WO2024075584A1 - (meth)acrylic resin composition, film and polarizing plate - Google Patents

(meth)acrylic resin composition, film and polarizing plate Download PDF

Info

Publication number
WO2024075584A1
WO2024075584A1 PCT/JP2023/034843 JP2023034843W WO2024075584A1 WO 2024075584 A1 WO2024075584 A1 WO 2024075584A1 JP 2023034843 W JP2023034843 W JP 2023034843W WO 2024075584 A1 WO2024075584 A1 WO 2024075584A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic resin
film
less
resin composition
Prior art date
Application number
PCT/JP2023/034843
Other languages
French (fr)
Japanese (ja)
Inventor
直優 北川
未央 安井
沛▲ウェイ▼ 陳
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023148991A external-priority patent/JP2024053539A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024075584A1 publication Critical patent/WO2024075584A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a (meth)acrylic resin composition and a film formed therefrom, as well as a polarizing plate.
  • Polarizing plates which are widely used in image display devices such as liquid crystal display devices and organic EL display devices, usually have a structure in which a thermoplastic resin film is laminated as a protective film on one or both sides of a polarizer.
  • JP 2008-102274 A Patent Document 1 describes that an acrylic resin film can be used as the protective film.
  • the (meth)acrylic resin composition When producing a (meth)acrylic resin film from a (meth)acrylic resin composition, the (meth)acrylic resin composition is subjected to a thermal load due to the film forming process and, if necessary, a stretching process. Therefore, the (meth)acrylic resin composition is required to be resistant to degradation due to thermal load.
  • the object of the present invention is to provide a (meth)acrylic resin composition having excellent heat resistance, a film formed therefrom, and a polarizing plate including the film.
  • the present invention provides a (meth)acrylic resin composition, a film, and a polarizing plate described below.
  • a composition comprising a (meth)acrylic resin (A), an elastomer component (B), and an antioxidant (C), a mass ratio of a content of the antioxidant (C) to a content of the elastomer component (B) is 0.006 or more and 0.2 or less.
  • [3] The (meth)acrylic resin composition according to [1] or [2], wherein the content of the antioxidant (C) is 0.4 parts by mass or more and 3.5 parts by mass or less per 100 parts by mass of the (meth)acrylic resin (A).
  • [4] The (meth)acrylic resin composition according to any one of [1] to [3], which has a mass reduction rate of 60% or less when heated in an air atmosphere at a temperature of 270° C. or more and 275° C. or less for 3 hours, or when heated in an air atmosphere at a temperature of 250° C. or more and 255° C. or less for 6 hours.
  • FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of a polarizing plate according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the layer structure of the polarizing plate according to the present invention.
  • the (meth)acrylic resin composition according to the present invention contains a (meth)acrylic resin (A), an elastomer component (B), and an antioxidant (C).
  • the (meth)acrylic resin (A), the elastomer component (B), and the antioxidant (C) are also referred to as “component (A)", “component (B)", and “component (C)", respectively.
  • (meth)acrylic refers to at least one selected from the group consisting of acrylic and methacrylic. The same applies to expressions such as “(meth)acryloyl” and “(meth)acrylate”.
  • Component (A) is a thermoplastic (meth)acrylic resin.
  • Component (A) may contain (meth)acrylic resin (A-1) and (meth)acrylic resin (A-2) having different syndiotacticity.
  • (meth)acrylic resin (A-1) and (meth)acrylic resin (A-2) are also referred to as “component (A-1)” and “component (A-2)", respectively.
  • Component (A-1) has a higher syndiotacticity than component (A-2).
  • component (A) may be composed of one type of (meth)acrylic resin (for example, component (A-1) or component (A-2)).
  • Component (A-1) is preferably a polymer containing methacrylic acid ester as the main monomer (containing 50% by mass or more).
  • Component (A-1) may be a homopolymer of methacrylic acid ester or a copolymer of methacrylic acid ester and another copolymerization component.
  • component (A-1) The content of structural units derived from methacrylic acid ester in component (A-1) is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, still more preferably 99% by mass or more, and particularly preferably 100% by mass.
  • component (A-1) is a homopolymer of a methacrylic acid ester.
  • component (A-1) is a homopolymer of methyl methacrylate.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-, i-, or t-butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, etc.
  • Component (A-1) may contain structural units derived from one or more methacrylic acid esters.
  • the methacrylic acid ester preferably comprises methyl methacrylate, more preferably methyl methacrylate.
  • Examples of the other copolymerization components include acrylic acid esters such as ethyl acrylate, n-, i- or t-butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate; Hydroxyalkyl acrylates such as methyl 2-(hydroxymethyl)acrylate, methyl 2-(1-hydroxyethyl)acrylate, ethyl 2-(hydroxymethyl)acrylate, and n-, i-, or t-butyl 2-(hydroxymethyl)acrylate; Unsaturated acids such as methacrylic acid and acrylic acid; Halogenated styrenes such as chlorostyrene and bromostyrene; Substituted styrenes such as vinyltoluene and ⁇ -methylstyrene; Unsaturated nitriles such as acrylonitrile and me
  • a polyfunctional monomer may be used as the other copolymerization component.
  • the polyfunctional monomer include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate, and tetradecaethylene glycol di(meth)acrylate, which are esters of both terminal hydroxyl groups of ethylene glycol or its oligomers with (meth)acrylic acid; Propylene glycol or its oligomer, both terminal hydroxyl groups of which are esterified with (meth)acrylic acid; esters of hydroxyl groups of dihydric alcohols, such as neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate, and butanediol di(meth)acrylate, with (meth)acrylic acid; Bisphenol A, an alky
  • the weight average molecular weight Mw of component (A-1) is, for example, 40,000 or more and 150,000 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition and the moldability into a film, it is preferably 40,000 or more and 120,000 or less, and more preferably 50,000 or more and 100,000 or less.
  • the molecular weight distribution (weight average molecular weight Mw/number average molecular weight Mn) of component (A-1) is, for example, 1.01 or more and 1.8 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition, is preferably 1.03 or more and 1.5 or less, and more preferably 1.05 or more and 1.3 or less.
  • Mw and Mn can be controlled by adjusting the type and/or amount of the polymerization initiator used when preparing component (A-1). Mw and Mn are measured by gel permeation chromatography (GPC) (standard polystyrene equivalent).
  • the glass transition temperature Tg of component (A-1) is preferably 110°C or higher and 160°C or lower, more preferably 120°C or higher and 150°C or lower, and even more preferably 125°C or higher and 140°C or lower.
  • Tg can be controlled by adjusting the molecular weight, syndiotacticity, copolymerization components, etc.
  • the syndiotacticity (rr) of component (A-1) in triplet notation is, for example, 50% or more, and from the viewpoint of increasing the toughness and heat resistance of a film formed from the (meth)acrylic resin composition, is preferably 55% or more, more preferably 60% or more, even more preferably 65% or more, and even more preferably 70% or more.
  • the syndiotacticity (rr) of component (A-1) in triplet notation is usually 90% or less, and may be 85% or less.
  • the syndiotacticity (rr) expressed as a triad is the proportion of two chains (diads) in a chain (triad) of three consecutive constitutional units that are both racemo (denoted as rr).
  • the syndiotacticity (rr) (%) expressed as a triad is calculated by measuring a 1 H-NMR spectrum at 30° C. in CDCL 3 , measuring the area (X) of the region from 0.6 to 0.95 ppm and the area (Y) of the region from 0.6 to 1.35 ppm from the spectrum when the internal standard TMS is set to 0 ppm, and calculating (X/Y) ⁇ 100.
  • Component (A-1) having a triad syndiotacticity (rr) in the above range can be prepared, for example, according to the method described in WO 2016/080124, and the proportion of triad syndiotacticity (rr) can be increased by lowering the polymerization temperature or lengthening the polymerization time.
  • Component (A-2) can be, for example, a polymer containing a methacrylic acid ester as a main monomer (containing 50% by mass or more), and is preferably a copolymer in which a methacrylic acid ester is copolymerized with another copolymerization component.
  • component (A-2) is a copolymer containing a structural unit derived from methyl methacrylate.
  • component (A-2) is a copolymer containing a structural unit derived from methyl methacrylate and a structural unit derived from methyl acrylate. Examples of the copolymerization components other than methyl acrylate include the methacrylic acid esters and other copolymerization components exemplified for component (A-1).
  • the weight average molecular weight Mw of component (A-2) is, for example, 40,000 or more and 150,000 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition and the moldability into a film, is preferably 40,000 or more and 130,000 or less, and more preferably 50,000 or more and 120,000 or less.
  • the molecular weight distribution (weight average molecular weight Mw/number average molecular weight Mn) of component (A-2) is, for example, 1.01 or more and 3.0 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition, is preferably 1.03 or more and 2.8 or less, and more preferably 1.05 or more and 2.7 or less.
  • Mw and Mn can be controlled by adjusting the type and/or amount of the polymerization initiator used when preparing component (A-2). Mw and Mn are measured by gel permeation chromatography (GPC) (standard polystyrene equivalent).
  • the glass transition temperature Tg of component (A-2) is preferably 80°C or higher and 140°C or lower, more preferably 90°C or higher and 130°C or lower, and even more preferably 90°C or higher and lower than 125°C. Tg can be controlled by adjusting the molecular weight, syndiotacticity, copolymerization components, etc.
  • syndiotacticity (rr) of component (A-2) in triplet notation is, for example, 25% or more and 60% or less, preferably 30% or more and 55% or less, and more preferably 40% or more and 54% or less.
  • Component (A-2) can be prepared by referring to the methods described in, for example, JP 2009-145397 A or JP 2021-155698 A.
  • Component (A-2) may be prepared by radical polymerization.
  • the (meth)acrylic resin composition may contain resin components other than component (A).
  • the content of component (A) in the resin components (excluding component (B)) contained in the (meth)acrylic resin composition is high, and the content is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, still more preferably 99% by mass or more, and particularly preferably 100% by mass.
  • the content of component (A-1) is A1 (parts by mass) and the content of component (A-2) is A2 (parts by mass), from the viewpoint of enhancing the toughness of a film formed from the (meth)acrylic resin composition, it is preferable that A2 is larger than A1. More preferably, the (meth)acrylic resin composition has a structure represented by the following formula: 0 ⁇ A1/(A1+A2) ⁇ 0.5 It is advantageous for enhancing the toughness to satisfy this formula. A1/(A1+A2) is preferably 0.40 or less, more preferably 0.35 or less, and further preferably 0.30 or less.
  • Elastomer component (B) The (meth)acrylic resin composition contains component (B).
  • component (B) is advantageous in terms of increasing the toughness of a film formed from the (meth)acrylic resin composition.
  • Examples of component (B) include rubber particles.
  • the rubber particles are rubber elastomer particles that include a layer that exhibits rubber elasticity.
  • the rubber particles may be particles that consist only of a layer that exhibits rubber elasticity (rubber elastomer layer), or may be particles of a multi-layer structure that has a layer that exhibits rubber elasticity as well as other layers, and are preferably particles of the above multi-layer structure.
  • the layer that exhibits rubber elasticity includes a rubber elastomer.
  • rubber elastomers include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers. Among these, acrylic-based elastic polymers are preferably used from the viewpoint of the light resistance and transparency of the film formed from the (meth)acrylic resin composition.
  • the acrylic elastomer can be a polymer that is mainly composed of alkyl acrylate, that is, a polymer that contains 50% by mass or more of structural units derived from alkyl acrylate based on the total amount of monomers.
  • the acrylic elastomer can be a homopolymer of alkyl acrylate, or a copolymer that contains 50% by mass or more of structural units derived from alkyl acrylate and 50% by mass or less of structural units derived from other polymerizable monomers.
  • the alkyl acrylate constituting the acrylic elastic polymer is usually one having an alkyl group having 4 to 8 carbon atoms.
  • the other polymerizable monomers include monofunctional monomers such as alkyl methacrylates, such as methyl methacrylate and ethyl methacrylate; styrene-based monomers, such as styrene and alkylstyrene; unsaturated nitriles, such as acrylonitrile and methacrylonitrile; and polyfunctional monomers such as alkenyl esters of unsaturated carboxylic acids, such as allyl (meth)acrylate and methallyl (meth)acrylate; dialkenyl esters of dibasic acids, such as diallyl maleate; and unsaturated carboxylic acid diesters of glycols, such as alkylene glycol di(meth)acrylate.
  • the rubber particles containing an acrylic elastic polymer are preferably particles with a multilayer structure having a layer of an acrylic elastic polymer.
  • examples include a two-layer structure having a hard polymer layer mainly made of alkyl methacrylate on the outside of the acrylic elastic polymer layer, and a three-layer structure having a hard polymer layer mainly made of alkyl methacrylate on the inside of the acrylic elastic polymer layer.
  • the alkyl methacrylate is preferably methyl methacrylate.
  • the rubber particles preferably have an average particle size in the range of 10 nm to 350 nm up to the rubber elastomer layer (layer of acrylic elastomer) contained therein.
  • An average particle size in this range is advantageous in terms of increasing the toughness of the optical film and adhesion to the polarizer.
  • the average particle size is more preferably 30 nm or more, or even 50 nm or more, and more preferably 320 nm or less, or even 300 nm or less.
  • the average particle size of rubber particles up to the rubber elastomer layer can be measured as follows. That is, when such rubber particles are mixed with (meth)acrylic resin to form a film and the cross section is stained with an aqueous solution of ruthenium oxide, only the rubber elastomer layer is colored and observed to be almost circular, while the (meth)acrylic resin of the parent layer is not stained. From the cross section of the film thus stained, a thin section is prepared using a microtome or the like and observed under an electron microscope. Then, 100 dyed rubber particles are randomly selected, and the particle diameter of each (diameter up to the rubber elastomer layer) is calculated, and the number average value is taken as the average particle size. Because it is measured in this way, the average particle size obtained is the number average particle size.
  • the outermost layer is a hard polymer mainly made of methyl methacrylate and a rubber elastomer layer (a layer of an acrylic elastomer) is enclosed within it
  • the rubber particles when the rubber particles are mixed with the parent (meth)acrylic resin, the outermost layer of the rubber particles is mixed with the parent (meth)acrylic resin. Therefore, when the cross section is stained with ruthenium oxide and observed under an electron microscope, the rubber particles are observed as particles without the outermost layer.
  • the acrylic elastomer part of the inner layer is stained and observed as a particle with a single layer structure.
  • the middle layer is an acrylic elastomer
  • the outermost layer is a hard polymer mainly made of methyl methacrylate
  • the content of component (B) is preferably 17.5 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 24 parts by mass or more, per 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of increasing the toughness of the film formed from the (meth)acrylic resin composition.
  • the content is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 60 parts by mass or less, per 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of the elastic modulus of the film formed from the (meth)acrylic resin composition.
  • the mass ratio of the content of component (B) to the content of (meth)acrylic resin (A) is preferably 0.175 or more, more preferably 0.20 or more, and even more preferably 0.24 or more.
  • the mass ratio is preferably 0.80 or less, more preferably 0.70 or less, and even more preferably 0.60 or less.
  • the (meth)acrylic resin composition contains component (C).
  • the content of component (C) is an amount such that the mass ratio of the content of component (C) to the content of elastomer component (B) is 0.006 or more and 0.2 or less.
  • the above mass ratio is preferably 0.007 or more, more preferably 0.010 or more, even more preferably 0.015 or more, even more preferably 0.020 or more, and particularly preferably 0.022 or more.
  • the above mass ratio is 0.20 or less, preferably 0.18 or less, more preferably 0.16 or less, even more preferably 0.14 or less, and even more preferably 0.12 or less.
  • the content of component (C) is preferably 0.4 parts by mass or more, more preferably 0.45 parts by mass or more, even more preferably 0.5 parts by mass or more, and even more preferably 0.55 parts by mass or more, relative to 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of improving the heat resistance of the film formed from the (meth)acrylic resin composition.
  • the content is preferably 5.0 parts by mass or less, more preferably 4.5 parts by mass or less, even more preferably 4.0 parts by mass or less, and even more preferably 3.5 parts by mass or less, relative to 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of avoiding bleed-out of component (C) from the film formed from the (meth)acrylic resin composition.
  • the mass ratio of the content of component (C) to the content of (meth)acrylic resin (A) is preferably 0.004 or more, more preferably 0.0045 or more, even more preferably 0.005 or more, and even more preferably 0.0055 or more.
  • the mass ratio is preferably 0.05 or less, more preferably 0.045 or less, even more preferably 0.04 or less, and even more preferably 0.035 or less.
  • Component (C) may be a primary antioxidant, a secondary antioxidant, or a combination thereof.
  • phenol-based antioxidants and amine-based antioxidants can be used as primary antioxidants, and for example, phosphorus-based antioxidants and sulfur-based antioxidants can be used as secondary antioxidants.
  • phosphorus/phenol complex antioxidants can be used as component (C).
  • Phosphorus/phenol complex antioxidants are compounds that have one or more phosphorus atoms and one or more phenol structures in the molecule, and have the functions of both a primary antioxidant and a secondary antioxidant. Two or more types of component (C) may be used in combination.
  • phenol-based antioxidants examples include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], manufactured by BASF Corporation), Irganox 1076 (Irganox 1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), Irganox 1330 (Irganox 1330: 3,3',3'',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl)propionate, manufactured by BASF Corporation), and Irganox 1330 (Irganox 1330: 3,3',3'',5,5',5''-hexa-tert-butyl-
  • Irganox 3114 Irganox 3114: 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, manufactured by BASF Co., Ltd.
  • Irganox 3790 Irganox 3790: 1,3,5-tris((4-tert-butyl-3-hydroxy-2,6-xylyl)methyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, manufactured by BASF Co., Ltd.
  • Irganox 1035 Irganox 1035: thiodiethylenebis[3-(3,5-di-tert t-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation
  • Irganox 1135 Irganox 1135:
  • Amine-based antioxidants include, for example, Sumilizer (registered trademark) BPA (N,N'-di-sec-butyl-p-phenylenediamine), Sumilizer (registered trademark) BPA-M1, Sumilizer (registered trademark) 4ML (p-phenylenediamine derivative), Sumilizer (registered trademark) 9A (alkalinated diphenylamine), etc.
  • Examples of phosphorus-based antioxidants include Irgafos (registered trademark) 168 (Irgafos 168: tris(2,4-di-tert-butylphenyl)phosphite, manufactured by BASF Co., Ltd.), Irgafos 12 (Irgafos 12: tris[2-[[2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphine-6-yl]oxy]ethyl]amine, manufactured by BASF Co., Ltd.), and Irgafos 38 (I rgafos 38: bis(2,4-bis(1,1-dimethylethyl)-6-methylphenyl)ethyl ester phosphorous acid, manufactured by BASF Corporation; Adekastab (registered trademark) 329K, Adekastab PEP36, Adekastab PEP-8 (all manufactured by ADE
  • phosphorus/phenol complex antioxidants examples include Sumilizer (registered trademark) GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenz[d,f][1.3.2]dioxaphosphepine) (manufactured by Sumitomo Chemical Co., Ltd.).
  • Sulfur-based antioxidants include, for example, dialkyl thiodipropionate compounds such as dilauryl, dimyristyl, or distearyl thiodipropionate, and ⁇ -alkyl mercaptopropionate compounds of polyols such as tetrakis[methylene(3-dodecylthio)propionate]methane.
  • component (C) is preferably a combination of a primary antioxidant and a secondary antioxidant, and more preferably a combination of a phenolic antioxidant and a phosphorus-based antioxidant.
  • a secondary antioxidant preferably a phosphorus-based antioxidant
  • a primary antioxidant preferably a phenolic antioxidant
  • the content of the secondary antioxidant (preferably a phosphorus-based antioxidant) in the (meth)acrylic resin composition:the content of the primary antioxidant (preferably a phenolic antioxidant) is preferably 1:5 to 2:1, more preferably 1:2 to 2:1, in mass ratio.
  • the (meth)acrylic resin composition may contain other components in addition to those described above, as necessary.
  • other components include lubricants, antiblocking agents, heat stabilizers, UV absorbers, antistatic agents, impact resistance modifiers, surfactants, and mold release agents.
  • an ultraviolet absorber By including an ultraviolet absorber, it is possible to suppress deterioration of the (meth)acrylic resin composition, and in turn, the film formed therefrom, caused by ultraviolet light. In addition, by including an ultraviolet absorber, it is possible to suppress the generation of gel when a film formed from the (meth)acrylic resin composition is subjected to a thermal load.
  • the ultraviolet absorber examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc. Among these, benzotriazole compounds are preferred from the viewpoint of suppressing the generation of gel.
  • the blending amount is usually 1 part by mass or more, preferably 1.5 parts by mass or more, and usually 3 parts by mass or less, preferably 2.5 parts by mass or less, per 100 parts by mass of the (meth)acrylic resin (A).
  • the (meth)acrylic resin composition may be in a solid state or in a liquid state.
  • the shape of the (meth)acrylic resin composition is not particularly limited, and examples thereof include amorphous, granular, pellet-shaped, and granular.
  • the (meth)acrylic resin composition is preferably in a pellet-shaped state.
  • the (meth)acrylic resin composition can have excellent heat resistance.
  • the (meth)acrylic resin composition having excellent heat resistance preferably has a mass loss rate of 60% or less when subjected to Heating Test I (heating in an air atmosphere at a temperature of 270° C. or more and 275° C. or less for 3 hours) or Heating Test II (heating in an air atmosphere at a temperature of 250° C. or more and 255° C. or less for 6 hours).
  • the mass reduction rate when a heating test is performed can be measured according to the method shown in the Examples section below.
  • the mass reduction rate when heating test I or II is performed is more preferably 55% or less, even more preferably 50% or less, even more preferably 45% or less, particularly preferably 40% or less, even more particularly preferably 35% or less, even more particularly preferably 30% or less, and most preferably 25% or less, and may even be 20% or less, and even more preferably 15% or less.
  • the mass reduction rate is usually 1% or more.
  • the (meth)acrylic resin composition having excellent heat resistance has an IR intensity ratio when subjected to Heating Test I or II of preferably 0.070 or less, more preferably 0.065 or less, even more preferably 0.060 or less, still more preferably 0.050 or less, particularly preferably 0.040 or less, and most preferably 0.030 or less.
  • the IR intensity ratio is usually 0.005 or more. More specifically, the IR intensity ratio is measured and calculated according to the method shown in the following [Examples] section.
  • the peak intensity at a wave number of 1725 cm -1 means the signal intensity value at that wave number.
  • the peak at a wave number of 1725 cm ⁇ 1 is a peak derived from the carbonyl group of the carboxylate group or carboxy group of the monomer units constituting the components (A) and (B).
  • the signal at a wave number of 1785 ⁇ 5 cm ⁇ 1 is a signal derived from the acid anhydride group contained in the gel generated by the heat load in the heating test. It can be said that the larger the IR intensity ratio, the more gel has been generated in the (meth)acrylic resin composition, and the IR intensity ratio can be an index of the heat resistance (suppression of gel generation) of the (meth)acrylic resin composition.
  • the (meth)acrylic resin composition is formed into a film, and then, if necessary, stretched to obtain a (meth)acrylic resin film.
  • the (meth)acrylic resin film contains components (A), (B) and (C).
  • the (meth)acrylic resin film can be suitably used as an optical film, for example, a protective film for a polarizer.
  • the (meth)acrylic resin film may be either an unstretched film or a uniaxially or biaxially stretched film.
  • the biaxial stretching may be simultaneous biaxial stretching in which the film is stretched simultaneously in two stretching directions, or may be sequential biaxial stretching in which the film is stretched in a first direction and then stretched in a second direction different from the first direction.
  • the thickness of the film is usually 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 120 ⁇ m or less, more preferably 10 ⁇ m or more and 85 ⁇ m or less, and even more preferably 15 ⁇ m or more and 65 ⁇ m or less.
  • the thickness of the film may be 60 ⁇ m or less, or may be 50 ⁇ m or less. Reducing the thickness of the film is advantageous for reducing the thickness of a polarizing plate containing the film, and ultimately of an image display device to which the film is applied.
  • the (meth)acrylic resin film may have a surface treatment layer (coating layer) on one or both sides.
  • the surface treatment layer include a hard coat layer, an anti-glare layer, an anti-reflection layer, a light diffusion layer, an antistatic layer, an antifouling layer, a conductive layer, etc., and a hard coat layer is preferable.
  • the surface treatment layer include a cured layer of a curable resin composition containing an active energy ray curable compound.
  • the active energy ray curable compound is a compound that is polymerized and cured by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • the active energy ray curable compound include monofunctional, bifunctional, or trifunctional or higher (meth)acrylate compounds.
  • One or more types of active energy ray curable compounds can be used.
  • the thickness of the surface treatment layer is, for example, 0.1 ⁇ m or more and 50 ⁇ m or less, preferably 0.5 ⁇ m or more and 30 ⁇ m or less, more preferably 1 ⁇ m or more and 20 ⁇ m or less, and even more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the term "polarizing plate” refers to an optical laminate including a polarizer and a thermoplastic resin film laminated on one or both sides of the polarizer.
  • the polarizer and the thermoplastic resin film are laminated via an adhesive layer.
  • the adhesive layer is a layer formed from an adhesive composition, for example, a layer of a cured product of the adhesive composition.
  • the polarizing plate may include a film or layer other than the polarizer and the thermoplastic resin film.
  • the polarizing plate according to the present invention comprises a polarizer, an adhesive layer, and the above-mentioned (meth)acrylic resin film as a thermoplastic resin film, in this order.
  • the (meth)acrylic resin film is a film formed from the (meth)acrylic resin composition according to the present invention.
  • the polarizer and the adhesive layer are in contact, and the adhesive layer and the (meth)acrylic resin film are in contact.
  • the polarizing plate according to the present invention uses the (meth)acrylic resin film according to the present invention as a protective film for the polarizer, so that the adhesion between the polarizer and the (meth)acrylic resin film can be good, and thus the durability of the polarizing plate can be good.
  • the polarizing plate according to the present invention can be suitably used in image display devices such as liquid crystal display devices and organic EL devices.
  • the polarizing plate of the present invention can include, in this order, a polarizer 30, a first adhesive layer 15, and a first thermoplastic resin film 10 which is the (meth)acrylic resin film of the present invention. That is, the polarizing plate can include a polarizer 30 and a first thermoplastic resin film 10 laminated to one surface of the polarizer 30 via a first adhesive layer 15. A primer layer may be interposed between the first adhesive layer 15 and the first thermoplastic resin film 10, or the first adhesive layer 15 may be in direct contact with the first thermoplastic resin film 10. It is preferable that the polarizer 30 and the first adhesive layer 15 are in direct contact with each other.
  • the polarizing plate of the present invention may include a polarizer 30, a first thermoplastic resin film 10 which is the (meth)acrylic resin film of the present invention and is laminated to one surface of the polarizer 30 via a first adhesive layer 15, and a second thermoplastic resin film 20 which is laminated to the other surface of the polarizer 30 via a second adhesive layer 25.
  • the first adhesive layer 15 and the first thermoplastic resin film 10 are preferably in direct contact with each other.
  • the polarizer 30 and the first adhesive layer 15 are preferably in direct contact with each other.
  • the second adhesive layer 25 and the second thermoplastic resin film 20 are preferably in direct contact with each other.
  • the polarizer 30 and the second adhesive layer 25 are preferably in direct contact with each other.
  • the polarizing plate according to the present invention is preferably incorporated into an image display device so that the first thermoplastic resin film 10 side is the viewing side.
  • the optical film according to the present invention is preferably a protective film laminated on the viewing side of the polarizer 30.
  • the polarizing plate according to the present invention may include layers (or films) other than those described above, without being limited to the examples shown in Figs. 1 and 2.
  • the other layers include an adhesive layer laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, and/or the polarizer 30; a separate film (also called a "release film”) laminated on the outer surface of the adhesive layer; a protective film (also called a "surface protection film”) laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, and/or the polarizer 30; and an optically functional film (or layer) laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, and/or the polarizer 30 via an adhesive layer or adhesive layer.
  • the polarizer 30 is a film having a function of selectively transmitting linearly polarized light in one direction from natural light.
  • the polarizer 30 include an iodine-based polarizer in which iodine as a dichroic pigment is adsorbed and oriented on a polyvinyl alcohol-based resin film, a dye-based polarizer in which a dichroic dye as a dichroic pigment is adsorbed and oriented on a polyvinyl alcohol-based resin film, and a coating-type polarizer in which a dichroic dye in a lyotropic liquid crystal state is coated, oriented, and fixed.
  • These polarizers are called absorption-type polarizers because they selectively transmit linearly polarized light in one direction from natural light and absorb linearly polarized light in the other direction.
  • the polarizer 30 is not limited to an absorptive polarizer, and may be a reflective polarizer that selectively transmits linearly polarized light in one direction from natural light and reflects linearly polarized light in the other direction, or a scattering polarizer that scatters linearly polarized light in the other direction, but an absorptive polarizer is preferred because it provides excellent visibility when the polarizing plate is applied to an image display device, etc.
  • the polarizer 30 is more preferably a polyvinyl alcohol-based polarizer made of a polyvinyl alcohol-based resin, even more preferably a polyvinyl alcohol-based polarizer in which a dichroic pigment such as iodine or a dichroic dye is adsorbed and oriented in a polyvinyl alcohol-based resin film, and particularly preferably a polyvinyl alcohol-based polarizer in which iodine is adsorbed and oriented in a polyvinyl alcohol-based resin film (a polyvinyl alcohol-iodine-based polarizer).
  • the polyvinyl alcohol-based polarizer can be produced by a conventionally known method using a polyvinyl alcohol-based resin film (or layer).
  • the thickness of the polarizer 30 can be 30 ⁇ m or less, and is preferably 25 ⁇ m or less (for example, 20 ⁇ m or less, further 15 ⁇ m or less, further 10 ⁇ m or less, and further 8 ⁇ m or less).
  • the thickness of the polarizer 30 is usually 2 ⁇ m or more. Reducing the thickness of the polarizer 30 is advantageous for reducing the thickness of the polarizing plate, and therefore the image display device to which it is applied.
  • the second thermoplastic resin film 20 can be a film made of a light-transmitting (preferably optically transparent) thermoplastic resin, for example, a polyolefin-based resin such as a linear polyolefin-based resin (polyethylene resin, polypropylene-based resin, etc.) or a cyclic polyolefin-based resin (norbornene-based resin, etc.); a cellulose ester-based resin such as triacetyl cellulose or diacetyl cellulose; a polyester-based resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; a polycarbonate-based resin; or a (meth)acrylic-based resin.
  • a polyolefin-based resin such as a linear polyolefin-based resin (polyethylene resin, polypropylene-based resin, etc.) or a cyclic polyolefin-based resin (norbornene-based resin, etc.);
  • the second thermoplastic resin film 20 may be the (meth)acrylic resin film of the present invention.
  • the resin components constituting the second thermoplastic resin film 20 may differ in composition, etc. from the resin components constituting the (meth)acrylic resin film of the present invention.
  • the second thermoplastic resin film 20 may be either an unstretched film or a uniaxially or biaxially stretched film.
  • the biaxial stretching may be simultaneous biaxial stretching in which the film is stretched simultaneously in two stretching directions, or sequential biaxial stretching in which the film is stretched in a first direction and then stretched in a second direction different from the first direction.
  • the second thermoplastic resin film 20 may be a protective film that protects the polarizer 30, or may be a protective film that also has an optical function such as a retardation film.
  • a film made of the above-mentioned thermoplastic resin may be stretched (uniaxially or biaxially stretched, etc.) or a liquid crystal layer may be formed on the thermoplastic resin film, thereby making it possible to obtain a retardation film with an arbitrary retardation value.
  • the second thermoplastic resin film 20 may contain additives as necessary.
  • additives include lubricants, antiblocking agents, heat stabilizers, antioxidants, UV absorbers, antistatic agents, impact resistance improvers, surfactants, and release agents.
  • the first thermoplastic resin film 10 is a (meth)acrylic resin film according to the present invention
  • the second thermoplastic resin film 20 is a polyolefin-based resin film (preferably a cyclic polyolefin-based resin film), a cellulose ester-based resin film, or a polyester-based resin film.
  • the first thermoplastic resin film 10 is the (meth)acrylic resin film according to the present invention
  • the second thermoplastic resin film 20 is the (meth)acrylic resin film.
  • the (meth)acrylic resin film that is the second thermoplastic resin film 20 may be the (meth)acrylic resin film according to the present invention.
  • the second thermoplastic resin film 20 may have a coating layer (surface treatment layer) such as a hard coat layer, an anti-glare layer, an anti-reflection layer, a light diffusion layer, an antistatic layer, an anti-fouling layer, or a conductive layer on its outer surface (the surface opposite the polarizer 30).
  • a coating layer surface treatment layer
  • a hard coat layer such as a hard coat layer, an anti-glare layer, an anti-reflection layer, a light diffusion layer, an antistatic layer, an anti-fouling layer, or a conductive layer on its outer surface (the surface opposite the polarizer 30).
  • the thickness of the second thermoplastic resin film 20 is usually 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 120 ⁇ m or less, more preferably 10 ⁇ m or more and 85 ⁇ m or less, and even more preferably 15 ⁇ m or more and 65 ⁇ m or less.
  • the thickness of the second thermoplastic resin film 20 may be 60 ⁇ m or less, or may be 50 ⁇ m or less. Reducing the thickness of the second thermoplastic resin film 20 is advantageous for reducing the thickness of the polarizing plate, and ultimately the image display device to which it is applied, etc.
  • a polarizing plate having the configuration shown in FIG. 1 can be obtained by laminating and adhering a first thermoplastic resin film 10, which is the (meth)acrylic resin film of the present invention, to one surface of a polarizer 30 via a first adhesive layer 15, and a polarizing plate having the configuration shown in FIG. 2 can be obtained by further laminating and adhering a second thermoplastic resin film 20 to the other surface of the polarizer 30 via a second adhesive layer 25.
  • thermoplastic resin films When manufacturing a polarizing plate having both the first thermoplastic resin film 10 and the second thermoplastic resin film 20 (hereinafter, these are collectively referred to simply as “thermoplastic resin films”), these thermoplastic resin films may be laminated and bonded in stages, one side at a time, or the thermoplastic resin films on both sides may be laminated and bonded simultaneously.
  • Examples of the adhesive composition forming the first adhesive layer 15 and the second adhesive layer 25 include a water-based adhesive or an active energy ray-curable adhesive.
  • the adhesive composition forming the first adhesive layer 15 and the adhesive composition forming the second adhesive layer 25 may be the same or different.
  • the adhesive used for bonding the (meth)acrylic resin film according to the present invention to the polarizer is preferably an active energy ray-curable adhesive.
  • water-based adhesives include conventionally known adhesive compositions that use polyvinyl alcohol resin or urethane resin as the main component.
  • Active energy ray-curable adhesives are adhesives that are cured by exposure to active energy rays such as ultraviolet light, visible light, electron beams, and X-rays. When an active energy ray-curable adhesive is used, the adhesive layer of the polarizing plate is a cured layer of the adhesive.
  • the active energy ray curable adhesive can be an adhesive containing an epoxy-based compound that cures by cationic polymerization as a curable component, and is preferably an ultraviolet ray curable adhesive containing such an epoxy-based compound as a curable component.
  • An epoxy-based compound means a compound having an average of one or more epoxy groups, preferably two or more epoxy groups, in the molecule. Only one type of epoxy-based compound may be used, or two or more types may be used in combination.
  • Epoxy compounds include hydrogenated epoxy compounds (glycidyl ethers of polyols having alicyclic rings) obtained by reacting epichlorohydrin with alicyclic polyols obtained by hydrogenating the aromatic rings of aromatic polyols; aliphatic epoxy compounds such as polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts; and alicyclic epoxy compounds, which are epoxy compounds having one or more epoxy groups bonded to an alicyclic ring in the molecule.
  • the active energy ray curable adhesive can contain a radically polymerizable (meth)acrylic compound as a curable component, instead of or together with the above-mentioned epoxy compound.
  • the (meth)acrylic compound include (meth)acryloyloxy group-containing compounds such as (meth)acrylate monomers having one or more (meth)acryloyloxy groups in the molecule; and (meth)acrylate oligomers obtained by reacting two or more types of functional group-containing compounds and having at least two (meth)acryloyloxy groups in the molecule.
  • the active energy ray-curable adhesive contains an epoxy compound that cures by cationic polymerization as a curable component, it preferably contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator include aromatic diazonium salts, onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
  • the active energy ray-curable adhesive contains a radical polymerizable component such as a (meth)acrylic compound, it is preferable that the active energy ray-curable adhesive contains a photoradical polymerization initiator.
  • photoradical polymerization initiator examples include acetophenone-based initiators, benzophenone-based initiators, benzoin ether-based initiators, thioxanthone-based initiators, xanthone, fluorenone, camphorquinone, benzaldehyde, and anthraquinone.
  • the bonding between the polarizer 30 and the thermoplastic resin film can include a process of applying an adhesive composition to the bonding surface of the polarizer 30 and/or the bonding surface of the thermoplastic resin film, or injecting the adhesive composition between the polarizer 30 and the thermoplastic resin film, overlapping the two films with a layer of the adhesive composition between them, and laminating them by pressing them from above and below using, for example, a laminating roll.
  • the adhesive composition layer can be formed by various coating methods, such as using a doctor blade, wire bar, die coater, comma coater, gravure coater, etc.
  • the adhesive composition can be cast between the polarizer 30 and the thermoplastic resin film while the polarizer 30 and the thermoplastic resin film are continuously fed so that the bonding surfaces of both are on the inside.
  • one or both of the bonding surfaces of the polarizer 30 and the thermoplastic resin film may be subjected to an easy-adhesion treatment (surface activation treatment) such as saponification treatment, corona discharge treatment, plasma treatment, flame treatment, primer treatment, anchor coating treatment, etc.
  • an easy-adhesion treatment such as saponification treatment, corona discharge treatment, plasma treatment, flame treatment, primer treatment, anchor coating treatment, etc.
  • the adhesive composition layer is cured by irradiating with active energy rays.
  • the light source used for irradiating the active energy rays may be any light source capable of generating ultraviolet rays, electron beams, X-rays, etc.
  • light sources having an emission distribution at a wavelength of 400 nm or less such as low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave excited mercury lamps, and metal halide lamps, are preferably used.
  • the thickness of the first adhesive layer 15 and the second adhesive layer 25 is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 0.5 ⁇ m or more and 80 ⁇ m or less, more preferably 1 ⁇ m or more and 60 ⁇ m or less, and even more preferably 2 ⁇ m or more and 50 ⁇ m or less in the polarizing plate. From the viewpoint of thinning the polarizing plate, it is also preferable to set the thickness of the adhesive layer to 30 ⁇ m or less, and further 20 ⁇ m or less. When a water-based adhesive is used, the thickness of the adhesive layer may be smaller than the above.
  • the first adhesive layer 15 and the second adhesive layer 25 may have the same thickness or different thicknesses.
  • the polarizing plate may include optically functional films other than the polarizer 30 in order to impart desired optical functions, and a suitable example of such a film is a retardation film.
  • the second thermoplastic resin film 20 can also serve as a retardation film, but a retardation film can also be laminated separately from the thermoplastic resin film. In the latter case, the retardation film can be laminated on the outer surface of the second thermoplastic resin film 20 via a pressure-sensitive adhesive layer or an adhesive layer. In addition, a retardation film can be laminated instead of the second thermoplastic resin film 20.
  • a specific example of this is a configuration in which a retardation film is laminated on the other surface of the polarizer 30 in a single-sided protected polarizing plate in which the first thermoplastic resin film 10 is laminated on one surface of the polarizer 30 shown in FIG. 1.
  • the retardation film can be laminated on the surface of the polarizer 30 via a pressure-sensitive adhesive layer or an adhesive layer.
  • the retardation film examples include a birefringent film composed of a stretched film of a thermoplastic resin having light transmission properties; a film in which discotic liquid crystal or nematic liquid crystal is oriented and fixed; and a film in which the above-mentioned liquid crystal layer is formed on a substrate film.
  • the substrate film is usually a film made of a thermoplastic resin, and an example of the thermoplastic resin is a cellulose ester resin such as triacetyl cellulose.
  • the thermoplastic resin forming the birefringent film those described for the second thermoplastic resin film 20 can be used.
  • optically functional films examples include a light collecting plate, a brightness enhancing film, a reflective layer (reflective film), a semi-transmissive reflective layer (semi-transmissive reflective film), a light diffusing layer (light diffusing film), etc. These are generally provided when the polarizing plate is a polarizing plate that is placed on the back side (backlight side) of the liquid crystal cell.
  • the polarizing plate according to the present invention may contain a pressure-sensitive adhesive layer for attaching it to an image display element such as a liquid crystal cell or an organic EL element, or to other optical members.
  • the pressure-sensitive adhesive layer may be laminated on the outer surface (the surface opposite to the first thermoplastic resin film 10) of the polarizer 30 in the polarizing plate having the configuration shown in Fig. 1, or on the outer surface of the first thermoplastic resin film 10 or the second thermoplastic resin film 20 in the polarizing plate having the configuration shown in Fig. 2.
  • the adhesive layer is laminated on the outer surface of the second thermoplastic resin film 20, i.e., the surface opposite the first thermoplastic resin film 10 side relative to the polarizer 30.
  • the polarizing plate when the polarizing plate is attached to an image display element, the polarizing plate is attached to the image display element via the adhesive layer so that the first thermoplastic resin film 10 side is the viewing side.
  • the adhesive used in the adhesive layer may be one whose base polymer is a (meth)acrylic resin, silicone resin, polyester resin, polyurethane resin, polyether resin, or the like.
  • (meth)acrylic adhesives are preferred from the standpoints of transparency, adhesive strength, reliability, weather resistance, heat resistance, reworkability, and the like.
  • the thickness of the adhesive layer is determined according to its adhesive strength, etc., but is preferably in the range of 1 ⁇ m to 50 ⁇ m, and more preferably 2 ⁇ m to 40 ⁇ m.
  • the polarizing plate may include a separate film laminated on the outer surface of the adhesive layer.
  • the separate film may be a film made of a polyethylene-based resin such as polyethylene, a polypropylene-based resin such as polypropylene, a polyester-based resin such as polyethylene terephthalate, or the like. Of these, a stretched film of polyethylene terephthalate is preferred.
  • the adhesive layer may contain fillers such as glass fibers, glass beads, resin beads, metal powders and other inorganic powders, pigments, colorants, antioxidants, ultraviolet absorbers, antistatic agents, etc., as required.
  • the polarizing plate according to the present invention may contain a protective film for protecting its surface (such as the thermoplastic resin film surface or the polarizer surface).
  • the protective film is peeled off and removed together with the pressure-sensitive adhesive layer thereof after the polarizing plate is attached to, for example, an image display element or other optical members.
  • the polarizing plate is laminated on the surface of the first thermoplastic resin film 10 which is the (meth)acrylic resin film according to the present invention.
  • the protective film is, for example, composed of a base film and an adhesive layer laminated thereon.
  • the adhesive layer is as described above.
  • the resin constituting the base film may be, for example, a thermoplastic resin such as a polyethylene-based resin such as polyethylene, a polypropylene-based resin such as polypropylene, a polyester-based resin such as polyethylene terephthalate or polyethylene naphthalate, or a polycarbonate-based resin.
  • a polyester-based resin such as polyethylene terephthalate is preferred.
  • Mass reduction rate 100 ⁇ 1 ⁇ (total mass after heating test I ⁇ mass of combustion boat)/mass of sample before heating test I ⁇
  • the peak intensity at a wave number of 1725 cm ⁇ 1 means the signal intensity value at that wave number.
  • Examples 8 to 13> Among the components shown in Table 3, the components other than the antioxidant were blended in the amounts (parts by mass) shown in Table 3, and extrusion-kneaded at 240° C. to obtain pellets. Then, a predetermined amount of antioxidant (C-1) and/or (C-2) was mixed with the pellets to obtain a (meth)acrylic resin composition (mixed pellets) which is a mixture of the pellets and the antioxidant.
  • (C)/(B) represents the ratio of the content of component (C) (the total content of components (C-1) and (C-2)) to the content of component (B).
  • (B)/(A) represents the ratio of the content of component (B) to the content of component (A) (the total content of components (A-1) and (A-2)).
  • (C)/(A) represents the ratio of the content of component (C) (the total content of components (C-1) and (C-2)) to the content of component (A) (the total content of components (A-1) and (A-2)).
  • Mass reduction rate 100 ⁇ 1 ⁇ (total mass after Heating Test II ⁇ mass of aluminum cup)/mass of sample before Heating Test II ⁇
  • (Meth)acrylic resin (A-1) A methacrylic resin having a triad syndiotacticity (rr) of 76% (a homopolymer of methyl methacrylate)
  • Antioxidant (C-1) "ADEKA STAB AO-80" (3,9-bis(2-(3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy)-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, manufactured by ADEKA Corporation)
  • Antioxidant (C-2) "ADEKA STAB PEP36” (3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, manufactured by ADEKA Corporation)
  • Ultraviolet absorber "ADEKA STAB LA-31RG”(2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], manufactured by ADEKA Corporation)
  • the IR intensity ratios of the (meth)acrylic resin compositions obtained in Examples 1 to 13 were smaller than those of the (meth)acrylic resin compositions obtained in Comparative Examples 1 and 2, and the generation of gel when subjected to thermal load was suppressed.
  • the (meth)acrylic resin compositions obtained in Examples 1 to 13 had a low mass loss rate due to heating and were excellent in heat resistance.

