WO2024075572A1 - Information processing method, program, information processing device, and data structure - Google Patents

Information processing method, program, information processing device, and data structure Download PDF

Info

Publication number
WO2024075572A1
WO2024075572A1 PCT/JP2023/034760 JP2023034760W WO2024075572A1 WO 2024075572 A1 WO2024075572 A1 WO 2024075572A1 JP 2023034760 W JP2023034760 W JP 2023034760W WO 2024075572 A1 WO2024075572 A1 WO 2024075572A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
line segment
attribute information
segment data
edge
Prior art date
Application number
PCT/JP2023/034760
Other languages
French (fr)
Japanese (ja)
Inventor
博之 小田
隆司 石井
広道 雨谷
Original Assignee
ダイナミックマッププラットフォーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイナミックマッププラットフォーム株式会社 filed Critical ダイナミックマッププラットフォーム株式会社
Publication of WO2024075572A1 publication Critical patent/WO2024075572A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present invention relates to an information processing method, a program, an information processing device, and a data structure.
  • map data to be used for autonomous driving and the like features are detected by various sensors mounted on the vehicle, feature data relating to these features is generated, and this feature data is associated with the map data. This enables the vehicle to properly grasp the features around the vehicle using the feature data associated with the map data.
  • this feature data includes information on the type of external sensor and environmental information on the environment when the features are detected for each type of external sensor (see, for example, Patent Document 1).
  • map data is generated based on point cloud data and various other data collected when a measurement vehicle equipped with an MMS (Mobile Mapping System) measurement system drives along the roadway.
  • MMS Mobile Mapping System
  • the present invention aims to provide highly accurate map data that can be used by vehicles traveling on roads other than roadways.
  • An information processing method is an information processing method executed by an information processing device including a processor, in which the processor executes the following operations: extracting edges of a passageway other than a roadway based on point cloud data of the passageway, identifying attribute information related to the passageway based on the point cloud data, generating line segment data related to the passageway based on the edge data related to the edges and the attribute information, and associating the line segment data with attribute information of the passageway corresponding to the line segment data.
  • the present invention makes it possible to provide highly accurate map data that can be used by vehicles traveling on roads other than roadways.
  • FIG. 1 is a diagram illustrating an example of a configuration of an information processing system according to an embodiment of the present invention.
  • 1 is a diagram showing an example of a configuration of a vehicle according to an embodiment of the present invention
  • 1 is a diagram illustrating an example of a configuration of an information processing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a database according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of information relating to feature data of a route according to an embodiment of the present invention;
  • FIG. 1 is a diagram showing an example of a road without a sidewalk.
  • 1A and 1B are diagrams showing examples of various obstacles on a walkway.
  • FIG. 1 is a diagram showing an example of grating present on a sidewalk.
  • FIG. 13 illustrates the cut-off for vehicle entry and exit.
  • FIG. 13 is a diagram showing an example of a relationship between sidewalks and paved roads outside a road and attribute information such as road width.
  • FIG. 13 is a diagram showing an example of a relationship between sidewalks and paved roads outside a road and attribute information such as road width.
  • FIG. 2 is a diagram showing an example of a width code according to an embodiment of the present invention.
  • 11 is a diagram showing an example of attribute information that can be associated with line segment data according to an embodiment of the present invention;
  • FIG. 13 is a diagram showing an example of section cutting in case 1.
  • FIG. 13 is a diagram showing an example of section cutting in case 2.
  • FIG. 13 is a diagram showing an example of section cutting in case 3.
  • FIG. 13 is a diagram showing an example of a relationship between sidewalks and paved roads outside a road and attribute information such as road width.
  • FIG. 2 is a diagram showing an example of a width code according to an embodiment of the present
  • 13 is a diagram showing another example of section cutting in case 3.
  • 5 is a flowchart showing an example of a process related to map data generation according to an embodiment of the present invention.
  • 10 is a flowchart showing an example of a process from identifying attribute information to associating processing according to an embodiment of the present invention.
  • Fig. 1 is a diagram showing an example of the configuration of an information processing system 1 according to an embodiment of the present invention.
  • the information processing system 1 shown in Fig. 1 includes a measurement vehicle (hereinafter also referred to as "vehicle") 10 equipped with a Mobile Mapping System (MMS) measurement device, an information processing device 20, a positioning satellite 30 used in a Global Navigation Satellite System (GNSS), and an observation satellite 40 capable of acquiring satellite images, which are capable of transmitting and receiving data to and from each other via a network N.
  • the number of vehicles 10 and information processing devices 20 may be one or more.
  • Vehicle 10 is a vehicle that performs three-dimensional measurements using MMS, and performs three-dimensional measurements of the surrounding terrain while moving. Vehicle 10 can also receive signals from GNSS positioning satellites 30 and detect its own vehicle's position information.
  • the position information includes three-dimensional position information of latitude, longitude, and altitude, or two-dimensional position information of latitude and longitude.
  • the vehicle 10 is also equipped with various sensors and acquires data detected by the various sensors.
  • the various sensors include an on-board camera, a vehicle speed sensor, an acceleration sensor, and the like.
  • the vehicle 10 shown in FIG. 1 is an example in which measuring instruments and the like are mounted on a personal mobility device, but measuring instruments and the like may also be mounted on a general vehicle that travels on a roadway.
  • the positioning satellite 30 is a satellite that transmits signals necessary to measure position information.
  • the observation satellite 40 uses, for example, a Synthetic Aperture Radar (SAR) sensor to observe the Earth and obtain satellite images by photographing it.
  • SAR Synthetic Aperture Radar
  • the information processing device 20 is, for example, a server, and acquires data measured by the MMS, data detected by various sensors, and the like from the vehicle 10.
  • the information processing device 20 also acquires signals and images from each of the satellites 30, 40.
  • the information processing device 20 generates map data using the data acquired from the vehicle 10 and each of the satellites 30, 40. Note that the information processing device 20 may be composed of multiple information processing devices.
  • Fig. 2 is a diagram showing an example of the configuration of a vehicle 10 according to an embodiment of the present invention.
  • the vehicle 10 travels in a measurement area using an MMS and measures three-dimensional coordinate values of features around the traveled roadway and/or around a traffic path other than the roadway.
  • the vehicle 10 includes a GNSS receiver 101, an IMU 102, a laser scanner 103, and a camera 104.
  • these devices are attached to a top plate 100 provided on the top of the vehicle 10.
  • the vehicle 10 also has an odometer 105 attached to the wheel, and is equipped with a processor 106, various sensors 107, and a communication device 108 as on-board devices.
  • the GNSS receiver 101 is equipped with an antenna that receives positioning signals from the GNSS positioning satellites 30.
  • the GNSS receiver 101 calculates the pseudo-range to the positioning satellites 30, the phase of the carrier wave carrying the positioning signal, and three-dimensional coordinate values based on the positioning signal received by the antenna.
  • the IMU 102 is equipped with a gyro sensor that measures angular velocity in three axial directions, and an acceleration sensor that measures acceleration.
  • the IMU 102 acquires attitude data of the vehicle using these sensors.
  • the laser scanner 103 emits laser light in the width direction of the vehicle 10 while changing the emission angle, and receives the laser light reflected by a feature located at the destination of the emission.
  • the laser scanner 103 measures the time from when the laser light is emitted to when it is received, and calculates the distance to the feature.
  • the camera 104 captures images of the outside of the vehicle 10, such as the front.
  • the odometer 105 measures the distance traveled by the vehicle 10.
  • the processor 106 controls the driving of the vehicle 10, or controls the transmission and reception of data to and from external devices.
  • the various sensors 107 include an on-board camera, a vehicle speed sensor, and an acceleration sensor.
  • the communication device 108 transmits and receives data to and from external devices. For example, the communication device 108 transmits data acquired by MMS to the information processing device 20. Note that, for measuring point cloud data, etc., on sidewalks, within facilities, and on premises (including, but not limited to, airports and ports), measurements may be taken using measuring devices such as handheld, backpack, and fixed types.
  • ⁇ Configuration of information processing device> 3 is a diagram showing an example of the configuration of an information processing device 20 according to an embodiment of the present invention.
  • the information processing device 20 includes one or more processing devices (CPU: Central Processing Unit) 210, one or more network communication interfaces 220, a storage device 230, a user interface 250, and one or more communication buses 270 for interconnecting these components. Note that the user interface 250 is not necessarily required.
  • Storage device 230 may be, for example, a high-speed random access memory such as a DRAM, SRAM, or other random access solid-state storage device, or may be a non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices, or may be a non-transitory computer-readable recording medium.
  • a high-speed random access memory such as a DRAM, SRAM, or other random access solid-state storage device
  • non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices, or may be a non-transitory computer-readable recording medium.
  • storage device 230 may be one or more storage devices located remotely from CPU 210.
  • storage device 230 stores programs, modules, and data structures executed by CPU 210, or a subset thereof.
  • the storage device 230 stores data used by the information processing system 1.
  • the storage device 230 stores data related to the generation of high-precision three-dimensional map data (hereinafter also referred to as "HD (High Definition) maps").
  • HD High Definition
  • dynamic maps, HD maps, feature data, etc. are stored in the storage device 230.
  • FIG. 4 is a diagram showing an example of a database according to one embodiment of the present invention.
  • the storage device 230 stores dynamic map data as a high-precision map database.
  • the map data is, for example, high-precision three-dimensional map data used in autonomous vehicles.
  • this map data is data on a map called a dynamic map that is provided in real time and to which more dynamic information, such as information on surrounding vehicles and traffic information, has been added.
  • the map data that can be used in this embodiment is classified, for example, into four hierarchies.
  • the map data is classified into static information SI1, quasi-static information SI2, quasi-dynamic information MI1, and dynamic information MI2.
  • Static information SI1 is high-precision, three-dimensional, basic map data (HD data) that includes road surface information, lane information, three-dimensional structures, etc., and is composed of three-dimensional position coordinates and linear vector data that indicate features.
  • Quasi-static information SI2, semi-dynamic information MI1, and dynamic information MI2 are dynamic data that change from moment to moment, and are data that are superimposed on static information based on position information.
  • Semi-static information SI2 includes traffic regulation information, road construction information, wide-area weather information, etc.
  • Semi-dynamic information MI1 includes accident information, congestion information, narrow-area weather information, etc.
  • Dynamic information MI2 includes ITS (Intelligent Transport System) information, including information on nearby vehicles, pedestrians, traffic lights, etc.
  • the static information SI1 included in the dynamic map data includes HD data
  • the HD data includes feature data.
  • This feature data is basic information when an application uses a dynamic map, and is information that can contribute to improving performance when an application uses a dynamic map. Therefore, it is important to consider what information to include in the feature data.
  • dynamic maps can be used in automated driving systems such as AGVs (Automatic Guided Vehicles) and PMVs (Personal Mobility Vehicles) that are capable of autonomous driving. Appropriate information is detected from a large amount of information in order to contribute to improving the performance of the automated driving system, and the detected information is included in the feature data in this embodiment.
  • the map data used for routing (route setting) and navigation (route guidance) of autonomous vehicles, remotely controlled vehicles, and vehicles controlled by the user that run on roads other than roadways may be static information S11 alone.
  • a vehicle can acquire at least the HD map of static information S11, it will be able to run autonomously or under remote control.
  • the vehicle may be any vehicle that has wheels and is capable of running, including general vehicles, AGVs, PMVs, wheelchairs, strollers, two-wheelers, unicycles, etc.
  • the CPU 210 executes the programs stored in the storage device 230 to configure a map control unit 212, a transmission/reception unit 213, an acquisition unit 214, an extraction unit 215, an identification unit 216, a generation unit 217, and an association unit 218.
  • the CPU 210 controls the processing of the map control unit 212, which controls the processing of each unit described below and executes processing related to the generation of map data.
  • the map control unit 212 uses various data to control the generation of map data. For example, the map control unit 212 controls the generation of HD data and also controls the generation of feature data included in the HD data. The map control unit 212 may control the generation of HD maps of traffic routes other than roads, or may control the generation of HD maps of traffic routes other than roads in addition to HD maps of roads.
  • the transmission/reception unit 213 transmits and receives data to and from external devices via the network communication interface 220.
  • the transmission/reception unit 213 is configured as a receiving unit that receives data, signals, etc. from the vehicle 10 and each of the satellites 30, 40, and is also configured as a transmitting unit that transmits data, signals, etc. to the vehicle 10 and each of the satellites 30, 40.
  • the transmission/reception unit 213 receives from the vehicle 10 various data measured by the MMS and various data sensed by various sensors mounted on the vehicle 10, and receives satellite images including a specified position from the observation satellite 40.
  • the acquisition unit 214 acquires various data received by the transmission/reception unit 213 as necessary, and acquires, for example, various data used to generate map data including at least roadways other than roads. As a specific example, the acquisition unit 214 acquires at least point cloud data measured by the vehicle 10.
  • the extraction unit 215 extracts the edges of the roadway based at least on the point cloud data of the roadway other than the roadway. For example, the extraction unit 215 may extract the edges of the roadway by detecting the edges of the sidewalk or the like included in the point cloud data.
  • the extraction unit 215 may extract the following features using various data measured by the MMS and various data sensed by various sensors mounted on the vehicle 10.
  • ⁇ Center lines of traffic routes, virtual stop lines, etc. ⁇ Sidewalks (both ends in the longitudinal direction) ⁇ Crosswalks and intersections (areas where pedestrians cross) - Road edges (pavement edges) on roads without sidewalks -
  • Road edges points where pedestrians cross
  • Road edges points where pedestrians cross
  • the extraction unit 215 When extracting a virtual line, the extraction unit 215 generates a virtual line based on feature data (e.g., a passageway, a sidewalk, etc.) extracted from various data, and extracts the generated virtual line. For example, the extraction unit 215 generates a virtual center line from line segment data on both ends of a sidewalk, and generates a virtual stop line based on the presence or absence of a curb, etc.
  • feature data e.g., a passageway, a sidewalk, etc.
  • the extraction unit 215 may set the following conditions as conditions for extracting features on a route. - Areas where pedestrians pass, such as sidewalks (within a specified distance) (Even if the road does not have a sidewalk, there is an area where people can walk. However, if there is a gutter, AGVs and other vehicles cannot run on it, so the gutter area is not suitable for running on and is not included in the roadway.)
  • the identification unit 216 identifies attribute information related to the roadway based at least on point cloud data of roadways other than roadways. For example, the identification unit 216 identifies attribute information for each feature extracted by the extraction unit 215 based on point cloud data, etc. As a specific example, the identification unit 216 may measure at least the width of the roadway and assign the width data to an item of attribute information, as described below.
  • the generating unit 217 generates line segment data for a passageway based on the edge data for the edges extracted by the extracting unit 215 and the attribute information identified by the identifying unit 216. For example, the generating unit 217 divides or separates predetermined line segment data that runs along the edge data based on width data, feature data, etc., to generate each piece of line segment data. As a specific example, the generating unit 217 may classify width data according to the size of the width data, and generate line segment data such that adjacent line segment data have different classification values for width data.
  • the generating unit 217 may generate, as the line segment data, at least one of the edge data itself relating to the edge, line segment data along the edge data, line segment data located approximately in the center of the passageway that runs through the passageway, and line segment data approximately parallel to the edge data.
  • the generating unit 217 may also generate virtual lines of the passageway described above, such as center lines and stop lines.
  • the matching unit 218 matches the line segment data generated by the generation unit 217 with attribute information of the route corresponding to the line segment data.
  • the matching unit 218 may match each piece of generated line segment data with attribute information that was the cause of generating the line segment data.
  • the matching unit 218 may match the numerical value or code of the width data to the line segment data.
  • the above processing makes it possible to generate feature data contained in high-precision map data such as sidewalks, which is used to control the travel of AGVs, PMVs, wheelchairs, strollers, etc. (collectively referred to as "small vehicles").
  • This allows small vehicles to control their travel in the direction of travel along the line segment data of the route, and to perform at least one of the control processes of speed, whether or not to travel, and whether to stop, based on the attribute information associated with the line segment data.
  • feature data such as sidewalks can be used not only by small vehicles, but also by vehicles that can travel on sidewalks, such as motorcycles and narrow vehicles.
  • the attribute information identified by the identification unit 216 may include attribute information of multiple items of different types.
  • the attribute information may include the following items: pavement type, average cross slope, cross slope direction, average longitudinal slope, longitudinal slope direction, road surface notes, traffic notes, and obstacle notes.
  • the pavement type can be identified based on at least one of point cloud data, satellite images, images captured by the vehicle 10, etc., and one of the options such as asphalt, concrete, colored pavement, gravel (unpaved), etc. is identified.
