WO2024075749A1 - Cooling system, cooling execution device, cooling device, cooling execution method, cooling method, program, cooling execution program, and cooling program - Google Patents

Cooling system, cooling execution device, cooling device, cooling execution method, cooling method, program, cooling execution program, and cooling program Download PDF

Info

Publication number
WO2024075749A1
WO2024075749A1 PCT/JP2023/036112 JP2023036112W WO2024075749A1 WO 2024075749 A1 WO2024075749 A1 WO 2024075749A1 JP 2023036112 W JP2023036112 W JP 2023036112W WO 2024075749 A1 WO2024075749 A1 WO 2024075749A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
control device
information
vehicle
unit
Prior art date
Application number
PCT/JP2023/036112
Other languages
French (fr)
Japanese (ja)
Inventor
正義 孫
Original Assignee
ソフトバンクグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022160556A external-priority patent/JP2024053999A/en
Priority claimed from JP2022168655A external-priority patent/JP2024061014A/en
Application filed by ソフトバンクグループ株式会社 filed Critical ソフトバンクグループ株式会社
Publication of WO2024075749A1 publication Critical patent/WO2024075749A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling system, a cooling execution device, a cooling device, a cooling execution method, a cooling method, a program, a cooling execution program, and a cooling program.
  • Patent document 1 describes a vehicle with an autonomous driving function.
  • a cooling execution device may include a prediction unit that predicts a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle.
  • the cooling execution device may include a cooling execution unit that starts cooling the control device based on the temperature change predicted by the prediction unit.
  • the cooling execution unit may start cooling the control device in response to a prediction that the temperature of the control device will be higher than a predetermined threshold value.
  • the prediction unit may predict the temperature change of the control device by AI.
  • the cooling execution device may further include a model storage unit that stores a learning model that uses information acquired by the control device as input and a temperature change of the control device as output, the learning model being generated by machine learning using information acquired by the control device and the temperature change of the control device when the control device acquired the information as learning data, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  • the information acquisition unit may acquire sensor information acquired by the control device from a sensor mounted on the vehicle from the sensor or the control device.
  • the information acquisition unit may acquire from the control device an analysis result of an image captured by the control device analyzed by a camera mounted on the vehicle.
  • the information acquisition unit may acquire external information received by the control device from an external device from the external device or the control device.
  • the information acquisition unit may acquire traffic information for the road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
  • the cooling execution unit may start cooling the control device using one or more cooling means selected from a plurality of types of cooling means depending on the temperature of the control device predicted by the prediction unit.
  • the plurality of types of cooling means may include a plurality of air cooling means, water cooling means, and liquid nitrogen cooling means.
  • the prediction unit may predict temperature changes in each of a plurality of parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the prediction result by the prediction unit.
  • the control device may have a plurality of processing chips, each of which is arranged at a different position on the control device, and each of the plurality of cooling means may be arranged at a position corresponding to each of the plurality of processing chips.
  • a program for causing a computer to function as the cooling execution device.
  • the cooling execution method may include a prediction step of predicting a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle.
  • the cooling execution method may include a cooling execution step of starting cooling of the control device based on the temperature change predicted in the prediction step.
  • a cooling system includes a server and a cooling execution device
  • the server includes an information acquisition unit that acquires, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device of the vehicle, and a prediction unit that predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition unit and the temperature information of the control device of the vehicle
  • the cooling execution device may include an information acquisition unit that acquires, from the server, a prediction result of the temperature change of the control device predicted by the prediction unit of the server, and a cooling execution unit that starts cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition unit.
  • the server may further have a creation unit that creates a map showing the relationship between the position of the vehicle having the cooling execution device and the temperature of the control device from the position information of the vehicle having the cooling execution device acquired by the information acquisition unit and temperature information of the control device of the vehicle, and the prediction unit may predict a temperature change of the control device based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, and the map created by the creation unit showing the relationship between the position of the vehicle and the temperature of the control device.
  • the information acquisition unit of the server may acquire location information of the vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, and information regarding the type of the vehicle from the cooling execution device, and the creation unit may create a map representing the relationship between the location of the vehicle and the temperature of the control device for the vehicle type from the location information of the vehicle having the cooling execution device, temperature information of the control device possessed by the vehicle, and information regarding the type of vehicle acquired by the information acquisition unit, and the prediction unit of the server may predict a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of the control device possessed by the vehicle, and the map representing the relationship between the location of the vehicle and the temperature of the control device for the vehicle type created by the creation unit.
  • the cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device a predetermined time before the control device starts to generate heat.
  • the cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature change of the control device.
  • the multiple types of cooling means may include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
  • a cooling execution method which is executed by a server and a cooling execution device.
  • the cooling execution method may include an information acquisition step in which the server acquires, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device possessed by the vehicle.
  • the cooling execution method may include a prediction step in which the server predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device and the temperature information of the control device possessed by the vehicle acquired by the information acquisition step.
  • the cooling execution method may include an information acquisition step in which the cooling execution device acquires, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server.
  • the cooling execution method may include a cooling execution step in which the cooling execution device starts cooling of the control device based on the prediction of the temperature change of the control device acquired by the information acquisition step.
  • a cooling program includes a program executed by a server and a program executed by a cooling execution device.
  • the cooling program may cause the server to execute an information acquisition step of acquiring, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device possessed by the vehicle, and a prediction step of predicting a temperature change of the control device based on the location information of the vehicle having the cooling execution device and the temperature information of the control device possessed by the vehicle acquired by the information acquisition step, and cause the cooling execution device to execute an information acquisition step of acquiring, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server, and a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition step.
  • a cooling system is a cooling system including a server and a cooling execution device
  • the server includes an information acquisition unit that acquires from the cooling execution device location information of a vehicle having the cooling execution device, temperature information of a control device of the vehicle, information on traffic conditions, and weather information, and a prediction unit that predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information on the traffic conditions, and the weather information
  • the cooling execution device may include an information acquisition unit that acquires from the server a prediction result of the temperature change of the control device predicted by the prediction unit of the server, and a cooling execution unit that starts cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition unit.
  • the server may further have a creation unit that creates a map showing the relationship between the vehicle's position, the information about the traffic conditions, the weather information, and the temperature of the control device from the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information about the traffic conditions, and the weather information, and the prediction unit may predict a temperature change of the control device based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information about the traffic conditions, the weather information, and the map created by the creation unit showing the relationship between the vehicle's position, the information about the traffic conditions, the weather information, and the temperature of the control device.
  • the creation unit may create a map showing the relationship between the position of the vehicle and the temperature of the control device for each of the information on the traffic conditions and the weather information, based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information on the traffic conditions, and the weather information.
  • the information acquisition unit of the server may further acquire information relating to the type of the vehicle from the cooling execution device, and the creation unit may create a map showing the relationship between the position of the vehicle, the information relating to the traffic conditions, the weather information, the type of the vehicle, and the temperature of the control device from the position information of the vehicle having the cooling execution device, the temperature information of the control device of the vehicle, the information relating to the traffic conditions, the weather information, and the information relating to the type of the vehicle.
  • the cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device a predetermined time before the control device starts to generate heat.
  • the cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature change of the control device.
  • the multiple types of cooling means may include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
  • a cooling execution method is provided that is executed by a server and a cooling execution device.
  • the cooling execution method may include an information acquisition step in which the server acquires, from the cooling execution device, location information of a vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, information on the traffic conditions, and the weather information.
  • the server may include a prediction step in which the server predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, information on the traffic conditions, and the weather information acquired by the information acquisition step.
  • the cooling execution device may include an information acquisition step in which the server acquires, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server.
  • the cooling execution device may include a cooling execution step in which the cooling execution device starts cooling of the control device based on the prediction of the temperature change of the control device acquired by the information acquisition step.
  • a cooling program includes a program executed by a server and a program executed by a cooling execution device.
  • the program causes the server to execute an information acquisition step of acquiring, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device of the vehicle, and a prediction step of predicting a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition step, the temperature information of the control device of the vehicle, information on the traffic conditions, and the weather information, and may cause the cooling execution device to execute an information acquisition step of acquiring, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server, and a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition step.
  • a cooling system is provided.
  • the cooling system is a cooling system including a server and a cooling execution device
  • the server includes an information acquisition unit that acquires from the cooling execution device position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle, and a prediction unit that predicts temperature changes at each position of the control device from the position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle acquired by the information acquisition unit
  • the cooling execution device may include an information acquisition unit that acquires from the server a prediction result of the temperature change at each position of the control device predicted by the prediction unit of the server, and a cooling execution unit that starts cooling the control device based on the prediction result of the temperature change at each position of the control device acquired by the information acquisition unit.
  • the prediction unit may predict temperature changes over time at each position of the control device from position information of each integrated circuit in the control device acquired by the information acquisition unit, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle.
  • the cooling execution unit may use the predicted results of temperature changes at each position of the control device acquired by the information acquisition unit to start cooling at positions where heat is generated in the control device.
  • the cooling execution unit may use the predicted temperature change at each position of the control device acquired by the information acquisition unit to start cooling the position where the control device generates heat a predetermined time before the control device starts to generate heat.
  • the cooling execution unit may use the predicted results of the temperature change at each position of the control device acquired by the information acquisition unit, and start cooling the control device using one or more cooling means selected from multiple types of cooling means according to the temperature change at each position of the control device.
  • the multiple types of cooling means may include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
  • a cooling execution method which is executed by a server and a cooling execution device.
  • the server may include an information acquisition step of acquiring position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle from the cooling execution device.
  • the server may include a prediction step of predicting temperature changes at each position of the control device from the position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle acquired by the information acquisition step.
  • the cooling execution device may include an information acquisition step of acquiring from the server a prediction result of the temperature change at each position of the control device predicted by the prediction step of the server.
  • the cooling execution device may include a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change at each position of the control device acquired by the information acquisition step.
  • a cooling program includes a program executed by a server and a program executed by a cooling execution device.
  • the program causes the server to execute an information acquisition step of acquiring, from the cooling execution device, position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle, and a prediction step of predicting a temperature change at each position of the control device from the position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle acquired by the information acquisition step, and may cause the cooling execution device to execute an information acquisition step of acquiring, from the server, a prediction result of the temperature change at each position of the control device predicted by the prediction step of the server, and a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change at each position of the control device acquired by the information acquisition step.
  • a cooling execution device may have a detection unit that detects the temperature of a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution unit that executes cooling of the control device using a predetermined cooling means based on the time that the temperature detected by the detection unit continues to be equal to or higher than a predetermined temperature.
  • the cooling execution unit may execute cooling using the cooling means, which may include one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means, when the time during which the temperature remains above the predetermined temperature exceeds a predetermined threshold.
  • the cooling means which may include one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means, when the time during which the temperature remains above the predetermined temperature exceeds a predetermined threshold.
  • the cooling execution unit may execute rapid cooling when the temperature exceeds a predetermined threshold.
  • the cooling execution device may further include a prediction unit that predicts a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and the cooling execution unit may execute cooling using the cooling means based on the time that the temperature change predicted by the prediction unit continues to be equal to or higher than the predetermined temperature.
  • the cooling execution device may further include a prediction unit that predicts temperature changes in each of the multiple parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from multiple cooling means that cool each of the multiple parts of the control device based on the prediction result by the prediction unit.
  • the control device may have a plurality of processing chips, each of which is arranged at a different position on the control device, and each of the plurality of cooling means may be arranged at a position corresponding to each of the plurality of processing chips.
  • a program for causing a computer to function as a cooling execution device.
  • a cooling execution method executed by a computer may include a detection step of detecting the temperature of a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution step of cooling the control device using a predetermined cooling means based on the time that the temperature detected in the detection step continues to be equal to or higher than a predetermined temperature.
  • a cooling execution device may have an estimation unit that estimates switching between automatic driving and manual driving based on a preset driving route, a creation unit that creates a cooling schedule in which cooling conditions based on a predetermined cooling means are set based on the estimation result of the estimation unit, and a cooling execution unit that executes cooling of a control device mounted on a vehicle that controls the automatic driving of the vehicle based on the cooling schedule created by the creation unit.
  • the estimation unit may estimate whether or not switching from the automatic driving to the manual driving will occur based on road conditions on the driving route.
  • the creation unit may create the cooling schedule in which a cooling means is set for the driving section of the manual driving, and when the estimation unit estimates that the manual driving will be switched to the automatic driving, the creation unit may create the cooling schedule in which a cooling means is set for the driving section of the automatic driving.
  • the cooling execution device may further include a detection unit that detects a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and a prediction unit that predicts the temperature change in the control device, and the creation unit may compare the actual temperature change detected by the detection unit with the predicted temperature change predicted by the prediction unit, and create the cooling schedule in which the specified cooling means is set if the predicted temperature change exceeds the actual temperature change.
  • the cooling means may include one or more types of air cooling means, one or more types of water cooling means, and a liquid nitrogen cooling means.
  • the cooling execution device may further include a prediction unit that predicts a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and the cooling execution unit may execute cooling of the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the cooling schedule created by the creation unit.
  • the control device may have a plurality of processing chips, each of which is arranged at a different position on the control device, and each of the plurality of cooling means may be arranged at a position corresponding to each of the plurality of processing chips.
  • a program for causing a computer to function as a cooling execution device.
  • a cooling execution method executed by a computer may include an estimation step of estimating a switch between automatic driving and manual driving based on a preset driving route, a creation step of creating a cooling schedule in which cooling conditions based on a predetermined cooling means are set based on the estimation result of the estimation step, and a cooling execution step of executing cooling of a control device mounted on a vehicle that controls the automatic driving of the vehicle based on the cooling schedule created in the creation step.
  • a cooling device includes a prediction unit that predicts a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution unit that performs cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted by the prediction unit.
  • the cooling execution unit may determine the predetermined temperature range according to a threshold temperature that is predetermined for the control device.
  • the prediction unit may predict the temperature change of the control device using AI.
  • the cooling device may further include a model storage unit that stores a learning model that uses the information acquired by the control device as input and the temperature change of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the temperature change of the control device when the control device acquired the information as learning data, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  • the information acquisition unit may acquire sensor information acquired by the control device from a sensor mounted on the vehicle, from the sensor or the control device.
  • the information acquisition unit may acquire from the control device the analysis results of the control device's analysis of an image captured by a camera mounted on the vehicle.
  • the information acquisition unit may acquire external information that the control device receives from an external device from the external device or the control device.
  • the information acquisition unit may acquire traffic information of a road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
  • the cooling execution unit may start cooling the control device using one or more cooling means selected from multiple types of cooling means, depending on the temperature of the control device predicted by the prediction unit.
  • the multiple types of cooling means in the cooling execution unit may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and liquid nitrogen cooling means.
  • the prediction unit may predict temperature changes in each of the multiple parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from multiple cooling means that cool each of the multiple parts of the control device based on the prediction result by the prediction unit.
  • control device may have a plurality of processing chips, each disposed at a different position on the control device, and each of the plurality of cooling means may be disposed at a position corresponding to each of the plurality of processing chips.
  • a cooling method executed by a cooling device including a prediction step of predicting a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and a cooling execution step of performing cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted by the prediction step.
  • a cooling program causes a computer to execute a prediction procedure for predicting a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution procedure for performing cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted in the prediction procedure.
  • a cooling execution device may have a detection unit that detects a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, a selection unit that selects a predetermined operating condition for lowering the temperature of the control device when the temperature change exceeds a predetermined threshold, and an output unit that outputs the predetermined operating condition based on the selection result of the selection unit.
  • the selection unit may select, as the predetermined operating condition, an operating condition that reduces the amount of calculation related to the predetermined information processing of the control device.
  • the cooling execution device may further include an information acquisition unit that acquires the results of the information processing related to the automatic driving from an external information processing device that performs information processing related to the automatic driving as a predetermined information processing of the control device.
  • the selection unit may select, as the predetermined operating condition, an operating condition that suppresses the operating speed of the automatic operation to a predetermined speed or less.
  • the selection unit may select, as the predetermined operating condition, an operating condition that changes the automatic operation to a manual operation when the temperature change exceeds a predetermined threshold.
  • the selection unit may select, as the predetermined driving condition, a driving condition in which the vehicle stops at a predetermined position on a road included in the driving route of the autonomous driving, when the temperature change exceeds a predetermined threshold.
  • the selection unit may select, as the predetermined operating condition, an operating condition that suppresses the acquisition of predetermined information used for information processing of the automatic driving.
  • a program for causing a computer to function as a cooling execution device.
  • a cooling execution method executed by a computer may include a detection step of detecting a temperature change in a control device mounted on a vehicle that controls automatic driving of the vehicle, a selection step of selecting a predetermined operating condition for lowering the temperature of the control device when the temperature change exceeds a predetermined threshold, and an output step of outputting the predetermined operating condition based on the selection result of the selection step.
  • a cooling device includes a prediction unit that predicts a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, a communication unit that communicates with other vehicles that are present within a predetermined range based on the temperature change predicted by the prediction unit, and an instruction unit that instructs the control device to execute a calculation related to the control of the automatic driving of the other vehicle with which communication is being performed by the communication unit.
  • the communication unit may also determine that other vehicles that are within a range in which communication with other vehicles can be maintained for a predetermined period of time are vehicles that are within the predetermined range and communicate with them.
  • the system may further include a cooling execution unit that starts cooling the control device based on the temperature change predicted by the prediction unit.
  • the cooling execution unit may also start cooling the control device in response to the prediction unit predicting that the temperature of the control device will be higher than a predetermined threshold.
  • the prediction unit may predict the temperature change of the control unit using AI.
  • the autonomous driving control device may further include a model storage unit that stores a learning model that uses the information acquired by the control device and the temperature change of the control device at the time the control device acquired the information as learning data, the learning model being generated by machine learning that uses the information acquired by the control device as input and the temperature change of the control device as output, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  • a model storage unit that stores a learning model that uses the information acquired by the control device and the temperature change of the control device at the time the control device acquired the information as learning data, the learning model being generated by machine learning that uses the information acquired by the control device as input and the temperature change of the control device as output
  • an information acquisition unit that acquires the information acquired by the control device
  • the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  • the information acquisition unit may acquire sensor information that the control device acquires from a sensor mounted on the vehicle from the sensor or the control device.
  • the information acquisition unit may also acquire from the control device the analysis results of an image captured by a camera mounted on the vehicle, which is analyzed by the control device.
  • the information acquisition unit may acquire external information that the control device receives from an external device from the external device or the control device.
  • the information acquisition unit may acquire traffic information of the road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
  • the cooling execution unit may also start cooling the control device using one or more cooling means selected from a plurality of types of cooling means, depending on the temperature of the control device predicted by the prediction unit.
  • the multiple types of cooling means in the cooling execution unit may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and liquid nitrogen cooling means.
  • the prediction unit may predict temperature changes in each of the multiple parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from multiple cooling means that cool each of the multiple parts of the control device based on the prediction result by the prediction unit.
  • control device may have a plurality of processing chips, each disposed at a different position on the control device, and each of the plurality of cooling means may be disposed at a position corresponding to each of the plurality of processing chips.
  • a cooling method executed by a cooling device including a prediction step of predicting a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, a communication step of communicating with other vehicles present within a predetermined range based on the temperature change predicted by the prediction step, and an instruction step of instructing the control device to execute a calculation related to the control of the automatic driving of the other vehicle with which communication is being performed by the communication step.
  • a cooling program for causing a computer to execute a prediction procedure for predicting a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, a communication procedure for communicating with other vehicles present within a predetermined range based on the temperature change predicted by the prediction procedure, and an instruction procedure for instructing the control device to execute a calculation related to the control of the automatic driving of the other vehicles with which communication is being performed by the communication procedure.
  • a cooling execution device may include a prediction unit that predicts a change in computing power of a control device mounted on the vehicle that controls the automatic driving of the vehicle.
  • the cooling execution device may include a cooling execution unit that starts cooling the control device based on the change predicted by the prediction unit.
  • the prediction unit may predict a change in the computing power of the control device using AI.
  • the prediction unit may predict the moment when the computing power of the control device will be at its maximum, and the cooling execution unit may start cooling the control device based on the moment predicted by the prediction unit.
  • the cooling execution unit may start cooling the control device at the moment when the computing power of the control device will be at its maximum.
  • the prediction unit may predict the time until the temperature of the control device becomes higher than a predetermined temperature from the prediction result of the moment when the computing power of the control device will be at its maximum, and the cooling execution unit may start cooling the control device based on the time predicted by the prediction unit.
  • any of the cooling execution devices may further include a model storage unit that stores a learning model that uses the information acquired by the control device as input and the computing power of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the computing power of the control device at the time the control device acquired the information as learning data, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict a change in the computing power of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  • a model storage unit that stores a learning model that uses the information acquired by the control device as input and the computing power of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the computing power of the control device at the time the control device acquired the information as learning data
  • an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict a change in the computing power of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  • the information acquisition unit may acquire at least any of sensor information acquired by the control device from a sensor mounted on the vehicle, an analysis result of an analysis by the control device of an image captured by a camera mounted on the vehicle, external information received by the control device from an external device, and traffic information of a road on which the vehicle is located that is received by the control device from the external device.
  • any of the cooling execution devices may further include a model storage unit that stores a learning model that takes the information acquired by the control device as input and outputs the time until the control device cools down when cooling of the control device is started, the learning model being generated by machine learning using the information acquired by the control device and the time until the control device cools down when cooling of the control device is started as learning data when the control device acquires the information, and an information acquisition unit that acquires the information acquired by the control device, and the cooling execution unit may determine the timing to start cooling of the control device based on the change predicted by the prediction unit and the time until the control device cools down when cooling of the control device is started, acquired by inputting the information acquired by the information acquisition unit into the learning model.
  • a model storage unit that stores a learning model that takes the information acquired by the control device as input and outputs the time until the control device cools down when cooling of the control device is started, the learning model being generated by machine learning using the information acquired by the control device and the time until the control device cools down when cooling of the control device is
  • the cooling execution unit may adjust the degree of cooling of the control device according to a risk rate indicating the probability of a risk that the control device will not function properly due to a high temperature of the control device, thereby affecting normal automatic driving of the vehicle.
  • the cooling execution unit may cool the control device with a first cooling intensity when the risk rate is lower than a first threshold, cool the control device with a second cooling intensity stronger than the first cooling intensity when the risk rate is higher than the first threshold and lower than a second threshold higher than the first threshold, and cool the control device with a third cooling intensity stronger than the second cooling intensity when the risk rate is higher than the second threshold.
  • a program for causing a computer to function as the cooling execution device.
  • the cooling execution method may include a prediction step of predicting a change in computing power of a control device mounted on the vehicle that controls the automatic driving of the vehicle.
  • the cooling execution method may include a cooling execution step of starting cooling of the control device based on the change predicted in the prediction step.
  • FIG. 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • FIG. 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • FIG. 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • FIG. 1 is a schematic diagram illustrating an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • FIG. 1 is a schematic diagram illustrating an example of a system 10.
  • FIG. 2 is an explanatory diagram of a state in which communication between vehicles is being performed in this embodiment.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • FIG. 1 illustrates a schematic diagram of an example of a system 10.
  • FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10.
  • FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form.
  • 1 is a diagram illustrating an example of a hardware configuration of a computer 1200 that functions as a management server 100, a SoCBox 400, a cooling execution device 500, or a cooling device 700.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 1 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling execution device 500 predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
  • the cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400.
  • SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via the network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 2 is an explanatory diagram for explaining the learning phase in the system 10.
  • sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 3 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • the sensors 310 mounted on the vehicle 300 are exemplified by a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316.
  • the vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • the cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the prediction unit 506 predicts the temperature change of the SoCBox 400.
  • the prediction unit 506 may predict the temperature change of the SoCBox 400 using AI.
  • the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 4 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 4 shows an example in which the cooling unit 600 is configured with a single cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 5 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600.
  • FIG. 5 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 6 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 6 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 7 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 is a control device that controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the system 10 predicts temperature changes in the SoCBox 400 based on location information of the vehicle having the cooling execution device 500 and temperature information of the SoCBox 400 held by the vehicle, and starts cooling the SoCBox 400 based on the temperature change. For example, the system 10 predicts heat generation in advance and immediately starts cooling the SoCBox 400 in places where the amount of processing is increased and heat generation is likely to occur, such as urban areas with many vehicles and pedestrians. By starting cooling before or at the same time as heat generation begins, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, the energy required for cooling can be reduced compared to when the SoCBox 400 is constantly cooled.
  • the system 10 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400.
  • SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling unit 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • Cooling execution device 500 may also receive from server 30 and store information related to the type of vehicle 300.
  • the information related to the type of vehicle 300 may include information such as the model of vehicle 300, information related to the model and heat generation of SoCBox 400, and parameters for each model.
  • the parameters for each model include information such as information on models that are prone to heat generation in SoCBox 400, information on models that are unlikely to heat up in SoCBox 400, and information on cooling means that can be installed in each model.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes in the SoCBox 400.
  • the cooling execution device 500 can also perform processing similar to the prediction processing performed by the management server 100, which will be described later.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 8 is an explanatory diagram for explaining the learning phase in the system 10.
  • sensors 210 mounted on the vehicle 200 a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, a GNSS (Global Navigation Satellite System) sensor 216, and a GPS (Global Positioning System) sensor 217.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, a model provision unit 106, a creation unit 108, and a prediction unit 110.
  • the information acquisition unit 102 acquires various information. For example, the information acquisition unit 102 acquires location information of the vehicle 300 having the cooling execution device 500 and temperature information of the SoCBox 400 of the vehicle 300 from the cooling execution device 500. The information acquisition unit 102 also acquires location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 of the vehicle 300, and information on the type of the vehicle 300 from the cooling execution device 500.
  • the location information may be acquired from a GNSS sensor or a GPS sensor.
  • the location information may include information on the driving route and destination of the vehicle 300.
  • the information acquisition unit 102 may acquire various information based on a predetermined timing or period.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the creation unit 108 creates a map showing the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400 from the position information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102 and the temperature information of the SoCBox 400 of the vehicle 300.
  • the creation unit 108 also creates a map showing the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400 for each type of vehicle 300 from the position information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 of the vehicle 300, and information related to the type of vehicle 300.
  • the prediction unit 110 predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102 and the temperature information of the SoCBox 400 of the vehicle 300. At this time, the prediction unit 110 may make the prediction using the location information of the vehicle 300 having the cooling execution device 500 and the temperature information of the SoCBox 400 of the vehicle 300 acquired by the information acquisition unit 102 in the past.
  • the prediction unit 110 uses the accumulated location information of the vehicle 300 having the cooling execution device 500 and the temperature information of the SoCBox 400 possessed by the vehicle 300 to predict a temperature change in the SoCBox 400 based on the location information of the vehicle having the cooling execution device 500 acquired by the information acquisition unit 102 and the temperature information of the SoCBox 400 possessed by the vehicle 300. For example, based on data from previously acquired information showing that the amount of heat generated increases by about 20% in urban areas compared to normal times, the prediction unit 110 predicts a temperature change based on the fact that the amount of heat generated will increase by about 20% when the location information of the vehicle 300 is in an urban area.
  • the prediction unit 110 also predicts a temperature change in the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and a map created by the creation unit 108 that shows the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400.
  • the prediction unit 110 also predicts a temperature change in the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and a map created by the creation unit 108 that shows the relationship between the location of the vehicle 300 for the type of vehicle 300 and the temperature of the SoCBox 400.
  • the temperature change of the SoCBox 400 predicted by the prediction unit 110 includes the temperature change over time in the SoCBox 400 possessed by the vehicle 300.
  • the prediction unit 110 may predict the temperature change over time in the SoCBox 400 possessed by the vehicle 300 on the travel route from the current position of the vehicle 300 to the destination.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be provided with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 9 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • sensors 310 mounted on the vehicle 300 include a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, a GNSS sensor 316, and a GPS sensor 317.
  • the vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors other than these.
  • the cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the information acquisition unit 504 acquires the prediction results of the temperature change of the SoCBox 400 predicted by the prediction unit 110 of the management server 100 from the management server 100.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in the SoCBox 400 using AI.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the prediction unit 506 can also perform the same prediction processing as that performed by the prediction unit 110 of the management server 100.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. For example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. Also, for example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the timing when the SoCBox 400 is predicted to reach or exceed a predetermined temperature, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504.
  • the cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 when the point where the SoCBox 400 is predicted to start generating heat is within a predetermined distance from the current location of the vehicle 300.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 using one or more cooling means selected from a plurality of types of cooling means according to the temperature change of the SoCBox 400.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 10 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 10 shows an example in which the cooling unit 600 is configured with a single cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 11 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 11 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 of the system 10 can also realize efficient cooling according to the location of the vehicle 300 by starting cooling of the SoCBox 400 based on the temperature change of the SoCBox 400 predicted based on the location information of the vehicle 300 and the temperature information of the SoCBox 400.
  • the cooling execution device 500 of the system 10 can also realize efficient cooling according to the position of the vehicle 300 by starting cooling of the SoCBox 400 based on a change in temperature of the SoCBox 400 predicted based on the position information of the vehicle 300, the temperature information of the SoCBox 400, and a map showing the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400.
  • the cooling execution device 500 of the system 10 can realize efficient cooling according to the location and model of the vehicle 300 by starting cooling of the SoCBox 400 based on a change in temperature of the SoCBox 400 predicted based on location information of the vehicle 300, information on the type of the vehicle 300, temperature information of the SoCBox 400, and a map showing the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400.
  • the cooling execution device 500 of the system 10 can reduce the possibility of overheating and perform efficient cooling by starting to cool the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat based on the predicted temperature change of the SoCBox 400.
  • the cooling execution device 500 of the system 10 also uses the predicted temperature change of the SoCBox 400 to perform cooling using multiple cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling in response to the temperature change.
  • the cooling execution device 500 of the system 10 uses the predicted temperature change of the SoCBox 400 to perform cooling using water cooling means and liquid nitrogen cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling using cooling means that respond to temperature changes.
  • FIG. 12 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 12 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). For example, even if the vehicle is in the same location, changes in the environment such as temperature, weather, and traffic conditions can cause the amount of heat generated by the SoCBox to change, leading to overheating. This is because changes in traffic and weather conditions increase the amount of detection by various sensors and make autonomous driving control more complicated. In such cases, AI can predict heat dissipation from the SoCBox and cool it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can be used to cool not only the SoCBox, but also the battery, making it a potential solution to the problem of high temperatures caused by rapid charging.
  • FIG. 13 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 is a control device that controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the system 10 predicts temperature changes in the SoCBox 400 based on location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 in the vehicle 300, information on traffic conditions, and weather information, and starts cooling the SoCBox 400 based on the temperature change. For example, the system 10 predicts heat generation in advance in situations where the amount of processing increases and heat generation is likely to occur in the SoCBox 400, such as during traffic jams or rainy weather, and starts cooling the SoCBox 400 immediately. By starting cooling before the heat generation starts or at the same time as the heat generation starts, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, the energy required for cooling can be reduced compared to when the SoCBox 400 is constantly cooled.
  • the system 10 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400.
  • SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • Cooling execution device 500 may also receive and store information relating to traffic conditions (traffic information) from a server that provides traffic information.
  • the information relating to traffic conditions includes information such as the traffic congestion status of vehicles, the number of pedestrians, whether there are any accidents, whether there are any construction works, and whether there are any events.
  • the cooling execution device 500 may also receive and store weather information from a server that provides weather information.
  • the weather information includes information such as weather, temperature, humidity, and wind speed.
  • the cooling execution device 500 may also receive and store information related to the type of vehicle 300 from the server 30.
  • the information related to the type of vehicle 300 may include information such as the model of the vehicle 300, information related to the model and heat generation of the SoCBox 400, and parameters for each model.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes in the SoCBox 400.
  • the cooling execution device 500 can also perform processing similar to the prediction processing performed by the management server 100, which will be described later.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 14 is an explanatory diagram for explaining the learning phase in the system 10.
  • the sensors 210 mounted on the vehicle 200 are exemplified by a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, a GNSS (Global Navigation Satellite System) sensor 216, and a GPS (Global Positioning System) sensor 217.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, a model provision unit 106, a creation unit 108, and a prediction unit 110.
  • the information acquisition unit 102 acquires various types of information. For example, the information acquisition unit 102 acquires location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 possessed by the vehicle 300, information regarding traffic conditions, and weather information.
  • the location information may be acquired from a GNSS sensor or a GPS sensor.
  • the location information may also include information regarding the driving route and destination of the vehicle 300.
  • the information acquisition unit 102 acquires location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 of the vehicle 300, information on traffic conditions, and weather information from the cooling execution device 500. Also, for example, the information acquisition unit 102 acquires weather information from a server that provides weather information. Also, for example, the information acquisition unit 102 acquires information on traffic conditions from a server that provides traffic information.
  • the information acquisition unit 102 also acquires information relating to the type of vehicle 300 from the cooling execution device 500.
  • the information relating to the type of vehicle may include information such as the model of the vehicle 300, information relating to the model and heat generation of the SoCBox 400, and parameters for each model.
  • the information acquisition unit 102 may acquire various information based on a specified timing or period.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the creation unit 108 creates a map showing the relationship between the location of the vehicle 300, the information on traffic conditions, the weather information, and the temperature of the SoCBox 400 from the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on traffic conditions, and the weather information.
  • the creation unit 108 creates a map showing the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400 for each piece of information on traffic conditions and weather information from the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on traffic conditions, and the weather information.
  • the creation unit 108 also creates a map showing the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400 for each type of vehicle 300, based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and information regarding the type of vehicle 300.
  • the prediction unit 110 predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on the traffic conditions, and the weather information. At this time, the prediction unit 110 may make the prediction using the location information of the vehicle 300 having the cooling execution device 500, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on the traffic conditions, and the weather information acquired by the information acquisition unit 102 in the past.
  • the prediction unit 110 uses the accumulated location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 possessed by the vehicle 300, information on traffic conditions, and weather information to predict the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, temperature information of the SoCBox 400 possessed by the vehicle 300, information on traffic conditions, and weather information.
  • the prediction unit 110 predicts a temperature change when the weather information indicates rain, taking into account that the amount of heat generated will increase by approximately 20%. Also, based on data from previously acquired information indicating that the amount of heat generated will increase by approximately 30% when there is congestion compared to normal conditions, the prediction unit 110 predicts a temperature change when the traffic conditions are congested, taking into account that the amount of heat generated will increase by approximately 30%.
  • the prediction unit 110 also predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, information on traffic conditions, weather information, and a map created by the creation unit 108 showing the relationship between the location of the vehicle 300, information on traffic conditions, weather information, and the temperature of the SoCBox 400.
  • the prediction unit 110 also predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 of the vehicle 300, the information on traffic conditions, the weather information, and a map created by the creation unit 108 that shows the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400 for each of the information on traffic conditions and the weather information.
  • the prediction unit 110 also predicts the temperature change of the SoCBox 400 based on the position information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and the map created by the creation unit 108 that shows the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400 for each type of vehicle 300.
  • the temperature change of the SoCBox 400 predicted by the prediction unit 110 includes the temperature change over time in the SoCBox 400 possessed by the vehicle 300.
  • the prediction unit 110 may predict the temperature change over time in the SoCBox 400 possessed by the vehicle 300 on the travel route from the current position of the vehicle 300 to the destination.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 15 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • sensors 310 mounted on the vehicle 300 include a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, a GNSS sensor 316, and a GPS sensor 317.
  • the vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
  • the cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the information acquisition unit 504 acquires the prediction results of the temperature change of the SoCBox 400 predicted by the prediction unit 110 of the management server 100 from the management server 100.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in the SoCBox 400 using AI.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the prediction unit 506 can also perform the same prediction processing as that performed by the prediction unit 110 of the management server 100.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. For example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. Also, for example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the timing when the SoCBox 400 is predicted to reach or exceed a predetermined temperature, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504.
  • the cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 when the point where the SoCBox 400 is predicted to start generating heat is within a predetermined distance from the current location of the vehicle 300.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 using one or more cooling means selected from a plurality of types of cooling means according to the temperature change of the SoCBox 400.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 16 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 16 shows an example in which the cooling unit 600 is configured with one cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 17 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 17 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 of the system 10 starts cooling the SoCBox 400 based on temperature changes in the SoCBox 400 predicted based on the vehicle 300's location information, SoCBox 400 temperature information, traffic condition information, and weather information, thereby enabling efficient cooling in response to changes in the SoCBox 400 temperature when the amount of detection by various sensors increases due to changes in the environment or when autonomous driving control becomes more complex.
  • the cooling execution device 500 of the system 10 can also realize efficient cooling according to the vehicle 300's location and dynamic environment by initiating cooling of the SoCBox 400 based on a predicted change in temperature of the SoCBox 400 based on the vehicle 300's location information, SoCBox 400 temperature information, traffic condition information, weather information, and a map showing the relationship between the vehicle 300's location information, traffic condition information, weather information, and the SoCBox 400 temperature.
  • the cooling execution device 500 of the system 10 also creates a map showing the relationship between the location information of the vehicle 300 and the temperature of the SoCBox 400 for each piece of information related to traffic conditions and weather information, predicts temperature changes in the SoCBox 400, and starts cooling the SoCBox 400, thereby achieving efficient cooling according to the location of the vehicle 300 for each dynamic environment.
  • the cooling execution device 500 of the system 10 starts cooling the SoCBox 400 based on a change in temperature of the SoCBox 400 predicted based on the location information of the vehicle 300, the temperature information of the SoCBox 400, information on traffic conditions, weather information, the vehicle type of the vehicle 300, the location information of the vehicle 300, information on traffic conditions, weather information, and a map showing the relationship with the temperature of the SoCBox 400, thereby realizing efficient cooling according to the vehicle type and location of the vehicle 300 and the dynamic environment.
  • the cooling execution device 500 of the system 10 can reduce the possibility of overheating and perform efficient cooling by starting to cool the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat based on the predicted temperature change of the SoCBox 400.
  • the cooling execution device 500 of the system 10 also uses the predicted temperature change of the SoCBox 400 to perform cooling using multiple cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling in response to the temperature change.
  • the cooling execution device 500 of the system 10 uses the predicted temperature change of the SoCBox 400 to perform cooling using water cooling means and liquid nitrogen cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling using cooling means that respond to temperature changes.
  • FIG. 18 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 18 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • Synchronized Burst Chilling is provided, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of a SoCBox having multiple SoCs.
  • AI Artificial Intelligence
  • SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). For example, changes in driving conditions can increase the amount of detection by various sensors and complicate autonomous driving control, which can cause the SoCBox to overheat.
  • a SoCBox that has multiple SoCs (integrated circuits) does not heat up uniformly; for example, when a certain autonomous driving control is performed, only the SoC that controls that autonomous driving control will heat up.
  • AI can predict the heat dissipation and its location in the SoCBox, and simultaneously cool the location where heat dissipation occurs, preventing the SoCBox from becoming too hot and enabling advanced calculations in the vehicle. It is expected that this technology can be used not only for SoCBoxes, but also for cooling batteries, which could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 19 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 is a control device that has multiple SoCs and controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • System 10 predicts temperature changes at each location of SoCBox 400 based on position information of the SoC in SoCBox 400, information related to the processing of the SoC, and information related to the driving status of the vehicle, and starts cooling SoCBox 400 based on the temperature changes at each location. For example, system 10 predicts the heat generation and its location that will occur for each of various control processes such as driving straight, turning right or left, stopping, and situation judgment using various sensors, and immediately starts cooling SoCBox 400. By starting cooling before or at the same time as heat generation begins, it is possible to reliably prevent SoCBox 400 from becoming too hot. In addition, the energy required for cooling can be reduced compared to when SoCBox 400 is constantly cooled.
  • the system 10 may use AI to predict temperature changes at each location of the SoCBox 400. Learning of temperature changes at each location of the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox400 and temperature sensor 40 that measures the temperature at each position of SoCBox400.
  • SoCBox400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • SoCBox400 also stores location information of the SoCs contained in SoCBox400, information related to the processing of each SoC, and information related to the driving status of vehicle 300.
  • information related to the processing of each SoC refers to information on the processing and control performed by each SoC, and includes information on the processing controlled by each SoC, such as acceleration, deceleration, turning right or left, stopping, vehicle detection, pedestrian detection, obstacle detection, detection by various sensors, and various calculations.
  • information on the driving status of the vehicle 300 refers to information on the driving status and operation status of the vehicle 300, and includes information on processing such as acceleration, deceleration, right and left turns, stopping, vehicle detection, pedestrian detection, obstacle detection, detection by various sensors, and various calculations. Note that the above-mentioned processing contents and driving status are only examples, and processing and driving status other than those described are also included.
  • the server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • the SoCBox 400 transmits to the management server 100 sensor values and external information used to control the autonomous driving, as well as temperature changes at each position of the SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change at each position on the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change at each position on the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling execution device 500 may also store location information of each SoC in the SoCBox 400, information regarding the processing of each SoC, and information regarding the driving status of the vehicle 300, which are acquired from the SoCBox 400.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes at each position of the SoCBox 400.
  • the cooling execution device 500 can also perform processing similar to the prediction processing performed by the management server 100, which will be described later.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat, or when it predicts that the temperature at each position on the SoCBox 400 will exceed a predetermined threshold value.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 20 is an explanatory diagram for explaining the learning phase in the system 10.
  • the sensors 210 mounted on the vehicle 200 are exemplified by a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, a GNSS (Global Navigation Satellite System) sensor 216, and a GPS (Global Positioning System) sensor 217.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute automatic driving control of vehicle 200. SoCBox400 also stores location information for each SoC it possesses.
  • Temperature sensor 40 measures temperature changes at each location on SoCBox 400. SoCBox 400 transmits to management server 100 the sensor information received from sensor 210, the external information received from server 30, and the temperature changes at each location measured by temperature sensor 40 when it acquires this information and executes automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, a model provision unit 106, and a prediction unit 110.
  • the information acquisition unit 102 acquires various information. For example, the information acquisition unit 102 acquires position information of each SoC in the SoCBox 400, information on the processing of each SoC, and information on the driving status of the vehicle 300. For example, the information acquisition unit 102 acquires position information of each SoC in the SoCBox 400, information on the processing of each SoC, and information on the driving status of the vehicle 300 from the cooling execution device 500. For example, the information acquisition unit 102 may acquire the position information of each SoC by identifying the position of each SoC using information such as the manufacturer and model number of the SoCBox 400. The information acquisition unit 102 may acquire various information based on a predetermined timing or period. The management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by SoCBox 400 and the temperature change at each position on SoCBox 400 when SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the temperature change at each position on SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the prediction unit 110 predicts the temperature change at each position of the SoCBox 400 based on the position information of each SoC in the SoCBox 400, information on the processing of each SoC, and information on the driving status of the vehicle 300 acquired by the information acquisition unit 102. For example, the prediction unit 110 predicts the temperature change at each position of the SoCBox 400 using information on the driving status acquired by the information acquisition unit 102, such as information on the SoC that is driving while detecting obstacles and pedestrians, and information on the processing of each SoC, such as information on the SoC that controls obstacle detection, pedestrian detection, and driving, and position information of the SoC in the SoCBox 400.
  • the prediction unit 110 also predicts temperature changes over time at each location in the SoCBox 400 using the location information of each SoC in the SoCBox 400, information related to the processing of each SoC, and information related to the driving conditions of the vehicle 300 acquired by the information acquisition unit 102.
  • the prediction unit 110 uses information on the driving situation acquired by the information acquisition unit 102, such as information that the vehicle is driving while detecting obstacles and pedestrians, and information on the processing of each SoC, such as information on the SoCs that control obstacle detection, pedestrian detection, and driving, and position information of the SoCs in the SoCBox 400, to predict temperature changes at each position of the SoCBox 400 if the driving situation continues.
  • information on the driving situation acquired by the information acquisition unit 102 such as information that the vehicle is driving while detecting obstacles and pedestrians
