of distance information from a heat source of the heating device to the temperature control target, information on the arrangement position, irradiation direction, and irradiation angle of the heat source of the heating device, dimensional information of the heating device, information on thermal diffusion outside the heating device, and ambient temperature and humidity information of the heating device. 4.
  • the machine learning device according to claim 1 (Appendix 5)
  • the heating device has a heating device body that defines a heating space and a blower device,
  • the air blowing device has an air blowing source and an air blowing tube for blowing air from the air blowing source into the heating space,
  • the learning control condition is a flow rate of the air flowing through the air duct. 5.
  • the machine learning device according to claim 1 is a flow rate of the air flowing through the air duct.
  • the heating device includes a heating device body that defines a heating space, and a conveying device that conveys the temperature-control target while rotating the temperature-control target within the heating space,
  • the learning control condition is at least one of a transport speed of the transport device and a rotation speed of the rotational motion of the temperature control target. 5.
  • the machine learning device according to claim 1 (Appendix 7)
  • the learning control condition is a time of an annealing treatment performed on the temperature control target. 5.
  • the learning control condition is an output command value of a heat source of the heating device. 5.
  • An information processing device that predicts a control condition of a heating device based on prediction input parameters constituted by at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of a heating device, and thermal environment information of the heating device, an information acquisition unit that acquires the prediction input parameters;
  • An information prediction unit that predicts the control condition; Equipped with the information prediction unit predicts the control condition by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
  • the learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
  • An inference device that includes a memory and a processor and infers a control condition of a heating device that heats a temperature control target, The processor, an information acquisition process for acquiring prediction input parameters including at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device; an inference process for inferring the control condition of the heating device based on the input parameters for prediction acquired in the information acquisition process; Inference device.
  • a machine learning method for generating a learning model for predicting a control condition of a heating device that heats a temperature control target comprising: a learning data storage step of storing one or more learning data; a machine learning process for training the learning model based on the one or more pieces of learning data; A trained model storage step of storing the trained model; Equipped with Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters, the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
  • the learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
  • the learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
  • Control condition prediction methods An inference method for inferring a control condition of a heating device that heats a temperature-controlled object, the method being executed by an inference device having a memory and a processor, the method comprising: The processor, an information acquisition step of acquiring prediction input parameters including at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device; a prediction step of predicting the control condition corresponding to the input parameter for prediction acquired by the information acquisition step; In the prediction step, the control condition is predicted by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
  • the learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating
  • 1 heating system 10 heating device, 11 heating device main body, 11a first heating device main body, 11b second heating device main body, 12 heating passage (heating space), 14 heater (heat source), 17 blower, 18 blower (air source), 19 air duct, 30 conveying device, 31 conveying device main body, 31a upstream conveying device main body, 31b first conveying device main body, 31c intermediate conveying device main body, 31d second conveying device main body , 31e downstream conveying device main body, 32 conveying control unit, 40 machine learning device, 41 machine learning control unit, 42 machine learning communication unit, 43 learning data storage unit, 44 machine learning model storage unit, 45 learning model, 45a input layer, 45b intermediate layer, 45c output layer, 46 learning data, 50 information processing device, 51 information processing control unit, 52 information acquisition unit, 53 information prediction unit, 54 output processing unit, 55 Information processing model storage unit, 56 information processing communication unit, 60 control device, 70 network, 100a input parameters, 100b control conditions, 101a learning input parameters, 101b learning control conditions, 101c learning result control conditions,

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Control Of Temperature (AREA)

Abstract

[Problem] To provide a machine learning device which easily derives heating device control conditions, an information processing device, a reasoning device, a machine learning method, a control conditions prediction method and a reasoning method. [Solution] A machine learning device which generates a learning model 45 for predicting new control conditions 102b of a heating device 10 for heating a temperature control target 200. The machine learning device is equipped with: a learning data storage unit 43 for storing one or more sets of learning data 46; a machine learning control unit 41 for training the learning model 45 on the correlation between learning input parameters 101a and learning control conditions 101b, which are the control conditions for the heating device 10; and a machine learning model storage unit 44 for storing the trained learning model 45. The learning input parameters 101b comprise one or more of the following: material information, shape information and initial temperature information for the temperature control target 200, and target temperature distribution information and thermal environment information for the heating device 10.

