WO2024075537A1 - Reactive compound, production method for polymer compound, and intermediate - Google Patents

Reactive compound, production method for polymer compound, and intermediate Download PDF

Info

Publication number
WO2024075537A1
WO2024075537A1 PCT/JP2023/034320 JP2023034320W WO2024075537A1 WO 2024075537 A1 WO2024075537 A1 WO 2024075537A1 JP 2023034320 W JP2023034320 W JP 2023034320W WO 2024075537 A1 WO2024075537 A1 WO 2024075537A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
represented
formula
ring
compound
Prior art date
Application number
PCT/JP2023/034320
Other languages
French (fr)
Japanese (ja)
Inventor
柾律 阿部
優季 横井
貴史 荒木
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024075537A1 publication Critical patent/WO2024075537A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • This disclosure relates to reactive compounds, methods for producing polymer compounds, and intermediates.
  • Non-Patent Document 1 discloses a reactive compound represented by the following formula (A).
  • Patent Document 1 discloses that a polymer compound is obtained by reacting the reactive compound represented by the following formula (A) with a compound represented by the following formula (B).
  • the reactive compounds may undergo decomposition reactions over time and may have poor storage stability. Therefore, a problem to be solved by one embodiment of the present disclosure is to provide a reactive compound having excellent storage stability. Another problem to be solved by another embodiment of the present disclosure is to provide a method for producing a polymer compound using a reactive compound having excellent storage stability. Furthermore, a problem to be solved by another embodiment of the present disclosure is to provide an intermediate from which a reactive compound having excellent storage stability can be obtained.
  • Means for solving the above problems include the following means. ⁇ 1> A reactive compound represented by the following formula (1):
  • Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
  • Ar2 represents an aromatic hydrocarbon ring group;
  • X represents a group represented by -O- or a group represented by -NH-;
  • n represents an integer of 1 or more and 4 or less.
  • Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
  • Ar2 represents an aromatic hydrocarbon ring group;
  • X represents a group represented by -O- or a group represented by -NH-;
  • two Ar 2 , two X and two Y may be the same or different.
  • Ar3 represents a carbocyclic group or a heterocyclic group; * represents a bond.
  • Ar 1 is a group represented by the following formula (5):
  • Z represents a group represented by the following formula (Z-1), (Z-2), (Z-3), (Z-4), (Z-5), (Z-6), or (Z-7): * represents a bond.
  • R 12 and R 13 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
  • a method for producing a polymer compound comprising reacting the reactive compound according to any one of ⁇ 1> to ⁇ 6> with a compound represented by the following formula (11):
  • Ar4 represents a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group;
  • Each HX independently represents a halogen atom.
  • Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
  • L represents a hydrogen atom or a halogen atom;
  • n represents an integer of 1 or more and 4 or less.
  • a reactive compound having excellent storage stability is provided.
  • a method for producing a polymer compound using a reactive compound having excellent storage stability is provided.
  • an intermediate which provides a reactive compound having excellent storage stability is provided.
  • a reactive compound according to the present disclosure is a compound that contains a reactive group.
  • the "reactive group” is a group represented by the following formula (R):
  • X, Y and Ar2 are defined the same as X, Y and Ar2 in formula (1), respectively, and * represents a bond.
  • aromatic hydrocarbon ring group refers to the atomic group remaining after removing one or more hydrogen atoms directly bonded to carbon atoms constituting an aromatic hydrocarbon ring which may be unsubstituted or substituted and which may have two or more condensed rings.
  • aromatic hydrocarbon ring group refers to the atomic group remaining after removing one or more hydrogen atoms directly bonded to carbon atoms constituting an aromatic hydrocarbon ring which may be unsubstituted or substituted and which may have two or more condensed rings.
  • p-valent aromatic hydrocarbon ring group p is an integer of 1 or more
  • aromatic hydrocarbon ring group having q rings condensed therein (q is an integer of 2 or more), and in this case, it means an aromatic hydrocarbon ring group having q rings condensed therein.
  • aromatic heterocyclic group refers to an atomic group remaining after removing one or more hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting an aromatic heterocyclic ring, which may be unsubstituted or substituted and may have two or more condensed rings.
  • aromatic heterocyclic group p is an integer of 1 or more
  • p is an integer of 1 or more
  • aromatic heterocyclic group having q rings condensed therein q is an integer of 2 or more
  • substituted amino group examples include a halogen atom, an alkyl group (including a cycloalkyl group), an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a monovalent heterocyclic group, a substituted amino group, an acyl group, an imine residue, an amide group, an acid imide group, a substituted oxycarbonyl group, a cyano group, an alkylsulfonyl group, and a nitro group.