  • information on the processing of each SoC such as information on the SoCs that control obstacle detection, pedestrian detection, and driving, and position information of the SoCs in the SoCBox 400, to predict temperature changes at each position of the SoCBox 400 if the driving situation continues.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 21 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • sensors 310 mounted on the vehicle 300 include a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, a GNSS sensor 316, and a GPS sensor 317.
  • the vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
  • the cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310.
  • each sensor of the sensor 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires information on the position of each SoC in the SoCBox 400 from the SoCBox 400.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the information acquisition unit 504 acquires from the management server 100 the predicted results of the temperature change at each position of the SoCBox 400 predicted by the prediction unit 110 of the management server 100.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in the SoCBox 400 using AI.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the prediction unit 506 can also perform the same prediction processing as that performed by the prediction unit 110 of the management server 100.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the predicted results of temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504. For example, the cooling execution unit 508 starts cooling the positions of the SoCBox 400 where heat is generated, using the predicted results of temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504.
  • the cooling execution unit 508 uses the predicted temperature change results for each position of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the positions where the SoCBox 400 generates heat a predetermined time before the SoCBox 400 starts to generate heat.
  • the cooling execution unit 508 uses the predicted temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the positions where heat is generated in the SoCBox 400 a predetermined time before the timing when each position of the SoCBox 400 is predicted to reach or exceed a predetermined temperature.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 uses the predicted results of the temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the positions where heat is generated in the SoCBox 400 using one or more cooling means selected from a plurality of types of cooling means according to the temperature change at each position of the SoCBox 400.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the positions where heat is generated in the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of SoCBox400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of SoCBox400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the location where heat is generated in SoCBox400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of SoCBox400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the location where heat is generated in the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 22 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 22 shows an example in which the cooling unit 600 is configured with one cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 23 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 23 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 of the system 10 starts cooling the locations where heat is generated in the SoCBox 400 based on the location information of the SoC in the SoCBox 400, information related to the control of the SoC, and the predicted temperature change at each location of the SoCBox 400, which is predicted from the driving conditions of the vehicle 300. This allows the cooling of only the locations that require cooling, thereby achieving efficient cooling.
  • the cooling execution device 500 of the system 10 uses the location information of the SoC in the SoCBox 400, information related to the control of the SoC, and the driving conditions of the vehicle 300 to predict temperature changes over time at each location of the SoCBox 400, and starts cooling at locations where heat is generated in the SoCBox 400, thereby cooling only the locations that require cooling at an effective timing, thereby achieving efficient cooling.
  • the cooling execution device 500 of the system 10 uses the predicted temperature change at each location of the SoCBox 400, which is predicted from the location information of the SoC in the SoCBox 400, information related to the control of the SoC, and the driving conditions of the vehicle 300, to start cooling the locations where heat will occur in the SoCBox 400 before heat generation actually occurs, thereby preventing overheating and cooling only the areas that need cooling, thereby achieving efficient cooling.
  • the cooling execution device 500 of the system 10 uses the predicted temperature change at each position of the SoCBox 400 to perform cooling using multiple cooling means according to the temperature change at each position of the SoCBox 400, thereby achieving efficient cooling in response to temperature changes.
  • the cooling execution device 500 of the system 10 uses the predicted temperature change at each position of the SoCBox 400 to perform cooling using water cooling means and liquid nitrogen cooling means according to the temperature change at each position of the SoCBox 400, thereby achieving efficient cooling using cooling means that correspond to the temperature change.
  • FIG. 24 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 24 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. Furthermore, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 25 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling execution device 500 predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
  • the cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • the vehicle 200 is equipped with a SoCBox 400 and a temperature sensor 40 that measures the temperature of the SoCBox 400.
  • the SoCBox 400 controls the autonomous driving of the vehicle 200 using sensor values from multiple sensors equipped in the vehicle 200 and external information received from multiple types of servers 30.
  • the server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • the SoCBox 400 transmits to the management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of the SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 26 is an explanatory diagram for explaining the learning phase in the system 10.
  • sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be provided with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 27 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • the sensors 310 mounted on the vehicle 300 are exemplified by a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316.
  • the vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • the cooling execution device 500 includes a detection unit 501, a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the detection unit 501 detects the temperature of a control device (SoCBox400) mounted on a vehicle that controls the automatic driving of the vehicle.
  • the detection unit 501 may also detect the temperature of each of multiple parts of the SoCBox400.
  • the detection unit 501 can detect the temperature of one or multiple SoCBox400s, detect the occurrence of an increase or decrease in temperature, and detect changing temperature values.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the prediction unit 506 predicts temperature changes in the control device (SoCBox 400) mounted on the vehicle that controls the vehicle's autonomous driving.
  • the prediction unit 506 may predict temperature changes in the SoCBox 400 using AI.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the prediction unit 506 may predict temperature changes in each of multiple parts of the control device (SoCBox 400).
  • the prediction unit 506 can predict the occurrence of a temperature rise or fall in one or multiple SoCBoxes 400, or predict the numerical value of the changing temperature.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 executes cooling of the control device (SoCBox 400) using a predetermined cooling means based on the time that the temperature detected by the detection unit 501 continues to be equal to or higher than the predetermined temperature. Specifically, when the time that the temperature continues to be equal to or higher than the predetermined temperature exceeds a predetermined threshold, the cooling execution unit 508 can execute cooling using a cooling means including one or more types of air cooling means, one or more types of water cooling means, and a liquid nitrogen cooling means.
  • the cooling execution unit 508 may execute cooling of the control device using a predetermined cooling means (for example, air cooling means, water cooling means, liquid nitrogen cooling means, etc.).
  • a predetermined cooling means for example, air cooling means, water cooling means, liquid nitrogen cooling means, etc.
  • the cooling execution unit 508 may also perform rapid cooling when the temperature exceeds a predetermined threshold.
  • the cooling execution unit 508 may perform rapid cooling when the temperature exceeds a predetermined threshold at which overheating occurs. Note that any threshold condition may be set as the predetermined threshold here.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • the cooling execution unit 508 performs cooling using the cooling means described above, based on the time that the temperature change predicted by the prediction unit 506 will continue to be above a predetermined temperature. For example, the cooling execution unit 508 can perform cooling using the cooling means described above when traveling through a traveling location where the temperature change is predicted to continue to be above a predetermined temperature for more than a predetermined time.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 28 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600.
  • FIG. 28 shows an example where the cooling unit 600 is configured with a single cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 29 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 29 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 30 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 30 shows an example in which the cooling unit 600 is composed of two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 31 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling execution device 500 predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
  • the cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400.
  • SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 32 is an explanatory diagram for explaining the learning phase in the system 10.
  • sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 33 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300.
  • the vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors other than these.
  • the cooling execution device 500 includes a detection unit 501, a model storage unit 502, an information acquisition unit 504, an estimation unit 505, a prediction unit 506, a creation unit 507, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the detection unit 501 detects temperature changes in a control device (SoCBox400) mounted on a vehicle that controls the vehicle's automatic driving.
  • the detection unit 501 may also detect temperature changes in each of multiple parts of the SoCBox400.
  • the detection unit 501 can detect the occurrence of a rise or fall in temperature in one or multiple SoCBox400s, or detect changing temperature values.
  • the estimation unit 505 estimates whether switching from autonomous driving to manual driving will occur based on a preset driving route. Furthermore, the estimation unit 505 may estimate whether switching from autonomous driving to manual driving will occur based on road conditions on the driving route. For example, the estimation unit 505 can estimate whether switching from autonomous driving to manual driving will occur for a preset driving route based on road conditions such as heavy pedestrian traffic, occurrence of traffic jams, occurrence of accidents, occurrence of construction work, occurrence of road closures, etc.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the prediction unit 506 predicts temperature changes in the control device (SoCBox 400) mounted on the vehicle that controls the autonomous driving of the vehicle.
  • the prediction unit 506 may predict temperature changes in SoCBox 400 using AI.
  • the prediction unit 506 predicts temperature changes in SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the creation unit 507 creates a cooling schedule in which a specified cooling means is set based on the estimation result of the estimation unit 505. Specifically, when the estimation unit 505 estimates that automatic driving will be switched to manual driving, the creation unit 507 may create a cooling schedule in which a cooling means is set for a driving section of manual driving that is assumed to generate more heat than manual driving. On the other hand, when the estimation unit 505 estimates that manual driving will be switched to automatic driving, the creation unit 507 may create a cooling schedule in which a cooling means is set for a driving section of automatic driving that is assumed to generate less heat than automatic driving.
  • the creation unit 507 may create a cooling schedule in which a cooling means corresponding to manual driving is set.
  • the creation unit 507 may create a cooling schedule in which a cooling means corresponding to automatic driving is set.
  • the creation unit 507 may compare the actual temperature change of the control device (SoCBox 400) detected by the detection unit 501 with the predicted temperature change predicted by the prediction unit 506, and if the predicted temperature change exceeds the actual temperature change, create a cooling schedule in which a specified cooling means is set. For example, the creation unit 507 may perform cooling using a specified cooling means based on the prediction by the prediction unit 506 that the temperature change of the control device (SoCBox 400) will be a 5°C temperature rise and the detection result by the detection unit 501 that the actual temperature change is a 10°C temperature rise.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 executes cooling of the control device (SoCBox 400) mounted on the vehicle that controls the automatic driving of the vehicle, based on the cooling schedule created by the creation unit 507. For example, when a cooling schedule for a driving section for manual driving or a cooling schedule for a driving section for automatic driving is created by the creation unit 507, the cooling execution unit 508 may execute cooling of the control device (SoCBox 400) using the cooling means, cooling time, cooling timing, etc. set in the cooling schedule.
  • the cooling execution unit 508 may execute cooling of the control device (SoCBox 400) using the cooling means, cooling time, cooling timing, etc. set in the cooling schedule.
  • the cooling execution unit 508 may execute cooling of the control device (SoCBox400) using a cooling means selected from a plurality of cooling means for cooling each of a plurality of parts of the control device (SoCBox400) based on the cooling schedule created by the creation unit 507. For example, when air cooling means, water cooling means, and liquid nitrogen cooling means are set in the cooling schedule created by the creation unit 507, and further conditions for executing cooling of a plurality of parts of the control device are set, the cooling execution unit 508 may select one or more of the plurality of cooling means described above to execute cooling.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 34 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600.
  • FIG. 34 shows an example where the cooling unit 600 is configured with a single cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 35 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 35 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 36 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 36 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. Furthermore, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • Synchronized Burst Chilling a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • the SoCBox contains multiple SoCs, and as autonomous driving control becomes more complex, the amount of processing performed by the SoCs increases, which can cause the SoCBox to heat up and overheat.
  • AI can predict heat dissipation from the SoCBox and cool it so that its temperature remains within a specified range, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can be used to cool not only the SoCBox, but also the battery, which could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 37 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling device 700.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling device 700, and cooling section 600 are mounted on a vehicle.
  • the SoCBox 400 is a control device having multiple SoCs, and controls the autonomous driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because controlling the autonomous driving of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling device 700 predicts temperature changes in the SoCBox 400 and, based on the temperature changes, cools the SoCBox 400 so that the temperature of the SoCBox 400 is maintained within a predetermined temperature range. For example, the cooling device 700 predicts that the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds the predetermined temperature range, it cools the SoCBox 400 to maintain it within the predetermined temperature range.
  • the cooling device 700 can maintain the temperature of the SoCBox 400 within a specified temperature range, reducing the need to rapidly cool the temperature of the SoCBox 400, and ultimately reducing the total energy consumed for cooling.
  • the cooling device 700 may determine the predetermined temperature range according to a threshold temperature that is predetermined for the SoCBox 400. For example, the cooling device 700 determines the predetermined temperature range to be a temperature range around an arbitrary temperature that is about 5° C. lower than the threshold temperature that is preset, taking into consideration the normal processing of the various SoCs contained in the SoCBox 400.
  • the cooling device 700 can constantly cool the SoCBox 400 to maintain the temperature within an arbitrary temperature range that is approximately 5°C lower than the threshold temperature, rather than repeatedly starting to cool the SoCBox 400 rapidly once the predicted temperature after heat generation approaches the threshold temperature, thereby reducing the total energy used for cooling.
  • the specified temperature range is a temperature range centered on an arbitrary temperature lower than a threshold temperature set as the upper limit temperature at which the multiple SoCs contained in the SoCBox can perform normal processing, and is not limited to the temperature difference between the threshold temperature and the center temperature of the temperature range, or the width of the temperature range.
  • the cooling device 700 may use AI to predict temperature changes in the SoCBox 400.
  • the learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • the vehicle 200 is equipped with a SoCBox 400 and a temperature sensor 40 that measures the temperature of the SoCBox 400.
  • the SoCBox 400 controls the autonomous driving of the vehicle 200 using the sensor values of multiple sensors equipped in the vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information, a server that provides weather information, etc. SoCBox 400 transmits to management server 100 sensor values and external information used to control autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling device 700, and cooling section 600.
  • Cooling device 700 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling device 700 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes in the SoCBox 400.
  • the cooling device 700 predicts when the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds a predetermined temperature range, it starts cooling the SoCBox 400 using the cooling unit 600, and maintains the temperature of the SoCBox 400 within the predetermined temperature range.
  • the SoCBox 400, the cooling device 700, the management server 100, and the server 30 may communicate via the network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 38 is an explanatory diagram for explaining the learning phase in the system 10.
  • sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling device 700 mounted on the vehicle 300.
  • the system 10 may be configured to predict temperature changes in each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change in each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires this information and executes autonomous driving control.
  • the model generation unit 104 performs machine learning using the information acquired by SoCBox 400 and the temperature changes in each of the multiple parts of SoCBox 400 when SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the temperature changes in each of the multiple parts of SoCBox 400 are used as output.
  • FIG. 39 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300.
  • the vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
  • the cooling device 700 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive the sensor information that the SoCBox 400 acquires from the sensor 310 from the SoCBox 400.
  • the information acquisition unit 504 may receive the same sensor information from the sensor 310 as the sensor information that the SoCBox 400 acquires from the sensor 310.
  • each sensor of the sensor 310 may transmit the sensor information to the SoCBox 400 and the cooling device 700, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling device 700.
  • the prediction unit 506 predicts the temperature change of the SoCBox 400.
  • the prediction unit 506 may predict the temperature change of the SoCBox 400 using AI.
  • the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the cooling execution unit 508 performs cooling so as to maintain the temperature of the SoCBox 400 within a predetermined temperature range based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will be higher than the upper limit temperature within the predetermined temperature range, the cooling execution unit 508 starts cooling the SoCBox 400 and maintains the temperature of the SoCBox 400 within the predetermined temperature range.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means that corresponds to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400.
  • the cooling execution unit 508 starts cooling using one of the multiple cooling means, and when it is still predicted that the temperature of SoCBox 400 will rise and exceed the aforementioned upper limit, the cooling execution unit 508 increases the number of cooling means used.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • Figure 40 shows an example of the SoCBox 400 and cooling unit 600.
  • Figure 40 shows an example where the cooling unit 600 is configured with a single cooling means.
  • the cooling device 700 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined temperature range, it can start cooling using the cooling unit 600, thereby cooling the entire SoCBox 400.
  • FIG. 41 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 41 shows an example where the cooling unit 600 is composed of multiple cooling means that respectively cool multiple parts of the SoCBox 400.
  • the cooling device 700 predicts the temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to heat up or that the temperature of any part will exceed a predetermined temperature range, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 42 shows an example of a SoCBox 400 and a cooling unit 600.
  • FIG. 42 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling device 700 predicts temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined temperature range, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling device 700 increases the number of cooling means used as the temperature of the SoCBox 400 increases. That is, in this example, first cooling is started using one of the two types of cooling means, and when the temperature of the SoCBox 400 further increases, cooling is started using the other cooling means, thereby making it possible to make the energy used for cooling more efficient.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
  • FIG. 43 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling execution device 500 predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
  • the cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400.
  • SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
  • the cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 44 is an explanatory diagram for explaining the learning phase in the system 10.
  • sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be provided with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • FIG. 45 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300.
  • the vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
  • the cooling execution device 500 includes a detection unit 501, a model storage unit 502, an information acquisition unit 504, a prediction unit 506, a selection unit 510, a cooling execution unit 508, and an output unit 509.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • Detection unit 501 detects temperature changes in a control device mounted on a vehicle that controls the vehicle's automatic driving. Detection unit 501 may also detect temperature changes in each of multiple parts of SoCBox 400. For example, detection unit 501 can detect the occurrence of a temperature rise or fall in one or multiple SoCBox 400s, or detect changing temperature values.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that SoCBox 400 acquires from server 30 from server 30 or from SoCBox 400.
  • the information acquisition unit 504 may receive from SoCBox 400 the external information that SoCBox 400 received from server 30.
  • the information acquisition unit 504 may receive from server 30 the same external information that SoCBox 400 receives from server 30.
  • the server 30 may transmit the external information to each of SoCBox 400 and the cooling execution device 500.
  • the information acquisition unit 504 may also acquire the results of information processing related to autonomous driving from an external information processing device that performs information processing related to autonomous driving as a specified information processing of the control device (SoCBox 400). For example, when an external information processing device performs information processing related to the control of autonomous driving that is normally performed by the vehicle control device (SoCBox 400), the information acquisition unit 504 can acquire the results of the information processing related to the autonomous driving from the external information processing device.
  • the prediction unit 506 predicts the temperature change of the SoCBox 400.
  • the prediction unit 506 may predict the temperature change of the SoCBox 400 using AI.
  • the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the selection unit 510 selects a specific operating condition that lowers the temperature of the control device when the temperature change exceeds a specific threshold. From here, we will explain specific examples of operating conditions selected by the selection unit 510.
  • the selection unit 510 may select, as the predetermined operating condition, an operating condition that suppresses the amount of calculation related to the predetermined information processing of the control device (SoCBox 400).
  • SoCBox 400 the control device
  • the cooling execution device suppresses the amount of heat generated by the calculation related to the information processing, and provides a cooling effect for the control device.
  • the selection unit 510 may select, as the predetermined operating condition, an operating condition that suppresses the operating speed of the automatic operation to a predetermined speed or less.
  • the cooling execution device suppresses the amount of calculation related to the information processing of the automatic operation, thereby suppressing the amount of heat generated by the calculation and achieving a cooling effect for the control device.
  • the selection unit 510 may select an operating condition that changes automatic operation to manual operation as the predetermined operating condition when the temperature change exceeds a predetermined threshold. This allows the cooling execution device to switch to manual operation, which involves less calculation than automatic operation, thereby suppressing the amount of heat generated by the calculations and achieving a cooling effect for the control device.
  • the selection unit 510 may select, as the predetermined driving condition, a driving condition in which the vehicle stops at a predetermined position (e.g., a shoulder) on a road included in the driving route of the autonomous driving.
  • a predetermined position e.g., a shoulder
  • the cooling execution device stops the autonomous driving to reduce the amount of calculations related to the autonomous driving, thereby reducing the amount of heat generated by the calculations and achieving a cooling effect for the control device.
  • the selection unit 510 may select, as the predetermined operating condition, an operating condition that suppresses the acquisition of predetermined information used in the information processing for autonomous driving.
  • the cooling execution device suppresses the acquisition of information used in the information processing for autonomous driving, and suppresses the amount of calculations related to autonomous driving, thereby suppressing the amount of heat generated by the calculations and achieving a cooling effect for the control device.
  • the cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
  • the output unit 509 outputs a predetermined driving condition based on the selection result of the selection unit 510.
  • the output unit 509 may output information about the driving conditions for the control device (SoCBox 400) to control the automatic driving of the vehicle based on the driving conditions selected by the selection unit 510.
  • the information about the driving conditions output by the output unit 509 is not particularly limited as long as it is in a format that can be used by the control device of the vehicle.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 46 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600.
  • FIG. 46 shows an example where the cooling unit 600 is configured with a single cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 47 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 47 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 48 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 48 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby realizing efficient cooling.
  • the cooling execution device 500 increases the number of cooling means to be used as the temperature of the SoCBox 400 increases, that is, in this example, first starts cooling using one of the two types of cooling means, and when the temperature of the SoCBox 400 further increases, starts cooling using the other cooling means, thereby making it possible to efficiently use energy for cooling.
  • Ninth embodiment Ninth embodiment
  • the SoCBox quickly becomes hot, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving).
  • the SoCBox contains multiple SoCs, and as autonomous driving control becomes more complex, the amount of processing performed by the SoCs increases, which can cause the SoCBox to become hot and overheat.
  • AI can predict heat dissipation from the SoCBox and communicate with other vehicles traveling nearby before the SoCBox overheats, allowing them to shoulder part of the calculation load of the SoCs, preventing the SoCBox from becoming too hot and enabling advanced calculations in the vehicle.
  • FIG. 49 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling device 700.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling device 700, and cooling section 600 are mounted on a vehicle.
  • the SoCBox 400 is a control device having multiple SoCs, and controls the autonomous driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because controlling the autonomous driving of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling device 700 predicts temperature changes in the SoCBox 400, communicates with other vehicles within a specified range based on the temperature changes, and instructs the control device to execute calculations related to the control of the autonomous driving of the other vehicles with which communication is taking place. For example, the cooling device 700 predicts that the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds a preset threshold temperature, communicates with other vehicles traveling parallel to the vehicle. The cooling device 700 then groups the multiple vehicles with which it is communicating, and instructs the SoCBox 400 to perform calculations to shoulder part of the computational load of the SoC of the communicating vehicle. The cooling device 700 may also perform calculations related to autonomous driving between the vehicles with which communication is taking place, for example, to complement each other.
  • the cooling device 700 predicts that the temperature of the SoCBox 400 will exceed a set threshold, it can communicate with nearby vehicles to have them shoulder part of the computational load or to compensate for each other's computational load, thereby reducing the computational load and lowering the temperature of the SoCBox 400.
  • the aforementioned preset threshold temperature is a temperature set as the upper limit temperature at which the multiple SoCs in the SoCBox400 can perform normal processing.
  • the cooling device 700 may also determine that other vehicles that are within a range where communication with other vehicles can be maintained for a predetermined period of time are vehicles that are within the predetermined range and communicate with them. For example, the cooling device 700 may determine that a vehicle that is within a range where the communication unit can communicate and communication between the vehicles can be maintained for a certain period of time is a vehicle that is within the predetermined range, and communicate with that vehicle. As a method of determining that a vehicle is within a predetermined range, for example, a vehicle that responded to a predetermined broadcast communication or a vehicle that has been confirmed to be in the vicinity based on location information may be determined to be a vehicle that is within the predetermined range.
  • the cooling device 700 may also start cooling the SoCBox 400 based on the temperature change predicted by the prediction unit. For example, when it is predicted that the temperature of the SoCBox 400 will exceed the aforementioned threshold temperature, the cooling device 700 starts cooling the SoCBox 400 using air-cooling means or the like.
  • the cooling device 700 communicates with the other vehicles mentioned above, reducing the computational load, and by cooling the SoCBox 400 from outside, it is possible to rapidly cool the temperature of the SoCBox 400.
  • the cooling device 700 may use AI to predict temperature changes in the SoCBox 400.
  • the learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • the vehicle 200 is equipped with a SoCBox 400, a temperature sensor 40 that measures the temperature of the SoCBox 400, and a cooling device 700.
  • the SoCBox 400 controls the autonomous driving of the vehicle 200 using the sensor values of multiple sensors installed in the vehicle 200 and external information received from multiple types of servers 30.
  • the cooling device 700 obtains sensor values from multiple sensors mounted on the vehicle 200 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
  • the cooling device 700 predicts when the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds a preset threshold temperature, the cooling device 700 communicates with other vehicles traveling nearby and reduces the calculation load on the SoCBox 400, thereby lowering the temperature of the SoCBox 400.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information, a server that provides weather information, etc. SoCBox 400 transmits to management server 100 sensor values and external information used to control autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling unit according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling device 700, and cooling unit 600.
  • Cooling device 700 may receive from management server 100 and store the learning model generated by management server 100.
  • the SoCBox 400, the cooling device 700, the management server 100, and the server 30 may communicate via the network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 50 is an explanatory diagram of the state in which communication between vehicles is taking place in this embodiment.
  • the cooling device 700 predicts that the temperature of the SoCBox 400 will exceed a preset threshold temperature, it communicates with other vehicles traveling nearby, and the communicating vehicle instructs the SoCBox 400 to perform calculations to shoulder part of the computational load of the communicating vehicle's SoC.
  • vehicles 200-2, 200-3, and 200-4 are traveling near vehicle 200-1 at a similar speed. Then, because it is predicted that the temperature of SoCBox 400 of vehicle 200-1 will exceed the threshold temperature, vehicles 200-1 to 200-4 are grouped by the communication unit of 200-1 to form network 20.
  • the cooling device 700 of the destination vehicle issues an instruction to perform calculations to shoulder part of the computational load of the SoCBox 400 of the source vehicle.
  • part of the computational load of the SoC of the source vehicle 200-1 is shouldered by the SoCs of the other destination vehicles 200-2 to 200-4, reducing the computational load of the SoC of the source vehicle 200-1 and lowering the temperature of the SoCBox 400 of vehicle 200-1.
  • FIG. 51 is an explanatory diagram for explaining the learning phase in the system 10.
  • the sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. Then, SoCBox400 uses the acquired information to execute autonomous driving control of vehicle 200 and vehicle 300.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling device 700 mounted on the vehicle 200 and the vehicle 300.
  • the system 10 may be configured to predict temperature changes in each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change in each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires this information and executes autonomous driving control.
  • the model generation unit 104 performs machine learning using the information acquired by SoCBox 400 and the temperature changes in each of the multiple parts of SoCBox 400 when SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the temperature changes in each of the multiple parts of SoCBox 400 are used as output.
  • FIG. 52 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300.
  • the vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
  • the cooling device 700 includes a prediction unit 506, a communication unit 520, an instruction unit 530, a cooling execution unit 540, a model storage unit 550, and an information acquisition unit 560.
  • the prediction unit 506 predicts temperature changes in the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in the SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting information acquired by the information acquisition unit 560 (described below) into a learning model stored in the model storage unit 550 (described below).
  • the communication unit 520 communicates with other vehicles that are within a predetermined range based on the temperature change predicted by the prediction unit 506. For example, when the prediction unit 506 predicts that the temperature of the SoCBox 400 will exceed a preset threshold temperature, the communication unit 520 communicates with other vehicles that are determined to be within the aforementioned predetermined range, thereby forming the network 20.
  • the instruction unit 530 instructs the control device to execute calculations related to the control of autonomous driving of another vehicle with which communication is being performed via the communication unit 520. For example, when the instruction unit 530's own vehicle is connected to another vehicle for communication, the instruction unit 530 refers to the availability of resources of the SoC of the own vehicle and determines whether or not it is possible to execute a part of the calculation load of the SoC of the other vehicle that is the source of communication. Then, when the instruction unit 530 determines that it is possible to execute a part of the calculation load of the SoC of the other vehicle that is the source of communication, the instruction unit 530 instructs the SoCBox 400 of the own vehicle to execute a part of the calculation load of the SoC of the other vehicle that is the source of communication.
  • the cooling execution unit 540 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 540 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 540 may use the cooling unit 600 described below to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the model storage unit 550 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 560 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 560 may receive the sensor information that the SoCBox 400 acquires from the sensor 310 from the SoCBox 400.
  • the information acquisition unit 560 may receive the same sensor information from the sensor 310 as the sensor information that the SoCBox 400 acquires from the sensor 310.
  • each sensor of the sensor 310 may transmit the sensor information to the SoCBox 400 and the cooling device 700, respectively.
  • the information acquisition unit 560 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 560 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 560 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling device 700.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 540 may cool the SoCBox 400 using a cooling means that corresponds to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400.
  • the cooling execution unit 540 starts cooling using one of the multiple cooling means, and when it is still predicted that the temperature of SoCBox 400 will rise and exceed a second threshold, the number of cooling means used is increased.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • FIG. 53 shows an example of a SoCBox 400 and a cooling unit 600.
  • FIG. 53 shows an example in which the cooling unit 600 is configured with a single cooling means.
  • the cooling device 700 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 54 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 54 shows an example where the cooling unit 600 is composed of multiple cooling means that respectively cool multiple parts of the SoCBox 400.
  • the cooling device 700 predicts the temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that one of the parts will start to generate heat or that the temperature of one of the parts will exceed a predetermined threshold, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 55 shows an example of a SoCBox 400 and a cooling unit 600.
  • FIG. 55 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling device 700 predicts temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • the cooling device 700 increases the number of cooling means used as the temperature of the SoCBox 400 increases. That is, in this example, first cooling is started using one of the two types of cooling means, and when the temperature of the SoCBox 400 further increases, cooling is started using the other cooling means, thereby making it possible to make the energy used for cooling more efficient.
  • Synchronized Burst Chilling which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
  • the timing of cooling it is desirable to optimize the timing of cooling. For example, the moment when the computing power of the SoCBox will be at its maximum is predicted, and the cooling device is controlled at the optimal timing. Also, for example, the time from when the cooling is triggered to when cooling actually occurs is calculated backwards and taken into consideration. Also, for example, the degree of cooling is adjusted according to the risk rate. As a specific example, cooling is performed if the risk rate exceeds 30%, cooling is weakened if it is 20% or less, and cooling is strengthened if it is over 50%, etc.
  • AI can predict heat dissipation from the SoCBox and cool it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It can also efficiently cool the SoCBox while taking into account necessity, time, and risk.
  • FIG. 56 shows an example of a system 10.
  • the system 10 includes a management server 100.
  • the system 10 includes a SoCBox 400.
  • the system 10 includes a cooling execution device 500.
  • the system 10 includes a cooling unit 600.
  • the SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle.
  • the SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
  • the cooling execution device 500 predicts, for example, a change in temperature of the SoCBox 400, and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat, or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
  • the cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200.
  • the management server 100 collects data from the vehicle 200 and performs the learning.
  • the entity that performs the learning is not limited to the management server 100, and may be another device.
  • Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400.
  • SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30.
  • Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information.
  • SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
  • the management server 100 performs learning using information received from one or more SoCBox 400.
  • the management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
  • Vehicle 300 is a vehicle having a cooling function according to this embodiment.
  • Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600.
  • Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
  • the cooling execution device 500 may obtain sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from the multiple sensors and multiple types of servers 30, or from the SoCBox 400, and input the obtained information into a learning model to predict temperature changes in the SoCBox 400.
  • the cooling execution device 500 may start cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
  • the cooling execution device 500 may predict the computing power of SoCBox 400 during the calculation process. For example, the cooling execution device 500 predicts the change in computing power of SoCBox 400 using AI, and predicts the temperature change of SoCBox 400 based on the prediction result. As a specific example, the cooling execution device 500 predicts the moment when the computing power of SoCBox 400 will be at its maximum using AI, and predicts the temperature change of SoCBox 400 by taking into account the temperature change of SoCBox 400 caused by the computing power of SoCBox 400 reaching its maximum.
  • the management server 100 may perform machine learning using information such as sensor values and external information acquired by the SoCBox 400 and the measured computing power of the SoCBox 400 as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the computing power of the SoCBox 400 is used as output.
  • the cooling execution device 500 may use the learning model to predict changes in the computing power of the SoCBox 400.
  • the cooling execution device 500 may predict a change in the computing power of the SoCBox 400 and start cooling the SoCBox 400 based on the change in computing power. For example, the cooling execution device 500 predicts the moment when the computing power of the SoCBox 400 will be at its maximum, and starts cooling the SoCBox 400 based on the prediction result. As a specific example, the cooling execution device 500 predicts the moment when the computing power of the SoCBox 400 will be at its maximum, and starts cooling the SoCBox 400 at the timing of the predicted moment. Also, for example, the cooling execution device 500 predicts the moment when the computing power of the SoCBox 400 will be at its maximum, and starts cooling the SoCBox 400 at a timing that is a predetermined time back from the predicted moment.
  • the cooling execution device 500 may perform cooling of the SoCBox 400 taking into consideration the time from the cooling trigger to the actual cooling.
  • the cooling execution device 500 uses AI to predict the time until cooling of the SoCBox 400 actually occurs when cooling of the SoCBox 400 is started in the situation in which the SoCBox 400 is placed, and controls the timing of starting cooling of the SoCBox 400 according to the prediction result.
  • the cooling execution device 500 starts cooling of the SoCBox 400 at a timing that goes back the predicted time from the timing at which it is actually desired to start cooling of the SoCBox 400. Even if cooling of SoCBox400 is started using the desired timing as a trigger, if there is a time lag before SoCBox400 actually starts cooling, the start of cooling will be delayed. However, by using such a prediction, it is possible to ensure that cooling of SoCBox400 actually starts at the desired timing.
  • the management server 100 may perform machine learning using, as learning data, information such as sensor values and external information acquired by the SoCBox 400 and the time it takes for the SoCBox 400 to cool down if cooling of the SoCBox 400 is initiated when the SoCBox 400 acquires the information, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the time it takes for the SoCBox 400 to actually cool down if cooling of the SoCBox 400 is initiated is output.
  • the cooling execution device 500 may use the learning model to control the trigger for cooling the SoCBox 400.
  • the cooling execution device 500 may, for example, adjust the degree of cooling of the SoCBox 400 according to the risk rate.
  • the risk rate may, for example, be the probability that the SoCBox 400 will become too hot and stop functioning properly.
  • the risk rate may, for example, be the probability that the SoCBox 400 will become too hot and stop functioning properly, affecting the normal automatic operation of the vehicle controlled by the SoCBox 400.
  • the risk rate may be, for example, the probability that SoCBox400 will become too hot and stop functioning properly, affecting the normal automatic driving of the vehicle controlled by SoCBox400 and causing an accident.
  • the risk rate will be different between a case where SoCBox400 becomes too hot and stops functioning properly when the vehicle is driving in a deserted area in good weather and a case where SoCBox400 becomes too hot and stops functioning properly when the vehicle is driving in a crowded area such as a city in bad weather.
  • the cooling execution device 500 stores in advance, for example, a first threshold value for the risk rate and a second threshold value higher than the first threshold value. Then, when the risk rate is lower than the first threshold value, the cooling execution device 500 cools the SoCBox 400 at a first cooling intensity, when the risk rate is higher than the first threshold value and lower than the second threshold value, the cooling execution device 500 cools the SoCBox 400 at a second cooling intensity stronger than the first cooling intensity, and when the risk rate is higher than the second threshold value, the cooling execution device 500 cools the SoCBox 400 at a third cooling intensity stronger than the second cooling intensity. This makes it possible to cool the SoCBox 400 according to the risk rate and to optimize the energy required for cooling. Note that the number of cooling intensity stages is not limited to three.
  • the SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via the network 20.
  • the network 20 may include a vehicle network.
  • the network 20 may include the Internet.
  • the network 20 may include a LAN (Local Area Network).
  • the network 20 may include a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
  • FIG. 57 is an explanatory diagram for explaining the learning phase in the system 10.
  • the sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216.
  • the vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
  • SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
  • the temperature sensor 40 measures the temperature change of the SoCBox 400.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
  • SoCBox400 records its computing power. SoCBox400 may record its computing power periodically or irregularly. SoCBox400 may record the sensor information received from sensor 210, the external information received from server 30, and its computing power when acquiring this information and executing autonomous driving control, and transmit this to management server 100.
  • the management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106.
  • the information acquisition unit 102 acquires various information.
  • the management server 100 may receive information transmitted by the SoCBox 400.
  • the model generation unit 104 performs machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
  • the model generation unit 104 may generate a learning model in which the information acquired by SoCBox 400 is used as input and the temperature change of SoCBox 400 is used as output by executing machine learning using the information acquired by SoCBox 400 and the temperature change of SoCBox 400 when SoCBox 400 acquired the information as learning data.
  • the model generation unit 104 may perform machine learning using the information acquired by SoCBox 400 and the computing power of SoCBox 400 at the time SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the computing power of SoCBox 400 is used as output.
  • the model generation unit 104 may perform machine learning using, as learning data, the information acquired by the SoCBox 400 and the time it takes for the SoCBox 400 to cool down if cooling of the SoCBox 400 is started when the SoCBox 400 acquires the information, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the time it takes for the SoCBox 400 to cool down if cooling of the SoCBox 400 is started is used as output.
  • the model providing unit 106 provides the learning model generated by the model generating unit 104.
  • the model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • the system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400.
  • the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400.
  • the SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control.
  • the model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
  • a cooling unit 600 may be installed in the vehicle 200 to collect data related to the cooling of the SoCBox 400.
  • the temperature sensor 40 is used to measure the time from when the cooling unit 600 is triggered to when the SoCBox 400 is actually cooled.
  • the SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the time from when the cooling unit 600 is triggered to when the SoCBox 400 is actually cooled, in the case where the cooling unit 600 cools the SoCBox 400 when this information is obtained.
  • the model generation unit 104 of the management server 100 may perform machine learning using, as learning data, information such as sensor values and external information acquired by the SoCBox 400 and the time it takes for the SoCBox 400 to actually cool down if cooling of the SoCBox 400 is started when the SoCBox 400 acquires the information, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the time it takes for the SoCBox 400 to actually cool down if cooling of the SoCBox 400 is started is used as output.
  • the model provision unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
  • FIG. 58 is an explanatory diagram for explaining the cooling execution phase in the system 10.
  • a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300.
  • the vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
  • the cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, a cooling execution unit 508, and a risk rate acquisition unit 511.
  • the model storage unit 502 stores the learning model received from the management server 100.
  • the information acquisition unit 504 acquires information acquired by the SoCBox 400.
  • the information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310.
  • the information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
  • the information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400.
  • the information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30.
  • the information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
  • the prediction unit 506 may predict the temperature change of the SoCBox 400.
  • the prediction unit 506 may predict the temperature change of the SoCBox 400 using AI. For example, the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • prediction unit 506 may predict the computing power of SoCBox 400 during the calculation process. For example, prediction unit 506 predicts the computing power of SoCBox 400 by inputting the information acquired by information acquisition unit 504 into the learning model stored in model storage unit 502, and predicts the temperature change of SoCBox 400 based on the prediction result. As a specific example, prediction unit 506 predicts the moment when the computing power of SoCBox 400 will be at its maximum, and predicts the temperature change of SoCBox 400 by taking into account the temperature change of SoCBox 400 caused by the computing power of SoCBox 400 reaching its maximum.
  • the cooling execution unit 508 may start cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start generating heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
  • the cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400.
  • the cooling unit 600 may cool the SoCBox 400 by air cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by water cooling means.
  • the cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple types of cooling means.
  • the cooling unit 600 includes multiple types of air cooling means.
  • the cooling unit 600 includes multiple types of water cooling means.
  • the cooling unit 600 includes multiple types of liquid nitrogen cooling means.
  • the cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
  • the multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400.
  • the prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504.
  • the cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
  • the cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
  • the cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a third threshold.
  • SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400.
  • Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
  • cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
  • the prediction unit 506 may predict changes in the computing power of the SoCBox 400.
  • the prediction unit 506 may predict changes in the computing power of the SoCBox 400 using AI.
  • the prediction unit 506 predicts the computing power of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
  • the prediction unit 506 may predict the moment when the computing power of the SoCBox 400 will be at its maximum.
  • the cooling execution unit 508 may start cooling the SoCBox 400 based on the change in the computing power of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 based on the moment when the computing power of the SoCBox 400 will be at its maximum, as predicted by the prediction unit 506. As a specific example, the cooling execution unit 508 starts cooling the SoCBox 400 at the moment when the computing power of the SoCBox 400 is at its maximum. This makes it possible to start cooling the SoCBox 400 when the computing power of the SoCBox 400 reaches its maximum and the amount of heat generated by the SoCBox 400 is at its maximum, and therefore cooling can be performed efficiently.
  • the cooling execution unit 508 starts cooling the SoCBox 400 in response to the state in which the computing power of the SoCBox 400 remains higher than a predetermined threshold for a predetermined period of time. Even if the computing power of the SoCBox 400 becomes high, if the computing power returns to a low state immediately thereafter, the temperature of the SoCBox 400 can be prevented from becoming excessively high. However, if the computing power of the SoCBox 400 remains high for a certain period of time, the temperature of the SoCBox 400 may continue to rise. The cooling execution unit 508 can prevent such a temperature rise.
  • the prediction unit 506 may predict the time until the temperature of SoCBox 400 becomes higher than a predetermined temperature, based on the prediction result of the moment when the computing power of SoCBox 400 becomes maximum.
  • the cooling execution unit 508 may start cooling SoCBox 400 based on the time predicted by the prediction unit 506. For example, the cooling execution unit 508 calculates backwards from the time when the temperature of SoCBox 400 becomes higher than the predetermined temperature, determines the timing to start cooling SoCBox 400 so that the temperature of SoCBox 400 does not become higher than the predetermined temperature, and starts cooling SoCBox 400 at the determined timing.
  • the cooling execution unit 508 may execute cooling of the SoCBox 400 taking into consideration the time from the cooling trigger to the actual cooling. For example, the cooling execution unit 508 uses AI to predict the time until the SoCBox 400 is actually cooled when cooling of the SoCBox 400 is started in the situation in which the SoCBox 400 is placed, and controls the timing of starting cooling of the SoCBox 400 according to the prediction result.
  • the cooling execution unit 508 may predict the time by inputting the information acquired by the information acquisition unit 504 into a learning model that uses the information acquired by the SoCBox 400 stored in the model storage unit 502 as input, and outputs the time until the SoCBox 400 is actually cooled when cooling of the SoCBox 400 is started.
  • the cooling execution unit 508 instructs the cooling unit 600 to start cooling at a timing that is a predicted amount of time back from the timing at which cooling of the SoCBox 400 is actually desired to start.
  • the risk rate acquisition unit 511 acquires a risk rate.
  • the risk rate acquisition unit 511 may calculate a risk rate using information acquired by the information acquisition unit 504. For example, the risk rate acquisition unit 511 calculates a risk rate by calculating the possibility of an accident occurring from the temperature of SoCBox 400 predicted by the prediction unit 506 using relationship data indicating the relationship between the temperature of SoCBox 400 and the occurrence status of an accident involving a vehicle equipped with SoCBox 400.
  • the risk rate acquisition unit 511 calculates a risk rate based on, for example, the position of the vehicle 300.
  • the risk rate acquisition unit 511 calculates a risk rate that is higher the more objects there are around the vehicle 300.
  • the risk rate acquisition unit 511 calculates a risk rate that is higher the more other vehicles there are around the vehicle 300.
  • the risk rate acquisition unit 511 calculates a risk rate that is higher the more people there are around the vehicle 300.
  • the risk rate acquisition unit 511 may determine the number, quantity, etc. of objects present around the vehicle 300 using information acquired from the camera 311, LiDAR 312, etc.
  • the risk rate acquisition unit 511 calculates the risk rate based on the weather in the area where the vehicle 300 is located, for example.
  • the risk rate acquisition unit 511 calculates the risk rate so that it is higher in so-called bad weather than in so-called good weather.
  • the risk rate acquisition unit 511 calculates the risk rate so that it is higher in rainy weather than in sunny weather.
  • the risk rate acquisition unit 511 may determine the weather in the area where the vehicle 300 is located based on information received from a server that provides weather information.
  • the risk rate acquisition unit 511 may determine the weather in the area where the vehicle 300 is located by using the camera 311 to detect clouds around the vehicle 300 or remotely from the vehicle 300.
  • the risk rate acquisition unit 511 may calculate the risk rate using a judgment method other than these. In addition, the risk rate acquisition unit 511 may calculate the risk rate by combining multiple judgment methods.
  • the cooling execution unit 508 may adjust the degree of cooling of the SoCBox 400 according to the risk rate acquired by the risk rate acquisition unit 511.
  • the cooling execution unit 508 may, for example, store in advance a first threshold value for the risk rate and a second threshold value higher than the first threshold value. Then, the cooling execution unit 508 cools the SoCBox 400 at a first cooling intensity when the risk rate is lower than the first threshold value, cools the SoCBox 400 at a second cooling intensity stronger than the first cooling intensity when the risk rate is higher than the first threshold value and lower than the second threshold value, and cools the SoCBox 400 at a third cooling intensity stronger than the second cooling intensity when the risk rate is higher than the second threshold value.
  • the number of cooling intensity stages is not limited to three.
  • Figure 59 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • Figure 59 shows an example where the cooling unit 600 is configured with a single cooling means.
  • the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
  • FIG. 60 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600.
  • FIG. 60 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
  • FIG. 61 shows an example of the SoCBox 400 and the cooling unit 600.
  • FIG. 61 shows an example in which the cooling unit 600 is configured with two types of cooling means.
  • the cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby realizing efficient cooling.
  • the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
  • ⁇ Hardware configuration diagram> 62 shows an example of a hardware configuration of a computer 1200 functioning as the management server 100, the SoCBox 400, the cooling execution device 500, or the cooling device 700.
  • a program installed in the computer 1200 can cause the computer 1200 to function as one or more "parts" of the device according to the present embodiment, or cause the computer 1200 to execute operations or one or more "parts” associated with the device according to the present embodiment, and/or cause the computer 1200 to execute a process or steps of the process according to the present embodiment.
  • Such a program may be executed by the CPU 1212 to cause the computer 1200 to execute specific operations associated with some or all of the blocks of the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212, a RAM 1214, and a graphics controller 1216, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes input/output units such as a communication interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220.
  • the DVD drive may be a DVD-ROM drive, a DVD-RAM drive, etc.
  • the storage device 1224 may be a hard disk drive, a solid state drive, etc.
  • the computer 1200 also includes a ROM 1230 and a legacy input/output unit such as a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer or the like provided in the RAM 1214 or into itself, and causes the image data to be displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224.
  • the IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.
  • ROM 1230 stores therein a boot program or the like executed by computer 1200 upon activation, and/or a program that depends on the hardware of computer 1200.
  • I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
  • the programs are provided by a computer-readable storage medium such as a DVD-ROM or an IC card.
  • the programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212.
  • the information processing described in these programs is read by computer 1200, and brings about cooperation between the programs and the various types of hardware resources described above.
  • An apparatus or method may be constructed by realizing the operation or processing of information according to the use of computer 1200.
  • CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program.
  • communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, a DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.
  • the CPU 1212 may also cause all or a necessary portion of a file or database stored in an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
  • an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc.
  • CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the instruction sequence of the program, and write back the results to RAM 1214.
  • CPU 1212 may also search for information in a file, database, etc. in the recording medium.
  • CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
  • the above-described programs or software modules may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby providing the programs to the computer 1200 via the network.
  • the blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process in which an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and “parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium.
  • the dedicated circuitry may include digital and/or analog hardware circuitry and may include integrated circuits (ICs) and/or discrete circuits.
  • the programmable circuitry may include reconfigurable hardware circuitry including AND, OR, XOR, NAND, NOR, and other logical operations, flip-flops, registers, and memory elements, such as, for example, field programmable gate arrays (FPGAs) and programmable logic arrays (PLAs).
  • FPGAs field programmable gate arrays
  • PDAs programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions that are executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon comprises an article of manufacture that includes instructions that can be executed to create means for performing the operations specified in the flowchart or block diagram.
  • Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer-readable storage media may include floppy disks, diskettes, hard disks, random access memories (RAMs), read-only memories (ROMs), erasable programmable read-only memories (EPROMs or flash memories), electrically erasable programmable read-only memories (EEPROMs), static random access memories (SRAMs), compact disk read-only memories (CD-ROMs), digital versatile disks (DVDs), Blu-ray disks, memory sticks, integrated circuit cards, and the like.
  • RAMs random access memories
  • ROMs read-only memories
  • EPROMs or flash memories erasable programmable read-only memories
  • EEPROMs electrically erasable programmable read-only memories
  • SRAMs static random access memories
  • CD-ROMs compact disk read-only memories
  • DVDs digital versatile disks
  • Blu-ray disks memory sticks, integrated circuit cards, and the like.
  • the computer readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • ISA instruction set architecture
  • machine instructions machine-dependent instructions
  • microcode firmware instructions
  • state setting data or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • the computer-readable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, either locally or over a local area network (LAN), a wide area network (WAN) such as the Internet, so that the processor of the general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, executes the computer-readable instructions to generate means for performing the operations specified in the flowcharts or block diagrams.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Artificial Intelligence (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a cooling execution device which is equipped with: a prediction unit for predicting a change in the temperature of a control device which is installed in a vehicle and controls the automated driving of the vehicle, and a cooling execution unit for starting cooling of the control device on the basis of the temperature change predicted by the prediction unit. Provided is a cooling execution method executed by a computer, said method being provided with: a prediction step for predicting a change in the temperature of a control device which is installed in a vehicle and controls the automated driving of the vehicle, and a cooling execution step for starting to cool the control device on the basis of the temperature change predicted by the prediction unit.