Description

機械学習装置、情報処理装置、推論装置、機械学習方法、制御条件予測方法、及び、推論方法Machine learning device, information processing device, inference device, machine learning method, control condition prediction method, and inference method
 本開示は、機械学習装置、情報処理装置、推論装置、機械学習方法、制御条件予測方法、及び、推論方法に関する。 This disclosure relates to a machine learning device, an information processing device, an inference device, a machine learning method, a control condition prediction method, and an inference method.
 従来、ブロー成形装置によって中空容器へとブロー成形されるプリフォームに対し、複数の赤外線ヒータを備える加熱装置を用いて、搬送中に加熱処理を施すことが行われている(例えば、特許文献1)。  Conventionally, a heating device equipped with multiple infrared heaters is used to heat the preforms being blown into hollow containers by a blow molding device while they are being transported (for example, Patent Document 1).
WO2014/208693A1WO2014/208693A1
 加熱装置によって上述のプリフォームのような温度制御対象に対し加熱処理を行うに際しては、加熱装置におけるヒータの出力条件、温度制御対象が加熱空間を通り抜ける際の搬送速度等の制御条件を詳細に設定することが求められていた。しかしながら、加熱装置の制御条件の設定は、熟練の作業者の経験に頼ることが多く、容易に導き出すことができないという課題があった。 When using a heating device to heat a temperature-controlled object such as the above-mentioned preform, it is necessary to set detailed control conditions such as the heater output conditions in the heating device and the transport speed when the temperature-controlled object passes through the heating space. However, setting the control conditions for the heating device often relies on the experience of a skilled worker, and there is an issue in that it is not easy to determine them.
 本開示は、上記の課題に鑑み、加熱装置の制御条件を容易に導き出せる機械学習装置、情報処理装置、推論装置、機械学習方法、制御条件予測方法、及び、推論方法を提供することを目的とする。 In view of the above problems, the present disclosure aims to provide a machine learning device, an information processing device, an inference device, a machine learning method, a control condition prediction method, and an inference method that can easily derive the control conditions of a heating device.
 上記目的を達成するために、本開示の機械学習装置は、
 温度制御対象を加熱する加熱装置の制御条件を予測するための学習モデルを生成する機械学習装置であって、
 一つ以上の学習用データを記憶する学習用データ記憶部と、
 前記一つ以上の学習用データに基づいて前記学習モデルに学習させる機械学習制御部と、
 学習済みの前記学習モデルを記憶する機械学習モデル記憶部と、
を備え、
 各前記学習用データは、学習用入力パラメータと、前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件とで構成され、
 前記学習モデルは、前記学習用データにおける前記学習用入力パラメータと前記学習用制御条件との相関関係を学習し、
 前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている。
In order to achieve the above object, the machine learning device of the present disclosure includes:
A machine learning device that generates a learning model for predicting a control condition of a heating device that heats a temperature control target,
a learning data storage unit that stores one or more pieces of learning data;
a machine learning control unit that causes the learning model to learn based on the one or more pieces of learning data;
A machine learning model storage unit that stores the learned learning model;
Equipped with
Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters,
the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
The learning input parameters are composed of at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
 本開示の機械学習装置、情報処理装置、推論装置、機械学習方法、制御条件予測方法、及び、推論方法によれば、制御条件を容易に決定することができる。 The machine learning device, information processing device, inference device, machine learning method, control condition prediction method, and inference method disclosed herein make it possible to easily determine control conditions.
 上記以外の課題、構成及び効果は、後述する発明を実施するための形態にて明らかにされる。  Problems, configurations and effects other than those mentioned above will be made clear in the detailed description of the invention described below.
実施の形態1による加熱システムを示す概略図である。1 is a schematic diagram showing a heating system according to a first embodiment. 図1の加熱装置を示す側面図である。FIG. 2 is a side view showing the heating device of FIG. 1 . 図1の機械学習装置を示す構成図である。FIG. 2 is a configuration diagram showing the machine learning device of FIG. 1. 図3の機械学習装置が実施する機械学習の要素を示す概念図である。FIG. 4 is a conceptual diagram showing elements of machine learning implemented by the machine learning device of FIG. 3 . 図1の情報処理装置を示す構成図である。FIG. 2 is a configuration diagram showing the information processing device of FIG. 1; コンピュータのハードウエア構成図である。FIG. 1 is a diagram illustrating the hardware configuration of a computer. 図1の機械学習装置による機械学習方法を示すフローチャートである。2 is a flowchart showing a machine learning method performed by the machine learning device of FIG. 1 . 図1の情報処理装置による制御条件予測方法を示すフローチャートである。4 is a flowchart showing a control condition prediction method by the information processing device of FIG. 1 . 実施の形態2による加熱装置と搬送装置とを示す概略図である。FIG. 11 is a schematic diagram showing a heating device and a transport device according to a second embodiment.
 以下、図面を参照して本発明を実施するための実施の形態について説明する。以下では、本発明の目的を達成するための説明に必要な範囲を模式的に示し、本開示の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。 Below, an embodiment for carrying out the present invention will be described with reference to the drawings. Below, the scope necessary for the explanation to achieve the object of the present invention will be shown diagrammatically, and the scope necessary for the explanation of the relevant parts of this disclosure will be mainly explained, and the parts where explanation is omitted will be based on publicly known technology.
 実施の形態1
 図1は、実施の形態1による加熱システム1を示す概略図である。図2は、図1の加熱装置10を示す側面図である。加熱システム1は、加熱装置10と、機械学習装置40と、情報処理装置50と、制御装置60と、それぞれの装置をつなぐネットワーク70と、を備えている。
First embodiment
Fig. 1 is a schematic diagram showing a heating system 1 according to embodiment 1. Fig. 2 is a side view showing the heating device 10 of Fig. 1. The heating system 1 includes the heating device 10, a machine learning device 40, an information processing device 50, a control device 60, and a network 70 connecting the respective devices.
 加熱システム1は、PETボトル等の容器を生産する生産システムに備えられている。容器は、容器の原料から生産されたプリフォーム200を図示しないブロー成形装置により成形することで生産される。 The heating system 1 is installed in a production system that produces containers such as PET bottles. The containers are produced by molding preforms 200 produced from the container raw material using a blow molding device (not shown).
 ブロー成形装置によってプリフォーム200を成形する際には、プリフォーム200の成形性を向上させるために、プリフォーム200を予め加熱する必要がある。本開示の加熱システム1は、ブロー成形装置の前工程を担うシステムであり、温度制御対象としてのプリフォーム200を加熱するシステムである。 When molding the preform 200 using a blow molding device, it is necessary to preheat the preform 200 in order to improve the moldability of the preform 200. The heating system 1 disclosed herein is a system that handles the pre-processing of the blow molding device, and is a system that heats the preform 200, which is an object of temperature control.
 プリフォーム200は、図示しない射出成形機によって容器の原料から成形される。成形されたプリフォーム200は、順次、加熱システム1に搬入され、加熱される。加熱されたプリフォーム200は、次工程のブロー成形装置に順次供され、容器に成形される。 The preforms 200 are molded from the container raw material by an injection molding machine (not shown). The molded preforms 200 are successively carried into the heating system 1 and heated. The heated preforms 200 are successively fed to the blow molding device in the next process and molded into containers.
 加熱装置10は、加熱装置本体11と、加熱装置本体11に配置された熱源としての複数のヒータ14と、各ヒータ14に電力を供給する図示しないヒータ電源と、加熱装置本体11に配置された送風装置17と、搬送装置30と、を有している。 The heating device 10 has a heating device main body 11, a plurality of heaters 14 as heat sources arranged in the heating device main body 11, a heater power supply (not shown) that supplies power to each heater 14, a blower device 17 arranged in the heating device main body 11, and a conveying device 30.
 加熱装置本体11には、長尺のトンネル状の空間である加熱通路12が長手方向に沿って形成されている。加熱通路12は、プリフォーム200が通過できる大きさである。プリフォーム200は、加熱通路12の入口側から出口側に向かって通過することができる。加熱通路12内のプリフォーム200の搬送については、後に説明をする。 The heating device main body 11 has a heating passage 12, which is a long, tunnel-shaped space, formed along the longitudinal direction. The heating passage 12 is large enough for the preform 200 to pass through. The preform 200 can pass through the heating passage 12 from the entrance side to the exit side. The transportation of the preform 200 within the heating passage 12 will be explained later.
 各ヒータ14は、長尺の近赤外線ヒータである。各ヒータ14は、加熱通路12の長手方向に沿って配置されている。なお、各ヒータ14には、長尺の近赤外線ヒータのみならず、異なる種類のヒータを採用することができる。 Each heater 14 is a long near-infrared heater. Each heater 14 is arranged along the longitudinal direction of the heating passage 12. Note that, in addition to long near-infrared heaters, different types of heaters can be used for each heater 14.
 各ヒータ14は、加熱装置本体11内の加熱通路12においてプリフォーム200を加熱することができる。各ヒータ14は、ヒータ電源に電気的に接続されており、ヒータ電源から供給される電力により、加熱装置本体11内部を加熱することができる。従って、加熱装置本体11によって、加熱装置10の加熱空間が画定されることになる。 Each heater 14 can heat the preform 200 in the heating passage 12 inside the heating device main body 11. Each heater 14 is electrically connected to a heater power supply, and can heat the inside of the heating device main body 11 with the power supplied from the heater power supply. Therefore, the heating space of the heating device 10 is defined by the heating device main body 11.
 ヒータ電源は、制御装置60からの指令によって各ヒータ14に供給する電力量を調整することができる。各ヒータ14は、供給された電力量に応じた熱量を放熱する。各ヒータ14に供給する電力量を制御することで、各ヒータ14から放熱される熱量を制御することができる。 The heater power supply can adjust the amount of power supplied to each heater 14 according to commands from the control device 60. Each heater 14 radiates an amount of heat according to the amount of power supplied to it. By controlling the amount of power supplied to each heater 14, the amount of heat radiated from each heater 14 can be controlled.
 送風装置17は、送風源である送風機18と、送風管19と、図示しない送風機電源と、を有している。送風機18は、加熱通路12の入口側に配置されている。送風管19は、パイプ状の物体である。 The blower device 17 has a blower 18, which is an air source, a blower duct 19, and a blower power source (not shown). The blower 18 is disposed on the inlet side of the heating passage 12. The blower duct 19 is a pipe-shaped object.
 送風管19の長手方向は、加熱通路12の長手方向に沿って、加熱通路12内に配置されている。送風管19の一方の開口端部は、加熱通路12の入口側で加熱装置10の外部に向かって開口しており、送風管19の他方の開口端部は、加熱通路12の出口側で加熱装置10の外部に向かって開口している。 The longitudinal direction of the air blower duct 19 is aligned with the longitudinal direction of the heating passage 12 and is disposed within the heating passage 12. One open end of the air blower duct 19 opens toward the outside of the heating device 10 at the inlet side of the heating passage 12, and the other open end of the air blower duct 19 opens toward the outside of the heating device 10 at the outlet side of the heating passage 12.
 送風管19には、図示しない複数の貫通孔が形成されている。送風機18は、入口側の送風管19の開口端部に接続されている。送風機18は、入口側の送風管19の開口端部から送風管19内にエアを送り込むことができる。 The air duct 19 has multiple through holes (not shown). The blower 18 is connected to the open end of the air duct 19 on the inlet side. The blower 18 can send air into the air duct 19 from the open end of the air duct 19 on the inlet side.
 送風機18によって送風管19に送り込まれたエアは、送風管19を流れる。送風管19を流れるエアは、更に、複数の貫通孔を通って加熱通路12内に送り込まれるとともに、出口側の送風管19の開口端部から、大気に放出される。即ち、送風機18によって送り込まれるエアは、送風管19を介して加熱空間内に送り込まれる。 The air sent into the air duct 19 by the blower 18 flows through the air duct 19. The air flowing through the air duct 19 is further sent into the heating passage 12 through a number of through holes, and is also released into the atmosphere from the open end of the air duct 19 on the outlet side. That is, the air sent by the blower 18 is sent into the heating space via the air duct 19.
 送風機電源は、制御装置60からの指令によって送風機18に供給する電力量を制御することができる。制御装置60は、送風機18に供給する電力量を制御することで、送風機18を制御し、送風管19に送り込まれて送風管19に流れるエアの流量を制御することができる。 The blower power supply can control the amount of power supplied to the blower 18 according to commands from the control device 60. The control device 60 controls the amount of power supplied to the blower 18, thereby controlling the blower 18 and the flow rate of air sent into and flowing through the air duct 19.
 搬送装置30は、搬送装置本体31と、搬送制御部32と、を有している。搬送装置本体31は、コンベアである。搬送装置本体31は、複数のプリフォーム200を支持することができる。搬送装置本体31は、支持しているプリフォーム200が加熱通路12内を通過するように配置されている。 The conveying device 30 has a conveying device main body 31 and a conveying control unit 32. The conveying device main body 31 is a conveyor. The conveying device main body 31 can support a plurality of preforms 200. The conveying device main body 31 is positioned so that the preforms 200 it supports pass through the heating passage 12.
 搬送装置本体31は、複数のプリフォーム200を直立させた状態でプリフォーム200を回転可能に支持することができる。搬送装置本体31は、図示しない回転機構を有しており、複数のプリフォーム200のそれぞれに直立させた状態で回転運動を付与することができる。従って、搬送装置本体31は、直立した状態のプリフォーム200に回転運動を付与しながら、加熱通路12内を通してプリフォーム200を搬送することができる。即ち、搬送装置本体31に支持された各プリフォーム200は、直立した状態で回転運動をしながら加熱空間内を通過することができる。 The conveying device body 31 can rotatably support the multiple preforms 200 in an upright state. The conveying device body 31 has a rotation mechanism (not shown) and can impart a rotational motion to each of the multiple preforms 200 in an upright state. Therefore, the conveying device body 31 can convey the preforms 200 through the heating passage 12 while imparting a rotational motion to the upright preforms 200. In other words, each preform 200 supported by the conveying device body 31 can pass through the heating space while rotating in an upright state.
 搬送制御部32は、制御装置60からの指令に基づいて搬送装置本体31の搬送速度を制御することができる。搬送装置本体31の搬送速度を制御することで、プリフォーム200が加熱通路12内に滞在している時間を制御することができる。また、搬送制御部32は、制御装置60からの指令に基づいて搬送装置本体31の回転機構を制御して、プリフォーム200の回転運動の回転速度を制御することができる。即ち、搬送制御部32は、制御装置60からの指令に基づいて、搬送装置本体31の搬送速度、及び、プリフォーム200の回転運動の回転速度の少なくともいずれか一つを制御することができる。 The conveying control unit 32 can control the conveying speed of the conveying device main body 31 based on commands from the control device 60. By controlling the conveying speed of the conveying device main body 31, the time that the preform 200 stays in the heating passage 12 can be controlled. Furthermore, the conveying control unit 32 can control the rotational speed of the rotational motion of the preform 200 by controlling the rotation mechanism of the conveying device main body 31 based on commands from the control device 60. That is, the conveying control unit 32 can control at least one of the conveying speed of the conveying device main body 31 and the rotational speed of the rotational motion of the preform 200 based on commands from the control device 60.
 機械学習装置40は、機械学習の学習フェーズの主体として動作する装置である。図3は、図1の機械学習装置40を示す構成図である。図4は、図3の機械学習装置40が実施する機械学習の要素を示す概念図である。機械学習装置40は、機械学習制御部41と、機械学習通信部42と、学習用データ記憶部43と、機械学習モデル記憶部44と、を有している。 The machine learning device 40 is a device that operates as the main subject of the learning phase of machine learning. FIG. 3 is a configuration diagram showing the machine learning device 40 of FIG. 1. FIG. 4 is a conceptual diagram showing the elements of machine learning performed by the machine learning device 40 of FIG. 3. The machine learning device 40 has a machine learning control unit 41, a machine learning communication unit 42, a learning data storage unit 43, and a machine learning model storage unit 44.
 機械学習制御部41は、入力情報に対応した出力情報が得られる学習モデル45を生成する。機械学習制御部41は、学習モデル45の生成に一つ以上の学習用データ46を用いる。学習用データ46は、学習用入力パラメータ101aと学習用入力パラメータ101aに対応する加熱装置10の制御条件である学習用制御条件101bとで構成されている。 The machine learning control unit 41 generates a learning model 45 that provides output information corresponding to input information. The machine learning control unit 41 uses one or more pieces of learning data 46 to generate the learning model 45. The learning data 46 is composed of learning input parameters 101a and learning control conditions 101b, which are control conditions for the heating device 10 that correspond to the learning input parameters 101a.
 学習用データ46は、教師あり学習における教師データであるトレーニングデータ、検証データ及びテストデータとして用いられるデータである。また、学習用制御条件101bは、教師あり学習における正解ラベルとして用いられるデータである。なお、学習用入力パラメータ101a、及び、学習用入力パラメータ101aに対応する加熱装置10の制御条件である学習用制御条件101bは、作業者によって用意された入力パラメータ100a、及び、入力パラメータ100aに対応する加熱装置10の制御条件100が、学習用データ46として学習用データ記憶部43に記憶された状態のデータを表している。 The learning data 46 is data used as training data, verification data, and test data, which are teacher data in supervised learning. The learning control conditions 101b are data used as correct answer labels in supervised learning. The learning input parameters 101a and the learning control conditions 101b, which are the control conditions of the heating device 10 corresponding to the learning input parameters 101a, represent data in a state in which the input parameters 100a prepared by the operator and the control conditions 100 of the heating device 10 corresponding to the input parameters 100a are stored in the learning data storage unit 43 as the learning data 46.
 作業者によって用意される入力パラメータ100a及び制御条件100b、並びに、学習用データ46が記憶されている学習用データ記憶部43については、後に説明をする。 The input parameters 100a and control conditions 100b prepared by the operator, as well as the learning data storage unit 43 in which the learning data 46 is stored, will be explained later.
 機械学習制御部41は、一つ以上の学習用データ46における学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習モデル45に学習させることができる。これにより、機械学習制御部41は、学習済みの学習モデル45を生成することができる。 The machine learning control unit 41 can cause the learning model 45 to learn the correlation between the learning input parameters 101a and the learning control conditions 101b in one or more pieces of learning data 46. This allows the machine learning control unit 41 to generate a learned learning model 45.
 学習モデル45には、ニューラルネットワークの構造が採用されている。学習モデル45は、入力層45a、中間層45b、及び、出力層45cを有している。入力層45aは、学習用入力パラメータ101aのパラメータ数に対応する数のニューロンを有している。出力層45cは、学習用制御条件101bの条件数に対応する数のニューロンを有している。 The learning model 45 employs a neural network structure. The learning model 45 has an input layer 45a, an intermediate layer 45b, and an output layer 45c. The input layer 45a has a number of neurons corresponding to the number of parameters in the learning input parameters 101a. The output layer 45c has a number of neurons corresponding to the number of conditions in the learning control conditions 101b.
 各層の間には、各ニューロンをそれぞれ接続する図示しないシナプスが張られている。各シナプスには、重みを付すことができる。 Between each layer, there are synapses (not shown) that connect each neuron. Weights can be assigned to each synapse.
 機械学習制御部41は、機械学習によって、各シナプスの重みからなる重みパラメータ群を調整する。重みパラメータ群は、学習モデル45に反映される。 The machine learning control unit 41 adjusts a group of weight parameters consisting of the weights of each synapse through machine learning. The group of weight parameters is reflected in the learning model 45.
 機械学習制御部41では、学習用入力パラメータ101aの各パラメータを入力層45aの各ニューロンにそれぞれ入力し、学習モデル45を通して、学習用入力パラメータ101aに対応する加熱装置10の学習結果制御条件101cが出力される。機械学習制御部41は、学習結果制御条件101cの値を検討し、当該検討結果に基づいて各シナプスの重みを調整する。 In the machine learning control unit 41, each parameter of the learning input parameters 101a is input to each neuron of the input layer 45a, and the learning result control condition 101c of the heating device 10 corresponding to the learning input parameters 101a is output through the learning model 45. The machine learning control unit 41 examines the value of the learning result control condition 101c and adjusts the weight of each synapse based on the result of the examination.
 学習モデル45が、回帰モデルで構成される場合には、学習用制御条件101bは、所定の範囲(例えば、0~1)に正規化された数値でそれぞれ出力される。また、学習モデル45が、分類モデルで構成される場合には、学習用制御条件101bは、各クラスに対するスコア(確度)として、所定の範囲(例えば、0~1)に正規化された数値でそれぞれ出力される。 When the learning model 45 is configured as a regression model, the learning control conditions 101b are output as numerical values normalized to a predetermined range (e.g., 0 to 1). When the learning model 45 is configured as a classification model, the learning control conditions 101b are output as scores (accuracies) for each class as numerical values normalized to a predetermined range (e.g., 0 to 1).