Abstract

(Abstract) (Problem) To provide a (meth)acrylic resin composition which exhibits excellent heat resistance, a film formed from the same and a polarizing plate containing said film. (Solution) Provided are: a (meth)acrylic resin composition which contains a (meth)acrylic resin (A), an elastomer component (B) and an oxidation inhibitor (C), wherein the mass ratio of the content of the oxidation inhibitor (C) to the content of the elastomer component (B) is 0.006-0.2, inclusive; a film formed from the same; and a polarizing plate containing said film. [Selected drawing] None

Description

(メタ)アクリル樹脂組成物、フィルム及び偏光板(Meth)acrylic resin composition, film and polarizing plate
 本発明は、(メタ)アクリル樹脂組成物及びそれから形成されるフィルム、並びに偏光板に関する。 The present invention relates to a (meth)acrylic resin composition and a film formed therefrom, as well as a polarizing plate.
 液晶表示装置、有機EL表示装置に代表される画像表示装置等に広く用いられている偏光板は通常、偏光子の片面又は両面に保護フィルムとして熱可塑性樹脂フィルムを貼合した構成を有する。特開2008-102274号公報(特許文献1)には、保護フィルムとしてアクリル樹脂フィルムを用い得ることが記載されている。 Polarizing plates, which are widely used in image display devices such as liquid crystal display devices and organic EL display devices, usually have a structure in which a thermoplastic resin film is laminated as a protective film on one or both sides of a polarizer. JP 2008-102274 A (Patent Document 1) describes that an acrylic resin film can be used as the protective film.
特開2008-102274号公報JP 2008-102274 A
 (メタ)アクリル樹脂フィルムを(メタ)アクリル樹脂組成物から作製する際には、フィルム成形工程、必要に応じてさらに延伸工程を経るため、(メタ)アクリル樹脂組成物に熱負荷がかかる。したがって、(メタ)アクリル樹脂組成物には、熱負荷による劣化を生じにくいことが求められる。 When producing a (meth)acrylic resin film from a (meth)acrylic resin composition, the (meth)acrylic resin composition is subjected to a thermal load due to the film forming process and, if necessary, a stretching process. Therefore, the (meth)acrylic resin composition is required to be resistant to degradation due to thermal load.
 本発明の目的は、耐熱性に優れる(メタ)アクリル樹脂組成物及びそれから形成されるフィルム、並びに、該フィルムを含む偏光板を提供することにある。 The object of the present invention is to provide a (meth)acrylic resin composition having excellent heat resistance, a film formed therefrom, and a polarizing plate including the film.
 本発明は、以下に示す(メタ)アクリル樹脂組成物、フィルム及び偏光板を提供する。
 〔1〕 (メタ)アクリル樹脂(A)、エラストマー成分(B)及び酸化防止剤(C)を含み、
 前記エラストマー成分(B)の含有量に対する前記酸化防止剤(C)の含有量の質量比が0.006以上0.2以下である、(メタ)アクリル樹脂組成物。
 〔2〕 前記エラストマー成分(B)の含有量が、前記(メタ)アクリル樹脂(A)100質量部に対して、17.5質量部以上である、〔1〕に記載の(メタ)アクリル樹脂組成物。
 〔3〕 前記酸化防止剤(C)の含有量が、前記(メタ)アクリル樹脂(A)100質量部に対して、0.4質量部以上3.5質量部以下である、〔1〕又は〔2〕に記載の(メタ)アクリル樹脂組成物。
 〔4〕 空気雰囲気中、270℃以上275℃以下の温度で3時間加熱したとき、又は、空気雰囲気中、250℃以上255℃以下の温度で6時間加熱したときの質量減少率が60%以下である、〔1〕~〔3〕のいずれかに記載の(メタ)アクリル樹脂組成物。
 〔5〕 前記エラストマー成分(B)がゴム粒子である、〔1〕~〔4〕のいずれかに記載の(メタ)アクリル樹脂組成物。
 〔6〕 前記(メタ)アクリル樹脂(A)は、シンジオタクティシティが互いに異なる(メタ)アクリル樹脂(A-1)及び(メタ)アクリル樹脂(A-2)を含む、〔1〕~〔5〕のいずれかに記載の(メタ)アクリル樹脂組成物。
 〔7〕 ペレット形状である、〔1〕~〔6〕のいずれかに記載の(メタ)アクリル樹脂組成物。
 〔8〕 〔1〕~〔7〕のいずれかに記載の(メタ)アクリル樹脂組成物から形成されるフィルム。
 〔9〕 偏光子、接着剤層及び〔8〕に記載のフィルムをこの順に含む偏光板。
The present invention provides a (meth)acrylic resin composition, a film, and a polarizing plate described below.
[1] A composition comprising a (meth)acrylic resin (A), an elastomer component (B), and an antioxidant (C),
a mass ratio of a content of the antioxidant (C) to a content of the elastomer component (B) is 0.006 or more and 0.2 or less.
[2] The (meth)acrylic resin composition according to [1], wherein the content of the elastomer component (B) is 17.5 parts by mass or more per 100 parts by mass of the (meth)acrylic resin (A).
[3] The (meth)acrylic resin composition according to [1] or [2], wherein the content of the antioxidant (C) is 0.4 parts by mass or more and 3.5 parts by mass or less per 100 parts by mass of the (meth)acrylic resin (A).
[4] The (meth)acrylic resin composition according to any one of [1] to [3], which has a mass reduction rate of 60% or less when heated in an air atmosphere at a temperature of 270° C. or more and 275° C. or less for 3 hours, or when heated in an air atmosphere at a temperature of 250° C. or more and 255° C. or less for 6 hours.
[5] The (meth)acrylic resin composition according to any one of [1] to [4], wherein the elastomer component (B) is rubber particles.
[6] The (meth)acrylic resin composition according to any one of [1] to [5], wherein the (meth)acrylic resin (A) includes a (meth)acrylic resin (A-1) and a (meth)acrylic resin (A-2) having syndiotacticities different from each other.
[7] The (meth)acrylic resin composition according to any one of [1] to [6], which is in the form of pellets.
[8] A film formed from the (meth)acrylic resin composition according to any one of [1] to [7].
[9] A polarizing plate comprising a polarizer, an adhesive layer, and the film according to [8] in this order.
 耐熱性に優れる(メタ)アクリル樹脂組成物及びそれから形成されるフィルム、並びに、該フィルムを含む偏光板を提供することができる。 It is possible to provide a (meth)acrylic resin composition having excellent heat resistance, a film formed therefrom, and a polarizing plate including the film.
本発明に係る偏光板の層構成の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of a polarizing plate according to the present invention. 本発明に係る偏光板の層構成の他の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the layer structure of the polarizing plate according to the present invention.
 <(メタ)アクリル樹脂組成物>
 本発明に係る(メタ)アクリル樹脂組成物(以下、単に「(メタ)アクリル樹脂組成物」ともいう。)は、(メタ)アクリル樹脂(A)、エラストマー成分(B)及び酸化防止剤(C)を含む。以下、(メタ)アクリル樹脂(A)、エラストマー成分(B)、酸化防止剤(C)をそれぞれ「成分(A)」、「成分(B)」、「成分(C)」ともいう。
<(Meth)acrylic resin composition>
The (meth)acrylic resin composition according to the present invention (hereinafter also simply referred to as "(meth)acrylic resin composition") contains a (meth)acrylic resin (A), an elastomer component (B), and an antioxidant (C). Hereinafter, the (meth)acrylic resin (A), the elastomer component (B), and the antioxidant (C) are also referred to as "component (A)", "component (B)", and "component (C)", respectively.
 本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルからなる群より選択される少なくとも1種を表す。「(メタ)アクリロイル」及び「(メタ)アクリレート」等の表記についても同様である。 In this specification, "(meth)acrylic" refers to at least one selected from the group consisting of acrylic and methacrylic. The same applies to expressions such as "(meth)acryloyl" and "(meth)acrylate".
 [1](メタ)アクリル樹脂(A)
 成分(A)は、熱可塑性の(メタ)アクリル樹脂である。成分(A)は、シンジオタクティシティが互いに異なる(メタ)アクリル樹脂(A-1)及び(メタ)アクリル樹脂(A-2)を含んでいてもよい。以下、(メタ)アクリル樹脂(A-1)、(メタ)アクリル樹脂(A-2)をそれぞれ「成分(A-1)」、「成分(A-2)」ともいう。成分(A-1)は、シンジオタクティシティが成分(A-2)よりも高い。あるいは、成分(A)は、1種の(メタ)アクリル樹脂からなっていてもよい(例えば、成分(A-1)又は成分(A-2))。
[1] (Meth)acrylic resin (A)
Component (A) is a thermoplastic (meth)acrylic resin. Component (A) may contain (meth)acrylic resin (A-1) and (meth)acrylic resin (A-2) having different syndiotacticity. Hereinafter, (meth)acrylic resin (A-1) and (meth)acrylic resin (A-2) are also referred to as "component (A-1)" and "component (A-2)", respectively. Component (A-1) has a higher syndiotacticity than component (A-2). Alternatively, component (A) may be composed of one type of (meth)acrylic resin (for example, component (A-1) or component (A-2)).
 成分(A-1)は、好ましくは、メタクリル酸エステルを主たる単量体とする(50質量%以上含有する)重合体である。成分(A-1)は、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステルと他の共重合成分との共重合体であってもよい。 Component (A-1) is preferably a polymer containing methacrylic acid ester as the main monomer (containing 50% by mass or more). Component (A-1) may be a homopolymer of methacrylic acid ester or a copolymer of methacrylic acid ester and another copolymerization component.
 成分(A-1)は、メタクリル酸エステルに由来する構成単位の含有量が、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、なおさらに好ましくは99質量%以上、特に好ましくは100質量%である。
 好ましい一実施形態において、成分(A-1)は、メタクリル酸エステルの単独重合体である。好ましい他の実施形態において、成分(A-1)は、メタクリル酸メチルの単独重合体である。
The content of structural units derived from methacrylic acid ester in component (A-1) is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, still more preferably 99% by mass or more, and particularly preferably 100% by mass.
In one preferred embodiment, component (A-1) is a homopolymer of a methacrylic acid ester. In another preferred embodiment, component (A-1) is a homopolymer of methyl methacrylate.
 上記メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-、i-又はt-ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル等が挙げられる。成分(A-1)は、1種又は2種以上のメタクリル酸エステルに由来する構成単位を含んでいてもよい。
 メタクリル酸エステルは、好ましくはメタクリル酸メチルを含み、より好ましくはメタクリル酸メチルである。
Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-, i-, or t-butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, etc. Component (A-1) may contain structural units derived from one or more methacrylic acid esters.
The methacrylic acid ester preferably comprises methyl methacrylate, more preferably methyl methacrylate.
 上記他の共重合成分としては、例えば、
 アクリル酸エチル、アクリル酸n-、i-又はt-ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル等のアクリル酸エステル類;
 2-(ヒドロキシメチル)アクリル酸メチル、2-(1-ヒドロキシエチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸n-、i-又はt-ブチル等のヒドロキシアルキルアクリル酸エステル類;
 メタクリル酸、アクリル酸等の不飽和酸類;
 クロロスチレン、ブロモスチレン等のハロゲン化スチレン類;
 ビニルトルエン、α-メチルスチレン等の置換スチレン類;
 アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;
 無水マレイン酸、無水シトラコン酸等の不飽和酸無水物類;
 フェニルマレイミド、シクロヘキシルマレイミド等の不飽和イミド類;
等の単官能単量体が挙げられる。
 上記他の単官能単量体は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
Examples of the other copolymerization components include
acrylic acid esters such as ethyl acrylate, n-, i- or t-butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate;
Hydroxyalkyl acrylates such as methyl 2-(hydroxymethyl)acrylate, methyl 2-(1-hydroxyethyl)acrylate, ethyl 2-(hydroxymethyl)acrylate, and n-, i-, or t-butyl 2-(hydroxymethyl)acrylate;
Unsaturated acids such as methacrylic acid and acrylic acid;
Halogenated styrenes such as chlorostyrene and bromostyrene;
Substituted styrenes such as vinyltoluene and α-methylstyrene;
Unsaturated nitriles such as acrylonitrile and methacrylonitrile;
Unsaturated acid anhydrides such as maleic anhydride and citraconic anhydride;
Unsaturated imides such as phenylmaleimide and cyclohexylmaleimide;
and the like monofunctional monomers.
The other monofunctional monomers may be used alone or in combination of two or more kinds.
 上記他の共重合成分として多官能単量体が用いられてもよい。
 多官能単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端ヒドロキシル基を(メタ)アクリル酸でエステル化したもの;
 プロピレングリコール又はそのオリゴマーの両末端ヒドロキシル基を(メタ)アクリル酸でエステル化したもの;
 ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の2価アルコールのヒドロキシル基を(メタ)アクリル酸でエステル化したもの;
 ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物、又はこれらのハロゲン置換体の両末端ヒドロキシル基を(メタ)アクリル酸でエステル化したもの;
 トリメチロールプロパン、ペンタエリスリトール等の多価アルコールを(メタ)アクリル酸でエステル化したもの、並びにこれら末端ヒドロキシル基にグリシジル(メタ)アクリレートのエポキシ基を開環付加させたもの;
 コハク酸、アジピン酸、テレフタル酸、フタル酸、これらのハロゲン置換体等の二塩基酸、又はこれらのアルキレンオキサイド付加物等にグリシジル(メタ)アクリレートのエポキシ基を開環付加させたもの;
 アリール(メタ)アクリレート;ジビニルベンゼン等の芳香族ジビニル化合物;
等が挙げられる。
As the other copolymerization component, a polyfunctional monomer may be used.
Examples of the polyfunctional monomer include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate, and tetradecaethylene glycol di(meth)acrylate, which are esters of both terminal hydroxyl groups of ethylene glycol or its oligomers with (meth)acrylic acid;
Propylene glycol or its oligomer, both terminal hydroxyl groups of which are esterified with (meth)acrylic acid;
esters of hydroxyl groups of dihydric alcohols, such as neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate, and butanediol di(meth)acrylate, with (meth)acrylic acid;
Bisphenol A, an alkylene oxide adduct of bisphenol A, or a halogen-substituted product thereof, both terminal hydroxyl groups of which are esterified with (meth)acrylic acid;
Esters of polyhydric alcohols such as trimethylolpropane and pentaerythritol with (meth)acrylic acid, and those obtained by ring-opening addition of epoxy groups of glycidyl (meth)acrylate to the terminal hydroxyl groups of these esters;
ring-opening addition of an epoxy group of glycidyl (meth)acrylate to a dibasic acid such as succinic acid, adipic acid, terephthalic acid, phthalic acid, or a halogen-substituted product thereof, or an alkylene oxide adduct thereof;
Aryl (meth)acrylates; aromatic divinyl compounds such as divinylbenzene;
etc.
 成分(A-1)の重量平均分子量Mwは、例えば40000以上150000以下であり、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性及びフィルムへの成形性の観点から、好ましくは40000以上120000以下であり、より好ましくは50000以上100000以下である。 The weight average molecular weight Mw of component (A-1) is, for example, 40,000 or more and 150,000 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition and the moldability into a film, it is preferably 40,000 or more and 120,000 or less, and more preferably 50,000 or more and 100,000 or less.
 成分(A-1)の分子量分布(重量平均分子量Mw/数平均分子量Mn)は、例えば1.01以上1.8以下であり、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性の観点から、好ましくは1.03以上1.5以下であり、より好ましくは1.05以上1.3以下である。Mw及びMnは、成分(A-1)の調製時に使用する重合開始剤の種類及び/又は量等の調整によって制御可能である。Mw及びMnは、ゲルパーミエーションクロマトグラフィ(GPC)によって測定される(標準ポリスチレン換算)。 The molecular weight distribution (weight average molecular weight Mw/number average molecular weight Mn) of component (A-1) is, for example, 1.01 or more and 1.8 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition, is preferably 1.03 or more and 1.5 or less, and more preferably 1.05 or more and 1.3 or less. Mw and Mn can be controlled by adjusting the type and/or amount of the polymerization initiator used when preparing component (A-1). Mw and Mn are measured by gel permeation chromatography (GPC) (standard polystyrene equivalent).
 成分(A-1)のガラス転移温度Tgは、(メタ)アクリル樹脂組成物から形成されるフィルムの靱性を高める観点から、好ましくは110℃以上160℃以下であり、より好ましくは120℃以上150℃以下であり、さらに好ましくは125℃以上140℃以下である。Tgは、分子量やシンジオタクティシティや共重合成分等の調整によって制御可能である。 From the viewpoint of increasing the toughness of a film formed from the (meth)acrylic resin composition, the glass transition temperature Tg of component (A-1) is preferably 110°C or higher and 160°C or lower, more preferably 120°C or higher and 150°C or lower, and even more preferably 125°C or higher and 140°C or lower. Tg can be controlled by adjusting the molecular weight, syndiotacticity, copolymerization components, etc.
 成分(A-1)の三連子表示のシンジオタクティシティ(rr)は、例えば50%以上であり、(メタ)アクリル樹脂組成物から形成されるフィルムの靱性及び耐熱性を高める観点から、好ましくは55%以上であり、より好ましくは60%以上であり、さらに好ましくは65%以上であり、なおさらに好ましくは70%以上である。成分(A-1)の三連子表示のシンジオタクティシティ(rr)は、通常90%以下であり、85%以下であってもよい。 The syndiotacticity (rr) of component (A-1) in triplet notation is, for example, 50% or more, and from the viewpoint of increasing the toughness and heat resistance of a film formed from the (meth)acrylic resin composition, is preferably 55% or more, more preferably 60% or more, even more preferably 65% or more, and even more preferably 70% or more. The syndiotacticity (rr) of component (A-1) in triplet notation is usually 90% or less, and may be 85% or less.
 三連子表示のシンジオタクティシティ(rr)は、連続する3つの構成単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。三連子表示のシンジオタクティシティ(rr)(%)は、CDCL中、30℃でH-NMRスペクトルを測定し、そのスペクトルから内部標準TMSを0ppmとしたときの0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、(X/Y)×100にて算出される。 The syndiotacticity (rr) expressed as a triad is the proportion of two chains (diads) in a chain (triad) of three consecutive constitutional units that are both racemo (denoted as rr). The syndiotacticity (rr) (%) expressed as a triad is calculated by measuring a 1 H-NMR spectrum at 30° C. in CDCL 3 , measuring the area (X) of the region from 0.6 to 0.95 ppm and the area (Y) of the region from 0.6 to 1.35 ppm from the spectrum when the internal standard TMS is set to 0 ppm, and calculating (X/Y)×100.
 三連子表示のシンジオタクティシティ(rr)が上記範囲である成分(A-1)は、例えば、国際公開第2016/080124号公報に記載された方法に従って調製することができ、重合時の温度を下げたり、重合時間を長くすることで三連子表示のシンジオタクティシティ(rr)の割合を高くすることができる。 Component (A-1) having a triad syndiotacticity (rr) in the above range can be prepared, for example, according to the method described in WO 2016/080124, and the proportion of triad syndiotacticity (rr) can be increased by lowering the polymerization temperature or lengthening the polymerization time.
 成分(A-2)は、例えば、メタクリル酸エステルを主たる単量体とする(50質量%以上含有する)重合体であることができ、メタクリル酸エステルと他の共重合成分とが共重合されている共重合体であることが好ましい。好ましい一実施形態において成分(A-2)は、メタクリル酸メチルに由来する構成単位を含む共重合体である。好ましい他の実施形態において成分(A-2)は、メタクリル酸メチルに由来する構成単位及びアクリル酸メチルに由来する構成単位を含む共重合体である。
 アクリル酸メチル以外の他の共重合成分としては、例えば、成分(A-1)についてメタクリル酸エステル及び他の共重合成分として例示したものが挙げられる。
Component (A-2) can be, for example, a polymer containing a methacrylic acid ester as a main monomer (containing 50% by mass or more), and is preferably a copolymer in which a methacrylic acid ester is copolymerized with another copolymerization component. In a preferred embodiment, component (A-2) is a copolymer containing a structural unit derived from methyl methacrylate. In another preferred embodiment, component (A-2) is a copolymer containing a structural unit derived from methyl methacrylate and a structural unit derived from methyl acrylate.
Examples of the copolymerization components other than methyl acrylate include the methacrylic acid esters and other copolymerization components exemplified for component (A-1).
 成分(A-2)の重量平均分子量Mwは、例えば40000以上150000以下であり、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性及びフィルムへの成形性の観点から、好ましくは40000以上130000以下であり、より好ましくは50000以上120000以下である。 The weight average molecular weight Mw of component (A-2) is, for example, 40,000 or more and 150,000 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition and the moldability into a film, is preferably 40,000 or more and 130,000 or less, and more preferably 50,000 or more and 120,000 or less.
 成分(A-2)の分子量分布(重量平均分子量Mw/数平均分子量Mn)は、例えば1.01以上3.0以下であり、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性の観点から、好ましくは1.03以上2.8以下であり、より好ましくは1.05以上2.7以下である。Mw及びMnは、成分(A-2)の調製時に使用する重合開始剤の種類及び/又は量等の調整によって制御可能である。Mw及びMnは、ゲルパーミエーションクロマトグラフィ(GPC)によって測定される(標準ポリスチレン換算)。 The molecular weight distribution (weight average molecular weight Mw/number average molecular weight Mn) of component (A-2) is, for example, 1.01 or more and 3.0 or less, and from the viewpoint of the heat resistance of the film formed from the (meth)acrylic resin composition, is preferably 1.03 or more and 2.8 or less, and more preferably 1.05 or more and 2.7 or less. Mw and Mn can be controlled by adjusting the type and/or amount of the polymerization initiator used when preparing component (A-2). Mw and Mn are measured by gel permeation chromatography (GPC) (standard polystyrene equivalent).