Description

冷却システム、冷却実行装置、冷却装置、冷却実行方法、冷却方法、プログラム、冷却実行プログラム、および冷却プログラムCOOLING SYSTEM, COOLING EXECUTION DEVICE, COOLING DEVICE, COOLING EXECUTION METHOD, COOLING METHOD, PROGRAM, COOLING EXECUTION PROGRAM, AND COOLING PROGRAM
 本発明は、冷却システム、冷却実行装置、冷却装置、冷却実行方法、冷却方法、プログラム、冷却実行プログラム、および冷却プログラムに関する。 The present invention relates to a cooling system, a cooling execution device, a cooling device, a cooling execution method, a cooling method, a program, a cooling execution program, and a cooling program.
 特許文献1には、自動運転機能を有する車両について記載されている。 Patent document 1 describes a vehicle with an autonomous driving function.
特開2022-035198号公報JP 2022-035198 A
 車両が有する制御装置の温度変化に応じて効率的な冷却を行う冷却システム、冷却実行装置、冷却装置、冷却実行方法、冷却方法、プログラム、冷却実行プログラム、および冷却プログラムの実現が望まれている。 There is a need for a cooling system, a cooling execution device, a cooling device, a cooling execution method, a cooling method, a program, a cooling execution program, and a cooling program that perform efficient cooling in response to temperature changes in a control device possessed by a vehicle.
 本発明の一実施態様によれば、冷却実行装置が提供される。前記冷却実行装置は、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部を備えてよい。前記冷却実行装置は、前記予測部によって予測された前記温度変化に基づいて、前記制御装置の冷却を開始する冷却実行部を備えてよい。 According to one embodiment of the present invention, a cooling execution device is provided. The cooling execution device may include a prediction unit that predicts a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle. The cooling execution device may include a cooling execution unit that starts cooling the control device based on the temperature change predicted by the prediction unit.
 前記冷却実行装置において、前記冷却実行部は、前記制御装置の温度が予め定められた閾値より高くなることが予測されたことに応じて、前記制御装置の冷却を開始してよい。    In the cooling execution device, the cooling execution unit may start cooling the control device in response to a prediction that the temperature of the control device will be higher than a predetermined threshold value.
 前記いずれかの冷却実行装置において、前記予測部は、AIによって前記制御装置の前記温度変化を予測してよい。前記冷却実行装置は、前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置の温度変化とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の温度変化を出力とする学習モデルを記憶するモデル記憶部と、前記制御装置が取得する情報を取得する情報取得部とを更に備えてよく、前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記温度変化を予測してよい。前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報を、前記センサ又は前記制御装置から取得してよい。前記情報取得部は、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果を、前記制御装置から取得してよい。前記情報取得部は、前記制御装置が外部装置から受信する外部情報を、前記外部装置又は前記制御装置から取得してよい。前記情報取得部は、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報を、前記外部装置又は前記制御装置から取得してよい。 In any of the cooling execution devices, the prediction unit may predict the temperature change of the control device by AI. The cooling execution device may further include a model storage unit that stores a learning model that uses information acquired by the control device as input and a temperature change of the control device as output, the learning model being generated by machine learning using information acquired by the control device and the temperature change of the control device when the control device acquired the information as learning data, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model. The information acquisition unit may acquire sensor information acquired by the control device from a sensor mounted on the vehicle from the sensor or the control device. The information acquisition unit may acquire from the control device an analysis result of an image captured by the control device analyzed by a camera mounted on the vehicle. The information acquisition unit may acquire external information received by the control device from an external device from the external device or the control device. The information acquisition unit may acquire traffic information for the road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
 前記いずれかの冷却実行装置において前記冷却実行部は、前記予測部によって予測された前記制御装置の温度の高さに応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始してよい。前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含んでよい。前記予測部は、前記制御装置の複数の部位のそれぞれの温度変化を予測してよく、前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始してよい。前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有してよく、前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されていてよい。 In any of the cooling execution devices, the cooling execution unit may start cooling the control device using one or more cooling means selected from a plurality of types of cooling means depending on the temperature of the control device predicted by the prediction unit. The plurality of types of cooling means may include a plurality of air cooling means, water cooling means, and liquid nitrogen cooling means. The prediction unit may predict temperature changes in each of a plurality of parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the prediction result by the prediction unit. The control device may have a plurality of processing chips, each of which is arranged at a different position on the control device, and each of the plurality of cooling means may be arranged at a position corresponding to each of the plurality of processing chips.
 本発明の一実施態様によれば、コンピュータを、前記冷却実行装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as the cooling execution device.
 本発明の一実施態様によれば、コンピュータによって実行される冷却実行方法が提供される。前記冷却実行方法は、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測段階を備えてよい。前記冷却実行方法は、前記予測段階において予測された前記温度変化に基づいて、前記制御装置の冷却を開始する冷却実行段階を備えてよい。 According to one embodiment of the present invention, there is provided a cooling execution method executed by a computer. The cooling execution method may include a prediction step of predicting a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle. The cooling execution method may include a cooling execution step of starting cooling of the control device based on the temperature change predicted in the prediction step.
 実施態様によれば、冷却システムが提供される。前記冷却システムは、サーバと冷却実行装置とからなる冷却システムであって、前記サーバは、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得部と、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とに基づいて、前記制御装置の温度変化を予測する予測部とを有し、前記冷却実行装置は、前記サーバの前記予測部により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得部と、前記情報取得部により取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行部とを有してよい。 According to an embodiment, a cooling system is provided. The cooling system includes a server and a cooling execution device, and the server includes an information acquisition unit that acquires, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device of the vehicle, and a prediction unit that predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition unit and the temperature information of the control device of the vehicle, and the cooling execution device may include an information acquisition unit that acquires, from the server, a prediction result of the temperature change of the control device predicted by the prediction unit of the server, and a cooling execution unit that starts cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition unit.
 前記サーバは、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とから、前記車両の位置と前記制御装置の温度との関係を表すマップを作成する作成部をさらに有し、前記予測部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記作成部により作成された前記車両の位置と前記制御装置の温度との関係を表すマップとに基づいて、前記制御装置の温度変化を予測してもよい。 The server may further have a creation unit that creates a map showing the relationship between the position of the vehicle having the cooling execution device and the temperature of the control device from the position information of the vehicle having the cooling execution device acquired by the information acquisition unit and temperature information of the control device of the vehicle, and the prediction unit may predict a temperature change of the control device based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, and the map created by the creation unit showing the relationship between the position of the vehicle and the temperature of the control device.
 前記サーバの情報取得部は、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記車両の種類に関する情報とを、前記冷却実行装置から取得し、前記作成部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、車両の種類に関する情報とから、前記車両の種類における前記車両の位置と前記制御装置の温度との関係を表すマップを作成し、前記サーバの予測部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記作成部により作成された前記車両の種類における前記車両の位置と前記制御装置の温度との関係を表すマップとに基づいて、前記制御装置の温度変化を予測してよい。 The information acquisition unit of the server may acquire location information of the vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, and information regarding the type of the vehicle from the cooling execution device, and the creation unit may create a map representing the relationship between the location of the vehicle and the temperature of the control device for the vehicle type from the location information of the vehicle having the cooling execution device, temperature information of the control device possessed by the vehicle, and information regarding the type of vehicle acquired by the information acquisition unit, and the prediction unit of the server may predict a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of the control device possessed by the vehicle, and the map representing the relationship between the location of the vehicle and the temperature of the control device for the vehicle type created by the creation unit.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置が発熱を始める所定時間前から前記制御装置の冷却を開始してよい。 The cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device a predetermined time before the control device starts to generate heat.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始してよい。 The cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature change of the control device.
 前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含んでよい。 The multiple types of cooling means may include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
 実施態様によれば、サーバと冷却実行装置とにより実行される冷却実行方法が提供される。前記冷却実行方法は、前記サーバが、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得工程を含んでよい。前記冷却実行方法は、前記サーバが、前記情報取得工程により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とに基づいて、前記制御装置の温度変化を予測する予測工程を含んでよい。前記冷却実行方法は、前記冷却実行装置が、前記サーバの前記予測工程により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得工程を含んでよい。前記冷却実行方法は、前記冷却実行装置が、前記情報取得工程により取得された前記制御装置の温度変化の予測に基づいて、前記制御装置の冷却を開始する冷却実行工程を含んでよい。 According to an embodiment, a cooling execution method is provided which is executed by a server and a cooling execution device. The cooling execution method may include an information acquisition step in which the server acquires, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device possessed by the vehicle. The cooling execution method may include a prediction step in which the server predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device and the temperature information of the control device possessed by the vehicle acquired by the information acquisition step. The cooling execution method may include an information acquisition step in which the cooling execution device acquires, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server. The cooling execution method may include a cooling execution step in which the cooling execution device starts cooling of the control device based on the prediction of the temperature change of the control device acquired by the information acquisition step.
 実施態様によれば、サーバが実行するプログラムと、冷却実行装置が実行するプログラムとを含む冷却プログラムが提供される。前記冷却プログラムは、前記サーバに、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得ステップと、前記情報取得ステップにより取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とに基づいて、前記制御装置の温度変化を予測する予測ステップとを実行させ、前記冷却実行装置に、前記サーバの前記予測ステップにより予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得ステップと、前記情報取得ステップにより取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行ステップとを実行させてよい。 According to an embodiment, a cooling program is provided that includes a program executed by a server and a program executed by a cooling execution device. The cooling program may cause the server to execute an information acquisition step of acquiring, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device possessed by the vehicle, and a prediction step of predicting a temperature change of the control device based on the location information of the vehicle having the cooling execution device and the temperature information of the control device possessed by the vehicle acquired by the information acquisition step, and cause the cooling execution device to execute an information acquisition step of acquiring, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server, and a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition step.
 実施態様によれば、冷却システムが提供される。前記冷却システムは、サーバと冷却実行装置とからなる冷却システムであって、前記サーバは、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、交通状況に関する情報と、天候情報とを前記冷却実行装置から取得する情報取得部と、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とに基づいて、前記制御装置の温度変化を予測する予測部とを有し、前記冷却実行装置は、前記サーバの前記予測部により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得部と、前記情報取得部により取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行部とを有してもよい。 According to an embodiment, a cooling system is provided. The cooling system is a cooling system including a server and a cooling execution device, and the server includes an information acquisition unit that acquires from the cooling execution device location information of a vehicle having the cooling execution device, temperature information of a control device of the vehicle, information on traffic conditions, and weather information, and a prediction unit that predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information on the traffic conditions, and the weather information, and the cooling execution device may include an information acquisition unit that acquires from the server a prediction result of the temperature change of the control device predicted by the prediction unit of the server, and a cooling execution unit that starts cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition unit.
 前記サーバは、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とから、前記車両の位置と、前記交通状況に関する情報と、前記天候情報と、前記制御装置の温度との関係を表すマップを作成する作成部をさらに有し、前記予測部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報と、前記作成部により作成された前記車両の位置と、前記交通状況に関する情報と、前記天候情報と、前記制御装置の温度との関係を表すマップとに基づいて、前記制御装置の温度変化を予測してもよい。 The server may further have a creation unit that creates a map showing the relationship between the vehicle's position, the information about the traffic conditions, the weather information, and the temperature of the control device from the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information about the traffic conditions, and the weather information, and the prediction unit may predict a temperature change of the control device based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information about the traffic conditions, the weather information, and the map created by the creation unit showing the relationship between the vehicle's position, the information about the traffic conditions, the weather information, and the temperature of the control device.
 前記作成部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とから、前記交通状況に関する情報や前記天候情報ごとに、前記車両の位置と前記制御装置の温度との関係を表すマップを作成してもよい。 The creation unit may create a map showing the relationship between the position of the vehicle and the temperature of the control device for each of the information on the traffic conditions and the weather information, based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of the control device of the vehicle, the information on the traffic conditions, and the weather information.
 前記サーバの情報取得部は、さらに前記車両の種類に関する情報を前記冷却実行装置から取得し、前記作成部は、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報と、前記車両の種類に関する情報とから、前記車両の位置と、前記交通状況に関する情報と、前記天候情報と、前記車両の種類と、前記制御装置の温度との関係を表すマップを作成してもよい。 The information acquisition unit of the server may further acquire information relating to the type of the vehicle from the cooling execution device, and the creation unit may create a map showing the relationship between the position of the vehicle, the information relating to the traffic conditions, the weather information, the type of the vehicle, and the temperature of the control device from the position information of the vehicle having the cooling execution device, the temperature information of the control device of the vehicle, the information relating to the traffic conditions, the weather information, and the information relating to the type of the vehicle.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置が発熱を始める所定時間前から前記制御装置の冷却を開始してもよい。 The cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device a predetermined time before the control device starts to generate heat.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始してもよい。 The cooling execution unit may use the predicted temperature change of the control device acquired by the information acquisition unit to start cooling the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature change of the control device.
 前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含んでもよい。 The multiple types of cooling means may include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
 実施形態によれば、サーバと冷却実行装置とにより実行される冷却実行方法が提供される。前記冷却実行方法は、前記サーバが、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とを、前記冷却実行装置から取得する情報取得工程を含んでよい。前記サーバが、前記情報取得工程により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とに基づいて、前記制御装置の温度変化を予測する予測工程とを含んでよい。前記冷却実行装置が、前記サーバの前記予測工程により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得工程を含んでよい。前記冷却実行装置が、前記情報取得工程により取得された前記制御装置の温度変化の予測に基づいて、前記制御装置の冷却を開始する冷却実行工程を含んでよい。 According to an embodiment, a cooling execution method is provided that is executed by a server and a cooling execution device. The cooling execution method may include an information acquisition step in which the server acquires, from the cooling execution device, location information of a vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, information on the traffic conditions, and the weather information. The server may include a prediction step in which the server predicts a temperature change of the control device based on the location information of the vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, information on the traffic conditions, and the weather information acquired by the information acquisition step. The cooling execution device may include an information acquisition step in which the server acquires, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server. The cooling execution device may include a cooling execution step in which the cooling execution device starts cooling of the control device based on the prediction of the temperature change of the control device acquired by the information acquisition step.
 実施形態によれば、サーバが実行するプログラムと、冷却実行装置が実行するプログラムとを含む冷却プログラムが提供される。前記プログラムは、前記サーバに、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得ステップと、前記情報取得ステップにより取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とに基づいて、前記制御装置の温度変化を予測する予測ステップとを実行させ、前記冷却実行装置に、前記サーバの前記予測ステップにより予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得ステップと、前記情報取得ステップにより取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行ステップとを実行させてもよい。 According to an embodiment, a cooling program is provided that includes a program executed by a server and a program executed by a cooling execution device. The program causes the server to execute an information acquisition step of acquiring, from the cooling execution device, location information of a vehicle having the cooling execution device and temperature information of a control device of the vehicle, and a prediction step of predicting a temperature change of the control device based on the location information of the vehicle having the cooling execution device acquired by the information acquisition step, the temperature information of the control device of the vehicle, information on the traffic conditions, and the weather information, and may cause the cooling execution device to execute an information acquisition step of acquiring, from the server, a prediction result of the temperature change of the control device predicted by the prediction step of the server, and a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change of the control device acquired by the information acquisition step.
 実施態様によれば、冷却システムが提供される。冷却システムは、サーバと冷却実行装置とからなる冷却システムであって、前記サーバは、制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、車両の運転状況に関する情報とを、前記冷却実行装置から取得する情報取得部と、前記情報取得部により取得された、前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とから、前記制御装置の各位置の温度変化を予測する予測部とを有し、前記冷却実行装置は、前記サーバの前記予測部により予測された前記制御装置の各位置の温度変化の予測結果を、前記サーバから取得する情報取得部と、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行部とを有してもよい。 According to an embodiment, a cooling system is provided. The cooling system is a cooling system including a server and a cooling execution device, the server includes an information acquisition unit that acquires from the cooling execution device position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle, and a prediction unit that predicts temperature changes at each position of the control device from the position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle acquired by the information acquisition unit, and the cooling execution device may include an information acquisition unit that acquires from the server a prediction result of the temperature change at each position of the control device predicted by the prediction unit of the server, and a cooling execution unit that starts cooling the control device based on the prediction result of the temperature change at each position of the control device acquired by the information acquisition unit.
 前記予測部は、前記情報取得部により取得された前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とから、前記制御装置の各位置の経時的な温度変化を予測してもよい。 The prediction unit may predict temperature changes over time at each position of the control device from position information of each integrated circuit in the control device acquired by the information acquisition unit, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果を用いて、前記制御装置の発熱が起こる位置の冷却を開始してもよい。 The cooling execution unit may use the predicted results of temperature changes at each position of the control device acquired by the information acquisition unit to start cooling at positions where heat is generated in the control device.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果を用いて、前記制御装置が発熱を始める所定時間前から前記制御装置の発熱が起こる位置の冷却を開始してもよい。 The cooling execution unit may use the predicted temperature change at each position of the control device acquired by the information acquisition unit to start cooling the position where the control device generates heat a predetermined time before the control device starts to generate heat.
 前記冷却実行部は、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果を用いて、前記制御装置の各位置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始してもよい。 The cooling execution unit may use the predicted results of the temperature change at each position of the control device acquired by the information acquisition unit, and start cooling the control device using one or more cooling means selected from multiple types of cooling means according to the temperature change at each position of the control device.
 前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含んでもよい。 The multiple types of cooling means may include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
 実施形態によれば、サーバと冷却実行装置とにより実行される冷却実行方法が提供される。前記サーバが、制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、車両の運転状況に関する情報とを、前記冷却実行装置から取得する情報取得工程を含んでよい。前記サーバが、前記情報取得工程により取得された、前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とから、前記制御装置の各位置の温度変化を予測する予測工程を含んでよい。前記冷却実行装置が、前記サーバの前記予測工程により予測された前記制御装置の各位置の温度変化の予測結果を、前記サーバから取得する情報取得工程を含んでよい。前記冷却実行装置が、前記情報取得工程により取得された前記制御装置の各位置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行工程を含んでよい。 According to an embodiment, a cooling execution method is provided which is executed by a server and a cooling execution device. The server may include an information acquisition step of acquiring position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle from the cooling execution device. The server may include a prediction step of predicting temperature changes at each position of the control device from the position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle acquired by the information acquisition step. The cooling execution device may include an information acquisition step of acquiring from the server a prediction result of the temperature change at each position of the control device predicted by the prediction step of the server. The cooling execution device may include a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change at each position of the control device acquired by the information acquisition step.
 実施形態によれば、サーバが実行するプログラムと、冷却実行装置が実行するプログラムとを含む冷却プログラムが提供される。前記プログラムは、前記サーバに、制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、車両の運転状況に関する情報とを、前記冷却実行装置から取得する情報取得ステップと、前記情報取得ステップにより取得された、前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とから、前記制御装置の各位置の温度変化を予測する予測ステップとを実行させ、前記冷却実行装置に、前記サーバの前記予測ステップにより予測された前記制御装置の各位置の温度変化の予測結果を、前記サーバから取得する情報取得ステップと、前記情報取得ステップにより取得された前記制御装置の各位置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行ステップとを実行させてもよい。 According to an embodiment, a cooling program is provided that includes a program executed by a server and a program executed by a cooling execution device. The program causes the server to execute an information acquisition step of acquiring, from the cooling execution device, position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle, and a prediction step of predicting a temperature change at each position of the control device from the position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to the driving status of the vehicle acquired by the information acquisition step, and may cause the cooling execution device to execute an information acquisition step of acquiring, from the server, a prediction result of the temperature change at each position of the control device predicted by the prediction step of the server, and a cooling execution step of starting cooling of the control device based on the prediction result of the temperature change at each position of the control device acquired by the information acquisition step.
 実施態様によれば、冷却実行装置が提供される。冷却実行装置は、車両の自動運転を制御する前記車両に搭載された制御装置の温度を検知する検知部と、前記検知部が検知した前記温度が、所定温度以上を継続する時間に基づいて、所定の冷却手段を用いて前記制御装置の冷却を実行する冷却実行部と、を有してよい。 According to an embodiment, a cooling execution device is provided. The cooling execution device may have a detection unit that detects the temperature of a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution unit that executes cooling of the control device using a predetermined cooling means based on the time that the temperature detected by the detection unit continues to be equal to or higher than a predetermined temperature.
 冷却実行装置において、前記冷却実行部は、前記所定温度以上を継続する時間が所定の閾値を超えた場合に、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含む、前記冷却手段を用いて冷却を実行してもよい。 In the cooling execution device, the cooling execution unit may execute cooling using the cooling means, which may include one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means, when the time during which the temperature remains above the predetermined temperature exceeds a predetermined threshold.
 冷却実行装置において、前記冷却実行部は、前記温度が所定の閾値を超えた場合に急速冷却を実行してもよい。 In the cooling execution device, the cooling execution unit may execute rapid cooling when the temperature exceeds a predetermined threshold.
 冷却実行装置において、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部を更に有し、前記冷却実行部は、前記予測部により予測された前記温度変化として、前記所定温度以上を継続する時間に基づいて、前記冷却手段を用いて冷却を実行してもよい。 The cooling execution device may further include a prediction unit that predicts a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and the cooling execution unit may execute cooling using the cooling means based on the time that the temperature change predicted by the prediction unit continues to be equal to or higher than the predetermined temperature.
 冷却実行装置において、前記制御装置の複数の部位のそれぞれの温度変化を予測する予測部を更に有し、前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始してもよい。 The cooling execution device may further include a prediction unit that predicts temperature changes in each of the multiple parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from multiple cooling means that cool each of the multiple parts of the control device based on the prediction result by the prediction unit.
 前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有し、前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されていてよい。 The control device may have a plurality of processing chips, each of which is arranged at a different position on the control device, and each of the plurality of cooling means may be arranged at a position corresponding to each of the plurality of processing chips.
 本発明の一実施態様によれば、コンピュータを、冷却実行装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as a cooling execution device.
 本発明の一実施態様によれば、コンピュータによって実行される冷却実行方法であって、車両の自動運転を制御する前記車両に搭載された制御装置の温度を検知する検知段階と、前記検知段階にて検知された前記温度が、所定温度以上を継続する時間に基づいて、所定の冷却手段を用いて前記制御装置の冷却を実行する冷却実行段階を備えてよい。 According to one embodiment of the present invention, a cooling execution method executed by a computer may include a detection step of detecting the temperature of a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution step of cooling the control device using a predetermined cooling means based on the time that the temperature detected in the detection step continues to be equal to or higher than a predetermined temperature.
 実施態様によれば、冷却実行装置が提供される。冷却実行装置は、予め設定された走行ルートに基づいて、自動運転と手動運転との切り替えを推定する推定部と、前記推定部の推定結果に基づき、所定の冷却手段に基づく冷却条件が設定された冷却予定を作成する作成部と、前記作成部により作成された前記冷却予定に基づき、車両の自動運転を制御する車両に搭載された制御装置の冷却を実行する冷却実行部と、を有してよい。 According to an embodiment, a cooling execution device is provided. The cooling execution device may have an estimation unit that estimates switching between automatic driving and manual driving based on a preset driving route, a creation unit that creates a cooling schedule in which cooling conditions based on a predetermined cooling means are set based on the estimation result of the estimation unit, and a cooling execution unit that executes cooling of a control device mounted on a vehicle that controls the automatic driving of the vehicle based on the cooling schedule created by the creation unit.
 冷却実行装置において、前記推定部は、前記走行ルートの道路状況に基づいて前記自動運転から前記手動運転への切り替えが発生するか否かを推定してもよい。 In the cooling execution device, the estimation unit may estimate whether or not switching from the automatic driving to the manual driving will occur based on road conditions on the driving route.
 冷却実行装置において、前記作成部は、前記推定部により前記自動運転を前記手動運転に切り替えると推定された場合、該手動運転の走行区間に対する冷却手段が設定された前記冷却予定を作成し、前記推定部により前記手動運転を前記自動運転に切り替えると推定された場合、該自動運転の走行区間に対する冷却手段が設定された前記冷却予定を作成してもよい。 In the cooling execution device, when the estimation unit estimates that the automatic driving will be switched to the manual driving, the creation unit may create the cooling schedule in which a cooling means is set for the driving section of the manual driving, and when the estimation unit estimates that the manual driving will be switched to the automatic driving, the creation unit may create the cooling schedule in which a cooling means is set for the driving section of the automatic driving.
 冷却実行装置において、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を検知する検知部と、前記制御装置の温度変化を予測する予測部とを更に有し、前記作成部は、前記検知部により検知された実際の温度変化と前記予測部により予測された予測の温度変化とを比較して、該予測の温度変化が該実際の温度変化を上回る場合に、前記所定の冷却手段が設定された前記冷却予定を作成してもよい。 The cooling execution device may further include a detection unit that detects a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and a prediction unit that predicts the temperature change in the control device, and the creation unit may compare the actual temperature change detected by the detection unit with the predicted temperature change predicted by the prediction unit, and create the cooling schedule in which the specified cooling means is set if the predicted temperature change exceeds the actual temperature change.
 冷却実行装置において、前記冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、および液体窒素冷却手段のうちの複数を含んでよい。 In the cooling device, the cooling means may include one or more types of air cooling means, one or more types of water cooling means, and a liquid nitrogen cooling means.
 冷却実行装置において、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部を更に有し、前記冷却実行部は、前記作成部により作成された前記冷却予定に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を実行してよい。 The cooling execution device may further include a prediction unit that predicts a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and the cooling execution unit may execute cooling of the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the cooling schedule created by the creation unit.
 前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有し、前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されてよい。 The control device may have a plurality of processing chips, each of which is arranged at a different position on the control device, and each of the plurality of cooling means may be arranged at a position corresponding to each of the plurality of processing chips.
 本発明の一実施態様によれば、コンピュータを、冷却実行装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as a cooling execution device.
 本発明の一実施態様によれば、コンピュータによって実行される冷却実行方法であって、予め設定された走行ルートに基づいて、自動運転と手動運転との切り替えを推定する推定段階と、前記推定段階の推定結果に基づき、所定の冷却手段に基づく冷却条件が設定された冷却予定を作成する作成段階と、前記作成段階により作成された前記冷却予定に基づき、車両の自動運転を制御する車両に搭載された制御装置の冷却を実行する冷却実行段階を備えてよい。 According to one embodiment of the present invention, a cooling execution method executed by a computer may include an estimation step of estimating a switch between automatic driving and manual driving based on a preset driving route, a creation step of creating a cooling schedule in which cooling conditions based on a predetermined cooling means are set based on the estimation result of the estimation step, and a cooling execution step of executing cooling of a control device mounted on a vehicle that controls the automatic driving of the vehicle based on the cooling schedule created in the creation step.
 本発明の一実施態様によれば、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部と、前記予測部によって予測された前記温度変化に基づいて、前記制御装置の温度が所定の温度範囲内に保持されるように冷却を行う冷却実行部とを備える冷却装置が提供される。 According to one embodiment of the present invention, a cooling device is provided that includes a prediction unit that predicts a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution unit that performs cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted by the prediction unit.
 また、前記冷却装置において、前記冷却実行部は、前記制御装置について予め定められた閾値の温度に応じて、前記所定の温度範囲を決定してよい。 Furthermore, in the cooling device, the cooling execution unit may determine the predetermined temperature range according to a threshold temperature that is predetermined for the control device.
 さらに、前記予測部は、AIによって前記制御装置の前記温度変化を予測してよい。 Furthermore, the prediction unit may predict the temperature change of the control device using AI.
 また、前記冷却装置は、前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置の温度変化とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の温度変化を出力とする学習モデルを記憶するモデル記憶部と、前記制御装置が取得する情報を取得する情報取得部とを更に備えてよく、前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記温度変化を予測してよい。前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報を、前記センサ又は前記制御装置から取得してよい。 The cooling device may further include a model storage unit that stores a learning model that uses the information acquired by the control device as input and the temperature change of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the temperature change of the control device when the control device acquired the information as learning data, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model. The information acquisition unit may acquire sensor information acquired by the control device from a sensor mounted on the vehicle, from the sensor or the control device.
 さらに、前記情報取得部は、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果を、前記制御装置から取得してよい。 Furthermore, the information acquisition unit may acquire from the control device the analysis results of the control device's analysis of an image captured by a camera mounted on the vehicle.
 また、前記情報取得部は、前記制御装置が外部装置から受信する外部情報を、前記外部装置又は前記制御装置から取得してよい。前記情報取得部は、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報を、前記外部装置又は前記制御装置から取得してよい。 The information acquisition unit may acquire external information that the control device receives from an external device from the external device or the control device. The information acquisition unit may acquire traffic information of a road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
 さらに、前記冷却実行部は、前記予測部によって予測された前記制御装置の温度の高さに応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始してよい。 Furthermore, the cooling execution unit may start cooling the control device using one or more cooling means selected from multiple types of cooling means, depending on the temperature of the control device predicted by the prediction unit.
 また、前記冷却実行部における前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含んでよい。 Furthermore, the multiple types of cooling means in the cooling execution unit may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and liquid nitrogen cooling means.
 さらに、前記予測部は、前記制御装置の複数の部位のそれぞれの温度変化を予測してよく、前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始してよい。 Furthermore, the prediction unit may predict temperature changes in each of the multiple parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from multiple cooling means that cool each of the multiple parts of the control device based on the prediction result by the prediction unit.
 また、前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有してよく、前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されていてよい。 Furthermore, the control device may have a plurality of processing chips, each disposed at a different position on the control device, and each of the plurality of cooling means may be disposed at a position corresponding to each of the plurality of processing chips.
 本発明の一実施態様によれば、冷却装置で実行される冷却方法であって、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測工程と、前記予測工程によって予測された前記温度変化に基づいて、前記制御装置の温度が所定の温度範囲内に保持されるように冷却を行う冷却実行工程とを含むことを特徴とする冷却方法が提供される。 According to one embodiment of the present invention, there is provided a cooling method executed by a cooling device, the cooling method including a prediction step of predicting a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, and a cooling execution step of performing cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted by the prediction step.
 本発明の一実施態様によれば、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測手順と、前記予測手順において予測された前記温度変化に基づいて、前記制御装置の温度が所定の温度範囲内に保持されるように冷却を行う冷却実行手順とをコンピュータに実行させるための冷却プログラムが提供される。 According to one embodiment of the present invention, a cooling program is provided that causes a computer to execute a prediction procedure for predicting a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, and a cooling execution procedure for performing cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted in the prediction procedure.
 実施態様によれば、冷却実行装置が提供される。冷却実行装置は、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を検知する検知部と、前記温度変化が所定の閾値を超えた場合に、前記制御装置の温度を下げる所定の運転条件を選択する選択部と、前記選択部の選択結果に基づき、前記所定の運転条件を出力する出力部を有してよい。 According to an embodiment, a cooling execution device is provided. The cooling execution device may have a detection unit that detects a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, a selection unit that selects a predetermined operating condition for lowering the temperature of the control device when the temperature change exceeds a predetermined threshold, and an output unit that outputs the predetermined operating condition based on the selection result of the selection unit.
 冷却実行装置において、前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記制御装置の所定の情報処理に係る計算量を抑制する運転条件を選択してもよい。 In the cooling execution device, when the temperature change exceeds a predetermined threshold, the selection unit may select, as the predetermined operating condition, an operating condition that reduces the amount of calculation related to the predetermined information processing of the control device.
 冷却実行装置において、前記制御装置の所定の情報処理として、前記自動運転に係る情報処理を行う外部の情報処理装置から、前記自動運転に係る情報処理の結果を取得する情報取得部を更に有してもよい。 The cooling execution device may further include an information acquisition unit that acquires the results of the information processing related to the automatic driving from an external information processing device that performs information processing related to the automatic driving as a predetermined information processing of the control device.
 冷却実行装置において、前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転の運転速度を所定の速度以下に抑制する運転条件を選択してもよい。 In the cooling execution device, when the temperature change exceeds a predetermined threshold, the selection unit may select, as the predetermined operating condition, an operating condition that suppresses the operating speed of the automatic operation to a predetermined speed or less.
 冷却実行装置において、前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転を手動運転に変更する運転条件を選択してもよい。 In the cooling execution device, the selection unit may select, as the predetermined operating condition, an operating condition that changes the automatic operation to a manual operation when the temperature change exceeds a predetermined threshold.
 冷却実行装置において、前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転の走行ルートに含まれる道路の所定の位置に停止する運転条件を選択してもよい。 In the cooling execution device, the selection unit may select, as the predetermined driving condition, a driving condition in which the vehicle stops at a predetermined position on a road included in the driving route of the autonomous driving, when the temperature change exceeds a predetermined threshold.
 冷却実行装置において、前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転の情報処理に用いる所定の情報の取得を抑制する運転条件を選択してもよい。 In the cooling execution device, when the temperature change exceeds a predetermined threshold, the selection unit may select, as the predetermined operating condition, an operating condition that suppresses the acquisition of predetermined information used for information processing of the automatic driving.
 本発明の一実施態様によれば、コンピュータを、冷却実行装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as a cooling execution device.
 本発明の一実施態様によれば、コンピュータによって実行される冷却実行方法であって、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を検知する検知段階と、前記温度変化が所定の閾値を超えた場合に、前記制御装置の温度を下げる所定の運転条件を選択する選択段階と、前記選択段階の選択結果に基づき、前記所定の運転条件を出力する出力段階を備えてよい。 According to one embodiment of the present invention, a cooling execution method executed by a computer may include a detection step of detecting a temperature change in a control device mounted on a vehicle that controls automatic driving of the vehicle, a selection step of selecting a predetermined operating condition for lowering the temperature of the control device when the temperature change exceeds a predetermined threshold, and an output step of outputting the predetermined operating condition based on the selection result of the selection step.
 本発明の一実施態様によれば、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部と、前記予測部によって予測された前記温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う通信部と、前記通信部によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように前記制御装置に指示する指示部とを備えることを特徴とする冷却装置が提供される。 According to one embodiment of the present invention, a cooling device is provided that includes a prediction unit that predicts a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, a communication unit that communicates with other vehicles that are present within a predetermined range based on the temperature change predicted by the prediction unit, and an instruction unit that instructs the control device to execute a calculation related to the control of the automatic driving of the other vehicle with which communication is being performed by the communication unit.
 また、前記通信部は、他の車両との通信を所定時間維持することができる範囲内に存在する他の車両を、前記所定の範囲内に存在する車両として判断し通信を行ってよい。 The communication unit may also determine that other vehicles that are within a range in which communication with other vehicles can be maintained for a predetermined period of time are vehicles that are within the predetermined range and communicate with them.
 さらに、前記予測部によって予測された前記温度変化に基づいて、前記制御装置の冷却を開始する冷却実行部をさらに備えてよい。 The system may further include a cooling execution unit that starts cooling the control device based on the temperature change predicted by the prediction unit.
 また、前記冷却実行部は、前記予測部によって前記制御装置の温度が予め定められた閾値より高くなることが予測されたことに応じて、前記制御装置の冷却を開始してよい。 The cooling execution unit may also start cooling the control device in response to the prediction unit predicting that the temperature of the control device will be higher than a predetermined threshold.
 さらに、前記予測部は、AIによって前記制御部の前記温度変化を予測してよい。 Furthermore, the prediction unit may predict the temperature change of the control unit using AI.
 また、前記自動運転制御装置は、前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置の温度変化とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の温度変化を出力とする学習モデルを記憶するモデル記憶部と、前記制御装置が取得する情報を取得する情報取得部とを更に備えてよく、前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記温度変化を予測してよい。 The autonomous driving control device may further include a model storage unit that stores a learning model that uses the information acquired by the control device and the temperature change of the control device at the time the control device acquired the information as learning data, the learning model being generated by machine learning that uses the information acquired by the control device as input and the temperature change of the control device as output, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
 さらに、前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報を、前記センサ又は前記制御装置から取得してよい。 Furthermore, the information acquisition unit may acquire sensor information that the control device acquires from a sensor mounted on the vehicle from the sensor or the control device.
 また、前記情報取得部は、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果を、前記制御装置から取得してよい。 The information acquisition unit may also acquire from the control device the analysis results of an image captured by a camera mounted on the vehicle, which is analyzed by the control device.
 さらに、前記情報取得部は、前記制御装置が外部装置から受信する外部情報を、前記外部装置又は前記制御装置から取得してよい。前記情報取得部は、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報を、前記外部装置又は前記制御装置から取得してよい。 Furthermore, the information acquisition unit may acquire external information that the control device receives from an external device from the external device or the control device. The information acquisition unit may acquire traffic information of the road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
 また、前記冷却実行部は、前記予測部によって予測された前記制御装置の温度の高さに応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始してよい。 The cooling execution unit may also start cooling the control device using one or more cooling means selected from a plurality of types of cooling means, depending on the temperature of the control device predicted by the prediction unit.
 さらに、前記冷却実行部における前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含んでよい。 Furthermore, the multiple types of cooling means in the cooling execution unit may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and liquid nitrogen cooling means.
 また、前記予測部は、前記制御装置の複数の部位のそれぞれの温度変化を予測してよく、前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始してよい。 Furthermore, the prediction unit may predict temperature changes in each of the multiple parts of the control device, and the cooling execution unit may start cooling the control device using a cooling means selected from multiple cooling means that cool each of the multiple parts of the control device based on the prediction result by the prediction unit.
 さらに、前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有してよく、前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されていてよい。 Furthermore, the control device may have a plurality of processing chips, each disposed at a different position on the control device, and each of the plurality of cooling means may be disposed at a position corresponding to each of the plurality of processing chips.
 本発明の一実施態様によれば、冷却装置で実行される冷却方法であって、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測工程と、前記予測工程によって予測された前記温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う通信工程と、前記通信工程によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように前記制御装置に指示する指示工程とを含むことを特徴とする冷却方法が提供される。 According to one embodiment of the present invention, there is provided a cooling method executed by a cooling device, the cooling method including a prediction step of predicting a temperature change in a control device mounted on the vehicle that controls the automatic driving of the vehicle, a communication step of communicating with other vehicles present within a predetermined range based on the temperature change predicted by the prediction step, and an instruction step of instructing the control device to execute a calculation related to the control of the automatic driving of the other vehicle with which communication is being performed by the communication step.
 本発明の一実施態様によれば、車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測手順と、前記予測手順によって予測された前記温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う通信手順と、前記通信手順によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように前記制御装置に指示する指示手順とをコンピュータに実行させるための冷却プログラムが提供される。 According to one embodiment of the present invention, a cooling program is provided for causing a computer to execute a prediction procedure for predicting a temperature change in a control device mounted on a vehicle that controls the automatic driving of the vehicle, a communication procedure for communicating with other vehicles present within a predetermined range based on the temperature change predicted by the prediction procedure, and an instruction procedure for instructing the control device to execute a calculation related to the control of the automatic driving of the other vehicles with which communication is being performed by the communication procedure.
 本発明の一実施態様によれば、冷却実行装置が提供される。前記冷却実行装置は、車両の自動運転を制御する前記車両に搭載された制御装置のコンピューティングパワーの変化を予測する予測部を備えてよい。前記冷却実行装置は、前記予測部によって予測された変化に基づいて、前記制御装置の冷却を開始する冷却実行部を備えてよい。 According to one embodiment of the present invention, a cooling execution device is provided. The cooling execution device may include a prediction unit that predicts a change in computing power of a control device mounted on the vehicle that controls the automatic driving of the vehicle. The cooling execution device may include a cooling execution unit that starts cooling the control device based on the change predicted by the prediction unit.
 前記冷却実行装置において、前記予測部は、AIによって前記制御装置の前記コンピューティングパワーの変化を予測してよい。前記予測部は、前記制御装置の前記コンピューティングパワーが最大になる瞬間を予測してよく、前記冷却実行部は、前記予測部によって予測された前記瞬間に基づいて、前記制御装置の冷却を開始してよい。前記冷却実行部は、前記制御装置の前記コンピューティングパワーが最大になる前記瞬間に前記制御装置の冷却を開始してよい。前記予測部は、前記制御装置の前記コンピューティングパワーが最大になる前記瞬間の予測結果から、前記制御装置の温度が予め定められた温度よりも高くなるまでの時間を予測してよく、前記冷却実行部は、前記予測部によって予測された前記時間に基づいて、前記制御装置の冷却を開始してよい。 In the cooling execution device, the prediction unit may predict a change in the computing power of the control device using AI. The prediction unit may predict the moment when the computing power of the control device will be at its maximum, and the cooling execution unit may start cooling the control device based on the moment predicted by the prediction unit. The cooling execution unit may start cooling the control device at the moment when the computing power of the control device will be at its maximum. The prediction unit may predict the time until the temperature of the control device becomes higher than a predetermined temperature from the prediction result of the moment when the computing power of the control device will be at its maximum, and the cooling execution unit may start cooling the control device based on the time predicted by the prediction unit.
 前記いずれかの冷却実行装置は、前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置のコンピューティングパワーとを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置のコンピューティングパワーを出力とする学習モデルを記憶するモデル記憶部と、前記制御装置が取得する情報を取得する情報取得部とを更に備えてよく、前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記コンピューティングパワーの変化を予測してよい。前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果、前記制御装置が外部装置から受信する外部情報、及び、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報の少なくともいずれかを取得してよい。 Any of the cooling execution devices may further include a model storage unit that stores a learning model that uses the information acquired by the control device as input and the computing power of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the computing power of the control device at the time the control device acquired the information as learning data, and an information acquisition unit that acquires the information acquired by the control device, and the prediction unit may predict a change in the computing power of the control device by inputting the information acquired by the information acquisition unit into the learning model. The information acquisition unit may acquire at least any of sensor information acquired by the control device from a sensor mounted on the vehicle, an analysis result of an analysis by the control device of an image captured by a camera mounted on the vehicle, external information received by the control device from an external device, and traffic information of a road on which the vehicle is located that is received by the control device from the external device.
 前記いずれかの冷却実行装置は、前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときに前記制御装置の冷却を開始した場合に前記制御装置が冷却されるまでの時間とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の冷却を開始した場合に前記制御装置が冷却されるまでの時間を出力とする学習モデルを記憶するモデル記憶部と、前記制御装置が取得する情報を取得する情報取得部とを更に備えてよく、前記冷却実行部は、前記予測部によって予測された変化と、前記情報取得部が取得した前記情報を前記学習モデルに入力することによって取得した、前記制御装置の冷却を開始した場合に前記制御装置が冷却されるまでの時間とに基づいて、前記制御装置の冷却を開始するタイミングを決定してよい。 Any of the cooling execution devices may further include a model storage unit that stores a learning model that takes the information acquired by the control device as input and outputs the time until the control device cools down when cooling of the control device is started, the learning model being generated by machine learning using the information acquired by the control device and the time until the control device cools down when cooling of the control device is started as learning data when the control device acquires the information, and an information acquisition unit that acquires the information acquired by the control device, and the cooling execution unit may determine the timing to start cooling of the control device based on the change predicted by the prediction unit and the time until the control device cools down when cooling of the control device is started, acquired by inputting the information acquired by the information acquisition unit into the learning model.
 前記いずれかの冷却実行装置において、前記冷却実行部は、前記制御装置が高温になることで前記制御装置が正常に機能しなくなり前記車両の正常な自動運転に影響を及ぼすリスクが発生する確立を示すリスク率に応じて、前記制御装置の冷却の度合いを調整してよい。前記冷却実行部は、前記リスク率が第1の閾値より低い場合、第1の冷却強度で前記制御装置を冷却し、前記リスク率が前記第1の閾値より高く、前記第1の閾値より高い第2の閾値より低い場合、前記第1の冷却強度よりも強い第2の冷却強度で前記制御装置を冷却し、前記リスク率が前記第2の閾値より高い場合、前記第2の冷却強度よりも強い第3の冷却強度で前記制御装置を冷却してよい。 In any of the cooling execution devices, the cooling execution unit may adjust the degree of cooling of the control device according to a risk rate indicating the probability of a risk that the control device will not function properly due to a high temperature of the control device, thereby affecting normal automatic driving of the vehicle. The cooling execution unit may cool the control device with a first cooling intensity when the risk rate is lower than a first threshold, cool the control device with a second cooling intensity stronger than the first cooling intensity when the risk rate is higher than the first threshold and lower than a second threshold higher than the first threshold, and cool the control device with a third cooling intensity stronger than the second cooling intensity when the risk rate is higher than the second threshold.
 本発明の一実施態様によれば、コンピュータを、前記冷却実行装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as the cooling execution device.
 本発明の一実施態様によれば、コンピュータによって実行される冷却実行方法が提供される。前記冷却実行方法は、車両の自動運転を制御する前記車両に搭載された制御装置のコンピューティングパワーの変化を予測する予測段階を備えてよい。前記冷却実行方法は、前記予測段階において予測された前記変化に基づいて、前記制御装置の冷却を開始する冷却実行段階を備えてよい。 According to one embodiment of the present invention, there is provided a cooling execution method executed by a computer. The cooling execution method may include a prediction step of predicting a change in computing power of a control device mounted on the vehicle that controls the automatic driving of the vehicle. The cooling execution method may include a cooling execution step of starting cooling of the control device based on the change predicted in the prediction step.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not list all of the necessary features of the present invention. Subcombinations of these features may also be inventions.
システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す図である。FIG. 1 is a schematic diagram illustrating an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す図である。FIG. 1 is a schematic diagram illustrating an example of a system 10. 本実施形態における車両間の通信を行っている状態についての説明図である。FIG. 2 is an explanatory diagram of a state in which communication between vehicles is being performed in this embodiment. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. システム10の一例を概略的に示す。1 illustrates a schematic diagram of an example of a system 10. システム10における学習フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a learning phase in the system 10. システム10における冷却実行フェーズについて説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a cooling execution phase in the system 10. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. SoCBox400及び冷却部600の一例を概略的に示す。An example of a SoCBox 400 and a cooling unit 600 are shown in schematic form. 管理サーバ100、SoCBox400、冷却実行装置500、又は冷却装置700として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す図である。1 is a diagram illustrating an example of a hardware configuration of a computer 1200 that functions as a management server 100, a SoCBox 400, a cooling execution device 500, or a cooling device 700.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 The present invention will be described below through embodiments of the invention, but the following embodiments do not limit the invention as defined by the claims. Furthermore, not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention.
<第1の実施形態>
 自動運転向けのSoC(SystemonChip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(ArtificialIntelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronizedBurstChillingを提供する。
First Embodiment
When an autonomous driving SoC (System Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