 学習用データ記憶部43は、複数の学習用データ46をデータベースとして記憶することができる。なお、学習用データ記憶部43を構成するデータベースの具体的な構成は適宜設計することができる。 The learning data storage unit 43 can store multiple pieces of learning data 46 as a database. The specific configuration of the database that constitutes the learning data storage unit 43 can be designed as appropriate.
 学習用データ記憶部43には、図示しない操作端末を用いた作業者によって入力パラメータ100aと入力パラメータ100aに対応している制御条件100bとが入力される。学習用データ記憶部43に入力された入力パラメータ100aと制御条件100bとのそれぞれは、学習用入力パラメータ101aと学習用制御条件101bとして記憶される。従って、学習用制御条件101bは、学習用入力パラメータ101aに対応している。これにより、一つの学習用データ46が記憶される。 The learning data storage unit 43 receives input parameters 100a and control conditions 100b corresponding to the input parameters 100a from an operator using an operation terminal (not shown). The input parameters 100a and control conditions 100b input to the learning data storage unit 43 are stored as learning input parameters 101a and learning control conditions 101b, respectively. Therefore, the learning control conditions 101b correspond to the learning input parameters 101a. As a result, one piece of learning data 46 is stored.
 学習用入力パラメータ101aと学習用制御条件101bとには、既知の加熱作業におけるデータを用いる。即ち、学習用入力パラメータ101aと学習用制御条件101bとの元として学習用データ記憶部43に入力される入力パラメータ100aと制御条件100bとしては、既知の加熱作業における入力パラメータ100aと制御条件100bとが入力される。 Data from a known heating operation is used for the learning input parameters 101a and the learning control conditions 101b. That is, the input parameters 100a and control conditions 100b from a known heating operation are input as the input parameters 100a and control conditions 100b input to the learning data storage unit 43 as the basis for the learning input parameters 101a and the learning control conditions 101b.
 既知の加熱作業としては、加熱装置10を用いた過去の加熱作業であることが望ましい。加熱装置10を用いた過去の加熱作業で実際に使用したデータは、その後のブロー成形機によって容器を生産した実績をもつデータである。 The known heating operation is preferably a past heating operation using the heating device 10. The data actually used in the past heating operation using the heating device 10 is data with a track record of subsequent production of containers using a blow molding machine.
 即ち、過去の加熱作業で実際に使用したデータは、許容範囲内の形状精度を有する容器を生産できるデータである。従って、過去の加熱作業で実際に使用した入力パラメータ100aと制御条件100bとの相関関係は、妥当であるために、このようなデータを学習用データ46として機械学習に用いることが望ましい。 In other words, the data actually used in past heating operations is data that can produce containers with shape accuracy within an acceptable range. Therefore, since the correlation between the input parameters 100a and the control conditions 100b actually used in past heating operations is valid, it is desirable to use such data as learning data 46 for machine learning.
 なお、既知の加熱作業におけるデータとしては、過去の加熱作業で実際に使用したデータ以外に、例えば、シミュレーションや、熟練の作業者によって作成されたデータを用いてもよい。 In addition, data on known heating operations may be data actually used in past heating operations, or data created by simulations or experienced workers, for example.
 入力パラメータ100aは、加熱システム1の各装置を制御するための制御条件100bを算出するために考慮されるパラメータである。入力パラメータ100aは、プリフォーム200に関するパラメータ、加熱装置10に関するパラメータ、及び、プリフォーム200と加熱装置10との関係に関するパラメータである。 The input parameters 100a are parameters that are taken into consideration in order to calculate the control conditions 100b for controlling each device of the heating system 1. The input parameters 100a are parameters related to the preform 200, parameters related to the heating device 10, and parameters related to the relationship between the preform 200 and the heating device 10.
 具体的には、入力パラメータ100aは、プリフォーム200の材質情報、形状情報、初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つから構成されている。プリフォーム200の材質情報としては、プリフォーム200の光線透過・反射・屈折率、色の明度情報であるL値、色の情報としてのRGB値、密度情報、比熱情報、及び、熱伝導率情報の少なくともいずれか一つの情報である。 Specifically, the input parameters 100a are composed of at least one of the material information, shape information, initial temperature information, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10 of the preform 200. The material information of the preform 200 is at least one of the light transmittance, reflection, and refractive index of the preform 200, the L value which is color brightness information, the RGB value as color information, density information, specific heat information, and thermal conductivity information.
 材質情報は、事前にプリフォーム200を計測することで取得することができる。材質情報の計測の方法は、周知の方法を適宜採用することができる。 The material information can be obtained by measuring the preform 200 in advance. Any known method can be appropriately adopted as the method for measuring the material information.
 プリフォーム200の形状情報としては、プリフォーム200の設計図面から読み取る形状情報としての設計図面情報、形状イメージから読み取る形状情報としての形状イメージ情報、寸法情報、及び、形状トレース測定・スキャニング情報の少なくともいずれか一つの情報である。形状情報をプリフォーム200の設計図面から読み取る場合には、事前にプリフォーム200の設計図面をコンピュータに供し、コンピュータが設計図面からプリフォーム200の形状情報を読み取ることでプリフォーム200の形状情報を取得することができる。 The shape information of the preform 200 is at least one of design drawing information as shape information read from the design drawing of the preform 200, shape image information as shape information read from the shape image, dimensional information, and shape tracing measurement/scanning information. When reading shape information from the design drawing of the preform 200, the design drawing of the preform 200 is provided to a computer in advance, and the computer reads the shape information of the preform 200 from the design drawing, thereby obtaining the shape information of the preform 200.
 形状イメージとは、撮像装置で撮像した画像情報である。形状イメージから形状情報を読み取る場合には、画像情報からプリフォーム200の形状情報を取得することができる。寸法情報は、事前に作業者がプリフォーム200の寸法の内、必要とされる情報を入力することで取得することができる。形状トレース測定・スキャニング情報とは、プリフォーム200の形状を、周知のスキャニング装置でスキャニングを実施し、把握したプリフォーム200の形状情報である。 The shape image is image information captured by an imaging device. When reading shape information from the shape image, the shape information of the preform 200 can be obtained from the image information. The dimensional information can be obtained by having the worker input the required information of the dimensions of the preform 200 in advance. The shape tracing measurement/scanning information is the shape information of the preform 200 that is grasped by scanning the shape of the preform 200 with a well-known scanning device.
 プリフォーム200の初期温度情報は、プリフォーム200が加熱システム1に供される前のプリフォーム200の温度を計測することで取得することができる。加熱装置10の目標温度分布情報は、加熱作業における加熱通路12内部の理想的な温度分布を示す情報である。加熱通路12内部の理想的な温度分布は、事前の解析等によって算出され取得することができる。 The initial temperature information of the preform 200 can be obtained by measuring the temperature of the preform 200 before the preform 200 is provided to the heating system 1. The target temperature distribution information of the heating device 10 is information that indicates the ideal temperature distribution inside the heating passage 12 during the heating operation. The ideal temperature distribution inside the heating passage 12 can be calculated and obtained by prior analysis, etc.
 加熱装置10の熱環境情報としては、加熱装置10の各ヒータ14からプリフォーム200までの距離情報、各ヒータ14の配置位置・照射方向・照射角情報、加熱装置10の寸法情報、加熱装置10外への熱拡散情報、及び、加熱装置10の周辺温湿度情報の少なくともいずれか一つの情報である。加熱装置10の各ヒータ14からプリフォーム200までの距離情報における距離は、プリフォーム200の搬送方向に垂直な方向における距離である。 The thermal environment information of the heating device 10 includes at least one of the following information: distance information from each heater 14 of the heating device 10 to the preform 200, position, irradiation direction, and irradiation angle information of each heater 14, dimensional information of the heating device 10, heat diffusion information outside the heating device 10, and ambient temperature and humidity information of the heating device 10. The distance in the distance information from each heater 14 of the heating device 10 to the preform 200 is the distance in the direction perpendicular to the transport direction of the preform 200.
 プリフォーム200と各ヒータ14との距離情報は、事前に作業者により算出し入力することで取得する、又は、コンピュータにそれぞれの設計図面を入力しコンピュータ上で解析されることで取得することができる。各ヒータ14の配置位置・照射方向・照射角情報は、コンピュータに加熱装置10の設計図面を入力しコンピュータ上で解析されることで取得することができる。加熱装置10外への熱拡散情報は、コンピュータ上でのシミュレーション解析などによって取得することができる。加熱装置10の周辺温湿度情報は、加熱装置10の周辺の温度、及び、湿度を計測することによって取得することができる。 Information on the distance between the preform 200 and each heater 14 can be obtained by an operator calculating and inputting the distance in advance, or by inputting the respective design drawings into a computer and analyzing the computer. Information on the position, irradiation direction, and irradiation angle of each heater 14 can be obtained by inputting the design drawings of the heating device 10 into a computer and analyzing the computer. Information on heat diffusion outside the heating device 10 can be obtained by computer simulation analysis, etc. Information on the ambient temperature and humidity of the heating device 10 can be obtained by measuring the temperature and humidity around the heating device 10.
 加熱装置10の寸法情報は、事前に作業者が加熱装置10の寸法のうちの必要とされる寸法値を入力することで取得することができる。 The dimensional information of the heating device 10 can be obtained in advance by the worker inputting the required dimensional values of the heating device 10.
 制御条件100bは、加熱装置10、送風装置17、及び、搬送装置30の制御条件である。具体的には、送風機18への出力指令値、搬送装置30への出力指令値、及び、各ヒータ14への出力指令値、である。 The control conditions 100b are the control conditions for the heating device 10, the blower device 17, and the conveying device 30. Specifically, they are the output command value for the blower 18, the output command value for the conveying device 30, and the output command value for each heater 14.
 各出力指令値は、0~100までの任意の値である。各出力指令値は、対応する装置の最高出力を100としたときの各装置の出力値である。なお、各ヒータ14への指令は、0~100までの任意の値である出力指令値のみならず、各ヒータ14に対するON/OFF指令であってもよい。さらに、各ヒータ14への指令は、各ヒータ14に対するON指令の時間、OFF指令の時間、又は、ON指令の時間とOFF指令の時間との割合であってもよい。 Each output command value is an arbitrary value between 0 and 100. Each output command value is the output value of each device when the maximum output of the corresponding device is set to 100. Note that the command to each heater 14 may not only be an output command value that is an arbitrary value between 0 and 100, but may also be an ON/OFF command for each heater 14. Furthermore, the command to each heater 14 may be the time of the ON command for each heater 14, the time of the OFF command, or the ratio of the time of the ON command to the time of the OFF command.
 機械学習制御部41は、学習用データ記憶部43に記憶された複数の学習用データ46の中から任意の一つ以上の学習用データ46を抽出し、機械学習に用いることができる。 The machine learning control unit 41 can extract any one or more pieces of learning data 46 from the multiple pieces of learning data 46 stored in the learning data storage unit 43, and use them for machine learning.
 機械学習モデル記憶部44は、機械学習制御部41により生成された学習済みの学習モデル45、即ち、調整済みの重みパラメータ群を記憶するデータベースである。 The machine learning model storage unit 44 is a database that stores the trained learning model 45 generated by the machine learning control unit 41, i.e., the adjusted weight parameter group.
 機械学習通信部42は、通信インターフェース部である。機械学習通信部42は、ネットワーク70を介して外部装置と接続されることで、各種のデータを送受信することができる。機械学習モデル記憶部44に記憶された学習済みの学習モデル45は、ネットワーク70や記憶媒体等を介して情報処理装置50に提供される。 The machine learning communication unit 42 is a communication interface unit. The machine learning communication unit 42 is connected to an external device via the network 70, and is therefore capable of transmitting and receiving various types of data. The trained learning model 45 stored in the machine learning model storage unit 44 is provided to the information processing device 50 via the network 70, a storage medium, etc.
 なお、図3では、学習用データ記憶部43と、機械学習モデル記憶部44とが別々の記憶部として示されているが、これらは単一の記憶部で構成されてもよい。 Note that in FIG. 3, the learning data storage unit 43 and the machine learning model storage unit 44 are shown as separate storage units, but they may be configured as a single storage unit.
 図5は、図1の情報処理装置50を示す概略図である。情報処理装置50は、機械学習の推論フェーズの主体として動作する装置である。情報処理装置50は、機械学習装置40により生成された学習モデル45を用いて、新たに入力される予測用入力パラメータ102aに対応する加熱装置10の新規制御条件102bを予測する。 FIG. 5 is a schematic diagram showing the information processing device 50 of FIG. 1. The information processing device 50 is a device that operates as the main body of the inference phase of machine learning. The information processing device 50 uses the learning model 45 generated by the machine learning device 40 to predict new control conditions 102b of the heating device 10 that correspond to newly input input parameters for prediction 102a.
 情報処理装置50は、情報処理制御部51と、情報処理モデル記憶部55と、情報処理通信部56と、を有している。情報処理制御部51は、情報取得部52と、情報予測部53と、出力処理部54と、を有している。 The information processing device 50 has an information processing control unit 51, an information processing model storage unit 55, and an information processing communication unit 56. The information processing control unit 51 has an information acquisition unit 52, an information prediction unit 53, and an output processing unit 54.
 情報取得部52は、作業者により、図示しない操作端末により入力された予測用入力パラメータ102aを取得する。予測用入力パラメータ102aは、新たな加熱装置10を用いて加熱する加熱作業である新規加熱作業における入力パラメータである。 The information acquisition unit 52 acquires prediction input parameters 102a input by the worker via an operation terminal (not shown). The prediction input parameters 102a are input parameters for a new heating operation, which is a heating operation in which a new heating device 10 is used for heating.
 なお、予測用入力パラメータ102aに対応する加熱装置10を用いた新規加熱作業用の制御条件を新規制御条件102bとする。 The control conditions for a new heating operation using the heating device 10 corresponding to the prediction input parameters 102a are referred to as new control conditions 102b.
 情報予測部53は、情報取得部52が取得した予測用入力パラメータ102aを学習モデル45に入力することで、新規制御条件102bを予測する。出力処理部54は、情報予測部53により予測された新規制御条件102bを情報処理通信部56に出力する。 The information prediction unit 53 predicts new control conditions 102b by inputting the prediction input parameters 102a acquired by the information acquisition unit 52 into the learning model 45. The output processing unit 54 outputs the new control conditions 102b predicted by the information prediction unit 53 to the information processing and communication unit 56.
 情報予測部53は、情報処理モデル記憶部55に記憶されている複数の学習モデル45の中から一つの学習モデル45を選択して利用することができる。 The information prediction unit 53 can select and use one learning model 45 from among the multiple learning models 45 stored in the information processing model storage unit 55.
 情報処理モデル記憶部55は、情報予測部53にて用いられる学習済みの学習モデル45を記憶するデータベースである。情報処理モデル記憶部55は、機械学習装置40から入力される学習済みの学習モデル45を複数記憶することができる。 The information processing model storage unit 55 is a database that stores the trained learning models 45 used by the information prediction unit 53. The information processing model storage unit 55 can store multiple trained learning models 45 input from the machine learning device 40.
 複数の学習モデル45のそれぞれは、例えば、機械学習の手法、学習用入力パラメータ101aに含まれるデータの種類、学習用制御条件101bに含まれるデータの種類等が異なる複数の学習済みモデルである。 Each of the multiple learning models 45 is a multiple trained model that differs in, for example, machine learning method, type of data included in learning input parameters 101a, type of data included in learning control conditions 101b, etc.
 情報処理モデル記憶部55は、サーバ型コンピュータやクラウド型コンピュータ等の外部コンピュータの記憶部で代用されてもよい。その場合には、情報予測部53は、当該外部コンピュータの記憶部にアクセスして学習モデル45を取得することができる。 The information processing model storage unit 55 may be replaced by a storage unit of an external computer such as a server-type computer or a cloud-type computer. In that case, the information prediction unit 53 can access the storage unit of the external computer to acquire the learning model 45.
 情報処理通信部56は、ネットワーク70を介して加熱システム1の外の装置と通信可能に接続されている。情報処理通信部56は、各種のデータを送受信する通信インターフェース部である。情報処理通信部56は、出力処理部54が出力した新規制御条件102bを情報処理通信部56に出力することができる。 The information processing and communication unit 56 is connected to be able to communicate with devices outside the heating system 1 via the network 70. The information processing and communication unit 56 is a communication interface unit that transmits and receives various types of data. The information processing and communication unit 56 can output the new control conditions 102b output by the output processing unit 54 to the information processing and communication unit 56.
 図1に戻り説明を続ける。制御装置60は、加熱システム1の各装置を制御することができる。制御装置60は、情報処理装置50から伝達された新規制御条件102bに基づいて、加熱システム1の各装置を制御することができる。 Returning to FIG. 1, the explanation will be continued. The control device 60 can control each device of the heating system 1. The control device 60 can control each device of the heating system 1 based on the new control condition 102b transmitted from the information processing device 50.
 制御装置60は、新規制御条件102bのうちの送風機18に対する出力指令値を送風機電源に出力する。送風機電源は、入力された出力指令値に基づいて送風機18を制御する。これにより、送風管19を流れるエアの流量を制御することができる。 The control device 60 outputs the output command value for the blower 18 among the new control conditions 102b to the blower power supply. The blower power supply controls the blower 18 based on the input output command value. This makes it possible to control the flow rate of air flowing through the blower duct 19.
 制御装置60は、新規制御条件102bのうちの搬送装置30に対する出力指令値を搬送制御部32に出力する。搬送制御部32は、入力された出力指令値に基づいて搬送装置30を制御する。これにより、搬送装置本体31の搬送速度、及び、プリフォーム200の回転運動の回転速度の少なくともいずれか一つを制御することができる。 The control device 60 outputs the output command value for the conveying device 30 among the new control conditions 102b to the conveying control unit 32. The conveying control unit 32 controls the conveying device 30 based on the input output command value. This makes it possible to control at least one of the conveying speed of the conveying device main body 31 and the rotational speed of the rotational motion of the preform 200.
 制御装置60は、新規制御条件102bのうちの各ヒータ14に対する出力指令値をヒータ電源に出力する。ヒータ電源は、入力された出力指令値に基づいて各ヒータ14を制御する。これにより、各ヒータ14の出力を制御することができる。 The control device 60 outputs the output command values for each heater 14 in the new control condition 102b to the heater power supply. The heater power supply controls each heater 14 based on the input output command values. This makes it possible to control the output of each heater 14.
 図6は、コンピュータ900のハードウエア構成図である。加熱システム1の機械学習装置40及び情報処理装置50は、汎用又は専用のコンピュータ900により構成される。 FIG. 6 is a hardware configuration diagram of the computer 900. The machine learning device 40 and the information processing device 50 of the heating system 1 are configured by a general-purpose or dedicated computer 900.
 コンピュータ900は、バス910、プロセッサ912、メモリ914、入力デバイス916、出力デバイス917、表示デバイス918、ストレージ装置920、通信インターフェース部922、外部機器インターフェース部924、入出力デバイスインターフェース部926、及び、メディア入出力部928を備える。なお、上記の構成要素は、コンピュータ900が使用される用途に応じて適宜省略されてもよい。 The computer 900 includes a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, a communication interface unit 922, an external device interface unit 924, an input/output device interface unit 926, and a media input/output unit 928. Note that the above components may be omitted as appropriate depending on the application for which the computer 900 is used.
 プロセッサ912は、一つ又は複数の演算処理装置(CPU(Central Processing Unit)、MPU(Micro-processing unit)、DSP(digital signal processor)、GPU(Graphics Processing Unit)等)で構成され、コンピュータ900全体を統括する制御部として動作する。 The processor 912 is composed of one or more arithmetic processing devices (CPU (Central Processing Unit), MPU (Micro-processing unit), DSP (digital signal processor), GPU (Graphics Processing Unit), etc.) and operates as a control unit that oversees the entire computer 900.