 成分(A-2)のガラス転移温度Tgは、好ましくは80℃以上140℃以下であり、より好ましくは90℃以上130℃以下であり、さらに好ましくは90℃以上125℃未満である。Tgは、分子量やシンジオタクティシティや共重合成分等の調整によって制御可能である。 The glass transition temperature Tg of component (A-2) is preferably 80°C or higher and 140°C or lower, more preferably 90°C or higher and 130°C or lower, and even more preferably 90°C or higher and lower than 125°C. Tg can be controlled by adjusting the molecular weight, syndiotacticity, copolymerization components, etc.
 成分(A-2)の三連子表示のシンジオタクティシティ(rr)は、例えば25%以上60%以下であり、好ましくは30%以上55%以下であり、より好ましくは40%以上54%以下である。 The syndiotacticity (rr) of component (A-2) in triplet notation is, for example, 25% or more and 60% or less, preferably 30% or more and 55% or less, and more preferably 40% or more and 54% or less.
 成分(A-2)は、例えば、特開2009-145397号公報や特開2021-155698号公報に記載された方法を参考に調製することができる。成分(A-2)は、ラジカル重合より調製されたものであってもよい。 Component (A-2) can be prepared by referring to the methods described in, for example, JP 2009-145397 A or JP 2021-155698 A. Component (A-2) may be prepared by radical polymerization.
 (メタ)アクリル樹脂組成物は、成分(A)以外の樹脂成分を含んでいてもよいが、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性の観点から、(メタ)アクリル樹脂組成物に含まれる樹脂成分(成分(B)は含まれない)における成分(A)の含有率は高いことが好ましく、該含有率は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、なおさらに好ましくは99質量%以上、特に好ましくは100質量%である。 The (meth)acrylic resin composition may contain resin components other than component (A). However, from the viewpoint of the heat resistance of a film formed from the (meth)acrylic resin composition, it is preferable that the content of component (A) in the resin components (excluding component (B)) contained in the (meth)acrylic resin composition is high, and the content is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, still more preferably 99% by mass or more, and particularly preferably 100% by mass.
 成分(A-1)の含有量をA1(質量部)、成分(A-2)の含有量をA2(質量部)とするとき、(メタ)アクリル樹脂組成物から形成されるフィルムの靱性を高める観点から、A2はA1よりも大きいことが好ましい。(メタ)アクリル樹脂組成物は、より好ましくは、下記式:
 0≦A1/(A1+A2)<0.5
を満たす。該式を満たすことは、上記靱性を高めるうえで有利である。A1/(A1+A2)は、好ましくは0.40以下、より好ましくは0.35以下、さらに好ましくは0.30以下である。
When the content of component (A-1) is A1 (parts by mass) and the content of component (A-2) is A2 (parts by mass), from the viewpoint of enhancing the toughness of a film formed from the (meth)acrylic resin composition, it is preferable that A2 is larger than A1. More preferably, the (meth)acrylic resin composition has a structure represented by the following formula:
0≦A1/(A1+A2)<0.5
It is advantageous for enhancing the toughness to satisfy this formula. A1/(A1+A2) is preferably 0.40 or less, more preferably 0.35 or less, and further preferably 0.30 or less.
 [2]エラストマー成分(B)
 (メタ)アクリル樹脂組成物は、成分(B)を含む。成分(B)を含有することは、(メタ)アクリル樹脂組成物から形成されるフィルムの靱性を高めるうえで有利である。成分(B)としては、ゴム粒子が挙げられる。
[2] Elastomer component (B)
The (meth)acrylic resin composition contains component (B). The inclusion of component (B) is advantageous in terms of increasing the toughness of a film formed from the (meth)acrylic resin composition. Examples of component (B) include rubber particles.
 ゴム粒子は、ゴム弾性を示す層を含むゴム弾性体粒子である。ゴム粒子は、ゴム弾性を示す層(ゴム弾性体層)のみからなる粒子であってもよいし、ゴム弾性を示す層とともに他の層を有する多層構造の粒子であってもよく、前記多層構造の粒子であることが好ましい。ゴム弾性を示す層はゴム弾性体を含む。ゴム弾性体としては、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン-ジエン系弾性共重合体、アクリル系弾性重合体等が挙げられる。中でも、(メタ)アクリル樹脂組成物から形成されるフィルムの耐光性、及び透明性の観点から、アクリル系弾性重合体が好ましく用いられる。 The rubber particles are rubber elastomer particles that include a layer that exhibits rubber elasticity. The rubber particles may be particles that consist only of a layer that exhibits rubber elasticity (rubber elastomer layer), or may be particles of a multi-layer structure that has a layer that exhibits rubber elasticity as well as other layers, and are preferably particles of the above multi-layer structure. The layer that exhibits rubber elasticity includes a rubber elastomer. Examples of rubber elastomers include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers. Among these, acrylic-based elastic polymers are preferably used from the viewpoint of the light resistance and transparency of the film formed from the (meth)acrylic resin composition.
 アクリル系弾性重合体は、アクリル酸アルキルを主体とする、すなわち、全モノマー量を基準にアクリル酸アルキル由来の構成単位を50質量%以上含む重合体であることができる。アクリル系弾性重合体は、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル由来の構成単位を50質量%以上と、他の重合性モノマー由来の構成単位を50質量%以下含む共重合体であってもよい。 The acrylic elastomer can be a polymer that is mainly composed of alkyl acrylate, that is, a polymer that contains 50% by mass or more of structural units derived from alkyl acrylate based on the total amount of monomers. The acrylic elastomer can be a homopolymer of alkyl acrylate, or a copolymer that contains 50% by mass or more of structural units derived from alkyl acrylate and 50% by mass or less of structural units derived from other polymerizable monomers.
 アクリル系弾性重合体を構成するアクリル酸アルキルとしては、通常、そのアルキル基の炭素数が4~8のものが用いられる。
 上記他の重合性モノマーとしては、例えば、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキル;スチレン、アルキルスチレン等のスチレン系単量体;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル等の単官能モノマー、さらには、(メタ)アクリル酸アリル、(メタ)アクリル酸メタリル等の不飽和カルボン酸のアルケニルエステル;マレイン酸ジアリル等の二塩基酸のジアルケニルエステル;アルキレングリコールジ(メタ)アクリレート等のグリコール類の不飽和カルボン酸ジエステル等の多官能モノマーが挙げられる。
The alkyl acrylate constituting the acrylic elastic polymer is usually one having an alkyl group having 4 to 8 carbon atoms.
Examples of the other polymerizable monomers include monofunctional monomers such as alkyl methacrylates, such as methyl methacrylate and ethyl methacrylate; styrene-based monomers, such as styrene and alkylstyrene; unsaturated nitriles, such as acrylonitrile and methacrylonitrile; and polyfunctional monomers such as alkenyl esters of unsaturated carboxylic acids, such as allyl (meth)acrylate and methallyl (meth)acrylate; dialkenyl esters of dibasic acids, such as diallyl maleate; and unsaturated carboxylic acid diesters of glycols, such as alkylene glycol di(meth)acrylate.
 アクリル系弾性重合体を含むゴム粒子は、アクリル系弾性重合体の層を有する多層構造の粒子であることが好ましい。具体的には、アクリル系弾性重合体の層の外側にメタクリル酸アルキルを主体とする硬質の重合体層を有する二層構造のものや、さらにアクリル系弾性重合体の層の内側にメタクリル酸アルキルを主体とする硬質の重合体層を有する三層構造のものが挙げられる。メタクリル酸アルキルは、好ましくはメタクリル酸メチルである。 The rubber particles containing an acrylic elastic polymer are preferably particles with a multilayer structure having a layer of an acrylic elastic polymer. Specifically, examples include a two-layer structure having a hard polymer layer mainly made of alkyl methacrylate on the outside of the acrylic elastic polymer layer, and a three-layer structure having a hard polymer layer mainly made of alkyl methacrylate on the inside of the acrylic elastic polymer layer. The alkyl methacrylate is preferably methyl methacrylate.
 ゴム粒子は、その中に含まれるゴム弾性体層(アクリル系弾性重合体の層)までの平均粒径が10nm以上350nm以下の範囲にあることが好ましい。かかる範囲の平均粒径は、光学フィルムの靱性及び偏光子への密着性を高めるうえで有利である。当該平均粒径は、より好ましくは30nm以上、さらには50nm以上であり、またより好ましくは320nm以下、さらには300nm以下である。 The rubber particles preferably have an average particle size in the range of 10 nm to 350 nm up to the rubber elastomer layer (layer of acrylic elastomer) contained therein. An average particle size in this range is advantageous in terms of increasing the toughness of the optical film and adhesion to the polarizer. The average particle size is more preferably 30 nm or more, or even 50 nm or more, and more preferably 320 nm or less, or even 300 nm or less.
 ゴム粒子におけるゴム弾性体層(アクリル系弾性重合体の層)までの平均粒径は、次のようにして測定することができる。すなわち、このようなゴム粒子を(メタ)アクリル系樹脂に混合してフィルム化し、その断面を酸化ルテニウムの水溶液で染色すると、ゴム弾性体層だけが着色してほぼ円形状に観察され、母層の(メタ)アクリル系樹脂は染色されない。そこで、このようにして染色されたフィルム断面から、ミクロトーム等を用いて薄片を調製し、これを電子顕微鏡で観察する。そして、無作為に100個の染色されたゴム粒子を抽出し、各々の粒子径(ゴム弾性体層までの径)を算出した後、その数平均値を上記平均粒径とする。このような方法で測定するため、得られる上記平均粒径は、数平均粒径となる。 The average particle size of rubber particles up to the rubber elastomer layer (layer of acrylic elastomer) can be measured as follows. That is, when such rubber particles are mixed with (meth)acrylic resin to form a film and the cross section is stained with an aqueous solution of ruthenium oxide, only the rubber elastomer layer is colored and observed to be almost circular, while the (meth)acrylic resin of the parent layer is not stained. From the cross section of the film thus stained, a thin section is prepared using a microtome or the like and observed under an electron microscope. Then, 100 dyed rubber particles are randomly selected, and the particle diameter of each (diameter up to the rubber elastomer layer) is calculated, and the number average value is taken as the average particle size. Because it is measured in this way, the average particle size obtained is the number average particle size.
 最外層がメタクリル酸メチルを主体とする硬質の重合体であり、その中にゴム弾性体層(アクリル系弾性重合体の層)が包み込まれているゴム粒子である場合、それを母体の(メタ)アクリル系樹脂に混合すると、ゴム粒子の最外層が母体の(メタ)アクリル系樹脂と混和する。そのため、その断面を酸化ルテニウムで染色し、電子顕微鏡で観察すると、ゴム粒子は、最外層を除いた状態の粒子として観察される。具体的には、内層がアクリル系弾性重合体であり、外層がメタクリル酸メチルを主体とする硬質の重合体である二層構造のゴム粒子である場合には、内層のアクリル系弾性重合体部分が染色されて単層構造の粒子として観察される。また、最内層がメタクリル酸メチルを主体とする硬質の重合体であり、中間層がアクリル系弾性重合体であり、最外層がメタクリル酸メチルを主体とする硬質の重合体である三層構造のゴム粒子の場合には、最内層の粒子中心部分が染色されず、中間層のアクリル系弾性重合体部分のみが染色された二層構造の粒子として観察されることになる。 In the case of rubber particles in which the outermost layer is a hard polymer mainly made of methyl methacrylate and a rubber elastomer layer (a layer of an acrylic elastomer) is enclosed within it, when the rubber particles are mixed with the parent (meth)acrylic resin, the outermost layer of the rubber particles is mixed with the parent (meth)acrylic resin. Therefore, when the cross section is stained with ruthenium oxide and observed under an electron microscope, the rubber particles are observed as particles without the outermost layer. Specifically, in the case of rubber particles with a two-layer structure in which the inner layer is an acrylic elastomer and the outer layer is a hard polymer mainly made of methyl methacrylate, the acrylic elastomer part of the inner layer is stained and observed as a particle with a single layer structure. In the case of rubber particles with a three-layer structure in which the innermost layer is a hard polymer mainly made of methyl methacrylate, the middle layer is an acrylic elastomer, and the outermost layer is a hard polymer mainly made of methyl methacrylate, the center part of the particle in the innermost layer is not stained, and only the acrylic elastomer part of the middle layer is stained and observed as a particle with a two-layer structure.
 成分(B)の含有量は、(メタ)アクリル樹脂組成物から形成されるフィルムの靱性を高める観点から、(メタ)アクリル樹脂(A)100質量部に対して、好ましくは17.5質量部以上、より好ましくは20質量部以上、さらに好ましくは24質量部以上である。該含有量は、(メタ)アクリル樹脂組成物から形成されるフィルムの弾性率の観点から、(メタ)アクリル樹脂(A)100質量部に対して、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは60質量部以下である。
 (メタ)アクリル樹脂組成物から形成されるフィルムの靱性を高める観点から、(メタ)アクリル樹脂(A)の含有量に対する成分(B)の含有量の質量比は、好ましくは0.175以上、より好ましくは0.20以上、さらに好ましくは0.24以上である。(メタ)アクリル樹脂組成物から形成されるフィルムの弾性率の観点から、該質量比は、好ましくは0.80以下、より好ましくは0.70以下、さらに好ましくは0.60以下である。
The content of component (B) is preferably 17.5 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 24 parts by mass or more, per 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of increasing the toughness of the film formed from the (meth)acrylic resin composition. The content is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 60 parts by mass or less, per 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of the elastic modulus of the film formed from the (meth)acrylic resin composition.
From the viewpoint of enhancing the toughness of the film formed from the (meth)acrylic resin composition, the mass ratio of the content of component (B) to the content of (meth)acrylic resin (A) is preferably 0.175 or more, more preferably 0.20 or more, and even more preferably 0.24 or more. From the viewpoint of the elastic modulus of the film formed from the (meth)acrylic resin composition, the mass ratio is preferably 0.80 or less, more preferably 0.70 or less, and even more preferably 0.60 or less.
 [3]酸化防止剤(C)
 (メタ)アクリル樹脂組成物は、成分(C)を含む。成分(C)の含有量は、エラストマー成分(B)の含有量に対する成分(C)の含有量の質量比が0.006以上0.2以下となる量である。このような所定の量で成分(C)を含有させることにより、(メタ)アクリル樹脂組成物、ひいてはそれから形成されるフィルムは、優れた耐熱性を示す。
[3] Antioxidant (C)
The (meth)acrylic resin composition contains component (C). The content of component (C) is an amount such that the mass ratio of the content of component (C) to the content of elastomer component (B) is 0.006 or more and 0.2 or less. By containing component (C) in such a predetermined amount, the (meth)acrylic resin composition, and thus the film formed therefrom, exhibits excellent heat resistance.
 (メタ)アクリル樹脂組成物及びフィルムの耐熱性を高める観点から、上記質量比は、好ましくは0.007以上、より好ましくは0.010以上、さらに好ましくは0.015以上、なおさらに好ましくは0.020以上、特に好ましくは0.022以上である。 From the viewpoint of improving the heat resistance of the (meth)acrylic resin composition and the film, the above mass ratio is preferably 0.007 or more, more preferably 0.010 or more, even more preferably 0.015 or more, even more preferably 0.020 or more, and particularly preferably 0.022 or more.
 上記質量比が過度に大きいと、(メタ)アクリル樹脂組成物から形成されるフィルムの使用時に該フィルムから成分(C)がブリードアウトするおそれがある。よって、上記質量比は、0.20以下であり、好ましくは0.18以下、より好ましくは0.16以下、さらに好ましくは0.14以下、なおさらに好ましくは0.12以下である。 If the above mass ratio is excessively large, there is a risk that component (C) will bleed out from the film formed from the (meth)acrylic resin composition during use. Therefore, the above mass ratio is 0.20 or less, preferably 0.18 or less, more preferably 0.16 or less, even more preferably 0.14 or less, and even more preferably 0.12 or less.
 成分(C)の含有量は、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性を高める観点から、(メタ)アクリル樹脂(A)100質量部に対して、好ましくは0.4質量部以上、より好ましくは0.45質量部以上、さらに好ましくは0.5質量部以上、なおさらに好ましくは0.55質量部以上である。該含有量は、(メタ)アクリル樹脂組成物から形成されるフィルムからの成分(C)のブリードアウトを避ける観点から、(メタ)アクリル樹脂(A)100質量部に対して、好ましくは5.0質量部以下、より好ましくは4.5質量部以下、さらに好ましくは4.0質量部以下、なおさらに好ましくは3.5質量部以下である。
 (メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性を高める観点から、(メタ)アクリル樹脂(A)の含有量に対する成分(C)の含有量の質量比は、好ましくは0.004以上、より好ましくは0.0045以上、さらに好ましくは0.005以上、なおさらに好ましくは0.0055以上である。(メタ)アクリル樹脂組成物から形成されるフィルムからの成分(C)のブリードアウトを避ける観点から、該質量比は、好ましくは0.05以下、より好ましくは0.045以下、さらに好ましくは0.04以下、なおさらに好ましくは0.035以下である。
The content of component (C) is preferably 0.4 parts by mass or more, more preferably 0.45 parts by mass or more, even more preferably 0.5 parts by mass or more, and even more preferably 0.55 parts by mass or more, relative to 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of improving the heat resistance of the film formed from the (meth)acrylic resin composition. The content is preferably 5.0 parts by mass or less, more preferably 4.5 parts by mass or less, even more preferably 4.0 parts by mass or less, and even more preferably 3.5 parts by mass or less, relative to 100 parts by mass of (meth)acrylic resin (A) from the viewpoint of avoiding bleed-out of component (C) from the film formed from the (meth)acrylic resin composition.
From the viewpoint of enhancing the heat resistance of the film formed from the (meth)acrylic resin composition, the mass ratio of the content of component (C) to the content of (meth)acrylic resin (A) is preferably 0.004 or more, more preferably 0.0045 or more, even more preferably 0.005 or more, and even more preferably 0.0055 or more. From the viewpoint of avoiding the bleeding out of component (C) from the film formed from the (meth)acrylic resin composition, the mass ratio is preferably 0.05 or less, more preferably 0.045 or less, even more preferably 0.04 or less, and even more preferably 0.035 or less.
 成分(C)は、一次酸化防止剤であってもよく、二次酸化防止剤であってもよく、それらを組み合わせたものであってもよい。一次酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤を用いることができ、二次酸化防止剤としては、例えば、リン系酸化防止剤、硫黄系酸化防止剤を用いることができる。また、成分(C)として、リン/フェノール複合型酸化防止剤を用いることができる。リン/フェノール複合型酸化防止剤は、分子中にリン原子とフェノール構造とをそれぞれ1以上有する化合物であり、一次酸化防止剤と二次酸化防止剤の両方の機能を有する。成分(C)は、2種以上を併用してもよい。 Component (C) may be a primary antioxidant, a secondary antioxidant, or a combination thereof. For example, phenol-based antioxidants and amine-based antioxidants can be used as primary antioxidants, and for example, phosphorus-based antioxidants and sulfur-based antioxidants can be used as secondary antioxidants. Furthermore, phosphorus/phenol complex antioxidants can be used as component (C). Phosphorus/phenol complex antioxidants are compounds that have one or more phosphorus atoms and one or more phenol structures in the molecule, and have the functions of both a primary antioxidant and a secondary antioxidant. Two or more types of component (C) may be used in combination.
 フェノール系酸化防止剤としては、例えば、イルガノックス(登録商標)1010(Irganox 1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1076(Irganox 1076:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、BASF(株)製)、同1330(Irganox 1330:3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、BASF(株)製)、同3114(Irganox 3114:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同3790(Irganox 3790:1,3,5-トリス((4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同1035(Irganox 1035:チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1135(Irganox 1135:ベンゼンプロパン酸の3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9側鎖アルキルエステル、BASF(株)製)、同1520L(Irganox 1520L:4,6-ビス(オクチルチオメチル)-o-クレゾール、BASF(株)製)、同3125(Irganox 3125、BASF(株)製)、同565(Irganox 565:2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’、5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、BASF(株)製)、アデカスタブ(登録商標)AO-80(アデカスタブ AO-80:3,9-ビス(2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)、スミライザー(登録商標)BHT、同GA-80、同GS(以上、住友化学(株)製)、サイアノックス(登録商標)1790(Cyanox 1790、(株)サイテック製)、ビタミンE(エーザイ(株)製)等が挙げられる。 Examples of phenol-based antioxidants include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], manufactured by BASF Corporation), Irganox 1076 (Irganox 1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), Irganox 1330 (Irganox 1330: 3,3',3'',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl)propionate, manufactured by BASF Corporation), and Irganox 1330 (Irganox 1330: 3,3',3'',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl)propionate, manufactured by BASF Corporation). ) tri-p-cresol, manufactured by BASF Co., Ltd.), Irganox 3114 (Irganox 3114: 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, manufactured by BASF Co., Ltd.), Irganox 3790 (Irganox 3790: 1,3,5-tris((4-tert-butyl-3-hydroxy-2,6-xylyl)methyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, manufactured by BASF Co., Ltd.), Irganox 1035 (Irganox 1035: thiodiethylenebis[3-(3,5-di-tert t-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), Irganox 1135 (Irganox 1135: 3,5-bis(1,1-dimethylethyl)-4-hydroxy-C7-C9 side chain alkyl ester of benzenepropanoic acid, manufactured by BASF Corporation), Irganox 1520L (Irganox 1520L: 4,6-bis(octylthiomethyl)-o-cresol, manufactured by BASF Corporation), Irganox 3125 (Irganox 3125, manufactured by BASF Corporation), Irganox 565 (Irganox 565: 2,4-bis(n-octylthio)-6-(4-hydroxy-3',5'-di-tert-butyl a Nilino)-1,3,5-triazine, manufactured by BASF Co., Ltd.), Adekastab (registered trademark) AO-80 (Adekastab AO-80: 3,9-bis(2-(3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy)-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, manufactured by ADEKA Co., Ltd.), Sumilizer (registered trademark) BHT, Sumilizer GA-80, Sumilizer GS (all manufactured by Sumitomo Chemical Co., Ltd.), Cyanox (registered trademark) 1790 (Cyanox 1790, manufactured by Cytec Co., Ltd.), Vitamin E (manufactured by Eisai Co., Ltd.), etc.