 図1は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 1 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却実行装置500は、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行装置500は、SoCBox400が発熱を開始すると予測したことに応じて、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The cooling execution device 500 according to this embodiment predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
 冷却実行装置500は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400. SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(LocalAreaNetwork)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5thGeneration)通信方式、LTE(LongTermEvolution)通信方式、3G(3rdGeneration)通信方式、及び6G(6thGeneration)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via the network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図2は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(LightDetectionAndRanging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(GlobalNavigationSatelliteSystem)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 2 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図3は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 3 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, the sensors 310 mounted on the vehicle 300 are exemplified by a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316. The vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 冷却実行装置500は、モデル記憶部502、情報取得部504、予測部506、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The prediction unit 506 predicts the temperature change of the SoCBox 400. The prediction unit 506 may predict the temperature change of the SoCBox 400 using AI. For example, the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図4は、SoCBox400及び冷却部600の一例を概略的に示す。図4は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 4 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 4 shows an example in which the cooling unit 600 is configured with a single cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図5は、SoCBox400及び冷却部600の一例を概略的に示す。図5は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 5 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600. FIG. 5 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図6は、SoCBox400及び冷却部600の一例を概略的に示す。図6は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 6 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 6 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. In addition, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<第2の実施形態>
 自動運転向けのSoC(System on Chip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Second Embodiment
When an autonomous driving SoC (System on Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
 図7は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 7 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する制御装置である。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼしたりするおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 is a control device that controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係るシステム10は、冷却実行装置500を有する車両の位置情報と、車両が有するSoCBox400の温度情報とに基づいて、SoCBox400の温度変化を予測し、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、システム10は、車両や歩行者が多く存在する市街地など処理量が増加しSoCBox400の発熱が起こりやすい場所など、予め発熱を予測して、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The system 10 according to this embodiment predicts temperature changes in the SoCBox 400 based on location information of the vehicle having the cooling execution device 500 and temperature information of the SoCBox 400 held by the vehicle, and starts cooling the SoCBox 400 based on the temperature change. For example, the system 10 predicts heat generation in advance and immediately starts cooling the SoCBox 400 in places where the amount of processing is increased and heat generation is likely to occur, such as urban areas with many vehicles and pedestrians. By starting cooling before or at the same time as heat generation begins, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, the energy required for cooling can be reduced compared to when the SoCBox 400 is constantly cooled.
 システム10は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The system 10 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400. SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。また、冷却実行装置500は、車両300の種類に関する情報を、サーバ30から受信して記憶してよい。なお、車両300の種類に関する情報は、車両300の車種、車種とSoCBox400の発熱に関する情報、車種ごとのパラメータといった情報を含んでよい。ここで、車種ごとのパラメータには、SoCBox400の発熱が起こりやすい車種の情報、SoCBox400の発熱が起こりにくい車種の情報、車種ごとに搭載できる冷却手段の情報といった情報が含まれる。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling unit 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100. Cooling execution device 500 may also receive from server 30 and store information related to the type of vehicle 300. The information related to the type of vehicle 300 may include information such as the model of vehicle 300, information related to the model and heat generation of SoCBox 400, and parameters for each model. Here, the parameters for each model include information such as information on models that are prone to heat generation in SoCBox 400, information on models that are unlikely to heat up in SoCBox 400, and information on cooling means that can be installed in each model.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。また、冷却実行装置500は、後述する管理サーバ100が行う予測処理と同様の処理を行うことができる。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes in the SoCBox 400. The cooling execution device 500 can also perform processing similar to the prediction processing performed by the management server 100, which will be described later.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図8は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、GNSS(Global Navigation Satellite System)センサ216及びGPS(Global Positioning System)センサ217を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 8 is an explanatory diagram for explaining the learning phase in the system 10. Here, the following are exemplified as sensors 210 mounted on the vehicle 200: a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, a GNSS (Global Navigation Satellite System) sensor 216, and a GPS (Global Positioning System) sensor 217. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、モデル提供部106、作成部108及び予測部110を備える。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, a model provision unit 106, a creation unit 108, and a prediction unit 110.
 情報取得部102は、各種情報を取得する。例えば、情報取得部102は、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報とを、冷却実行装置500から取得する。また、情報取得部102は、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、車両300の種類に関する情報とを、冷却実行装置500から取得する。なお、位置情報は、GNSSセンサまたはGPSセンサからの情報を取得してもよい。また、位置情報は、車両300の走行経路や目的地に関する情報を含んでよい。なお、情報取得部102は、所定タイミング又は周期に基づいて、各種情報を取得してよい。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The information acquisition unit 102 acquires various information. For example, the information acquisition unit 102 acquires location information of the vehicle 300 having the cooling execution device 500 and temperature information of the SoCBox 400 of the vehicle 300 from the cooling execution device 500. The information acquisition unit 102 also acquires location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 of the vehicle 300, and information on the type of the vehicle 300 from the cooling execution device 500. The location information may be acquired from a GNSS sensor or a GPS sensor. The location information may include information on the driving route and destination of the vehicle 300. The information acquisition unit 102 may acquire various information based on a predetermined timing or period. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 作成部108は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報とから、車両300の位置とSoCBox400の温度との関係を表すマップを作成する。また、作成部108は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、車両300の種類に関する情報とから、車両300の種類ごとに車両300の位置とSoCBox400の温度との関係を表すマップを作成する。 The creation unit 108 creates a map showing the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400 from the position information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102 and the temperature information of the SoCBox 400 of the vehicle 300. The creation unit 108 also creates a map showing the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400 for each type of vehicle 300 from the position information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 of the vehicle 300, and information related to the type of vehicle 300.
 予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報とに基づいて、SoCBox400の温度変化を予測する。このとき、予測部110は、過去に情報取得部102により取得された、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報とを用いて予測を行ってもよい。 The prediction unit 110 predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102 and the temperature information of the SoCBox 400 of the vehicle 300. At this time, the prediction unit 110 may make the prediction using the location information of the vehicle 300 having the cooling execution device 500 and the temperature information of the SoCBox 400 of the vehicle 300 acquired by the information acquisition unit 102 in the past.
 例えば、予測部110は、蓄積された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報とを用いて、情報取得部102により取得された冷却実行装置500を有する車両の位置情報と、車両300が有するSoCBox400の温度情報とに基づいて、SoCBox400の温度変化を予測する。例えば、予測部110は、過去に取得された情報において、都市部では、通常時に比べて発熱量が約20%増加するというデータから、車両300の位置情報が市街地である場合には、発熱量が約20%増加することを踏まえて温度変化を予測する。 For example, the prediction unit 110 uses the accumulated location information of the vehicle 300 having the cooling execution device 500 and the temperature information of the SoCBox 400 possessed by the vehicle 300 to predict a temperature change in the SoCBox 400 based on the location information of the vehicle having the cooling execution device 500 acquired by the information acquisition unit 102 and the temperature information of the SoCBox 400 possessed by the vehicle 300. For example, based on data from previously acquired information showing that the amount of heat generated increases by about 20% in urban areas compared to normal times, the prediction unit 110 predicts a temperature change based on the fact that the amount of heat generated will increase by about 20% when the location information of the vehicle 300 is in an urban area.
 また、予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、作成部108により作成された車両300の位置とSoCBox400の温度との関係を表すマップとに基づいて、SoCBox400の温度変化を予測する。また、予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、作成部108により作成された車両300の種類における車両300の位置とSoCBox400の温度との関係を表すマップとに基づいて、SoCBox400の温度変化を予測する。 The prediction unit 110 also predicts a temperature change in the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and a map created by the creation unit 108 that shows the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400. The prediction unit 110 also predicts a temperature change in the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and a map created by the creation unit 108 that shows the relationship between the location of the vehicle 300 for the type of vehicle 300 and the temperature of the SoCBox 400.
 予測部110により予測されるSoCBox400の温度変化には、車両300が有するSoCBox400における経時的な温度変化が含まれる。例えば、予測部110は、車両300の現在位置から目的地までの走行経路上での車両300が有するSoCBox400における経時的な温度変化を予測してもよい。 The temperature change of the SoCBox 400 predicted by the prediction unit 110 includes the temperature change over time in the SoCBox 400 possessed by the vehicle 300. For example, the prediction unit 110 may predict the temperature change over time in the SoCBox 400 possessed by the vehicle 300 on the travel route from the current position of the vehicle 300 to the destination.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be provided with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図9は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316及びGPSセンサ317を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 9 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, examples of sensors 310 mounted on the vehicle 300 include a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, a GNSS sensor 316, and a GPS sensor 317. The vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors other than these.
 冷却実行装置500は、モデル記憶部502、情報取得部504、予測部506、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 情報取得部504は、管理サーバ100の予測部110により予測されたSoCBox400の温度変化の予測結果を、管理サーバ100から取得する。 The information acquisition unit 504 acquires the prediction results of the temperature change of the SoCBox 400 predicted by the prediction unit 110 of the management server 100 from the management server 100.
 予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。また、予測部506は、管理サーバ100の予測部110が行う予測処理と同様の処理を行うことができる。 The prediction unit 506 predicts temperature changes in the SoCBox 400. The prediction unit 506 may predict temperature changes in the SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502. The prediction unit 506 can also perform the same prediction processing as that performed by the prediction unit 110 of the management server 100.
 冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400が発熱を始める所定時間前からSoCBox400の冷却を開始する。また、例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400が所定の温度以上となると予測されたタイミングの所定時間前からSoCBox400の冷却を開始する。また、例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400が発熱を始めると予測された地点と車両300の現在位置とが所定距離内になったタイミングでSoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. For example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. Also, for example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the timing when the SoCBox 400 is predicted to reach or exceed a predetermined temperature, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. Also, for example, the cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 when the point where the SoCBox 400 is predicted to start generating heat is within a predetermined distance from the current location of the vehicle 300.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、SoCBox400の冷却を開始する。冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 using one or more cooling means selected from a plurality of types of cooling means according to the temperature change of the SoCBox 400. The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図10は、SoCBox400及び冷却部600の一例を概略的に示す。図10は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 10 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 10 shows an example in which the cooling unit 600 is configured with a single cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図11は、SoCBox400及び冷却部600の一例を概略的に示す。図11は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 11 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 11 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 また、システム10の冷却実行装置500は、車両300の位置情報とSoCBox400の温度の情報とに基づいて予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始することで、車両300の位置に応じた効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 can also realize efficient cooling according to the location of the vehicle 300 by starting cooling of the SoCBox 400 based on the temperature change of the SoCBox 400 predicted based on the location information of the vehicle 300 and the temperature information of the SoCBox 400.
 また、システム10の冷却実行装置500は、車両300の位置情報とSoCBox400の温度の情報と、車両300の位置とSoCBox400の温度との関係を表すマップとに基づいて予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始することで、車両300の位置に応じた効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 can also realize efficient cooling according to the position of the vehicle 300 by starting cooling of the SoCBox 400 based on a change in temperature of the SoCBox 400 predicted based on the position information of the vehicle 300, the temperature information of the SoCBox 400, and a map showing the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400.
 また、システム10の冷却実行装置500は、車両300の位置情報と、車両300の種類に関する情報と、SoCBox400の温度の情報と、車両300の位置とSoCBox400の温度との関係を表すマップとに基づいて予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始することで、車両300の位置と車種に応じた効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 can realize efficient cooling according to the location and model of the vehicle 300 by starting cooling of the SoCBox 400 based on a change in temperature of the SoCBox 400 predicted based on location information of the vehicle 300, information on the type of the vehicle 300, temperature information of the SoCBox 400, and a map showing the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400.
 また、システム10の冷却実行装置500は、SoCBox400の温度変化の予測結果に基づいて、SoCBox400が発熱を始める所定時間前からSoCBox400の冷却を開始することで、オーバーヒートの可能性を低減させ、かつ、効率的な冷却を行うことができる。 In addition, the cooling execution device 500 of the system 10 can reduce the possibility of overheating and perform efficient cooling by starting to cool the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat based on the predicted temperature change of the SoCBox 400.
 また、システム10の冷却実行装置500は、SoCBox400の温度変化の予測結果を用いて、SoCBox400の温度変化に応じて、複数の冷却手段により冷却を行うことで、温度変化に対応した効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 also uses the predicted temperature change of the SoCBox 400 to perform cooling using multiple cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling in response to the temperature change.
 また、システム10の冷却実行装置500は、SoCBox400の温度変化の予測結果を用いて、SoCBox400の温度変化に応じて、水冷手段及び液体窒素冷却手段により冷却を行うことで、温度変化に対応した冷却手段を用いて、効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 uses the predicted temperature change of the SoCBox 400 to perform cooling using water cooling means and liquid nitrogen cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling using cooling means that respond to temperature changes.
 図12は、SoCBox400及び冷却部600の一例を概略的に示す。図12は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 12 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 12 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. In addition, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<第3の実施形態>
 自動運転向けのSoC(System on Chip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Third Embodiment
When an autonomous driving SoC (System on Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。例えば、車両が同じ場所に位置していても、気温や天気、交通状況といった環境の変化によってSoCBoxの発熱量の変化が起こり、オーバーヒートする場合がある。これは、交通状況や天候などの変化によって、各種センサの検知量の増加や、自動運転制御の複雑化が起こるためである。係る場合に、AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). For example, even if the vehicle is in the same location, changes in the environment such as temperature, weather, and traffic conditions can cause the amount of heat generated by the SoCBox to change, leading to overheating. This is because changes in traffic and weather conditions increase the amount of detection by various sensors and make autonomous driving control more complicated. In such cases, AI can predict heat dissipation from the SoCBox and cool it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can be used to cool not only the SoCBox, but also the battery, making it a potential solution to the problem of high temperatures caused by rapid charging.
 図13は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 13 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する制御装置である。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼしたりするおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 is a control device that controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係るシステム10は、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とに基づいて、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、システム10は、渋滞や雨天時など処理量が増加しSoCBox400の発熱が起こりやすい状況から、予め発熱を予測して、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The system 10 according to this embodiment predicts temperature changes in the SoCBox 400 based on location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 in the vehicle 300, information on traffic conditions, and weather information, and starts cooling the SoCBox 400 based on the temperature change. For example, the system 10 predicts heat generation in advance in situations where the amount of processing increases and heat generation is likely to occur in the SoCBox 400, such as during traffic jams or rainy weather, and starts cooling the SoCBox 400 immediately. By starting cooling before the heat generation starts or at the same time as the heat generation starts, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, the energy required for cooling can be reduced compared to when the SoCBox 400 is constantly cooled.
 システム10は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The system 10 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400. SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。また、冷却実行装置500は、交通情報を提供するサーバから、交通状況に関する情報(交通情報)を受信して記憶してよい。なお、交通状況に関する情報は、車両の渋滞状況、歩行者の量、事故の有無、工事の有無、イベントの有無といった情報を含む。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100. Cooling execution device 500 may also receive and store information relating to traffic conditions (traffic information) from a server that provides traffic information. The information relating to traffic conditions includes information such as the traffic congestion status of vehicles, the number of pedestrians, whether there are any accidents, whether there are any construction works, and whether there are any events.
 また、冷却実行装置500は、天候情報を提供するサーバから、天候情報を受信して記憶してよい。なお、天候情報は、天気、温度、湿度、風速といった情報を含む。また、冷却実行装置500は、車両300の種類に関する情報を、サーバ30から受信して記憶してよい。なお、車両300の種類に関する情報は、車両300の車種、車種とSoCBox400の発熱に関する情報、車種ごとのパラメータといった情報を含んでよい。 The cooling execution device 500 may also receive and store weather information from a server that provides weather information. The weather information includes information such as weather, temperature, humidity, and wind speed. The cooling execution device 500 may also receive and store information related to the type of vehicle 300 from the server 30. The information related to the type of vehicle 300 may include information such as the model of the vehicle 300, information related to the model and heat generation of the SoCBox 400, and parameters for each model.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。また、冷却実行装置500は、後述する管理サーバ100が行う予測処理と同様の処理を行うことができる。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes in the SoCBox 400. The cooling execution device 500 can also perform processing similar to the prediction processing performed by the management server 100, which will be described later.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図14は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、GNSS(Global Navigation Satellite System)センサ216及びGPS(Global Positioning System)センサ217を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 14 is an explanatory diagram for explaining the learning phase in the system 10. Here, the sensors 210 mounted on the vehicle 200 are exemplified by a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, a GNSS (Global Navigation Satellite System) sensor 216, and a GPS (Global Positioning System) sensor 217. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、モデル提供部106、作成部108及び予測部110を備える。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, a model provision unit 106, a creation unit 108, and a prediction unit 110.
 情報取得部102は、各種情報を取得する。例えば、情報取得部102は、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とを取得する。ここで、位置情報は、GNSSセンサまたはGPSセンサからの情報を取得してもよい。また、位置情報は、車両300の走行経路や目的地に関する情報を含んでよい。 The information acquisition unit 102 acquires various types of information. For example, the information acquisition unit 102 acquires location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 possessed by the vehicle 300, information regarding traffic conditions, and weather information. Here, the location information may be acquired from a GNSS sensor or a GPS sensor. The location information may also include information regarding the driving route and destination of the vehicle 300.
 例えば、情報取得部102は、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とを冷却実行装置500から取得する。また、例えば、情報取得部102は、天候情報を、天候情報を提供するサーバから取得する。また、例えば、情報取得部102は、交通状況に関する情報を、交通情報を提供するサーバから取得する。 For example, the information acquisition unit 102 acquires location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 of the vehicle 300, information on traffic conditions, and weather information from the cooling execution device 500. Also, for example, the information acquisition unit 102 acquires weather information from a server that provides weather information. Also, for example, the information acquisition unit 102 acquires information on traffic conditions from a server that provides traffic information.
 また、情報取得部102は、車両300の種類に関する情報を、冷却実行装置500から取得する。また、車両の種類に関する情報は、車両300の車種、車種とSoCBox400の発熱に関する情報、車種ごとのパラメータといった情報を含んでよい。なお、情報取得部102は、所定タイミング又は周期に基づいて、各種情報を取得してよい。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The information acquisition unit 102 also acquires information relating to the type of vehicle 300 from the cooling execution device 500. The information relating to the type of vehicle may include information such as the model of the vehicle 300, information relating to the model and heat generation of the SoCBox 400, and parameters for each model. The information acquisition unit 102 may acquire various information based on a specified timing or period. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 作成部108は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とから、車両300の位置と、交通状況に関する情報と、天候情報と、SoCBox400の温度との関係を表すマップを作成する。例えば、作成部108は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とから、交通状況に関する情報や天候情報ごとに、車両300の位置とSoCBox400の温度との関係を表すマップを作成する。 The creation unit 108 creates a map showing the relationship between the location of the vehicle 300, the information on traffic conditions, the weather information, and the temperature of the SoCBox 400 from the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on traffic conditions, and the weather information. For example, the creation unit 108 creates a map showing the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400 for each piece of information on traffic conditions and weather information from the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on traffic conditions, and the weather information.
 また、作成部108は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、車両300の種類に関する情報とから、車両300の種類ごとに車両300の位置とSoCBox400の温度との関係を表すマップを作成する。 The creation unit 108 also creates a map showing the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400 for each type of vehicle 300, based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and information regarding the type of vehicle 300.
 予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とに基づいて、SoCBox400の温度変化を予測する。このとき、予測部110は、過去に情報取得部102により取得された、冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とを用いて予測を行ってもよい。 The prediction unit 110 predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on the traffic conditions, and the weather information. At this time, the prediction unit 110 may make the prediction using the location information of the vehicle 300 having the cooling execution device 500, the temperature information of the SoCBox 400 possessed by the vehicle 300, the information on the traffic conditions, and the weather information acquired by the information acquisition unit 102 in the past.
 例えば、予測部110は、蓄積された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報とを用いて、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報に基づいて、SoCBox400の温度変化を予測する。 For example, the prediction unit 110 uses the accumulated location information of the vehicle 300 having the cooling execution device 500, temperature information of the SoCBox 400 possessed by the vehicle 300, information on traffic conditions, and weather information to predict the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, temperature information of the SoCBox 400 possessed by the vehicle 300, information on traffic conditions, and weather information.
 例えば、予測部110は、過去に取得された情報において、雨天時には、晴天時に比べて発熱量が約20%増加するというデータから、天候情報が雨の場合には、発熱量が約20%増加することを踏まえて温度変化を予測する。また、例えば、予測部110は、過去に取得された情報において、渋滞時には、通常時に比べて発熱量が約30%増加するというデータから、交通状況が渋滞である場合には、発熱量が約30%増加することを踏まえて温度変化を予測する。 For example, based on data from previously acquired information indicating that the amount of heat generated increases by approximately 20% when it is raining compared to when it is sunny, the prediction unit 110 predicts a temperature change when the weather information indicates rain, taking into account that the amount of heat generated will increase by approximately 20%. Also, based on data from previously acquired information indicating that the amount of heat generated will increase by approximately 30% when there is congestion compared to normal conditions, the prediction unit 110 predicts a temperature change when the traffic conditions are congested, taking into account that the amount of heat generated will increase by approximately 30%.
 また、予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報と、作成部108により作成された、車両300の位置と、交通状況に関する情報と、天候情報と、SoCBox400の温度との関係を表すマップとに基づいて、SoCBox400の温度変化を予測する。 The prediction unit 110 also predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, information on traffic conditions, weather information, and a map created by the creation unit 108 showing the relationship between the location of the vehicle 300, information on traffic conditions, weather information, and the temperature of the SoCBox 400.
 また、予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、交通状況に関する情報と、天候情報と、作成部108により作成された、交通状況に関する情報や天候情報ごとの車両300の位置とSoCBox400の温度との関係を表すマップとに基づいて、SoCBox400の温度変化を予測する。 The prediction unit 110 also predicts the temperature change of the SoCBox 400 based on the location information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 of the vehicle 300, the information on traffic conditions, the weather information, and a map created by the creation unit 108 that shows the relationship between the location of the vehicle 300 and the temperature of the SoCBox 400 for each of the information on traffic conditions and the weather information.
 また、予測部110は、情報取得部102により取得された冷却実行装置500を有する車両300の位置情報と、車両300が有するSoCBox400の温度情報と、作成部108により作成された、車両300の種類における車両300の位置とSoCBox400の温度との関係を表すマップとに基づいて、SoCBox400の温度変化を予測する。 The prediction unit 110 also predicts the temperature change of the SoCBox 400 based on the position information of the vehicle 300 having the cooling execution device 500 acquired by the information acquisition unit 102, the temperature information of the SoCBox 400 possessed by the vehicle 300, and the map created by the creation unit 108 that shows the relationship between the position of the vehicle 300 and the temperature of the SoCBox 400 for each type of vehicle 300.
 予測部110により予測されるSoCBox400の温度変化には、車両300が有するSoCBox400における経時的な温度変化が含まれる。例えば、予測部110は、車両300の現在位置から目的地までの走行経路上での車両300が有するSoCBox400における経時的な温度変化を予測してもよい。 The temperature change of the SoCBox 400 predicted by the prediction unit 110 includes the temperature change over time in the SoCBox 400 possessed by the vehicle 300. For example, the prediction unit 110 may predict the temperature change over time in the SoCBox 400 possessed by the vehicle 300 on the travel route from the current position of the vehicle 300 to the destination.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図15は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316及びGPSセンサ317を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 15 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, examples of sensors 310 mounted on the vehicle 300 include a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, a GNSS sensor 316, and a GPS sensor 317. The vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
 冷却実行装置500は、モデル記憶部502、情報取得部504、予測部506、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 情報取得部504は、管理サーバ100の予測部110により予測されたSoCBox400の温度変化の予測結果を、管理サーバ100から取得する。 The information acquisition unit 504 acquires the prediction results of the temperature change of the SoCBox 400 predicted by the prediction unit 110 of the management server 100 from the management server 100.
 予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。また、予測部506は、管理サーバ100の予測部110が行う予測処理と同様の処理を行うことができる。 The prediction unit 506 predicts temperature changes in the SoCBox 400. The prediction unit 506 may predict temperature changes in the SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502. The prediction unit 506 can also perform the same prediction processing as that performed by the prediction unit 110 of the management server 100.
 冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400が発熱を始める所定時間前からSoCBox400の冷却を開始する。また、例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400が所定の温度以上となると予測されたタイミングの所定時間前からSoCBox400の冷却を開始する。また、例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400が発熱を始めると予測された地点と車両300の現在位置とが所定距離内になったタイミングでSoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. For example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. Also, for example, the cooling execution unit 508 starts cooling the SoCBox 400 a predetermined time before the timing when the SoCBox 400 is predicted to reach or exceed a predetermined temperature, using the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504. Also, for example, the cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 when the point where the SoCBox 400 is predicted to start generating heat is within a predetermined distance from the current location of the vehicle 300.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、情報取得部504により取得されたSoCBox400の温度変化の予測結果を用いて、SoCBox400の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、SoCBox400の冷却を開始する。冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 uses the predicted temperature change of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the SoCBox 400 using one or more cooling means selected from a plurality of types of cooling means according to the temperature change of the SoCBox 400. The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図16は、SoCBox400及び冷却部600の一例を概略的に示す。図16は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測または、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 16 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 16 shows an example in which the cooling unit 600 is configured with one cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図17は、SoCBox400及び冷却部600の一例を概略的に示す。図17は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 17 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 17 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 また、システム10の冷却実行装置500は、車両300の位置情報と、SoCBox400の温度の情報と、交通状況に関する情報と、天候情報とに基づいて予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始することで、環境の変化により各種センサの検知量が増加した場合や、自動運転制御が複雑になった場合におけるSoCBox400の温度変化に対応し、効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 starts cooling the SoCBox 400 based on temperature changes in the SoCBox 400 predicted based on the vehicle 300's location information, SoCBox 400 temperature information, traffic condition information, and weather information, thereby enabling efficient cooling in response to changes in the SoCBox 400 temperature when the amount of detection by various sensors increases due to changes in the environment or when autonomous driving control becomes more complex.
 また、システム10の冷却実行装置500は、車両300の位置情報と、SoCBox400の温度の情報と、交通状況に関する情報と、天候情報と、車両300の位置情報と、交通状況に関する情報と、天候情報と、SoCBox400の温度との関係を表すマップとに基づいて予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始することで、車両300の位置と動的な環境に応じた効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 can also realize efficient cooling according to the vehicle 300's location and dynamic environment by initiating cooling of the SoCBox 400 based on a predicted change in temperature of the SoCBox 400 based on the vehicle 300's location information, SoCBox 400 temperature information, traffic condition information, weather information, and a map showing the relationship between the vehicle 300's location information, traffic condition information, weather information, and the SoCBox 400 temperature.
 また、システム10の冷却実行装置500は、交通状況に関する情報と、天候情報ごとに、車両300の位置情報とSoCBox400の温度との関係を表すマップ作成してSoCBox400の温度変化を予測し、SoCBox400の冷却を開始することで、各動的な環境ごとの車両300の位置に応じた効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 also creates a map showing the relationship between the location information of the vehicle 300 and the temperature of the SoCBox 400 for each piece of information related to traffic conditions and weather information, predicts temperature changes in the SoCBox 400, and starts cooling the SoCBox 400, thereby achieving efficient cooling according to the location of the vehicle 300 for each dynamic environment.
 また、システム10の冷却実行装置500は、車両300の位置情報と、SoCBox400の温度の情報と、交通状況に関する情報と、天候情報と、車両300の車種と、車両300の位置情報と、交通状況に関する情報と、天候情報と、SoCBox400の温度との関係を表すマップとに基づいて予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始することで、車両300の車種と位置と動的な環境に応じた効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 starts cooling the SoCBox 400 based on a change in temperature of the SoCBox 400 predicted based on the location information of the vehicle 300, the temperature information of the SoCBox 400, information on traffic conditions, weather information, the vehicle type of the vehicle 300, the location information of the vehicle 300, information on traffic conditions, weather information, and a map showing the relationship with the temperature of the SoCBox 400, thereby realizing efficient cooling according to the vehicle type and location of the vehicle 300 and the dynamic environment.
 また、システム10の冷却実行装置500は、SoCBox400の温度変化の予測結果に基づいて、SoCBox400が発熱を始める所定時間前からSoCBox400の冷却を開始することで、オーバーヒートの可能性を低減させ、かつ、効率的な冷却を行うことができる。 In addition, the cooling execution device 500 of the system 10 can reduce the possibility of overheating and perform efficient cooling by starting to cool the SoCBox 400 a predetermined time before the SoCBox 400 starts to generate heat based on the predicted temperature change of the SoCBox 400.
 また、システム10の冷却実行装置500は、SoCBox400の温度変化の予測結果を用いて、SoCBox400の温度変化に応じて、複数の冷却手段により冷却を行うことで、温度変化に対応した効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 also uses the predicted temperature change of the SoCBox 400 to perform cooling using multiple cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling in response to the temperature change.
 また、システム10の冷却実行装置500は、SoCBox400の温度変化の予測結果を用いて、SoCBox400の温度変化に応じて、水冷手段及び液体窒素冷却手段により冷却を行うことで、温度変化に対応した冷却手段を用いて、効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 uses the predicted temperature change of the SoCBox 400 to perform cooling using water cooling means and liquid nitrogen cooling means in response to the temperature change of the SoCBox 400, thereby achieving efficient cooling using cooling means that respond to temperature changes.
 図18は、SoCBox400及び冷却部600の一例を概略的に示す。図18は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 18 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 18 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. Furthermore, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<第4の実施形態>
 自動運転向けのSoC(System on Chip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用して複数のSoCを有するSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Fourth Embodiment
When an autonomous driving SoC (System on Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling is provided, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of a SoCBox having multiple SoCs.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。例えば、運転状況の変化によって、各種センサの検知量の増加や、自動運転制御の複雑化が起こり、SoCBoxがオーバーヒートする場合がある。複数のSoC(集積回路)を有するSoCBoxは、均一に発熱するわけでなく、例えば、ある自動運転制御が行われた場合に、その自動運転制御を司るSoCのみが発熱する。係る場合に、AIがSoCBoxの放熱とその位置を予測し、放熱と同時に放熱が起こる位置を冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). For example, changes in driving conditions can increase the amount of detection by various sensors and complicate autonomous driving control, which can cause the SoCBox to overheat. A SoCBox that has multiple SoCs (integrated circuits) does not heat up uniformly; for example, when a certain autonomous driving control is performed, only the SoC that controls that autonomous driving control will heat up. In such cases, AI can predict the heat dissipation and its location in the SoCBox, and simultaneously cool the location where heat dissipation occurs, preventing the SoCBox from becoming too hot and enabling advanced calculations in the vehicle. It is expected that this technology can be used not only for SoCBoxes, but also for cooling batteries, which could be a solution to the problem of high temperatures caused by rapid charging.
 図19は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 19 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、複数のSoCを有し、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する制御装置である。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼしたりするおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 is a control device that has multiple SoCs and controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係るシステム10は、SoCBox400におけるSoCの位置情報と、SoCの処理に関する情報と、車両の運転状況に関する情報とに基づいて、SoCBox400の各位置の温度変化を予測して、各位置の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、システム10は、直進走行、右左折、停止、各種センサを用いた状況判断等様々な制御処理ごとに起こる発熱とその位置を予測して、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 System 10 according to this embodiment predicts temperature changes at each location of SoCBox 400 based on position information of the SoC in SoCBox 400, information related to the processing of the SoC, and information related to the driving status of the vehicle, and starts cooling SoCBox 400 based on the temperature changes at each location. For example, system 10 predicts the heat generation and its location that will occur for each of various control processes such as driving straight, turning right or left, stopping, and situation judgment using various sensors, and immediately starts cooling SoCBox 400. By starting cooling before or at the same time as heat generation begins, it is possible to reliably prevent SoCBox 400 from becoming too hot. In addition, the energy required for cooling can be reduced compared to when SoCBox 400 is constantly cooled.
 システム10は、AIによって、SoCBox400の各位置の温度変化を予測してよい。SoCBox400の各位置の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The system 10 may use AI to predict temperature changes at each location of the SoCBox 400. Learning of temperature changes at each location of the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の各位置の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。また、SoCBox400は、SoCBox400に含まれるSoCの位置情報、各SoCの処理に関する情報、車両300の運転状況に関する情報を記憶する。ここで、各SoCの処理に関する情報とは、各SoCが行う処理や制御の情報をいい、各SoCが制御する加速、減速、右左折、停止、走行車検知、歩行者検知、障害物検知、各種センサによる検知や各種演算などの処理の情報が含まれる。また、車両300の運転状況に関する情報とは、車両300の運転状況や操作状況の情報をいい、加速、減速、右左折、停止、走行車検知、歩行者検知、障害物検知、各種センサによる検知や各種演算などの処理の情報が含まれる。なお、上述の処理内容や運転状況は一例であり、記載されたもの以外の処理や運転状況も含まれる。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の各位置の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox400 and temperature sensor 40 that measures the temperature at each position of SoCBox400. SoCBox400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. SoCBox400 also stores location information of the SoCs contained in SoCBox400, information related to the processing of each SoC, and information related to the driving status of vehicle 300. Here, information related to the processing of each SoC refers to information on the processing and control performed by each SoC, and includes information on the processing controlled by each SoC, such as acceleration, deceleration, turning right or left, stopping, vehicle detection, pedestrian detection, obstacle detection, detection by various sensors, and various calculations. Furthermore, information on the driving status of the vehicle 300 refers to information on the driving status and operation status of the vehicle 300, and includes information on processing such as acceleration, deceleration, right and left turns, stopping, vehicle detection, pedestrian detection, obstacle detection, detection by various sensors, and various calculations. Note that the above-mentioned processing contents and driving status are only examples, and processing and driving status other than those described are also included. The server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. The SoCBox 400 transmits to the management server 100 sensor values and external information used to control the autonomous driving, as well as temperature changes at each position of the SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の各位置の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の各位置の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change at each position on the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change at each position on the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
 また、冷却実行装置500は、SoCBox400から取得したSoCBox400における各SoCの位置情報、各SoCの処理に関する情報、車両300の運転状況に関する情報を記憶してよい。 The cooling execution device 500 may also store location information of each SoC in the SoCBox 400, information regarding the processing of each SoC, and information regarding the driving status of the vehicle 300, which are acquired from the SoCBox 400.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の各位置の温度変化を予測する。また、冷却実行装置500は、後述する管理サーバ100が行う予測処理と同様の処理を行うことができる。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes at each position of the SoCBox 400. The cooling execution device 500 can also perform processing similar to the prediction processing performed by the management server 100, which will be described later.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の各位置の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat, or when it predicts that the temperature at each position on the SoCBox 400 will exceed a predetermined threshold value.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図20は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、GNSS(Global Navigation Satellite System)センサ216及びGPS(Global Positioning System)センサ217を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 20 is an explanatory diagram for explaining the learning phase in the system 10. Here, the sensors 210 mounted on the vehicle 200 are exemplified by a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, a GNSS (Global Navigation Satellite System) sensor 216, and a GPS (Global Positioning System) sensor 217. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。また、SoCBox400は、SoCBox400が保有する各SoCの位置情報を記憶する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute automatic driving control of vehicle 200. SoCBox400 also stores location information for each SoC it possesses.
 温度センサ40は、SoCBox400の各位置の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された各位置の温度変化とを、管理サーバ100に送信する。 Temperature sensor 40 measures temperature changes at each location on SoCBox 400. SoCBox 400 transmits to management server 100 the sensor information received from sensor 210, the external information received from server 30, and the temperature changes at each location measured by temperature sensor 40 when it acquires this information and executes automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、モデル提供部106及び予測部110を備える。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, a model provision unit 106, and a prediction unit 110.
 情報取得部102は、各種情報を取得する。例えば、情報取得部102は、SoCBox400における各SoCの位置情報と、各SoCの処理に関する情報と、車両300の運転状況に関する情報とを取得する。例えば、情報取得部102は、SoCBox400における各SoCの位置情報と、各SoCの処理に関する情報と、車両300の運転状況に関する情報とを冷却実行装置500から取得する。例えば、情報取得部102は、SoCBox400のメーカーや型番といった情報を用いて各SoCの位置を特定することにより各SoCの位置情報を取得してもよい。なお、情報取得部102は、所定タイミング又は周期に基づいて、各種情報を取得してよい。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The information acquisition unit 102 acquires various information. For example, the information acquisition unit 102 acquires position information of each SoC in the SoCBox 400, information on the processing of each SoC, and information on the driving status of the vehicle 300. For example, the information acquisition unit 102 acquires position information of each SoC in the SoCBox 400, information on the processing of each SoC, and information on the driving status of the vehicle 300 from the cooling execution device 500. For example, the information acquisition unit 102 may acquire the position information of each SoC by identifying the position of each SoC using information such as the manufacturer and model number of the SoCBox 400. The information acquisition unit 102 may acquire various information based on a predetermined timing or period. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の各位置の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の各位置の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by SoCBox 400 and the temperature change at each position on SoCBox 400 when SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the temperature change at each position on SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 予測部110は、情報取得部102により取得された、SoCBox400における各SoCの位置情報と、各SoCの処理に関する情報と、車両300の運転状況に関する情報とに基づいて、SoCBox400の各位置の温度変化を予測する。例えば、予測部110は、情報取得部102により取得された、運転状況に関する情報として、障害物検知、歩行者検知をしながら走行しているという情報と、各SoCの処理に関する情報として、障害物検知、歩行者検知、走行を制御するSoCの情報と、SoCBox400におけるSoCの位置情報を用いて、SoCBox400の各位置の温度変化を予測する。 The prediction unit 110 predicts the temperature change at each position of the SoCBox 400 based on the position information of each SoC in the SoCBox 400, information on the processing of each SoC, and information on the driving status of the vehicle 300 acquired by the information acquisition unit 102. For example, the prediction unit 110 predicts the temperature change at each position of the SoCBox 400 using information on the driving status acquired by the information acquisition unit 102, such as information on the SoC that is driving while detecting obstacles and pedestrians, and information on the processing of each SoC, such as information on the SoC that controls obstacle detection, pedestrian detection, and driving, and position information of the SoC in the SoCBox 400.
 また、予測部110は、情報取得部102により取得された、SoCBox400における各SoCの位置情報と、各SoCの処理に関する情報と、車両300の運転状況に関する情報とを用いて、SoCBox400の各位置の経時的な温度変化を予測する。 The prediction unit 110 also predicts temperature changes over time at each location in the SoCBox 400 using the location information of each SoC in the SoCBox 400, information related to the processing of each SoC, and information related to the driving conditions of the vehicle 300 acquired by the information acquisition unit 102.
 例えば、予測部110は、情報取得部102により取得された、運転状況に関する情報として、障害物検知、歩行者検知をしながら走行しているという情報と、各SoCの処理に関する情報として、障害物検知、歩行者検知、走行を制御するSoCの情報と、SoCBox400におけるSoCの位置情報を用いて、運転状況が継続した場合における、SoCBox400の各位置の温度変化を予測する。 For example, the prediction unit 110 uses information on the driving situation acquired by the information acquisition unit 102, such as information that the vehicle is driving while detecting obstacles and pedestrians, and information on the processing of each SoC, such as information on the SoCs that control obstacle detection, pedestrian detection, and driving, and position information of the SoCs in the SoCBox 400, to predict temperature changes at each position of the SoCBox 400 if the driving situation continues.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図21は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316及びGPSセンサ317を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 21 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, examples of sensors 310 mounted on the vehicle 300 include a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, a GNSS sensor 316, and a GPS sensor 317. The vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
 冷却実行装置500は、モデル記憶部502、情報取得部504、予測部506、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。また、例えば、情報取得部504は、SoCBox400から、SoCBox400における各SoCの位置の情報を取得する。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensor 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively. Also, for example, the information acquisition unit 504 acquires information on the position of each SoC in the SoCBox 400 from the SoCBox 400.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 情報取得部504は、管理サーバ100の予測部110により予測されたSoCBox400の各位置の温度変化の予測結果を、管理サーバ100から取得する。 The information acquisition unit 504 acquires from the management server 100 the predicted results of the temperature change at each position of the SoCBox 400 predicted by the prediction unit 110 of the management server 100.
 予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。また、予測部506は、管理サーバ100の予測部110が行う予測処理と同様の処理を行うことができる。 The prediction unit 506 predicts temperature changes in the SoCBox 400. The prediction unit 506 may predict temperature changes in the SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502. The prediction unit 506 can also perform the same prediction processing as that performed by the prediction unit 110 of the management server 100.
 冷却実行部508は、情報取得部504により取得されたSoCBox400の各位置の温度変化の予測結果に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400の発熱が起こる位置の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the predicted results of temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504. For example, the cooling execution unit 508 starts cooling the positions of the SoCBox 400 where heat is generated, using the predicted results of temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504.
 また、例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400が発熱を始める所定時間前からSoCBox400の発熱が起こる位置の冷却を開始する。 Also, for example, the cooling execution unit 508 uses the predicted temperature change results for each position of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the positions where the SoCBox 400 generates heat a predetermined time before the SoCBox 400 starts to generate heat.
 また、例えば、冷却実行部508は、情報取得部504により取得されたSoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400の各位置が所定の温度以上となると予測されたタイミングの所定時間前からSoCBox400の発熱が起こる位置の冷却を開始する。 Also, for example, the cooling execution unit 508 uses the predicted temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the positions where heat is generated in the SoCBox 400 a predetermined time before the timing when each position of the SoCBox 400 is predicted to reach or exceed a predetermined temperature.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、情報取得部504により取得されたSoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400の各位置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、SoCBox400の発熱が起こる位置の冷却を開始する。冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400の発熱が起こる位置を冷却してよい。 The cooling execution unit 508 uses the predicted results of the temperature change at each position of the SoCBox 400 acquired by the information acquisition unit 504 to start cooling the positions where heat is generated in the SoCBox 400 using one or more cooling means selected from a plurality of types of cooling means according to the temperature change at each position of the SoCBox 400. The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the positions where heat is generated in the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の発熱が起こる位置の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of SoCBox400. The prediction unit 506 may predict temperature changes in each of the multiple parts of SoCBox400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the location where heat is generated in SoCBox400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of SoCBox400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の発熱が起こる位置の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the location where heat is generated in the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図22は、SoCBox400及び冷却部600の一例を概略的に示す。図22は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測または、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 22 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 22 shows an example in which the cooling unit 600 is configured with one cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図23は、SoCBox400及び冷却部600の一例を概略的に示す。図23は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 23 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 23 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 システム10の冷却実行装置500は、SoCBox400におけるSoCの位置情報と、SoCの制御に関する情報と車両300の運転状況とから予測されたSoCBox400の各位置の温度変化の予測結果に基づいて、SoCBox400の発熱が起こる位置の冷却を開始することで、冷却が必要な箇所のみを冷却し、効率的な冷却を実現することができる。 The cooling execution device 500 of the system 10 starts cooling the locations where heat is generated in the SoCBox 400 based on the location information of the SoC in the SoCBox 400, information related to the control of the SoC, and the predicted temperature change at each location of the SoCBox 400, which is predicted from the driving conditions of the vehicle 300. This allows the cooling of only the locations that require cooling, thereby achieving efficient cooling.
 また、システム10の冷却実行装置500は、SoCBox400におけるSoCの位置情報と、SoCの制御に関する情報と車両300の運転状況とから予測されたSoCBox400の各位置の経時的な温度変化の予測結果を用いて、SoCBox400の発熱が起こる位置の冷却を開始することで、効果的なタイミングで、冷却が必要な箇所のみを冷却し、効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 uses the location information of the SoC in the SoCBox 400, information related to the control of the SoC, and the driving conditions of the vehicle 300 to predict temperature changes over time at each location of the SoCBox 400, and starts cooling at locations where heat is generated in the SoCBox 400, thereby cooling only the locations that require cooling at an effective timing, thereby achieving efficient cooling.
 また、システム10の冷却実行装置500は、SoCBox400におけるSoCの位置情報と、SoCの制御に関する情報と車両300の運転状況とから予測されたSoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400の発熱が起こる位置を、発熱が起こる前から冷却を開始することで、オーバーヒートを防ぎつつ、冷却が必要な箇所のみを冷却し、効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 uses the predicted temperature change at each location of the SoCBox 400, which is predicted from the location information of the SoC in the SoCBox 400, information related to the control of the SoC, and the driving conditions of the vehicle 300, to start cooling the locations where heat will occur in the SoCBox 400 before heat generation actually occurs, thereby preventing overheating and cooling only the areas that need cooling, thereby achieving efficient cooling.
 また、システム10の冷却実行装置500は、SoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400の各位置の温度変化に応じて、複数の冷却手段により冷却を行うことで、温度変化に対応した効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 uses the predicted temperature change at each position of the SoCBox 400 to perform cooling using multiple cooling means according to the temperature change at each position of the SoCBox 400, thereby achieving efficient cooling in response to temperature changes.
 また、システム10の冷却実行装置500は、SoCBox400の各位置の温度変化の予測結果を用いて、SoCBox400の各位置の温度変化に応じて、水冷手段及び液体窒素冷却手段により冷却を行うことで、温度変化に対応した冷却手段を用いて、効率的な冷却を実現することができる。 In addition, the cooling execution device 500 of the system 10 uses the predicted temperature change at each position of the SoCBox 400 to perform cooling using water cooling means and liquid nitrogen cooling means according to the temperature change at each position of the SoCBox 400, thereby achieving efficient cooling using cooling means that correspond to the temperature change.
 図24は、SoCBox400及び冷却部600の一例を概略的に示す。図24は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 24 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 24 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. Furthermore, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<第5の実施形態>