  • the average transverse slope and the average longitudinal slope can be determined based on at least one of the point cloud data, the angular velocity sensor mounted on the vehicle 10, and the images captured by the vehicle 10, and are determined in percentages.
  • the transverse gradient direction and longitudinal gradient direction can be similarly determined based on at least one of the point cloud data, the angular velocity sensor mounted on the vehicle 10, images captured by the vehicle 10, etc.
  • the transverse gradient direction can be determined as being the roadway side or the private land boundary side, and the longitudinal gradient direction can be determined as being the starting point side or the end point side of the line segment data.
  • the special notes such as road surface notes, traffic notes, and obstacle notes, may be set by the user.
  • the identification unit 216 may set the content entered by the user for each special note using the user interface 250 as attribute information.
  • attribute information suitable for vehicle driving control can be associated with line segment data of the route as feature data. This allows the vehicle to use the line segment data while also acquiring attribute information associated with the line segment data and using it for appropriate driving control.
  • the generating unit 217 may also include dividing (or separating) the edge data of the passageway to generate line segment data when the attribute information of at least one item satisfies a predetermined condition for division.
  • the generating unit 217 may include, as a predetermined condition for division, that the attribute information of at least one item is different.
  • the generating unit 217 may divide the data into edge data showing similar values (values within a predetermined range) and generate each line segment data.
  • the above process generates line segment data using edge data extracted from point cloud data, etc., making it easy to generate line segment data and reducing the processing load on the information processing device 20. Also, when creating line segment data for the center line of a roadway other than a roadway, as with roadways, the width of the roadway often differs depending on the area, so the information indicating the position of the line segment data indicating the center line becomes complex, increasing the processing load and memory capacity.
  • the path may also include a sidewalk, or a paved portion from the road outer line to the edge of the road pavement.
  • the extraction unit 215 may include extracting the edge of the sidewalk on the opposite side of the roadway (e.g., the private land boundary side), or the pavement edge of the paved portion.
  • the extraction unit 215 extracts the outer edge of the sidewalk (also referred to as the “sidewalk outer edge”) and the outermost edge of the paved portion (also referred to as the “road pavement edge”) as edges, and the generation unit 217 generates line segment data from edge data based on these edges, thereby making it possible to generate simple and easy-to-manage line segment data.
  • the significance of using the outer sidewalk edge and the road pavement edge as line segment data is given below.
  • the extraction unit 215 does not need to acquire new features separately.
  • - There is less horizontal and vertical ingress and egress and change within the area in which AGVs, etc. travel compared to other linear shapes that exist on the route.
  • horizontal entrances and exits such as bus stops and cut-offs may be provided in some areas closer to the roadway, the line segment data for the outer edge of the sidewalk and the edge of the road pavement is straighter.
  • There are many obstructing features such as bus stop timetables, street trees and tree belts closer to the roadway, so it is possible for AGVs, etc. to travel safely and stably if they travel along the line segment data for the outer edge of the sidewalk (or the edge of the road pavement).
  • the route may also include a passageway within a building or private property.
  • the extraction unit 215 may extract the edge of the passageway within the building or the edge of the passageway within the private property.
  • the acquisition unit 214 can acquire point cloud data, etc., of the routeway within the building or private property.
  • the extraction unit 215 extracts edges of passages within buildings or private property as edges
  • the generation unit 217 generates line data from edge data based on these edges
  • the association unit 218 associates attribute information corresponding to the line data with the line data. This makes it possible to control the travel of small vehicles even on passages within buildings or private property.
  • the generating unit 217 also generates map data of the route, including each line segment data associated with each attribute information of the route. For example, the generating unit 217 may generate map data showing only routes other than roads, or may generate map data in which roads and routes other than roads are integrated by adding feature data showing routes other than roads to conventional map data including roads.
  • the above processing makes it possible to distribute map data that includes feature data for routes other than roads, increasing the opportunities for using this map data and also increasing the availability of map data for routes other than roads.
  • Figure 5 is a diagram showing an example of information related to feature data of a route according to an embodiment of the present invention.
  • the feature-related information shown in Figure 5 includes attribute information and various codes for features that can be extracted from point cloud data, for example.
  • the features extracted as roadway-related features are the outer roadway line, stop line, pedestrian crossing, curb (lower edge of roadway side), and road pavement edge (area without sidewalk).
  • the code "1-1" written to the left of the target feature may be used as a feature code to identify the feature.
  • each target feature shown in FIG. 5 is associated with a "Shape name/form” related to the road, a code “class” related to the attribute, and "walkwidth” (width data), which is one attribute item.
  • “Shape name/form” includes the type of feature such as road, sidewalk, obstacle, build, etc., and in parentheses, the type of shape such as line, poly (surface, point), etc.
  • “Class” includes the attribute type code.
  • “Walkwidth” (width data) includes width data of walkways, etc. that can be measured from point cloud data, etc.
  • the code "class” may be used as a feature code.
  • the extraction unit 215 extracts target features included in the feature-related information shown in FIG. 5 from point cloud data, etc., and the identification unit 216 may identify various codes for the extracted target features by referring to the feature-related information shown in FIG. 5, and assign them to the target features as attribute information.
  • the extraction unit 215 extracts both ends of the sidewalk, the road pavement edge, and the road outer edge as the driving range of the small vehicle.
  • FIG. 6A is a diagram showing an example of a road without a sidewalk.
  • the drivable area is between the road pavement edge and the road exterior line.
  • the road pavement edge may be a curb (bottom edge), and the road exterior line may not be a line.
  • both ends of the sidewalk are extracted.
  • the extraction unit 215 may extract areas and lines related to driving and stopping at intersections, etc. For example, the following features are extracted. ⁇ Crosswalk (area frame) ⁇ Boundary of the sidewalk side of the curb (crosswalk connection) ⁇ Stop lines on roads only when there are no sidewalks.
  • the extraction unit 215 may also extract obstacles (area frames) within the travel range as target features.
  • obstacles may be extracted: ⁇ Support-shaped objects (traffic signals, trees, bus stop timetable poles, etc.) ⁇ Facilities (electrical facilities, planting frames, post boxes, telephone booths, etc.) - Including step-eliminating blocks etc.
  • FIG. 6B is a diagram showing examples of various obstacles on a sidewalk.
  • trees, traffic lights, bus stops, signs, etc. may be extracted as obstacles.
  • the extraction unit 215 may also extract unsuitable driving areas (area frames) within the driving range of a small vehicle. For example, the following features may be extracted as unsuitable driving areas: - Access to drain covers, gratings, and sidewalks (cut-offs, passages to private homes, garages, etc.)
  • Fig. 6C is a diagram showing an example of gratings present on a sidewalk.
  • Fig. 6C there is one grating on the sidewalk and one at the edge of the roadway, indicated by a thick frame.
  • Fig. 6D is a diagram showing a cut-off for vehicles to enter and exit.
  • the oval part indicates the cut-off. It is advisable to arrange for the features shown in Figs. 6A to 6D to be extracted by the extraction unit 215.
  • the generating unit 217 generates line segment data based on the positions of features (obstacles, etc.) that narrow the width of the sidewalks and roadside pavements (collectively referred to as "sidewalks, etc.”).
  • the generating unit 217 may use the sidewalk edge (private land boundary) or the road pavement edge as a reference for the line segment data that is the source of the generated line segment data.
  • Figure 7A shows an example in which a sidewalk is located above the road shown in the figure, and a paved road outside the road is located below the road shown in the figure. There are also obstacles on the sidewalk and in the paved road outside the road, and the width of the paved road outside the road further narrows as it goes to the right.
  • the generation unit 217 finally divides the road into sections A to C (line segment data).
  • the type code for the outer edge (also called the "outer edge") of the sidewalk in sections A to C is given the type code "21" (sidewalk edge (private land side, outer edge)) shown in FIG. 5 by the identification unit 216.
  • the width data (outer width), which is one of the attributes associated with the line segment data, is given a width code, described below, by the identification unit 216.
  • the width code of sections A and C is “12” (1 m or more, less than 2 m), and the width code of section B is “11” (0.5 m or more, less than 1 m), which is narrower than the widths of sections A and C, due to the presence of an obstacle.
  • the type code of the inside edge (also called the “inner edge”) of the sidewalk of sections A to C (line segment data) is "22" (curb (sidewalk edge (sidewalk edge of the curb between the sidewalk and the roadway)) as shown in FIG. 5, which is assigned by the identification unit 216.
  • the generation unit 217 finally divides the sections J to M (line segment data) into the outer roadway edges (also referred to as "road edges") in the same way.
  • the type code for sections J to M is given by the identification unit 216 the type code "11" (outer roadway line) shown in FIG. 5.
  • the width data (road edge width), which is one of the attributes associated with the line segment data, is given a width code of "0" (less than 0.5 m), "11” or “12” by the identification unit 216 based on the width data of each section.
  • the type code "13" may also be given to each section of the road pavement edges of the outer road pavement by the identification unit 216.
  • the identification unit 216 uses at least the point cloud data, etc. to identify the width data and the gradient of the cutoff included in the attribute information. For example, the identification unit 216 identifies the type code "23" corresponding to the cutoff in the area of section H. The identification unit 216 also identifies that the areas of sections O, Q to R have no outer lane markings and the distance from the outer lane line to the pavement edge is less than 0.5 m, and assigns a width code of "0". Note that the black markings located at the edge of the road in section O indicate obstacles that are constantly present, such as mailboxes. In this case, the generation unit 217 generates line segment data by dividing the obstacle by 1 m on both ends, and the association unit 218 associates the line segment data with width data "0", which indicates that the vehicle 10 cannot travel.
  • the extraction unit 215 extracts edges of the passageway other than the roadway based at least on the point cloud data, and extracts features related to the passageway, such as obstacles.
  • the identification unit 216 identifies attribute information of the features extracted by the extraction unit 215. For example, the identification unit 216 identifies the code of the feature using the feature-related information shown in FIG. 5, and assigns the code to the extracted target feature.
  • the generation unit 217 divides the passageway into sections based on the extracted edges and the identified attribute information, and generates each line segment data.
  • the association unit 218 associates the generated line segment data with the corresponding attribute information.
  • FIG. 8 is a diagram showing an example of a width code according to an embodiment of the present invention.
  • the advantage of setting a width code is that it reduces the cost of creating and managing width data, and reduces the processing load on the side that uses the width data. For example, if detailed width values are set for each sidewalk section, the processing load and cost increase, and it becomes complicated to grasp the width even when setting a route for a small vehicle. Therefore, the specification unit 216 may set an approximate width level (width code) based on the width value, and may assign the width code as attribute information for each section (each line segment data).
  • the width code shown in FIG. 8 is an example, and other levels (ranges) may be set.
  • FIG. 9 is a diagram showing an example of attribute information that can be associated with line segment data according to one embodiment of the present invention.
  • the attribute information includes pavement type, average cross gradient, cross gradient direction, average longitudinal gradient, longitudinal gradient direction, road surface notes, traffic notes, and obstacle notes.
  • the pavement type for example, the type of road surface such as asphalt, concrete, colored pavement, gravel, etc.
  • the average transverse slope and average longitudinal slope can be identified by the identification unit 216 based on at least one of the point cloud data, an angular velocity sensor mounted on the vehicle 10, and images captured by the vehicle 10. For example, the average transverse slope and average longitudinal slope are identified in percentage.
  • the transverse gradient direction and longitudinal gradient direction can be identified by the identification unit 216 based on at least one of the point cloud data, the angular velocity sensor mounted on the vehicle 10, and the captured image of the vehicle 10.
  • the transverse gradient direction can be identified as descending toward the roadway or toward the private land boundary, and the longitudinal gradient direction can be identified as descending toward the starting point or the end point of the line segment data.
  • the special notes such as road surface notes, traffic notes, and obstacle notes
  • the identification unit 216 may set the content entered by the user for each special note using the user interface 250 as attribute information.
  • road surface notes for example, pavement deterioration, cracks, and swelling caused by tree roots may be set.
  • traffic notes for example, a lot of bicycle traffic, a lot of pedestrians during the day, etc. may be set.
  • obstacle notes for example, a lot of parked bicycles, a lot of parked vehicles, a lot of parked signs, a lot of step-eliminating blocks, etc. may be set.
  • Section cutting of features with a longitudinal length of less than 1 m on the road surface When there is a feature on the road surface with a longitudinal length of less than 1 m (approximately 20 to 40 cm) such as a utility pole or a lamp post, and this feature narrows the width of the sidewalk, it is possible that such a small feature section cutting may be overlooked when setting a route for a small vehicle.
  • the generation unit 217 extends a substantially perpendicular line from the road centerline (which is imaginary if there is none) to the sidewalk edge (private land boundary) or road pavement edge so as to pass through the position of the post, etc., and from the intersection, cuts the sidewalk edge or pavement edge into sections of about 1 m forward and backward (guideline) for a total of about 2 m.
  • FIG. 10 is a diagram showing an example of section division in case 1.
  • the generation unit 217 takes the intersection point of the sidewalk edge when a substantially perpendicular line is extended from the road centerline, passing through obstacle O10, as the center, and divides the area along the sidewalk edge to the left and right (or front and rear) from this center at a range of a predetermined distance, generating line segment data.
  • the width data width value
  • the width data M12 for this section is narrower than M10.
  • the generation unit 217 extends an approximately perpendicular line from the road centerline (which is imaginary if there is none) to the edge of the sidewalk (private land boundary) or the edge of the road pavement, so as to pass through the positions of both ends (maximum parts) of the longitudinal direction of the feature, and cuts off the section between the point where the width begins to change (from the point where it starts to narrow).
  • Fig. 11 is a diagram showing an example of section division in case 2.
  • the sidewalk is narrowed by a bus bay, parking area, etc.
  • the generation unit 217 sets an approximately perpendicular line from the center line passing through both ends (widest parts) of the feature, and divides the area at the intersection of this perpendicular line and the sidewalk edge.
  • the width data is M20.
  • the width data of the narrowest area is measured and set to M22.
  • Section cutting when features exist consecutively at a short distance When features that cause the road width to be narrowed exist consecutively at a certain interval in the longitudinal direction, the generation unit 217 does not cut sections for each feature, but cuts sections as a whole.
  • the association unit 218 associates the narrowest road width information, taking into consideration that the road width information to be assigned to the section may not be passable.
  • the distance between consecutive features here is about 5 to 10 m, but this distance is not limited depending on the sidewalk environment before and after.
  • the association unit 218 associates the narrowest width data with the section (e.g., FIG. 12).
  • the generation unit 217 will perform section cutting based on the section cutting definitions of the surrounding features (see, for example, Figure 13).
  • Fig. 12 is a diagram showing an example of a section cut in Case 3.
  • the example shown in Fig. 12 shows a section in which a feature (such as obstacle O30) narrows the width of the sidewalk at a fairly regular interval over a relatively short distance, and the sidewalk is cut down or otherwise prevented from entering or exiting the sidewalk.
  • a feature such as obstacle O30
  • Fig. 13 is a diagram showing another example of section division in Case 3.
  • feature such as obstacle O40
  • FIG. 13 there is a relatively short distance of feature (such as obstacle O40) that narrows the width of the sidewalk at a regular interval, but within that section, the sidewalk is lowered, etc., and there is a section L44 where it is possible to enter and exit the sidewalk.
  • the association unit 218 assigns sidewalk width data as attribute information to sections L40, L44, and L48, and assigns narrow sidewalk width data M42 and M46 to sections L42 and L46, respectively, as attribute information.
  • Sections L42 and L44 are not treated as a continuous section because section L44 has a drop-off allowing access to the sidewalk.
  • section L46 which includes obstacle O40, is treated as a continuous section because there is no drop-off allowing access to the sidewalk.
  • the curved arrows in Figure 13 indicate that width code M40 corresponds to the attributes of sections L40 and L48, and width code M44 corresponds to the attributes of section L46.
  • the above cases 1 to 3 show examples of dividing line segment data into sections, but the examples are not limited to those described above, and the generation unit 217 may generate line segment data (sections) using other conditions, etc.
  • FIG. 14 is a flowchart showing an example of a process related to map data generation according to an embodiment of the present invention. The process shown in Fig. 14 is executed by the information processing device 20.
  • step S102 the acquisition unit 214 of the information processing device 20 acquires at least point cloud data on roads other than roadways.
  • the acquisition unit 214 may also acquire data sensed by various sensors.
  • the acquisition unit 214 may also acquire point cloud data and various data related to roadways.
  • step S104 the extraction unit 215 extracts the edges of the roadway based at least on the point cloud data of the roadway other than the roadway.