 アミン系酸化防止剤としては、例えば、スミライザー(登録商標)BPA(N,N’-ジ-sec-ブチル-p-フェニレンジアミン)、スミライザー(登録商標)BPA-M1、スミライザー(登録商標)4ML(p-フェニレンジアミン誘導体)、スミライザー(登録商標)9A(アルカリ化ジフィニルアミン)等が挙げられる。 Amine-based antioxidants include, for example, Sumilizer (registered trademark) BPA (N,N'-di-sec-butyl-p-phenylenediamine), Sumilizer (registered trademark) BPA-M1, Sumilizer (registered trademark) 4ML (p-phenylenediamine derivative), Sumilizer (registered trademark) 9A (alkalinated diphenylamine), etc.
 リン系酸化防止剤としては、例えば、イルガフォス(登録商標)168(Irgafos 168:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、BASF(株)製)、同12(Irgafos 12:トリス[2-[[2,4,8,10-テトラ-tert-ブチルジベンゾ[d、f][1,3,2]ジオキサフォスフィン-6-イル]オキシ]エチル]アミン、BASF(株)製)、同38(Irgafos 38:ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜りん酸、BASF(株)製)、アデカスタブ(登録商標)329K、同PEP36、同PEP-8(以上、(株)ADEKA製)、Sandstab P-EPQ(クラリアント社製)、Weston(登録商標)618、同619G(以上、GE社製)、Ultranox626(GE社製)等が挙げられる。 Examples of phosphorus-based antioxidants include Irgafos (registered trademark) 168 (Irgafos 168: tris(2,4-di-tert-butylphenyl)phosphite, manufactured by BASF Co., Ltd.), Irgafos 12 (Irgafos 12: tris[2-[[2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphine-6-yl]oxy]ethyl]amine, manufactured by BASF Co., Ltd.), and Irgafos 38 (I rgafos 38: bis(2,4-bis(1,1-dimethylethyl)-6-methylphenyl)ethyl ester phosphorous acid, manufactured by BASF Corporation; Adekastab (registered trademark) 329K, Adekastab PEP36, Adekastab PEP-8 (all manufactured by ADEKA Corporation); Sandstab P-EPQ (manufactured by Clariant); Weston (registered trademark) 618, Adekastab 619G (all manufactured by GE); Ultranox 626 (manufactured by GE); etc.
 リン/フェノール複合型酸化防止剤としては、例えば、スミライザー(登録商標)GP(6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン)(住友化学(株)製)等が挙げられる。 Examples of phosphorus/phenol complex antioxidants include Sumilizer (registered trademark) GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenz[d,f][1.3.2]dioxaphosphepine) (manufactured by Sumitomo Chemical Co., Ltd.).
 硫黄系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル又はジステアリール等のジアルキルチオジプロピオネート化合物及びテトラキス[メチレン(3-ドデシルチオ)プロピオネート]メタン等のポリオールのβ-アルキルメルカプトプロピオン酸エステル化合物等が挙げられる。 Sulfur-based antioxidants include, for example, dialkyl thiodipropionate compounds such as dilauryl, dimyristyl, or distearyl thiodipropionate, and β-alkyl mercaptopropionate compounds of polyols such as tetrakis[methylene(3-dodecylthio)propionate]methane.
 成分(C)は、(メタ)アクリル樹脂組成物から形成されるフィルムの耐熱性を高める観点から、一次酸化防止剤と二次酸化防止剤との組み合わせであることが好ましく、フェノール系酸化防止剤とリン系酸化防止剤との組み合わせであることがより好ましい。二次酸化防止剤(好ましくはリン系酸化防止剤)と一次酸化防止剤(好ましくはフェノール系酸化防止剤)とを併用する場合、(メタ)アクリル樹脂組成物における二次酸化防止剤(好ましくはリン系酸化防止剤)の含有量:一次酸化防止剤(好ましくはフェノール系酸化防止剤)の含有量は、質量比で、好ましくは1:5~2:1、より好ましくは1:2~2:1である。 From the viewpoint of enhancing the heat resistance of a film formed from the (meth)acrylic resin composition, component (C) is preferably a combination of a primary antioxidant and a secondary antioxidant, and more preferably a combination of a phenolic antioxidant and a phosphorus-based antioxidant. When a secondary antioxidant (preferably a phosphorus-based antioxidant) and a primary antioxidant (preferably a phenolic antioxidant) are used in combination, the content of the secondary antioxidant (preferably a phosphorus-based antioxidant) in the (meth)acrylic resin composition:the content of the primary antioxidant (preferably a phenolic antioxidant) is preferably 1:5 to 2:1, more preferably 1:2 to 2:1, in mass ratio.
 なお、(メタ)アクリル樹脂組成物は、必要に応じて、上記以外の他の成分を含有していてもよい。他の成分としては、例えば、滑剤、ブロッキング防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、耐衝撃性改良剤、界面活性剤、離型剤等が挙げられる。 The (meth)acrylic resin composition may contain other components in addition to those described above, as necessary. Examples of other components include lubricants, antiblocking agents, heat stabilizers, UV absorbers, antistatic agents, impact resistance modifiers, surfactants, and mold release agents.
 紫外線吸収剤を含有させることにより、(メタ)アクリル樹脂組成物、ひいてはそれから形成されるフィルムの紫外線による劣化を抑制することができる。また、紫外線吸収剤を含有させることにより、(メタ)アクリル樹脂組成物から形成されるフィルムに熱負荷がかかった際のゲルの発生を抑制することができる。 By including an ultraviolet absorber, it is possible to suppress deterioration of the (meth)acrylic resin composition, and in turn, the film formed therefrom, caused by ultraviolet light. In addition, by including an ultraviolet absorber, it is possible to suppress the generation of gel when a film formed from the (meth)acrylic resin composition is subjected to a thermal load.
 紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられる。なかでも、ベンゾトリアゾール系化合物は、ゲルの発生を抑制する観点で好ましい。
 紫外線吸収剤を配合する場合、配合量は、(メタ)アクリル樹脂(A)100質量部に対して、通常1質量部以上、好ましくは1.5質量部以上であり、通常3質量部以下、好ましくは2.5質量部以下である。
Examples of the ultraviolet absorber include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, etc. Among these, benzotriazole compounds are preferred from the viewpoint of suppressing the generation of gel.
When an ultraviolet absorber is blended, the blending amount is usually 1 part by mass or more, preferably 1.5 parts by mass or more, and usually 3 parts by mass or less, preferably 2.5 parts by mass or less, per 100 parts by mass of the (meth)acrylic resin (A).
 [4](メタ)アクリル樹脂組成物の形状
 (メタ)アクリル樹脂組成物は、固体状であってもよく、液状であってもよい。固体状である場合、(メタ)アクリル樹脂組成物の形状は特に制限されず、例えば、無定形、粒状、ペレット形状、顆粒状等が挙げられる。(メタ)アクリル樹脂組成物がフィルム成形等の成形に用いられる場合、(メタ)アクリル樹脂組成物は、ペレット形状であることが好ましい。
[4] Shape of the (meth)acrylic resin composition The (meth)acrylic resin composition may be in a solid state or in a liquid state. When the (meth)acrylic resin composition is in a solid state, the shape of the (meth)acrylic resin composition is not particularly limited, and examples thereof include amorphous, granular, pellet-shaped, and granular. When the (meth)acrylic resin composition is used for molding such as film molding, the (meth)acrylic resin composition is preferably in a pellet-shaped state.
 [5](メタ)アクリル樹脂組成物の耐熱性
 (メタ)アクリル樹脂組成物は、優れた耐熱性を有することができる。優れた耐熱性を有する(メタ)アクリル樹脂組成物は、加熱試験I(空気雰囲気中、270℃以上275℃以下の温度で3時間加熱)を行ったとき、又は、加熱試験II(空気雰囲気中、250℃以上255℃以下の温度で6時間加熱)を行ったときの質量減少率が、好ましくは60%以下である。
[5] Heat resistance of (meth)acrylic resin composition The (meth)acrylic resin composition can have excellent heat resistance. The (meth)acrylic resin composition having excellent heat resistance preferably has a mass loss rate of 60% or less when subjected to Heating Test I (heating in an air atmosphere at a temperature of 270° C. or more and 275° C. or less for 3 hours) or Heating Test II (heating in an air atmosphere at a temperature of 250° C. or more and 255° C. or less for 6 hours).
 加熱試験を行ったときの質量減少率は、下記[実施例]の項に示される方法に従って測定することができる。加熱試験I又はIIを行ったときの質量減少率は、より好ましくは55%以下、さらに好ましくは50%以下、なおさらに好ましくは45%以下、特に好ましくは40%以下、一層特に好ましくは35%以下、より一層特に好ましくは30%以下、最も好ましくは25%以下であり、さらには20%以下、なおさらには15%以下の質量減少率を示し得る。該質量減少率は、通常1%以上である。 The mass reduction rate when a heating test is performed can be measured according to the method shown in the Examples section below. The mass reduction rate when heating test I or II is performed is more preferably 55% or less, even more preferably 50% or less, even more preferably 45% or less, particularly preferably 40% or less, even more particularly preferably 35% or less, even more particularly preferably 30% or less, and most preferably 25% or less, and may even be 20% or less, and even more preferably 15% or less. The mass reduction rate is usually 1% or more.
 優れた耐熱性を有する(メタ)アクリル樹脂組成物は、加熱試験I又はIIを行ったときのIR強度比が、好ましくは0.070以下、より好ましくは0.065以下、さらに好ましくは0.060以下、なおさらに好ましくは0.050以下、特に好ましくは0.040以下、最も好ましくは0.030以下である。該IR強度比は、通常0.005以上である。IR強度比は、より具体的には、下記[実施例]の項に示される方法に従って測定・算出される。波数1725cm-1におけるピーク強度とは、該波数におけるシグナル強度値を意味する。 The (meth)acrylic resin composition having excellent heat resistance has an IR intensity ratio when subjected to Heating Test I or II of preferably 0.070 or less, more preferably 0.065 or less, even more preferably 0.060 or less, still more preferably 0.050 or less, particularly preferably 0.040 or less, and most preferably 0.030 or less. The IR intensity ratio is usually 0.005 or more. More specifically, the IR intensity ratio is measured and calculated according to the method shown in the following [Examples] section. The peak intensity at a wave number of 1725 cm -1 means the signal intensity value at that wave number.
 加熱試験後の(メタ)アクリル樹脂組成物のIRスペクトルにおいて、波数1725cm-1におけるピークは、成分(A)及び成分(B)を構成する単量体単位が有するカルボン酸エステル基又はカルボキシ基のカルボニル基に由来するピークである。波数1785±5cm-1におけるシグナルは、加熱試験による熱負荷によって生じたゲル中に含まれる酸無水物基に由来するシグナルである。IR強度比が大きいほど(メタ)アクリル樹脂組成物中にゲルが多く生じたといえ、IR強度比は(メタ)アクリル樹脂組成物の耐熱性(ゲル発生の抑制)の指標となり得る。 In the IR spectrum of the (meth)acrylic resin composition after the heating test, the peak at a wave number of 1725 cm −1 is a peak derived from the carbonyl group of the carboxylate group or carboxy group of the monomer units constituting the components (A) and (B). The signal at a wave number of 1785±5 cm −1 is a signal derived from the acid anhydride group contained in the gel generated by the heat load in the heating test. It can be said that the larger the IR intensity ratio, the more gel has been generated in the (meth)acrylic resin composition, and the IR intensity ratio can be an index of the heat resistance (suppression of gel generation) of the (meth)acrylic resin composition.
 <フィルム>
 (メタ)アクリル樹脂組成物をフィルム成形し、さらに必要に応じて延伸処理を施すことにより、(メタ)アクリル樹脂フィルムを得ることができる。(メタ)アクリル樹脂フィルムは、成分(A)、(B)及び(C)を含む。(メタ)アクリル樹脂フィルムは、光学フィルム、例えば、偏光子用の保護フィルムとして好適に用いることができる。(メタ)アクリル樹脂フィルムは、延伸されていないフィルム、又は一軸若しくは二軸延伸されたフィルムのいずれであってもよい。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、第1方向に延伸した後でこれとは異なる第2方向に延伸する逐次二軸延伸であってもよい。
<Film>
The (meth)acrylic resin composition is formed into a film, and then, if necessary, stretched to obtain a (meth)acrylic resin film. The (meth)acrylic resin film contains components (A), (B) and (C). The (meth)acrylic resin film can be suitably used as an optical film, for example, a protective film for a polarizer. The (meth)acrylic resin film may be either an unstretched film or a uniaxially or biaxially stretched film. The biaxial stretching may be simultaneous biaxial stretching in which the film is stretched simultaneously in two stretching directions, or may be sequential biaxial stretching in which the film is stretched in a first direction and then stretched in a second direction different from the first direction.
 該フィルムの厚みは、通常5μm以上200μm以下であり、好ましくは10μm以上120μm以下、より好ましくは10μm以上85μm以下、さらに好ましくは15μm以上65μm以下である。該フィルムの厚みは、60μm以下であってもよく、50μm以下であってもよい。該フィルムの厚みを小さくすることは、該フィルムを含む偏光板、ひいてはこれが適用される画像表示装置等の薄型化に有利である。 The thickness of the film is usually 5 μm or more and 200 μm or less, preferably 10 μm or more and 120 μm or less, more preferably 10 μm or more and 85 μm or less, and even more preferably 15 μm or more and 65 μm or less. The thickness of the film may be 60 μm or less, or may be 50 μm or less. Reducing the thickness of the film is advantageous for reducing the thickness of a polarizing plate containing the film, and ultimately of an image display device to which the film is applied.
 (メタ)アクリル樹脂フィルムは、一方面又は両面に表面処理層(コーティング層)を備えていてもよい。表面処理層としては、ハードコート層、防眩層、反射防止層、光拡散層、帯電防止層、防汚層、導電層等が挙げられ、好ましくはハードコート層である。表面処理層としては、活性エネルギー線硬化性化合物を含む硬化性樹脂組成物の硬化物層が挙げられる。活性エネルギー線硬化性化合物は、紫外線、電子線等の活性エネルギー線の照射により重合して硬化する化合物である。活性エネルギー線硬化性化合物としては、例えば、単官能、2官能又は3官能以上の(メタ)アクリレート化合物が挙げられる。活性エネルギー線硬化性化合物は、1種又は2種以上使用できる。 The (meth)acrylic resin film may have a surface treatment layer (coating layer) on one or both sides. Examples of the surface treatment layer include a hard coat layer, an anti-glare layer, an anti-reflection layer, a light diffusion layer, an antistatic layer, an antifouling layer, a conductive layer, etc., and a hard coat layer is preferable. Examples of the surface treatment layer include a cured layer of a curable resin composition containing an active energy ray curable compound. The active energy ray curable compound is a compound that is polymerized and cured by irradiation with active energy rays such as ultraviolet rays and electron beams. Examples of the active energy ray curable compound include monofunctional, bifunctional, or trifunctional or higher (meth)acrylate compounds. One or more types of active energy ray curable compounds can be used.
 ハードコート層等の表面処理層の厚みは、例えば0.1μm以上50μm以下であり、好ましくは0.5μm以上30μm以下、より好ましくは1μm以上20μm以下であり、さらに好ましくは1μm以上10μm以下である。 The thickness of the surface treatment layer, such as the hard coat layer, is, for example, 0.1 μm or more and 50 μm or less, preferably 0.5 μm or more and 30 μm or less, more preferably 1 μm or more and 20 μm or less, and even more preferably 1 μm or more and 10 μm or less.
 <偏光板>
 本明細書において「偏光板」とは、偏光子と、その片面又は両面に積層される熱可塑性樹脂フィルムとを含む光学積層体を指す。偏光板において、偏光子と上記熱可塑性樹脂フィルムとは、接着剤層を介して積層されている。接着剤層は、接着剤組成物から形成される層であり、例えば接着剤組成物の硬化物層である。
 偏光板は、偏光子及び上記熱可塑性樹脂フィルム以外のフィルム又は層を含んでいてもよい。
<Polarizing Plate>
In this specification, the term "polarizing plate" refers to an optical laminate including a polarizer and a thermoplastic resin film laminated on one or both sides of the polarizer. In the polarizing plate, the polarizer and the thermoplastic resin film are laminated via an adhesive layer. The adhesive layer is a layer formed from an adhesive composition, for example, a layer of a cured product of the adhesive composition.
The polarizing plate may include a film or layer other than the polarizer and the thermoplastic resin film.
 本発明に係る偏光板は、偏光子、接着剤層及び熱可塑性樹脂フィルムとしての上記(メタ)アクリル樹脂フィルムをこの順に含む。該(メタ)アクリル樹脂フィルムは、本発明に係る(メタ)アクリル樹脂組成物から形成されるフィルムである。通常、偏光子と接着剤層とは接しており、接着剤層と(メタ)アクリル樹脂フィルムとは接している。本発明に係る偏光板は、偏光子用の保護フィルムとして本発明に係る(メタ)アクリル樹脂フィルムを用いているので、偏光子と(メタ)アクリル樹脂フィルムとの間の密着性が良好となり得、これにより、偏光板の耐久性を良好なものとし得る。本発明に係る偏光板は、液晶表示装置、有機EL装置等の画像表示装置に好適に用いることができる。 The polarizing plate according to the present invention comprises a polarizer, an adhesive layer, and the above-mentioned (meth)acrylic resin film as a thermoplastic resin film, in this order. The (meth)acrylic resin film is a film formed from the (meth)acrylic resin composition according to the present invention. Usually, the polarizer and the adhesive layer are in contact, and the adhesive layer and the (meth)acrylic resin film are in contact. The polarizing plate according to the present invention uses the (meth)acrylic resin film according to the present invention as a protective film for the polarizer, so that the adhesion between the polarizer and the (meth)acrylic resin film can be good, and thus the durability of the polarizing plate can be good. The polarizing plate according to the present invention can be suitably used in image display devices such as liquid crystal display devices and organic EL devices.
 [1]偏光板の構成
 本発明に係る偏光板の層構成の例を図1及び図2に示す。
 図1に示されるように本発明に係る偏光板は、偏光子30、第1接着剤層15及び上記本発明に係る(メタ)アクリル樹脂フィルムである第1熱可塑性樹脂フィルム10をこの順に含むものであることができ、すなわち、偏光子30と、その一方の面に第1接着剤層15を介して積層貼合される第1熱可塑性樹脂フィルム10とを含むものであることができる。
 第1接着剤層15と第1熱可塑性樹脂フィルム10との間にはプライマー層が介在していてもよく、第1接着剤層15と第1熱可塑性樹脂フィルム10とは直接接していてもよい。偏光子30と第1接着剤層15とは直接接していることが好ましい。
[1] Structure of Polarizing Plate An example of the layer structure of the polarizing plate according to the present invention is shown in FIG. 1 and FIG.
As shown in FIG. 1 , the polarizing plate of the present invention can include, in this order, a polarizer 30, a first adhesive layer 15, and a first thermoplastic resin film 10 which is the (meth)acrylic resin film of the present invention. That is, the polarizing plate can include a polarizer 30 and a first thermoplastic resin film 10 laminated to one surface of the polarizer 30 via a first adhesive layer 15.
A primer layer may be interposed between the first adhesive layer 15 and the first thermoplastic resin film 10, or the first adhesive layer 15 may be in direct contact with the first thermoplastic resin film 10. It is preferable that the polarizer 30 and the first adhesive layer 15 are in direct contact with each other.
 また図2に示されるように本発明に係る偏光板は、偏光子30と、その一方の面に第1接着剤層15を介して積層貼合される上記本発明に係る(メタ)アクリル樹脂フィルムである第1熱可塑性樹脂フィルム10と、偏光子30の他方の面に第2接着剤層25を介して積層貼合される第2熱可塑性樹脂フィルム20とを含むものであってもよい。
 第1接着剤層15と第1熱可塑性樹脂フィルム10とは直接接していることが好ましい。偏光子30と第1接着剤層15とは直接接していることが好ましい。第2接着剤層25と第2熱可塑性樹脂フィルム20とは直接接していることが好ましい。偏光子30と第2接着剤層25とは直接接していることが好ましい。
As shown in FIG. 2 , the polarizing plate of the present invention may include a polarizer 30, a first thermoplastic resin film 10 which is the (meth)acrylic resin film of the present invention and is laminated to one surface of the polarizer 30 via a first adhesive layer 15, and a second thermoplastic resin film 20 which is laminated to the other surface of the polarizer 30 via a second adhesive layer 25.
The first adhesive layer 15 and the first thermoplastic resin film 10 are preferably in direct contact with each other. The polarizer 30 and the first adhesive layer 15 are preferably in direct contact with each other. The second adhesive layer 25 and the second thermoplastic resin film 20 are preferably in direct contact with each other. The polarizer 30 and the second adhesive layer 25 are preferably in direct contact with each other.
 本発明に係る偏光板は、好ましくは、第1熱可塑性樹脂フィルム10側が視認側となるように画像表示装置に組み込まれる。すなわち、本発明に係る光学フィルムは、好ましくは、偏光子30の視認側に積層される保護フィルムである。 The polarizing plate according to the present invention is preferably incorporated into an image display device so that the first thermoplastic resin film 10 side is the viewing side. In other words, the optical film according to the present invention is preferably a protective film laminated on the viewing side of the polarizer 30.