 メモリ914は、各種のデータ及びプログラム930を記憶し、例えば、メインメモリとして機能する揮発性メモリ(DRAM、SRAM等)と、不揮発性メモリ(ROM)、フラッシュメモリ等とで構成される。 Memory 914 stores various data and programs 930, and is composed of, for example, volatile memory (DRAM, SRAM, etc.) that functions as main memory, non-volatile memory (ROM), flash memory, etc.
 入力デバイス916は、例えば、キーボード、マウス、テンキー、電子ペン等で構成され、入力部として機能する。出力デバイス917は、例えば、音声を含む音出力装置、バイブレーション装置等で構成され、出力部として機能する。表示デバイス918は、例えば、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、プロジェクタ等で構成され、出力部として機能する。 The input device 916 is, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit. The output device 917 is, for example, a sound output device including voice, a vibration device, etc., and functions as an output unit. The display device 918 is, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit.
 入力デバイス916及び表示デバイス918は、タッチパネルディスプレイのように、一体として構成されていてもよい。ストレージ装置920は、例えば、HDD、SSD(Solid State Drive)等で構成され、記憶部として機能する。ストレージ装置920は、オペレーティングシステムやプログラム930の実行に必要な各種のデータを記憶する。 The input device 916 and the display device 918 may be configured as one unit, such as a touch panel display. The storage device 920 is configured, for example, as an HDD, SSD (Solid State Drive), etc., and functions as a memory unit. The storage device 920 stores various data necessary for the execution of the operating system and the program 930.
 通信インターフェース部922は、インターネットやイントラネット等のネットワーク940に有線又は無線により接続され、所定の通信規格に従って他のコンピュータとの間でデータの送受信を行う通信部として機能する。ネットワーク940は、ネットワーク70と同一であってもよい。 The communication interface unit 922 is connected to a network 940 such as the Internet or an intranet by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from other computers in accordance with a specific communication standard. The network 940 may be the same as the network 70.
 外部機器インターフェース部924は、カメラ、プリンタ、スキャナ、リーダライタ等の外部機器950に有線又は無線により接続され、所定の通信規格に従って外部機器950との間でデータの送受信を行う通信部として機能する。 The external device interface unit 924 is connected to an external device 950 such as a camera, printer, scanner, or reader/writer via a wired or wireless connection, and functions as a communication unit that transmits and receives data to and from the external device 950 in accordance with a specified communication standard.
 入出力デバイスインターフェース部926は、各種のセンサ、アクチュエータ等の入出力デバイス960に接続され、入出力デバイス960との間で、例えば、センサによる検出信号やアクチュエータへの制御信号等の各種の信号やデータの送受信を行う通信部として機能する。 The input/output device interface unit 926 is connected to input/output devices 960 such as various sensors and actuators, and functions as a communication unit that transmits and receives various signals and data between the input/output devices 960, such as detection signals from sensors and control signals to actuators.
 メディア入出力部928は、例えば、DVDドライブ、CDドライブ等のドライブ装置で構成され、DVD、CD等の記憶媒体であるメディア970に対してデータの読み書きを行う。 The media input/output unit 928 is composed of a drive device such as a DVD drive or a CD drive, and reads and writes data from and to the media 970, which is a storage medium such as a DVD or a CD.
 上記構成を有するコンピュータ900において、プロセッサ912は、ストレージ装置920に記憶されたプログラム930をメモリ914に呼び出して実行し、バス910を介してコンピュータ900の各部を制御する。なお、プログラム930は、ストレージ装置920に代えて、メモリ914に記憶されていてもよい。 In the computer 900 having the above configuration, the processor 912 calls up the program 930 stored in the storage device 920 into the memory 914, executes it, and controls each part of the computer 900 via the bus 910. Note that the program 930 may be stored in the memory 914 instead of the storage device 920.
 プログラム930は、インストール可能なファイル形式又は実行可能なファイル形式でメディア970に記録され、メディア入出力部928を介してコンピュータ900に提供されてもよい。プログラム930は、通信インターフェース部922を介してネットワーク940経由でダウンロードすることによりコンピュータ900に提供されてもよい。 The program 930 may be recorded on the medium 970 in an installable file format or an executable file format, and provided to the computer 900 via the media input/output unit 928. The program 930 may be provided to the computer 900 by downloading it over the network 940 via the communication interface unit 922.
 また、コンピュータ900は、プロセッサ912がプログラム930を実行することで実現する各種の機能を、例えば、FPGA、ASIC等のハードウエアで実現するものでもよい。 In addition, the computer 900 may realize the various functions realized by the processor 912 executing the program 930 using hardware such as an FPGA or ASIC.
 コンピュータ900は、例えば、据置型コンピュータや携帯型コンピュータで構成され、任意の形態の電子機器である。コンピュータ900は、クライアント型コンピュータでもよいし、サーバ型コンピュータやクラウド型コンピュータでもよい。コンピュータ900は、加熱システム1の機械学習装置40及び情報処理装置50以外の装置にも適用されてもよい。 The computer 900 may be, for example, a stationary computer or a portable computer, and may be any type of electronic device. The computer 900 may be a client-type computer, a server-type computer, or a cloud-type computer. The computer 900 may also be applied to devices other than the machine learning device 40 and the information processing device 50 of the heating system 1.
次に、機械学習方法について説明をする。図7は、図1の機械学習装置40による機械学習方法を示すフローチャートである。 Next, the machine learning method will be explained. Figure 7 is a flowchart showing the machine learning method by the machine learning device 40 of Figure 1.
 まず、事前に作業者は、一つ以上の学習用データ46を入力し、学習用データ記憶部43に記憶させておく。記憶させる学習用データ46の数は、最終的に得られる学習モデル45に求められる推論精度を考慮して設定される。 First, the operator inputs one or more pieces of learning data 46 in advance and stores them in the learning data storage unit 43. The number of pieces of learning data 46 to be stored is set taking into consideration the inference accuracy required for the learning model 45 that is ultimately obtained.
 機械学習方法では、ステップS100として学習モデル準備工程が実施される。機械学習制御部41は、学習前の学習モデル45を準備する。準備された学習モデル45では、各シナプスの重みが初期値に設定されている。 In the machine learning method, a learning model preparation process is carried out as step S100. The machine learning control unit 41 prepares a learning model 45 before learning. In the prepared learning model 45, the weights of each synapse are set to initial values.
 次に、ステップS110として機械学習工程が実施される。機械学習工程において、まず、ステップS111として学習用データ取得工程が実施される。機械学習制御部41は、学習用データ記憶部43に記憶された複数の学習用データ46から、ランダムに一つの学習用データ46を取得する。 Next, a machine learning process is performed in step S110. In the machine learning process, first, a learning data acquisition process is performed in step S111. The machine learning control unit 41 randomly acquires one piece of learning data 46 from the multiple pieces of learning data 46 stored in the learning data storage unit 43.
 次に、ステップS112としての推論結果出力工程が実施される。機械学習制御部41は、取得した一つの学習用データ46に含まれる学習用入力パラメータ101aを、準備された学習モデル45の入力層45aに入力する。その結果、学習モデル45の出力層45cから推論結果として学習結果制御条件101cが出力される。 Next, an inference result output process is carried out as step S112. The machine learning control unit 41 inputs the learning input parameters 101a contained in one acquired piece of learning data 46 to the input layer 45a of the prepared learning model 45. As a result, the learning result control condition 101c is output as an inference result from the output layer 45c of the learning model 45.
 推論結果として出力された学習結果制御条件101cは、学習前又は学習中の学習モデル45によって生成されたものである。そのため、学習結果制御条件101cは、学習用データ46に含まれる正解ラベルである学習用制御条件101bとは異なる。 The learning result control condition 101c output as the inference result is generated by the learning model 45 before or during learning. Therefore, the learning result control condition 101c is different from the learning control condition 101b, which is the correct label included in the learning data 46.
 次に、ステップS113として重み調整工程が実施される。機械学習制御部41は、正解ラベルであるステップS111で取得した学習用データ46のうちの学習用制御条件101bと、ステップS112において推論結果として出力された学習結果制御条件101cとを比較する。当該比較に基づいて、機械学習制御部41は、各シナプスの重みを調整する処理であるバックプロバケーションを実施し、機械学習を実施する。 Next, a weight adjustment process is performed in step S113. The machine learning control unit 41 compares the learning control conditions 101b in the learning data 46 acquired in step S111, which is the correct label, with the learning result control conditions 101c output as the inference result in step S112. Based on this comparison, the machine learning control unit 41 performs backprovisioning, which is a process of adjusting the weights of each synapse, and performs machine learning.
 これにより、機械学習制御部41は、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習モデル45に学習させる。 As a result, the machine learning control unit 41 causes the learning model 45 to learn the correlation between the learning input parameters 101a and the learning control conditions 101b.
 次に、ステップS114として機械学習終了判定工程が実施される。機械学習制御部41は、所定の学習終了条件が満たされたか否かを判定する。この判定は、例えば、正解ラベルである学習用制御条件101bと学習結果制御条件101cとに基づく誤差関数の評価値や、学習用データ記憶部43内に記憶された未学習の学習用データ46の残数等に基づいて実施される。 Next, a machine learning end determination process is performed as step S114. The machine learning control unit 41 determines whether a predetermined learning end condition has been met. This determination is performed, for example, based on the evaluation value of an error function based on the learning control condition 101b, which is the correct label, and the learning result control condition 101c, and the remaining amount of unlearned learning data 46 stored in the learning data storage unit 43, etc.
 ステップS114において、機械学習制御部41が、学習終了条件が満たされておらず、機械学習を継続すると判定した場合、即ちステップS114でNoとなった場合、処理は、ステップS111に戻る。このように、学習中の学習モデル45に対してステップS111~S114の工程が未学習の学習用データ46に対して複数回実施される。 If, in step S114, the machine learning control unit 41 determines that the learning termination condition has not been met and that machine learning is to continue, i.e., if step S114 returns No, the process returns to step S111. In this way, the processes of steps S111 to S114 are performed multiple times on the unlearned learning data 46 for the learning model 45 being trained.
 一方、ステップS114において、機械学習制御部41が、学習終了条件が満たされて、機械学習を終了すると判定した場合、即ち、ステップS114でYesとなった場合、処理は、ステップS120に進む。 On the other hand, in step S114, if the machine learning control unit 41 determines that the learning end condition is met and machine learning is to be ended, i.e., if step S114 returns Yes, the process proceeds to step S120.
 そして、ステップS120として、学習済みモデル記憶工程が実施される。機械学習制御部41は、各シナプスの重みが調整された学習済みの学習モデル45、即ち、調整済みの重みパラメータ群が反映された学習モデル45を機械学習モデル記憶部44に記憶する。これにより、機械学習方法は、終了する。 Then, in step S120, a trained model storage process is performed. The machine learning control unit 41 stores the trained learning model 45 in which the weights of each synapse have been adjusted, i.e., the learning model 45 reflecting the adjusted weight parameter group, in the machine learning model storage unit 44. This ends the machine learning method.
 次に、情報処理装置50による加熱システム1の新規制御条件102bの予測方法について説明をする。図8は、図1の情報処理装置50による学習用制御条件予測方法を示すフローチャートである。 Next, a method for predicting new control conditions 102b for the heating system 1 using the information processing device 50 will be described. Figure 8 is a flowchart showing a method for predicting learning control conditions using the information processing device 50 of Figure 1.
 まず、ステップS200として予測用入力パラメータ取得工程が実施される。作業者が予測用入力パラメータ102aを情報処理装置50に入力することで、情報取得部52は、予測用入力パラメータ102aを取得する。 First, the prediction input parameter acquisition process is carried out as step S200. The operator inputs the prediction input parameters 102a to the information processing device 50, and the information acquisition unit 52 acquires the prediction input parameters 102a.
 次に、ステップS210として予測工程が実施される。情報予測部53は、ステップS200にて取得した予測用入力パラメータ102aを学習モデル45に入力する。これにより、情報予測部53は、予測用入力パラメータ102aに対応する新規制御条件102bを予測する。 Next, a prediction process is carried out as step S210. The information prediction unit 53 inputs the prediction input parameters 102a acquired in step S200 to the learning model 45. As a result, the information prediction unit 53 predicts new control conditions 102b corresponding to the prediction input parameters 102a.
 次に、ステップS220として出力処理工程が実施される。出力処理部54は、出力処理として、ステップS210にて生成された新規制御条件102bを制御装置60に送信する。これにより、新規制御条件102bの予測とその出力が完了する。 Next, the output processing step is carried out as step S220. As the output processing, the output processing unit 54 transmits the new control conditions 102b generated in step S210 to the control device 60. This completes the prediction and output of the new control conditions 102b.
 制御装置60は、出力処理部54から入力された新規制御条件102bに基づいて加熱システム1の各装置を制御することができる。 The control device 60 can control each device of the heating system 1 based on the new control conditions 102b input from the output processing unit 54.
 本開示は、機械学習装置40が備える各部としてコンピュータ900を機能させるプログラムである機械学習プログラムや、機械学習方法が備える各工程をコンピュータ900に実行させるためのプログラムである機械学習プログラムの態様で提供することもできる。 The present disclosure can also be provided in the form of a machine learning program that is a program that causes the computer 900 to function as each unit of the machine learning device 40, or a machine learning program that is a program that causes the computer 900 to execute each step of the machine learning method.
 また、本開示は、加熱システム1が備える各部としてコンピュータ900を機能させるためのプログラムや、上記実施の形態に係る学習用制御条件予測方法が備える各工程をコンピュータ900に実行させるためのプログラムである学習用制御条件予測プログラムの態様で提供することもできる。 The present disclosure can also be provided in the form of a program for causing the computer 900 to function as each component of the heating system 1, or a learning control condition prediction program that is a program for causing the computer 900 to execute each step of the learning control condition prediction method according to the above embodiment.
 実施の形態1による機械学習装置40によれば、プリフォーム200を加熱する加熱装置10の新規制御条件102bを予測するための学習モデル45を生成することができる。また、機械学習装置40は、一つ以上の学習用データ46を記憶する学習用データ記憶部43と、一つ以上の学習用データ46に基づいて学習モデル45に学習させる機械学習制御部41と、学習済みの学習モデル45を記憶する機械学習モデル記憶部44と、を備えている。また、各学習用データ46は、学習用入力パラメータ101aと、学習用入力パラメータ101aに対応する加熱装置10の学習用制御条件101bとで構成されている。また、学習モデル45は、学習用データ46における学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習する。また、学習用入力パラメータ101aは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成されている。これにより、機械学習制御部41は、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を取得することができる。従って、取得した学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。また、新規制御条件102bにて加熱装置を制御することで、プリフォーム200の加熱不良を防ぐことができ、良好な加熱状態のプリフォーム200をブロー成形装置で成形することで、適切な仕上がり寸法を有した製品を生産することができる。 The machine learning device 40 according to embodiment 1 can generate a learning model 45 for predicting new control conditions 102b of the heating device 10 that heats the preform 200. The machine learning device 40 also includes a learning data storage unit 43 that stores one or more pieces of learning data 46, a machine learning control unit 41 that causes the learning model 45 to learn based on the one or more pieces of learning data 46, and a machine learning model storage unit 44 that stores the learned learning model 45. Each piece of learning data 46 is composed of learning input parameters 101a and learning control conditions 101b of the heating device 10 that correspond to the learning input parameters 101a. The learning model 45 also learns the correlation between the learning input parameters 101a and the learning control conditions 101b in the learning data 46. In addition, the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. As a result, the machine learning control unit 41 can acquire a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, using the acquired learning model 45, the new control conditions 102b of the heating device 10 can be easily derived. In addition, by controlling the heating device under the new control conditions 102b, it is possible to prevent poor heating of the preform 200, and by molding the preform 200 in a good heating state with a blow molding device, it is possible to produce a product having appropriate finished dimensions.
 実施の形態1による機械学習装置40によれば、プリフォーム200の材質情報は、プリフォーム200の光透過・反射・屈折率情報、プリフォーム200の色の明度情報、プリフォーム200の色情報、プリフォーム200の密度情報、プリフォーム200の比熱情報、及び、プリフォーム200の熱伝導率情報の少なくともいずれか一つである。これにより、プリフォーム200の光透過・反射・屈折率情報、プリフォーム200の色の明度情報、プリフォーム200の色情報、プリフォーム200の密度情報、プリフォーム200の比熱情報、及び、プリフォーム200の熱伝導率情報の少なくともいずれか一つを含む学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the first embodiment, the material information of the preform 200 is at least one of the light transmission/reflection/refractive index information of the preform 200, the color brightness information of the preform 200, the color information of the preform 200, the density information of the preform 200, the specific heat information of the preform 200, and the thermal conductivity information of the preform 200. As a result, new control conditions 102b for the heating device 10 can be easily derived using a learning model 45 that has learned the correlation between the learning input parameters 101a, including at least one of the light transmission/reflection/refractive index information of the preform 200, the color brightness information of the preform 200, the color information of the preform 200, the density information of the preform 200, the specific heat information of the preform 200, and the thermal conductivity information of the preform 200, and the learning control conditions 101b.
 実施の形態1による機械学習装置40によれば、プリフォーム200の形状情報は、プリフォーム200の設計図面情報、プリフォーム200の形状イメージ情報、プリフォーム200の寸法情報、及び、プリフォーム200の形状トレース測定・スキャニング情報の少なくともいずれか一つである。これにより、学習用入力パラメータ101aは、プリフォーム200の設計図面情報、プリフォーム200の形状イメージ情報、プリフォーム200の寸法情報、及び、プリフォーム200の形状トレース測定・スキャニング情報の少なくともいずれか一つを含んでいる。従って、当該学習用入力パラメータ101aと、学習用制御条件101bと、の相関関係を学習した学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the first embodiment, the shape information of the preform 200 is at least one of the design drawing information of the preform 200, the shape image information of the preform 200, the dimensional information of the preform 200, and the shape tracing measurement/scanning information of the preform 200. As a result, the learning input parameters 101a include at least one of the design drawing information of the preform 200, the shape image information of the preform 200, the dimensional information of the preform 200, and the shape tracing measurement/scanning information of the preform 200. Therefore, new control conditions 102b of the heating device 10 can be easily derived using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b.
 実施の形態1による機械学習装置40によれば、加熱装置10の熱環境情報は、加熱装置10の複数のヒータ14からプリフォーム200までの距離情報、加熱装置10の複数のヒータ14の配置位置・照射方向・照射角情報、加熱装置10の寸法情報、加熱装置10外への熱拡散情報、及び、加熱装置10の周辺温湿度情報の少なくともいずれか一つである。これにより、学習用入力パラメータ101aは、加熱装置10の複数のヒータ14からプリフォーム200までの距離情報、加熱装置10の複数のヒータ14の配置位置・照射方向・照射角情報、加熱装置10の寸法情報、加熱装置10外への熱拡散情報、及び、加熱装置10の周辺温湿度情報の少なくともいずれか一つを含む。従って、当該学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the first embodiment, the thermal environment information of the heating device 10 is at least one of the following: distance information from the heaters 14 of the heating device 10 to the preform 200; information on the position, irradiation direction, and irradiation angle of the heaters 14 of the heating device 10; dimensional information of the heating device 10; information on thermal diffusion to the outside of the heating device 10; and information on the ambient temperature and humidity of the heating device 10. As a result, the learning input parameters 101a include at least one of the following: distance information from the heaters 14 of the heating device 10 to the preform 200; information on the position, irradiation direction, and irradiation angle of the heaters 14 of the heating device 10; dimensional information of the heating device 10; information on thermal diffusion to the outside of the heating device 10; and information on the ambient temperature and humidity of the heating device 10. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b.