  • the identification unit 216 identifies attribute information related to the route based on the point cloud data acquired by the acquisition unit 214.
  • the identification unit 216 refers to the feature-related information shown in FIG. 5 and identifies attribute information from the features extracted by the extraction unit 215.
  • step S108 the generating unit 217 generates line segment data related to the passageway based on the edge data related to the edges of the passageway extracted by the extracting unit 215 and the attribute information identified by the identifying unit 216.
  • the generating unit 217 may generate the line segment data using the method described in FIGS. 10 to 13.
  • the matching unit 218 matches the line segment data generated by the generation unit 217 with attribute information of the route corresponding to the line segment data.
  • the attribute information may be, for example, width data or at least one of the items of data shown in FIG. 9. It is preferable to set width data as the attribute information. This makes it possible to determine whether small vehicles can travel along the route, and can be used for routing and navigation of small vehicles.
  • step S112 the generating unit 217 generates map data of the route including each line segment data associated with each attribute information of the route by the associating unit 218.
  • This map data may include an HD map of the roadway.
  • FIG. 15 is a flowchart showing an example of a process from identifying attribute information to associating the information according to one embodiment of the present invention.
  • the process shown in FIG. 15 shows a specific example of the process of steps S106 to S110 shown in FIG. 14.
  • step S202 the identification unit 216 measures the width of each area of the roadway other than the roadway, and identifies the width data (numerical value or width code).
  • step S204 the generation unit 217 divides edge data of sidewalks, etc. based on feature data (e.g., obstacles) or attribute information (e.g., width data, gradient, etc.) that exists in the roadway other than the roadway, and generates data for each line segment.
  • feature data e.g., obstacles
  • attribute information e.g., width data, gradient, etc.
  • step S206 the association unit 218 associates (sets) corresponding attribute information with each line segment data generated by the generation unit 217.
  • step S208 which is processed in step S206, the association unit 218 inputs the measured path width data as one item of attribute information to be associated with the line segment data.
  • the attribute information items may include the items shown in FIG. 9.
  • the above process makes it possible to provide highly accurate map data that can be used by vehicles traveling on roads other than roadways. Vehicles that use highly accurate map data do not need to be able to travel autonomously, and this map data can be used for route routing, navigation, etc.
  • the present invention may transfer some of the processes executed by the information processing device 20 to another information processing device, or may appropriately integrate multiple information processing devices.
  • the above-described embodiment may be configured by a data structure of map data.
  • the data structure is a data structure of map data related to a roadway other than a roadway, which is used in a computer having a processor and a memory and stored in the memory.
  • This data structure includes each line segment data and attribute information.
  • Each line segment data is each line segment generated using edge data related to an edge extracted based on point cloud data on the roadway, and is used by the processor for control processing related to the progress of the vehicle.
  • the vehicle is controlled to run along each line segment data. Therefore, since the line segment data is preferably as straight as possible, it is preferable that the line segment data be generated by dividing the edge data of a straight line such as a sidewalk edge.
  • the attribute information is attribute information of the route identified based on the point cloud data and associated with each corresponding line segment data, and is used by the processor for at least one control process of the vehicle speed, whether or not it is possible to travel, and whether or not it is possible to stop.
  • the attribute information can be used for route search such as adjusting the vehicle speed, stopping, or making a detour.
  • the vehicle speed is adjusted according to the magnitude of the width data in the attribute information, and for example, the vehicle may adjust its speed to be slower as the road width becomes narrower.
  • the vehicle may be controlled to stop temporarily before the area indicated by the reduction in the attribute information, since there is a possibility that vehicles may enter or exit the area.
  • map data having the above-mentioned data structure to a vehicle or a device that remotely controls the vehicle, the vehicle will be able to travel autonomously on routes other than roadways.
  • the map data of the route is used for a vehicle, but the map data may be used for other applications.
  • the map data may be provided to a mobile device used by a visually impaired person, and may be used for detailed route guidance, for VR (Virtual Reality) or AR (Augmented Reality), for digital advertising, or for games in which a precise location can be identified.
  • VR Virtual Reality
  • AR Augmented Reality
  • the HD map of a passageway other than a roadway can be associated with a conventional HD map of a roadway.
  • the identification unit 216 identifies the positional relationship between the roadway line segment data and the passageway line segment data
  • the association unit 218 associates the roadway line segment data with information capable of identifying the position of the passageway line segment data.
  • a difference value between the positional information of the starting point of the roadway line segment data and the positional information of the starting point of the passageway line segment data is associated with the roadway line segment data.
  • data indicating this difference value may be included in the ID of the feature data of the roadway line segment data.
  • the passageway other than the roadway may include a river on which ships and the like navigate.
  • a measuring device may be mounted on a ship to acquire point cloud data and the like on the river, enabling the generation of a three-dimensional high-precision map of the river.
  • line segment data is generated based on attribute information of the river (such as the river width, the position of bridges, and the position of moored ships), and attribute information is assigned to each of the divided line segment data.
  • attribute information of the river such as the river width, the position of bridges, and the position of moored ships
  • attribute information is assigned to each of the divided line segment data.
  • the HD map of the river is used, and the line segment data and/or attribute information associated with the line segment data are used to determine whether or not the river is passable.
  • the HD map of the river can also be used for determining the ship's route and for route guidance (navigation). Therefore, in the case of the fourth modification, the above-mentioned passageway may be replaced with a river, and the vehicle may be replaced with a ship.
  • 1...information processing system 10...measurement vehicle, 20...information processing device, 30...positioning satellite, 40...observation satellite, 100...top plate, 101...GNSS receiver, 102...IMU, 103...laser scanner, 104...camera, 105...odometer, 106...processor, 107...various sensors, 108...communication device, 210...CPU, 212...map control unit, 213...transmitting/receiving unit, 214...acquisition unit, 215...extraction unit, 216...identification unit, 217...generation unit, 218...association unit, 230...storage device, 250...user interface, 220...network communication interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is an information processing method executed by an information processing device that includes a processor, the processor executing the steps of extracting an edge part of a passage on the basis of point group data for a passage other than a roadway (S104), identifying attribute information relating to the passage on the basis of the point group data (S106), generating line segment data relating to the passage on the basis of the attribute information and edge part data relating to the edge part (S108), and associating the passage attribute information that corresponds to the line segment data with the line segment data (S110).

Description

情報処理方法、プログラム、情報処理装置、及びデータ構造Information processing method, program, information processing device, and data structure
 本発明は、情報処理方法、プログラム、情報処理装置、及びデータ構造に関する。 The present invention relates to an information processing method, a program, an information processing device, and a data structure.
 近年、高精度な地図データを生成し、この地図データを用いて自動運転等に利用するための技術開発が盛んに行われている。一般的に、自動運転等に利用される地図データが生成される際、車両に搭載された各種センサにより地物が検出され、この地物に関する地物データが生成され、この地物データが地図データに関連付けられる。これにより、車両は、地図データに関連付けられる地物データを用いて、自車周辺の地物を適切に把握することが可能になる。この地物データには、外界センサの種類に関する情報と、外界センサの種類毎の、地物を検出する際の環境に関する環境情報が含められることが知られている(例えば特許文献1参照)。 In recent years, there has been active development of technology to generate highly accurate map data and use this map data for autonomous driving and the like. Generally, when map data to be used for autonomous driving and the like is generated, features are detected by various sensors mounted on the vehicle, feature data relating to these features is generated, and this feature data is associated with the map data. This enables the vehicle to properly grasp the features around the vehicle using the feature data associated with the map data. It is known that this feature data includes information on the type of external sensor and environmental information on the environment when the features are detected for each type of external sensor (see, for example, Patent Document 1).
特開2020-73893号公報JP 2020-73893 A
 ここで、従来技術では、MMS(Mobile Mapping System)計測を搭載する計測車両が車道を走行した際の点群データや各種データに基づいて高精度な地図データが生成されている。 In conventional technology, highly accurate map data is generated based on point cloud data and various other data collected when a measurement vehicle equipped with an MMS (Mobile Mapping System) measurement system drives along the roadway.
 しかしながら、従来の高精度な地図データは、車道を走行する車両向けの地図データであり、車道以外の通行路を走行する車両に使用することができなかった。 However, conventional high-precision map data was designed for vehicles traveling on roads and could not be used for vehicles traveling on roads other than roads.
 そこで、本発明は、車道以外の通行路を走行する車両に使用可能な高精度な地図データを提供することを目的とする。 The present invention aims to provide highly accurate map data that can be used by vehicles traveling on roads other than roadways.
 本発明の一態様に係る情報処理方法は、プロセッサを含む情報処理装置が実行する情報処理方法であって、前記プロセッサが、車道以外の通行路における点群データに基づいて、前記通行路の縁部を抽出すること、前記点群データに基づいて、前記通行路に関する属性情報を特定すること、前記縁部に関する縁部データと前記属性情報とに基づいて、前記通行路に関する線分データを生成すること、前記線分データに、当該線分データに対応する前記通行路の属性情報を対応付けること、を実行する。 An information processing method according to one aspect of the present invention is an information processing method executed by an information processing device including a processor, in which the processor executes the following operations: extracting edges of a passageway other than a roadway based on point cloud data of the passageway, identifying attribute information related to the passageway based on the point cloud data, generating line segment data related to the passageway based on the edge data related to the edges and the attribute information, and associating the line segment data with attribute information of the passageway corresponding to the line segment data.
 本発明によれば、車道以外の通行路を走行する車両に使用可能な高精度な地図データを提供することができる。 The present invention makes it possible to provide highly accurate map data that can be used by vehicles traveling on roads other than roadways.
本発明の一実施形態に係る情報処理システムの構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of an information processing system according to an embodiment of the present invention. 本発明の一実施形態に係る車両の構成の一例を示す図である。1 is a diagram showing an example of a configuration of a vehicle according to an embodiment of the present invention; 本発明の一実施形態に係る情報処理装置の構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of an information processing device according to an embodiment of the present invention. 本発明の一実施形態に係るデータベースの一例を示す図である。FIG. 2 is a diagram illustrating an example of a database according to an embodiment of the present invention. 本発明の一実施形態に係る通行路の地物データに関する情報の一例を示す図である。FIG. 2 is a diagram showing an example of information relating to feature data of a route according to an embodiment of the present invention; 歩道のない道路の一例を示す図である。FIG. 1 is a diagram showing an example of a road without a sidewalk. 歩道上の様々な障害物の一例を示す図である。1A and 1B are diagrams showing examples of various obstacles on a walkway. 車歩道に存在するグレーチングの一例を示す図である。FIG. 1 is a diagram showing an example of grating present on a sidewalk. 車の出入りのための切り下げを示す図である。FIG. 13 illustrates the cut-off for vehicle entry and exit. 歩道及び道路外側舗装路と、幅員などの属性情報との関係の一例を示す図である。FIG. 13 is a diagram showing an example of a relationship between sidewalks and paved roads outside a road and attribute information such as road width. 歩道及び道路外側舗装路と、幅員などの属性情報との関係の一例を示す図である。FIG. 13 is a diagram showing an example of a relationship between sidewalks and paved roads outside a road and attribute information such as road width. 本発明の一実施形態に係る幅員コードの一例を示す図である。FIG. 2 is a diagram showing an example of a width code according to an embodiment of the present invention. 本発明の一実施形態に係る線分データに対応付け可能な属性情報の一例を示す図である。11 is a diagram showing an example of attribute information that can be associated with line segment data according to an embodiment of the present invention; FIG. ケース1における区間切りの一例を示す図である。FIG. 13 is a diagram showing an example of section cutting in case 1. ケース2における区間切りの一例を示す図である。FIG. 13 is a diagram showing an example of section cutting in case 2. ケース3における区間切りの一例を示す図である。FIG. 13 is a diagram showing an example of section cutting in case 3. ケース3における区間切りの他の例を示す図である。FIG. 13 is a diagram showing another example of section cutting in case 3. 本発明の一実施形態に係る地図データ生成に関する処理の一例を示すフローチャートである。5 is a flowchart showing an example of a process related to map data generation according to an embodiment of the present invention. 本発明の一実施形態に係る属性情報の特定から対応付け処理までの一例を示すフローチャートである。10 is a flowchart showing an example of a process from identifying attribute information to associating processing according to an embodiment of the present invention.
 [実施形態]
 添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
[Embodiment]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described with reference to the accompanying drawings, in which like reference numerals denote like or similar structures.
 <システムの概要>
 図1は、本発明の一実施形態に係る情報処理システム1の構成の一例を示す図である。図1に示す情報処理システム1は、MMS(Mobile Mapping System)計測を搭載する計測車両(以下、「車両」とも称す。)10と、情報処理装置20と、GNSS(Global Navigation Satellite System)において利用される測位衛星30と、衛星画像を取得可能な観測衛星40とを含み、これらはネットワークNを介して相互にデータの送受信をすることが可能である。また、車両10や情報処理装置20の数は1つ以上あってもよい。
<System Overview>
Fig. 1 is a diagram showing an example of the configuration of an information processing system 1 according to an embodiment of the present invention. The information processing system 1 shown in Fig. 1 includes a measurement vehicle (hereinafter also referred to as "vehicle") 10 equipped with a Mobile Mapping System (MMS) measurement device, an information processing device 20, a positioning satellite 30 used in a Global Navigation Satellite System (GNSS), and an observation satellite 40 capable of acquiring satellite images, which are capable of transmitting and receiving data to and from each other via a network N. In addition, the number of vehicles 10 and information processing devices 20 may be one or more.
 車両10は、MMSによる3次元計測を行う車両であり、移動しながら、周辺の地形について3次元計測を実行する。また、車両10は、GNSSの測位衛星30から信号を受信し、自車両の位置情報を検出可能である。位置情報は、緯度、経度、高度の3次元位置情報、又は緯度、経度の2次元位置情報を含む。 Vehicle 10 is a vehicle that performs three-dimensional measurements using MMS, and performs three-dimensional measurements of the surrounding terrain while moving. Vehicle 10 can also receive signals from GNSS positioning satellites 30 and detect its own vehicle's position information. The position information includes three-dimensional position information of latitude, longitude, and altitude, or two-dimensional position information of latitude and longitude.
 また、車両10は、各種センサを搭載し、各種センサにより検出されるデータを取得する。各種センサには、車載カメラ、車速センサ、加速度センサなどが含まれる。また、図1に示す車両10は、例えばパーソナルモビリティに計測器等を搭載する例を図示したが、車道を走行する一般的な車両に計測器等が搭載されてもよい。 The vehicle 10 is also equipped with various sensors and acquires data detected by the various sensors. The various sensors include an on-board camera, a vehicle speed sensor, an acceleration sensor, and the like. The vehicle 10 shown in FIG. 1 is an example in which measuring instruments and the like are mounted on a personal mobility device, but measuring instruments and the like may also be mounted on a general vehicle that travels on a roadway.
 測位衛星30は、位置情報の計測に必要な信号を送信する衛星である。観測衛星40は、例えばSAR(Synthetic Aperture Radar)センサ等を用いて地球を観測し、撮影することで衛星画像を取得する。 The positioning satellite 30 is a satellite that transmits signals necessary to measure position information. The observation satellite 40 uses, for example, a Synthetic Aperture Radar (SAR) sensor to observe the Earth and obtain satellite images by photographing it.
 情報処理装置20は、例えばサーバであり、車両10から、MMSにより計測されたデータや、各種センサにより検知されたデータ等を取得する。また、情報処理装置20は、各衛星30、40から信号や画像を取得する。情報処理装置20は、車両10や各衛星30、40から取得したデータ等を用いて、地図データを生成する。なお、情報処理装置20は、複数の情報処理装置から構成されてもよい。 The information processing device 20 is, for example, a server, and acquires data measured by the MMS, data detected by various sensors, and the like from the vehicle 10. The information processing device 20 also acquires signals and images from each of the satellites 30, 40. The information processing device 20 generates map data using the data acquired from the vehicle 10 and each of the satellites 30, 40. Note that the information processing device 20 may be composed of multiple information processing devices.
 <車両の構成>
 図2は、本発明の一実施形態に係る車両10の構成の一例を示す図である。図2に示す例において、車両10は、MMSを用いて計測地域を走行し、走行した車道周辺及び/又は車道以外の通行路周辺の地物の3次元の座標値を計測する。この3次元座標値を計測するため、車両10は、GNSS受信機101と、IMU102と、レーザスキャナ103と、カメラ104とを備える。例えば、これらの機器は、車両10の天部に設けられた天板100に取り付けられる。
<Vehicle configuration>
Fig. 2 is a diagram showing an example of the configuration of a vehicle 10 according to an embodiment of the present invention. In the example shown in Fig. 2, the vehicle 10 travels in a measurement area using an MMS and measures three-dimensional coordinate values of features around the traveled roadway and/or around a traffic path other than the roadway. In order to measure these three-dimensional coordinate values, the vehicle 10 includes a GNSS receiver 101, an IMU 102, a laser scanner 103, and a camera 104. For example, these devices are attached to a top plate 100 provided on the top of the vehicle 10.