 図1及び図2の例に限らず、本発明に係る偏光板は、上記以外の他の層(又はフィルム)を含むことができる。他の層としては、例えば、第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20及び/又は偏光子30の外面に積層される粘着剤層;該粘着剤層の外面に積層されるセパレートフィルム(「剥離フィルム」とも呼ばれる。);第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20及び/又は偏光子30の外面に積層されるプロテクトフィルム(「表面保護フィルム」とも呼ばれる。);第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20及び/又は偏光子30の外面に接着剤層や粘着剤層を介して積層される光学機能性フィルム(又は層)等が挙げられる。 The polarizing plate according to the present invention may include layers (or films) other than those described above, without being limited to the examples shown in Figs. 1 and 2. Examples of the other layers include an adhesive layer laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, and/or the polarizer 30; a separate film (also called a "release film") laminated on the outer surface of the adhesive layer; a protective film (also called a "surface protection film") laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, and/or the polarizer 30; and an optically functional film (or layer) laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, and/or the polarizer 30 via an adhesive layer or adhesive layer.
 [2]偏光子
 偏光子30は、自然光からある一方向の直線偏光を選択的に透過する機能を有するフィルムである。偏光子30としては、例えば、ポリビニルアルコール系樹脂フィルムに二色性色素としてのヨウ素を吸着・配向させたヨウ素系偏光子、ポリビニルアルコール系樹脂フィルムに二色性色素としての二色性染料を吸着・配向させた染料系偏光子、及びリオトロビック液晶状態の二色性染料をコーティングし、配向・固定化した塗布型偏光子等が挙げられる。これらの偏光子は、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収するため吸収型偏光子と呼ばれている。
[2] Polarizer The polarizer 30 is a film having a function of selectively transmitting linearly polarized light in one direction from natural light. Examples of the polarizer 30 include an iodine-based polarizer in which iodine as a dichroic pigment is adsorbed and oriented on a polyvinyl alcohol-based resin film, a dye-based polarizer in which a dichroic dye as a dichroic pigment is adsorbed and oriented on a polyvinyl alcohol-based resin film, and a coating-type polarizer in which a dichroic dye in a lyotropic liquid crystal state is coated, oriented, and fixed. These polarizers are called absorption-type polarizers because they selectively transmit linearly polarized light in one direction from natural light and absorb linearly polarized light in the other direction.
 偏光子30は、吸収型偏光子に限定されず、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を反射する反射型偏光子、又はもう一方向の直線偏光を散乱する散乱型偏光子でも構わないが、偏光板を画像表示装置等に適用したときの視認性に優れる点から吸収型偏光子が好ましい。 The polarizer 30 is not limited to an absorptive polarizer, and may be a reflective polarizer that selectively transmits linearly polarized light in one direction from natural light and reflects linearly polarized light in the other direction, or a scattering polarizer that scatters linearly polarized light in the other direction, but an absorptive polarizer is preferred because it provides excellent visibility when the polarizing plate is applied to an image display device, etc.
 中でも、偏光子30は、ポリビニルアルコール系樹脂で構成されるポリビニルアルコール系偏光子であることがより好ましく、ポリビニルアルコール系樹脂フィルムにヨウ素や二色性染料等の二色性色素を吸着・配向させたポリビニルアルコール系偏光子であることがさらに好ましく、ポリビニルアルコール系樹脂フィルムにヨウ素を吸着・配向させたポリビニルアルコール系偏光子(ポリビニルアルコール-ヨウ素系偏光子)であることが特に好ましい。
 ポリビニルアルコール系偏光子は、ポリビニルアルコール系樹脂フィルム(又は層)を用いて従来公知の方法によって製造することができる。
In particular, the polarizer 30 is more preferably a polyvinyl alcohol-based polarizer made of a polyvinyl alcohol-based resin, even more preferably a polyvinyl alcohol-based polarizer in which a dichroic pigment such as iodine or a dichroic dye is adsorbed and oriented in a polyvinyl alcohol-based resin film, and particularly preferably a polyvinyl alcohol-based polarizer in which iodine is adsorbed and oriented in a polyvinyl alcohol-based resin film (a polyvinyl alcohol-iodine-based polarizer).
The polyvinyl alcohol-based polarizer can be produced by a conventionally known method using a polyvinyl alcohol-based resin film (or layer).
 偏光子30の厚みは、30μm以下とすることができ、好ましくは25μm以下(例えば20μm以下、さらには15μm以下、なおさらには10μm以下、なおさらには8μm以下であってもよい)である。偏光子30の厚みは、通常2μm以上である。偏光子30の厚みを小さくすることは、偏光板、ひいてはこれが適用される画像表示装置等の薄型化に有利である。 The thickness of the polarizer 30 can be 30 μm or less, and is preferably 25 μm or less (for example, 20 μm or less, further 15 μm or less, further 10 μm or less, and further 8 μm or less). The thickness of the polarizer 30 is usually 2 μm or more. Reducing the thickness of the polarizer 30 is advantageous for reducing the thickness of the polarizing plate, and therefore the image display device to which it is applied.
 [3]第2熱可塑性樹脂フィルム
 第2熱可塑性樹脂フィルム20は、透光性を有する(好ましくは光学的に透明な)熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリエチレン樹脂、ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)等のポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂等からなるフィルムであることができる。
[3] Second Thermoplastic Resin Film The second thermoplastic resin film 20 can be a film made of a light-transmitting (preferably optically transparent) thermoplastic resin, for example, a polyolefin-based resin such as a linear polyolefin-based resin (polyethylene resin, polypropylene-based resin, etc.) or a cyclic polyolefin-based resin (norbornene-based resin, etc.); a cellulose ester-based resin such as triacetyl cellulose or diacetyl cellulose; a polyester-based resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; a polycarbonate-based resin; or a (meth)acrylic-based resin.
 第2熱可塑性樹脂フィルム20は、本発明に係る(メタ)アクリル樹脂フィルムであってもよい。第2熱可塑性樹脂フィルム20が(メタ)アクリル樹脂フィルムであるとき、第2熱可塑性樹脂フィルム20を構成する樹脂成分は、本発明に係る(メタ)アクリル樹脂フィルムを構成する樹脂成分と組成等において異なっていてもよい。 The second thermoplastic resin film 20 may be the (meth)acrylic resin film of the present invention. When the second thermoplastic resin film 20 is a (meth)acrylic resin film, the resin components constituting the second thermoplastic resin film 20 may differ in composition, etc. from the resin components constituting the (meth)acrylic resin film of the present invention.
 第2熱可塑性樹脂フィルム20は、延伸されていないフィルム、又は一軸若しくは二軸延伸されたフィルムのいずれであってもよい。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、第1方向に延伸した後でこれとは異なる第2方向に延伸する逐次二軸延伸であってもよい。 The second thermoplastic resin film 20 may be either an unstretched film or a uniaxially or biaxially stretched film. The biaxial stretching may be simultaneous biaxial stretching in which the film is stretched simultaneously in two stretching directions, or sequential biaxial stretching in which the film is stretched in a first direction and then stretched in a second direction different from the first direction.
 第2熱可塑性樹脂フィルム20は、偏光子30を保護する役割を担う保護フィルムであってもよいし、位相差フィルム等の光学機能を併せ持つ保護フィルムであることもできる。例えば、上記熱可塑性樹脂からなるフィルムを延伸(一軸延伸又は二軸延伸等)したり、該熱可塑性樹脂フィルム上に液晶層等を形成したりすることにより、任意の位相差値が付与された位相差フィルムとすることができる。 The second thermoplastic resin film 20 may be a protective film that protects the polarizer 30, or may be a protective film that also has an optical function such as a retardation film. For example, a film made of the above-mentioned thermoplastic resin may be stretched (uniaxially or biaxially stretched, etc.) or a liquid crystal layer may be formed on the thermoplastic resin film, thereby making it possible to obtain a retardation film with an arbitrary retardation value.
 第2熱可塑性樹脂フィルム20は、必要に応じて添加剤を含有していてもよい。添加剤としては、例えば、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、耐衝撃性改良剤、界面活性剤、離型剤等が挙げられる。 The second thermoplastic resin film 20 may contain additives as necessary. Examples of additives include lubricants, antiblocking agents, heat stabilizers, antioxidants, UV absorbers, antistatic agents, impact resistance improvers, surfactants, and release agents.
 1つの実施形態において、第1熱可塑性樹脂フィルム10は本発明に係る(メタ)アクリル樹脂フィルムであり、第2熱可塑性樹脂フィルム20はポリオレフィン系樹脂フィルム(好ましくは、環状ポリオレフィン系樹脂フィルム)、セルロースエステル系樹脂又はポリエステル系樹脂フィルムである。
 他の実施形態において、第1熱可塑性樹脂フィルム10は本発明に係る(メタ)アクリル樹脂フィルムであり、第2熱可塑性樹脂フィルム20は(メタ)アクリル樹脂フィルムである。第2熱可塑性樹脂フィルム20である(メタ)アクリル樹脂フィルムは、本発明に係る(メタ)アクリル樹脂フィルムであってもよい。
In one embodiment, the first thermoplastic resin film 10 is a (meth)acrylic resin film according to the present invention, and the second thermoplastic resin film 20 is a polyolefin-based resin film (preferably a cyclic polyolefin-based resin film), a cellulose ester-based resin film, or a polyester-based resin film.
In another embodiment, the first thermoplastic resin film 10 is the (meth)acrylic resin film according to the present invention, and the second thermoplastic resin film 20 is the (meth)acrylic resin film. The (meth)acrylic resin film that is the second thermoplastic resin film 20 may be the (meth)acrylic resin film according to the present invention.
 第2熱可塑性樹脂フィルム20は、その外面(偏光子30とは反対側の表面)にハードコート層、防眩層、反射防止層、光拡散層、帯電防止層、防汚層、導電層等のコーティング層(表面処理層)を備えていてもよい。 The second thermoplastic resin film 20 may have a coating layer (surface treatment layer) such as a hard coat layer, an anti-glare layer, an anti-reflection layer, a light diffusion layer, an antistatic layer, an anti-fouling layer, or a conductive layer on its outer surface (the surface opposite the polarizer 30).
 第2熱可塑性樹脂フィルム20の厚みは、通常5μm以上200μm以下であり、好ましくは10μm以上120μm以下、より好ましくは10μm以上85μm以下、さらに好ましくは15μm以上65μm以下である。第2熱可塑性樹脂フィルム20の厚みは、60μm以下であってもよく、50μm以下であってもよい。第2熱可塑性樹脂フィルム20の厚みを小さくすることは、偏光板、ひいてはこれが適用される画像表示装置等の薄型化に有利である。 The thickness of the second thermoplastic resin film 20 is usually 5 μm or more and 200 μm or less, preferably 10 μm or more and 120 μm or less, more preferably 10 μm or more and 85 μm or less, and even more preferably 15 μm or more and 65 μm or less. The thickness of the second thermoplastic resin film 20 may be 60 μm or less, or may be 50 μm or less. Reducing the thickness of the second thermoplastic resin film 20 is advantageous for reducing the thickness of the polarizing plate, and ultimately the image display device to which it is applied, etc.
 [4]偏光板の製造、及び接着剤層
 偏光子30の一方の面に第1接着剤層15を介して本発明に係る(メタ)アクリル樹脂フィルムである第1熱可塑性樹脂フィルム10を積層接着することにより、図1に示される構成の偏光板を得ることができ、偏光子30の他方の面に第2接着剤層25を介して第2熱可塑性樹脂フィルム20をさらに積層接着することにより、図2に示される構成の偏光板を得ることができる。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20(以下、これらを総称して単に「熱可塑性樹脂フィルム」ともいう。)の双方を有する偏光板を製造する場合、これらの熱可塑性樹脂フィルムは、段階的に片面ずつ積層接着してもよいし、両面の熱可塑性樹脂フィルムを同時に積層接着してもよい。
[4] Production of polarizing plate, and adhesive layer A polarizing plate having the configuration shown in FIG. 1 can be obtained by laminating and adhering a first thermoplastic resin film 10, which is the (meth)acrylic resin film of the present invention, to one surface of a polarizer 30 via a first adhesive layer 15, and a polarizing plate having the configuration shown in FIG. 2 can be obtained by further laminating and adhering a second thermoplastic resin film 20 to the other surface of the polarizer 30 via a second adhesive layer 25.
When manufacturing a polarizing plate having both the first thermoplastic resin film 10 and the second thermoplastic resin film 20 (hereinafter, these are collectively referred to simply as "thermoplastic resin films"), these thermoplastic resin films may be laminated and bonded in stages, one side at a time, or the thermoplastic resin films on both sides may be laminated and bonded simultaneously.
 第1接着剤層15及び第2接着剤層25を形成する接着剤組成物としては、水系接着剤又は活性エネルギー線硬化性接着剤が挙げられる。第1接着剤層15を形成する接着剤組成物と第2接着剤層25を形成する接着剤組成物とは、同じであってもよいし、異なっていてもよい。
 本発明に係る(メタ)アクリル樹脂フィルムと偏光子との接着に用いる接着剤は、好ましくは活性エネルギー線硬化性接着剤である。
Examples of the adhesive composition forming the first adhesive layer 15 and the second adhesive layer 25 include a water-based adhesive or an active energy ray-curable adhesive. The adhesive composition forming the first adhesive layer 15 and the adhesive composition forming the second adhesive layer 25 may be the same or different.
The adhesive used for bonding the (meth)acrylic resin film according to the present invention to the polarizer is preferably an active energy ray-curable adhesive.
 水系接着剤としては、例えば、主成分としてポリビニルアルコール系樹脂又はウレタン樹脂を用いた従来公知の接着剤組成物が挙げられる。活性エネルギー線硬化性接着剤は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する接着剤である。活性エネルギー線硬化性接着剤を用いる場合、偏光板が有する接着剤層は、当該接着剤の硬化物層である。 Examples of water-based adhesives include conventionally known adhesive compositions that use polyvinyl alcohol resin or urethane resin as the main component. Active energy ray-curable adhesives are adhesives that are cured by exposure to active energy rays such as ultraviolet light, visible light, electron beams, and X-rays. When an active energy ray-curable adhesive is used, the adhesive layer of the polarizing plate is a cured layer of the adhesive.
 活性エネルギー線硬化性接着剤は、カチオン重合によって硬化するエポキシ系化合物を硬化性成分として含有する接着剤であることができ、好ましくは、かかるエポキシ系化合物を硬化性成分として含有する紫外線硬化性接着剤である。エポキシ系化合物とは、分子内に平均1個以上、好ましくは2個以上のエポキシ基を有する化合物を意味する。エポキシ系化合物は、1種のみを使用してもよいし、2種以上を併用してもよい。 The active energy ray curable adhesive can be an adhesive containing an epoxy-based compound that cures by cationic polymerization as a curable component, and is preferably an ultraviolet ray curable adhesive containing such an epoxy-based compound as a curable component. An epoxy-based compound means a compound having an average of one or more epoxy groups, preferably two or more epoxy groups, in the molecule. Only one type of epoxy-based compound may be used, or two or more types may be used in combination.
 エポキシ系化合物としては、芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより得られる水素化エポキシ系化合物(脂環式環を有するポリオールのグリシジルエーテル);脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル等の脂肪族エポキシ系化合物;脂環式環に結合したエポキシ基を分子内に1個以上有するエポキシ系化合物である脂環式エポキシ系化合物等が挙げられる。 Epoxy compounds include hydrogenated epoxy compounds (glycidyl ethers of polyols having alicyclic rings) obtained by reacting epichlorohydrin with alicyclic polyols obtained by hydrogenating the aromatic rings of aromatic polyols; aliphatic epoxy compounds such as polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts; and alicyclic epoxy compounds, which are epoxy compounds having one or more epoxy groups bonded to an alicyclic ring in the molecule.
 活性エネルギー線硬化性接着剤は、硬化性成分として、上記エポキシ系化合物の代わりに、又はこれとともにラジカル重合性である(メタ)アクリル系化合物を含有することができる。(メタ)アクリル系化合物としては、分子内に1個以上の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー;官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等の(メタ)アクリロイルオキシ基含有化合物を挙げることができる。 The active energy ray curable adhesive can contain a radically polymerizable (meth)acrylic compound as a curable component, instead of or together with the above-mentioned epoxy compound. Examples of the (meth)acrylic compound include (meth)acryloyloxy group-containing compounds such as (meth)acrylate monomers having one or more (meth)acryloyloxy groups in the molecule; and (meth)acrylate oligomers obtained by reacting two or more types of functional group-containing compounds and having at least two (meth)acryloyloxy groups in the molecule.
 活性エネルギー線硬化性接着剤は、カチオン重合によって硬化するエポキシ系化合物を硬化性成分として含む場合、光カチオン重合開始剤を含有することが好ましい。光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩等のオニウム塩;鉄-アレン錯体等を挙げることができる。
 活性エネルギー線硬化性接着剤は、(メタ)アクリル系化合物等のラジカル重合性成分を含む場合、光ラジカル重合開始剤を含有することが好ましい。光ラジカル重合開始剤としては、例えば、アセトフェノン系開始剤、ベンゾフェノン系開始剤、ベンゾインエーテル系開始剤、チオキサントン系開始剤、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノン等を挙げることができる。
When the active energy ray-curable adhesive contains an epoxy compound that cures by cationic polymerization as a curable component, it preferably contains a photocationic polymerization initiator. Examples of the photocationic polymerization initiator include aromatic diazonium salts, onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
When the active energy ray-curable adhesive contains a radical polymerizable component such as a (meth)acrylic compound, it is preferable that the active energy ray-curable adhesive contains a photoradical polymerization initiator. Examples of the photoradical polymerization initiator include acetophenone-based initiators, benzophenone-based initiators, benzoin ether-based initiators, thioxanthone-based initiators, xanthone, fluorenone, camphorquinone, benzaldehyde, and anthraquinone.
 偏光子30と熱可塑性樹脂フィルムとの接着は、偏光子30の貼合面及び/又は熱可塑性樹脂フィルムの貼合面に接着剤組成物を塗工するか、又は偏光子30と熱可塑性樹脂フィルムとの間に接着剤組成物を注入し、接着剤組成物の層を介して両者のフィルムを重ね、例えば貼合ロール等を用いて上下から押圧して貼合する工程を含むことができる。 The bonding between the polarizer 30 and the thermoplastic resin film can include a process of applying an adhesive composition to the bonding surface of the polarizer 30 and/or the bonding surface of the thermoplastic resin film, or injecting the adhesive composition between the polarizer 30 and the thermoplastic resin film, overlapping the two films with a layer of the adhesive composition between them, and laminating them by pressing them from above and below using, for example, a laminating roll.
 接着剤組成物層の形成には、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等の種々の塗工方式が利用できる。また、偏光子30及び熱可塑性樹脂フィルムを両者の貼合面が内側となるように連続的に供給しながら、その間に接着剤組成物を流延させる方式であってもよい。 The adhesive composition layer can be formed by various coating methods, such as using a doctor blade, wire bar, die coater, comma coater, gravure coater, etc. Alternatively, the adhesive composition can be cast between the polarizer 30 and the thermoplastic resin film while the polarizer 30 and the thermoplastic resin film are continuously fed so that the bonding surfaces of both are on the inside.
 接着剤組成物を適用する前に、偏光子30及び熱可塑性樹脂フィルムの貼合面の一方又は両方に対して、ケン化処理、コロナ放電処理、プラズマ処理、火炎処理、プライマー処理、アンカーコーティング処理等の易接着処理(表面活性化処理)を施してもよい。 Before applying the adhesive composition, one or both of the bonding surfaces of the polarizer 30 and the thermoplastic resin film may be subjected to an easy-adhesion treatment (surface activation treatment) such as saponification treatment, corona discharge treatment, plasma treatment, flame treatment, primer treatment, anchor coating treatment, etc.
 活性エネルギー線硬化性接着剤を用いる場合、活性エネルギー線を照射して接着剤組成物層を硬化させる。
 活性エネルギー線を照射するために用いる光源は、紫外線、電子線、X線等を発生できるものであればよい。特に波長400nm以下に発光分布を有する、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が好適に用いられる。
When an active energy ray-curable adhesive is used, the adhesive composition layer is cured by irradiating with active energy rays.
The light source used for irradiating the active energy rays may be any light source capable of generating ultraviolet rays, electron beams, X-rays, etc. In particular, light sources having an emission distribution at a wavelength of 400 nm or less, such as low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave excited mercury lamps, and metal halide lamps, are preferably used.
 第1接着剤層15及び第2接着剤層25の厚みはそれぞれ、偏光板において、例えば0.1μm以上100μm以下であり、好ましくは0.5μm以上80μm以下であり、より好ましくは1μm以上60μm以下であり、さらに好ましくは2μm以上50μm以下である。偏光板の薄型化の観点から、該接着剤層の厚みを30μm以下、さらには20μm以下とすることも好ましい。水系接着剤を用いる場合、接着剤層の厚みは上記より小さくてもよい。
 第1接着剤層15と第2接着剤層25とは、厚みが同じであってもよいし、異なっていてもよい。
The thickness of the first adhesive layer 15 and the second adhesive layer 25 is, for example, 0.1 μm or more and 100 μm or less, preferably 0.5 μm or more and 80 μm or less, more preferably 1 μm or more and 60 μm or less, and even more preferably 2 μm or more and 50 μm or less in the polarizing plate. From the viewpoint of thinning the polarizing plate, it is also preferable to set the thickness of the adhesive layer to 30 μm or less, and further 20 μm or less. When a water-based adhesive is used, the thickness of the adhesive layer may be smaller than the above.