 実施の形態1による機械学習装置40によれば、加熱装置10は、加熱通路12内を有した加熱装置本体11と、送風装置17と、を有し、送風装置17は、送風機18と、送風機18から加熱通路12内にエアを送り込むための送風管19とを有している。また、学習用制御条件101bは、送風管19を流れるエアの流量である。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて、送風管19を流れるエアの流量である新規制御条件102bを得ることができる。従って、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the first embodiment, the heating device 10 has a heating device main body 11 having a heating passage 12, and an air blower 17, and the air blower 17 has a blower 18 and an air duct 19 for sending air from the blower 18 into the heating passage 12. The learning control condition 101b is the flow rate of air flowing through the air duct 19. This makes it possible to obtain a new control condition 102b, which is the flow rate of air flowing through the air duct 19, by using the learning model 45 that has learned the correlation between the learning input parameter 101a and the learning control condition 101b. Therefore, the new control condition 102b of the heating device 10 can be easily derived.
 実施の形態1による機械学習装置40によれば、加熱装置10は、加熱通路12内を有した加熱装置本体11と、加熱空間でプリフォーム200に回転運動をさせながらプリフォーム200を搬送する搬送装置30と、を有している。また、学習用制御条件101bは、搬送装置30の搬送速度、及び、プリフォーム200の回転運動の回転速度の少なくともいずれか一つである。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて、搬送装置本体31で搬送されるプリフォーム200の搬送速度、及び、プリフォーム200の回転運動の回転速度の少なくともいずれか一つである新規制御条件102bを得ることができる。従って、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the first embodiment, the heating device 10 has a heating device main body 11 having a heating passage 12, and a conveying device 30 that conveys the preform 200 while rotating the preform 200 in the heating space. The learning control condition 101b is at least one of the conveying speed of the conveying device 30 and the rotational speed of the rotational motion of the preform 200. As a result, a new control condition 102b, which is at least one of the conveying speed of the preform 200 conveyed by the conveying device main body 31 and the rotational speed of the rotational motion of the preform 200, can be obtained using a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control condition 102b of the heating device 10 can be easily derived.
 実施の形態1による機械学習装置40によれば、学習用制御条件101bは、加熱装置10の各ヒータ14の出力指令値である。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて、各ヒータ14の出力指令値である新規制御条件102bを得ることができる。従って、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the first embodiment, the learning control conditions 101b are output command values for each heater 14 of the heating device 10. This makes it possible to obtain new control conditions 102b, which are output command values for each heater 14, using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b for the heating device 10 can be easily derived.
 実施の形態1による情報処理装置50によれば、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータ102aに基づいて加熱装置10の新規制御条件102bを予測することができる。また、情報処理装置50は、予測用入力パラメータ102aを取得する情報取得部52と、新規制御条件102bを予測する情報予測部53と、を備えている。また、情報予測部53は、学習用入力パラメータ101aと学習用入力パラメータ101aに対応する加熱装置10の学習用制御条件101bとの相関関係を機械学習により学習した学習モデル45に予測用入力パラメータ102aを入力することで新規制御条件102bを予測する。また、学習用入力パラメータ101aは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成されている。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて新規制御条件102bを予測することができる。従って、学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。また、新規制御条件102bにて加熱装置を制御することで、プリフォーム200の加熱不良を防ぐことができ、適切な仕上がり寸法を有した製品を生産することができる。 According to the information processing device 50 of the first embodiment, the new control conditions 102b of the heating device 10 can be predicted based on the prediction input parameters 102a consisting of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. The information processing device 50 also includes an information acquisition unit 52 that acquires the prediction input parameters 102a, and an information prediction unit 53 that predicts the new control conditions 102b. The information prediction unit 53 also predicts the new control conditions 102b by inputting the prediction input parameters 102a to a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b of the heating device 10 corresponding to the learning input parameters 101a by machine learning. In addition, the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. This makes it possible to predict the new control conditions 102b using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45. In addition, by controlling the heating device under the new control conditions 102b, it is possible to prevent poor heating of the preform 200 and produce a product with appropriate finished dimensions.
 実施の形態1による機械学習方法によれば、プリフォーム200を加熱する加熱装置10の新規制御条件102bを予測するための学習モデル45を生成することができる。また、機械学習方法は、一つ以上の学習用データ46を記憶する学習用データ記憶工程と、一つ以上の学習用データ46に基づいて学習モデル45に学習させる機械学習工程と、学習済みの学習モデル45を記憶する学習済みモデル記憶工程と、を備える。また、各学習用データ46は、学習用入力パラメータ101aと、学習用入力パラメータ101aに対応する学習用制御条件101bとで構成されている。また、学習モデル45は、学習用データ46における学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習する。また、学習用入力パラメータ101aは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成されている。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を取得することができる。従って、取得した学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning method of the first embodiment, a learning model 45 for predicting new control conditions 102b of the heating device 10 for heating the preform 200 can be generated. The machine learning method includes a learning data storage process for storing one or more pieces of learning data 46, a machine learning process for training the learning model 45 based on the one or more pieces of learning data 46, and a trained model storage process for storing the trained learning model 45. Each piece of learning data 46 is composed of learning input parameters 101a and learning control conditions 101b corresponding to the learning input parameters 101a. The learning model 45 learns the correlation between the learning input parameters 101a and the learning control conditions 101b in the learning data 46. The learning input parameters 101a are composed of at least one of material information of the preform 200, shape information of the preform 200, initial temperature information of the preform 200, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10. This makes it possible to obtain a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, using the obtained learning model 45, new control conditions 102b for the heating device 10 can be easily derived.
 実施の形態1による制御条件予測方法によれば、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータ102aに基づいて加熱装置10の新規制御条件102bを予測することができる。また、制御条件予測方法は、予測用入力パラメータ102aを取得する予測用入力パラメータ取得工程と、予測用入力パラメータ取得工程により取得された予測用入力パラメータ102aに対応する新規制御条件102bを予測する予測工程と、を備えている。また、予測工程では、学習用入力パラメータ101aと学習用入力パラメータ101aに対応する加熱装置10の学習用制御条件101bとの相関関係を機械学習により学習した学習モデル45に予測用入力パラメータ102aを入力することで新規制御条件102bを予測する。また、学習用入力パラメータ101aは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成されている。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて新規制御条件102bを予測することができる。従って、学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the control condition prediction method of the first embodiment, the new control conditions 102b of the heating device 10 can be predicted based on the prediction input parameters 102a, which are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. The control condition prediction method also includes a prediction input parameter acquisition step for acquiring the prediction input parameters 102a, and a prediction step for predicting the new control conditions 102b corresponding to the prediction input parameters 102a acquired by the prediction input parameter acquisition step. In addition, in the prediction step, the new control conditions 102b are predicted by inputting the prediction input parameters 102a into a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b of the heating device 10 corresponding to the learning input parameters 101a by machine learning. In addition, the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. This makes it possible to predict the new control conditions 102b using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45.
 実施の形態2.
 図9は、実施の形態2による加熱装置と搬送装置とを示す概略図である。実施の形態2では、学習用制御条件101b、及び、新規制御条件102bとして、プリフォーム200に対して実施されるアニール処理の時間が含まれる点が、実施の形態1と相違する。即ち、実施の形態2における学習用制御条件101b、及び、新規制御条件102bは、実施の形態1の学習用制御条件101b、及び、新規制御条件102bにアニール処理の時間を付加したものである。また、加熱装置10は、2の加熱装置本体11と、5つの搬送装置本体31を有している点で、実施の形態1と相違する。その他の構成は実施の形態1と同様であるので説明を省略する。
Embodiment 2.
9 is a schematic diagram showing a heating device and a transport device according to embodiment 2. In embodiment 2, the learning control conditions 101b and the new control conditions 102b are different from embodiment 1 in that the learning control conditions 101b and the new control conditions 102b include the time of the annealing treatment performed on the preform 200. That is, the learning control conditions 101b and the new control conditions 102b in embodiment 2 are the learning control conditions 101b and the new control conditions 102b in embodiment 1 with the time of the annealing treatment added. In addition, the heating device 10 is different from embodiment 1 in that it has two heating device bodies 11 and five transport device bodies 31. The other configurations are the same as those in embodiment 1, so the description will be omitted.
 加熱装置10は、上流側に配置された第1加熱装置本体11aと、第1加熱装置本体11aの下流側に配置された第2加熱装置本体11bと、を有している。第1加熱装置本体11a及び第2加熱装置本体11bの具体的構成は、実施の形態1における加熱装置本体11の具体的構成と同様であるので説明を省略する。 The heating device 10 has a first heating device body 11a arranged on the upstream side and a second heating device body 11b arranged on the downstream side of the first heating device body 11a. The specific configurations of the first heating device body 11a and the second heating device body 11b are similar to the specific configuration of the heating device body 11 in embodiment 1, so a description thereof will be omitted.
 搬送装置30は、上流側搬送装置本体31aと、第1搬送装置本体31bと、中間搬送装置本体31cと、第2搬送装置本体31dと、下流側搬送装置本体31eと、を有している。上流側搬送装置本体31aと、第1搬送装置本体31bと、中間搬送装置本体31cと、第2搬送装置本体31dと、下流側搬送装置本体31eとの具体的構成は、実施の形態1における搬送装置本体31の具体的構成と同様であるので説明を省略する。 The conveying device 30 has an upstream conveying device body 31a, a first conveying device body 31b, an intermediate conveying device body 31c, a second conveying device body 31d, and a downstream conveying device body 31e. The specific configurations of the upstream conveying device body 31a, the first conveying device body 31b, the intermediate conveying device body 31c, the second conveying device body 31d, and the downstream conveying device body 31e are similar to the specific configuration of the conveying device body 31 in embodiment 1, so a description thereof will be omitted.
 上流側搬送装置本体31aと、第1搬送装置本体31bと、中間搬送装置本体31cと、第2搬送装置本体31dと、下流側搬送装置本体31eと、は、順に繋がるように配置されている。上流側搬送装置本体31aにて搬送されるプリフォーム200は、上流側搬送装置本体31aから第1搬送装置本体31b、中間搬送装置本体31c、第2搬送装置本体31d、及び、下流側搬送装置本体31eにて順に搬送される。 The upstream conveying device body 31a, the first conveying device body 31b, the intermediate conveying device body 31c, the second conveying device body 31d, and the downstream conveying device body 31e are arranged so as to be connected in sequence. The preform 200 conveyed by the upstream conveying device body 31a is conveyed in sequence from the upstream conveying device body 31a to the first conveying device body 31b, the intermediate conveying device body 31c, the second conveying device body 31d, and the downstream conveying device body 31e.
 第1搬送装置本体31bは、第1搬送装置本体31bに支持されたプリフォーム200が第1加熱装置本体11aの加熱通路12内を通過する位置に配置されている。第2搬送装置本体31dは、第2搬送装置本体31dに支持されたプリフォーム200が第2加熱装置本体11bの加熱通路12内を通過する位置に配置されている。 The first conveying device body 31b is disposed at a position where the preform 200 supported by the first conveying device body 31b passes through the heating passage 12 of the first heating device body 11a. The second conveying device body 31d is disposed at a position where the preform 200 supported by the second conveying device body 31d passes through the heating passage 12 of the second heating device body 11b.
 本実施の形態では、プリフォーム200に対してアニール処理を実施するために、加熱通路12内からプリフォーム200を外した状態で放置する。具体的には、中間搬送装置本体31c上にプリフォーム200が配置されている状態で、中間搬送装置本体31cの搬送速度を遅くする、又は、中間搬送装置本体31cの搬送を一時的に停止するといった制御をする。 In this embodiment, in order to perform an annealing process on the preform 200, the preform 200 is removed from the heating passage 12 and left as it is. Specifically, with the preform 200 placed on the intermediate conveying device body 31c, control is performed such as slowing down the conveying speed of the intermediate conveying device body 31c or temporarily stopping the conveying of the intermediate conveying device body 31c.
 従って、新規制御条件102bとしてプリフォーム200のアニール処理の時間、即ち加熱空間内からプリフォーム200を外す時間が出力されると、その時間に応じて、制御装置60は、中間搬送装置本体31cの搬送速度を遅くする、又は、中間搬送装置本体31cの搬送を一時的に停止するといった制御を実施する。制御装置60は、中間搬送装置本体31c上のプリフォーム200を、アニール処理の時間に相当する時間だけ中間搬送装置本体31c上に滞留させる。 Therefore, when the time for annealing the preform 200, i.e., the time for removing the preform 200 from the heating space, is output as the new control condition 102b, the control device 60 performs control such as slowing down the conveying speed of the intermediate conveying device body 31c or temporarily stopping the conveying of the intermediate conveying device body 31c according to that time. The control device 60 causes the preform 200 on the intermediate conveying device body 31c to remain on the intermediate conveying device body 31c for a time equivalent to the time for annealing.
 即ち、プリフォーム200には、加熱装置10の加熱空間外に配置されることでアニール処理が実施される。これにより、プリフォーム200に対して実施されるアニール処理の時間を提供することができる。 In other words, the preform 200 is placed outside the heating space of the heating device 10, and the annealing process is performed on the preform 200. This provides time for the annealing process to be performed on the preform 200.
 実施の形態2による機械学習装置40によれば、学習用制御条件101bは、プリフォーム200に対して実施されるアニール処理の時間である。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて、適切なアニール処理の時間を得ることができる。従って、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the machine learning device 40 according to the second embodiment, the learning control conditions 101b are the time of the annealing treatment performed on the preform 200. This allows the appropriate annealing treatment time to be obtained using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, new control conditions 102b for the heating device 10 can be easily derived.
 なお、本開示は、実施の形態1及び実施の形態2に係る情報処理装置50、学習用制御条件予測方法、又は、学習用制御条件予測プログラムの態様によるもののみならず、学習用制御条件101bを推論するために用いられる推論装置、推論方法、又は、推論プログラムの態様で提供することもできる。 The present disclosure can be provided not only in the form of the information processing device 50, the learning control condition prediction method, or the learning control condition prediction program according to the first and second embodiments, but also in the form of an inference device, an inference method, or an inference program used to infer the learning control condition 101b.
 その場合、推論装置、推論方法、又は、推論プログラムとしては、メモリと、プロセッサとを含み、このうちのプロセッサが、一連の処理を実行するものとすることができる。当該一連の処理は、予測用入力パラメータ102aを取得する情報取得処理である情報取得工程と、取得した学習用入力パラメータ101aに基づいて新規制御条件102bを推論する推論処理である推論工程と、を有する。 In this case, the inference device, inference method, or inference program may include a memory and a processor, and the processor may execute a series of processes. The series of processes includes an information acquisition process that acquires prediction input parameters 102a, and an inference process that infers new control conditions 102b based on the acquired learning input parameters 101a.
 推論装置、推論方法、又は、推論プログラムの態様で提供することで、加熱システム1を実装する場合に比して簡単に種々の装置への適用が可能となる。推論装置、推論方法、又は、推論プログラムが新規制御条件102bを推論する際、実施の形態1における情報処理装置50にて機械学習方法により生成された学習済みの学習モデル45を用いて、情報予測部53が実施する予測手法を適用してもよいことは、当業者にとって当然に理解され得るものである。 By providing the inference device, inference method, or inference program, it is possible to more easily apply the inference device, inference method, or inference program to various devices compared to implementing the heating system 1. It will be obvious to those skilled in the art that when the inference device, inference method, or inference program infers the new control condition 102b, the prediction method implemented by the information prediction unit 53 may be applied using the trained learning model 45 generated by the machine learning method in the information processing device 50 in embodiment 1.
 実施の形態1及び実施の形態2による推論装置によれば、メモリと、プロセッサとを備え、プリフォーム200を加熱する加熱装置10の新規制御条件102bを推論することができる。また、プロセッサは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータ102aを取得する情報取得処理と、情報取得処理にて取得した予測用入力パラメータ102aに基づいて加熱装置10の新規制御条件102bを推論する推論処理と、を実行する。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて新規制御条件102bを予測することができる。従って、学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 The inference device according to the first and second embodiments includes a memory and a processor, and can infer new control conditions 102b of the heating device 10 that heats the preform 200. The processor also executes an information acquisition process to acquire prediction input parameters 102a consisting of at least one of material information of the preform 200, shape information of the preform 200, initial temperature information of the preform 200, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10, and an inference process to infer new control conditions 102b of the heating device 10 based on the prediction input parameters 102a acquired in the information acquisition process. This makes it possible to predict new control conditions 102b using a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45.
 実施の形態1及び実施の形態2による推論方法によれば、メモリと、プロセッサとを備える推論装置により実行されて、プリフォーム200を加熱する加熱装置10の新規制御条件102bを推論する推論方法である。また、プロセッサは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータ102aを取得する情報取得工程と、情報取得工程により取得された予測用入力パラメータ102aに対応する新規制御条件102bを予測する予測工程と、を実行する。また、予測工程では、学習用入力パラメータ101aと学習用入力パラメータ101aに対応する加熱装置10の学習用制御条件101bとの相関関係を機械学習により学習した学習モデル45に予測用入力パラメータ102aを入力することで新規制御条件を予測する。また、学習用入力パラメータ101aは、プリフォーム200の材質情報、プリフォーム200の形状情報、プリフォーム200の初期温度情報、加熱装置10の目標温度分布情報、及び、加熱装置10の熱環境情報の少なくともいずれか一つで構成されている。これにより、学習用入力パラメータ101aと学習用制御条件101bとの相関関係を学習した学習モデル45を用いて新規制御条件102bを予測することができる。従って、学習モデル45を用いて、加熱装置10の新規制御条件102bを容易に導き出すことができる。 According to the inference method of the first and second embodiments, the inference method is executed by an inference device having a memory and a processor to infer new control conditions 102b of the heating device 10 that heats the preform 200. The processor also executes an information acquisition step of acquiring prediction input parameters 102a consisting of at least one of material information of the preform 200, shape information of the preform 200, initial temperature information of the preform 200, target temperature distribution information of the heating device 10, and thermal environment information of the heating device 10, and a prediction step of predicting new control conditions 102b corresponding to the prediction input parameters 102a acquired by the information acquisition step. In addition, in the prediction step, the new control conditions are predicted by inputting the prediction input parameters 102a into a learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b of the heating device 10 corresponding to the learning input parameters 101a by machine learning. In addition, the learning input parameters 101a are composed of at least one of the material information of the preform 200, the shape information of the preform 200, the initial temperature information of the preform 200, the target temperature distribution information of the heating device 10, and the thermal environment information of the heating device 10. This makes it possible to predict the new control conditions 102b using the learning model 45 that has learned the correlation between the learning input parameters 101a and the learning control conditions 101b. Therefore, the new control conditions 102b of the heating device 10 can be easily derived using the learning model 45.