 また、車両10は、車輪に走行距離計105が取り付けられ、車載器としてプロセッサ106と、各種センサ107と、通信装置108とを備える。 The vehicle 10 also has an odometer 105 attached to the wheel, and is equipped with a processor 106, various sensors 107, and a communication device 108 as on-board devices.
 GNSS受信機101は、GNSSの測位衛星30から測位信号を受信するアンテナを備える。GNSS受信機101は、アンテナによって受信した測位信号に基づいて測位衛星30との疑似距離、測位信号を搬送した搬送波の位相および三次元の座標値を算出する。 The GNSS receiver 101 is equipped with an antenna that receives positioning signals from the GNSS positioning satellites 30. The GNSS receiver 101 calculates the pseudo-range to the positioning satellites 30, the phase of the carrier wave carrying the positioning signal, and three-dimensional coordinate values based on the positioning signal received by the antenna.
 IMU102は、3軸方向の角速度を計測するジャイロセンサと、加速度を計測する加速度センサを備える。IMU102は、これらのセンサによって自車両の姿勢データを取得する。 The IMU 102 is equipped with a gyro sensor that measures angular velocity in three axial directions, and an acceleration sensor that measures acceleration. The IMU 102 acquires attitude data of the vehicle using these sensors.
 レーザスキャナ103は、車両10の幅方向において、放射角度を変更させながらレーザ光を放射し、放射先に位置する地物に反射したレーザ光を受光する。レーザスキャナ103は、レーザ光を放射してから受光するまでの時刻を計測し、地物との距離を算出する。 The laser scanner 103 emits laser light in the width direction of the vehicle 10 while changing the emission angle, and receives the laser light reflected by a feature located at the destination of the emission. The laser scanner 103 measures the time from when the laser light is emitted to when it is received, and calculates the distance to the feature.
 カメラ104は、車両10の外部、例えば前方等を撮像する。また、走行距離計105は、車両10の走行距離を計測する。 The camera 104 captures images of the outside of the vehicle 10, such as the front. The odometer 105 measures the distance traveled by the vehicle 10.
 プロセッサ106は、車両10の運転制御等を行い、又は、外部の装置とのデータの送受信を制御する。各種センサ107は、車載カメラ、車速センサ、加速度センサを含む。通信装置108は、外部の装置とデータの送受信を行う。例えば、通信装置108は、MMSにより取得されたデータを情報処理装置20に送信する。なお、点群データ等の計測について、歩道や施設内、敷地内(空港や港湾等を含むが、それに限らない。)では、ハンディタイプや背負子タイプ、固定タイプなどの計測機を用いて計測することもあり得る。 The processor 106 controls the driving of the vehicle 10, or controls the transmission and reception of data to and from external devices. The various sensors 107 include an on-board camera, a vehicle speed sensor, and an acceleration sensor. The communication device 108 transmits and receives data to and from external devices. For example, the communication device 108 transmits data acquired by MMS to the information processing device 20. Note that, for measuring point cloud data, etc., on sidewalks, within facilities, and on premises (including, but not limited to, airports and ports), measurements may be taken using measuring devices such as handheld, backpack, and fixed types.
 <情報処理装置の構成>
 図3は、本発明の一実施形態に係る情報処理装置20の構成の一例を示す図である。情報処理装置20は、1つ又は複数の処理装置(CPU:Central Processing Unit)210、1つ又は複数のネットワーク通信インタフェース220、記憶装置230、ユーザインタフェース250及びこれらの構成要素を相互接続するための1つ又は複数の通信バス270を含む。なお、ユーザインタフェース250は必ずしも必要ではない。
<Configuration of information processing device>
3 is a diagram showing an example of the configuration of an information processing device 20 according to an embodiment of the present invention. The information processing device 20 includes one or more processing devices (CPU: Central Processing Unit) 210, one or more network communication interfaces 220, a storage device 230, a user interface 250, and one or more communication buses 270 for interconnecting these components. Note that the user interface 250 is not necessarily required.
 記憶装置230は、例えば、DRAM、SRAM、他のランダムアクセス固体記憶装置などの高速ランダムアクセスメモリであり、また、1つ又は複数の磁気ディスク記憶装置、光ディスク記憶装置、フラッシュメモリデバイス、又は他の不揮発性固体記憶装置などの不揮発性メモリでもよく、また、コンピュータ読み取り可能な非一時的な記録媒体でもよい。 Storage device 230 may be, for example, a high-speed random access memory such as a DRAM, SRAM, or other random access solid-state storage device, or may be a non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices, or may be a non-transitory computer-readable recording medium.
 また、記憶装置230の他の例として、CPU210から遠隔に設置される1つ又は複数の記憶装置でもよい。ある実施形態において、記憶装置230はCPU210により実行されるプログラム、モジュール及びデータ構造、又はそれらのサブセットを格納する。 Also, another example of storage device 230 may be one or more storage devices located remotely from CPU 210. In one embodiment, storage device 230 stores programs, modules, and data structures executed by CPU 210, or a subset thereof.
 記憶装置230は、情報処理システム1により用いられるデータを記憶する。例えば、記憶装置230は、高精度3次元地図データ(以下、「HD(High Definition)マップ」とも称する。)の生成に関するデータを記憶する。具体例としては、ダイナミックマップ、HDマップ、地物データなどが記憶装置230に記憶される。 The storage device 230 stores data used by the information processing system 1. For example, the storage device 230 stores data related to the generation of high-precision three-dimensional map data (hereinafter also referred to as "HD (High Definition) maps"). As specific examples, dynamic maps, HD maps, feature data, etc. are stored in the storage device 230.
 図4は、本発明の一実施形態に係るデータベースの一例を示す図である。図4に示す例では、記憶装置230はダイナミックマップデータを高精度地図データベースとして記憶する。 FIG. 4 is a diagram showing an example of a database according to one embodiment of the present invention. In the example shown in FIG. 4, the storage device 230 stores dynamic map data as a high-precision map database.
 図4に示す例では、地図データは、例えば、自律走行可能な車両等に用いられる高精度な3次元地図のデータである。具体例としては、この地図データは、周辺車両の情報や交通情報といった、より動的な情報が付加されたリアルタイムに提供されるダイナミックマップと呼ばれる地図のデータである。本実施形態で用いられうる地図データは、例えば4つの階層に分類される。地図データは、静的情報SI1、準静的情報SI2、準動的情報MI1、動的情報MI2に分類される。 In the example shown in FIG. 4, the map data is, for example, high-precision three-dimensional map data used in autonomous vehicles. As a specific example, this map data is data on a map called a dynamic map that is provided in real time and to which more dynamic information, such as information on surrounding vehicles and traffic information, has been added. The map data that can be used in this embodiment is classified, for example, into four hierarchies. The map data is classified into static information SI1, quasi-static information SI2, quasi-dynamic information MI1, and dynamic information MI2.
 静的情報SI1は、3次元の高精度な基盤的地図データ(HDデータ)であって、路面情報、車線情報、3次元構造物等を含み、地物を示す3次元位置座標や線形ベクトルデータから構成される。準静的情報SI2、準動的情報MI1及び動的情報MI2は、時々刻々と変化する動的データであって、位置情報を基に静的情報に重畳されるデータである。 Static information SI1 is high-precision, three-dimensional, basic map data (HD data) that includes road surface information, lane information, three-dimensional structures, etc., and is composed of three-dimensional position coordinates and linear vector data that indicate features. Quasi-static information SI2, semi-dynamic information MI1, and dynamic information MI2 are dynamic data that change from moment to moment, and are data that are superimposed on static information based on position information.
 準静的情報SI2は、交通規制情報、道路工事情報、広域気象情報などを含む。準動的情報MI1は、事故情報、渋滞情報、狭域気象情報などを含む。動的情報MI2は、ITS(Intelligent Transport System)情報を含み、周辺車両、歩行者、信号情報などを含む。 Semi-static information SI2 includes traffic regulation information, road construction information, wide-area weather information, etc. Semi-dynamic information MI1 includes accident information, congestion information, narrow-area weather information, etc. Dynamic information MI2 includes ITS (Intelligent Transport System) information, including information on nearby vehicles, pedestrians, traffic lights, etc.
 ダイナミックマップデータに含まれる静的情報SI1は、HDデータを含み、HDデータは、地物データを含む。この地物データは、アプリケーションがダイナミックマップを利用する際に基本となる情報であり、アプリケーションがダイナミックマップを利用する際の性能向上等に貢献ができる情報である。したがって、地物データにどんな情報を含めるかが重要となる。例えば、ダイナミックマップの利用先としてAGV(Automatic Guided Vehicle)や、自律走行可能なPMV(Personal Mobility Vehicle)などの自動運転システムがあるが、自動運転システムの性能向上に寄与するように、多数の情報の中から適切な情報が検出され、検出された情報が、本実施形態に係る地物データに含められる。 The static information SI1 included in the dynamic map data includes HD data, and the HD data includes feature data. This feature data is basic information when an application uses a dynamic map, and is information that can contribute to improving performance when an application uses a dynamic map. Therefore, it is important to consider what information to include in the feature data. For example, dynamic maps can be used in automated driving systems such as AGVs (Automatic Guided Vehicles) and PMVs (Personal Mobility Vehicles) that are capable of autonomous driving. Appropriate information is detected from a large amount of information in order to contribute to improving the performance of the automated driving system, and the detected information is included in the feature data in this embodiment.
 なお、車道以外の通行路を走行する自律走行車や遠隔制御車両やユーザにより走行制御される車両のルーティング(経路設定)やナビゲーション(経路案内)等に用いられる地図データは、本実施形態においては静的情報S11のみでもよい。すなわち、車両は、少なくとも静的情報S11のHDマップを取得できれば、自律走行や遠隔制御による走行が可能になる。車両は、車輪を有し走行可能なものであればよく、一般車両、AGV、PMV、車いす、ベビーカー、二輪車、一輪車などを含む。 In addition, in this embodiment, the map data used for routing (route setting) and navigation (route guidance) of autonomous vehicles, remotely controlled vehicles, and vehicles controlled by the user that run on roads other than roadways may be static information S11 alone. In other words, if a vehicle can acquire at least the HD map of static information S11, it will be able to run autonomously or under remote control. The vehicle may be any vehicle that has wheels and is capable of running, including general vehicles, AGVs, PMVs, wheelchairs, strollers, two-wheelers, unicycles, etc.
 図3に戻り、本実施形態に係る地物データを生成する処理を実行するCPU210について説明する。CPU210は、記憶装置230に記憶されるプログラムを実行することで、地図制御部212、送受信部213、取得部214、抽出部215、特定部216、生成部217、対応付け部218を構成する。 Returning to FIG. 3, the CPU 210 that executes the process of generating feature data according to this embodiment will be described. The CPU 210 executes the programs stored in the storage device 230 to configure a map control unit 212, a transmission/reception unit 213, an acquisition unit 214, an extraction unit 215, an identification unit 216, a generation unit 217, and an association unit 218.
 CPU210は、地図制御部212の処理を制御し、地図制御部212は、後述する各部の処理を制御し、地図データの生成に関する処理を実行する。 The CPU 210 controls the processing of the map control unit 212, which controls the processing of each unit described below and executes processing related to the generation of map data.
 地図制御部212は、各種データを用いて、地図データの生成を制御する。例えば、地図制御部212は、HDデータの生成を制御し、HDデータに含まれる地物データの生成についても制御する。地図制御部212は、車道以外の通行路に関するHDマップの生成を制御し、又は、車道に関するHDマップに加えて、車道以外の通行路に関するHDマップの生成を制御するようにしてもよい。 The map control unit 212 uses various data to control the generation of map data. For example, the map control unit 212 controls the generation of HD data and also controls the generation of feature data included in the HD data. The map control unit 212 may control the generation of HD maps of traffic routes other than roads, or may control the generation of HD maps of traffic routes other than roads in addition to HD maps of roads.
 送受信部213は、外部装置に対して、ネットワーク通信インタフェース220を介してデータの送受信を行う。例えば、送受信部213は、車両10や各衛星30、40からデータや信号等を受信する受信部として構成され、車両10や各衛星30、40にデータや信号等を送信する送信部としても構成される。具体例として、送受信部213は、車両10から、MMSにより計測された各種データや、車両10に搭載される各種センサ等にセンシングされた各種データを受信し、観測衛星40から、所定位置を含む衛星画像を受信する。 The transmission/reception unit 213 transmits and receives data to and from external devices via the network communication interface 220. For example, the transmission/reception unit 213 is configured as a receiving unit that receives data, signals, etc. from the vehicle 10 and each of the satellites 30, 40, and is also configured as a transmitting unit that transmits data, signals, etc. to the vehicle 10 and each of the satellites 30, 40. As a specific example, the transmission/reception unit 213 receives from the vehicle 10 various data measured by the MMS and various data sensed by various sensors mounted on the vehicle 10, and receives satellite images including a specified position from the observation satellite 40.
 取得部214は、送受信部213により受信された各種データを必要に応じて取得し、例えば、少なくとも車道以外の通行路を含む地図データの生成に用いる各種データを取得する。具体例として、取得部214は、車両10により計測された点群データを少なくとも取得する。 The acquisition unit 214 acquires various data received by the transmission/reception unit 213 as necessary, and acquires, for example, various data used to generate map data including at least roadways other than roads. As a specific example, the acquisition unit 214 acquires at least point cloud data measured by the vehicle 10.
 抽出部215は、車道以外の通行路における点群データに少なくとも基づいて、通行路の縁部を抽出する。例えば、抽出部215は、点群データに含まれる歩道等のエッジを検出することにより、通行路の縁部を抽出してもよい。 The extraction unit 215 extracts the edges of the roadway based at least on the point cloud data of the roadway other than the roadway. For example, the extraction unit 215 may extract the edges of the roadway by detecting the edges of the sidewalk or the like included in the point cloud data.
 なお、抽出部215は、通行路の縁部を抽出する際に、MMSにより計測された各種データや、車両10に搭載される各種センサ等にセンシングされた各種データを用いて、以下の地物を抽出してもよい。
・通行路の中心線や仮想の停止線等
・歩道(縦断方向の両端)
・横断歩道、交差点(歩行者が横断する部分)
・歩道の設置されていない道路での道路端(舗装端)
・歩道及び道路端付近で、AGV等の走行において障害になる地物(支柱、施設、街路樹、縁石等)
・道路縁に縦断方向に存在する側溝(蓋・グレーチングの有無の区分)、道路を横断するU字溝等
・施設等の出入り口
 抽出部215は、仮想線を抽出する場合、各種データにより抽出された地物データ(例、通行路、歩道など)に基づいて仮想線を生成し、生成した仮想線を抽出する。例えば、抽出部215は、歩道の両端の線分データから仮想の中心線を生成したり、縁石の有無等により仮想の停止線を生成したりする。
In addition, when extracting the edges of the road, the extraction unit 215 may extract the following features using various data measured by the MMS and various data sensed by various sensors mounted on the vehicle 10.
・Center lines of traffic routes, virtual stop lines, etc. ・Sidewalks (both ends in the longitudinal direction)
・Crosswalks and intersections (areas where pedestrians cross)
- Road edges (pavement edges) on roads without sidewalks
- Features near sidewalks and road edges that may be obstacles to AGVs (pillars, facilities, roadside trees, curbs, etc.)
- Side gutters (whether or not they have covers or gratings) that exist in the longitudinal direction on the road edge, U-shaped gutters that cross the road, etc. - Entrances and exits of facilities, etc. When extracting a virtual line, the extraction unit 215 generates a virtual line based on feature data (e.g., a passageway, a sidewalk, etc.) extracted from various data, and extracts the generated virtual line. For example, the extraction unit 215 generates a virtual center line from line segment data on both ends of a sidewalk, and generates a virtual stop line based on the presence or absence of a curb, etc.
 また、抽出部215は、通行路の地物を抽出する条件として、以下の条件が設定されてもよい。
・歩道等歩行者の通行する範囲(所定距離以内)
(歩道の設置されていない道路であっても、人の歩ける領域のある場合。ただし、側溝が設置されている場合、AGV等は走行できないため、側溝部分は走行には不適とし、側溝部分は通行路に含まない)
The extraction unit 215 may set the following conditions as conditions for extracting features on a route.