The first adhesive layer 15 and the second adhesive layer 25 may have the same thickness or different thicknesses.
 [5]偏光板のその他の構成要素
 [5-1]光学機能性フィルム
 偏光板は、所望の光学機能を付与するための、偏光子30以外の他の光学機能性フィルムを備えることができ、その好適な一例は位相差フィルムである。
 上述のように、第2熱可塑性樹脂フィルム20が位相差フィルムを兼ねることもできるが、熱可塑性樹脂フィルムとは別途に位相差フィルムを積層することもできる。後者の場合、位相差フィルムは、粘着剤層や接着剤層を介して第2熱可塑性樹脂フィルム20の外面に積層することができる。また、第2熱可塑性樹脂フィルム20の代わりに位相差フィルムを積層することもできる。その具体例を挙げれば、例えば図1に示される偏光子30の一方の面に第1熱可塑性樹脂フィルム10が貼合された片面保護偏光板における偏光子30の他方の面に、位相差フィルムを貼合した構成である。この場合、位相差フィルムは、粘着剤層又は接着剤層を介して偏光子30の表面に積層することができる。
[5] Other Components of Polarizing Plate [5-1] Optically Functional Film The polarizing plate may include optically functional films other than the polarizer 30 in order to impart desired optical functions, and a suitable example of such a film is a retardation film.
As described above, the second thermoplastic resin film 20 can also serve as a retardation film, but a retardation film can also be laminated separately from the thermoplastic resin film. In the latter case, the retardation film can be laminated on the outer surface of the second thermoplastic resin film 20 via a pressure-sensitive adhesive layer or an adhesive layer. In addition, a retardation film can be laminated instead of the second thermoplastic resin film 20. A specific example of this is a configuration in which a retardation film is laminated on the other surface of the polarizer 30 in a single-sided protected polarizing plate in which the first thermoplastic resin film 10 is laminated on one surface of the polarizer 30 shown in FIG. 1. In this case, the retardation film can be laminated on the surface of the polarizer 30 via a pressure-sensitive adhesive layer or an adhesive layer.
 位相差フィルムとしては、透光性を有する熱可塑性樹脂の延伸フィルムから構成される複屈折性フィルム;ディスコティック液晶又はネマチック液晶が配向固定されたフィルム;基材フィルム上に上記の液晶層が形成されたもの等が挙げられる。
 基材フィルムは通常、熱可塑性樹脂からなるフィルムであり、熱可塑性樹脂の一例は、トリアセチルセルロース等のセルロースエステル系樹脂である。
 複屈折性フィルムを形成する熱可塑性樹脂としては、第2熱可塑性樹脂フィルム20について記述したものを使用することができる。
Examples of the retardation film include a birefringent film composed of a stretched film of a thermoplastic resin having light transmission properties; a film in which discotic liquid crystal or nematic liquid crystal is oriented and fixed; and a film in which the above-mentioned liquid crystal layer is formed on a substrate film.
The substrate film is usually a film made of a thermoplastic resin, and an example of the thermoplastic resin is a cellulose ester resin such as triacetyl cellulose.
As the thermoplastic resin forming the birefringent film, those described for the second thermoplastic resin film 20 can be used.
 偏光板に含まれ得る他の光学機能性フィルム(光学部材)の例は、集光板、輝度向上フィルム、反射層(反射フィルム)、半透過反射層(半透過反射フィルム)、光拡散層(光拡散フィルム)等である。これらは一般的に、偏光板が液晶セルの背面側(バックライト側)に配置される偏光板である場合に設けられる。 Examples of other optically functional films (optical components) that can be included in the polarizing plate include a light collecting plate, a brightness enhancing film, a reflective layer (reflective film), a semi-transmissive reflective layer (semi-transmissive reflective film), a light diffusing layer (light diffusing film), etc. These are generally provided when the polarizing plate is a polarizing plate that is placed on the back side (backlight side) of the liquid crystal cell.
 [5-2]粘着剤層
 本発明に係る偏光板は、これを液晶セル、有機EL素子等の画像表示素子、又は他の光学部材に貼合するための粘着剤層を含むことができる。粘着剤層は、図1に示される構成の偏光板においては偏光子30の外面(第1熱可塑性樹脂フィルム10側とは反対側の面)、図2に示される構成の偏光板においては第1熱可塑性樹脂フィルム10又は第2熱可塑性樹脂フィルム20の外面に積層することができる。
[5-2] Pressure-sensitive adhesive layer The polarizing plate according to the present invention may contain a pressure-sensitive adhesive layer for attaching it to an image display element such as a liquid crystal cell or an organic EL element, or to other optical members. The pressure-sensitive adhesive layer may be laminated on the outer surface (the surface opposite to the first thermoplastic resin film 10) of the polarizer 30 in the polarizing plate having the configuration shown in Fig. 1, or on the outer surface of the first thermoplastic resin film 10 or the second thermoplastic resin film 20 in the polarizing plate having the configuration shown in Fig. 2.
 好ましい一実施形態に係る偏光板において粘着剤層は、第2熱可塑性樹脂フィルム20の外面、すなわち、偏光子30を基準に第1熱可塑性樹脂フィルム10側とは反対側の面に積層される。この実施形態において、偏光板が画像表示素子に貼合されるときには、偏光板は、第1熱可塑性樹脂フィルム10側が視認側となるように、その粘着剤層を介して画像表示素子に貼合される。 In a polarizing plate according to a preferred embodiment, the adhesive layer is laminated on the outer surface of the second thermoplastic resin film 20, i.e., the surface opposite the first thermoplastic resin film 10 side relative to the polarizer 30. In this embodiment, when the polarizing plate is attached to an image display element, the polarizing plate is attached to the image display element via the adhesive layer so that the first thermoplastic resin film 10 side is the viewing side.
 粘着剤層に用いられる粘着剤としては、(メタ)アクリル系樹脂や、シリコーン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリエーテル系樹脂等をベースポリマーとするものを用いることができる。中でも、透明性、粘着力、信頼性、耐候性、耐熱性、リワーク性等の観点から、(メタ)アクリル系粘着剤が好ましい。 The adhesive used in the adhesive layer may be one whose base polymer is a (meth)acrylic resin, silicone resin, polyester resin, polyurethane resin, polyether resin, or the like. Among these, (meth)acrylic adhesives are preferred from the standpoints of transparency, adhesive strength, reliability, weather resistance, heat resistance, reworkability, and the like.
 粘着剤層の厚みは、その接着力等に応じて決定されるが、1μm以上50μm以下の範囲が適当であり、好ましくは2μm以上40μm以下である。 The thickness of the adhesive layer is determined according to its adhesive strength, etc., but is preferably in the range of 1 μm to 50 μm, and more preferably 2 μm to 40 μm.
 偏光板は、粘着剤層の外面に積層されるセパレートフィルムを含み得る。セパレートフィルムは、ポリエチレン等のポリエチレン系樹脂、ポリプロピレン等のポリプロピレン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等からなるフィルムであることができる。中でも、ポリエチレンテレフタレートの延伸フィルムが好ましい。 The polarizing plate may include a separate film laminated on the outer surface of the adhesive layer. The separate film may be a film made of a polyethylene-based resin such as polyethylene, a polypropylene-based resin such as polypropylene, a polyester-based resin such as polyethylene terephthalate, or the like. Of these, a stretched film of polyethylene terephthalate is preferred.
 粘着剤層は、必要に応じて、ガラス繊維、ガラスビーズ、樹脂ビーズ、金属粉や他の無機粉末からなる充填剤、顔料、着色剤、酸化防止剤、紫外線吸収剤、帯電防止剤等を含むことができる。 The adhesive layer may contain fillers such as glass fibers, glass beads, resin beads, metal powders and other inorganic powders, pigments, colorants, antioxidants, ultraviolet absorbers, antistatic agents, etc., as required.
 [5-3]プロテクトフィルム
 本発明に係る偏光板は、その表面(熱可塑性樹脂フィルム表面や偏光子表面等)を保護するためのプロテクトフィルムを含むことができる。プロテクトフィルムは、例えば画像表示素子や他の光学部材に偏光板が貼合された後、それが有する粘着剤層ごと剥離除去される。
 好ましい一実施形態において偏光板は、本発明に係る(メタ)アクリル樹脂フィルムである第1熱可塑性樹脂フィルム10の表面上に積層される。
[5-3] Protective Film The polarizing plate according to the present invention may contain a protective film for protecting its surface (such as the thermoplastic resin film surface or the polarizer surface). The protective film is peeled off and removed together with the pressure-sensitive adhesive layer thereof after the polarizing plate is attached to, for example, an image display element or other optical members.
In a preferred embodiment, the polarizing plate is laminated on the surface of the first thermoplastic resin film 10 which is the (meth)acrylic resin film according to the present invention.
 プロテクトフィルムは、例えば、基材フィルムとその上に積層される粘着剤層とで構成される。粘着剤層については上述の記述が引用される。
 基材フィルムを構成する樹脂は、例えば、ポリエチレンのようなポリエチレン系樹脂、ポリプロピレンのようなポリプロピレン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂であることができる。好ましくは、ポリエチレンテレフタレート等のポリエステル系樹脂である。
The protective film is, for example, composed of a base film and an adhesive layer laminated thereon. The adhesive layer is as described above.
The resin constituting the base film may be, for example, a thermoplastic resin such as a polyethylene-based resin such as polyethylene, a polypropylene-based resin such as polypropylene, a polyester-based resin such as polyethylene terephthalate or polyethylene naphthalate, or a polycarbonate-based resin. A polyester-based resin such as polyethylene terephthalate is preferred.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す%及び部は、特記ない限り、質量基準である。フィルム及び接着剤層(硬化層)の厚みは、(株)ニコン製のデジタルマイクロメーター「MH-15M」を用いて測定した。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples. In the examples, percentages and parts indicating the content or amount used are based on mass unless otherwise specified. The thickness of the film and adhesive layer (cured layer) were measured using a digital micrometer "MH-15M" manufactured by Nikon Corporation.
 <実施例1~7、比較例1~2>
 表1及び表2に示される成分を表1及び表2に示される量(質量部)で配合し、240℃で押出混練することにより、(メタ)アクリル樹脂組成物からなるペレットを得た。
 表1及び表2中、(C)/(B)は、成分(B)の含有量に対する成分(C)の含有量(成分(C-1)及び(C-2)の合計含有量)の比を表す。(B)/(A)は、成分(A)の含有量(成分(A-1)及び(A-2)の合計含有量)に対する成分(B)の含有量の比を表す。(C)/(A)は、成分(A)の含有量(成分(A-1)及び(A-2)の合計含有量)に対する成分(C)の含有量(成分(C-1)及び(C-2)の合計含有量)の比を表す。
<Examples 1 to 7, Comparative Examples 1 and 2>
The components shown in Tables 1 and 2 were blended in the amounts (parts by mass) shown in Tables 1 and 2 and extrusion-kneaded at 240° C. to obtain pellets of a (meth)acrylic resin composition.
In Tables 1 and 2, (C)/(B) represents the ratio of the content of component (C) (the total content of components (C-1) and (C-2)) to the content of component (B). (B)/(A) represents the ratio of the content of component (B) to the content of component (A) (the total content of components (A-1) and (A-2)). (C)/(A) represents the ratio of the content of component (C) (the total content of components (C-1) and (C-2)) to the content of component (A) (the total content of components (A-1) and (A-2)).
 <測定及び評価>
 (1)(メタ)アクリル樹脂組成物の質量減少率(加熱試験I)
 調製したペレットから約500mgのサンプルを精秤した。精秤したサンプルを、精秤した燃焼ボート(No.5、アズワン品番:2-962-03、サイズ:16mm×80mm×12mm)に入れた。燃焼ボートを管状炉内に設置し、サンプル上に熱電対をセットした。管状炉内に50mL/minの流量で空気を流しながら、燃焼ボート直上の雰囲気温度が270℃以上275℃以下に保持されるように温度調整し、該温度下で3時間加熱する加熱試験Iを実施した。加熱試験I後、徐冷し、管状炉から燃焼ボートを取り出し、燃焼ボート及びサンプルの合計質量を測定した。
<Measurement and Evaluation>
(1) Mass Loss Rate of (Meth)acrylic Resin Composition (Heating Test I)
About 500 mg of sample was precisely weighed from the prepared pellets. The precisely weighed sample was placed in a precisely weighed combustion boat (No. 5, AS ONE product number: 2-962-03, size: 16 mm x 80 mm x 12 mm). The combustion boat was placed in a tubular furnace, and a thermocouple was set on the sample. While flowing air at a flow rate of 50 mL/min into the tubular furnace, the temperature was adjusted so that the atmospheric temperature directly above the combustion boat was maintained at 270°C or higher and 275°C or lower, and heating test I was performed in which the sample was heated at that temperature for 3 hours. After heating test I, the sample was gradually cooled, the combustion boat was removed from the tubular furnace, and the total mass of the combustion boat and the sample was measured.
 下記式に基づき、質量減少率を測定した。結果を表1及び表2に示す。
 質量減少率=100×{1-(加熱試験I後の上記合計質量-燃焼ボートの質量)/加熱試験I前のサンプルの質量}
The mass loss rate was measured based on the following formula. The results are shown in Tables 1 and 2.
Mass reduction rate=100×{1−(total mass after heating test I−mass of combustion boat)/mass of sample before heating test I}
 (2)(メタ)アクリル樹脂組成物のIR強度比(加熱試験I)
 上記加熱試験I後のサンプルについて、フーリエ変換赤外分光光度計(アジレント・テクノロジー株式会社製の「Cary 660 FTIR」)を用いてIRスペクトルを取得した。得られたIRスペクトルから、波数1725cm-1におけるピーク強度に対する波数1785±5cm-1における平均強度の比(表1及び表2におけるIR強度比)を求めた。結果を表1及び表2に示す。
(2) IR Intensity Ratio of (Meth)acrylic Resin Composition (Heating Test I)
For the sample after Heating Test I, an IR spectrum was obtained using a Fourier transform infrared spectrophotometer ("Cary 660 FTIR" manufactured by Agilent Technologies, Inc.). From the obtained IR spectrum, the ratio of the average intensity at a wave number of 1785±5 cm -1 to the peak intensity at a wave number of 1725 cm -1 (IR intensity ratio in Tables 1 and 2) was obtained. The results are shown in Tables 1 and 2.
 波数1725cm-1におけるピーク強度とは、該波数におけるシグナル強度値を意味する。IR強度比は、下記式で表される。
 IR強度比=波数1785±5cm-1における平均強度/波数1725cm-1におけるピーク強度
The peak intensity at a wave number of 1725 cm −1 means the signal intensity value at that wave number. The IR intensity ratio is expressed by the following formula.
IR intensity ratio = average intensity at wavenumber 1785±5 cm −1 / peak intensity at wavenumber 1725 cm −1
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例8~13>
 表3に示される成分のうち酸化防止剤以外の成分を表3に示される量(質量部)で配合し、240℃で押出混練することにより、ペレットを得た。その後、当該ペレットに所定量の酸化防止剤(C-1)及び/又は(C-2)を混合し、ペレットと酸化防止剤の混合物である(メタ)アクリル系樹脂組成物(混合ペレット)を得た。
 表3中、(C)/(B)は、成分(B)の含有量に対する成分(C)の含有量(成分(C-1)及び(C-2)の合計含有量)の比を表す。(B)/(A)は、成分(A)の含有量(成分(A-1)及び(A-2)の合計含有量)に対する成分(B)の含有量の比を表す。(C)/(A)は、成分(A)の含有量(成分(A-1)及び(A-2)の合計含有量)に対する成分(C)の含有量(成分(C-1)及び(C-2)の合計含有量)の比を表す。
<Examples 8 to 13>
Among the components shown in Table 3, the components other than the antioxidant were blended in the amounts (parts by mass) shown in Table 3, and extrusion-kneaded at 240° C. to obtain pellets. Then, a predetermined amount of antioxidant (C-1) and/or (C-2) was mixed with the pellets to obtain a (meth)acrylic resin composition (mixed pellets) which is a mixture of the pellets and the antioxidant.
In Table 3, (C)/(B) represents the ratio of the content of component (C) (the total content of components (C-1) and (C-2)) to the content of component (B). (B)/(A) represents the ratio of the content of component (B) to the content of component (A) (the total content of components (A-1) and (A-2)). (C)/(A) represents the ratio of the content of component (C) (the total content of components (C-1) and (C-2)) to the content of component (A) (the total content of components (A-1) and (A-2)).
 <測定及び評価>
 (1)(メタ)アクリル樹脂組成物の質量減少率(加熱試験II)
 調製した混合ペレットから約10gのサンプルを精秤した。精秤したサンプルを、精秤したアルミカップに入れた。アルミカップをオーブン(ヤマト科学株式会社製定温乾燥器DX302)内に設置した。オーブンの設定温度を255℃にセットし、オーブン内の雰囲気温度が250℃以上255℃以下に保持されるように温度調整しながら6時間加熱する加熱試験IIを実施した。加熱試験II後、徐冷し、オーブンからアルミカップを取り出し、アルミカップ及びサンプルの合計質量を測定した。
<Measurement and Evaluation>
(1) Mass Reduction Rate of (Meth)acrylic Resin Composition (Heating Test II)
About 10 g of sample was precisely weighed from the prepared mixed pellets. The precisely weighed sample was placed in a precisely weighed aluminum cup. The aluminum cup was placed in an oven (constant temperature dryer DX302 manufactured by Yamato Scientific Co., Ltd.). The oven was set to a set temperature of 255°C, and heating test II was carried out in which the temperature was adjusted so that the atmospheric temperature in the oven was maintained between 250°C and 255°C for 6 hours. After heating test II, the aluminum cup was slowly cooled, removed from the oven, and the total mass of the aluminum cup and the sample was measured.
 下記式に基づき、質量減少率を測定した。結果を表3に示す。
 質量減少率=100×{1-(加熱試験II後の上記合計質量-アルミカップの質量)/加熱試験II前のサンプルの質量}
The mass loss rate was measured based on the following formula. The results are shown in Table 3.
Mass reduction rate=100×{1−(total mass after Heating Test II−mass of aluminum cup)/mass of sample before Heating Test II}
 (2)(メタ)アクリル樹脂組成物のIR強度比(加熱試験II)
 上記「(2)(メタ)アクリル樹脂組成物のIR強度比(加熱試験I)」と同じ方法で、IR強度比を求めた。
(2) IR Intensity Ratio of (Meth)acrylic Resin Composition (Heating Test II)
The IR intensity ratio was determined in the same manner as in "(2) IR intensity ratio of (meth)acrylic resin composition (heating test I)" above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示される各成分の詳細は次のとおりである。
 〔1〕(メタ)アクリル樹脂(A-1):三連子表示のシンジオタクティシティ(rr)が76%であるメタクリル樹脂(メタクリル酸メチルの単独重合体)
 〔2〕(メタ)アクリル樹脂(A-2):メタクリル酸メチル/アクリル酸メチル=97/3(質量比)の三連子表示のシンジオタクティシティ(rr)が48%であるラジカル共重合体
 〔3〕エラストマー成分(B):三層構造からなる(メタ)アクリル系多層重合体である(メタ)アクリル系ゴム粒子(一層目(最内層):メタクリル酸メチルとアクリル酸メチルとメタクリル酸アリルとの共重合体(質量比93.8/6.0/0.2)/二層目:アクリル酸ブチルとスチレンとメタクリル酸アリルとの共重合体(質量比80.6/17.4/2.0)/三層目(最外層):メタクリル酸メチルとアクリル酸メチルとの共重合体(質量比94/6))
 〔4〕酸化防止剤(C-1):「アデカスタブ AO-80」(3,9-ビス(2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)
 〔5〕酸化防止剤(C-2):「アデカスタブ PEP36」(3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、(株)ADEKA製)
 〔6〕紫外線吸収剤:「アデカスタブ LA-31RG」(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]、(株)ADEKA製)
Details of each component shown in Tables 1 to 3 are as follows.
[1] (Meth)acrylic resin (A-1): A methacrylic resin having a triad syndiotacticity (rr) of 76% (a homopolymer of methyl methacrylate)
[2] (Meth)acrylic resin (A-2): a radical copolymer having a triad syndiotacticity (rr) of 48% with methyl methacrylate/methyl acrylate=97/3 (mass ratio); [3] Elastomer component (B): (meth)acrylic rubber particles which are (meth)acrylic multilayer polymers having a three-layer structure (first layer (innermost layer): a copolymer of methyl methacrylate, methyl acrylate, and allyl methacrylate (mass ratio 93.8/6.0/0.2); second layer: a copolymer of butyl acrylate, styrene, and allyl methacrylate (mass ratio 80.6/17.4/2.0); third layer (outermost layer): a copolymer of methyl methacrylate and methyl acrylate (mass ratio 94/6)).
[4] Antioxidant (C-1): "ADEKA STAB AO-80" (3,9-bis(2-(3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy)-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, manufactured by ADEKA Corporation)
[5] Antioxidant (C-2): "ADEKA STAB PEP36" (3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, manufactured by ADEKA Corporation)
[6] Ultraviolet absorber: "ADEKA STAB LA-31RG"(2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], manufactured by ADEKA Corporation)
 実施例1~13で得られた(メタ)アクリル樹脂組成物のIR強度比は、比較例1~2で得られた(メタ)アクリル樹脂組成物のIR強度比よりも小さな値を示しており、熱負荷がかかった際のゲルの発生が抑制されたものであった。また、実施例1~13で得られた(メタ)アクリル樹脂組成物は、加熱による質量減少率が低く、耐熱性に優れるものであった。 The IR intensity ratios of the (meth)acrylic resin compositions obtained in Examples 1 to 13 were smaller than those of the (meth)acrylic resin compositions obtained in Comparative Examples 1 and 2, and the generation of gel when subjected to thermal load was suppressed. In addition, the (meth)acrylic resin compositions obtained in Examples 1 to 13 had a low mass loss rate due to heating and were excellent in heat resistance.
 10 第1熱可塑性樹脂フィルム、15 第1接着剤層、20 第2熱可塑性樹脂フィルム、25 第2接着剤層、30 偏光子。 10 First thermoplastic resin film, 15 First adhesive layer, 20 Second thermoplastic resin film, 25 Second adhesive layer, 30 Polarizer.