  • the number of carbon atoms does not usually include the number of carbon atoms of the substituent A.
  • Halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
  • the alkyl group preferably has 1 or more and 50 or less carbon atoms, more preferably has 1 or more and 30 or less carbon atoms, and further preferably has 1 or more and 20 or less carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isoamyl group, a 2-ethylbutyl group, an n-hexyl group, a cyclohexyl group, an n-heptyl group, a cyclohexylmethyl group, a cyclohexylethyl group, an n-octyl group, a 2-ethylhexyl group, a 3-n-propylheptyl group, an adamantyl
  • the alkenyl group preferably has 2 or more and 30 or less carbon atoms, and more preferably has 3 or more and 20 or less carbon atoms.
  • Examples of the alkenyl group include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-hexenyl group, a 5-hexenyl group, and a 7-octenyl group.
  • the alkynyl group preferably has 2 or more and 20 or less carbon atoms, and more preferably has 3 or more and 20 or less carbon atoms.
  • Examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, a 4-pentynyl group, a 1-hexynyl group, and a 5-hexynyl group.
  • the alkoxy group preferably has 1 or more and 40 or less carbon atoms, and more preferably has 1 or more and 10 or less carbon atoms.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a tert-butyloxy group, an n-pentyloxy group, an n-hexyloxy group, a cyclohexyloxy group, an n-heptyloxy group, an n-octyloxy group, a 2-ethylhexyloxy group, an n-nonyloxy group, an n-decyloxy group, a 3,7-dimethyloctyloxy group, a 3-heptyldodecyloxy group, and a lauryloxy group.
  • the alkylthio group preferably has 1 or more and 40 or less carbon atoms, and more preferably has 1 or more and 10 or less carbon atoms.
  • Examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, an octylthio group, a 2-ethylhexylthio group, a nonylthio group, a decylthio group, a 3,7-dimethyloctylthio group, a laurylthio group, and a trifluoromethylthio group.
  • An aryl group is a monovalent aromatic hydrocarbon ring group.
  • the aryl group preferably has 6 or more and 30 or less carbon atoms, and more preferably has 6 or more and 20 or less carbon atoms.
  • Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, a 2-phenylphenyl group, a 3-phenylphenyl group, and a 4-phenylphenyl group.
  • the aryloxy group preferably has 6 or more and 60 or less carbon atoms, and more preferably has 6 or more and 48 or less carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 9-anthracenyloxy group, and a 1-pyrenyloxy group.
  • the arylthio group preferably has 6 or more and 60 or less carbon atoms, and more preferably has 6 or more and 48 or less carbon atoms.
  • Examples of the arylthio group include a phenylthio group, a C1-C12 alkyloxyphenylthio group (C1-C12 indicates that the group immediately following it has 1 or more and 12 or less carbon atoms, and the same applies below), a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, a pentafluorophenylthio group, and the like.
  • the monovalent heterocyclic group preferably has 2 or more and 60 or less carbon atoms, and more preferably has 4 or more and 20 or less carbon atoms.
  • Examples of the monovalent heterocyclic group include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group, an isoquinolyl group, a pyrimidinyl group, and a triazinyl group.
  • the substituted amino group means an amino group having a substituent.
  • substituent of the amino group include an alkyl group, an aryl group, and a monovalent heterocyclic group, and an alkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group preferably has 2 or more and 30 or less carbon atoms.
  • substituted amino group examples include dialkylamino groups such as a dimethylamino group and a diethylamino group; and diarylamino groups such as a diphenylamino group, a bis(4-methylphenyl)amino group, a bis(4-tert-butylphenyl)amino group, and a bis(3,5-di-tert-butylphenyl)amino group.
  • the acyl group preferably has 2 or more and 20 or less carbon atoms, and more preferably has 2 or more and 18 or less carbon atoms.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the imine residue refers to the remaining atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom or nitrogen atom constituting a carbon-nitrogen double bond from an imine compound.
  • the "imine compound” refers to an organic compound having a carbon-nitrogen double bond in the molecule.
  • imine compounds include aldimines, ketimines, and compounds in which the hydrogen atom bonded to the nitrogen atom constituting the carbon-nitrogen double bond in an aldimine is substituted with an alkyl group or the like.
  • the imine residue preferably has 2 or more and 20 or less carbon atoms, and more preferably has 2 or more and 18 or less carbon atoms.