- Areas where pedestrians pass, such as sidewalks (within a specified distance)
(Even if the road does not have a sidewalk, there is an area where people can walk. However, if there is a gutter, AGVs and other vehicles cannot run on it, so the gutter area is not suitable for running on and is not included in the roadway.)
 特定部216は、車道以外の通行路における点群データに少なくとも基づいて、通行路に関する属性情報を特定する。例えば、特定部216は、点群データ等に基づいて、抽出部215により抽出された各地物に対して属性情報を特定する。具体例として、特定部216は、後述するように、少なくとも通行路の幅員を測定し、幅員データを属性情報の項目に付与してもよい。 The identification unit 216 identifies attribute information related to the roadway based at least on point cloud data of roadways other than roadways. For example, the identification unit 216 identifies attribute information for each feature extracted by the extraction unit 215 based on point cloud data, etc. As a specific example, the identification unit 216 may measure at least the width of the roadway and assign the width data to an item of attribute information, as described below.
 生成部217は、抽出部215により抽出された縁部に関する縁部データと、特定部216により特定された属性情報とに基づいて、通行路に関する線分データを生成する。例えば、生成部217は、縁部データに沿う所定の線分データを、幅員データや地物データなどに基づいて分割し又は区切り、各線分データを生成する。具体例として、生成部217は、幅員データの大きさに応じて幅員データを分類し、隣接する線分データにおいて、幅員データの分類値が異なるように線分データを生成してもよい。 The generating unit 217 generates line segment data for a passageway based on the edge data for the edges extracted by the extracting unit 215 and the attribute information identified by the identifying unit 216. For example, the generating unit 217 divides or separates predetermined line segment data that runs along the edge data based on width data, feature data, etc., to generate each piece of line segment data. As a specific example, the generating unit 217 may classify width data according to the size of the width data, and generate line segment data such that adjacent line segment data have different classification values for width data.
 生成部217は、線分データとして、縁部に関する縁部データ自体、縁部データに沿う線分データ、通行路を縦断する通行路の略中央に位置する線分データ、又は縁部データに略平行な線分データのうち少なくとも1つを生成してもよい。また、生成部217は、上述した通行路の仮想線、例えば、中心線や停止線などを生成してもよい。 The generating unit 217 may generate, as the line segment data, at least one of the edge data itself relating to the edge, line segment data along the edge data, line segment data located approximately in the center of the passageway that runs through the passageway, and line segment data approximately parallel to the edge data. The generating unit 217 may also generate virtual lines of the passageway described above, such as center lines and stop lines.
 対応付け部218は、生成部217により生成された線分データに、この線分データに対応する通行路の属性情報を対応付ける。例えば、対応付け部218は、生成される各線分データに対して、この線分データを生成することの要因となった属性情報を対応付けてもよい。具体例としては、対応付け部218は、幅員データの大きさに応じて線分データが生成される場合、幅員データの数値やコードを線分データに対応付けてもよい。 The matching unit 218 matches the line segment data generated by the generation unit 217 with attribute information of the route corresponding to the line segment data. For example, the matching unit 218 may match each piece of generated line segment data with attribute information that was the cause of generating the line segment data. As a specific example, when line segment data is generated according to the size of width data, the matching unit 218 may match the numerical value or code of the width data to the line segment data.
 以上の処理により、AGVやPMV、車いす、ベビーカーなど(まとめて「小型車両」とも称する。)の走行を制御するために利用される、歩道等の高精度な地図データに含まれる地物データを生成することが可能になる。これにより、小型車両は、通行路の線分データに沿って、進行方向の走行制御処理を行い、線分データに対応付けられる属性情報に基づいて、速度、走行可否、及び停止判定の少なくとも1つの制御処理を行うことが可能になる。なお、歩道等の地物データを利用するのは、小型車両に限らず、歩道等を走行可能な車両、例えばバイクや車幅が狭い車両でもよい。 The above processing makes it possible to generate feature data contained in high-precision map data such as sidewalks, which is used to control the travel of AGVs, PMVs, wheelchairs, strollers, etc. (collectively referred to as "small vehicles"). This allows small vehicles to control their travel in the direction of travel along the line segment data of the route, and to perform at least one of the control processes of speed, whether or not to travel, and whether to stop, based on the attribute information associated with the line segment data. Note that feature data such as sidewalks can be used not only by small vehicles, but also by vehicles that can travel on sidewalks, such as motorcycles and narrow vehicles.
 また、特定部216により特定される属性情報は、種類が異なる複数の項目の属性情報を含んでもよい。例えば、属性情報は、舗装種別、平均横断勾配、横断勾配方向、平均縦断勾配、縦断勾配方向、路面特記事項、通行特記事項、障害特記事項の各項目を含んでもよい。 The attribute information identified by the identification unit 216 may include attribute information of multiple items of different types. For example, the attribute information may include the following items: pavement type, average cross slope, cross slope direction, average longitudinal slope, longitudinal slope direction, road surface notes, traffic notes, and obstacle notes.
 例えば、舗装種別は、点群データ、衛星画像、車両10により撮影される画像等のうちの少なくとも1つに基づいて特定されることが可能であり、アスファルト、コンクリート、カラー舗装、砂利(未舗装)などの選択肢の中から1つが特定される。 For example, the pavement type can be identified based on at least one of point cloud data, satellite images, images captured by the vehicle 10, etc., and one of the options such as asphalt, concrete, colored pavement, gravel (unpaved), etc. is identified.
 例えば、平均横断勾配や縦断平均勾配は、点群データ、車両10に搭載される角速度センサ、車両10により撮影される画像等のうち少なくとも1つに基づいて特定されることが可能であり、%表記で特定される。 For example, the average transverse slope and the average longitudinal slope can be determined based on at least one of the point cloud data, the angular velocity sensor mounted on the vehicle 10, and the images captured by the vehicle 10, and are determined in percentages.
 横断勾配方向や縦断勾配方向は、同様に、点群データ、車両10に搭載される角速度センサ、車両10により撮影される画像等のうち少なくとも1つに基づいて特定されることが可能である。横断勾配方向は、車道側なのか民地境界側なのかが特定され、縦断勾配方向は、線分データの起点側なのか、終点側なのかが特定され得る。 The transverse gradient direction and longitudinal gradient direction can be similarly determined based on at least one of the point cloud data, the angular velocity sensor mounted on the vehicle 10, images captured by the vehicle 10, etc. The transverse gradient direction can be determined as being the roadway side or the private land boundary side, and the longitudinal gradient direction can be determined as being the starting point side or the end point side of the line segment data.
 特記事項としての、路面特記事項、通行特記事項、障害特記事項は、ユーザにより設定されてもよい。例えば、ユーザインタフェース250を用いて、各特記事項に対してユーザが入力した内容を、特定部216は、属性情報に設定してもよい。 The special notes, such as road surface notes, traffic notes, and obstacle notes, may be set by the user. For example, the identification unit 216 may set the content entered by the user for each special note using the user interface 250 as attribute information.
 以上の処理により、車道以外の通行路において、属性情報に適切な項目を含めることが可能になる。例えば、車両の走行制御に適した属性情報を、地物データとしての通行路の線分データに対応付けることができる。これにより、車両は、線分データを利用しつつ、線分データに対応付けられる属性情報を取得して適切な走行制御に利用することが可能になる。 The above processing makes it possible to include appropriate items in the attribute information for routes other than roadways. For example, attribute information suitable for vehicle driving control can be associated with line segment data of the route as feature data. This allows the vehicle to use the line segment data while also acquiring attribute information associated with the line segment data and using it for appropriate driving control.
 また、生成部217は、少なくとも1つの項目の属性情報が分割に関する所定条件を満たす場合に、通行路の縁部データを分割して(又は区切って)線分データを生成することを含んでもよい。例えば、生成部217は、分割に関する所定条件として、少なくとも1つの項目の属性情報が異なることを含んでもよい。例えば、生成部217は、属性情報に含まれる幅員データ、又は勾配などが異なる場合、同様の値(所定範囲内の値)を示す縁部データごとに分割し、各線分データを生成してもよい。 The generating unit 217 may also include dividing (or separating) the edge data of the passageway to generate line segment data when the attribute information of at least one item satisfies a predetermined condition for division. For example, the generating unit 217 may include, as a predetermined condition for division, that the attribute information of at least one item is different. For example, when the attribute information includes different width data or gradients, the generating unit 217 may divide the data into edge data showing similar values (values within a predetermined range) and generate each line segment data.
 以上の処理により、点群データ等により抽出される縁部データを利用して線分データを生成するため、線分データの生成が容易であり、情報処理装置20の処理負荷を軽減することが可能になる。また、車道等と同様に、車道以外の通行路の中央線を線分データにする場合、通行路の幅員はエリアによって異なる場合が多いため、中央線を示す線分データの位置を示す情報が複雑になり、処理負荷が増大したり、記憶容量が増加したりする。 The above process generates line segment data using edge data extracted from point cloud data, etc., making it easy to generate line segment data and reducing the processing load on the information processing device 20. Also, when creating line segment data for the center line of a roadway other than a roadway, as with roadways, the width of the roadway often differs depending on the area, so the information indicating the position of the line segment data indicating the center line becomes complex, increasing the processing load and memory capacity.
 他方、縁部データから線分データを生成することで、基本的に直線のデータを線分データとするため、位置情報などのデータを容易に特定することができ、各線分データの位置情報は差分値などを用いることで位置情報の記憶容量を削減することが可能になる。 On the other hand, by generating line segment data from edge data, data for basically straight lines is treated as line segment data, so data such as positional information can be easily identified, and by using differential values for the positional information of each line segment data, it is possible to reduce the storage capacity of the positional information.
 また、通行路は、歩道、又は道路外側線から道路舗装縁までの舗装部分を含んでもよい。このとき、抽出部215は、歩道の車道反対側(例、民地境界側)の縁部、又は舗装部分の舗装縁部を抽出することを含んでもよい。 The path may also include a sidewalk, or a paved portion from the road outer line to the edge of the road pavement. In this case, the extraction unit 215 may include extracting the edge of the sidewalk on the opposite side of the roadway (e.g., the private land boundary side), or the pavement edge of the paved portion.
 上述したとおり、抽出部215が縁部として歩道の外側の縁部(「歩道外側縁」とも称す。)や、舗装部分の最も外側の縁部(「道路舗装縁」とも称す。)を抽出し、生成部217がこれらの縁部に基づく縁部データから線分データを生成することにより、簡易かつ管理容易な線分データを生成することができる。 As described above, the extraction unit 215 extracts the outer edge of the sidewalk (also referred to as the "sidewalk outer edge") and the outermost edge of the paved portion (also referred to as the "road pavement edge") as edges, and the generation unit 217 generates line segment data from edge data based on these edges, thereby making it possible to generate simple and easy-to-manage line segment data.
 ここで、歩道外側縁及び道路舗装縁を線分データとして使用する意義は、以下の例が挙げられる。
・抽出部215が別途新たな地物の取得をしなくてよい
・通行路において他に存在する線形より、AGV等が走行するエリア内で水平方向、垂直方向の出入り、変化が少ない
・車道寄りには、バス停などの水平方向の出入り口や、切り下げが一部に設けられうるため、歩道外側縁及び道路舗装縁の線分データの方がより直線的である
・車道寄りには、バス停時刻表、街路樹・植樹帯など、障害になる地物が多い
よって、歩道外側縁(又は道路舗装縁)の線分データに沿ってAGV等を走らせた方が、より安全に又は安定的に走行させることが可能になる。
The significance of using the outer sidewalk edge and the road pavement edge as line segment data is given below.
- The extraction unit 215 does not need to acquire new features separately. - There is less horizontal and vertical ingress and egress and change within the area in which AGVs, etc. travel compared to other linear shapes that exist on the route. - Because horizontal entrances and exits such as bus stops and cut-offs may be provided in some areas closer to the roadway, the line segment data for the outer edge of the sidewalk and the edge of the road pavement is straighter. - There are many obstructing features such as bus stop timetables, street trees and tree belts closer to the roadway, so it is possible for AGVs, etc. to travel safely and stably if they travel along the line segment data for the outer edge of the sidewalk (or the edge of the road pavement).
 また、通行路は、建物内、又は私有地内の通路を含んでもよい。このとき、抽出部215は、建物内の通路の縁部、又は私有地内の通路の縁部を抽出することを含んでもよい。例えば、建物内や私有地を走行可能でMMS計測可能な小型車両を走行させることにより、取得部214は、建物内、又は私有地内の通行路の点群データ等を取得することができる。 The route may also include a passageway within a building or private property. In this case, the extraction unit 215 may extract the edge of the passageway within the building or the edge of the passageway within the private property. For example, by driving a small vehicle capable of driving within a building or private property and capable of MMS measurement, the acquisition unit 214 can acquire point cloud data, etc., of the routeway within the building or private property.
 以上の処理により、抽出部215が縁部として建物内、又は私有地内の通路の縁部を抽出し、生成部217がこれらの縁部に基づく縁部データから線分データを生成し、対応付け部218が線分データに対応する属性情報を、その線分データに対応付けることができる。これにより、建物内、又は私有地内の通路でも小型車両の走行制御が可能になる。 By the above processing, the extraction unit 215 extracts edges of passages within buildings or private property as edges, the generation unit 217 generates line data from edge data based on these edges, and the association unit 218 associates attribute information corresponding to the line data with the line data. This makes it possible to control the travel of small vehicles even on passages within buildings or private property.
 また、生成部217は、通行路の各属性情報が対応付けられた各線分データを含む、通行路の地図データを生成する。例えば、生成部217は、車道以外の通行路のみを示す地図データを生成してもよいし、従来の車道を含む地図データに、車道以外の通行路を示す地物データを追加することで、車道と車道以外の通行路とが統合された地図データを生成してもよい。 The generating unit 217 also generates map data of the route, including each line segment data associated with each attribute information of the route. For example, the generating unit 217 may generate map data showing only routes other than roads, or may generate map data in which roads and routes other than roads are integrated by adding feature data showing routes other than roads to conventional map data including roads.
 以上の処理により、車道以外の通行路の地物データを含む地図データを流通させることが可能になり、この地図データの利用機会を増やすことができ、また、車道以外の通行路の地図データの利用可能性を上げることができる。 The above processing makes it possible to distribute map data that includes feature data for routes other than roads, increasing the opportunities for using this map data and also increasing the availability of map data for routes other than roads.
 <データ例>
 次に、上述した処理で生成される地図データに関するデータの例について、図5~9を用いて説明する。図5は、本発明の一実施形態に係る通行路の地物データに関する情報の一例を示す図である。図5に示す地物関連情報は、例えば点群データ等により抽出されうる地物に対し、属性情報や各種コードを含む。
<Data example>
Next, examples of data related to the map data generated by the above-mentioned process will be described with reference to Figures 5 to 9. Figure 5 is a diagram showing an example of information related to feature data of a route according to an embodiment of the present invention. The feature-related information shown in Figure 5 includes attribute information and various codes for features that can be extracted from point cloud data, for example.
 図5に示す例では、歩道が別途設けられていない道路の場合に、車道の外側に関する地物を抽出したり、AGV等も横断歩道を走行するケースが想定されるため、車道内であっても横断歩道の地物を抽出したりする。 In the example shown in Figure 5, in the case of roads that do not have separate sidewalks, features related to the outside of the roadway are extracted, and since it is anticipated that AGVs and other vehicles will also travel on crosswalks, crosswalk features are extracted even if they are inside the roadway.
 図5に示す例では、車道に関する地物として、車道外側線、停止線、横断歩道、縁石(車道側下端)、道路舗装縁(歩道のない部分)が抽出される。また、対象地物の左に表記される符号「1-1」などは、地物を識別する地物コードとして使用されてもよい。 In the example shown in Figure 5, the features extracted as roadway-related features are the outer roadway line, stop line, pedestrian crossing, curb (lower edge of roadway side), and road pavement edge (area without sidewalk). In addition, the code "1-1" written to the left of the target feature may be used as a feature code to identify the feature.