Claims (9)

  1.  (メタ)アクリル樹脂(A)、エラストマー成分(B)及び酸化防止剤(C)を含み、
     前記エラストマー成分(B)の含有量に対する前記酸化防止剤(C)の含有量の質量比が0.006以上0.2以下である、(メタ)アクリル樹脂組成物。
    The composition comprises a (meth)acrylic resin (A), an elastomer component (B), and an antioxidant (C),
    a mass ratio of a content of the antioxidant (C) to a content of the elastomer component (B) is 0.006 or more and 0.2 or less.
  2.  前記エラストマー成分(B)の含有量が、前記(メタ)アクリル樹脂(A)100質量部に対して、17.5質量部以上である、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth)acrylic resin composition according to claim 1, wherein the content of the elastomer component (B) is 17.5 parts by mass or more per 100 parts by mass of the (meth)acrylic resin (A).
  3.  前記酸化防止剤(C)の含有量が、前記(メタ)アクリル樹脂(A)100質量部に対して、0.4質量部以上3.5質量部以下である、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth)acrylic resin composition according to claim 1, wherein the content of the antioxidant (C) is 0.4 parts by mass or more and 3.5 parts by mass or less per 100 parts by mass of the (meth)acrylic resin (A).
  4.  空気雰囲気中、270℃以上275℃以下の温度で3時間加熱したとき、又は、空気雰囲気中、250℃以上255℃以下の温度で6時間加熱したときの質量減少率が60%以下である、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth)acrylic resin composition according to claim 1, which has a mass loss rate of 60% or less when heated in an air atmosphere at a temperature of 270°C or more and 275°C or less for 3 hours, or when heated in an air atmosphere at a temperature of 250°C or more and 255°C or less for 6 hours.
  5.  前記エラストマー成分(B)がゴム粒子である、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth)acrylic resin composition according to claim 1, wherein the elastomer component (B) is rubber particles.
  6.  前記(メタ)アクリル樹脂(A)は、シンジオタクティシティが互いに異なる(メタ)アクリル樹脂(A-1)及び(メタ)アクリル樹脂(A-2)を含む、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth)acrylic resin composition according to claim 1, wherein the (meth)acrylic resin (A) includes (meth)acrylic resin (A-1) and (meth)acrylic resin (A-2) having mutually different syndiotacticities.
  7.  ペレット形状である、請求項1に記載の(メタ)アクリル樹脂組成物。 The (meth)acrylic resin composition according to claim 1, which is in the form of pellets.
  8.  請求項1~7のいずれか1項に記載の(メタ)アクリル樹脂組成物から形成されるフィルム。 A film formed from the (meth)acrylic resin composition according to any one of claims 1 to 7.
  9.  偏光子、接着剤層及び請求項8に記載のフィルムをこの順に含む偏光板。 A polarizing plate comprising a polarizer, an adhesive layer, and the film described in claim 8, in that order.
PCT/JP2023/034843 2022-10-03 2023-09-26 (meth)acrylic resin composition, film and polarizing plate WO2024075584A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-159422 2022-10-03
JP2022159422 2022-10-03
JP2023-148991 2023-09-14
JP2023148991A JP2024053539A (en) 2022-10-03 2023-09-14 (Meth)acrylic resin composition, film and polarizing plate