 自動運転向けのSoC(System on Chip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Fifth embodiment
When an autonomous driving SoC (System on Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
 図25は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 25 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却実行装置500は、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行装置500は、SoCBox400が発熱を開始すると予測したことに応じて、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The cooling execution device 500 according to this embodiment predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
 冷却実行装置500は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 The vehicle 200 is equipped with a SoCBox 400 and a temperature sensor 40 that measures the temperature of the SoCBox 400. The SoCBox 400 controls the autonomous driving of the vehicle 200 using sensor values from multiple sensors equipped in the vehicle 200 and external information received from multiple types of servers 30. The server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. The SoCBox 400 transmits to the management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of the SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図26は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(Global Navigation Satellite System)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 26 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be provided with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図27は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 27 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, the sensors 310 mounted on the vehicle 300 are exemplified by a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316. The vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 冷却実行装置500は、検知部501、モデル記憶部502、情報取得部504、予測部506、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a detection unit 501, a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 検知部501は、車両の自動運転を制御する車両に搭載された制御装置(SoCBox400)の温度を検知する。また、検知部501は、SoCBox400の複数の部位のそれぞれの温度を検知してよい。例えば、検知部501は、1つまたは複数のSoCBox400に温度を検知したり、温度の上昇または低下の発生を検知したり、変化する温度の数値を検知したりできる。 The detection unit 501 detects the temperature of a control device (SoCBox400) mounted on a vehicle that controls the automatic driving of the vehicle. The detection unit 501 may also detect the temperature of each of multiple parts of the SoCBox400. For example, the detection unit 501 can detect the temperature of one or multiple SoCBox400s, detect the occurrence of an increase or decrease in temperature, and detect changing temperature values.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 予測部506は、車両の自動運転を制御する車両に搭載された制御装置(SoCBox400)の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。さらに、予測部506は、制御装置(SoCBox400)の複数の部位のそれぞれの温度変化を予測してよい。例えば、予測部506は、1つまたは複数のSoCBox400に温度の上昇または低下の発生を予測したり、変化する温度の数値を予測したりできる。 The prediction unit 506 predicts temperature changes in the control device (SoCBox 400) mounted on the vehicle that controls the vehicle's autonomous driving. The prediction unit 506 may predict temperature changes in the SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502. Furthermore, the prediction unit 506 may predict temperature changes in each of multiple parts of the control device (SoCBox 400). For example, the prediction unit 506 can predict the occurrence of a temperature rise or fall in one or multiple SoCBoxes 400, or predict the numerical value of the changing temperature.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、検知部501が検知した温度が、所定温度以上を継続する時間に基づいて、所定の冷却手段を用いて制御装置(SoCBox400)の冷却を実行する。具体的には、冷却実行部508は、所定温度以上を継続する時間が所定の閾値を超えた場合に、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含む、冷却手段を用いて冷却を実行できる。例えば、冷却実行部508は、検知部501が検知した温度が、所定温度以上を継続する時間が所定の閾値を超えて継続した場合(例えば、所定温度以上の時間が10分間以上継続する等)に、所定の冷却手段(例えば、空冷手段、水冷手段、液体窒素冷却手段等)を用いて、制御装置の冷却を実行してよい。なお、前述した所定温度以上を継続する時間についての所定の閾値(時間)とは、任意に設定できる条件であり限定されない。 The cooling execution unit 508 executes cooling of the control device (SoCBox 400) using a predetermined cooling means based on the time that the temperature detected by the detection unit 501 continues to be equal to or higher than the predetermined temperature. Specifically, when the time that the temperature continues to be equal to or higher than the predetermined temperature exceeds a predetermined threshold, the cooling execution unit 508 can execute cooling using a cooling means including one or more types of air cooling means, one or more types of water cooling means, and a liquid nitrogen cooling means. For example, when the temperature detected by the detection unit 501 continues to be equal to or higher than the predetermined temperature for a time that exceeds a predetermined threshold (for example, the time that the temperature continues to be equal to or higher than the predetermined temperature for 10 minutes or more), the cooling execution unit 508 may execute cooling of the control device using a predetermined cooling means (for example, air cooling means, water cooling means, liquid nitrogen cooling means, etc.). Note that the predetermined threshold (time) for the time that the temperature continues to be equal to or higher than the predetermined temperature described above is a condition that can be set arbitrarily and is not limited.
 また、冷却実行部508は、温度が所定の閾値を超えた場合に急速冷却を実行してよい。例えば、冷却実行部508は、所定の閾値としてオーバーヒートが発生する温度を超えた場合に、急速冷却を実行してよい。なお、ここでいう所定の閾値には、任意の閾値条件が設定されてよい。 The cooling execution unit 508 may also perform rapid cooling when the temperature exceeds a predetermined threshold. For example, the cooling execution unit 508 may perform rapid cooling when the temperature exceeds a predetermined threshold at which overheating occurs. Note that any threshold condition may be set as the predetermined threshold here.
 冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 冷却実行部508は、予測部506により予測された温度変化として、所定温度以上を継続する時間に基づいて、前述した冷却手段を用いて冷却を実行する。例えば、冷却実行部508は、温度変化として、所定の時間を超えて所定温度以上が継続すると予測される走行地点を走行する場合に、前述の冷却手段を用いて冷却を実行できる。 The cooling execution unit 508 performs cooling using the cooling means described above, based on the time that the temperature change predicted by the prediction unit 506 will continue to be above a predetermined temperature. For example, the cooling execution unit 508 can perform cooling using the cooling means described above when traveling through a traveling location where the temperature change is predicted to continue to be above a predetermined temperature for more than a predetermined time.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図28は、SoCBox400及び冷却部600の一例を概略的に示す。図28は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 28 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600. FIG. 28 shows an example where the cooling unit 600 is configured with a single cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図29は、SoCBox400及び冷却部600の一例を概略的に示す。図29は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 29 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 29 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図30は、SoCBox400及び冷却部600の一例を概略的に示す。図30は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 30 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 30 shows an example in which the cooling unit 600 is composed of two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. In addition, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<第6の実施形態>
 自動運転向けのSoC(System on Chip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Sixth embodiment
When an autonomous driving SoC (System on Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
 図31は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 31 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却実行装置500は、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行装置500は、SoCBox400が発熱を開始すると予測したことに応じて、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The cooling execution device 500 according to this embodiment predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
 冷却実行装置500は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400. SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図32は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(Global Navigation Satellite System)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 32 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図33は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 33 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300. The vehicle 300 does not have to be equipped with all of these, and may be equipped with some or other sensors other than these.
 冷却実行装置500は、検知部501、モデル記憶部502、情報取得部504、推定部505、予測部506、作成部507、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a detection unit 501, a model storage unit 502, an information acquisition unit 504, an estimation unit 505, a prediction unit 506, a creation unit 507, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 検知部501は、車両の自動運転を制御する車両に搭載された制御装置(SoCBox400)の温度変化を検知する。また、検知部501は、SoCBox400の複数の部位のそれぞれの温度変化を検知してよい。例えば、検知部501は、1つまたは複数のSoCBox400に温度の上昇または低下の発生を検知したり、変化する温度の数値を検知したりできる。 The detection unit 501 detects temperature changes in a control device (SoCBox400) mounted on a vehicle that controls the vehicle's automatic driving. The detection unit 501 may also detect temperature changes in each of multiple parts of the SoCBox400. For example, the detection unit 501 can detect the occurrence of a rise or fall in temperature in one or multiple SoCBox400s, or detect changing temperature values.
 推定部505は、予め設定された走行ルートに基づいて、自動運転と手動運転との切り替えを推定する。さらに、推定部505は、走行ルートの道路状況に基づいて自動運転から手動運転への切り替えが発生するか否かを推定してよい。例えば、推定部505は、予め設定された走行ルートについて、人通りが多い、渋滞の発生、事故の発生、工事等の発生、通行止めの発生等の道路状況に基づいて、自動運転から手動運転への切り替えが発生するか否かを推定することができる。 The estimation unit 505 estimates whether switching from autonomous driving to manual driving will occur based on a preset driving route. Furthermore, the estimation unit 505 may estimate whether switching from autonomous driving to manual driving will occur based on road conditions on the driving route. For example, the estimation unit 505 can estimate whether switching from autonomous driving to manual driving will occur for a preset driving route based on road conditions such as heavy pedestrian traffic, occurrence of traffic jams, occurrence of accidents, occurrence of construction work, occurrence of road closures, etc.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 予測部506は、車両の自動運転を制御する車両に搭載された制御装置(SoCBox400)の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The prediction unit 506 predicts temperature changes in the control device (SoCBox 400) mounted on the vehicle that controls the autonomous driving of the vehicle. The prediction unit 506 may predict temperature changes in SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
 作成部507は、推定部505の推定結果に基づき、所定の冷却手段が設定された冷却予定を作成する。具体的には、作成部507は、推定部505により自動運転を手動運転に切り替えると推定された場合、手動運転よりも発熱量が多いと想定される手動運転の走行区間に対する冷却手段が設定された冷却予定を作成してよい。他方、作成部507は、推定部505により手動運転を自動運転に切り替えると推定された場合、自動運転よりも発熱量が少ないと想定される自動運転の走行区間に対する冷却手段が設定された冷却予定を作成してよい。 The creation unit 507 creates a cooling schedule in which a specified cooling means is set based on the estimation result of the estimation unit 505. Specifically, when the estimation unit 505 estimates that automatic driving will be switched to manual driving, the creation unit 507 may create a cooling schedule in which a cooling means is set for a driving section of manual driving that is assumed to generate more heat than manual driving. On the other hand, when the estimation unit 505 estimates that manual driving will be switched to automatic driving, the creation unit 507 may create a cooling schedule in which a cooling means is set for a driving section of automatic driving that is assumed to generate less heat than automatic driving.
 例えば、作成部507は、推定部505により予め設定された走行ルート上の道路状況の変化(自動走行が困難な状況の発生等)により自動運転から手動運転への切り替えが発生すると推定された場合に、手動運転に応じた冷却手段が設定された冷却予定を作成してよい。他方、作成部507は、推定部505により予め設定された走行ルート上の道路状況の変化(自動走行が可能な状況等)により手動運転から自動運転への切り替えが発生すると推定された場合に、自動運転に応じた冷却手段が設定された冷却予定を作成してよい。 For example, when the estimation unit 505 estimates that a switch from automatic driving to manual driving will occur due to a change in road conditions on a driving route previously set by the estimation unit 505 (such as the occurrence of a situation where automatic driving is difficult), the creation unit 507 may create a cooling schedule in which a cooling means corresponding to manual driving is set. On the other hand, when the estimation unit 505 estimates that a switch from manual driving to automatic driving will occur due to a change in road conditions on a driving route previously set by the estimation unit 505 (such as a situation where automatic driving is possible), the creation unit 507 may create a cooling schedule in which a cooling means corresponding to automatic driving is set.
 作成部507は、検知部501により検知された制御装置(SoCBox400)の実際の温度変化と予測部506により予測された予測の温度変化とを比較して、予測の温度変化が実際の温度変化を上回る場合に、所定の冷却手段が設定された冷却予定を作成してよい。例えば、作成部507は、予測部506による制御装置(SoCBox400)の温度変化が5℃の温度上昇という予測と、検知部501による実際の温度変化が10℃の温度上昇という検知結果に基づいて、所定の冷却手段を用いて冷却を実施してよい。 The creation unit 507 may compare the actual temperature change of the control device (SoCBox 400) detected by the detection unit 501 with the predicted temperature change predicted by the prediction unit 506, and if the predicted temperature change exceeds the actual temperature change, create a cooling schedule in which a specified cooling means is set. For example, the creation unit 507 may perform cooling using a specified cooling means based on the prediction by the prediction unit 506 that the temperature change of the control device (SoCBox 400) will be a 5°C temperature rise and the detection result by the detection unit 501 that the actual temperature change is a 10°C temperature rise.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、作成部507により作成された冷却予定に基づき、車両の自動運転を制御する車両に搭載された制御装置(SoCBox400)の冷却を実行する。例えば、冷却実行部508は、手動運転の走行区間に係る冷却予定、もしくは自動運転の走行区間に係る冷却予定が作成部507により作成された場合、当該冷却予定に設定された冷却手段や冷却時間、冷却のタイミング等で制御装置(SoCBox400)の冷却を実行してよい。 The cooling execution unit 508 executes cooling of the control device (SoCBox 400) mounted on the vehicle that controls the automatic driving of the vehicle, based on the cooling schedule created by the creation unit 507. For example, when a cooling schedule for a driving section for manual driving or a cooling schedule for a driving section for automatic driving is created by the creation unit 507, the cooling execution unit 508 may execute cooling of the control device (SoCBox 400) using the cooling means, cooling time, cooling timing, etc. set in the cooling schedule.
 また、冷却実行部508は、予測の温度変化と実際の温度変化との比較に基づく冷却予定が作成部507により作成された場合、当該冷却予定に設定された冷却手段や冷却時間、冷却のタイミング等で制御装置(SoCBox400)の冷却を実行してよい。 In addition, when the creation unit 507 creates a cooling schedule based on a comparison between a predicted temperature change and an actual temperature change, the cooling execution unit 508 may execute cooling of the control device (SoCBox 400) using the cooling means, cooling time, cooling timing, etc. set in the cooling schedule.
 冷却実行部508は、作成部507により作成された冷却予定に基づいて、制御装置(SoCBox400)の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、制御装置(SoCBox400)の冷却を実行してよい。例えば、冷却実行部508は、作成部507により作成された冷却予定に空冷手段、水冷手段、液体窒素冷却手段が設定され、更に制御装置の複数の部位の冷却実行の条件が設定されていた場合に、前述の複数の冷却手段の1つまたは複数を選択して冷却を実行してよい。 The cooling execution unit 508 may execute cooling of the control device (SoCBox400) using a cooling means selected from a plurality of cooling means for cooling each of a plurality of parts of the control device (SoCBox400) based on the cooling schedule created by the creation unit 507. For example, when air cooling means, water cooling means, and liquid nitrogen cooling means are set in the cooling schedule created by the creation unit 507, and further conditions for executing cooling of a plurality of parts of the control device are set, the cooling execution unit 508 may select one or more of the plurality of cooling means described above to execute cooling.
 冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図34は、SoCBox400及び冷却部600の一例を概略的に示す。図34は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 34 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600. FIG. 34 shows an example where the cooling unit 600 is configured with a single cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図35は、SoCBox400及び冷却部600の一例を概略的に示す。図35は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 35 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 35 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図36は、SoCBox400及び冷却部600の一例を概略的に示す。図36は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 36 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 36 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling. Furthermore, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<第7の実施形態>
 自動運転向けのSoC(System on Chip)(処理チップ)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Seventh embodiment
When an autonomous driving SoC (System on Chip) (processing chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。例えば、SoCBoxは複数のSoCを有しており、自動運転の制御が複雑になるとSoCが行う処理が増加するため、それに伴いSoCBoxが高温になりオーバーヒートする場合がある。そのため、AIがSoCBoxの放熱を予測し、SoCBoxの温度が所定の温度範囲内に保持されるように冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). For example, the SoCBox contains multiple SoCs, and as autonomous driving control becomes more complex, the amount of processing performed by the SoCs increases, which can cause the SoCBox to heat up and overheat. For this reason, AI can predict heat dissipation from the SoCBox and cool it so that its temperature remains within a specified range, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can be used to cool not only the SoCBox, but also the battery, which could be a solution to the problem of high temperatures caused by rapid charging.
 図37は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却装置700を備える。システム10は、冷却部600を備える。 FIG. 37 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling device 700. The system 10 includes a cooling unit 600.
 SoCBox400、冷却装置700、及び冷却部600は、車両に搭載されている。SoCBox400は、複数のSoCを有する制御装置であり、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling device 700, and cooling section 600 are mounted on a vehicle. The SoCBox 400 is a control device having multiple SoCs, and controls the autonomous driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because controlling the autonomous driving of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却装置700は、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の温度が所定の温度範囲内に保持されるようにSoCBox400の冷却を行う。例えば、冷却装置700は、SoCBox400が発熱を開始すると予測し、発熱後の予測された温度が所定の温度範囲内を超えた温度である場合、SoCBox400の冷却を行い所定の温度範囲内に保持する。 The cooling device 700 according to this embodiment predicts temperature changes in the SoCBox 400 and, based on the temperature changes, cools the SoCBox 400 so that the temperature of the SoCBox 400 is maintained within a predetermined temperature range. For example, the cooling device 700 predicts that the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds the predetermined temperature range, it cools the SoCBox 400 to maintain it within the predetermined temperature range.
 これにより、冷却装置700は、SoCBox400の温度を所定の温度範囲内に保持することができるため、SoCBox400の温度を急速に冷却する場合が少なくなり、結果的に冷却に消費するトータルエネルギーを小さくすることができる。 As a result, the cooling device 700 can maintain the temperature of the SoCBox 400 within a specified temperature range, reducing the need to rapidly cool the temperature of the SoCBox 400, and ultimately reducing the total energy consumed for cooling.
 冷却装置700は、SoCBox400について予め定められた閾値の温度に応じて、所定の温度範囲を決定してもよい。例えば、冷却装置700は、SoCBox400が有する各種SoCの処理が正常に行われることを考慮して予め設定された閾値の温度よりも、5℃程度低い任意の温度周辺の温度範囲を所定の温度範囲として決定する。 The cooling device 700 may determine the predetermined temperature range according to a threshold temperature that is predetermined for the SoCBox 400. For example, the cooling device 700 determines the predetermined temperature range to be a temperature range around an arbitrary temperature that is about 5° C. lower than the threshold temperature that is preset, taking into consideration the normal processing of the various SoCs contained in the SoCBox 400.
 これにより、冷却装置700はSoCBox400に対して、発熱後の予測された温度が閾値の温度周辺となってから急速に冷却を開始することを何回か行うよりも、閾値の温度よりも5℃程度低い任意の温度範囲に保持されるように常に冷却を行うことで、冷却に使用されるトータルエネルギーを小さくすることができる。 As a result, the cooling device 700 can constantly cool the SoCBox 400 to maintain the temperature within an arbitrary temperature range that is approximately 5°C lower than the threshold temperature, rather than repeatedly starting to cool the SoCBox 400 rapidly once the predicted temperature after heat generation approaches the threshold temperature, thereby reducing the total energy used for cooling.
 ここで、所定の温度範囲とは、SoCBoxが有する複数のSoCが正常に処理を行うことができる上限の温度として設定された閾値の温度よりも低い任意の温度を中心とした温度範囲であり、閾値の温度と温度範囲の中心の温度との差分の温度や、温度範囲の幅について限定されるものではない。 Here, the specified temperature range is a temperature range centered on an arbitrary temperature lower than a threshold temperature set as the upper limit temperature at which the multiple SoCs contained in the SoCBox can perform normal processing, and is not limited to the temperature difference between the threshold temperature and the center temperature of the temperature range, or the width of the temperature range.
 冷却装置700は、AIによって、SoCBox400の温度変化を予測してよい。なお、SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling device 700 may use AI to predict temperature changes in the SoCBox 400. The learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。 The vehicle 200 is equipped with a SoCBox 400 and a temperature sensor 40 that measures the temperature of the SoCBox 400. The SoCBox 400 controls the autonomous driving of the vehicle 200 using the sensor values of multiple sensors equipped in the vehicle 200 and external information received from multiple types of servers 30.
 サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information, a server that provides weather information, etc. SoCBox 400 transmits to management server 100 sensor values and external information used to control autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却装置700、及び冷却部600が搭載されている。冷却装置700は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling device 700, and cooling section 600. Cooling device 700 may receive from management server 100 and store the learning model generated by management server 100.
 冷却装置700は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling device 700 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and inputs the obtained information into a learning model to predict temperature changes in the SoCBox 400.
 冷却装置700は、SoCBox400が発熱を開始することを予測し、発熱後の予測された温度が所定の温度範囲内を超えた温度である場合に、冷却部600によるSoCBox400の冷却を開始し、SoCBox400の温度を所定の温度範囲内に保持する。 The cooling device 700 predicts when the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds a predetermined temperature range, it starts cooling the SoCBox 400 using the cooling unit 600, and maintains the temperature of the SoCBox 400 within the predetermined temperature range.
 SoCBox400、冷却装置700、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。 The SoCBox 400, the cooling device 700, the management server 100, and the server 30 may communicate via the network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network).
 ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図38は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(Global Navigation Satellite System)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 38 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却装置700に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling device 700 mounted on the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。 The system 10 may be configured to predict temperature changes in each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change in each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires this information and executes autonomous driving control.
 モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The model generation unit 104 performs machine learning using the information acquired by SoCBox 400 and the temperature changes in each of the multiple parts of SoCBox 400 when SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the temperature changes in each of the multiple parts of SoCBox 400 are used as output.
 図39は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 39 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300. The vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
 冷却装置700は、モデル記憶部502、情報取得部504、予測部506、及び冷却実行部508を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling device 700 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, and a cooling execution unit 508. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive the sensor information that the SoCBox 400 acquires from the sensor 310 from the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却装置700のそれぞれに送信してよい。 The information acquisition unit 504 may receive the same sensor information from the sensor 310 as the sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensor 310 may transmit the sensor information to the SoCBox 400 and the cooling device 700, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却装置700のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling device 700.
 予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The prediction unit 506 predicts the temperature change of the SoCBox 400. The prediction unit 506 may predict the temperature change of the SoCBox 400 using AI. For example, the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の温度を所定の温度範囲内に保持されるように冷却を行う。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が所定の温度範囲内の上限の温度より高くなることが予測されたことに応じて、SoCBox400の冷却を開始し、SoCBox400の温度を所定の温度範囲内に保持する。 The cooling execution unit 508 performs cooling so as to maintain the temperature of the SoCBox 400 within a predetermined temperature range based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will be higher than the upper limit temperature within the predetermined temperature range, the cooling execution unit 508 starts cooling the SoCBox 400 and maintains the temperature of the SoCBox 400 within the predetermined temperature range.
 冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means that corresponds to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400.
 具体例として、冷却実行部508は、SoCBox400の温度が所定の温度範囲内の上限の温度を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、前述の上限の温度を超えることが予測された場合に、用いる冷却手段の数を増やす。 As a specific example, when it is predicted that the temperature of SoCBox 400 will exceed the upper limit of a predetermined temperature range, the cooling execution unit 508 starts cooling using one of the multiple cooling means, and when it is still predicted that the temperature of SoCBox 400 will rise and exceed the aforementioned upper limit, the cooling execution unit 508 increases the number of cooling means used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が前述の上限の温度を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、前述の上限の温度を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、前述の上限の温度を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The higher the temperature of SoCBox400, the more powerful the cooling means that the cooling execution unit 508 uses to cool SoCBox400. For example, if it is predicted that the temperature of SoCBox400 will exceed the upper limit temperature, the cooling execution unit 508 starts cooling using air cooling means, if it is still predicted that the temperature of SoCBox400 will rise and exceed the upper limit temperature, the cooling execution unit 508 starts cooling using water cooling means, and if it is still predicted that the temperature of SoCBox400 will rise and exceed the upper limit temperature, the cooling execution unit 508 starts cooling using liquid nitrogen cooling means.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図40は、SoCBox400及び冷却部600の一例を概略的に示す。図40は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却装置700が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が所定の温度範囲内の温度を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 Figure 40 shows an example of the SoCBox 400 and cooling unit 600. Figure 40 shows an example where the cooling unit 600 is configured with a single cooling means. When the cooling device 700 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined temperature range, it can start cooling using the cooling unit 600, thereby cooling the entire SoCBox 400.
 図41は、SoCBox400及び冷却部600の一例を概略的に示す。図41は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。 FIG. 41 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 41 shows an example where the cooling unit 600 is composed of multiple cooling means that respectively cool multiple parts of the SoCBox 400.
 冷却装置700が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が所定の温度範囲内を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 The cooling device 700 predicts the temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to heat up or that the temperature of any part will exceed a predetermined temperature range, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図42は、SoCBox400及び冷却部600の一例を概略的に示す。図42は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却装置700が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が所定の温度範囲内を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 42 shows an example of a SoCBox 400 and a cooling unit 600. FIG. 42 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling device 700 predicts temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined temperature range, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 また、冷却装置700が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす。すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 In addition, the cooling device 700 increases the number of cooling means used as the temperature of the SoCBox 400 increases. That is, in this example, first cooling is started using one of the two types of cooling means, and when the temperature of the SoCBox 400 further increases, cooling is started using the other cooling means, thereby making it possible to make the energy used for cooling more efficient.
<第8の実施形態>
 自動運転向けのSoC(System on Chip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronized Burst Chillingを提供する。
Eighth embodiment
When an autonomous driving SoC (System on Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。SoCBoxだけではなく、バッテリーの冷却にも転用可能の見込みであり、急速充電による高温化への解決策となる可能性がある。 The SoCBox heats up quickly, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). AI predicts heat dissipation from the SoCBox and cools it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It is expected that this technology can also be used to cool the battery, not just the SoCBox, and could be a solution to the problem of high temperatures caused by rapid charging.
 図43は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 43 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却実行装置500は、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行装置500は、SoCBox400が発熱を開始すると予測したことに応じて、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The cooling execution device 500 according to this embodiment predicts temperature changes in the SoCBox 400 and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
 冷却実行装置500は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400. SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling execution device 500 obtains sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始する。 The cooling execution device 500 starts cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via a network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図44は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(Global Navigation Satellite System)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 44 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be provided with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 図45は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 45 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300. The vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
 冷却実行装置500は、検知部501、モデル記憶部502、情報取得部504、予測部506、選択部510、冷却実行部508、及び出力部509を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a detection unit 501, a model storage unit 502, an information acquisition unit 504, a prediction unit 506, a selection unit 510, a cooling execution unit 508, and an output unit 509. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 検知部501は、車両の自動運転を制御する車両に搭載された制御装置の温度変化を検知する。また、検知部501は、SoCBox400の複数の部位のそれぞれの温度変化を検知してよい。例えば、検知部501は、1つまたは複数のSoCBox400に温度の上昇または低下の発生を検知したり、変化する温度の数値を検知したりできる。 Detection unit 501 detects temperature changes in a control device mounted on a vehicle that controls the vehicle's automatic driving. Detection unit 501 may also detect temperature changes in each of multiple parts of SoCBox 400. For example, detection unit 501 can detect the occurrence of a temperature rise or fall in one or multiple SoCBox 400s, or detect changing temperature values.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。また、情報取得部504は、制御装置(SoCBox400)の所定の情報処理として、自動運転に係る情報処理を行う外部の情報処理装置から、自動運転に係る情報処理の結果を取得してよい。例えば、情報取得部504は、車両の制御装置(SoCBox400)により本来実施される自動運転の制御に係る情報処理を外部の情報処理装置が実施した場合に、当該外部の情報処理装置から当該自動運転に係る情報処理の結果を取得することができる。 The information acquisition unit 504 acquires the external information that SoCBox 400 acquires from server 30 from server 30 or from SoCBox 400. The information acquisition unit 504 may receive from SoCBox 400 the external information that SoCBox 400 received from server 30. The information acquisition unit 504 may receive from server 30 the same external information that SoCBox 400 receives from server 30. In this case, the server 30 may transmit the external information to each of SoCBox 400 and the cooling execution device 500. The information acquisition unit 504 may also acquire the results of information processing related to autonomous driving from an external information processing device that performs information processing related to autonomous driving as a specified information processing of the control device (SoCBox 400). For example, when an external information processing device performs information processing related to the control of autonomous driving that is normally performed by the vehicle control device (SoCBox 400), the information acquisition unit 504 can acquire the results of the information processing related to the autonomous driving from the external information processing device.
 予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The prediction unit 506 predicts the temperature change of the SoCBox 400. The prediction unit 506 may predict the temperature change of the SoCBox 400 using AI. For example, the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
 選択部510は、温度変化が所定の閾値を超えた場合に、制御装置の温度を下げる所定の運転条件を選択する。ここから、選択部510により選択される運転条件の具体例について説明を行う。 The selection unit 510 selects a specific operating condition that lowers the temperature of the control device when the temperature change exceeds a specific threshold. From here, we will explain specific examples of operating conditions selected by the selection unit 510.
 例えば、選択部510は、温度変化が所定の閾値を超えた場合に、所定の運転条件として、制御装置(SoCBox400)の所定の情報処理に係る計算量を抑制する運転条件を選択してよい。それにより、冷却実行装置は、情報処理に係る計算により発生する発熱量を抑制し、制御装置の冷却効果を奏する。 For example, when the temperature change exceeds a predetermined threshold, the selection unit 510 may select, as the predetermined operating condition, an operating condition that suppresses the amount of calculation related to the predetermined information processing of the control device (SoCBox 400). As a result, the cooling execution device suppresses the amount of heat generated by the calculation related to the information processing, and provides a cooling effect for the control device.
 選択部510は、温度変化が所定の閾値を超えた場合に、所定の運転条件として、自動運転の運転速度を所定の速度以下に抑制する運転条件を選択してよい。それにより、冷却実行装置は、自動運転の情報処理に係る計算量を抑制することで、もって計算により発生する発熱量を抑制し、制御装置の冷却効果を奏する。 When the temperature change exceeds a predetermined threshold, the selection unit 510 may select, as the predetermined operating condition, an operating condition that suppresses the operating speed of the automatic operation to a predetermined speed or less. As a result, the cooling execution device suppresses the amount of calculation related to the information processing of the automatic operation, thereby suppressing the amount of heat generated by the calculation and achieving a cooling effect for the control device.
 また、選択部510は、温度変化が所定の閾値を超えた場合に、所定の運転条件として、自動運転を手動運転に変更する運転条件を選択してよい。それにより、冷却実行装置は、自動運転よりも計算量が少ない手動運転に切り替えることで、もって計算により発生する発熱量を抑制し、制御装置の冷却効果を奏する。 In addition, the selection unit 510 may select an operating condition that changes automatic operation to manual operation as the predetermined operating condition when the temperature change exceeds a predetermined threshold. This allows the cooling execution device to switch to manual operation, which involves less calculation than automatic operation, thereby suppressing the amount of heat generated by the calculations and achieving a cooling effect for the control device.
 選択部510は、温度変化が所定の閾値を超えた場合に、所定の運転条件として、自動運転の走行ルートに含まれる道路の所定の位置(例えば、路肩等)に停止する運転条件を選択してよい。それにより、冷却実行装置は、自動運転を停止することで、自動運転に係る計算量を抑制することで、もって計算により発生する発熱量を抑制し、制御装置の冷却効果を奏する。 When the temperature change exceeds a predetermined threshold, the selection unit 510 may select, as the predetermined driving condition, a driving condition in which the vehicle stops at a predetermined position (e.g., a shoulder) on a road included in the driving route of the autonomous driving. As a result, the cooling execution device stops the autonomous driving to reduce the amount of calculations related to the autonomous driving, thereby reducing the amount of heat generated by the calculations and achieving a cooling effect for the control device.
 選択部510は、温度変化が所定の閾値を超えた場合に、所定の運転条件として、自動運転の情報処理に用いる所定の情報の取得を抑制する運転条件を選択してよい。それにより、冷却実行装置は、自動運転の情報処理に用いる情報の取得を抑制し、自動運転に係る計算量を抑制することで、もって計算により発生する発熱量を抑制し、制御装置の冷却効果を奏する。 When the temperature change exceeds a predetermined threshold, the selection unit 510 may select, as the predetermined operating condition, an operating condition that suppresses the acquisition of predetermined information used in the information processing for autonomous driving. As a result, the cooling execution device suppresses the acquisition of information used in the information processing for autonomous driving, and suppresses the amount of calculations related to autonomous driving, thereby suppressing the amount of heat generated by the calculations and achieving a cooling effect for the control device.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start to generate heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a third threshold.
 出力部509は、選択部510の選択結果に基づき、所定の運転条件を出力する。具体的には、出力部509は、選択部510により選択された運転条件に基づいて、制御装置(SoCBox400)が車両の自動運転を制御するための運転条件に関する情報を出力してよい。なお、出力部509により出力される運転条件に関する情報は、車両の制御装置が用いることができる形式の情報であれば、特に限定されない。 The output unit 509 outputs a predetermined driving condition based on the selection result of the selection unit 510. Specifically, the output unit 509 may output information about the driving conditions for the control device (SoCBox 400) to control the automatic driving of the vehicle based on the driving conditions selected by the selection unit 510. Note that the information about the driving conditions output by the output unit 509 is not particularly limited as long as it is in a format that can be used by the control device of the vehicle.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図46は、SoCBox400及び冷却部600の一例を概略的に示す。図46は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 46 shows an example of a schematic diagram of the SoCBox 400 and the cooling unit 600. FIG. 46 shows an example where the cooling unit 600 is configured with a single cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図47は、SoCBox400及び冷却部600の一例を概略的に示す。図47は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 47 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 47 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図48は、SoCBox400及び冷却部600の一例を概略的に示す。図48は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。
<第9の実施形態>
FIG. 48 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 48 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby realizing efficient cooling. In addition, the cooling execution device 500 increases the number of cooling means to be used as the temperature of the SoCBox 400 increases, that is, in this example, first starts cooling using one of the two types of cooling means, and when the temperature of the SoCBox 400 further increases, starts cooling using the other cooling means, thereby making it possible to efficiently use energy for cooling.
Ninth embodiment
 自動運転向けのSoC(System on Chip)(処理チップ)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(Artificial Intelligence)を活用して制御装置であるSoCBoxを冷却する技術を提供する。 When an autonomous driving SoC (System on Chip) (processing chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, we provide a technology that utilizes AI (Artificial Intelligence) to cool the SoCBox, which is a control device.
 SoCBoxはすぐに高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。例えば、SoCBoxは複数のSoCを有しており、自動運転の制御が複雑になるとSoCが行う処理が増加するため、それに伴いSoCBoxが高温になりオーバーヒートする場合がある。そのため、AIがSoCBoxの放熱を予測し、SoCBoxがオーバーヒートする前に当該車両の付近を走行している他の車両と通信を行い、SoCの計算負荷の一部を肩代わりしてもらうことで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。 The SoCBox quickly becomes hot, making it difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). For example, the SoCBox contains multiple SoCs, and as autonomous driving control becomes more complex, the amount of processing performed by the SoCs increases, which can cause the SoCBox to become hot and overheat. For this reason, AI can predict heat dissipation from the SoCBox and communicate with other vehicles traveling nearby before the SoCBox overheats, allowing them to shoulder part of the calculation load of the SoCs, preventing the SoCBox from becoming too hot and enabling advanced calculations in the vehicle.
 図49は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却装置700を備える。システム10は、冷却部600を備える。 FIG. 49 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling device 700. The system 10 includes a cooling unit 600.
 SoCBox400、冷却装置700、及び冷却部600は、車両に搭載されている。SoCBox400は、複数のSoCを有する制御装置であり、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling device 700, and cooling section 600 are mounted on a vehicle. The SoCBox 400 is a control device having multiple SoCs, and controls the autonomous driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because controlling the autonomous driving of the vehicle places a very high processing load on the vehicle, the SoCBox 400 can become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却装置700は、SoCBox400の温度変化を予測して、温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行い、通信が行われている他の車両の自動運転の制御に関する演算を実行するように制御装置に指示する。例えば、冷却装置700は、SoCBox400が発熱を開始すると予測し、発熱後の予測された温度が予め設定された閾値の温度を超えるものであった場合に、当該車両の近くを並走している他の車両と通信を行う。その後、冷却装置700は、例えば、通信を行っている複数の車両とグループ化を行い、通信元の車両のSoCの計算負荷の一部を肩代わりするように演算を行うことをSoCBox400に指示する。また、冷却装置700は、例えば、通信が行われている車両同士で、自動運転に関する演算を互いに補い合うように行ってもよい。 The cooling device 700 according to this embodiment predicts temperature changes in the SoCBox 400, communicates with other vehicles within a specified range based on the temperature changes, and instructs the control device to execute calculations related to the control of the autonomous driving of the other vehicles with which communication is taking place. For example, the cooling device 700 predicts that the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds a preset threshold temperature, communicates with other vehicles traveling parallel to the vehicle. The cooling device 700 then groups the multiple vehicles with which it is communicating, and instructs the SoCBox 400 to perform calculations to shoulder part of the computational load of the SoC of the communicating vehicle. The cooling device 700 may also perform calculations related to autonomous driving between the vehicles with which communication is taking place, for example, to complement each other.
 これにより、冷却装置700は、SoCBox400の温度が設定された閾値を超えると予測された場合に、付近の車両と通信を行い、計算負荷の一部を肩代わりしてもらうことや、計算負荷を互いに補い合うことで、計算負荷を減らすことができるため、SoCBox400の温度を低下させることができる。 As a result, when the cooling device 700 predicts that the temperature of the SoCBox 400 will exceed a set threshold, it can communicate with nearby vehicles to have them shoulder part of the computational load or to compensate for each other's computational load, thereby reducing the computational load and lowering the temperature of the SoCBox 400.
 ここで、前述の予め設定された閾値の温度とは、SoCBox400が有する複数のSoCが正常に処理を行うことができる上限の温度として設定された温度である。 The aforementioned preset threshold temperature is a temperature set as the upper limit temperature at which the multiple SoCs in the SoCBox400 can perform normal processing.
 また、冷却装置700は、他の車両との通信を所定時間維持することができる範囲内に存在する他の車両を、所定の範囲内に存在する車両として判断し通信を行ってもよい。例えば、冷却装置700は、通信部が通信を行うことができ、車両間の通信を一定時間維持することができる範囲内に存在する車両を、所定の範囲内に存在する車両と判断し、当該車両との通信を行う。なお、所定の範囲内に存在する車両を判断する方法として、例えば、所定のブロードキャスト通信に反応した車両や、位置情報により近傍に存在することが確認された車両等を、所定の範囲内に存在する車両と判断する。 The cooling device 700 may also determine that other vehicles that are within a range where communication with other vehicles can be maintained for a predetermined period of time are vehicles that are within the predetermined range and communicate with them. For example, the cooling device 700 may determine that a vehicle that is within a range where the communication unit can communicate and communication between the vehicles can be maintained for a certain period of time is a vehicle that is within the predetermined range, and communicate with that vehicle. As a method of determining that a vehicle is within a predetermined range, for example, a vehicle that responded to a predetermined broadcast communication or a vehicle that has been confirmed to be in the vicinity based on location information may be determined to be a vehicle that is within the predetermined range.
 また、冷却装置700は、予測部によって予測された温度変化に基づいて、SoCBoxの冷却を開始してもよい。例えば、冷却装置700は、SoCBox400の温度が前述の閾値の温度を超えると予測された場合に、SoCBox400について空冷手段等による冷却を開始する。 The cooling device 700 may also start cooling the SoCBox 400 based on the temperature change predicted by the prediction unit. For example, when it is predicted that the temperature of the SoCBox 400 will exceed the aforementioned threshold temperature, the cooling device 700 starts cooling the SoCBox 400 using air-cooling means or the like.
 これにより、冷却装置700は、前述の他の車両と通信を行い、計算負荷を減らすことに加え、SoCBox400に対して外部から冷却を行うことで、SoCBox400の温度を急速に冷却することができる。 As a result, the cooling device 700 communicates with the other vehicles mentioned above, reducing the computational load, and by cooling the SoCBox 400 from outside, it is possible to rapidly cool the temperature of the SoCBox 400.
 冷却装置700は、AIによって、SoCBox400の温度変化を予測してよい。なお、SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling device 700 may use AI to predict temperature changes in the SoCBox 400. The learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40と、冷却装置700が搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。 The vehicle 200 is equipped with a SoCBox 400, a temperature sensor 40 that measures the temperature of the SoCBox 400, and a cooling device 700. The SoCBox 400 controls the autonomous driving of the vehicle 200 using the sensor values of multiple sensors installed in the vehicle 200 and external information received from multiple types of servers 30.
 冷却装置700は、SoCBox400が取得する、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling device 700 obtains sensor values from multiple sensors mounted on the vehicle 200 and external information received from multiple types of servers 30, which are acquired by the SoCBox 400, from multiple sensors and multiple types of servers 30, or from the SoCBox 400, and predicts temperature changes in the SoCBox 400 by inputting the obtained information into a learning model.
 冷却装置700は、例えば、SoCBox400が発熱を開始することを予測し、発熱後の予測された温度が予め設定された閾値の温度を超えた温度である場合に、付近を走行する他の車両と通信を行い、SoCBox400の計算負荷を低減させることで、SoCBox400の温度を低下させる。 For example, the cooling device 700 predicts when the SoCBox 400 will start to generate heat, and if the predicted temperature after heat generation exceeds a preset threshold temperature, the cooling device 700 communicates with other vehicles traveling nearby and reduces the calculation load on the SoCBox 400, thereby lowering the temperature of the SoCBox 400.
 サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information, a server that provides weather information, etc. SoCBox 400 transmits to management server 100 sensor values and external information used to control autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却部を有する車両である。車両300には、SoCBox400、冷却装置700、及び冷却部600が搭載されている。冷却装置700は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling unit according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling device 700, and cooling unit 600. Cooling device 700 may receive from management server 100 and store the learning model generated by management server 100.
 SoCBox400、冷却装置700、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(Local Area Network)を含んでよい。 The SoCBox 400, the cooling device 700, the management server 100, and the server 30 may communicate via the network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network).
 ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5th Generation)通信方式、LTE(Long Term Evolution)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。 The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図50は、本実施形態における車両間の通信を行っている状態についての説明図である。前述の通り、冷却装置700は、SoCBox400が予め設定された閾値の温度を超える温度となることが予測された場合に、付近を走行している他の車両と通信を行い、通信先の車両は、通信元の車両のSoCの計算負荷の一部を肩代わりするように演算を実行することをSoCBox400に指示する。 FIG. 50 is an explanatory diagram of the state in which communication between vehicles is taking place in this embodiment. As described above, when the cooling device 700 predicts that the temperature of the SoCBox 400 will exceed a preset threshold temperature, it communicates with other vehicles traveling nearby, and the communicating vehicle instructs the SoCBox 400 to perform calculations to shoulder part of the computational load of the communicating vehicle's SoC.
 図50の例では、車両200-1の付近に車両200-2、車両200-3、車両200-4が同じような速度で走行している。そして、車両200-1のSoCBox400の温度が閾値の温度を超えると予測されたため、200-1の通信部により、車両200-1~200-4がグループ化され、ネットワーク20が構成されている。 In the example of FIG. 50, vehicles 200-2, 200-3, and 200-4 are traveling near vehicle 200-1 at a similar speed. Then, because it is predicted that the temperature of SoCBox 400 of vehicle 200-1 will exceed the threshold temperature, vehicles 200-1 to 200-4 are grouped by the communication unit of 200-1 to form network 20.
 ネットワーク20が構成された後、通信先の車両の冷却装置700は、通信元の車両のSoCBox400の計算負荷の一部を肩代わりするように演算を行うことを指示する。これにより、通信元の車両200-1のSoCの計算負荷の一部を、通信先の他の車両200-2~200-4が有するSoCが肩代わりすることにより、通信元の車両200-1のSoCの計算負荷が低減され、車両200-1のSoCBox400の温度が低下する。 After the network 20 is configured, the cooling device 700 of the destination vehicle issues an instruction to perform calculations to shoulder part of the computational load of the SoCBox 400 of the source vehicle. As a result, part of the computational load of the SoC of the source vehicle 200-1 is shouldered by the SoCs of the other destination vehicles 200-2 to 200-4, reducing the computational load of the SoC of the source vehicle 200-1 and lowering the temperature of the SoCBox 400 of vehicle 200-1.
 図51は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(Light Detection And Ranging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(Global Navigation Satellite System)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 51 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of the sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200及び車両300の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. Then, SoCBox400 uses the acquired information to execute autonomous driving control of vehicle 200 and vehicle 300.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The model generation unit 104 executes machine learning using the information acquired by the information acquisition unit 102 to generate a learning model. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature change of the SoCBox 400 when the SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両200及び車両300に搭載されている冷却装置700に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling device 700 mounted on the vehicle 200 and the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。 The system 10 may be configured to predict temperature changes in each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change in each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires this information and executes autonomous driving control.
 モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The model generation unit 104 performs machine learning using the information acquired by SoCBox 400 and the temperature changes in each of the multiple parts of SoCBox 400 when SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the temperature changes in each of the multiple parts of SoCBox 400 are used as output.
 図52は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 52 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300. The vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
 冷却装置700は、予測部506と、通信部520と、指示部530と、冷却実行部540と、モデル記憶部550と、情報取得部560とを備える。予測部506は、SoCBox400の温度変化を予測する。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、後述する情報取得部560が取得した情報を、後述するモデル記憶部550に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The cooling device 700 includes a prediction unit 506, a communication unit 520, an instruction unit 530, a cooling execution unit 540, a model storage unit 550, and an information acquisition unit 560. The prediction unit 506 predicts temperature changes in the SoCBox 400. The prediction unit 506 may predict temperature changes in the SoCBox 400 using AI. For example, the prediction unit 506 predicts temperature changes in the SoCBox 400 by inputting information acquired by the information acquisition unit 560 (described below) into a learning model stored in the model storage unit 550 (described below).
 通信部520は、予測部506によって予測された温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う。例えば、通信部520は、予測部506によって、SoCBox400の温度が予め設定された閾値の温度を超える温度になると予測された場合に、前述の所定の範囲内に存在すると判断された他の車両と通信を行い、ネットワーク20を構成する。 The communication unit 520 communicates with other vehicles that are within a predetermined range based on the temperature change predicted by the prediction unit 506. For example, when the prediction unit 506 predicts that the temperature of the SoCBox 400 will exceed a preset threshold temperature, the communication unit 520 communicates with other vehicles that are determined to be within the aforementioned predetermined range, thereby forming the network 20.
 指示部530は、通信部520によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように制御装置に指示する。例えば、指示部530は、自身の車両が他の車両から通信接続された場合、自身の車両のSoCのリソースの空き等を参照し、通信元の他の車両のSoCの計算負荷の一部の演算を実行することができるか否かを判定する。そして、指示部530は、例えば、通信元の他の車両のSoCの計算負荷の一部の演算を実行することができると判定した場合に、通信元の他の車両のSoCの計算負荷の一部の演算を実行することを、自身の車両のSoCBox400に指示する。 The instruction unit 530 instructs the control device to execute calculations related to the control of autonomous driving of another vehicle with which communication is being performed via the communication unit 520. For example, when the instruction unit 530's own vehicle is connected to another vehicle for communication, the instruction unit 530 refers to the availability of resources of the SoC of the own vehicle and determines whether or not it is possible to execute a part of the calculation load of the SoC of the other vehicle that is the source of communication. Then, when the instruction unit 530 determines that it is possible to execute a part of the calculation load of the SoC of the other vehicle that is the source of communication, the instruction unit 530 instructs the SoCBox 400 of the own vehicle to execute a part of the calculation load of the SoC of the other vehicle that is the source of communication.
 冷却実行部540は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行部540は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 540 starts cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 540 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部540は、後述する冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 540 may use the cooling unit 600 described below to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 モデル記憶部550は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The model storage unit 550 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部560は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部560は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。 The information acquisition unit 560 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 560 may receive the sensor information that the SoCBox 400 acquires from the sensor 310 from the SoCBox 400.
 情報取得部560は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却装置700のそれぞれに送信してよい。 The information acquisition unit 560 may receive the same sensor information from the sensor 310 as the sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensor 310 may transmit the sensor information to the SoCBox 400 and the cooling device 700, respectively.
 情報取得部560は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部560は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部560は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却装置700のそれぞれに送信してよい。 The information acquisition unit 560 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 560 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 560 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling device 700.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部540は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。 The cooling execution unit 540 may cool the SoCBox 400 using a cooling means that corresponds to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400.