 また、図5に示す各対象地物には、道に関する「Shape名・形状」、属性に関するコード「class」、属性の1つの項目である「walkwidth」(幅員データ)が対応付けられる。「Shape名・形状」は、roadway(道路)、sidewalk(歩道)、obstacle(障害物)、build(建物)などの地物の種別と、()内に、Line(線状)、Poly(面状、点状)などの形状の種類とを含む。「class」は、属性の種類コードを含む。「walkwidth」(幅員データ)は、点群データなどから計測できる歩道等の幅員データを含む。なお、コード「class」が地物コードとして利用されてもよい。 Furthermore, each target feature shown in FIG. 5 is associated with a "Shape name/form" related to the road, a code "class" related to the attribute, and "walkwidth" (width data), which is one attribute item. "Shape name/form" includes the type of feature such as road, sidewalk, obstacle, build, etc., and in parentheses, the type of shape such as line, poly (surface, point), etc. "Class" includes the attribute type code. "Walkwidth" (width data) includes width data of walkways, etc. that can be measured from point cloud data, etc. The code "class" may be used as a feature code.
 抽出部215は、図5に示す地物関連情報に含まれる対象地物を点群データ等から抽出し、特定部216は、抽出された対象地物に対して、図5に示す地物関連情報を参照して各種コードを特定し、属性情報として対象地物に付与してもよい。 The extraction unit 215 extracts target features included in the feature-related information shown in FIG. 5 from point cloud data, etc., and the identification unit 216 may identify various codes for the extracted target features by referring to the feature-related information shown in FIG. 5, and assign them to the target features as attribute information.
 (対象地物)
 次に、図6を用いて、小型車両の走行支援に使用される対象地物の一例について説明する。抽出部215は、小型車両の走行範囲としての歩道両端縁、道路舗装縁及び道路外側線を抽出する。
(Target feature)
Next, an example of a target feature used for driving support of a small vehicle will be described with reference to Fig. 6. The extraction unit 215 extracts both ends of the sidewalk, the road pavement edge, and the road outer edge as the driving range of the small vehicle.
 図6Aは、歩道のない道路の一例を示す図である。図6Aに示す例のように、歩道が設置されていない場合は、道路舗装縁と道路外側線との間を走行可能なエリアとする。また、道路舗装縁は、縁石(下端)の場合があり、道路外側線は、線が引かれていない場合もありうる。なお、歩道が設置されている場合は、歩道の両端縁が抽出される。 FIG. 6A is a diagram showing an example of a road without a sidewalk. When there is no sidewalk, as in the example shown in FIG. 6A, the drivable area is between the road pavement edge and the road exterior line. The road pavement edge may be a curb (bottom edge), and the road exterior line may not be a line. When there is a sidewalk, both ends of the sidewalk are extracted.
 また、交差点等における走行、停止に関わる範囲、線について抽出部215により抽出されてもよい。例えば、以下の地物が抽出される。
・横断歩道(領域枠)
・車歩道境界縁石の歩道側境界(横断歩道接続すりつけ)
・歩道が無い場合に限り、車道の停止線
In addition, the extraction unit 215 may extract areas and lines related to driving and stopping at intersections, etc. For example, the following features are extracted.
・Crosswalk (area frame)
・Boundary of the sidewalk side of the curb (crosswalk connection)
・Stop lines on roads only when there are no sidewalks
 また、抽出部215は、対象地物として、走行範囲内における障害物(領域枠)を抽出してもよい。例えば、以下の障害物が抽出されうる。
・支柱状のもの(信号柱、樹木、バス停時刻表柱等)
・施設(電気施設、植栽枠、郵便ポスト、電話ボックス等)
・段差解消ブロック等も含む
The extraction unit 215 may also extract obstacles (area frames) within the travel range as target features. For example, the following obstacles may be extracted:
・Support-shaped objects (traffic signals, trees, bus stop timetable poles, etc.)
・Facilities (electrical facilities, planting frames, post boxes, telephone booths, etc.)
- Including step-eliminating blocks etc.
 図6Bは、歩道上の様々な障害物の一例を示す図である。図6Bに示す例では、樹木、信号柱、バス停、標識などが障害物として抽出されうる。 FIG. 6B is a diagram showing examples of various obstacles on a sidewalk. In the example shown in FIG. 6B, trees, traffic lights, bus stops, signs, etc. may be extracted as obstacles.
 また、抽出部215は、小型車両の走行範囲内における走行不適範囲(領域枠)を抽出してもよい。例えば、以下の地物を走行不適エリアとして抽出してもよい。
・側溝蓋
・グレーチング
・歩道への出入り(切り下げ、民家・ガレージ等への通路等)
The extraction unit 215 may also extract unsuitable driving areas (area frames) within the driving range of a small vehicle. For example, the following features may be extracted as unsuitable driving areas:
- Access to drain covers, gratings, and sidewalks (cut-offs, passages to private homes, garages, etc.)
 図6Cは、車歩道に存在するグレーチングの一例を示す図である。図6Cに示す例では、歩道に1つ、車道端部に1つ、太枠で示されるグレーチングが存在する。図6Dは、車の出入りのための切り下げを示す図である。図6Dに示す例では、楕円部分が切り下げを示す。図6A~Dに示す地物は、抽出部215により抽出されるようにしておくとよい。 Fig. 6C is a diagram showing an example of gratings present on a sidewalk. In the example shown in Fig. 6C, there is one grating on the sidewalk and one at the edge of the roadway, indicated by a thick frame. Fig. 6D is a diagram showing a cut-off for vehicles to enter and exit. In the example shown in Fig. 6D, the oval part indicates the cut-off. It is advisable to arrange for the features shown in Figs. 6A to 6D to be extracted by the extraction unit 215.
 (線分データの生成、幅員データの属性付与)
 図7A及びBは、歩道及び道路外側舗装路と、幅員などの属性情報との関係の一例を示す図である。生成部217は、歩道及び道路外側舗装路(まとめて「歩道等」とも称す。)の幅員を狭める要因となる地物(障害物等)の位置等に基づいて、線分データを生成する。また、生成部217は、生成する線分データの元となる線分データについては、歩道縁(民地側境界)または道路舗装縁を基準にしてもよい。
(Generating line data, adding attributes to road width data)
7A and 7B are diagrams showing an example of the relationship between sidewalks and roadside pavements and attribute information such as road width. The generating unit 217 generates line segment data based on the positions of features (obstacles, etc.) that narrow the width of the sidewalks and roadside pavements (collectively referred to as "sidewalks, etc."). The generating unit 217 may use the sidewalk edge (private land boundary) or the road pavement edge as a reference for the line segment data that is the source of the generated line segment data.
 図7Aは、図示された道路の上側に歩道があり、図示された道路の下側に道路外側舗装路がある例を示す。また、歩道内及び道路外側舗装路内には障害物があり、道路外側舗装路はさらに幅員が右に行くにつれて狭くなる。 Figure 7A shows an example in which a sidewalk is located above the road shown in the figure, and a paved road outside the road is located below the road shown in the figure. There are also obstacles on the sidewalk and in the paved road outside the road, and the width of the paved road outside the road further narrows as it goes to the right.
 図7Aに示す例では、最終的に生成部217により区間A~C(線分データ)に分割されている。また、区間A~Cの歩道の外側の縁(「外縁」とも称す。)の種類コードは、図5に示す「21」(歩道縁(民地側、外側の縁))が特定部216により付与されている。また、線分データに関連付けられる属性の一項目である幅員データ(外側width)は、後述の幅員コードが特定部216により付与されている。 In the example shown in FIG. 7A, the generation unit 217 finally divides the road into sections A to C (line segment data). The type code for the outer edge (also called the "outer edge") of the sidewalk in sections A to C is given the type code "21" (sidewalk edge (private land side, outer edge)) shown in FIG. 5 by the identification unit 216. The width data (outer width), which is one of the attributes associated with the line segment data, is given a width code, described below, by the identification unit 216.
 例えば、区間A及びCの幅員コードは、「12」(1m以上、2m未満)であり、区間Bの幅員コードは、障害物があるため、区間A及びCの幅員よりも狭い「11」(0.5m以上、1m未満)である。また、区間A~C(線分データ)の歩道の内側の縁(「内縁」とも称す。)の種類コードは、図5に示す「22」(縁石(歩道縁(歩車道間にある縁石の歩道側縁))が特定部216により付与されている。 For example, the width code of sections A and C is "12" (1 m or more, less than 2 m), and the width code of section B is "11" (0.5 m or more, less than 1 m), which is narrower than the widths of sections A and C, due to the presence of an obstacle. In addition, the type code of the inside edge (also called the "inner edge") of the sidewalk of sections A to C (line segment data) is "22" (curb (sidewalk edge (sidewalk edge of the curb between the sidewalk and the roadway)) as shown in FIG. 5, which is assigned by the identification unit 216.
 また、図7Aに示す例では、同様に、最終的に生成部217により区間J~M(線分データ)の車道外側縁(「道縁」とも称す。)に分割されている。また、区間J~Mの種類コードは、図5に示す「11」(車道外側線)が特定部216により付与されている。また、線分データに関連付けられる属性の一項目である幅員データ(道縁width)は、それぞれの区間の幅員データに基づいて幅員コード「0」(0.5m未満)、「11」又は「12」が特定部216により付与されている。また、道路外側舗装路の道路舗装縁についても各区間に種類コード「13」が特定部216により付与されてもよい。 In the example shown in FIG. 7A, the generation unit 217 finally divides the sections J to M (line segment data) into the outer roadway edges (also referred to as "road edges") in the same way. The type code for sections J to M is given by the identification unit 216 the type code "11" (outer roadway line) shown in FIG. 5. The width data (road edge width), which is one of the attributes associated with the line segment data, is given a width code of "0" (less than 0.5 m), "11" or "12" by the identification unit 216 based on the width data of each section. The type code "13" may also be given to each section of the road pavement edges of the outer road pavement by the identification unit 216.
 図7Bに示す例について、特定部216は、少なくとも点群データ等を用いて、属性情報に含まれる幅員データや、切り下げの勾配等を特定する。例えば、特定部216は、区間Hのエリアの切り下げに対応する種類コード「23」を特定する。また、特定部216は、区間O、Q~Rのエリアは、車道外側線の標示なし、車道外側線から舗装縁までの距離が0.5m未満であることを特定し、幅員コード「0」を付与する。なお、区間Oにおいて道路縁に位置する黒資格は例えば郵便ポストなどの定常的に存在する障害物を示す。この場合、生成部217は、この障害物の両端1mで区切って線分データを生成し、対応付け部218は、この線分データに対し、車両10が走行できないことを示す幅員データ「0」を対応付ける。 In the example shown in FIG. 7B, the identification unit 216 uses at least the point cloud data, etc. to identify the width data and the gradient of the cutoff included in the attribute information. For example, the identification unit 216 identifies the type code "23" corresponding to the cutoff in the area of section H. The identification unit 216 also identifies that the areas of sections O, Q to R have no outer lane markings and the distance from the outer lane line to the pavement edge is less than 0.5 m, and assigns a width code of "0". Note that the black markings located at the edge of the road in section O indicate obstacles that are constantly present, such as mailboxes. In this case, the generation unit 217 generates line segment data by dividing the obstacle by 1 m on both ends, and the association unit 218 associates the line segment data with width data "0", which indicates that the vehicle 10 cannot travel.
 ここで、図7A及びBを用いて線分データが生成されるまでの処理を説明する。まず、抽出部215は、点群データに少なくとも基づいて車道以外の通行路の縁部を抽出したり、通行路に関する地物、例えば障害物などを抽出したりする。次に、特定部216は、抽出部215により抽出された地物の属性情報を特定する。例えば、特定部216は、図5に示す地物関連情報を用いて、地物のコードを特定し、抽出された対象地物にコードを付与する。次に、生成部217は、抽出された通行路の縁部と、特定された属性情報とに基づいて各区間に分割して各線分データを生成する。最後に、対応付け部218は、生成された各線分データに、対応する属性情報を対応付ける。 7A and 7B, the process up to the generation of line segment data will be described. First, the extraction unit 215 extracts edges of the passageway other than the roadway based at least on the point cloud data, and extracts features related to the passageway, such as obstacles. Next, the identification unit 216 identifies attribute information of the features extracted by the extraction unit 215. For example, the identification unit 216 identifies the code of the feature using the feature-related information shown in FIG. 5, and assigns the code to the extracted target feature. Next, the generation unit 217 divides the passageway into sections based on the extracted edges and the identified attribute information, and generates each line segment data. Finally, the association unit 218 associates the generated line segment data with the corresponding attribute information.
 (幅員コード)
 ここで、幅員コードについて説明する。図8は、本発明の一実施形態に係る幅員コードの一例を示す図である。幅員コードを設定する利点は、幅員データの作成、管理コストの削減や、幅員データを利用する側の処理負荷の軽減である。例えば、個々の歩道区間を詳細な幅員の数値を設定すると、処理負荷やコストが増加し、小型車両の経路設定時においても幅員を把握することが煩雑になる。よって、特定部216は、幅員の数値に基づいて概ねの幅員レベル(幅員コード)を設定し、各区間(各線分データ)の属性情報として幅員コードを付与してもよい。図8に示す幅員コードは一例であり、他のレベル(範囲)が設定されてもよい。
(Width Code)
Here, the width code will be described. FIG. 8 is a diagram showing an example of a width code according to an embodiment of the present invention. The advantage of setting a width code is that it reduces the cost of creating and managing width data, and reduces the processing load on the side that uses the width data. For example, if detailed width values are set for each sidewalk section, the processing load and cost increase, and it becomes complicated to grasp the width even when setting a route for a small vehicle. Therefore, the specification unit 216 may set an approximate width level (width code) based on the width value, and may assign the width code as attribute information for each section (each line segment data). The width code shown in FIG. 8 is an example, and other levels (ranges) may be set.
 図9は、本発明の一実施形態に係る線分データに対応付け可能な属性情報の一例を示す図である。図9に示す例では、属性情報は、舗装種別、平均横断勾配、横断勾配方向、平均縦断勾配、縦断勾配方向、路面特記事項、通行特記事項、障害特記事項などを含む。 FIG. 9 is a diagram showing an example of attribute information that can be associated with line segment data according to one embodiment of the present invention. In the example shown in FIG. 9, the attribute information includes pavement type, average cross gradient, cross gradient direction, average longitudinal gradient, longitudinal gradient direction, road surface notes, traffic notes, and obstacle notes.
 舗装種別は、例えば、アスファルト、コンクリート、カラー舗装、砂利などの路面の表面の種類が点群データ、車両10の撮影画像などに基づいて特定部216により特定されうる。平均横断勾配や縦断平均勾配は、例えば、点群データ、車両10に搭載される角速度センサ、車両10の撮影画像のうち少なくとも1つに基づいて、特定部216により特定されうる。例えば、平均横断勾配や縦断平均勾配は、%表記で特定される。 The pavement type, for example, the type of road surface such as asphalt, concrete, colored pavement, gravel, etc., can be identified by the identification unit 216 based on point cloud data, images captured by the vehicle 10, etc. The average transverse slope and average longitudinal slope can be identified by the identification unit 216 based on at least one of the point cloud data, an angular velocity sensor mounted on the vehicle 10, and images captured by the vehicle 10. For example, the average transverse slope and average longitudinal slope are identified in percentage.
 横断勾配方向や縦断勾配方向は、点群データ、車両10に搭載される角速度センサ、車両10の撮影画像のうち少なくとも1つに基づいて、特定部216により特定されうる。横断勾配方向は、車道側に下がるのか民地境界側に下がるのかが特定され、縦断勾配方向は、線分データの起点側に下がるのか、終点側に下がるのかが特定されうる。 The transverse gradient direction and longitudinal gradient direction can be identified by the identification unit 216 based on at least one of the point cloud data, the angular velocity sensor mounted on the vehicle 10, and the captured image of the vehicle 10. The transverse gradient direction can be identified as descending toward the roadway or toward the private land boundary, and the longitudinal gradient direction can be identified as descending toward the starting point or the end point of the line segment data.
 特記事項としての、路面特記事項、通行特記事項、障害特記事項は、ユーザにより設定されてもよい。例えば、ユーザインタフェース250を用いて、各特記事項に対してユーザが入力した内容を、特定部216は、属性情報に設定してもよい。路面特記事項には、例えば、舗装劣化、ひび割れ、樹木の根による盛り上がりなどが設定されうる。通行特記事項には、例えば、自転車通行多い、日中歩行多いなどが設定されうる。障害特記事項には、例えば、駐車自転車多い、駐車車両多い、置き看板多い、段差解消ブロック多いなどが設定されうる。 The special notes, such as road surface notes, traffic notes, and obstacle notes, may be set by the user. For example, the identification unit 216 may set the content entered by the user for each special note using the user interface 250 as attribute information. For road surface notes, for example, pavement deterioration, cracks, and swelling caused by tree roots may be set. For traffic notes, for example, a lot of bicycle traffic, a lot of pedestrians during the day, etc. may be set. For obstacle notes, for example, a lot of parked bicycles, a lot of parked vehicles, a lot of parked signs, a lot of step-eliminating blocks, etc. may be set.