  • Examples of the imine residue include groups represented by the following structural formula: In the following structural formula, * represents a bond.
  • the amide group preferably has 1 or more and 20 or less carbon atoms, and more preferably has 1 or more and 18 or less carbon atoms.
  • Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, a ditrifluoroacetamide group, and a dipentafluorobenzamide group.
  • the acid imide group means an atomic group remaining after removing one hydrogen atom bonded to the nitrogen atom from an acid imide.
  • the acid imide group preferably has 4 or more and 20 or less carbon atoms.
  • Examples of the acid imide group include groups represented by the following structural formula: In the following structural formula, * represents a bond.
  • R' represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
  • the substituted oxycarbonyl group preferably has 2 or more and 60 or less carbon atoms, and more preferably has 2 or more and 48 or less carbon atoms.
  • Examples of the substituted oxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, a hexyloxycarbonyl group, a cyclohexyloxycarbonyl group, a heptyloxycarbonyl group, an octyloxycarbonyl group, a 2-ethylhexyloxycarbonyl group, a nonyloxycarbonyl group, a decyloxycarbonyl group, a 3,7-dimethyloctyloxycarbonyl group, a dodecyloxycarbonyl group, and a trifluoromethoxycarbonyl group.
  • alkyl group examples include a pentafluoroethoxycarbonyl group, a perfluorobutoxycarbonyl group, a perfluorohexyloxycarbonyl group, a perfluorooctyloxycarbonyl group, a phenoxycarbonyl group, a naphthoxycarbonyl group, and a pyridyloxycarbonyl group.
  • the alkylsulfonyl group preferably has 1 or more and 30 or less carbon atoms.
  • Examples of the alkylsulfonyl group include a methylsulfonyl group, an ethylsulfonyl group, and a dodecylsulfonyl group.
  • the reactive compound according to the present disclosure is represented by the following formula (1).
  • Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
  • Ar2 represents an aromatic hydrocarbon ring group;
  • X represents a group represented by -O- or a group represented by -NH-;
  • n represents an integer of 1 or more and 4 or less.
  • the reactive compound according to the present disclosure is a compound in which, when it reacts with another compound, a reactive group is eliminated and the atomic group bonded to the reactive group forms a bond with an atom in the other compound.
  • An example of the reaction is the Suzuki-Miyaura coupling reaction.
  • the reactive compound according to the present disclosure has excellent storage stability due to the above-mentioned constitution, and the reason for this is presumed to be as follows.
  • the reactive group has high structural stability, and therefore decomposition reactions occurring over time are easily suppressed, and therefore it is presumed that the reactive compound according to the present disclosure has excellent storage stability.
  • Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings.
  • Ar 1 is an aromatic hydrocarbon ring group having a valence of 1 to 4, or an aromatic heterocyclic group having a valence of 1 to 4.
  • Ar 1 is preferably a monovalent or greater and trivalent aromatic hydrocarbon ring group or a monovalent or greater and trivalent aromatic heterocyclic group. From the viewpoint of storage stability and reactivity, Ar 1 is more preferably a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group. That is, the reactive compound according to the present disclosure is preferably a compound represented by the following formula (2).
  • Ar 1 , Ar 2 , X and Y are respectively defined as Ar 1 , Ar 2 , X and Y in formula (1), and two Ar 2 , two X and two Y in formula (2) may be the same or different.
  • Examples of the aromatic hydrocarbon ring group for Ar 1 in formula (1) or formula (2) include groups represented by the following formulae Ar 1 -(A1) to Ar 1 -(A15).
  • Ar 1 -(A1) to Ar 1 -(A15) * represents a bond.
  • m represents an integer of 0 or more.
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 each independently represent a hydrogen atom or a monovalent group, and may be the same or different. Examples of the monovalent group represented by R 11 , R 12 , R 13 , R 14 , R 15 and R 16 include the same groups as the monovalent groups represented by R 1 and R 2 , and the preferred embodiments are also the same.
  • the aromatic heterocyclic group for Ar 1 is preferably a group represented by the following formula (3) or (4).
  • Ar3 represents a carbocyclic group or a heterocyclic group, and * represents a bond.
  • the carbocyclic group and heterocyclic group represented by Ar3 may each have a substituent. Examples of the substituent include the substituent A described above.
  • the carbocyclic group and heterocyclic group represented by Ar3 may each be a monocyclic ring or a condensed ring.
  • the carbocyclic and heterocyclic groups represented by Ar3 are preferably 5- or 6-membered rings.