Publications (1)

Publication Number Publication Date
WO2024075584A1 true WO2024075584A1 (en) 2024-04-11

Family

ID=90608297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034843 WO2024075584A1 (en) 2022-10-03 2023-09-26 (meth)acrylic resin composition, film and polarizing plate

Country Status (1)

Country Link
WO (1) WO2024075584A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126550A (en) * 2008-11-25 2010-06-10 Asahi Kasei Chemicals Corp Thermoplastic resin composition
JP2013083907A (en) * 2011-02-04 2013-05-09 Nippon Shokubai Co Ltd Retardation film
JP2013155218A (en) * 2012-01-26 2013-08-15 Nippon Shokubai Co Ltd Resin composition
WO2018003788A1 (en) * 2016-06-27 2018-01-04 株式会社クラレ Molded body comprising acrylic resin composition
WO2020111082A1 (en) * 2018-11-30 2020-06-04 株式会社クラレ (meth)acrylic resin composition and (meth)acrylic resin film
WO2022176849A1 (en) * 2021-02-19 2022-08-25 住友化学株式会社 Optical film and polarizing plate
WO2022176848A1 (en) * 2021-02-19 2022-08-25 住友化学株式会社 Optical film and polarizing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126550A (en) * 2008-11-25 2010-06-10 Asahi Kasei Chemicals Corp Thermoplastic resin composition
JP2013083907A (en) * 2011-02-04 2013-05-09 Nippon Shokubai Co Ltd Retardation film
JP2013155218A (en) * 2012-01-26 2013-08-15 Nippon Shokubai Co Ltd Resin composition
WO2018003788A1 (en) * 2016-06-27 2018-01-04 株式会社クラレ Molded body comprising acrylic resin composition
WO2020111082A1 (en) * 2018-11-30 2020-06-04 株式会社クラレ (meth)acrylic resin composition and (meth)acrylic resin film
WO2022176849A1 (en) * 2021-02-19 2022-08-25 住友化学株式会社 Optical film and polarizing plate
WO2022176848A1 (en) * 2021-02-19 2022-08-25 住友化学株式会社 Optical film and polarizing plate

Similar Documents

Publication Publication Date Title
KR101959340B1 (en) Polarizing plate and liquid crystal panel
KR20120086706A (en) Liquid crystal display device, and set of optical members for liquid crystal display device
JP2019152880A (en) Polarizing plate and liquid crystal display device
WO2011040541A1 (en) Optical laminate and method for producing optical laminate
TW201303440A (en) Polarizing plate and liquid crystal display device
KR20110046311A (en) Liquid crystal display
KR20170066393A (en) Photocurable adhesive, and polarizing plate, laminated optical member, and liquid crystal display device using same
KR102505692B1 (en) Laminates and image display devices
WO2021100698A1 (en) Curable adhesive composition and polarizing plate
JP6654203B2 (en) Polarizing plate protective film, method for producing the same, polarizing plate and liquid crystal display device
JP2012226290A (en) Diffusion sheet and liquid crystal display device
JP5105065B2 (en) Method for producing polarizing plate with retardation film
TW201629548A (en) Polarizers
WO2024075584A1 (en) (meth)acrylic resin composition, film and polarizing plate
JP2024053539A (en) (Meth)acrylic resin composition, film and polarizing plate
WO2022176848A1 (en) Optical film and polarizing plate
WO2022176849A1 (en) Optical film and polarizing plate
JP2018109660A (en) Acrylic resin film and manufacturing method therefor
KR102094761B1 (en) Liquid Crystal Display Device
JP2016155988A (en) Curable adhesive, cured product, laminate and polarizing plate
WO2022145367A1 (en) Curable adhesive composition and polarizing plate
WO2022145370A1 (en) Curable adhesive composition and polarizing plate
WO2017204327A1 (en) Flame-resistant polarizing plate and liquid crystal display device using same
WO2022145368A1 (en) Curable adhesive composition and polarizing plate
KR102031800B1 (en) Light guide film, back light unit and liquid crystal display apparatus comprising the same