 なお、実施の形態1及び実施の形態2における加熱システム1は、プリフォーム200を加熱している。しかし、これに限られたものではない。加熱システム1は、多様な温度制御対象に適応したシステムとすることができる。その際、入力パラメータ100a、及び、制御条件100bは、適用される加熱装置と温度制御対象とに基づいて好適に選択することができる。 The heating system 1 in the first and second embodiments heats the preform 200. However, this is not limited to this. The heating system 1 can be a system adapted to various temperature control targets. In this case, the input parameters 100a and the control conditions 100b can be suitably selected based on the heating device and the temperature control target to be applied.
 また、実施の形態1及び実施の形態2の加熱システム1では、学習用制御条件101b、及び、新規制御条件102bは、送風管19を流れるエアの流量、搬送装置30の搬送速度、プリフォーム200の回転運動の回転速度、プリフォーム200に対して実施されるアニール処理の時間、及び、複数のヒータ14の出力指令値である。しかし、これに限られたものではない。加熱システム1では、適宜な制御条件を設定することができる。 Furthermore, in the heating system 1 of the first and second embodiments, the learning control conditions 101b and the new control conditions 102b are the flow rate of air flowing through the air blower duct 19, the conveying speed of the conveying device 30, the rotational speed of the rotational motion of the preform 200, the time of the annealing treatment performed on the preform 200, and the output command values of the multiple heaters 14. However, they are not limited to this. In the heating system 1, appropriate control conditions can be set.
 また、実施の形態1及び実施の形態2では、機械学習装置40、情報処理装置50、及び、制御装置60は、別々の装置で構成されている。しかし、これに限られたものではない。例えば、機械学習装置40、情報処理装置50、及び、制御装置60が、単一の装置で構成されていてもよい。また、当該3つの装置のうち任意の2つの装置が、単一の装置で構成されていてもよい。 Furthermore, in the first and second embodiments, the machine learning device 40, the information processing device 50, and the control device 60 are configured as separate devices. However, this is not limited to this. For example, the machine learning device 40, the information processing device 50, and the control device 60 may be configured as a single device. Furthermore, any two of the three devices may be configured as a single device.
 また、実施の形態1及び実施の形態2の加熱システム1では、機械学習装置40で生成された学習モデル45は、ネットワーク70を介して情報処理装置50に伝達され、情報処理装置50で予測された新規制御条件102bは、ネットワーク70を介して制御装置60に伝達されている。しかし、これに限られたものではない。機械学習装置40、及び、情報処理装置50は、それぞれ加熱システム1にネットワーク70を介して接続されていなくてもよい。例えば、機械学習装置40と情報処理装置50とがそれぞれ独立して配置してもよい。この場合、機械学習装置40で生成された学習モデル45は、人手を介して情報処理装置50に伝達されてもよい。また、情報処理装置50で予測された新規制御条件102bは、人手を介して制御装置60に伝達されてもよい。 Furthermore, in the heating system 1 of the first and second embodiments, the learning model 45 generated by the machine learning device 40 is transmitted to the information processing device 50 via the network 70, and the new control condition 102b predicted by the information processing device 50 is transmitted to the control device 60 via the network 70. However, this is not limited to this. The machine learning device 40 and the information processing device 50 do not have to be connected to the heating system 1 via the network 70. For example, the machine learning device 40 and the information processing device 50 may be arranged independently. In this case, the learning model 45 generated by the machine learning device 40 may be transmitted to the information processing device 50 manually. Furthermore, the new control condition 102b predicted by the information processing device 50 may be transmitted to the control device 60 manually.
 また、実施の形態1及び実施の形態2では、機械学習制御部41による機械学習を実現する学習モデル45として、ニューラルネットワークを採用している。しかし、これに限られたものではない。学習モデル45には、他の機械学習のモデルを採用してもよい。他の機械学習のモデルとしては、例えば、決定木、回帰木等のツリー型、バギング、ブースティング等のアンサンブル学習、再帰型ニューラルネットワーク、畳み込みニューラルネットワーク、LSTM等のニューラルネット型(ディープラーニングを含む)、階層型クラスタリング、非階層型クラスタリング、k近傍法、k平均法等のクラスタリング型、主成分分析、因子分析、ロジスティク回帰等の多変量解析、サポートベクターマシン等が挙げられる。 Furthermore, in the first and second embodiments, a neural network is adopted as the learning model 45 that realizes machine learning by the machine learning control unit 41. However, this is not limited to this. Other machine learning models may be adopted as the learning model 45. Examples of other machine learning models include tree types such as decision trees and regression trees, ensemble learning such as bagging and boosting, recurrent neural networks, convolutional neural networks, neural net types (including deep learning) such as LSTM, clustering types such as hierarchical clustering, non-hierarchical clustering, k-nearest neighbors, and k-means, multivariate analyses such as principal component analysis, factor analysis, and logistic regression, and support vector machines.
 また、実施の形態1及び実施の形態2では、送風装置17は、送風源として送風機18を有している。しかし、これに限られたものではない。送風源としては、例えば高圧のエアを蓄えた圧力供給源であってもよい。この場合、圧力供給源に設けられた流量弁等などを制御することで、圧力供給源から送風管19に送り込まれて流れるエアの流量を制御することができる。 In addition, in the first and second embodiments, the air blowing device 17 has a blower 18 as an air blowing source. However, this is not limited to this. The air blowing source may be, for example, a pressure supply source that stores high-pressure air. In this case, the flow rate of air sent from the pressure supply source to the air blower duct 19 can be controlled by controlling a flow valve or the like provided in the pressure supply source.
 また、実施の形態2では、中間搬送装置本体31c上のプリフォーム200に対してアニール処理を実施している。しかし、これに限られたものではない。例えば、下流側搬送装置本体31e上のプリフォーム200に対してアニール処理を実施してもよい。この場合、下流側搬送装置本体31eを制御することでアニール処理の時間を下流側搬送装置本体31e上のプリフォーム200に与えることができる。 Furthermore, in the second embodiment, the annealing process is performed on the preform 200 on the intermediate conveying device body 31c. However, this is not limited to this. For example, the annealing process may be performed on the preform 200 on the downstream conveying device body 31e. In this case, the annealing process time can be given to the preform 200 on the downstream conveying device body 31e by controlling the downstream conveying device body 31e.
 また、実施の形態2では、5つの搬送装置本体31と、2つの加熱装置本体11とを有している。しかし、これに限られたものではない。搬送装置本体31、及び、加熱装置本体11の数は適宜設定することができる。さらに、アニール処理は、いずれの搬送装置本体31上のプリフォーム200に対して実施されてもよい。 Furthermore, in the second embodiment, there are five conveying device bodies 31 and two heating device bodies 11. However, this is not limited to this. The number of conveying device bodies 31 and heating device bodies 11 can be set appropriately. Furthermore, the annealing process may be performed on the preforms 200 on any of the conveying device bodies 31.
 本開示は上述した実施形態に制約されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本発明の技術思想に含まれるものである。 This disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. All such modifications are within the scope of the technical concept of the present invention.
 以下、本開示の諸態様を付記としてまとめて記載する。 The various aspects of this disclosure are summarized below as appendices.
(付記1)
 温度制御対象を加熱する加熱装置の制御条件を予測するための学習モデルを生成する機械学習装置であって、
 一つ以上の学習用データを記憶する学習用データ記憶部と、
 前記一つ以上の学習用データに基づいて前記学習モデルに学習させる機械学習制御部と、
 学習済みの前記学習モデルを記憶する機械学習モデル記憶部と、
を備え、
 各前記学習用データは、学習用入力パラメータと、前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件とで構成され、
 前記学習モデルは、前記学習用データにおける前記学習用入力パラメータと前記学習用制御条件との相関関係を学習し、
 前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
機械学習装置。
(付記2)
 前記材質情報は、前記温度制御対象の光透過・反射・屈折率情報、前記温度制御対象の色の明度情報、前記温度制御対象の色情報、前記温度制御対象の密度情報、前記温度制御対象の比熱情報、及び、前記温度制御対象の熱伝導率情報の少なくともいずれか一つである、
付記1に記載の機械学習装置。
(付記3)
 前記形状情報は、前記温度制御対象の設計図面情報、前記温度制御対象の形状イメージ情報、前記温度制御対象の寸法情報、及び、前記温度制御対象の形状トレース測定・スキャニング情報の少なくともいずれか一つである、
付記1又は付記2に記載の機械学習装置。
(付記4)
 前記熱環境情報は、前記加熱装置の熱源から前記温度制御対象まで距離情報、前記加熱装置の前記熱源の配置位置・照射方向・照射角情報、前記加熱装置の寸法情報、前記加熱装置外への熱拡散情報、及び、前記加熱装置の周辺温湿度情報の少なくともいずれか一つである、
付記1から付記3のいずれか一項に記載の機械学習装置。
(付記5)
 前記加熱装置は、加熱空間を画定する加熱装置本体と、送風装置と、を有し、
 前記送風装置は、送風源と、前記送風源から前記加熱空間にエアを送り込むための送風管と、を有するものであって、
 前記学習用制御条件は、前記送風管を流れる前記エアの流量である、
付記1から付記4のいずれか一項に記載の機械学習装置。
(付記6)
 前記加熱装置は、加熱空間を画定する加熱装置本体と、前記加熱空間内で前記温度制御対象に回転運動をさせながら前記温度制御対象を搬送する搬送装置と、を有するものであって、
 前記学習用制御条件は、前記搬送装置の搬送速度、及び、前記温度制御対象の前記回転運動の回転速度の少なくともいずれか一つである、
付記1から付記4のいずれか一項に記載の機械学習装置。
(付記7)
 前記学習用制御条件は、前記温度制御対象に対して実施されるアニール処理の時間である、
付記1から付記4のいずれか一項に記載の機械学習装置。
(付記8)
 前記学習用制御条件は、前記加熱装置の熱源の出力指令値である、
付記1から付記4のいずれか一項に記載の機械学習装置。
(付記9)
 温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータに基づいて前記加熱装置の制御条件を予測する情報処理装置であって、
 前記予測用入力パラメータを取得する情報取得部と、
 前記制御条件を予測する情報予測部と、
を備え、
 前記情報予測部は、学習用入力パラメータと前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件との相関関係を機械学習により学習した学習モデルに前記予測用入力パラメータを入力することで前記制御条件を予測し、
 前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
情報処理装置。
(付記10)
 メモリと、プロセッサとを備え、温度制御対象を加熱する加熱装置の制御条件を推論する推論装置であって、
 前記プロセッサは、
 前記温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータを取得する情報取得処理と、
 前記情報取得処理にて取得した前記予測用入力パラメータに基づいて前記加熱装置の前記制御条件を推論する推論処理と、を実行する、
推論装置。
(付記11)
 温度制御対象を加熱する加熱装置の制御条件を予測するための学習モデルを生成する機械学習方法であって、
 一つ以上の学習用データを記憶する学習用データ記憶工程と、
 前記一つ以上の学習用データに基づいて前記学習モデルに学習させる機械学習工程と、
 学習済みの前記学習モデルを記憶する学習済みモデル記憶工程と、
を備え、
 各前記学習用データは、学習用入力パラメータと、前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件とで構成され、
 前記学習モデルは、前記学習用データにおける前記学習用入力パラメータと前記学習用制御条件との相関関係を学習し、
 前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
機械学習方法。
(付記12)
 温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータに基づいて前記加熱装置の制御条件を予測する制御条件予測方法であって、
 前記予測用入力パラメータを取得する予測用入力パラメータ取得工程と、
 前記予測用入力パラメータ取得工程により取得された前記予測用入力パラメータに対応する前記制御条件を予測する予測工程と、を備え、
 前記予測工程では、学習用入力パラメータと前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件との相関関係を機械学習により学習した学習モデルに前記予測用入力パラメータを入力することで前記制御条件を予測し、
 前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
制御条件予測方法。
(付記13)
 メモリと、プロセッサとを備える推論装置により実行されて、温度制御対象を加熱する加熱装置の制御条件を推論する推論方法であって、
 前記プロセッサは、
 前記温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータを取得する情報取得工程と、
 前記情報取得工程により取得された前記予測用入力パラメータに対応する前記制御条件を予測する予測工程と、を実行し、
 前記予測工程では、学習用入力パラメータと前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件との相関関係を機械学習により学習した学習モデルに前記予測用入力パラメータを入力することで前記制御条件を予測し、
 前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
推論方法。
(Appendix 1)
A machine learning device that generates a learning model for predicting a control condition of a heating device that heats a temperature control target,
a learning data storage unit that stores one or more pieces of learning data;
a machine learning control unit that causes the learning model to learn based on the one or more pieces of learning data;
A machine learning model storage unit that stores the learned learning model;
Equipped with
Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters,
the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
Machine learning device.
(Appendix 2)
The material information is at least one of light transmission/reflection/refractive index information of the temperature control object, color brightness information of the temperature control object, color information of the temperature control object, density information of the temperature control object, specific heat information of the temperature control object, and thermal conductivity information of the temperature control object.
2. The machine learning device of claim 1.
(Appendix 3)
The shape information is at least one of design drawing information of the temperature control object, shape image information of the temperature control object, dimensional information of the temperature control object, and shape tracing measurement/scanning information of the temperature control object.
3. The machine learning device according to claim 1 or 2.
(Appendix 4)
The thermal environment information is at least one of distance information from a heat source of the heating device to the temperature control target, information on the arrangement position, irradiation direction, and irradiation angle of the heat source of the heating device, dimensional information of the heating device, information on thermal diffusion outside the heating device, and ambient temperature and humidity information of the heating device.
4. The machine learning device according to claim 1 .
(Appendix 5)
The heating device has a heating device body that defines a heating space and a blower device,
The air blowing device has an air blowing source and an air blowing tube for blowing air from the air blowing source into the heating space,
The learning control condition is a flow rate of the air flowing through the air duct.
5. The machine learning device according to claim 1 .
(Appendix 6)
The heating device includes a heating device body that defines a heating space, and a conveying device that conveys the temperature-control target while rotating the temperature-control target within the heating space,
The learning control condition is at least one of a transport speed of the transport device and a rotation speed of the rotational motion of the temperature control target.
5. The machine learning device according to claim 1 .
(Appendix 7)
The learning control condition is a time of an annealing treatment performed on the temperature control target.
5. The machine learning device according to claim 1 .
(Appendix 8)
The learning control condition is an output command value of a heat source of the heating device.
5. The machine learning device according to claim 1 .
(Appendix 9)
An information processing device that predicts a control condition of a heating device based on prediction input parameters constituted by at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of a heating device, and thermal environment information of the heating device,
an information acquisition unit that acquires the prediction input parameters;
An information prediction unit that predicts the control condition;
Equipped with
the information prediction unit predicts the control condition by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
Information processing device.
(Appendix 10)
An inference device that includes a memory and a processor and infers a control condition of a heating device that heats a temperature control target,
The processor,
an information acquisition process for acquiring prediction input parameters including at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device;
an inference process for inferring the control condition of the heating device based on the input parameters for prediction acquired in the information acquisition process;
Inference device.
(Appendix 11)
A machine learning method for generating a learning model for predicting a control condition of a heating device that heats a temperature control target, comprising:
a learning data storage step of storing one or more learning data;
a machine learning process for training the learning model based on the one or more pieces of learning data;
A trained model storage step of storing the trained model;
Equipped with
Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters,
the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
Machine learning methods.
(Appendix 12)
A control condition prediction method for predicting a control condition of a heating device based on prediction input parameters including at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of a heating device, and thermal environment information of the heating device,
a prediction input parameter acquisition step of acquiring the prediction input parameters;
a prediction step of predicting the control condition corresponding to the input parameter for prediction acquired in the input parameter for prediction acquisition step,
In the prediction step, the control condition is predicted by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
Control condition prediction methods.
(Appendix 13)
An inference method for inferring a control condition of a heating device that heats a temperature-controlled object, the method being executed by an inference device having a memory and a processor, the method comprising:
The processor,
an information acquisition step of acquiring prediction input parameters including at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device;
a prediction step of predicting the control condition corresponding to the input parameter for prediction acquired by the information acquisition step;
In the prediction step, the control condition is predicted by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
Inference methods.
 1 加熱システム、10 加熱装置、11 加熱装置本体、11a 第1加熱装置本体、11b 第2加熱装置本体、12 加熱通路(加熱空間)、14 ヒータ(熱源)、17 送風装置、18 送風機(送風源)、19 送風管、30 搬送装置、31 搬送装置本体、31a 上流側搬送装置本体、31b 第1搬送装置本体、31c 中間搬送装置本体、31d 第2搬送装置本体、31e 下流側搬送装置本体、32 搬送制御部、40 機械学習装置、41 機械学習制御部、42 機械学習通信部、43 学習用データ記憶部、44 機械学習モデル記憶部、45 学習モデル、45a 入力層、45b 中間層、45c 出力層、46 学習用データ、50 情報処理装置、51 情報処理制御部、52 情報取得部、53 情報予測部、54 出力処理部、55 情報処理モデル記憶部、56 情報処理通信部、60 制御装置、70 ネットワーク、100a 入力パラメータ、100b 制御条件、101a 学習用入力パラメータ、101b 学習用制御条件、101c 学習結果制御条件、102a 予測用入力パラメータ、102b 新規制御条件、200 プリフォーム(温度制御対象)、900 コンピュータ、910 バス、912 プロセッサ、914 メモリ、916 入力デバイス、917 出力デバイス、918 表示デバイス、920 ストレージ装置、922 通信インターフェース部、924 外部機器インターフェース部、926 入出力デバイスインターフェース部、928 メディア入出力部、930 プログラム、940 ネットワーク、950 外部機器、960 入出力デバイス、970 メディア。 1 heating system, 10 heating device, 11 heating device main body, 11a first heating device main body, 11b second heating device main body, 12 heating passage (heating space), 14 heater (heat source), 17 blower, 18 blower (air source), 19 air duct, 30 conveying device, 31 conveying device main body, 31a upstream conveying device main body, 31b first conveying device main body, 31c intermediate conveying device main body, 31d second conveying device main body , 31e downstream conveying device main body, 32 conveying control unit, 40 machine learning device, 41 machine learning control unit, 42 machine learning communication unit, 43 learning data storage unit, 44 machine learning model storage unit, 45 learning model, 45a input layer, 45b intermediate layer, 45c output layer, 46 learning data, 50 information processing device, 51 information processing control unit, 52 information acquisition unit, 53 information prediction unit, 54 output processing unit, 55 Information processing model storage unit, 56 information processing communication unit, 60 control device, 70 network, 100a input parameters, 100b control conditions, 101a learning input parameters, 101b learning control conditions, 101c learning result control conditions, 102a prediction input parameters, 102b new control conditions, 200 preform (temperature control target), 900 computer, 910 bus, 912 processor, 914 memory, 916 input device, 917 output device, 918 display device, 920 storage device, 922 communication interface unit, 924 external device interface unit, 926 input/output device interface unit, 928 media input/output unit, 930 program, 940 network, 950 external device, 960 input/output device, 970 media.