  • Ar 1 is preferably a group represented by the following formula (5).
  • Z represents a group represented by formula (Z-1), (Z-2), (Z-3), (Z-4), (Z-5), (Z-6) or (Z-7), and * represents a bond.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
  • the monovalent group include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amido group, an acid imide group, an amino group, a heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, and a cyano group.
  • the monovalent group may have a substituent, and examples of the substituent include the substituent A described above. From the viewpoint of storage stability, the monovalent group is preferably at least
  • the alkyl group may be linear or branched, or may be a cycloalkyl group.
  • the alkyl group preferably has 1 or more and 30 or less carbon atoms.
  • the alkyl group may have a substituent, and examples of the substituent include the above-mentioned substituent A.
  • alkyl group examples include chain alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopen
  • the aryl group has the same meaning as a monovalent aromatic hydrocarbon ring group, and preferably has 6 to 60 carbon atoms.
  • the aryl group may have a substituent, and examples of the substituent include the above-mentioned substituent A.
  • Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, a 2-phenylphenyl group, a 3-phenylphenyl group, and a 4-phenylphenyl group.
  • Examples of the aromatic heterocyclic group for Ar 1 include groups represented by the following formulae Ar 1 -(B1) to Ar 1 -(B87).
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom or a monovalent group and may be the same or different.
  • the monovalent groups represented by R11 , R12 , R13 , R14 , R15 , R16 , R17 , and R18 include the same groups as the monovalent groups represented by R1 and R2 , and preferred embodiments are also the same.
  • the formulae Ar 1 -(B9), Ar 1 -(B16), Ar 1 -(B17), Ar 1 -(B20), Ar 1 -(B21), Ar 1 -(B22), and Ar Preferably, it is a group represented by formula Ar 1 -(B23), formula Ar 1 -(B25), formula Ar 1 -(B26), formula Ar 1 -(B27) (i.e., formula (6) below) or formula Ar 1 -(B28), and more preferably a group represented by formula Ar 1 -(B27) (i.e., formula (6) below).
  • * represents a bond
  • R 11 , R 12 , R 13 and R 14 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
  • the reactive compound according to the present disclosure has a reactive group.
  • Ar 2 represents an aromatic hydrocarbon ring group
  • X represents a group represented by -O- or a group represented by -NH-
  • n represents an integer of 1 or more and 4 or less.
  • the aromatic hydrocarbon ring group represented by Ar2 includes a divalent aromatic hydrocarbon ring group.
  • the divalent aromatic hydrocarbon ring group include a phenylene group, a naphthylene group, an anthrylene group, and a phenanthonylene group. From the viewpoint of storage stability, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
  • the aromatic hydrocarbon ring group represented by Ar2 may be unsubstituted or may have a substituent. Examples of the substituent include the above-mentioned substituent A.
  • n is preferably an integer of 1 or more and 3 or less, more preferably an integer of 1 or more and 2 or less, and even more preferably 2.
  • the reactive group include groups represented by the following formulae (R1) to (R4): In the following formulae (R1) to (R4), * represents a bond.
  • the reactive compound according to the present disclosure is preferably a compound represented by the following formula (7), the following formula (8), the following formula (9) or the following formula (10).
  • R 12 and R 13 have the same definitions as R 12 and R 13 in formulae Ar 1 -(B1) to Ar 1 -(B87), respectively.
  • Tables 1 to 18 show specific examples of reactive compounds, but the present invention is not limited thereto.
  • “R 11 “, “R 12 “, “R 13 “, “R 14 “, “R 15 “, “R 16 “, “R 17 “ and “R 18 “ in the column under “Ar 1 " in Tables 1 to 18 mean R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 in formulae Ar 1 -(A1) to Ar 1 -( A15 ) and formulae Ar 1 -( B1 ) to Ar 1 -( B87 ).
  • substitution position shown in the column under "Ar 2 " in Tables 1 to 18 indicates which carbon atom among the carbon atoms forming the aromatic hydrocarbon ring group has a substituent, when the aromatic hydrocarbon ring group represented by Ar 2 has a substituent.
  • the carbon atom having a substituent is represented using the position number defined by the following method. Method of Defining Position Numbers Among the carbon atoms forming the aromatic hydrocarbon ring group represented by Ar2 , the carbon atom forming a bond with the group represented by X is designated as the carbon atom with position number 1.
  • S9 represents a group represented by the following formula (S9).
  • S10 represents a group represented by the following formula (S10).
  • S11 represents a group represented by the following formula (S11).
  • S12 represents a group represented by the following formula (S12).