 <線分の分割例>
 次に、生成部217による線分データの生成について、いくつかの例を挙げて説明する。以下に示す例では、車道を走行して歩道等の点群データも計測された場合を想定するが、歩道等を別で走行して車両のMMSにより計測されたデータが用いられてもよい。
<Example of dividing a line>
Next, some examples will be given to explain generation of line segment data by the generation unit 217. In the examples shown below, it is assumed that point cloud data of a sidewalk or the like is also measured while traveling on a roadway, but data measured by the MMS of the vehicle while traveling separately on a sidewalk or the like may also be used.
 (ケース1)路面上の縦断方向の長さが1mに満たない地物の区間切り
 電柱や照明灯支柱のように、路面上の縦断方向区間が1mに満たない地物(約20~40cm程度)があり、この地物により歩道の幅員が狭められている場合、このような小さな地物の区間切りは、小型車両の経路設定時に見逃すことも考えられる。そのため、1mに満たない地物の場合、生成部217は、支柱等のある位置を通過するように、道路中心線(無い場合は仮想する)から歩道縁(民地側境界)または道路舗装縁に向けて略垂線を延ばし、その交点から歩道縁または舗装縁を前後約1m程度(目安)で計2m程度の区間切りを行う。
(Case 1) Section cutting of features with a longitudinal length of less than 1 m on the road surface When there is a feature on the road surface with a longitudinal length of less than 1 m (approximately 20 to 40 cm) such as a utility pole or a lamp post, and this feature narrows the width of the sidewalk, it is possible that such a small feature section cutting may be overlooked when setting a route for a small vehicle. Therefore, in the case of a feature with a length of less than 1 m, the generation unit 217 extends a substantially perpendicular line from the road centerline (which is imaginary if there is none) to the sidewalk edge (private land boundary) or road pavement edge so as to pass through the position of the post, etc., and from the intersection, cuts the sidewalk edge or pavement edge into sections of about 1 m forward and backward (guideline) for a total of about 2 m.
 図10は、ケース1における区間切りの一例を示す図である。図10に示す例において、生成部217は、障害物O10を通り、道路中心線から略垂線を延ばした場合の歩道縁の交点を中心にし、この中心から左右(又は前後)に歩道縁に沿って所定距離の範囲で区切り、線分データを生成する。図10に示す区間L10及びL14について、ともに幅員データ(幅員数値)はM10である。他方、区間L12は、障害物O10が存在するため、この区間の幅員データM12は、M10よりも狭い。 FIG. 10 is a diagram showing an example of section division in case 1. In the example shown in FIG. 10, the generation unit 217 takes the intersection point of the sidewalk edge when a substantially perpendicular line is extended from the road centerline, passing through obstacle O10, as the center, and divides the area along the sidewalk edge to the left and right (or front and rear) from this center at a range of a predetermined distance, generating line segment data. For sections L10 and L14 shown in FIG. 10, the width data (width value) is M10 for both sections. On the other hand, because obstacle O10 is present in section L12, the width data M12 for this section is narrower than M10.
 (ケース2)路面上の縦断方向の長さが1mを超える地物の区間切り
 路面上の縦断方向区間が1mを超える地物については、生成部217は、地物の縦断方向の両端(最大部分)の位置を通過するように、道路中心線(無い場合は仮想する)から歩道縁(民地側境界)または道路舗装縁に向けて略垂線を延ばし、幅員の変化開始箇所(狭くなりはじめたところから)間で区間切りを行う。
(Case 2) Cutting off sections of features whose longitudinal length on the road surface exceeds 1 m For features whose longitudinal section on the road surface exceeds 1 m, the generation unit 217 extends an approximately perpendicular line from the road centerline (which is imaginary if there is none) to the edge of the sidewalk (private land boundary) or the edge of the road pavement, so as to pass through the positions of both ends (maximum parts) of the longitudinal direction of the feature, and cuts off the section between the point where the width begins to change (from the point where it starts to narrow).
 図11は、ケース2における区間切りの一例を示す図である。図11に示す例では、バスベイ、駐車帯などにより歩道が狭くなっている例を示す。生成部217は、中央線から地物の両端(最大部分)を通過する略垂線を設定し、この垂線と歩道縁との交点で区切る。図11に示す区間L20及びL24について、ともに幅員データ(幅員数値)はM20である。他方、区間L22は、一番狭いエリアの幅員データを計測し、M22とする。 Fig. 11 is a diagram showing an example of section division in case 2. In the example shown in Fig. 11, the sidewalk is narrowed by a bus bay, parking area, etc. The generation unit 217 sets an approximately perpendicular line from the center line passing through both ends (widest parts) of the feature, and divides the area at the intersection of this perpendicular line and the sidewalk edge. For sections L20 and L24 shown in Fig. 11, the width data (width value) is M20. On the other hand, for section L22, the width data of the narrowest area is measured and set to M22.
 (ケース3)地物が短距離で連続的に存在する場合の区間切り
 幅員を狭める要因となる地物が、縦断方向にある程度の間隔で連続的に存在する場合、生成部217は、個々の地物ごとに区間切りをするのではなく、一体としての区間切りを行う。対応付け部218は、その区間に付与する幅員情報が通り抜けできないことも考慮し、最も狭い幅員情報を対応付ける。ここで連続的とする地物間の距離とは、約5~10m程度とするが、前後の歩道環境により、この距離は限定されない。
(Case 3) Section cutting when features exist consecutively at a short distance When features that cause the road width to be narrowed exist consecutively at a certain interval in the longitudinal direction, the generation unit 217 does not cut sections for each feature, but cuts sections as a whole. The association unit 218 associates the narrowest road width information, taking into consideration that the road width information to be assigned to the section may not be passable. The distance between consecutive features here is about 5 to 10 m, but this distance is not limited depending on the sidewalk environment before and after.
 例えば、対応付け部218は、連続する区間で、途中に建物への間口や歩道の切り下げなど、歩道外への出入りができなく、通り抜けしか用途が無い区間は、最も狭い幅員データを区間に対応付ける(例えば図12)。 For example, in a continuous section where there is no access to the sidewalk due to a building entrance or a lowering of the sidewalk, and the section can only be used as a through-passage, the association unit 218 associates the narrowest width data with the section (e.g., FIG. 12).
 また、生成部217は、連続する区間であっても、間に歩道の切り下げがある場合は、この前後の地物の区間切り定義に基づいて区間切りを行う(例えば図13)。 In addition, if there is a sidewalk drop between consecutive sections, the generation unit 217 will perform section cutting based on the section cutting definitions of the surrounding features (see, for example, Figure 13).
 図12は、ケース3における区間切りの一例を示す図である。図12に示す例では、歩道の幅員をある程度一定の間隔で狭めている地物(障害物O30など)が比較的短距離にあり、その区間内に歩道の切り下げ等、歩道への出入りができない区間の場合を示す。 Fig. 12 is a diagram showing an example of a section cut in Case 3. The example shown in Fig. 12 shows a section in which a feature (such as obstacle O30) narrows the width of the sidewalk at a fairly regular interval over a relatively short distance, and the sidewalk is cut down or otherwise prevented from entering or exiting the sidewalk.
 例えば、図12に示すように歩道への出入りができない区間で、歩道を狭める要因となる地物が散在し、区間によって狭まった幅員が異なる場合がある。このとき、対応付け部218は、この区間内に民地側へのアクセス路(玄関口等)が無い場合は、この両端の区間L32を一体的に扱い、障害物O30により最も狭まった幅員M32(M32<M34=M36)を区間L32の属性として対応付ける。これは、最も狭まった幅員を把握することで、小型車両が通り抜け可能かを判断することができるようにするためである。 For example, as shown in FIG. 12, in a section where it is not possible to enter or exit the sidewalk, there may be scattered features that narrow the sidewalk, and the narrowed width may vary depending on the section. In this case, if there is no access road (entrance, etc.) to the private land within this section, the matching unit 218 treats the sections L32 at both ends as a single unit, and matches the narrowest width M32 (M32 < M34 = M36) caused by the obstacle O30 as an attribute of section L32. This is because by knowing the narrowest width, it is possible to determine whether small vehicles can pass through.
 図13は、ケース3における区間切りの他の例を示す図である。図13に示す例では、歩道の幅員をある程度一定の間隔で狭めている地物(障害物O40など)が比較的短距離にあるが、その区間内に歩道の切り下げ等があり、歩道への出入りが可能な区間L44がある場合である。 Fig. 13 is a diagram showing another example of section division in Case 3. In the example shown in Fig. 13, there is a relatively short distance of feature (such as obstacle O40) that narrows the width of the sidewalk at a regular interval, but within that section, the sidewalk is lowered, etc., and there is a section L44 where it is possible to enter and exit the sidewalk.
 図13に示す例では、対応付け部218は、区間L40、L44、L48に対し、歩道の幅員データを属性情報として付与し、区間L42及びL46に対し、歩道が狭まっている幅員データM42及びM46それぞれを属性情報として付与する。 In the example shown in FIG. 13, the association unit 218 assigns sidewalk width data as attribute information to sections L40, L44, and L48, and assigns narrow sidewalk width data M42 and M46 to sections L42 and L46, respectively, as attribute information.
 区間L42及びL44は、区間L44に歩道へ出入りできる切り下げが存在するため、連続的な区間として取り扱われない。他方、障害物O40を含む区間L46は、歩道へ出入り可能な切り下げ等が存在しないため、連続的な区間として取り扱われる。なお、図13に示す曲線の矢印は、幅員コードM40が区間L40、L48それぞれの属性に、幅員コードM44が区間L46の属性に対応付けられることを意味する。 Sections L42 and L44 are not treated as a continuous section because section L44 has a drop-off allowing access to the sidewalk. On the other hand, section L46, which includes obstacle O40, is treated as a continuous section because there is no drop-off allowing access to the sidewalk. The curved arrows in Figure 13 indicate that width code M40 corresponds to the attributes of sections L40 and L48, and width code M44 corresponds to the attributes of section L46.
 上述したケース1~3は、線分データの区間切りの一例を示すが、上述した例に限られず、その他の条件等を用いて生成部217は線分データ(区間)を生成してもよい。 The above cases 1 to 3 show examples of dividing line segment data into sections, but the examples are not limited to those described above, and the generation unit 217 may generate line segment data (sections) using other conditions, etc.
 <動作>
 次に、情報処理システム1の地図データ生成に関する各処理について説明する。図14は、本発明の一実施形態に係る地図データ生成に関する処理の一例を示すフローチャートである。図14に示す処理は、情報処理装置20により実行される処理である。
<Operation>
Next, each process related to map data generation in the information processing system 1 will be described. Fig. 14 is a flowchart showing an example of a process related to map data generation according to an embodiment of the present invention. The process shown in Fig. 14 is executed by the information processing device 20.
 ステップS102において、情報処理装置20の取得部214は、車道以外の通行路における点群データを少なくとも取得する。取得部214は、点群データ以外にも、各種センサでセンシングされたデータも取得してもよい。また、取得部214は、合わせて車道に関する点群データや各種データを取得してもよい。 In step S102, the acquisition unit 214 of the information processing device 20 acquires at least point cloud data on roads other than roadways. In addition to the point cloud data, the acquisition unit 214 may also acquire data sensed by various sensors. The acquisition unit 214 may also acquire point cloud data and various data related to roadways.
 ステップS104において、抽出部215は、車道以外の通行路における点群データに少なくとも基づいて、通行路の縁部を抽出する。 In step S104, the extraction unit 215 extracts the edges of the roadway based at least on the point cloud data of the roadway other than the roadway.
 ステップS106において、特定部216は、取得部214により取得された点群データに基づいて、通行路に関する属性情報を特定する。例えば、特定部216は、図5に示す地物関連情報を参照して、抽出部215により抽出された地物から属性情報を特定する。 In step S106, the identification unit 216 identifies attribute information related to the route based on the point cloud data acquired by the acquisition unit 214. For example, the identification unit 216 refers to the feature-related information shown in FIG. 5 and identifies attribute information from the features extracted by the extraction unit 215.
 ステップS108において、生成部217は、抽出部215により抽出された通行路の縁部に関する縁部データと、特定部216により特定された属性情報とに基づいて、通行路に関する線分データを生成する。例えば、生成部217は、図10~13において説明した方法を用いて線分データを生成してもよい。 In step S108, the generating unit 217 generates line segment data related to the passageway based on the edge data related to the edges of the passageway extracted by the extracting unit 215 and the attribute information identified by the identifying unit 216. For example, the generating unit 217 may generate the line segment data using the method described in FIGS. 10 to 13.
 ステップS110において、対応付け部218は、生成部217により生成された線分データに、この線分データに対応する通行路の属性情報を対応付ける。属性情報は、例えば、幅員データや図9に示す各項目のデータのうち少なくとも1つが設定されればよい。好適には、属性情報として幅員データが設定されるとよい。これにより、小型車両が走行可能か否かを判断することが可能になり、小型車両のルーティングやナビゲーションに利用することが可能になる。 In step S110, the matching unit 218 matches the line segment data generated by the generation unit 217 with attribute information of the route corresponding to the line segment data. The attribute information may be, for example, width data or at least one of the items of data shown in FIG. 9. It is preferable to set width data as the attribute information. This makes it possible to determine whether small vehicles can travel along the route, and can be used for routing and navigation of small vehicles.
 ステップS112において、生成部217は、対応付け部218により通行路の各属性情報が対応付けられた各線分データを含む、通行路の地図データを生成する。この地図データは、車道のHDマップを含んでもよい。 In step S112, the generating unit 217 generates map data of the route including each line segment data associated with each attribute information of the route by the associating unit 218. This map data may include an HD map of the roadway.
 図15は、本発明の一実施形態に係る属性情報の特定から対応付け処理までの一例を示すフローチャートである。図15に示す処理は、図14に示すステップS106乃至S110の処理の具体例を示す。 FIG. 15 is a flowchart showing an example of a process from identifying attribute information to associating the information according to one embodiment of the present invention. The process shown in FIG. 15 shows a specific example of the process of steps S106 to S110 shown in FIG. 14.
 ステップS202において、特定部216は、車道以外の通行路の各エリアの幅員を計測し、幅員データ(数値又は幅員コード)を特定する。 In step S202, the identification unit 216 measures the width of each area of the roadway other than the roadway, and identifies the width data (numerical value or width code).
 ステップS204において、生成部217は、車道以外の通行路内に存在する地物データ(例えば障害物)又は属性情報(例えば幅員データ、勾配など)に基づいて、歩道等の縁部データを分割し、各線分データを生成する。 In step S204, the generation unit 217 divides edge data of sidewalks, etc. based on feature data (e.g., obstacles) or attribute information (e.g., width data, gradient, etc.) that exists in the roadway other than the roadway, and generates data for each line segment.
 ステップS206において、対応付け部218は、生成部217により生成された各線分データに対し、対応する属性情報を対応付ける(設定する)。 In step S206, the association unit 218 associates (sets) corresponding attribute information with each line segment data generated by the generation unit 217.
 ステップS206で処理されるステップS208において、対応付け部218は、計測された通行路の幅員データを、線分データに対応付けられる属性情報の一項目として入力する。なお、属性情報の項目は、図9に示す項目が含められてもよい。 In step S208, which is processed in step S206, the association unit 218 inputs the measured path width data as one item of attribute information to be associated with the line segment data. Note that the attribute information items may include the items shown in FIG. 9.
 以上の処理によれば、車道以外の通行路を走行する車両に使用可能な高精度な地図データを提供することができる。高精度な地図データを利用する車両は、自律走行できなくてもよく、この地図データを用いて、通行路のルーティングやナビゲーションなどに用いられてもよい。 The above process makes it possible to provide highly accurate map data that can be used by vehicles traveling on roads other than roadways. Vehicles that use highly accurate map data do not need to be able to travel autonomously, and this map data can be used for route routing, navigation, etc.
 以上、本発明の一実施形態について詳述したが、上記実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。例えば、本発明は、情報処理装置20が実行する処理について、一部の処理を、他の情報処理装置に移行したり、複数の情報処理装置を適宜統合したりしてもよい。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment, and various modifications and changes are possible within the scope of the claims. For example, the present invention may transfer some of the processes executed by the information processing device 20 to another information processing device, or may appropriately integrate multiple information processing devices.