 具体例として、冷却実行部540は、SoCBox400の温度が第一の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第二の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 As a specific example, when it is predicted that the temperature of SoCBox 400 will exceed a first threshold, the cooling execution unit 540 starts cooling using one of the multiple cooling means, and when it is still predicted that the temperature of SoCBox 400 will rise and exceed a second threshold, the number of cooling means used is increased.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第一の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第二の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第三の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 図53は、SoCBox400及び冷却部600の一例を概略的に示す。図53は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却装置700が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 FIG. 53 shows an example of a SoCBox 400 and a cooling unit 600. FIG. 53 shows an example in which the cooling unit 600 is configured with a single cooling means. When the cooling device 700 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図54は、SoCBox400及び冷却部600の一例を概略的に示す。図54は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。 FIG. 54 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 54 shows an example where the cooling unit 600 is composed of multiple cooling means that respectively cool multiple parts of the SoCBox 400.
 冷却装置700が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 The cooling device 700 predicts the temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that one of the parts will start to generate heat or that the temperature of one of the parts will exceed a predetermined threshold, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図55は、SoCBox400及び冷却部600の一例を概略的に示す。図55は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却装置700が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 55 shows an example of a SoCBox 400 and a cooling unit 600. FIG. 55 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling device 700 predicts temperature changes in each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, it performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 また、冷却装置700が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす。すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 In addition, the cooling device 700 increases the number of cooling means used as the temperature of the SoCBox 400 increases. That is, in this example, first cooling is started using one of the two types of cooling means, and when the temperature of the SoCBox 400 further increases, cooling is started using the other cooling means, thereby making it possible to make the energy used for cooling more efficient.
<第10の実施形態>
 自動運転向けのSoC(SystemonChip)が高度な演算処理を行う際に、発熱が課題となる。そこで、本実施形態では、AI(ArtificialIntelligence)を活用してSoCBoxの急冷を最適化する技術であるSynchronizedBurstChillingを提供する。
Tenth embodiment
When an autonomous driving SoC (System Chip) performs advanced arithmetic processing, heat generation becomes an issue. Therefore, in this embodiment, Synchronized Burst Chilling, which is a technology that utilizes AI (Artificial Intelligence) to optimize rapid cooling of the SoC Box, is provided.
 SoCBoxはすぐ高温になるため、車両での高度な演算が難しい(完全自動運転への課題)。そこで、AIによってSoCBoxの放熱を予測し、SoCBoxの冷却を行うことが考えられる。例えば、AIによってSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。 Because the SoCBox quickly becomes hot, it is difficult to perform advanced calculations in the vehicle (a challenge to fully autonomous driving). Therefore, it is conceivable that AI could be used to predict heat dissipation from the SoCBox and cool it down at the same time. For example, by using AI to predict heat dissipation from the SoCBox and cooling it at the same time as heat dissipation, it would be possible to prevent the SoCBox from becoming too hot and enable advanced calculations in the vehicle.
 その場合において、冷却タイミングを最適化することが望ましい。例えば、SoCBoxのコンピューティングパワーが最大となる瞬間を予測して、最適なタイミングを見計らって冷却装置をコントロールする。また、例えば、冷却のトリガから実際に冷却されるまでの時間を逆算し、考慮に含める。また、例えば、リスク率に応じて冷却の度合いを調整する。具体例として、リスク率が30%を超えているなら冷却し、20%以下なら冷却を弱め、50%を超えているなら冷却を強める等の制御を行う。 In such a case, it is desirable to optimize the timing of cooling. For example, the moment when the computing power of the SoCBox will be at its maximum is predicted, and the cooling device is controlled at the optimal timing. Also, for example, the time from when the cooling is triggered to when cooling actually occurs is calculated backwards and taken into consideration. Also, for example, the degree of cooling is adjusted according to the risk rate. As a specific example, cooling is performed if the risk rate exceeds 30%, cooling is weakened if it is 20% or less, and cooling is strengthened if it is over 50%, etc.
 AIがSoCBoxの放熱を予測し、放熱と同時に冷却することで、SoCBoxが高温になるのを防ぎ、車両での高度な演算を可能にする。また、必要性、時間、リスクを考慮して効率的に冷却をすることができる。 AI can predict heat dissipation from the SoCBox and cool it at the same time as it dissipates heat, preventing the SoCBox from getting too hot and enabling advanced calculations in the vehicle. It can also efficiently cool the SoCBox while taking into account necessity, time, and risk.
 図56は、システム10の一例を概略的に示す。システム10は、管理サーバ100を備える。システム10は、SoCBox400を備える。システム10は、冷却実行装置500を備える。システム10は、冷却部600を備える。 FIG. 56 shows an example of a system 10. The system 10 includes a management server 100. The system 10 includes a SoCBox 400. The system 10 includes a cooling execution device 500. The system 10 includes a cooling unit 600.
 SoCBox400、冷却実行装置500、及び冷却部600は、車両に搭載されている。SoCBox400は、車両に搭載された複数のセンサのセンサ値を用いて、車両の自動運転を制御する。車両の自動運転制御には、非常に高い処理負荷がかかるため、SoCBox400は、非常に高温になってしまう場合がある。SoCBox400があまりに高温になると、SoCBox400の動作が正常に行われなくなったり、車両に悪影響を及ぼすおそれがある。 The SoCBox 400, cooling execution device 500, and cooling unit 600 are mounted on a vehicle. The SoCBox 400 controls the automatic driving of the vehicle using the sensor values of multiple sensors mounted on the vehicle. Because automatic driving control of the vehicle places a very high processing load on the vehicle, the SoCBox 400 may become very hot. If the SoCBox 400 becomes too hot, it may not operate normally or may have a negative effect on the vehicle.
 本実施形態に係る冷却実行装置500は、例えば、SoCBox400の温度変化を予測して、温度変化に基づいて、SoCBox400の冷却を開始する。例えば、冷却実行装置500は、SoCBox400が発熱を開始すると予測したことに応じて、即座にSoCBox400の冷却を開始する。発熱開始よりも早く、又は、発熱開始と同時に冷却を開始することによって、SoCBox400が高温になってしまうことを確実に防止することができる。また、SoCBox400を常に冷却する場合と比較して、冷却に要するエネルギーを低減することができる。 The cooling execution device 500 according to this embodiment predicts, for example, a change in temperature of the SoCBox 400, and starts cooling the SoCBox 400 based on the temperature change. For example, the cooling execution device 500 immediately starts cooling the SoCBox 400 in response to predicting that the SoCBox 400 will start generating heat. By starting cooling before the SoCBox 400 starts generating heat, or at the same time, it is possible to reliably prevent the SoCBox 400 from becoming too hot. Furthermore, it is possible to reduce the energy required for cooling compared to constantly cooling the SoCBox 400.
 冷却実行装置500は、AIによって、SoCBox400の温度変化を予測してよい。SoCBox400の温度変化の学習は、車両200によって収集されたデータを用いることによって行われてよい。例えば、管理サーバ100が、車両200からデータを収集して、学習を実行する。学習を実行する主体は、管理サーバ100に限らず、他の装置であってもよい。 The cooling execution device 500 may use AI to predict temperature changes in the SoCBox 400. Learning of temperature changes in the SoCBox 400 may be performed by using data collected by the vehicle 200. For example, the management server 100 collects data from the vehicle 200 and performs the learning. The entity that performs the learning is not limited to the management server 100, and may be another device.
 車両200には、SoCBox400と、SoCBox400の温度を測定する温度センサ40とが搭載されている。SoCBox400は、車両200に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を用いて、車両200の自動運転を制御する。サーバ30は、外部装置の一例であってよい。複数種類のサーバ30の例として、交通情報を提供するサーバ、天候情報を提供するサーバ、等が挙げられる。SoCBox400は、自動運転の制御に用いた、センサ値や外部情報等と、制御したときのSoCBox400の温度変化とを管理サーバ100に送信する。 Vehicle 200 is equipped with SoCBox 400 and temperature sensor 40 that measures the temperature of SoCBox 400. SoCBox 400 controls the autonomous driving of vehicle 200 using sensor values from multiple sensors equipped in vehicle 200 and external information received from multiple types of servers 30. Server 30 may be an example of an external device. Examples of multiple types of servers 30 include a server that provides traffic information and a server that provides weather information. SoCBox 400 transmits to management server 100 the sensor values and external information used to control the autonomous driving, as well as the temperature change of SoCBox 400 when controlled.
 管理サーバ100は、1又は複数のSoCBox400から受信した情報を用いた学習を実行する。管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400がこれらの情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成する。 The management server 100 performs learning using information received from one or more SoCBox 400. The management server 100 performs machine learning using information such as sensor values and external information acquired by the SoCBox 400, and the temperature change of the SoCBox 400 when the SoCBox 400 acquired this information, as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the temperature change of the SoCBox 400 is used as output.
 車両300は、本実施形態に係る冷却機能を有する車両である。車両300には、SoCBox400、冷却実行装置500、及び冷却部600が搭載されている。冷却実行装置500は、管理サーバ100によって生成された学習モデルを管理サーバ100から受信して記憶してよい。 Vehicle 300 is a vehicle having a cooling function according to this embodiment. Vehicle 300 is equipped with SoCBox 400, cooling execution device 500, and cooling section 600. Cooling execution device 500 may receive from management server 100 and store the learning model generated by management server 100.
 冷却実行装置500は、SoCBox400が取得する、車両300に搭載されている複数のセンサのセンサ値や、複数種類のサーバ30から受信する外部情報を、複数のセンサや複数種類のサーバ30から、又は、SoCBox400から取得して、取得した情報を学習モデルに入力することによって、SoCBox400の温度変化を予測してよい。 The cooling execution device 500 may obtain sensor values from multiple sensors mounted on the vehicle 300 and external information received from multiple types of servers 30, which are obtained by the SoCBox 400, from the multiple sensors and multiple types of servers 30, or from the SoCBox 400, and input the obtained information into a learning model to predict temperature changes in the SoCBox 400.
 冷却実行装置500は、SoCBox400が発熱を開始することを予測した場合や、SoCBox400の温度が予め定められた閾値より高くなることを予測した場合に、冷却部600によるSoCBox400の冷却を開始してよい。 The cooling execution device 500 may start cooling the SoCBox 400 using the cooling unit 600 when it predicts that the SoCBox 400 will start to generate heat or when it predicts that the temperature of the SoCBox 400 will rise above a predetermined threshold.
 冷却実行装置500は、SoCBox400の温度変化を予測するときに、計算過程で、SoCBox400のコンピューティングパワーを予測してもよい。例えば、冷却実行装置500は、AIによって、SoCBox400のコンピューティングパワーの変化を予測し、予測結果によって、SoCBox400の温度変化を予測する。具体例として、冷却実行装置500は、AIによって、SoCBox400のコンピューティングパワーが最大になる瞬間を予測して、SoCBox400のコンピューティングパワーが最大となったことによるSoCBox400の温度変化を加味して、SoCBox400の温度変化を予測する。 When predicting the temperature change of SoCBox 400, the cooling execution device 500 may predict the computing power of SoCBox 400 during the calculation process. For example, the cooling execution device 500 predicts the change in computing power of SoCBox 400 using AI, and predicts the temperature change of SoCBox 400 based on the prediction result. As a specific example, the cooling execution device 500 predicts the moment when the computing power of SoCBox 400 will be at its maximum using AI, and predicts the temperature change of SoCBox 400 by taking into account the temperature change of SoCBox 400 caused by the computing power of SoCBox 400 reaching its maximum.
 管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、実測されたSoCBox400のコンピューティングパワーとを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400のコンピューティングパワーを出力とする学習モデルを生成してよい。冷却実行装置500は、当該学習モデルを用いて、SoCBox400のコンピューティングパワーの変化を予測してよい。 The management server 100 may perform machine learning using information such as sensor values and external information acquired by the SoCBox 400 and the measured computing power of the SoCBox 400 as learning data, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the computing power of the SoCBox 400 is used as output. The cooling execution device 500 may use the learning model to predict changes in the computing power of the SoCBox 400.
 また、本実施形態に係る冷却実行装置500は、SoCBox400のコンピューティングパワーの変化を予測して、コンピューティングパワーの変化に基づいて、SoCBox400の冷却を開始してもよい。例えば、冷却実行装置500は、SoCBox400のコンピューティングパワーが最大になる瞬間を予測して、予測結果に基づいて、SoCBox400の冷却を開始する。具体例として、冷却実行装置500は、SoCBox400のコンピューティングパワーが最大になる瞬間を予測して、予測した瞬間になったタイミングで、SoCBox400の冷却を開始する。また、例えば、冷却実行装置500は、SoCBox400のコンピューティングパワーが最大になる瞬間を予測して、予測した瞬間から予め定められた時間遡ったタイミングで、SoCBox400の冷却を開始する。 Also, the cooling execution device 500 according to this embodiment may predict a change in the computing power of the SoCBox 400 and start cooling the SoCBox 400 based on the change in computing power. For example, the cooling execution device 500 predicts the moment when the computing power of the SoCBox 400 will be at its maximum, and starts cooling the SoCBox 400 based on the prediction result. As a specific example, the cooling execution device 500 predicts the moment when the computing power of the SoCBox 400 will be at its maximum, and starts cooling the SoCBox 400 at the timing of the predicted moment. Also, for example, the cooling execution device 500 predicts the moment when the computing power of the SoCBox 400 will be at its maximum, and starts cooling the SoCBox 400 at a timing that is a predetermined time back from the predicted moment.
 本実施形態に係る冷却実行装置500は、冷却のトリガから実際に冷却されるまでの時間を考慮に含めてSoCBox400の冷却を実行してよい。例えば、冷却実行装置500は、AIによって、SoCBox400がおかれている状況において、SoCBox400の冷却を開始した場合に、実際にSoCBox400が冷却されるまでの時間を予測し、予測結果に応じて、SoCBox400の冷却を開始するタイミングを制御する。具体例として、冷却実行装置500は、SoCBox400の冷却を実際に開始したいタイミングを起点とし、予測した時間の分遡ったタイミングで、SoCBox400の冷却を開始する。SoCBox400の冷却を実際に開始したいタイミングをトリガとして冷却を開始しても、SoCBox400が実際に冷却されるまでにタイムラグがあると、冷却の開始が遅れてしまうことになるが、このような予測を用いることによって、SoCBox400の冷却を実際に開始したいタイミングに、実際にSoCBox400の冷却が行われるようにできる。 The cooling execution device 500 according to this embodiment may perform cooling of the SoCBox 400 taking into consideration the time from the cooling trigger to the actual cooling. For example, the cooling execution device 500 uses AI to predict the time until cooling of the SoCBox 400 actually occurs when cooling of the SoCBox 400 is started in the situation in which the SoCBox 400 is placed, and controls the timing of starting cooling of the SoCBox 400 according to the prediction result. As a specific example, the cooling execution device 500 starts cooling of the SoCBox 400 at a timing that goes back the predicted time from the timing at which it is actually desired to start cooling of the SoCBox 400. Even if cooling of SoCBox400 is started using the desired timing as a trigger, if there is a time lag before SoCBox400 actually starts cooling, the start of cooling will be delayed. However, by using such a prediction, it is possible to ensure that cooling of SoCBox400 actually starts at the desired timing.
 管理サーバ100は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400が当該情報を取得したときにSoCBox400の冷却を開始した場合にSoCBox400が冷却されるまでの時間とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の冷却を開始した場合にSoCBox400が実際に冷却されるまでの時間を出力とする学習モデルを生成してよい。冷却実行装置500は、当該学習モデルを用いて、SoCBox400の冷却のトリガを制御してよい。 The management server 100 may perform machine learning using, as learning data, information such as sensor values and external information acquired by the SoCBox 400 and the time it takes for the SoCBox 400 to cool down if cooling of the SoCBox 400 is initiated when the SoCBox 400 acquires the information, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the time it takes for the SoCBox 400 to actually cool down if cooling of the SoCBox 400 is initiated is output. The cooling execution device 500 may use the learning model to control the trigger for cooling the SoCBox 400.
 本実施形態に係る冷却実行装置500は、例えば、リスク率に応じてSoCBox400の冷却の度合いを調整してよい。リスク率とは、例えば、SoCBox400が高温になることでSoCBox400が正常に機能しなくなる確率であってよい。リスク率とは、例えば、SoCBox400が高温になることでSoCBox400が正常に機能しなくなり、SoCBox400が制御する車両の正常な自動運転に影響を及ぼす確率であってよい。 The cooling execution device 500 according to this embodiment may, for example, adjust the degree of cooling of the SoCBox 400 according to the risk rate. The risk rate may, for example, be the probability that the SoCBox 400 will become too hot and stop functioning properly. The risk rate may, for example, be the probability that the SoCBox 400 will become too hot and stop functioning properly, affecting the normal automatic operation of the vehicle controlled by the SoCBox 400.
 リスク率とは、例えば、SoCBox400が高温になることでSoCBox400が正常に機能しなくなり、SoCBox400が制御する車両の正常な自動運転に影響を及ぼして事故が発生する確率であってよい。例えば、天候がよく、周りになにもないエリアを車両が走行しているときにSoCBox400が高温により正常に機能しなくなる場合と、天候が悪く、都市等の混雑するエリアを車両が走行しているときにSoCBox400が高温により正常に機能しなくなる場合とでは、リスク率が異なる。 The risk rate may be, for example, the probability that SoCBox400 will become too hot and stop functioning properly, affecting the normal automatic driving of the vehicle controlled by SoCBox400 and causing an accident. For example, the risk rate will be different between a case where SoCBox400 becomes too hot and stops functioning properly when the vehicle is driving in a deserted area in good weather and a case where SoCBox400 becomes too hot and stops functioning properly when the vehicle is driving in a crowded area such as a city in bad weather.
 冷却実行装置500は、例えば、リスク率についての、第1の閾値と、第1の閾値よりも高い第2の閾値とを予め記憶しておく。そして、冷却実行装置500は、リスク率が第1の閾値より低い場合、第1の冷却強度でSoCBox400を冷却し、リスク率が第1の閾値より高く、第2の閾値より低い場合、第1の冷却強度よりも強い第2の冷却強度でSoCBox400を冷却し、リスク率が第2の閾値より高い場合、第2の冷却強度よりも強い第3の冷却強度でSoCBox400を冷却する。これにより、リスク率に応じて、SoCBox400を冷却することと、冷却に要するエネルギーを最適化することとを実現することができる。なお、冷却強度の段階は3段階に限られない。 The cooling execution device 500 stores in advance, for example, a first threshold value for the risk rate and a second threshold value higher than the first threshold value. Then, when the risk rate is lower than the first threshold value, the cooling execution device 500 cools the SoCBox 400 at a first cooling intensity, when the risk rate is higher than the first threshold value and lower than the second threshold value, the cooling execution device 500 cools the SoCBox 400 at a second cooling intensity stronger than the first cooling intensity, and when the risk rate is higher than the second threshold value, the cooling execution device 500 cools the SoCBox 400 at a third cooling intensity stronger than the second cooling intensity. This makes it possible to cool the SoCBox 400 according to the risk rate and to optimize the energy required for cooling. Note that the number of cooling intensity stages is not limited to three.
 SoCBox400、冷却実行装置500、管理サーバ100、サーバ30は、ネットワーク20を介して通信してよい。ネットワーク20は、車両ネットワークを含んでよい。ネットワーク20は、インターネットを含んでよい。ネットワーク20は、LAN(LocalAreaNetwork)を含んでよい。ネットワーク20は、移動体通信ネットワークを含んでよい。移動体通信ネットワークは、5G(5thGeneration)通信方式、LTE(LongTermEvolution)通信方式、3G(3rdGeneration)通信方式、及び6G(6thGeneration)通信方式以降の通信方式のいずれに準拠していてもよい。 The SoCBox 400, the cooling execution device 500, the management server 100, and the server 30 may communicate via the network 20. The network 20 may include a vehicle network. The network 20 may include the Internet. The network 20 may include a LAN (Local Area Network). The network 20 may include a mobile communication network. The mobile communication network may conform to any of the following communication methods: 5G (5th Generation) communication method, LTE (Long Term Evolution) communication method, 3G (3rd Generation) communication method, and 6G (6th Generation) communication method or later.
 図57は、システム10における学習フェーズについて説明するための説明図である。ここでは、車両200に搭載されているセンサ210として、カメラ211、LiDAR(LightDetectionAndRanging)212、ミリ波センサ213、超音波センサ214、IMUセンサ215、及びGNSS(GlobalNavigationSatelliteSystem)センサ216を例示している。車両200は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 57 is an explanatory diagram for explaining the learning phase in the system 10. Here, examples of the sensors 210 mounted on the vehicle 200 include a camera 211, a LiDAR (Light Detection and Ranging) 212, a millimeter wave sensor 213, an ultrasonic sensor 214, an IMU sensor 215, and a GNSS (Global Navigation Satellite System) sensor 216. The vehicle 200 does not have to be equipped with all of these, and may be equipped with some or other sensors.
 SoCBox400は、センサ210に含まれるそれぞれのセンサからセンサ情報を取得する。また、SoCBox400は、ネットワーク20を介した通信を実行してよく、SoCBox400は、ネットワーク20を介して、複数のサーバ30のそれぞれから外部情報を受信する。そして、SoCBox400は、取得した情報を用いて、車両200の自動運転制御を実行する。 SoCBox400 acquires sensor information from each sensor included in sensor 210. SoCBox400 may also perform communication via network 20, and receives external information from each of multiple servers 30 via network 20. SoCBox400 then uses the acquired information to execute autonomous driving control of vehicle 200.
 温度センサ40は、SoCBox400の温度変化を測定する。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、温度センサ40によって測定された温度変化とを、管理サーバ100に送信する。 The temperature sensor 40 measures the temperature change of the SoCBox 400. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature change measured by the temperature sensor 40 when the SoCBox 40 acquires this information and executes the automatic driving control.
 SoCBox400は、SoCBox400のコンピューティングパワーを記録する。SoCBox400は、SoCBox400のコンピューティングパワーを定期的に記録してよく、不定期に記録してもよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときの、SoCBox400のコンピューティングパワーとを記録して、管理サーバ100に送信してよい。 SoCBox400 records its computing power. SoCBox400 may record its computing power periodically or irregularly. SoCBox400 may record the sensor information received from sensor 210, the external information received from server 30, and its computing power when acquiring this information and executing autonomous driving control, and transmit this to management server 100.
 管理サーバ100は、情報取得部102、モデル生成部104、及びモデル提供部106を備える。情報取得部102は、各種情報を取得する。管理サーバ100は、SoCBox400によって送信された情報を受信してよい。 The management server 100 includes an information acquisition unit 102, a model generation unit 104, and a model provision unit 106. The information acquisition unit 102 acquires various information. The management server 100 may receive information transmitted by the SoCBox 400.
 モデル生成部104は、情報取得部102が取得した情報を用いた機械学習を実行して、学習モデルを生成する。 The model generation unit 104 performs machine learning using the information acquired by the information acquisition unit 102 to generate a learning model.
 モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の温度変化とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の温度変化を出力とする学習モデルを生成してよい。 The model generation unit 104 may generate a learning model in which the information acquired by SoCBox 400 is used as input and the temperature change of SoCBox 400 is used as output by executing machine learning using the information acquired by SoCBox 400 and the temperature change of SoCBox 400 when SoCBox 400 acquired the information as learning data.
 モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400のコンピューティングパワーとを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400のコンピューティングパワーを出力とする学習モデルを生成してよい。 The model generation unit 104 may perform machine learning using the information acquired by SoCBox 400 and the computing power of SoCBox 400 at the time SoCBox 400 acquired the information as learning data, thereby generating a learning model in which the information acquired by SoCBox 400 is used as input and the computing power of SoCBox 400 is used as output.
 モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときにSoCBox400の冷却を開始した場合にSoCBox400が冷却されるまでの時間とを学習データとした機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の冷却を開始した場合にSoCBox400が冷却されるまでの時間を出力とする学習モデルを生成してよい。 The model generation unit 104 may perform machine learning using, as learning data, the information acquired by the SoCBox 400 and the time it takes for the SoCBox 400 to cool down if cooling of the SoCBox 400 is started when the SoCBox 400 acquires the information, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the time it takes for the SoCBox 400 to cool down if cooling of the SoCBox 400 is started is used as output.
 モデル提供部106は、モデル生成部104が生成した学習モデルを提供する。モデル提供部106は、車両300に搭載されている冷却実行装置500に、学習モデルを送信してよい。 The model providing unit 106 provides the learning model generated by the model generating unit 104. The model providing unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 システム10は、SoCBox400の複数の部位のそれぞれの温度変化を予測するように構成されてもよい。この場合、車両200には、SoCBox400の複数の部位のそれぞれの温度変化をそれぞれが測定する複数の温度センサ40を備えてよい。SoCBox400は、センサ210から受信したセンサ情報、サーバ30から受信した外部情報と、これらの情報を取得して自動運転制御を実行したときに、複数の温度センサ40によって測定された温度変化とを、管理サーバ100に送信してよい。モデル生成部104は、SoCBox400が取得した情報と、SoCBox400が情報を取得したときのSoCBox400の複数の部位のそれぞれの温度変化とを学習データとして機械学習を実行することによって、SoCBox400が取得する情報を入力とし、SoCBox400の複数の部位のそれぞれの温度変化を出力とする学習モデルを生成する。 The system 10 may be configured to predict the temperature change of each of the multiple parts of the SoCBox 400. In this case, the vehicle 200 may be equipped with multiple temperature sensors 40 that each measure the temperature change of each of the multiple parts of the SoCBox 400. The SoCBox 400 may transmit to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the temperature changes measured by the multiple temperature sensors 40 when the SoCBox 400 acquires the information and executes the autonomous driving control. The model generation unit 104 executes machine learning using the information acquired by the SoCBox 400 and the temperature changes of each of the multiple parts of the SoCBox 400 when the SoCBox 400 acquires the information as learning data, thereby generating a learning model that uses the information acquired by the SoCBox 400 as input and the temperature changes of each of the multiple parts of the SoCBox 400 as output.
 車両200に冷却部600を搭載して、SoCBox400の冷却に関するデータを収集するようにしてもよい。例えば、冷却部600にSoCBox400の冷却を行わせる場合に、冷却部600へのトリガのタイミングから、SoCBox400が実際に冷却されるまでの時間を、温度センサ40を用いて測定する。SoCBox400は、センサ210から受信したセンサ情報、及びサーバ30から受信した外部情報と、これらの情報を取得したときに冷却部600によってSoCBox400を冷却した場合における、冷却部600へのトリガのタイミングから、SoCBox400が実際に冷却されるまでの時間とを、管理サーバ100に送信する。管理サーバ100のモデル生成部104は、SoCBox400が取得したセンサ値や外部情報等の情報と、SoCBox400が当該情報を取得したときにSoCBox400の冷却を開始した場合にSoCBox400が実際に冷却されるまでの時間とを学習データとした機械学習を実行することにより、SoCBox400が取得する情報を入力とし、SoCBox400の冷却を開始した場合にSoCBox400が実際に冷却されるまでの時間を出力とする学習モデルを生成してよい。モデル提供部106は、当該学習モデルを車両300に搭載されている冷却実行装置500に、送信してよい。 A cooling unit 600 may be installed in the vehicle 200 to collect data related to the cooling of the SoCBox 400. For example, when the cooling unit 600 is caused to cool the SoCBox 400, the temperature sensor 40 is used to measure the time from when the cooling unit 600 is triggered to when the SoCBox 400 is actually cooled. The SoCBox 400 transmits to the management server 100 the sensor information received from the sensor 210, the external information received from the server 30, and the time from when the cooling unit 600 is triggered to when the SoCBox 400 is actually cooled, in the case where the cooling unit 600 cools the SoCBox 400 when this information is obtained. The model generation unit 104 of the management server 100 may perform machine learning using, as learning data, information such as sensor values and external information acquired by the SoCBox 400 and the time it takes for the SoCBox 400 to actually cool down if cooling of the SoCBox 400 is started when the SoCBox 400 acquires the information, to generate a learning model in which the information acquired by the SoCBox 400 is used as input and the time it takes for the SoCBox 400 to actually cool down if cooling of the SoCBox 400 is started is used as output. The model provision unit 106 may transmit the learning model to the cooling execution device 500 mounted on the vehicle 300.
 図58は、システム10における冷却実行フェーズについて説明するための説明図である。ここでは、車両300に搭載されているセンサ310として、カメラ311、LiDAR312、ミリ波センサ313、超音波センサ314、IMUセンサ315、及びGNSSセンサ316を例示している。車両300は、これらの全てを備えるのではなく、一部を備えなくてもよく、これら以外のセンサを備えてもよい。 FIG. 58 is an explanatory diagram for explaining the cooling execution phase in the system 10. Here, a camera 311, a LiDAR 312, a millimeter wave sensor 313, an ultrasonic sensor 314, an IMU sensor 315, and a GNSS sensor 316 are shown as examples of sensors 310 mounted on the vehicle 300. The vehicle 300 does not have to be equipped with all of these, and may not have some of them, or may have sensors other than these.
 冷却実行装置500は、モデル記憶部502、情報取得部504、予測部506、冷却実行部508、及びリスク率取得部511を備える。モデル記憶部502は、管理サーバ100から受信した学習モデルを記憶する。情報取得部504は、SoCBox400が取得する情報を取得する。 The cooling execution device 500 includes a model storage unit 502, an information acquisition unit 504, a prediction unit 506, a cooling execution unit 508, and a risk rate acquisition unit 511. The model storage unit 502 stores the learning model received from the management server 100. The information acquisition unit 504 acquires information acquired by the SoCBox 400.
 情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報を、センサ310又はSoCBox400から取得する。例えば、情報取得部504は、SoCBox400がセンサ310から取得したセンサ情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がセンサ310から取得するセンサ情報と同じセンサ情報を、センサ310から受信してもよい。この場合、センサ310のそれぞれのセンサは、センサ情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the sensor information that the SoCBox 400 acquires from the sensor 310 from the sensor 310 or from the SoCBox 400. For example, the information acquisition unit 504 may receive from the SoCBox 400 the sensor information that the SoCBox 400 acquires from the sensor 310. The information acquisition unit 504 may receive from the sensor 310 the same sensor information that the SoCBox 400 acquires from the sensor 310. In this case, each sensor of the sensors 310 may transmit the sensor information to the SoCBox 400 and the cooling execution device 500, respectively.
 情報取得部504は、SoCBox400がサーバ30から取得する外部情報を、サーバ30又はSoCBox400から取得する。情報取得部504は、SoCBox400がサーバ30から受信した外部情報を、SoCBox400から受信してよい。情報取得部504は、SoCBox400がサーバ30から受信する外部情報と同じ外部情報を、サーバ30から受信してもよい。この場合、サーバ30は、外部情報をSoCBox400及び冷却実行装置500のそれぞれに送信してよい。 The information acquisition unit 504 acquires the external information that the SoCBox 400 acquires from the server 30 from the server 30 or from the SoCBox 400. The information acquisition unit 504 may receive from the SoCBox 400 the external information that the SoCBox 400 received from the server 30. The information acquisition unit 504 may receive from the server 30 the same external information that the SoCBox 400 receives from the server 30. In this case, the server 30 may transmit the external information to both the SoCBox 400 and the cooling execution device 500.
 予測部506は、SoCBox400の温度変化を予測してよい。予測部506は、AIによってSoCBox400の温度変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400の温度変化を予測する。 The prediction unit 506 may predict the temperature change of the SoCBox 400. The prediction unit 506 may predict the temperature change of the SoCBox 400 using AI. For example, the prediction unit 506 predicts the temperature change of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502.
 予測部506は、SoCBox400の温度変化を予測するときに、計算過程で、SoCBox400のコンピューティングパワーを予測してもよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400のコンピューティングパワーを予測し、予測結果によって、SoCBox400の温度変化を予測する。具体例として、予測部506は、SoCBox400のコンピューティングパワーが最大になる瞬間を予測して、SoCBox400のコンピューティングパワーが最大となったことによるSoCBox400の温度変化を加味して、SoCBox400の温度変化を予測する。 When predicting the temperature change of SoCBox 400, prediction unit 506 may predict the computing power of SoCBox 400 during the calculation process. For example, prediction unit 506 predicts the computing power of SoCBox 400 by inputting the information acquired by information acquisition unit 504 into the learning model stored in model storage unit 502, and predicts the temperature change of SoCBox 400 based on the prediction result. As a specific example, prediction unit 506 predicts the moment when the computing power of SoCBox 400 will be at its maximum, and predicts the temperature change of SoCBox 400 by taking into account the temperature change of SoCBox 400 caused by the computing power of SoCBox 400 reaching its maximum.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度変化に基づいて、SoCBox400の冷却を開始してよい。例えば、冷却実行部508は、予測部506によってSoCBox400が発熱を開始すると予測されたことに応じて、SoCBox400の冷却を開始する。例えば、冷却実行部508は、予測部506によってSoCBox400の温度が予め定められた閾値より高くなることが予測されたことに応じて、SoCBox400の冷却を開始する。 The cooling execution unit 508 may start cooling the SoCBox 400 based on the temperature change of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the SoCBox 400 will start generating heat. For example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the prediction unit 506 predicting that the temperature of the SoCBox 400 will become higher than a predetermined threshold.
 冷却実行部508は、冷却部600を用いて、SoCBox400の冷却を実行してよい。冷却部600は、空冷手段によってSoCBox400を冷却してよい。冷却部600は、水冷手段によってSoCBox400を冷却してよい。冷却部600は、液体窒素冷却手段によってSoCBox400を冷却してよい。 The cooling execution unit 508 may use the cooling unit 600 to perform cooling of the SoCBox 400. The cooling unit 600 may cool the SoCBox 400 by air cooling means. The cooling unit 600 may cool the SoCBox 400 by water cooling means. The cooling unit 600 may cool the SoCBox 400 by liquid nitrogen cooling means.
 冷却部600は、複数種類の冷却手段を備えてもよい。例えば、冷却部600は、複数種類の空冷手段を備える。例えば、冷却部600は、複数種類の水冷手段を備える。例えば、冷却部600は、複数種類の液体窒素冷却手段を備える。冷却部600は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び1又は複数の液体窒素冷却手段のうちの複数を含んでもよい。 The cooling unit 600 may include multiple types of cooling means. For example, the cooling unit 600 includes multiple types of air cooling means. For example, the cooling unit 600 includes multiple types of water cooling means. For example, the cooling unit 600 includes multiple types of liquid nitrogen cooling means. The cooling unit 600 may include multiple of one or multiple types of air cooling means, one or multiple types of water cooling means, and one or multiple liquid nitrogen cooling means.
 複数の冷却手段は、それぞれが、SoCBox400の異なる部位を冷却するように配置されてよい。予測部506は、情報取得部504が取得する情報を用いて、SoCBox400の複数の部位のそれぞれの温度変化を予測してよい。冷却実行部508は、予測部506による予測結果に基づいて、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、SoCBox400の冷却を開始してよい。 The multiple cooling means may be arranged so that each cooling means cools a different part of the SoCBox 400. The prediction unit 506 may predict temperature changes in each of the multiple parts of the SoCBox 400 using information acquired by the information acquisition unit 504. The cooling execution unit 508 may start cooling the SoCBox 400 using a cooling means selected from the multiple cooling means that cool each of the multiple parts of the SoCBox 400 based on the prediction result by the prediction unit 506.
 冷却実行部508は、予測部506によって予測されたSoCBox400の温度の高さに応じた冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が高いほど、より多くの冷却手段を用いて、SoCBox400の冷却を実行する。具体例として、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、複数の冷却手段のうちの1つを用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、用いる冷却手段の数を増やす。 The cooling execution unit 508 may cool the SoCBox 400 using a cooling means according to the temperature of the SoCBox 400 predicted by the prediction unit 506. For example, the higher the temperature of the SoCBox 400, the more cooling means the cooling execution unit 508 uses to cool the SoCBox 400. As a specific example, when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, the cooling execution unit 508 starts cooling using one of the multiple cooling means, but when it is still predicted that the temperature of the SoCBox 400 will rise and exceed a second threshold, the cooling execution unit 508 increases the number of cooling means to be used.
 冷却実行部508は、SoCBox400の温度が高い程、より強力な冷却手段を用いて、SoCBox400の冷却を実行してもよい。例えば、冷却実行部508は、SoCBox400の温度が第1の閾値を超えることが予測された場合に、空冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第2の閾値を超えることが予測された場合に、水冷手段を用いた冷却を開始し、それでも、SoCBox400の温度が上昇して、第3の閾値を超えることが予測された場合に、液体窒素冷却手段を用いた冷却を開始する。 The cooling execution unit 508 may use a more powerful cooling means to cool the SoCBox 400 as the temperature of the SoCBox 400 increases. For example, the cooling execution unit 508 may start cooling using air cooling means when it is predicted that the temperature of the SoCBox 400 will exceed a first threshold, start cooling using water cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a second threshold, and start cooling using liquid nitrogen cooling means when it is predicted that the temperature of the SoCBox 400 will still rise and exceed a third threshold.
 SoCBox400は、複数の処理チップを有してよく、複数の処理チップは、それぞれSoCBox400の異なる位置に配置されてよい。複数の冷却手段のそれぞれは、複数の処理チップのそれぞれに対応する位置に配置されてよい。 SoCBox400 may have multiple processing chips, each of which may be located at a different position on SoCBox400. Each of the multiple cooling means may be located at a position corresponding to each of the multiple processing chips.
 例えば、動運転の制御状況に応じて、使用する処理チップの数が変化する場合に、使用している処理チップに対応する冷却手段による冷却が行われることになるので、効率的な冷却を実現することができる。 For example, when the number of processing chips used changes depending on the control status of dynamic operation, cooling is performed by the cooling means corresponding to the processing chip being used, thereby achieving efficient cooling.
 予測部506は、SoCBox400のコンピューティングパワーの変化を予測してよい。予測部506は、AIによってSoCBox400のコンピューティングパワーの変化を予測してよい。例えば、予測部506は、情報取得部504が取得した情報を、モデル記憶部502に記憶されている学習モデルに入力することによって、SoCBox400のコンピューティングパワーを予測する。具体例として、予測部506は、SoCBox400のコンピューティングパワーが最大になる瞬間を予測してよい。 The prediction unit 506 may predict changes in the computing power of the SoCBox 400. The prediction unit 506 may predict changes in the computing power of the SoCBox 400 using AI. For example, the prediction unit 506 predicts the computing power of the SoCBox 400 by inputting the information acquired by the information acquisition unit 504 into a learning model stored in the model storage unit 502. As a specific example, the prediction unit 506 may predict the moment when the computing power of the SoCBox 400 will be at its maximum.
 冷却実行部508は、予測部506によって予測されたSoCBox400のコンピューティングパワーの変化に基づいて、SoCBox400の冷却を開始してよい。例えば、冷却実行部508は、予測部506によって予測された、SoCBox400のコンピューティングパワーが最大になる瞬間に基づいて、SoCBox400の冷却を開始する。具体例として、冷却実行部508は、SoCBox400のコンピューティングパワーが最大になる瞬間にSoCBox400の冷却を開始する。これにより、SoCBox400のコンピューティングパワーが最大になり、発熱量が最大になることを契機として、SoCBox400の冷却を開始でき、冷却を効率的に行うことができる。 The cooling execution unit 508 may start cooling the SoCBox 400 based on the change in the computing power of the SoCBox 400 predicted by the prediction unit 506. For example, the cooling execution unit 508 starts cooling the SoCBox 400 based on the moment when the computing power of the SoCBox 400 will be at its maximum, as predicted by the prediction unit 506. As a specific example, the cooling execution unit 508 starts cooling the SoCBox 400 at the moment when the computing power of the SoCBox 400 is at its maximum. This makes it possible to start cooling the SoCBox 400 when the computing power of the SoCBox 400 reaches its maximum and the amount of heat generated by the SoCBox 400 is at its maximum, and therefore cooling can be performed efficiently.
 また、具体例として、冷却実行部508は、SoCBox400のコンピューティングパワーが予め定められた閾値より高い状態が、予め定められた時間継続したことに応じて、SoCBox400の冷却を開始する。SoCBox400のコンピューティングパワーが高い状態になっても、その後すぐにコンピューティングパワーが低い状態に戻れば、SoCBox400の温度が過度に高くなることは避けられるが、SoCBox400のコンピューティングパワーが高い状態がある程度継続した場合、SoCBox400の温度は上昇を続けてしまう場合がある。冷却実行部508によれば、そのような温度上昇を防ぐことができる。 As a specific example, the cooling execution unit 508 starts cooling the SoCBox 400 in response to the state in which the computing power of the SoCBox 400 remains higher than a predetermined threshold for a predetermined period of time. Even if the computing power of the SoCBox 400 becomes high, if the computing power returns to a low state immediately thereafter, the temperature of the SoCBox 400 can be prevented from becoming excessively high. However, if the computing power of the SoCBox 400 remains high for a certain period of time, the temperature of the SoCBox 400 may continue to rise. The cooling execution unit 508 can prevent such a temperature rise.
 予測部506は、SoCBox400のコンピューティングパワーが最大になる瞬間の予測結果から、SoCBox400の温度が予め定められた温度よりも高くなるまでの時間を予測してもよい。冷却実行部508は、予測部506によって予測された当該時間に基づいて、SoCBox400の冷却を開始してよい。例えば、冷却実行部508は、SoCBox400の温度が予め定められた温度よりも高くなる時刻から逆算して、SoCBox400の温度が予め定められた温度よりも高くならないような、SoCBox400の冷却開始のタイミングを決定して、決定したタイミングにSoCBox400の冷却を開始する。 The prediction unit 506 may predict the time until the temperature of SoCBox 400 becomes higher than a predetermined temperature, based on the prediction result of the moment when the computing power of SoCBox 400 becomes maximum. The cooling execution unit 508 may start cooling SoCBox 400 based on the time predicted by the prediction unit 506. For example, the cooling execution unit 508 calculates backwards from the time when the temperature of SoCBox 400 becomes higher than the predetermined temperature, determines the timing to start cooling SoCBox 400 so that the temperature of SoCBox 400 does not become higher than the predetermined temperature, and starts cooling SoCBox 400 at the determined timing.
 冷却実行部508は、冷却のトリガから実際に冷却されるまでの時間を考慮に含めてSoCBox400の冷却を実行してよい。例えば、冷却実行部508は、AIによって、SoCBox400がおかれている状況において、SoCBox400の冷却を開始した場合に、実際にSoCBox400が冷却されるまでの時間を予測し、予測結果に応じて、SoCBox400の冷却を開始するタイミングを制御する。冷却実行部508は、情報取得部504が取得する情報を、モデル記憶部502に記憶されている、SoCBox400が取得する情報を入力とし、SoCBox400の冷却を開始した場合にSoCBox400が実際に冷却されるまでの時間を出力とする学習モデルに入力することによって、当該時間を予測してよい。具体例として、冷却実行部508は、SoCBox400の冷却を実際に開始したいタイミングを起点とし、予測した時間の分遡ったタイミングで、冷却部600に冷却開始を指示する。 The cooling execution unit 508 may execute cooling of the SoCBox 400 taking into consideration the time from the cooling trigger to the actual cooling. For example, the cooling execution unit 508 uses AI to predict the time until the SoCBox 400 is actually cooled when cooling of the SoCBox 400 is started in the situation in which the SoCBox 400 is placed, and controls the timing of starting cooling of the SoCBox 400 according to the prediction result. The cooling execution unit 508 may predict the time by inputting the information acquired by the information acquisition unit 504 into a learning model that uses the information acquired by the SoCBox 400 stored in the model storage unit 502 as input, and outputs the time until the SoCBox 400 is actually cooled when cooling of the SoCBox 400 is started. As a specific example, the cooling execution unit 508 instructs the cooling unit 600 to start cooling at a timing that is a predicted amount of time back from the timing at which cooling of the SoCBox 400 is actually desired to start.
 リスク率取得部511は、リスク率を取得する。リスク率取得部511は、情報取得部504が取得する情報を用いて、リスク率を算出してよい。リスク率取得部511は、例えば、SoCBox400の温度と、SoCBox400を搭載した車両の事故の発生状況との関係を示す関係データを用いて、予測部506が予測したSoCBox400の温度から、事故が発生する可能性を計算することによって、リスク率を算出する。 The risk rate acquisition unit 511 acquires a risk rate. The risk rate acquisition unit 511 may calculate a risk rate using information acquired by the information acquisition unit 504. For example, the risk rate acquisition unit 511 calculates a risk rate by calculating the possibility of an accident occurring from the temperature of SoCBox 400 predicted by the prediction unit 506 using relationship data indicating the relationship between the temperature of SoCBox 400 and the occurrence status of an accident involving a vehicle equipped with SoCBox 400.
 リスク率取得部511は、例えば、車両300の位置に基づいてリスク率を算出する。リスク率取得部511は、車両300の周りに存在する物体の数が多いほど高くなるようにリスク率を算出する。例えば、リスク率取得部511は、車両300の周りに存在する他の車両の数が多いほど高くなるようにリスク率を算出する。例えば、リスク率取得部511は、車両300の周りに存在する人の数が多いほど高くなるようにリスク率を算出する。リスク率取得部511は、カメラ311、及びLiDAR312等から取得する情報を用いて、車両300の周りに存在する物体の数や量等を判定してよい。 The risk rate acquisition unit 511 calculates a risk rate based on, for example, the position of the vehicle 300. The risk rate acquisition unit 511 calculates a risk rate that is higher the more objects there are around the vehicle 300. For example, the risk rate acquisition unit 511 calculates a risk rate that is higher the more other vehicles there are around the vehicle 300. For example, the risk rate acquisition unit 511 calculates a risk rate that is higher the more people there are around the vehicle 300. The risk rate acquisition unit 511 may determine the number, quantity, etc. of objects present around the vehicle 300 using information acquired from the camera 311, LiDAR 312, etc.
 リスク率取得部511は、例えば、車両300が位置するエリアの天候に基づいてリスク率を算出する。リスク率取得部511は、いわゆる天候が良い状態に比べて、いわゆる天候が悪い状態の方が高くなるようにリスク率を算出する。具体例として、リスク率取得部511は、晴天に比べて、雨天の場合により高くなるようにリスク率を算出する。リスク率取得部511は、天候情報を提供するサーバから受信した情報によって、車両300が位置するエリアの天候を判定してよい。リスク率取得部511は、カメラ311によって、車両300の周辺や、車両300から遠隔の雲を検知することによって、車両300が位置するエリアの天候を判定してもよい。 The risk rate acquisition unit 511 calculates the risk rate based on the weather in the area where the vehicle 300 is located, for example. The risk rate acquisition unit 511 calculates the risk rate so that it is higher in so-called bad weather than in so-called good weather. As a specific example, the risk rate acquisition unit 511 calculates the risk rate so that it is higher in rainy weather than in sunny weather. The risk rate acquisition unit 511 may determine the weather in the area where the vehicle 300 is located based on information received from a server that provides weather information. The risk rate acquisition unit 511 may determine the weather in the area where the vehicle 300 is located by using the camera 311 to detect clouds around the vehicle 300 or remotely from the vehicle 300.
 リスク率取得部511は、これら以外の判断手法によってリスク率を算出してよい。また、リスク率取得部511は、複数の判断手法を組み合わせてリスク率を算出してよい。 The risk rate acquisition unit 511 may calculate the risk rate using a judgment method other than these. In addition, the risk rate acquisition unit 511 may calculate the risk rate by combining multiple judgment methods.
 冷却実行部508は、リスク率取得部511が取得したリスク率に応じてSoCBox400の冷却の度合いを調整してよい。冷却実行部508は、例えば、リスク率についての、第1の閾値と、第1の閾値よりも高い第2の閾値とを予め記憶しておく。そして、冷却実行部508は、リスク率が第1の閾値より低い場合、第1の冷却強度でSoCBox400を冷却し、リスク率が第1の閾値より高く、第2の閾値より低い場合、第1の冷却強度よりも強い第2の冷却強度でSoCBox400を冷却し、リスク率が第2の閾値より高い場合、第2の冷却強度よりも強い第3の冷却強度でSoCBox400を冷却する。なお、冷却強度の段階は3段階に限られない。 The cooling execution unit 508 may adjust the degree of cooling of the SoCBox 400 according to the risk rate acquired by the risk rate acquisition unit 511. The cooling execution unit 508 may, for example, store in advance a first threshold value for the risk rate and a second threshold value higher than the first threshold value. Then, the cooling execution unit 508 cools the SoCBox 400 at a first cooling intensity when the risk rate is lower than the first threshold value, cools the SoCBox 400 at a second cooling intensity stronger than the first cooling intensity when the risk rate is higher than the first threshold value and lower than the second threshold value, and cools the SoCBox 400 at a third cooling intensity stronger than the second cooling intensity when the risk rate is higher than the second threshold value. The number of cooling intensity stages is not limited to three.
 図59は、SoCBox400及び冷却部600の一例を概略的に示す。図59は、冷却部600が、1つの冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400が発熱を開始することを予測したり、SoCBox400の温度が予め定められた閾値を超えることを予測した場合に、冷却部600による冷却を開始することによって、SoCBox400の全体を冷却することができる。 Figure 59 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. Figure 59 shows an example where the cooling unit 600 is configured with a single cooling means. When the cooling execution device 500 predicts that the SoCBox 400 will start to generate heat or predicts that the temperature of the SoCBox 400 will exceed a predetermined threshold, the cooling unit 600 starts cooling, thereby cooling the entire SoCBox 400.
 図60は、SoCBox400及び冷却部600の一例を概略的に示す。図60は、冷却部600が、SoCBox400の複数の部位のそれぞれを冷却する複数の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。 FIG. 60 shows an example of a schematic diagram of a SoCBox 400 and a cooling unit 600. FIG. 60 shows an example where the cooling unit 600 is configured with multiple cooling means for cooling each of the multiple parts of the SoCBox 400. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby achieving efficient cooling.
 図61は、SoCBox400及び冷却部600の一例を概略的に示す。図61は、冷却部600が、2種類の冷却手段によって構成されている場合を例示している。冷却実行装置500が、SoCBox400の複数の部位のそれぞれの温度変化を予測して、いずれかの部位が発熱を開始したり、いずれかの部位の温度が予め定められた閾値を超えたりすることを予測したことに応じて、当該部位に対応する冷却手段のみを用いた冷却を実行することにより、効率的な冷却を実現することができる。また、冷却実行装置500が、SoCBox400の温度が高まるにつれて、使用する冷却手段を増やす、すなわち、本例においては、まず、2種類の冷却手段のうちの1つを用いた冷却を開始し、更にSoCBox400の温度が高まる場合に、もう1つの冷却手段を用いた冷却を開始することによって、冷却に用いるエネルギーを効率化することができる。 FIG. 61 shows an example of the SoCBox 400 and the cooling unit 600. FIG. 61 shows an example in which the cooling unit 600 is configured with two types of cooling means. The cooling execution device 500 predicts the temperature change of each of the multiple parts of the SoCBox 400, and when it predicts that any part will start to generate heat or that the temperature of any part will exceed a predetermined threshold, performs cooling using only the cooling means corresponding to that part, thereby realizing efficient cooling. Furthermore, the cooling execution device 500 increases the number of cooling means used as the temperature of the SoCBox 400 increases; in other words, in this example, first, cooling using one of the two types of cooling means is started, and when the temperature of the SoCBox 400 further increases, cooling using the other cooling means is started, thereby making it possible to efficiently use energy for cooling.
<ハードウェア構成図>
 図62は、管理サーバ100、SoCBox400、冷却実行装置500、又は冷却装置700として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
<Hardware configuration diagram>
62 shows an example of a hardware configuration of a computer 1200 functioning as the management server 100, the SoCBox 400, the cooling execution device 500, or the cooling device 700. A program installed in the computer 1200 can cause the computer 1200 to function as one or more "parts" of the device according to the present embodiment, or cause the computer 1200 to execute operations or one or more "parts" associated with the device according to the present embodiment, and/or cause the computer 1200 to execute a process or steps of the process according to the present embodiment. Such a program may be executed by the CPU 1212 to cause the computer 1200 to execute specific operations associated with some or all of the blocks of the flowcharts and block diagrams described herein.
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。 The computer 1200 according to this embodiment includes a CPU 1212, a RAM 1214, and a graphics controller 1216, which are connected to each other by a host controller 1210. The computer 1200 also includes input/output units such as a communication interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220. The DVD drive may be a DVD-ROM drive, a DVD-RAM drive, etc. The storage device 1224 may be a hard disk drive, a solid state drive, etc. The computer 1200 also includes a ROM 1230 and a legacy input/output unit such as a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。 The CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit. The graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer or the like provided in the RAM 1214 or into itself, and causes the image data to be displayed on the display device 1218.
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。 The communication interface 1222 communicates with other electronic devices via a network. The storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200. The DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224. The IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。 ROM 1230 stores therein a boot program or the like executed by computer 1200 upon activation, and/or a program that depends on the hardware of computer 1200. I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
 プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。 The programs are provided by a computer-readable storage medium such as a DVD-ROM or an IC card. The programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212. The information processing described in these programs is read by computer 1200, and brings about cooperation between the programs and the various types of hardware resources described above. An apparatus or method may be constructed by realizing the operation or processing of information according to the use of computer 1200.
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。 For example, when communication is performed between computer 1200 and an external device, CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program. Under the control of CPU 1212, communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, a DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.
 また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 The CPU 1212 may also cause all or a necessary portion of a file or database stored in an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information, such as various types of programs, data, tables, and databases, may be stored on the recording medium and may undergo information processing. CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the instruction sequence of the program, and write back the results to RAM 1214. CPU 1212 may also search for information in a file, database, etc. in the recording medium. For example, if multiple entries, each having an attribute value of a first attribute associated with an attribute value of a second attribute, are stored in the recording medium, CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。 The above-described programs or software modules may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200. In addition, a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby providing the programs to the computer 1200 via the network.
 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 The blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process in which an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and "parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium. The dedicated circuitry may include digital and/or analog hardware circuitry and may include integrated circuits (ICs) and/or discrete circuits. The programmable circuitry may include reconfigurable hardware circuitry including AND, OR, XOR, NAND, NOR, and other logical operations, flip-flops, registers, and memory elements, such as, for example, field programmable gate arrays (FPGAs) and programmable logic arrays (PLAs).
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 A computer-readable storage medium may include any tangible device capable of storing instructions that are executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon comprises an article of manufacture that includes instructions that can be executed to create means for performing the operations specified in the flowchart or block diagram. Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media may include floppy disks, diskettes, hard disks, random access memories (RAMs), read-only memories (ROMs), erasable programmable read-only memories (EPROMs or flash memories), electrically erasable programmable read-only memories (EEPROMs), static random access memories (SRAMs), compact disk read-only memories (CD-ROMs), digital versatile disks (DVDs), Blu-ray disks, memory sticks, integrated circuit cards, and the like.
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。 The computer readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 The computer-readable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, either locally or over a local area network (LAN), a wide area network (WAN) such as the Internet, so that the processor of the general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or to a programmable circuit, executes the computer-readable instructions to generate means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The present invention has been described above using an embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It will be clear to those skilled in the art that various modifications and improvements can be made to the above embodiment. It is clear from the claims that forms incorporating such modifications or improvements can also be included in the technical scope of the present invention.
 特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that the processes may be performed in any order, unless the output of a previous process is used in a later process. Even if the operational flow in the claims, specifications, and drawings is explained using "first," "next," etc. for convenience, it does not mean that it is necessary to perform the processes in that order.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The present invention has been described above using an embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It will be clear to those skilled in the art that various modifications and improvements can be made to the above embodiment. It is clear from the claims that forms incorporating such modifications or improvements can also be included in the technical scope of the present invention.
 特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that the processes may be performed in any order, unless the output of a previous process is used in a later process. Even if the operational flow in the claims, specifications, and drawings is explained using "first," "next," etc. for convenience, it does not mean that it is necessary to perform the processes in that order.
 10                  システム
 20                  ネットワーク
 30                  サーバ
 40                  温度センサ
 100                 管理サーバ
 102                 情報取得部
 104                 モデル生成部
 106                 モデル提供部
 108、507             作成部
 110、506             予測部
 200、200-1~200-4、300 車両
 210、310             センサ
 211、311             カメラ
 212、312             LiDAR
 213、313             ミリ波センサ
 214、314             超音波センサ
 215、315             IMUセンサ
 216、316             GNSSセンサ
 217、317             GPSセンサ
 400                 SoCBox
 500                 冷却実行装置
 501                 検知部
 502、550             モデル記憶部
 504、560             情報取得部
 505                 推定部
 508                 冷却実行部
 509                 出力部
 510                 選択部
 511                 リスク率取得部
 520                 通信部
 530                 指示部
 540                 冷却実行部
 600                 冷却部
 700                 冷却装置
 1200                コンピュータ
 1210                ホストコントローラ
 1212                CPU
 1214                RAM
 1216                グラフィックコントローラ
 1218                ディスプレイデバイス
 1220                入出力コントローラ
 1222                通信インタフェース
 1224                記憶装置
 1230                ROM
 1240                入出力チップ
10 System 20 Network 30 Server 40 Temperature sensor 100 Management server 102 Information acquisition unit 104 Model generation unit 106 Model provision unit 108, 507 Creation unit 110, 506 Prediction unit 200, 200-1 to 200-4, 300 Vehicle 210, 310 Sensor 211, 311 Camera 212, 312 LiDAR
213, 313 mmWave sensor 214, 314 Ultrasonic sensor 215, 315 IMU sensor 216, 316 GNSS sensor 217, 317 GPS sensor 400 SoCBox
500 Cooling execution device 501 Detection unit 502, 550 Model storage unit 504, 560 Information acquisition unit 505 Estimation unit 508 Cooling execution unit 509 Output unit 510 Selection unit 511 Risk rate acquisition unit 520 Communication unit 530 Instruction unit 540 Cooling execution unit 600 Cooling unit 700 Cooling device 1200 Computer 1210 Host controller 1212 CPU
1214 RAM
1216 Graphic controller 1218 Display device 1220 Input/output controller 1222 Communication interface 1224 Storage device 1230 ROM
1240 Input/Output Chip