  • S13 represents a group represented by the following formula (S13).
  • S14 represents a group represented by the following formula (S14).
  • the reactive compound containing a group represented by formula (S1) can be suitably used as a heat resistance improver for polymer compounds.
  • the solubility of the polymer compound in a solvent is likely to be improved. Therefore, the reactive compound containing a group represented by formula (S1) can be suitably used as a solubility enhancer for polymer compounds.
  • the reactive compound containing a group represented by formula (S1) is used as a heat resistance improver and a solubility improver, it is preferably compound 477, compound 478, compound 479, or compound 480.
  • the reactive compound according to the present disclosure can be suitably synthesized by using an intermediate represented by the following formula (12) as a raw material.
  • Ar 1 and n are defined as Ar 1 and n in formula (1), and L represents a hydrogen atom or a halogen atom.
  • L represents a hydrogen atom or a halogen atom.
  • the preferred embodiments of Ar 1 and n are the same as those of Ar 1 and n in the formula (1).
  • the halogen atom in L includes chlorine, bromine and iodine.
  • Ar 1 is preferably a group represented by formula (3) or formula (4), more preferably a group represented by formula (5), and further preferably a group represented by formula (6).
  • L is preferably a hydrogen atom, bromine or iodine, and more preferably a hydrogen atom.
  • the intermediate is preferably a compound represented by compound 12-1, compound 12-2, compound 12-5, compound 12-6, compound 12-9, compound 12-10, compound 12-13, compound 12-14, compound 12-39, or compound 12-40, more preferably a compound represented by compound 12-13 or compound 12-14, and even more preferably a compound represented by compound 12-13.
  • the intermediate represented by formula (12) is subjected to dilithiation using a base such as n-butyl lithium, and then the corresponding boronic acid is synthesized by reacting it with a polar group-containing aromatic compound such as 2-hydroxybenzyl alcohol, 4-methylcatechol, 2,3-naphthalenediol, or 2-aminobenzamide.
  • a base such as n-butyl lithium
  • a polar group-containing aromatic compound such as 2-hydroxybenzyl alcohol, 4-methylcatechol, 2,3-naphthalenediol, or 2-aminobenzamide.
  • the reactive compounds disclosed herein can be easily purified by recrystallization.
  • solvents used for recrystallization include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, cyclohexane, benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, ethyl acetate, etc., and may be a single solvent or a mixed solvent.
  • Preferred examples include a single solvent of toluene or ethyl acetate, a mixed solvent of n-heptane and toluene, and a mixed solvent of n-heptane and ethyl acetate.
  • the method for producing a polymer compound according to the present disclosure comprises reacting a reactive compound according to the present disclosure with a compound represented by the following formula (11).
  • Ar 4 represents a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group, and each HX independently represents a halogen atom.
  • R 1 and R 2 are the same as R 1 and R 2 in formula (Z-1) to formula (Z-7).
  • R 21 and R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent group.
  • R 21 and R 22 may be linked to form a cyclic structure.
  • Ring Cy is the same or different and represents an aromatic ring which may have a substituent, and examples of the substituent include the above-mentioned substituent A.
  • R 23 represents a divalent group. Also, * represents a bond.
  • R 21 and R 22 may be linked to each other to form a cyclic structure.
  • Specific examples of the cyclic structure include structures represented by formulae (D-1) to (D-5).
  • R 1 and R 2 have the same meanings as R 1 and R 2 in formulae (Z-1) to (Z-7), respectively, and * represents a bond.
  • the aromatic ring represented by the ring Cy may be a monocyclic ring or a condensed ring.
  • monocyclic aromatic rings include a benzene ring, a pyrrole ring, a furan ring, a thiophene ring, an oxazole ring, a thiazole ring, a thiadiazole ring, a pyrazole ring, a pyridine ring, a pyrazine ring, an imidazole ring, a triazole ring, an isoxazole ring, an isothiazole ring, a pyrimidine ring, a pyridazine ring, and a triazine ring.
  • Aromatic rings that are fused rings include aromatic rings in which any ring is fused to the above-mentioned monocyclic ring.
  • rings fused to a monocyclic ring include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, a thiadiazole ring, an imidazole ring, an imidazoline ring, an imidazolidine ring, a pyrazole ring, a pyrazoline ring, a prazolidine ring, a furazan ring, a triazole ring, a thiadiazole ring, an oxadiazole ring, a tetrazole ring, a pyran ring, a pyridine ring, a
  • the aromatic ring may have a substituent.