Claims (13)

  1.  温度制御対象を加熱する加熱装置の制御条件を予測するための学習モデルを生成する機械学習装置であって、
     一つ以上の学習用データを記憶する学習用データ記憶部と、
     前記一つ以上の学習用データに基づいて前記学習モデルに学習させる機械学習制御部と、
     学習済みの前記学習モデルを記憶する機械学習モデル記憶部と、
    を備え、
     各前記学習用データは、学習用入力パラメータと、前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件とで構成され、
     前記学習モデルは、前記学習用データにおける前記学習用入力パラメータと前記学習用制御条件との相関関係を学習し、
     前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
    機械学習装置。
    A machine learning device that generates a learning model for predicting a control condition of a heating device that heats a temperature control target,
    a learning data storage unit that stores one or more pieces of learning data;
    a machine learning control unit that causes the learning model to learn based on the one or more pieces of learning data;
    A machine learning model storage unit that stores the learned learning model;
    Equipped with
    Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters,
    the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
    The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
    Machine learning device.
  2.  前記材質情報は、前記温度制御対象の光透過・反射・屈折率情報、前記温度制御対象の色の明度情報、前記温度制御対象の色情報、前記温度制御対象の密度情報、前記温度制御対象の比熱情報、及び、前記温度制御対象の熱伝導率情報の少なくともいずれか一つである、
    請求項1に記載の機械学習装置。
    The material information is at least one of light transmission/reflection/refractive index information of the temperature control object, color brightness information of the temperature control object, color information of the temperature control object, density information of the temperature control object, specific heat information of the temperature control object, and thermal conductivity information of the temperature control object.
    The machine learning device according to claim 1 .
  3.  前記形状情報は、前記温度制御対象の設計図面情報、前記温度制御対象の形状イメージ情報、前記温度制御対象の寸法情報、及び、前記対象の形状トレース測定・スキャニング情報の少なくともいずれか一つである、
    請求項1に記載の機械学習装置。
    The shape information is at least one of design drawing information of the temperature control object, shape image information of the temperature control object, dimensional information of the temperature control object, and shape tracing measurement/scanning information of the object.
    The machine learning device according to claim 1 .
  4.  前記熱環境情報は、前記加熱装置の熱源から前記温度制御対象まで距離情報、前記加熱装置の前記熱源の配置位置・照射方向・照射角情報、前記加熱装置の寸法情報、前記加熱装置外への熱拡散情報、及び、前記加熱装置の周辺温湿度情報の少なくともいずれか一つである、
    請求項1に記載の機械学習装置。
    The thermal environment information is at least one of distance information from a heat source of the heating device to the temperature control target, information on the arrangement position, irradiation direction, and irradiation angle of the heat source of the heating device, dimensional information of the heating device, information on thermal diffusion outside the heating device, and ambient temperature and humidity information of the heating device.
    The machine learning device according to claim 1 .
  5.  前記加熱装置は、加熱空間を画定する加熱装置本体と、送風装置と、を有し、
     前記送風装置は、送風源と、前記送風源から前記加熱空間にエアを送り込むための送風管と、を有するものであって、
     前記学習用制御条件は、前記送風管を流れる前記エアの流量である、
    請求項1に記載の機械学習装置。
    The heating device has a heating device body that defines a heating space and a blower device,
    The air blowing device has an air blowing source and an air blowing tube for blowing air from the air blowing source into the heating space,
    The learning control condition is a flow rate of the air flowing through the air duct.
    The machine learning device according to claim 1 .
  6.  前記加熱装置は、加熱空間を画定する加熱装置本体と、前記加熱空間内で前記温度制御対象に回転運動をさせながら前記温度制御対象を搬送する搬送装置と、を有するものであって、
     前記学習用制御条件は、前記搬送装置の搬送速度、及び、前記温度制御対象の前記回転運動の回転速度の少なくともいずれか一つである、
    請求項1に記載の機械学習装置。
    The heating device includes a heating device body that defines a heating space, and a conveying device that conveys the temperature-control target while rotating the temperature-control target within the heating space,
    The learning control condition is at least one of a transport speed of the transport device and a rotation speed of the rotational motion of the temperature control target.
    The machine learning device according to claim 1 .
  7.  前記学習用制御条件は、前記温度制御対象に対して実施されるアニール処理の時間である、
    請求項1に記載の機械学習装置。
    The learning control condition is a time of an annealing treatment performed on the temperature control target.
    The machine learning device according to claim 1 .
  8.  前記学習用制御条件は、前記加熱装置の熱源の出力指令値である、
    請求項1に記載の機械学習装置。
    The learning control condition is an output command value of a heat source of the heating device.
    The machine learning device according to claim 1 .
  9.  温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータに基づいて前記加熱装置の制御条件を予測する情報処理装置であって、
     前記予測用入力パラメータを取得する情報取得部と、
     前記制御条件を予測する情報予測部と、
    を備え、
     前記情報予測部は、学習用入力パラメータと前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件との相関関係を機械学習により学習した学習モデルに前記予測用入力パラメータを入力することで前記制御条件を予測し、
     前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
    情報処理装置。
    An information processing device that predicts a control condition of a heating device based on prediction input parameters constituted by at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of a heating device, and thermal environment information of the heating device,
    an information acquisition unit that acquires the prediction input parameters;
    An information prediction unit that predicts the control condition;
    Equipped with
    the information prediction unit predicts the control condition by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
    The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
    Information processing device.
  10.  メモリと、プロセッサとを備え、温度制御対象を加熱する加熱装置の制御条件を推論する推論装置であって、
     前記プロセッサは、
     前記温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータを取得する情報取得処理と、
     前記情報取得処理にて取得した前記予測用入力パラメータに基づいて前記加熱装置の前記制御条件を推論する推論処理と、を実行する、
    推論装置。
    An inference device that includes a memory and a processor and infers a control condition of a heating device that heats a temperature control target,
    The processor,
    an information acquisition process for acquiring prediction input parameters including at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device;
    an inference process for inferring the control condition of the heating device based on the input parameters for prediction acquired in the information acquisition process;
    Inference device.
  11.  温度制御対象を加熱する加熱装置の制御条件を予測するための学習モデルを生成する機械学習方法であって、
     一つ以上の学習用データを記憶する学習用データ記憶工程と、
     前記一つ以上の学習用データに基づいて前記学習モデルに学習させる機械学習工程と、
     学習済みの前記学習モデルを記憶する学習済みモデル記憶工程と、
    を備え、
     各前記学習用データは、学習用入力パラメータと、前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件とで構成され、
     前記学習モデルは、前記学習用データにおける前記学習用入力パラメータと前記学習用制御条件との相関関係を学習し、
     前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
    機械学習方法。
    A machine learning method for generating a learning model for predicting a control condition of a heating device that heats a temperature control target, comprising:
    a learning data storage step of storing one or more learning data;
    a machine learning process for training the learning model based on the one or more pieces of learning data;
    A trained model storage step of storing the trained model;
    Equipped with
    Each of the learning data is composed of learning input parameters and learning control conditions, which are control conditions of the heating device corresponding to the learning input parameters,
    the learning model learns a correlation between the learning input parameters in the learning data and the learning control conditions;
    The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
    Machine learning methods.
  12.  温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータに基づいて前記加熱装置の制御条件を予測する制御条件予測方法であって、
     前記予測用入力パラメータを取得する予測用入力パラメータ取得工程と、
     前記予測用入力パラメータ取得工程により取得された前記予測用入力パラメータに対応する前記制御条件を予測する予測工程と、を備え、
     前記予測工程では、学習用入力パラメータと前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件との相関関係を機械学習により学習した学習モデルに前記予測用入力パラメータを入力することで前記制御条件を予測し、
     前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
    制御条件予測方法。
    A control condition prediction method for predicting a control condition of a heating device based on prediction input parameters including at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of a heating device, and thermal environment information of the heating device, comprising:
    a prediction input parameter acquisition step of acquiring the prediction input parameters;
    a prediction step of predicting the control condition corresponding to the input parameter for prediction acquired in the input parameter for prediction acquisition step,
    In the prediction step, the control condition is predicted by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
    The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
    Control condition prediction methods.
  13.  メモリと、プロセッサとを備える推論装置により実行されて、温度制御対象を加熱する加熱装置の制御条件を推論する推論方法であって、
     前記プロセッサは、
     前記温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成された予測用入力パラメータを取得する情報取得工程と、
     前記情報取得工程により取得された前記予測用入力パラメータに対応する前記制御条件を予測する予測工程と、を実行し、
     前記予測工程では、学習用入力パラメータと前記学習用入力パラメータに対応する加熱装置の制御条件である学習用制御条件との相関関係を機械学習により学習した学習モデルに前記予測用入力パラメータを入力することで前記制御条件を予測し、
     前記学習用入力パラメータは、温度制御対象の材質情報、前記温度制御対象の形状情報、前記温度制御対象の初期温度情報、前記加熱装置の目標温度分布情報、及び、前記加熱装置の熱環境情報の少なくともいずれか一つで構成されている、
    推論方法。