Claims (107)

  1.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部と、
    前記予測部によって予測された前記温度変化に基づいて、前記制御装置の冷却を開始する冷却実行部と
     を備える冷却実行装置。
    A prediction unit that predicts a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution unit that starts cooling of the control device based on the temperature change predicted by the prediction unit.
  2.  前記冷却実行部は、前記予測部によって前記制御装置の温度が予め定められた閾値より高くなることが予測されたことに応じて、前記制御装置の冷却を開始する、請求項1に記載の冷却実行装置。 The cooling execution device according to claim 1, wherein the cooling execution unit starts cooling the control device in response to the prediction unit predicting that the temperature of the control device will be higher than a predetermined threshold.
  3.  前記予測部は、AIによって前記制御装置の前記温度変化を予測する、請求項1に記載の冷却実行装置。 The cooling execution device according to claim 1, wherein the prediction unit predicts the temperature change of the control device using AI.
  4.  前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置の温度変化とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の温度変化を出力とする学習モデルを記憶するモデル記憶部と、
     前記制御装置が取得する情報を取得する情報取得部と
     を更に備え、
    前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記温度変化を予測する、請求項3に記載の冷却実行装置。
    a model storage unit that stores a learning model that uses the information acquired by the control device as input and the temperature change of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the temperature change of the control device when the control device acquires the information as learning data;
    and an information acquisition unit that acquires information acquired by the control device,
    The cooling execution device according to claim 3 , wherein the prediction unit predicts the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  5.  前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報を、前記センサ又は前記制御装置から取得する、請求項4に記載の冷却実行装置。 The cooling execution device according to claim 4, wherein the information acquisition unit acquires sensor information acquired by the control device from a sensor mounted on the vehicle from the sensor or the control device.
  6.  前記情報取得部は、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果を、前記制御装置から取得する、請求項4に記載の冷却実行装置。 The cooling execution device according to claim 4, wherein the information acquisition unit acquires from the control device an analysis result of an image captured by a camera mounted on the vehicle by the control device.
  7.  前記情報取得部は、前記制御装置が外部装置から受信する外部情報を、前記外部装置又は前記制御装置から取得する、請求項4に記載の冷却実行装置。 The cooling execution device according to claim 4, wherein the information acquisition unit acquires external information that the control device receives from an external device from the external device or the control device.
  8.  前記情報取得部は、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報を、前記外部装置又は前記制御装置から取得する、請求項7に記載の冷却実行装置。 The cooling execution device according to claim 7, wherein the information acquisition unit acquires traffic information of the road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
  9.  前記冷却実行部は、前記予測部によって予測された前記制御装置の温度の高さに応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始する、請求項1に記載の冷却実行装置。 The cooling execution device according to claim 1, wherein the cooling execution unit starts cooling the control device using one or more cooling means selected from a plurality of types of cooling means depending on the temperature of the control device predicted by the prediction unit.
  10.  前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含む、請求項9に記載の冷却実行装置。 The cooling device according to claim 9, wherein the multiple types of cooling means include multiple of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
  11.  前記予測部は、前記制御装置の複数の部位のそれぞれの温度変化を予測し、
     前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始する、請求項10に記載の冷却実行装置。
    The prediction unit predicts a temperature change of each of a plurality of parts of the control device,
    The cooling execution device according to claim 10, wherein the cooling execution unit starts cooling the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on a prediction result by the prediction unit.
  12.  前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有し、
     前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されている、請求項11に記載の冷却実行装置。
    the controller having a plurality of processing chips, each processing chip being disposed at a different location on the controller;
    The cooling implementation apparatus of claim 11 , wherein each of the plurality of cooling means is disposed at a position corresponding to each of the plurality of processing chips.
  13.  コンピュータを、請求項1から12のいずれか一項に記載の冷却実行装置として機能させるためのプログラム。 A program for causing a computer to function as a cooling execution device according to any one of claims 1 to 12.
  14.  コンピュータによって実行される冷却実行方法であって、
     車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測段階と、
     前記予測段階において予測された前記温度変化に基づいて、前記制御装置の冷却を開始する冷却実行段階と
     を備える冷却実行方法。
    1. A computer-implemented method for implementing cooling, comprising:
    A prediction step of predicting a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    and a cooling execution step of starting cooling of the control device based on the temperature change predicted in the prediction step.
  15.  サーバと冷却実行装置とからなる冷却システムであって、
     前記サーバは、
     前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得部と、
     前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とに基づいて、前記制御装置の温度変化を予測する予測部と
     を有し、
     前記冷却実行装置は、
     前記サーバの前記予測部により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得部と、
     前記情報取得部により取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行部と
     を有することを特徴とした冷却システム。
    A cooling system including a server and a cooling execution device,
    The server,
    an information acquisition unit that acquires location information of a vehicle having the cooling device and temperature information of a control device of the vehicle from the cooling device;
    a prediction unit that predicts a temperature change of the control device based on location information of the vehicle having the cooling execution device acquired by the information acquisition unit and temperature information of the control device of the vehicle,
    The cooling device includes:
    an information acquisition unit that acquires, from the server, a prediction result of a temperature change of the control device predicted by the prediction unit of the server;
    a cooling execution unit that starts cooling the control device based on a predicted result of a temperature change of the control device acquired by the information acquisition unit.
  16.  前記サーバは、
     前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とから、前記車両の位置と前記制御装置の温度との関係を表すマップを作成する作成部を
     さらに有し、
     前記予測部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記作成部により作成された前記車両の位置と前記制御装置の温度との関係を表すマップとに基づいて、前記制御装置の温度変化を予測する
     ことを特徴とする請求項15に記載の冷却システム。
    The server,
    a creating unit that creates a map showing a relationship between a position of the vehicle having the cooling execution device and a temperature of a control device of the vehicle, based on position information of the vehicle having the cooling execution device acquired by the information acquiring unit and temperature information of the control device of the vehicle,
    The cooling system according to claim 15, characterized in that the prediction unit predicts a temperature change of the control device based on location information of a vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of a control device possessed by the vehicle, and a map created by the creation unit representing a relationship between the location of the vehicle and the temperature of the control device.
  17.  前記サーバの情報取得部は、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記車両の種類に関する情報とを、前記冷却実行装置から取得し、
     前記作成部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、車両の種類に関する情報とから、前記車両の種類における前記車両の位置と前記制御装置の温度との関係を表すマップを作成し、
     前記サーバの予測部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記作成部により作成された前記車両の種類における前記車両の位置と前記制御装置の温度との関係を表すマップとに基づいて、前記制御装置の温度変化を予測する
     ことを特徴とする請求項16に記載の冷却システム。
    The information acquisition unit of the server acquires, from the cooling execution device, location information of a vehicle having the cooling execution device, temperature information of a control device of the vehicle, and information regarding the type of the vehicle;
    the creation unit creates a map representing a relationship between a position of the vehicle and a temperature of the control device in the vehicle type based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of a control device of the vehicle, and information on the type of the vehicle;
    The cooling system according to claim 16, characterized in that the prediction unit of the server predicts a temperature change of the control device based on location information of a vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of a control device possessed by the vehicle, and a map created by the creation unit representing a relationship between the location of the vehicle and the temperature of the control device for the type of vehicle.
  18.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置が発熱を始める所定時間前から前記制御装置の冷却を開始する
     ことを特徴とする請求項15に記載の冷却システム。
    The cooling system according to claim 15, characterized in that the cooling execution unit uses a prediction result of the temperature change of the control device acquired by the information acquisition unit to start cooling the control device a predetermined time before the control device begins to generate heat.
  19.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始する
     ことを特徴とする請求項15に記載の冷却システム。
    The cooling system according to claim 15, characterized in that the cooling execution unit uses a prediction result of the temperature change of the control device acquired by the information acquisition unit and starts cooling of the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature change of the control device.
  20.  前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、
    及び液体窒素冷却手段のうちの複数を含む
     ことを特徴とする請求項19に記載の冷却システム。
    The multiple types of cooling means include one or multiple types of air cooling means, one or multiple types of water cooling means,
    20. The cooling system of claim 19, comprising a plurality of: a liquid nitrogen cooling means;
  21.  サーバと冷却実行装置とにより実行される冷却実行方法であって、
     前記サーバが、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得工程と、
     前記サーバが、前記情報取得工程により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とに基づいて、前記制御装置の温度変化を予測する予測工程と
     前記冷却実行装置が、前記サーバの前記予測工程により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得工程と、
     前記冷却実行装置が、前記情報取得工程により取得された前記制御装置の温度変化の予測に基づいて、前記制御装置の冷却を開始する冷却実行工程と
     を含むことを特徴とした冷却方法。
    A cooling execution method executed by a server and a cooling execution device, comprising:
    an information acquisition step in which the server acquires, from the cooling execution device, location information of the vehicle having the cooling execution device and temperature information of a control device of the vehicle;
    a prediction step in which the server predicts a temperature change of the control device based on location information of the vehicle having the cooling execution device acquired in the information acquisition step and temperature information of the control device of the vehicle; and an information acquisition step in which the cooling execution device acquires from the server a prediction result of the temperature change of the control device predicted in the prediction step of the server;
    a cooling execution step of starting cooling of the control device based on the prediction of a temperature change of the control device acquired in the information acquisition step by the cooling execution device.
  22.  サーバが実行するプログラムと、冷却実行装置が実行するプログラムとを含む冷却プログラムであって、
     前記サーバに、
     前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得ステップと、
     前記情報取得ステップにより取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とに基づいて、前記制御装置の温度変化を予測する予測ステップと
     を実行させ、
     前記冷却実行装置に、
     前記サーバの前記予測ステップにより予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得ステップと、
     前記情報取得ステップにより取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行ステップと
     を実行させることを特徴とした冷却プログラム。
    A cooling program including a program executed by a server and a program executed by a cooling execution device,
    The server,
    an information acquisition step of acquiring location information of a vehicle having the cooling execution device and temperature information of a control device of the vehicle from the cooling execution device;
    a prediction step of predicting a temperature change of the control device based on location information of the vehicle having the cooling execution device acquired in the information acquisition step and temperature information of the control device of the vehicle;
    The cooling device includes:
    an information acquisition step of acquiring, from the server, a prediction result of a temperature change of the control device predicted by the prediction step of the server;
    and a cooling execution step of starting cooling of the control device based on the predicted result of the temperature change of the control device acquired in the information acquisition step.
  23.  サーバと冷却実行装置とからなる冷却システムであって、
     前記サーバは、
     前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、交通状況に関する情報と、天候情報とを前記冷却実行装置から取得する情報取得部と、
     前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とに基づいて、前記制御装置の温度変化を予測する予測部と
     を有し、
     前記冷却実行装置は、
     前記サーバの前記予測部により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得部と、
     前記情報取得部により取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行部と
     を有することを特徴とした冷却システム。
    A cooling system including a server and a cooling execution device,
    The server,
    an information acquisition unit that acquires location information of a vehicle having the cooling device, temperature information of a control device of the vehicle, information regarding traffic conditions, and weather information from the cooling device;
    a prediction unit that predicts a temperature change of the control device based on location information of the vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of a control device of the vehicle, information about the traffic situation, and weather information,
    The cooling device includes:
    an information acquisition unit that acquires, from the server, a prediction result of a temperature change of the control device predicted by the prediction unit of the server;
    a cooling execution unit that starts cooling the control device based on a predicted result of a temperature change of the control device acquired by the information acquisition unit.
  24.  前記サーバは、
     前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とから、前記車両の位置と、前記交通状況に関する情報と、前記天候情報と、前記制御装置の温度との関係を表すマップを作成する作成部を
     さらに有し、
     前記予測部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報と、前記作成部により作成された前記車両の位置と、前記交通状況に関する情報と、前記天候情報と、前記制御装置の温度との関係を表すマップとに基づいて、前記制御装置の温度変化を予測する
     ことを特徴とした請求項23に記載の冷却システム。
    The server,
    a creation unit that creates a map showing a relationship between the position of the vehicle, the information about the traffic conditions, the weather information, and the temperature of the control device, based on the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, the temperature information of a control device of the vehicle, the information about the traffic conditions, and the weather information,
    The cooling system of claim 23, wherein the prediction unit predicts a temperature change of the control device based on location information of a vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of a control device possessed by the vehicle, information regarding the traffic conditions, the weather information, and a map created by the creation unit representing a relationship between the location of the vehicle, information regarding the traffic conditions, the weather information, and the temperature of the control device.
  25.  前記作成部は、前記情報取得部により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とから、前記交通状況に関する情報や前記天候情報ごとに、前記車両の位置と前記制御装置の温度との関係を表すマップを作成する
     ことを特徴とする請求項24に記載の冷却システム。
    The cooling system of claim 24, wherein the creation unit creates a map showing a relationship between the position of the vehicle and the temperature of the control device for each of the information on the traffic conditions and the weather information from the position information of the vehicle having the cooling execution device acquired by the information acquisition unit, temperature information of the control device possessed by the vehicle, information on the traffic conditions, and the weather information.
  26.  前記サーバの情報取得部は、さらに前記車両の種類に関する情報を前記冷却実行装置から取得し、
     前記作成部は、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報と、前記車両の種類に関する情報とから、前記車両の位置と、前記交通状況に関する情報と、前記天候情報と、前記車両の種類と、前記制御装置の温度との関係を表すマップを作成する
     ことを特徴とする請求項24に記載の冷却システム。
    The information acquisition unit of the server further acquires information regarding the type of the vehicle from the cooling execution device,
    The cooling system of claim 24, wherein the creation unit creates a map representing a relationship between the location of the vehicle, the information about the traffic conditions, the weather information, the type of the vehicle, and the temperature of the control device, based on location information of a vehicle having the cooling execution device, temperature information of a control device possessed by the vehicle, information about the traffic conditions, the weather information, and information about the type of the vehicle.
  27.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置が発熱を始める所定時間前から前記制御装置の冷却を開始する
     ことを特徴とする請求項23に記載の冷却システム。
    The cooling system according to claim 23, characterized in that the cooling execution unit uses a prediction result of the temperature change of the control device acquired by the information acquisition unit to start cooling the control device a predetermined time before the control device begins to generate heat.
  28.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の温度変化の予測結果を用いて、前記制御装置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始する
     ことを特徴とする請求項23に記載の冷却システム。
    The cooling system of claim 23, characterized in that the cooling execution unit uses a prediction result of the temperature change of the control device acquired by the information acquisition unit and starts cooling of the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature change of the control device.
  29.  前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、
    及び液体窒素冷却手段のうちの複数を含む
     ことを特徴とする請求項28に記載の冷却システム。
    The multiple types of cooling means include one or multiple types of air cooling means, one or multiple types of water cooling means,
    30. The cooling system of claim 28, comprising a plurality of: a liquid nitrogen cooling means; and a liquid nitrogen cooling means.
  30.  サーバと冷却実行装置とにより実行される冷却実行方法であって、
     前記サーバが、前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、交通状況に関する情報と、天候情報と、を、前記冷却実行装置から取得する情報取得工程と、
     前記サーバが、前記情報取得工程により取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、前記交通状況に関する情報と、前記天候情報とに基づいて、前記制御装置の温度変化を予測する予測工程と
     を含み、
     前記冷却実行装置が、前記サーバの前記予測工程により予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得工程と、
     前記冷却実行装置が、前記情報取得工程により取得された前記制御装置の温度変化の予測に基づいて、前記制御装置の冷却を開始する冷却実行工程と
     を含むことを特徴とした冷却方法。
    A cooling execution method executed by a server and a cooling execution device, comprising:
    an information acquisition process in which the server acquires, from the cooling execution device, location information of the vehicle having the cooling execution device, temperature information of a control device of the vehicle, information regarding traffic conditions, and weather information;
    a prediction step in which the server predicts a temperature change of the control device based on location information of the vehicle having the cooling execution device acquired in the information acquisition step, temperature information of a control device of the vehicle, information about the traffic situation, and weather information;
    an information acquisition step in which the cooling execution device acquires, from the server, a prediction result of a temperature change of the control device predicted by the prediction step of the server;
    a cooling execution step of starting cooling of the control device based on the prediction of a temperature change of the control device acquired in the information acquisition step by the cooling execution device.
  31.  サーバが実行するプログラムと、冷却実行装置が実行するプログラムとを含む冷却プログラムであって、
     前記サーバに、
     前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報とを、前記冷却実行装置から取得する情報取得ステップと、
     前記情報取得ステップにより取得された前記冷却実行装置を有する車両の位置情報と、前記車両が有する制御装置の温度情報と、交通状況に関する情報と、天候情報とに基づいて、前記制御装置の温度変化を予測する予測ステップと
     を実行させ、
     前記冷却実行装置に、
     前記サーバの前記予測ステップにより予測された前記制御装置の温度変化の予測結果を、前記サーバから取得する情報取得ステップと、
     前記情報取得ステップにより取得された前記制御装置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行ステップと
     を実行させることを特徴とした冷却プログラム。
    A cooling program including a program executed by a server and a program executed by a cooling execution device,
    The server,
    an information acquisition step of acquiring location information of a vehicle having the cooling execution device and temperature information of a control device of the vehicle from the cooling execution device;
    a prediction step of predicting a temperature change of the control device based on location information of the vehicle having the cooling execution device acquired in the information acquisition step, temperature information of a control device of the vehicle, information on traffic conditions, and weather information;
    The cooling device includes:
    an information acquisition step of acquiring, from the server, a prediction result of a temperature change of the control device predicted by the prediction step of the server;
    and a cooling execution step of starting cooling of the control device based on the predicted result of the temperature change of the control device acquired in the information acquisition step.
  32.  サーバと冷却実行装置とからなる冷却システムであって、
     前記サーバは、
     制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、車両の運転状況に関する情報とを、前記冷却実行装置から取得する情報取得部と、
     前記情報取得部により取得された、前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とに基づいて、前記制御装置の各位置の温度変化を予測する予測部と
     を有し、
     前記冷却実行装置は、
     前記サーバの前記予測部により予測された前記制御装置の各位置の温度変化の予測結果を、前記サーバから取得する情報取得部と、
     前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行部と
     を有することを特徴とした冷却システム。
    A cooling system including a server and a cooling execution device,
    The server,
    an information acquisition unit that acquires, from the cooling execution device, position information of each integrated circuit in the control device, information related to processing of the each integrated circuit, and information related to a driving state of the vehicle;
    a prediction unit that predicts a temperature change at each position of the control device based on position information of each integrated circuit in the control device, information related to processing of each integrated circuit, and information related to a driving state of the vehicle, all of which are acquired by the information acquisition unit;
    The cooling device includes:
    an information acquisition unit that acquires, from the server, a prediction result of a temperature change at each position of the control device predicted by the prediction unit of the server;
    and a cooling execution unit that starts cooling the control device based on the predicted results of temperature changes at each position of the control device acquired by the information acquisition unit.
  33.  前記予測部は、前記情報取得部により取得された前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とを用いて、前記制御装置の各位置の経時的な温度変化を予測する
     ことを特徴とする請求項32に記載の冷却システム。
    The cooling system of claim 32, characterized in that the prediction unit predicts temperature changes over time at each position of the control device using position information of each integrated circuit in the control device acquired by the information acquisition unit, information regarding the processing of each integrated circuit, and information regarding the driving status of the vehicle.
  34.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果を用いて、前記制御装置の発熱が起こる位置の冷却を開始する
     ことを特徴とする請求項32に記載の冷却システム。
    The cooling system according to claim 32, characterized in that the cooling execution unit starts cooling at a position where heat is generated in the control device using a prediction result of temperature change at each position of the control device acquired by the information acquisition unit.
  35.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果を用いて、前記制御装置が発熱を始める所定時間前から前記制御装置の発熱が起こる位置の冷却を開始する
     ことを特徴とする請求項34に記載の冷却システム。
    The cooling system of claim 34, characterized in that the cooling execution unit uses the predicted results of temperature change at each position of the control device acquired by the information acquisition unit to start cooling the position where heat generation occurs in the control device a predetermined time before the control device starts to generate heat.
  36.  前記冷却実行部は、前記情報取得部により取得された前記制御装置の各位置の温度変化の予測結果を用いて、前記制御装置の各位置の温度変化に応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の発熱が起こる位置の冷却を開始する
     ことを特徴とする請求項32に記載の冷却システム。
    The cooling system of claim 32, characterized in that the cooling execution unit uses the predicted results of temperature changes at each position of the control device acquired by the information acquisition unit, and starts cooling the positions where heat is generated in the control device using one or more cooling means selected from multiple types of cooling means in accordance with the temperature changes at each position of the control device.
  37.  前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、
    及び液体窒素冷却手段のうちの複数を含む
     ことを特徴とする請求項36に記載の冷却システム。
    The multiple types of cooling means include one or multiple types of air cooling means, one or multiple types of water cooling means,
    37. The cooling system of claim 36, comprising more than one of: and liquid nitrogen cooling means.
  38.  サーバと冷却実行装置とにより実行される冷却方法であって、
     前記サーバが、制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、車両の運転状況に関する情報とを、前記冷却実行装置から取得する情報取得工程と、
     前記サーバが、前記情報取得工程により取得された、前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とから、前記制御装置の各位置の温度変化を予測する予測工程と、
     前記冷却実行装置が、前記サーバの前記予測工程により予測された前記制御装置の各位置の温度変化の予測結果を、前記サーバから取得する情報取得工程と、
     前記冷却実行装置が、前記情報取得工程により取得された前記制御装置の各位置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行工程と
     を含むことを特徴とした冷却方法。
    A cooling method executed by a server and a cooling execution device, comprising:
    an information acquisition step in which the server acquires, from the cooling execution device, location information of each integrated circuit in the control device, information related to processing of each integrated circuit, and information related to a driving state of the vehicle;
    a prediction step in which the server predicts a temperature change at each position of the control device based on position information of each integrated circuit in the control device, information related to processing of each integrated circuit, and information related to a driving state of the vehicle, all of which are acquired by the information acquisition step;
    an information acquisition step in which the cooling execution device acquires from the server a prediction result of a temperature change at each position of the control device predicted by the prediction step of the server;
    and a cooling execution step of starting cooling of the control device based on the predicted results of temperature changes at each position of the control device acquired by the information acquisition step.
  39.  サーバが実行するプログラムと、冷却実行装置が実行するプログラムとを含む冷却プログラムであって、
     前記サーバに、
     制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、車両の運転状況に関する情報とを、前記冷却実行装置から取得する情報取得ステップと、
     前記情報取得ステップにより取得された、前記制御装置における各集積回路の位置情報と、前記各集積回路の処理に関する情報と、前記車両の運転状況に関する情報とから、前記制御装置の各位置の温度変化を予測する予測ステップと
     を実行させ、
     前記冷却実行装置に、
     前記サーバの前記予測ステップにより予測された前記制御装置の各位置の温度変化の予測結果を、前記サーバから取得する情報取得ステップと、
     前記情報取得ステップにより取得された前記制御装置の各位置の温度変化の予測結果に基づいて、前記制御装置の冷却を開始する冷却実行ステップと
     を実行させることを特徴とした冷却プログラム。
    A cooling program including a program executed by a server and a program executed by a cooling execution device,
    The server,
    an information acquisition step of acquiring, from the cooling execution device, position information of each integrated circuit in the control device, information related to processing of the each integrated circuit, and information related to a driving state of the vehicle;
    a prediction step of predicting a temperature change at each position of the control device based on position information of each integrated circuit in the control device, information related to the processing of each integrated circuit, and information related to a driving state of the vehicle, which are acquired in the information acquisition step;
    The cooling device includes:
    an information acquisition step of acquiring, from the server, a prediction result of a temperature change at each position of the control device predicted by the prediction step of the server;
    and a cooling execution step of starting cooling of the control device based on the predicted results of temperature changes at each position of the control device acquired by the information acquisition step.
  40.  車両の自動運転を制御する前記車両に搭載された制御装置の温度を検知する検知部と、
     前記検知部が検知した前記温度が、所定温度以上を継続する時間に基づいて、所定の冷却手段を用いて前記制御装置の冷却を実行する冷却実行部と、
     を備える冷却実行装置。
    A detection unit that detects a temperature of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution unit that executes cooling of the control device using a predetermined cooling means based on a time during which the temperature detected by the detection unit continues to be equal to or higher than a predetermined temperature;
    A cooling execution device comprising:
  41.  前記冷却実行部は、前記所定温度以上を継続する時間が所定の閾値を超えた場合に、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含む、前記冷却手段を用いて冷却を実行する、
     ことを特徴とする請求項40に記載の冷却実行装置。
    When the time during which the temperature is equal to or higher than the predetermined temperature exceeds a predetermined threshold, the cooling execution unit executes cooling using the cooling means, which includes one or more types of air cooling means, one or more types of water cooling means, and a liquid nitrogen cooling means.
    41. The cooling implementation of claim 40.
  42.  前記冷却実行部は、前記温度が所定の閾値を超えた場合に急速冷却を実行する、
     ことを特徴とする請求項41に記載の冷却実行装置。
    The cooling execution unit executes rapid cooling when the temperature exceeds a predetermined threshold.
    42. The cooling implementation of claim 41.
  43.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部を更に有し、
     前記冷却実行部は、前記予測部により予測された前記温度変化として、前記所定温度以上を継続する時間に基づいて、前記冷却手段を用いて冷却を実行する、
     ことを特徴とする請求項40に記載の冷却実行装置。
    A prediction unit that predicts a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle,
    the cooling execution unit executes cooling using the cooling means based on a time during which the temperature change predicted by the prediction unit will continue to be equal to or higher than the predetermined temperature.
    41. The cooling implementation of claim 40.
  44.  前記制御装置の複数の部位のそれぞれの温度変化を予測する予測部を更に有し、
     前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始する、
     ことを特徴とする請求項41に記載の冷却実行装置。
    A prediction unit predicts a temperature change of each of the plurality of parts of the control device,
    the cooling execution unit starts cooling the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on a prediction result by the prediction unit.
    42. The cooling implementation of claim 41.
  45.  前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップ
    を有し、
     前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されている、
     ことを特徴とする請求項44に記載の冷却実行装置。
    the controller having a plurality of processing chips, each processing chip being disposed at a different location on the controller;
    each of the plurality of cooling means is disposed at a position corresponding to each of the plurality of processing chips;
    45. The cooling implementation of claim 44.
  46.  コンピュータを、請求項40から45のいずれか一項に記載の冷却実行装置として機能さ
    せるための冷却実行プログラム。
    A cooling execution program for causing a computer to function as the cooling execution device according to any one of claims 40 to 45.
  47.  コンピュータによって実行される冷却実行方法であって、
     車両の自動運転を制御する前記車両に搭載された制御装置の温度を検知する検知段階と、
     前記検知段階にて検知した前記温度が、所定温度以上を継続する時間に基づいて、所定の冷却手段を用いて前記制御装置の冷却を実行する冷却実行段階と、
     を備える冷却実行方法。
    1. A computer-implemented method for implementing cooling, comprising:
    A detection step of detecting a temperature of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution step of executing cooling of the control device using a predetermined cooling means based on a time during which the temperature detected in the detection step continues to be equal to or higher than a predetermined temperature;
    A method for performing cooling comprising:
  48.  予め設定された走行ルートに基づいて、自動運転と手動運転との切り替えを推定する推定部と、
     前記推定部の推定結果に基づき、所定の冷却手段が設定された冷却予定を作成する作成部と、
     前記作成部により作成された前記冷却予定に基づき、車両の自動運転を制御する車両に搭載された制御装置の冷却を実行する冷却実行部と、
     を有することを特徴とする冷却実行装置。
    An estimation unit that estimates switching between automatic driving and manual driving based on a preset driving route;
    a creation unit that creates a cooling schedule in which a predetermined cooling means is set based on an estimation result of the estimation unit;
    a cooling execution unit that executes cooling of a control device mounted on a vehicle that controls automatic driving of the vehicle based on the cooling schedule created by the creation unit;
    A cooling device comprising:
  49.  前記推定部は、前記走行ルートの道路状況に基づいて前記自動運転から前記手動運転への切り替えが発生するか否かを推定する、
     ことを特徴とする請求項48に記載の冷却実行装置。
    The estimation unit estimates whether or not switching from the autonomous driving to the manual driving will occur based on road conditions of the travel route.
    49. The cooling implementation of claim 48.
  50.  前記作成部は、前記推定部により前記自動運転を前記手動運転に切り替えると推定された場合、該手動運転の走行区間に対する冷却手段が設定された前記冷却予定を作成し、
     前記推定部により前記手動運転を前記自動運転に切り替えると推定された場合、該自動運転の走行区間に対する冷却手段が設定された前記冷却予定を作成する、
     ことを特徴とする請求項48に記載の冷却実行装置。
    the creation unit creates the cooling schedule in which a cooling means for a driving section of the manual driving is set when the estimation unit estimates that the automatic driving will be switched to the manual driving,
    When the estimation unit estimates that the manual driving will be switched to the automatic driving, the cooling schedule is created in which a cooling means for a driving section of the automatic driving is set.
    49. The cooling implementation of claim 48.
  51.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を検知する検知部と、
     前記制御装置の温度変化を予測する予測部とを更に有し、
     前記作成部は、前記検知部により検知された実際の温度変化と前記予測部により予測された予測の温度変化とを比較して、該予測の温度変化が該実際の温度変化を上回る場合に、前記所定の冷却手段が設定された前記冷却予定を作成する、
     ことを特徴とする請求項48に記載の冷却実行装置。
    A detection unit that detects a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    A prediction unit that predicts a temperature change of the control device,
    the creation unit compares the actual temperature change detected by the detection unit with the predicted temperature change predicted by the prediction unit, and creates the cooling schedule in which the predetermined cooling means is set when the predicted temperature change exceeds the actual temperature change.
    49. The cooling implementation of claim 48.
  52.  前記冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、および液体窒素冷却手段のうちの複数を含む、
     ことを特徴とする請求項48に記載の冷却実行装置。
    The cooling means includes a plurality of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
    49. The cooling implementation of claim 48.
  53.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部を更に有し、
     前記冷却実行部は、前記作成部により作成された前記冷却予定に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を実行する、
     ことを特徴とする請求項52に記載の冷却実行装置。
    A prediction unit that predicts a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle,
    the cooling execution unit executes cooling of the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the cooling schedule created by the creation unit.
    53. The cooling implementation of claim 52.
  54.  前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップを有し、
     前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されている、
     ことを特徴とする請求項53に記載の冷却実行装置。
    the controller having a plurality of processing chips, each processing chip being disposed at a different location on the controller;
    each of the plurality of cooling means is disposed at a position corresponding to each of the plurality of processing chips;
    54. The cooling implementation of claim 53.
  55.  コンピュータを、請求項48から54のいずれか一項に記載の冷却実行装置として機能させるためのプログラム。 A program for causing a computer to function as a cooling execution device according to any one of claims 48 to 54.
  56.  コンピュータによって実行される冷却実行方法であって、
     予め設定された走行ルートに基づいて、自動運転と手動運転との切り替えを推定する推定段階と、
     前記推定段階の推定結果に基づき、所定の冷却手段に基づく冷却条件が設定された冷却予定を作成する作成段階と、
     前記作成段階により作成された前記冷却予定に基づき、車両の自動運転を制御する車両に搭載された制御装置の冷却を実行する冷却実行段階と、
     を備える冷却実行方法。
    1. A computer-implemented method for implementing cooling, comprising:
    An estimation step of estimating switching between autonomous driving and manual driving based on a preset driving route;
    a creating step of creating a cooling schedule in which cooling conditions based on a predetermined cooling means are set based on the estimation result of the estimation step;
    a cooling execution step of executing cooling of a control device mounted on a vehicle that controls automatic driving of the vehicle based on the cooling schedule created in the creation step;
    A method for performing cooling comprising:
  57.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部と、
     前記予測部によって予測された前記温度変化に基づいて、前記制御装置の温度が所定の温度範囲内に保持されるように冷却を行う冷却実行部と
     を備える冷却装置。
    A prediction unit that predicts a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution unit that performs cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted by the prediction unit.
  58.  前記冷却実行部は、前記制御装置について予め定められた閾値の温度に応じて、前記所定の温度範囲を決定する
     ことを特徴とする請求項57に記載の冷却装置。
    58. The cooling device of claim 57, wherein the cooling execution unit determines the predetermined temperature range in response to a threshold temperature that is predetermined for the control device.
  59.  前記予測部は、AIによって前記制御装置の前記温度変化を予測する
     ことを特徴とする請求項57に記載の冷却装置。
    The cooling device according to claim 57, wherein the prediction unit predicts the temperature change of the control device using AI.
  60.  前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置の温度変化とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の温度変化を出力とする学習モデルを記憶するモデル記憶部と、
     前記制御装置が取得する情報を取得する情報取得部と
     を更に備え、
     前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記温度変化を予測する
     ことを特徴とする請求項59に記載の冷却装置。
    a model storage unit that stores a learning model that uses the information acquired by the control device as input and the temperature change of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the temperature change of the control device when the control device acquires the information as learning data;
    and an information acquisition unit that acquires information acquired by the control device,
    60. The cooling device according to claim 59, wherein the prediction unit predicts the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  61.  前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報を、前記センサ又は前記制御装置から取得する
     ことを特徴とする請求項60に記載の冷却装置。
    61. The cooling device according to claim 60, wherein the information acquisition unit acquires sensor information, which the control device acquires from a sensor mounted on the vehicle, from the sensor or the control device.
  62.  前記情報取得部は、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果を、前記制御装置から取得する
     ことを特徴とする請求項60に記載の冷却装置。
    The cooling device according to claim 60, characterized in that the information acquisition unit acquires, from the control device, an analysis result obtained by the control device analyzing an image captured by a camera mounted on the vehicle.
  63.  前記情報取得部は、前記制御装置が外部装置から受信する外部情報を、前記外部装置又は前記制御装置から取得する
     ことを特徴とする請求項60に記載の冷却装置。
    61. The cooling device according to claim 60, wherein the information acquisition unit acquires external information, which the control device receives from an external device, from the external device or the control device.
  64.  前記情報取得部は、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報を、前記外部装置又は前記制御装置から取得する
     ことを特徴とする請求項63に記載の冷却装置。
    64. The cooling device according to claim 63, wherein the information acquisition unit acquires traffic information of a road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
  65.  前記冷却実行部は、前記予測部によって予測された前記制御装置の温度の高さに応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始する
     ことを特徴とする請求項57に記載の冷却装置。
    The cooling device according to claim 57, characterized in that the cooling execution unit starts cooling the control device using one or more cooling means selected from a plurality of types of cooling means depending on the temperature of the control device predicted by the prediction unit.
  66.  前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含む
     ことを特徴とする請求項65に記載の冷却装置。
    66. The cooling device of claim 65, wherein the plurality of types of cooling means include a plurality of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
  67.  前記予測部は、前記制御装置の複数の部位のそれぞれの温度変化を予測し、
     前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始する
     ことを特徴とする請求項66に記載の冷却装置。
    The prediction unit predicts a temperature change of each of a plurality of parts of the control device,
    The cooling device according to claim 66, characterized in that the cooling execution unit starts cooling the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the prediction result by the prediction unit.
  68.  前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップ
    を有し、
     前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されている
     ことを特徴とする請求項67に記載の冷却装置。
    the controller having a plurality of processing chips, each processing chip being disposed at a different location on the controller;
    68. The cooling device according to claim 67, wherein each of the plurality of cooling means is disposed at a position corresponding to each of the plurality of processing chips.
  69.  冷却装置で実行される冷却方法であって、
     車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測工程と、
     前記予測工程によって予測された前記温度変化に基づいて、前記制御装置の温度が所定の温度範囲内に保持されるように冷却を行う冷却実行工程と
     を含むことを特徴とする冷却方法。
    1. A cooling method carried out in a cooling device, comprising:
    A prediction step of predicting a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution step of performing cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted by the prediction step.
  70.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測手順と、
     前記予測手順において予測された前記温度変化に基づいて、前記制御装置の温度が所定の温度範囲内に保持されるように冷却を行う冷却実行手順と
     をコンピュータに実行させるための冷却プログラム。
    A prediction step of predicting a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution step of performing cooling so that the temperature of the control device is maintained within a predetermined temperature range based on the temperature change predicted in the prediction step.
  71.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を検知する検知部と、
     前記温度変化が所定の閾値を超えた場合に、前記制御装置の温度を下げる所定の運転条件を選択する選択部と、
     前記選択部の選択結果に基づき、前記所定の運転条件を出力する出力部と、
     を有することを特徴とする冷却実行装置。
    A detection unit that detects a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    A selection unit that selects a predetermined operating condition for lowering the temperature of the control device when the temperature change exceeds a predetermined threshold value;
    an output unit that outputs the predetermined operating condition based on a selection result of the selection unit;
    A cooling device comprising:
  72.  前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記制御装置の所定の情報処理に係る計算量を抑制する運転条件を選択する、
     ことを特徴とする請求項71に記載の冷却実行装置。
    the selection unit selects, as the predetermined operating condition, an operating condition that reduces a calculation amount related to a predetermined information processing of the control device when the temperature change exceeds a predetermined threshold.
    72. The cooling implementation of claim 71.
  73.  前記制御装置の所定の情報処理として、前記自動運転に係る情報処理を行う外部の情報処理装置から、前記自動運転に係る情報処理の結果を取得する情報取得部を更に有する、
     ことを特徴とする請求項71に記載の冷却実行装置。
    Further comprising an information acquisition unit that acquires a result of the information processing related to the autonomous driving from an external information processing device that performs information processing related to the autonomous driving as a predetermined information processing of the control device,
    72. The cooling implementation of claim 71.
  74.  前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転の運転速度を所定の速度以下に抑制する運転条件を選択する、
     ことを特徴とする請求項71に記載の冷却実行装置。
    The selection unit selects, as the predetermined operating condition, an operating condition that suppresses an operating speed of the autonomous driving to a predetermined speed or less when the temperature change exceeds a predetermined threshold.
    72. The cooling implementation of claim 71.
  75.  前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転を手動運転に変更する運転条件を選択する、
     ことを特徴とする請求項71に記載の冷却実行装置。
    The selection unit selects, as the predetermined operating condition, an operating condition for changing the automatic operation to a manual operation when the temperature change exceeds a predetermined threshold.
    72. The cooling implementation of claim 71.
  76.  前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転の走行ルートに含まれる道路の所定の位置に停止する運転条件を選択する、
     ことを特徴とする請求項71に記載の冷却実行装置。
    the selection unit selects, as the predetermined driving condition, a driving condition in which the vehicle is stopped at a predetermined position on a road included in a driving route of the autonomous driving, when the temperature change exceeds a predetermined threshold.
    72. The cooling implementation of claim 71.
  77.  前記選択部は、前記温度変化が所定の閾値を超えた場合に、前記所定の運転条件として、前記自動運転の情報処理に用いる所定の情報の取得を抑制する運転条件を選択する、
     ことを特徴とする請求項71に記載の冷却実行装置。
    The selection unit selects, as the predetermined operating condition, an operating condition that suppresses acquisition of predetermined information used for information processing of the autonomous driving when the temperature change exceeds a predetermined threshold.
    72. The cooling implementation of claim 71.
  78.  コンピュータを、請求項71から77のいずれか一項に記載の冷却実行装置として機能させるためのプログラム。 A program for causing a computer to function as a cooling execution device according to any one of claims 71 to 77.
  79.  コンピュータによって実行される冷却実行方法であって、
     車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を検知する検知段階と、
     前記温度変化が所定の閾値を超えた場合に、前記制御装置の温度を下げる所定の運転条件を選択する選択段階と、
     前記選択段階の選択結果に基づき、前記所定の運転条件を出力する出力段階と、
     を備える冷却実行方法。
    1. A computer-implemented method for implementing cooling, comprising:
    A detection step of detecting a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a selection step of selecting a predetermined operating condition for reducing the temperature of the control device when the temperature change exceeds a predetermined threshold;
    an output step of outputting the predetermined operating condition based on a selection result of the selection step;
    A method for performing cooling comprising:
  80.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測部と、
     前記予測部によって予測された前記温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う通信部と、
     前記通信部によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように前記制御装置に指示する指示部と
     を備えることを特徴とする冷却装置。
    A prediction unit that predicts a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a communication unit that communicates with other vehicles that are present within a predetermined range based on the temperature change predicted by the prediction unit;
    and an instruction unit that instructs the control device to execute a calculation related to control of automatic driving of another vehicle with which communication is being performed by the communication unit.
  81.  前記通信部は、他の車両との通信を所定時間維持することができる範囲内に存在する他の車両を、前記所定の範囲内に存在する車両として判断し通信を行う
     ことを特徴とする請求項80に記載の冷却装置。
    The cooling device according to claim 80, characterized in that the communication unit determines that another vehicle present within a range in which communication with another vehicle can be maintained for a predetermined time is a vehicle present within the predetermined range and communicates with the other vehicle.
  82.  前記予測部によって予測された前記温度変化に基づいて、前記制御装置の冷却を開始する冷却実行部をさらに備える
     ことを特徴とする請求項80に記載の冷却装置。
    The cooling device according to claim 80, further comprising a cooling execution unit that starts cooling of the control device based on the temperature change predicted by the prediction unit.
  83.  前記冷却実行部は、前記予測部によって前記制御装置の温度が予め定められた閾値より高くなることが予測されたことに応じて、前記制御装置の冷却を開始する
     ことを特徴とする請求項82に記載の冷却装置。
    The cooling device according to claim 82, wherein the cooling execution unit starts cooling the control device in response to the prediction unit predicting that the temperature of the control device will be higher than a predetermined threshold value.
  84.  前記予測部は、AIによって前記制御装置の前記温度変化を予測する
     ことを特徴とする請求項80に記載の冷却装置。
    The cooling device according to claim 80, wherein the prediction unit predicts the temperature change of the control device using AI.
  85.  前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置の温度変化とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の温度変化を出力とする学習モデルを記憶するモデル記憶部と、
     前記制御装置が取得する情報を取得する情報取得部と
     を更に備え、
     前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記温度変化を予測する
     ことを特徴とする請求項84に記載の冷却装置。
    a model storage unit that stores a learning model that uses the information acquired by the control device as input and the temperature change of the control device as output, the learning model being generated by machine learning using the information acquired by the control device and the temperature change of the control device when the control device acquires the information as learning data;
    and an information acquisition unit that acquires information acquired by the control device,
    The cooling device according to claim 84, wherein the prediction unit predicts the temperature change of the control device by inputting the information acquired by the information acquisition unit into the learning model.
  86.  前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報を、前記センサ又は前記制御装置から取得する
     ことを特徴とする請求項85に記載の冷却装置。
    86. The cooling device according to claim 85, wherein the information acquisition unit acquires sensor information, which the control device acquires from a sensor mounted on the vehicle, from the sensor or the control device.
  87.  前記情報取得部は、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果を、前記制御装置から取得する
     ことを特徴とする請求項85に記載の冷却装置。
    86. The cooling device according to claim 85, wherein the information acquisition unit acquires, from the control device, an analysis result obtained by the control device analyzing an image captured by a camera mounted on the vehicle.
  88.  前記情報取得部は、前記制御装置が外部装置から受信する外部情報を、前記外部装置又は前記制御装置から取得する
     ことを特徴とする請求項85に記載の冷却装置。
    86. The cooling device according to claim 85, wherein the information acquisition unit acquires external information, which the control device receives from an external device, from the external device or the control device.
  89.  前記情報取得部は、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報を、前記外部装置又は前記制御装置から取得する
     ことを特徴とする請求項88に記載の冷却装置。
    89. The cooling device according to claim 88, wherein the information acquisition unit acquires traffic information of a road on which the vehicle is located, which the control device receives from the external device, from the external device or the control device.
  90.  前記冷却実行部は、前記予測部によって予測された前記制御装置の温度の高さに応じて、複数種類の冷却手段から選択した1又は複数の冷却手段を用いて、前記制御装置の冷却を開始する
     ことを特徴とする請求項82に記載の冷却装置。
    The cooling device according to claim 82, characterized in that the cooling execution unit starts cooling the control device using one or more cooling means selected from a plurality of types of cooling means depending on the temperature of the control device predicted by the prediction unit.
  91.  前記複数種類の冷却手段は、1又は複数種類の空冷手段、1又は複数種類の水冷手段、及び液体窒素冷却手段のうちの複数を含む
     ことを特徴とする請求項90に記載の冷却装置。
    91. The cooling device of claim 90, wherein the plurality of types of cooling means include a plurality of one or more types of air cooling means, one or more types of water cooling means, and liquid nitrogen cooling means.
  92.  前記予測部は、前記制御装置の複数の部位のそれぞれの温度変化を予測し、
     前記冷却実行部は、前記予測部による予測結果に基づいて、前記制御装置の複数の部位のそれぞれを冷却する複数の冷却手段から選択した冷却手段を用いて、前記制御装置の冷却を開始する
     ことを特徴とする請求項91に記載の冷却装置。
    The prediction unit predicts a temperature change of each of a plurality of parts of the control device,
    The cooling device according to claim 91, characterized in that the cooling execution unit starts cooling the control device using a cooling means selected from a plurality of cooling means that cool each of a plurality of parts of the control device based on the prediction result by the prediction unit.
  93.  前記制御装置は、それぞれが前記制御装置の異なる位置に配置された複数の処理チップ
    を有し、
     前記複数の冷却手段のそれぞれは、前記複数の処理チップのそれぞれに対応する位置に配置されている
     ことを特徴とする請求項92に記載の冷却装置。
    the controller having a plurality of processing chips, each processing chip being disposed at a different location on the controller;
    93. The cooling device according to claim 92, wherein each of the plurality of cooling means is disposed at a position corresponding to each of the plurality of processing chips.
  94.  冷却装置で実行される冷却方法であって、
     車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測工程と、
     前記予測工程によって予測された前記温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う通信工程と、
     前記通信工程によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように前記制御装置に指示する指示工程と
     を含むことを特徴とする冷却方法。
    1. A cooling method carried out in a cooling device, comprising:
    A prediction step of predicting a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a communication step of communicating with other vehicles present within a predetermined range based on the temperature change predicted by the prediction step;
    and an instruction step of instructing the control device to execute a calculation related to control of automatic driving of another vehicle with which communication is being performed by the communication step.
  95.  車両の自動運転を制御する前記車両に搭載された制御装置の温度変化を予測する予測手順と、
     前記予測手順によって予測された前記温度変化に基づいて、所定の範囲内に存在する他の車両と通信を行う通信手順と、
     前記通信手順によって通信が行われている他の車両の自動運転の制御に関する演算を実行するように前記制御装置に指示する指示手順と
     ことをコンピュータに実行させるための冷却プログラム。
    A prediction step of predicting a temperature change of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a communication step of communicating with other vehicles present within a predetermined range based on the temperature change predicted by the prediction step;
    and an instruction procedure for instructing the control device to execute a calculation related to control of automatic driving of another vehicle with which communication is being performed through the communication procedure.
  96.  車両の自動運転を制御する前記車両に搭載された制御装置のコンピューティングパワーの変化を予測する予測部と、
    前記予測部によって予測された変化に基づいて、前記制御装置の冷却を開始する冷却実行部と
    を備える冷却実行装置。
    A prediction unit that predicts a change in computing power of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    a cooling execution unit that starts cooling of the control device based on the change predicted by the prediction unit.
  97.  前記予測部は、AIによって前記制御装置の前記コンピューティングパワーの変化を予測する、請求項96に記載の冷却実行装置。 The cooling execution device according to claim 96, wherein the prediction unit predicts changes in the computing power of the control device using AI.
  98.  前記予測部は、前記制御装置の前記コンピューティングパワーが最大になる瞬間を予測し、
     前記冷却実行部は、前記予測部によって予測された前記瞬間に基づいて、前記制御装置の冷却を開始する、請求項97に記載の冷却実行装置。
    The prediction unit predicts a moment when the computing power of the control device will be maximized;
    98. The cooling implementation unit of claim 97, wherein the cooling implementation unit initiates cooling of the control device based on the moment predicted by the prediction unit.
  99.  前記冷却実行部は、前記制御装置の前記コンピューティングパワーが最大になる前記瞬間に前記制御装置の冷却を開始する、請求項98に記載の冷却実行装置。 The cooling execution device of claim 98, wherein the cooling execution unit starts cooling the control device at the moment when the computing power of the control device is maximized.
  100.  前記予測部は、前記制御装置の前記コンピューティングパワーが最大になる前記瞬間の予測結果から、前記制御装置の温度が予め定められた温度よりも高くなるまでの時間を予測し、
     前記冷却実行部は、前記予測部によって予測された前記時間に基づいて、前記制御装置の冷却を開始する、請求項99に記載の冷却実行装置。
    the prediction unit predicts a time until a temperature of the control device becomes higher than a predetermined temperature based on a prediction result of the moment when the computing power of the control device becomes maximum;
    100. The cooling execution device of claim 99, wherein the cooling execution unit initiates cooling of the control device based on the time predicted by the prediction unit.
  101.  前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときの前記制御装置のコンピューティングパワーとを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置のコンピューティングパワーを出力とする学習モデルを記憶するモデル記憶部と、
     前記制御装置が取得する情報を取得する情報取得部と
    を更に備え、
     前記予測部は、前記情報取得部が取得した情報を前記学習モデルに入力することによって、前記制御装置の前記コンピューティングパワーの変化を予測する、請求項96に記載の冷却実行装置。
    a model storage unit that stores a learning model that uses the information acquired by the control device and the computing power of the control device at the time when the control device acquired the information as learning data, the learning model being generated by machine learning, and that uses the information acquired by the control device as input and the computing power of the control device as output;
    An information acquisition unit that acquires information acquired by the control device,
    97. The cooling execution apparatus of claim 96, wherein the prediction unit predicts a change in the computing power of the control device by inputting information acquired by the information acquisition unit into the learning model.
  102.  前記情報取得部は、前記制御装置が前記車両に搭載されたセンサから取得するセンサ情報、前記制御装置が前記車両に搭載されたカメラによって撮像された撮像画像を解析した解析結果、前記制御装置が外部装置から受信する外部情報、及び、前記制御装置が前記外部装置から受信する、前記車両が位置する道路の交通情報の少なくともいずれかを取得する、請求項101に記載の冷却実行装置。 The cooling execution device according to claim 101, wherein the information acquisition unit acquires at least one of sensor information acquired by the control device from a sensor mounted on the vehicle, an analysis result obtained by the control device analyzing an image captured by a camera mounted on the vehicle, external information received by the control device from an external device, and traffic information of a road on which the vehicle is located received by the control device from the external device.
  103.  前記制御装置が取得した情報と、前記制御装置が前記情報を取得したときに前記制御装置の冷却を開始した場合に前記制御装置が冷却されるまでの時間とを学習データとした機械学習によって生成された、前記制御装置が取得する情報を入力とし、前記制御装置の冷却を開始した場合に前記制御装置が冷却されるまでの時間を出力とする学習モデルを記憶するモデル記憶部と、
     前記制御装置が取得する情報を取得する情報取得部と、
    を更に備え、
     前記冷却実行部は、前記予測部によって予測された変化と、前記情報取得部が取得した前記情報を前記学習モデルに入力することによって取得した、前記制御装置の冷却を開始した場合に前記制御装置が冷却されるまでの時間とに基づいて、前記制御装置の冷却を開始するタイミングを決定する、請求項96に記載の冷却実行装置。
    a model storage unit that stores a learning model that uses information acquired by the control device as input and outputs the time until the control device is cooled down when cooling of the control device is started, the learning model being generated by machine learning using information acquired by the control device and a time until the control device is cooled down when cooling of the control device is started when the control device acquires the information as learning data;
    An information acquisition unit that acquires information acquired by the control device;
    Further comprising:
    The cooling execution unit determines the timing to start cooling the control device based on the change predicted by the prediction unit and the time it takes for the control device to be cooled when cooling of the control device is started, obtained by inputting the change predicted by the prediction unit and the information acquired by the information acquisition unit into the learning model.
  104.  前記冷却実行部は、前記制御装置が高温になることで前記制御装置が正常に機能しなくなり前記車両の正常な自動運転に影響を及ぼすリスクが発生する確率を示すリスク率に応じて、前記制御装置の冷却の度合いを調整する、請求項96に記載の冷却実行装置。 The cooling execution device according to claim 96, wherein the cooling execution unit adjusts the degree of cooling of the control device according to a risk rate indicating the probability of a risk that the control device will not function properly due to a high temperature of the control device, affecting normal automatic driving of the vehicle.
  105.  前記冷却実行部は、前記リスク率が第1の閾値より低い場合、第1の冷却強度で前記制御装置を冷却し、前記リスク率が前記第1の閾値より高く、前記第1の閾値より高い第2の閾値より低い場合、前記第1の冷却強度よりも強い第2の冷却強度で前記制御装置を冷却し、前記リスク率が前記第2の閾値より高い場合、前記第2の冷却強度よりも強い第3の冷却強度で前記制御装置を冷却する、請求項104に記載の冷却実行装置。 The cooling execution unit cools the control device with a first cooling intensity when the risk rate is lower than a first threshold, cools the control device with a second cooling intensity stronger than the first cooling intensity when the risk rate is higher than the first threshold and lower than a second threshold higher than the first threshold, and cools the control device with a third cooling intensity stronger than the second cooling intensity when the risk rate is higher than the second threshold. The cooling execution device of claim 104.
  106.  コンピュータを、請求項96から104のいずれか一項に記載の冷却実行装置として機能させるためのプログラム。 A program for causing a computer to function as a cooling execution device according to any one of claims 96 to 104.
  107.  コンピュータによって実行される冷却実行方法であって、
     車両の自動運転を制御する前記車両に搭載された制御装置のコンピューティングパワーの変化を予測する予測段階と、
     前記予測段階において予測された前記変化に基づいて、前記制御装置の冷却を開始する冷却実行段階と
     を備える冷却実行方法。
    1. A computer-implemented method for implementing cooling, comprising:
    A prediction step of predicting a change in computing power of a control device mounted on the vehicle that controls automatic driving of the vehicle;
    and a cooling execution step of starting cooling of the control device based on the change predicted in the prediction step.
PCT/JP2023/036112 2022-10-04 2023-10-03 Cooling system, cooling execution device, cooling device, cooling execution method, cooling method, program, cooling execution program, and cooling program WO2024075749A1 (en)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2022-160556 2022-10-04
JP2022160556A JP2024053999A (en) 2022-10-04 2022-10-04 Instantaneous cooling system for SoC (System on Chip) Boxes for autonomous vehicles
JP2022-168655 2022-10-20
JP2022168655A JP2024061014A (en) 2022-10-20 2022-10-20 Synchronized Burst Chilling
JP2023-000289 2023-01-04
JP2023-000212 2023-01-04
JP2023000212 2023-01-04
JP2023000289 2023-01-04
JP2023000632 2023-01-05
JP2023000430 2023-01-05
JP2023-000632 2023-01-05
JP2023-000430 2023-01-05
JP2023-003401 2023-01-12
JP2023003401 2023-01-12
JP2023003817 2023-01-13
JP2023-003817 2023-01-13
JP2023003782 2023-01-13
JP2023-003782 2023-01-13
JP2023006003 2023-01-18
JP2023-006003 2023-01-18