 <変形例1>
 変形例1において、上述した実施形態は、地図データのデータ構造により構成されてもよい。例えば、プロセッサ及びびメモリを備えるコンピュータに用いられ、このメモリに記憶される車道以外の通行路に関する地図データのデータ構造である。このデータ構造は、各線分データと、属性情報とを含む。各線分データは、通行路における点群データに基づいて抽出された縁部に関する縁部データを用いて生成される各線分であって、プロセッサにより車両の進行に関する制御処理に用いられる。例えば、車両は、各線分データに沿って走行するように制御される。よって、線分データはできるだけ直線が好ましいため、歩道縁などの直線の縁部データを分割することで生成されるとよい。
<Modification 1>
In the first modified example, the above-described embodiment may be configured by a data structure of map data. For example, the data structure is a data structure of map data related to a roadway other than a roadway, which is used in a computer having a processor and a memory and stored in the memory. This data structure includes each line segment data and attribute information. Each line segment data is each line segment generated using edge data related to an edge extracted based on point cloud data on the roadway, and is used by the processor for control processing related to the progress of the vehicle. For example, the vehicle is controlled to run along each line segment data. Therefore, since the line segment data is preferably as straight as possible, it is preferable that the line segment data be generated by dividing the edge data of a straight line such as a sidewalk edge.
 また、属性情報は、対応する各線分データに関連付けられる、点群データに基づいて特定される通行路の属性情報であって、プロセッサにより車両の速度、走行可否、及び停止判定の少なくとも1つの制御処理に用いられる。例えば、属性情報は、車両の速度調整、一旦停止、迂回などの経路探索などに使用されうる。具体的には、属性情報の幅員データの大きさに応じて車両の速度が調整され、例えば、車両は、幅員が狭くなるほど速度を遅く調整するとよい。また、車両は、属性情報の切り下げが示すエリアでは、車両の出入りがある可能性があるため、切り下げエリアの前で一旦停止するよう制御してもよい。 The attribute information is attribute information of the route identified based on the point cloud data and associated with each corresponding line segment data, and is used by the processor for at least one control process of the vehicle speed, whether or not it is possible to travel, and whether or not it is possible to stop. For example, the attribute information can be used for route search such as adjusting the vehicle speed, stopping, or making a detour. Specifically, the vehicle speed is adjusted according to the magnitude of the width data in the attribute information, and for example, the vehicle may adjust its speed to be slower as the road width becomes narrower. In addition, the vehicle may be controlled to stop temporarily before the area indicated by the reduction in the attribute information, since there is a possibility that vehicles may enter or exit the area.
 これにより、上述のデータ構造を有する地図データを車両や車両を遠隔制御する装置に提供することで、車両は車道以外の通行路を自律的に走行することが可能になる。 As a result, by providing map data having the above-mentioned data structure to a vehicle or a device that remotely controls the vehicle, the vehicle will be able to travel autonomously on routes other than roadways.
 <変形例2>
 上述した例では、通行路の地図データは、車両に用いられる例を説明したが、その他のアプリケーションにより利用されてもよい。例えば、視覚障碍者が利用する携帯端末に地図データが提供されることで、詳細な道案内に利用されたり、VR(Virtual Reality)やAR(Augmented Reality)などに利用されたり、デジタル広告などに利用されたり、詳細な位置が特定可能なゲームなどに利用されてもよい。
<Modification 2>
In the above example, the map data of the route is used for a vehicle, but the map data may be used for other applications. For example, the map data may be provided to a mobile device used by a visually impaired person, and may be used for detailed route guidance, for VR (Virtual Reality) or AR (Augmented Reality), for digital advertising, or for games in which a precise location can be identified.
 <変形例3>
 また、車道以外の通行路のHDマップは、従来の車道のHDマップに関連付けることも可能である。例えば、特定部216は、車道の線分データと、通行路の線分データとの位置関係を特定し、対応付け部218は、車道の線分データに、通行路の線分データの位置を特定可能な情報を対応付ければよい。例えば、通行路の線分データの起点の位置情報に一番近い車道の線分データに対し、この車道の線分データの起点の位置情報と通行路の線分データの起点の位置情報との差分値を、車道の線分データに関連付けておく。また、この差分値を示すデータを、車道の線分データの地物データのIDに含めるようにしてもよい。
<Modification 3>
Also, the HD map of a passageway other than a roadway can be associated with a conventional HD map of a roadway. For example, the identification unit 216 identifies the positional relationship between the roadway line segment data and the passageway line segment data, and the association unit 218 associates the roadway line segment data with information capable of identifying the position of the passageway line segment data. For example, for the roadway line segment data that is closest to the positional information of the starting point of the passageway line segment data, a difference value between the positional information of the starting point of the roadway line segment data and the positional information of the starting point of the passageway line segment data is associated with the roadway line segment data. Also, data indicating this difference value may be included in the ID of the feature data of the roadway line segment data.
 <変形例4>
 車道以外の通行路は、船舶等が航行する河川も含まれ得る。例えば、船舶に計測機を搭載し、河川における点群データ等を取得して、河川における3次元高精度マップの生成が可能になる。この際、上述したように、河川を属性情報(河川幅や橋梁の位置、停留船の位置等)に基づいて線分データが生成され、区切られた各線分データに属性情報が付与される。例えば、船舶の操縦を支援する操船支援システムにおいて、この河川のHDマップを利用し、線分データ及び/又は線分データに関連付けられた属性情報を用いて、通行可能か否かを判定する。また、河川のHDマップは、船舶の航路決定や航路案内(ナビゲーション)などにも利用することが可能である。よって、変形例4の場合、上述した通行路を河川にし、車両を船舶に置き換えればよい。
<Modification 4>
The passageway other than the roadway may include a river on which ships and the like navigate. For example, a measuring device may be mounted on a ship to acquire point cloud data and the like on the river, enabling the generation of a three-dimensional high-precision map of the river. In this case, as described above, line segment data is generated based on attribute information of the river (such as the river width, the position of bridges, and the position of moored ships), and attribute information is assigned to each of the divided line segment data. For example, in a ship-steering support system that supports the operation of a ship, the HD map of the river is used, and the line segment data and/or attribute information associated with the line segment data are used to determine whether or not the river is passable. The HD map of the river can also be used for determining the ship's route and for route guidance (navigation). Therefore, in the case of the fourth modification, the above-mentioned passageway may be replaced with a river, and the vehicle may be replaced with a ship.
1…情報処理システム、10…計測車両、20…情報処理装置、30…測位衛星、40…観測衛星、100…天板、101…GNSS受信機、102…IMU、103…レーザスキャナ、104…カメラ、105…走行距離計、106…プロセッサ、107…各種センサ、108…通信装置、210…CPU、212…地図制御部、213…送受信部、214…取得部、215…抽出部、216…特定部、217…生成部、218…対応付け部、230…記憶装置、250…ユーザインタフェース、220…ネットワーク通信インタフェース 1...information processing system, 10...measurement vehicle, 20...information processing device, 30...positioning satellite, 40...observation satellite, 100...top plate, 101...GNSS receiver, 102...IMU, 103...laser scanner, 104...camera, 105...odometer, 106...processor, 107...various sensors, 108...communication device, 210...CPU, 212...map control unit, 213...transmitting/receiving unit, 214...acquisition unit, 215...extraction unit, 216...identification unit, 217...generation unit, 218...association unit, 230...storage device, 250...user interface, 220...network communication interface

Claims (10)

  1.  プロセッサを含む情報処理装置が実行する情報処理方法であって、
     前記プロセッサが、
     車道以外の通行路における点群データに基づいて、前記通行路の縁部を抽出すること、
     前記点群データに基づいて、前記通行路に関する属性情報を特定すること、
     前記縁部に関する縁部データと前記属性情報とに基づいて、前記通行路に関する線分データを生成すること、
     前記線分データに、当該線分データに対応する前記通行路の属性情報を対応付けること、
     を実行する情報処理方法。
    An information processing method executed by an information processing device including a processor,
    The processor,
    Extracting edges of a roadway other than a roadway based on point cloud data of the roadway;
    Identifying attribute information regarding the route based on the point cloud data;
    generating line segment data regarding the travel route based on edge data regarding the edge and the attribute information;
    Associating the line segment data with attribute information of the route corresponding to the line segment data;
    An information processing method for performing the above.
  2.  前記属性情報は、種類が異なる複数の項目の属性情報を含み、
     前記線分データを生成することは、
     少なくとも1つの項目の属性情報が分割に関する所定条件を満たす場合に、前記縁部データを分割して前記線分データを生成することを含む、請求項1に記載の情報処理方法。
    The attribute information includes attribute information of a plurality of items of different types,
    The generating of the line segment data includes:
    2. The information processing method according to claim 1, further comprising dividing the edge data to generate the line segment data when attribute information of at least one item satisfies a predetermined condition regarding division.
  3.  前記通行路は、歩道、又は道路外側線から道路舗装縁までの舗装部分を含み、
     前記抽出することは、
     前記歩道の車道反対側の縁部、又は前記舗装部分の舗装縁部を抽出することを含む、請求項1に記載の情報処理方法。
    The said passageway includes a sidewalk or a paved portion from the road outer line to the road pavement edge,
    The extracting step comprises:
    The information processing method according to claim 1 , further comprising extracting an edge of the sidewalk on an opposite side to the roadway, or a pavement edge of the paved portion.
  4.  前記通行路は、建物内、又は私有地内の通路を含み、
     前記抽出することは、
     前記建物内の前記通路の縁部、又は前記私有地内の縁部を抽出することを含む、請求項1に記載の情報処理方法。
    The passageway includes a passageway within a building or private property;
    The extracting step comprises:
    The method of claim 1 , further comprising extracting edges of the passageway within the building or edges within the private property.
  5.  前記線分データを生成することは、
     舗装種別、勾配、及び幅員の属性情報の各項目のうち、少なくとも1つの項目に基づいて、線分データを生成することを含む、請求項1に記載の情報処理方法。
    The generating of the line segment data includes:
    The information processing method according to claim 1 , further comprising generating line segment data based on at least one of the attribute information items of pavement type, gradient, and width.
  6.  前記属性情報は、ユーザにより設定される、路面状態、通行状態、及び障害状態のうち少なくとも1つの項目を含む、請求項1に記載の情報処理方法。 The information processing method according to claim 1, wherein the attribute information includes at least one of road surface conditions, traffic conditions, and obstacle conditions set by a user.
  7.  前記プロセッサが、
     前記通行路の各属性情報が対応付けられた各線分データを含む、前記通行路の地図データを生成することをさらに実行する、請求項1に記載の情報処理方法。
    The processor,
    The information processing method according to claim 1 , further comprising the step of generating map data of the route, the map data including line segment data associated with each attribute information of the route.
  8.  情報処理装置に含まれるプロセッサに、
     車道以外の通行路における点群データに基づいて、前記通行路の縁部を抽出すること、
     前記点群データに基づいて、前記通行路に関する属性情報を特定すること、
     前記縁部に関する縁部データと前記属性情報とに基づいて、前記通行路に関する線分データを生成すること、
     前記線分データに、当該線分データに対応する前記通行路の属性情報を対応付けること、
     を実行させるプログラム。
    A processor included in the information processing device includes:
    Extracting edges of a roadway other than a roadway based on point cloud data of the roadway;
    Identifying attribute information regarding the route based on the point cloud data;
    generating line segment data regarding the travel route based on edge data regarding the edge and the attribute information;
    Associating the line segment data with attribute information of the route corresponding to the line segment data;
    A program that executes the following.
  9.  プロセッサを含む情報処理装置であって、
     前記プロセッサが、
     車道以外の通行路における点群データに基づいて、前記通行路の縁部を抽出すること、
     前記点群データに基づいて、前記通行路に関する属性情報を特定すること、
     前記縁部に関する縁部データと前記属性情報とに基づいて、前記通行路に関する線分データを生成すること、
     前記線分データに、当該線分データに対応する前記通行路の属性情報を対応付けること、
     を実行する情報処理装置。
    An information processing device including a processor,
    The processor,
    Extracting edges of a roadway other than a roadway based on point cloud data of the roadway;
    Identifying attribute information regarding the route based on the point cloud data;
    generating line segment data regarding the travel route based on edge data regarding the edge and the attribute information;
    Associating the line segment data with attribute information of the route corresponding to the line segment data;
    An information processing device that executes the above.
  10.  プロセッサ及びメモリを備えるコンピュータに用いられ、前記メモリに記憶される車道以外の通行路に関する地図データのデータ構造であって、
     前記通行路における点群データに基づいて抽出された縁部に関する縁部データを用いて生成される各線分データであって、前記プロセッサにより車両の進行に関する制御処理に用いられる、前記各線分データと、
     対応する前記各線分データに関連付けられる、前記点群データに基づいて特定される前記通行路の属性情報であって、前記プロセッサにより前記車両の速度、走行可否、及び停止判定の少なくとも1つの制御処理に用いられる、前記属性情報と、
     を含む、地図データのデータ構造。 
    A data structure of map data relating to a road other than a roadway, which is used in a computer having a processor and a memory and is stored in the memory, comprising:
    Each line segment data is generated using edge data related to an edge extracted based on the point cloud data on the travel route, and the each line segment data is used by the processor for a control process related to a travel of a vehicle;
    Attribute information of the route identified based on the point cloud data, which is associated with each of the corresponding line segment data, and which is used by the processor for at least one of control processes of the speed of the vehicle, whether or not the vehicle can travel, and whether or not the vehicle can stop;
    A data structure for map data, including:
PCT/JP2023/034760 2022-10-06 2023-09-25 Information processing method, program, information processing device, and data structure WO2024075572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-161764 2022-10-06
JP2022161764 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075572A1 true WO2024075572A1 (en) 2024-04-11

Family

ID=90608228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034760 WO2024075572A1 (en) 2022-10-06 2023-09-25 Information processing method, program, information processing device, and data structure

Country Status (1)

Country Link
WO (1) WO2024075572A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038495A (en) * 2012-08-16 2014-02-27 Toyota Central R&D Labs Inc Three dimensional shape interpretation apparatus and program
JP2020160291A (en) * 2019-03-27 2020-10-01 アイシン・エィ・ダブリュ株式会社 Road information update system, route search system, and road information update program
JP2022530347A (en) * 2019-04-18 2022-06-29 ドリームウェーブス ゲーエムベーハー A method for guiding traffic participants, performed by a computer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038495A (en) * 2012-08-16 2014-02-27 Toyota Central R&D Labs Inc Three dimensional shape interpretation apparatus and program
JP2020160291A (en) * 2019-03-27 2020-10-01 アイシン・エィ・ダブリュ株式会社 Road information update system, route search system, and road information update program
JP2022530347A (en) * 2019-04-18 2022-06-29 ドリームウェーブス ゲーエムベーハー A method for guiding traffic participants, performed by a computer

Similar Documents

Publication Publication Date Title
JP7067536B2 (en) Vehicle controls, methods and storage media
JP7251394B2 (en) VEHICLE-SIDE DEVICE, METHOD AND STORAGE MEDIUM
US10809073B2 (en) Local window-based 2D occupancy grids for localization of autonomous vehicles
CN112639918B (en) Map system, vehicle-side device, method, and storage medium
JP7167876B2 (en) Map generation system, server and method
US11953340B2 (en) Updating road navigation model using non-semantic road feature points
EP3901782B1 (en) Lane-centric road network model for navigation
WO2020045317A1 (en) Map system, method, and storage medium
JP7147712B2 (en) VEHICLE-SIDE DEVICE, METHOD AND STORAGE MEDIUM
CN104691447B (en) System and method for dynamically focusing on vehicle sensors
JP2022535351A (en) System and method for vehicle navigation
WO2020045323A1 (en) Map generation system, server, vehicle-side device, method, and storage medium
JP2023509468A (en) Systems and methods for vehicle navigation
RU2766038C1 (en) Method and apparatus for generating information on the traffic environment for a vehicle, and method for controlling movement for a vehicle
CN117053814A (en) Navigating a vehicle using an electronic horizon
WO2020045318A1 (en) Vehicle-side device, server, method, and storage medium
WO2020045324A1 (en) Vehicle-side device, method and storage medium
WO2020045322A1 (en) Map system, vehicle-side device, method, and storage medium
JP7477256B2 (en) SYSTEM AND METHOD FOR OPTIMIZING MAP TILES REQUESTS FOR NAVIGATION - Patent application
WO2020045319A1 (en) Vehicle control device, method and storage medium
WO2024075572A1 (en) Information processing method, program, information processing device, and data structure
US20220179424A1 (en) Systems and methods for autonomous navigation on sidewalks in various conditions
JP7323146B2 (en) Information processing method, program, and information processing device
US11982540B2 (en) Infrastructure mapping and layered output
CN116978215A (en) Network-connected reference beacon system