     
    An inference method for inferring a control condition of a heating device that heats a temperature-controlled object, the method being executed by an inference device having a memory and a processor, the method comprising:
    The processor,
    an information acquisition step of acquiring prediction input parameters including at least one of material information of the temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device;
    a prediction step of predicting the control condition corresponding to the input parameter for prediction acquired by the information acquisition step;
    In the prediction step, the control condition is predicted by inputting the prediction input parameters into a learning model that has learned, by machine learning, a correlation between a learning input parameter and a learning control condition, which is a control condition of the heating device corresponding to the learning input parameter;
    The learning input parameters are composed of at least one of material information of a temperature control object, shape information of the temperature control object, initial temperature information of the temperature control object, target temperature distribution information of the heating device, and thermal environment information of the heating device.
    Inference methods.

PCT/JP2023/036657 2022-10-07 2023-10-07 Machine learning device, information processing device, reasoning device, machine learning method, control conditions prediction method, and reasoning method WO2024075852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022162815A JP2024055692A (en) 2022-10-07 2022-10-07 Machine learning device, information processing device, inference device, machine learning method, control condition prediction method, and inference method
JP2022-162815 2022-10-07

Publications (1)

Publication Number Publication Date
WO2024075852A1 true WO2024075852A1 (en) 2024-04-11

Family

ID=90608079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036657 WO2024075852A1 (en) 2022-10-07 2023-10-07 Machine learning device, information processing device, reasoning device, machine learning method, control conditions prediction method, and reasoning method

Country Status (2)

Country Link
JP (1) JP2024055692A (en)
WO (1) WO2024075852A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514217A (en) * 1996-06-28 2000-10-24 ハネウエル・インコーポレーテッド Automatic tuner with nonlinear approximation mechanism
JP2022523627A (en) * 2019-01-11 2022-04-26 モナシュ ユニバーシティー Iron alloy
JP2022531919A (en) * 2019-05-06 2022-07-12 ストロング フォース アイオーティ ポートフォリオ 2016,エルエルシー A platform to accelerate the development of intelligence in the Internet of Things industrial system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514217A (en) * 1996-06-28 2000-10-24 ハネウエル・インコーポレーテッド Automatic tuner with nonlinear approximation mechanism
JP2022523627A (en) * 2019-01-11 2022-04-26 モナシュ ユニバーシティー Iron alloy
JP2022531919A (en) * 2019-05-06 2022-07-12 ストロング フォース アイオーティ ポートフォリオ 2016,エルエルシー A platform to accelerate the development of intelligence in the Internet of Things industrial system

Also Published As

Publication number Publication date
JP2024055692A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
Sacco et al. Machine learning in composites manufacturing: A case study of Automated Fiber Placement inspection
Montiel et al. Scikit-multiflow: A multi-output streaming framework
Xie et al. Data-Driven Modeling Based on Two-Stream ${\rm {\lambda}} $ Gated Recurrent Unit Network With Soft Sensor Application
Taheri et al. Optimised ANN and SVR models for online prediction of moisture content and temperature of lentil seeds in a microwave fluidised bed dryer
US20190362239A1 (en) Method and Assistance System for Assisting the Planning of Automation Systems
TW202232356A (en) Computer-implemented method for training a reinforcement learning model to provide operating instructions for thermal control of a blast furnace as well as corresponding computer system
Gacto et al. Experimental study on 164 algorithms available in software tools for solving standard non-linear regression problems
CN112632713A (en) Method for operating a container treatment system and container treatment system with optimized parameters
CN113544604A (en) Assembly error correction for a flow line
CN111538841B (en) Comment emotion analysis method, device and system based on knowledge mutual distillation
WO2024075852A1 (en) Machine learning device, information processing device, reasoning device, machine learning method, control conditions prediction method, and reasoning method
Januschowski et al. Deep Learning for Forecasting: Current Trends and Challenges.
CN110163247A (en) Design methods and increment smell classification method based on the nearest class mean value of depth
Prasad et al. Applications and potentials of artificial neural networks in plant tissue culture
CN112800109A (en) Information mining method and system
Denysiuk et al. Evolving neural networks to optimize material usage in blow molded containers
Zhang et al. Quantum classification algorithm with multi-class parallel training
US20230068718A1 (en) Cooking apparatus using artificial intelligence and method for operating same
Mutlu et al. Automatic rule generation of fuzzy systems: a comparative assessment on software defect prediction
WO2020226921A1 (en) Predictive. preventive maintenance for container-forming production process
WO2024075358A1 (en) Blow conditions adjustment device, machine learning device, inference device, information processing method, machine learning method and inference method
Gotkhindikar et al. Optimized deep neural network strategy for best parametric selection in fused deposition modelling
Pinto et al. Neuroevolutionary multiobjective methodology for the optimization of the injection blow molding process
Zhang et al. Quantum algorithm for neural network enhanced multi-class parallel classification
Weiwei et al. Online semisupervised learning approach for quality monitoring of complex manufacturing process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874977

Country of ref document: EP

Kind code of ref document: A1