Publications (1)

Publication Number Publication Date
WO2024075749A1 true WO2024075749A1 (en) 2024-04-11

Family

ID=90608165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036112 WO2024075749A1 (en) 2022-10-04 2023-10-03 Cooling system, cooling execution device, cooling device, cooling execution method, cooling method, program, cooling execution program, and cooling program

Country Status (1)

Country Link
WO (1) WO2024075749A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207021A (en) * 2017-06-07 2018-12-27 株式会社デンソー On-vehicle control device
JP2019125665A (en) * 2018-01-16 2019-07-25 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
JP2020164105A (en) * 2019-03-29 2020-10-08 マツダ株式会社 Calculation device for automobile
JP2020533776A (en) * 2017-12-26 2020-11-19 信越ポリマー株式会社 Heat dissipation structure and battery with it
US20210086589A1 (en) * 2019-09-25 2021-03-25 Baidu Usa Llc Liquid cooling loop design for high performance processors in harsh vehicle environment
JP2021093493A (en) * 2019-12-12 2021-06-17 トヨタ自動車株式会社 Cooling structure for electronic control apparatus, and cooling control system therefor
US20210239338A1 (en) * 2020-01-30 2021-08-05 Lg Electronics Inc. Artificial intelligence device for freezing product and method therefor
US20220071053A1 (en) * 2020-09-01 2022-03-03 Aptiv Technologies Limited Cooling Device for a Vehicle Electronic Control Unit and Controller for Operating the Same
JP2022067454A (en) * 2020-10-20 2022-05-06 トヨタ自動車株式会社 Vehicle control support system
US20220200405A1 (en) * 2020-12-17 2022-06-23 Volvo Truck Corporation Apparatus and method for cooling components of a heavy-duty electric vehicle
US20220217869A1 (en) * 2019-09-25 2022-07-07 Huawei Technologies Co., Ltd. Vehicle Temperature Control System
CN114912537A (en) * 2022-05-26 2022-08-16 中国平安人寿保险股份有限公司 Model training method and device, behavior prediction method and device, equipment and medium
CN115130266A (en) * 2021-03-24 2022-09-30 纬湃科技投资(中国)有限公司 Method and system for thermal management control of a vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207021A (en) * 2017-06-07 2018-12-27 株式会社デンソー On-vehicle control device
JP2020533776A (en) * 2017-12-26 2020-11-19 信越ポリマー株式会社 Heat dissipation structure and battery with it
JP2019125665A (en) * 2018-01-16 2019-07-25 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
JP2020164105A (en) * 2019-03-29 2020-10-08 マツダ株式会社 Calculation device for automobile
US20220217869A1 (en) * 2019-09-25 2022-07-07 Huawei Technologies Co., Ltd. Vehicle Temperature Control System
US20210086589A1 (en) * 2019-09-25 2021-03-25 Baidu Usa Llc Liquid cooling loop design for high performance processors in harsh vehicle environment
JP2021093493A (en) * 2019-12-12 2021-06-17 トヨタ自動車株式会社 Cooling structure for electronic control apparatus, and cooling control system therefor
US20210239338A1 (en) * 2020-01-30 2021-08-05 Lg Electronics Inc. Artificial intelligence device for freezing product and method therefor
US20220071053A1 (en) * 2020-09-01 2022-03-03 Aptiv Technologies Limited Cooling Device for a Vehicle Electronic Control Unit and Controller for Operating the Same
JP2022067454A (en) * 2020-10-20 2022-05-06 トヨタ自動車株式会社 Vehicle control support system
US20220200405A1 (en) * 2020-12-17 2022-06-23 Volvo Truck Corporation Apparatus and method for cooling components of a heavy-duty electric vehicle
CN115130266A (en) * 2021-03-24 2022-09-30 纬湃科技投资(中国)有限公司 Method and system for thermal management control of a vehicle
CN114912537A (en) * 2022-05-26 2022-08-16 中国平安人寿保险股份有限公司 Model training method and device, behavior prediction method and device, equipment and medium

Similar Documents

Publication Publication Date Title
US11807247B2 (en) Methods and systems for managing interactions between vehicles with varying levels of autonomy
US11932274B2 (en) Electronic device and control method therefor
CN111071263B (en) Control method, device, system and equipment for automatically driving vehicle
US20210247762A1 (en) Allocating Vehicle Computing Resources to One or More Applications
WO2020100408A1 (en) Dangerous scene prediction device, dangerous scene prediction method, and dangerous scene prediction program
US10168424B1 (en) Management of mobile objects
RU2678416C2 (en) Cruise control system of vehicle and method for operation thereof
US20240109560A1 (en) Dual-mode cruise control
JP2009023637A (en) Charge-discharge management apparatus and program for charge-discharge management apparatus
WO2024075749A1 (en) Cooling system, cooling execution device, cooling device, cooling execution method, cooling method, program, cooling execution program, and cooling program
US20240054894A1 (en) Generating ice hazard map based on weather data transmitted by vehicles
JP2021077362A (en) System and method for collection of performance data by vehicle
US11328596B2 (en) Parking prediction
JP6928023B2 (en) Management equipment, systems, programs and management methods
CN116853292A (en) Collision detection method and device for unmanned vehicle
JP2024061014A (en) Synchronized Burst Chilling
US20220413489A1 (en) Remote operation device and remote operation method
US20200309081A1 (en) Automatic engine start-stop based on external cues
JP2024053999A (en) Instantaneous cooling system for SoC (System on Chip) Boxes for autonomous vehicles
JP2024070766A (en) vehicle
JP7393241B2 (en) Hybrid vehicle control device and program
US20220410935A1 (en) Thermal Model for Preventing Component Overheating
US20240078899A1 (en) System, method, and computer readable storage medium
US20230054626A1 (en) Persisting Predicted Objects for Robustness to Perception Issues in Autonomous Driving
WO2021153049A1 (en) Information processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874876

Country of ref document: EP

Kind code of ref document: A1