  • substituents that the aromatic ring may have include a halogen atom and a monovalent group.
  • Specific examples of the halogen atom and the monovalent group are the same as those represented by R1 and R2 .
  • examples of the divalent group represented by R 23 include groups represented by formulae (b-1) to (b-7).
  • R 1 and R 2 have the same meanings as R 1 and R 2 in formulae (Z-1) to (Z-7), respectively, and * represents a bond.
  • the groups represented by formulas (Cy-1) to (Cy-5) are preferably groups represented by formula (Cy-2) or formula (Cy-3) from the viewpoint of suppressing dark current, and more preferably groups represented by formula (Cy-3).
  • Examples of groups represented by formulas (Cy-1) to (Cy-5) include groups represented by formulas (C-1) to (C-31) shown below.
  • R 31 to R 38 represent a hydrogen atom or a monovalent group
  • * represents a bond
  • the monovalent groups represented by R 31 to R 38 include the same groups as the monovalent groups represented by R 1 and R 2 , and preferred embodiments are also the same.
  • the group represented by formula (C-15) is preferably a group represented by formula (C-32) or a group represented by formula (C-33) from the viewpoint of suppressing dark current.
  • * represents a bond.
  • the groups represented by formulas (Cy-1) to (Cy-5) are preferably groups represented by formula (C-30) or formula (C-31), and from the viewpoint of suppressing dark current, the groups represented by formula (C-31) are more preferable.
  • examples of the halogen atom represented by HX include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of synthesis of the polymer compound, it is preferable that the halogen atom is at least one selected from a bromine atom and an iodine atom, and it is more preferable that the halogen atom is a bromine atom.
  • reaction of reactive compound with compound represented by formula (11) is not particularly limited. From the viewpoint of ease of synthesis of the polymer compound, a method using the Suzuki-Miyaura coupling reaction is preferred.
  • the Suzuki-Miyaura coupling reaction can be carried out in any solvent using a palladium catalyst in the presence of a base.
  • Palladium catalysts used in the Suzuki-Miyaura coupling reaction include, for example, Pd(0) catalysts and Pd(II) catalysts. Specific examples include palladium [tetrakis(triphenylphosphine)], palladium acetates, dichlorobis(triphenylphosphine)palladium, palladium acetate, tris(dibenzylideneacetone)dipalladium, and bis(dibenzylideneacetone)palladium.
  • dichlorobis(triphenylphosphine)palladium, palladium acetate, and tris(dibenzylideneacetone)dipalladium are preferred.
  • the amount of palladium catalyst added is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 moles or more and 0.5 moles or less, and preferably 0.0003 moles or more and 0.1 moles or less, per mole of the reactive compound represented by formula (1) (i.e., the reactive compound according to the present disclosure).
  • phosphorus compounds such as triphenylphosphine, tri(o-tolyl)phosphine, and tri(o-methoxyphenyl)phosphine can be added as ligands.
  • the amount of ligand added is usually 0.5 to 100 moles, preferably 0.9 to 20 moles, and more preferably 1 to 10 moles, per mole of palladium catalyst.
  • Examples of the base used in the Suzuki-Miyaura coupling reaction include inorganic bases, organic bases, and inorganic salts.
  • Examples of the inorganic base include potassium carbonate, sodium carbonate, barium hydroxide, and potassium phosphate.
  • Examples of the organic base include triethylamine and tributylamine.
  • Examples of the inorganic salt include cesium fluoride.
  • the amount of base added is usually 0.5 moles or more and 100 moles or less, preferably 0.9 moles or more and 20 moles or less, and more preferably 1 mole or more and 10 moles or less, per mole of the reactive compound represented by formula (1) (i.e., the reactive compound according to the present disclosure).
  • the Suzuki-Miyaura coupling reaction is usually carried out in a solvent.
  • the solvent include N,N-dimethylformamide, toluene, dimethoxyethane, tetrahydrofuran, methylene chloride, etc. From the viewpoint of the solubility of the polymer compound according to the present disclosure, toluene or tetrahydrofuran is preferable.
  • the base may be added by adding an aqueous solution containing the base to the reaction solution and reacting in a two-phase system of an aqueous phase and an organic phase.
  • the aqueous solution containing the base is usually added to the reaction solution to react, from the viewpoint of the solubility of the inorganic salt.
  • a phase transfer catalyst such as a quaternary ammonium salt may be added, if necessary.
  • the temperature at which the Suzuki-Miyaura coupling reaction is carried out depends on the solvent, but is usually 40°C or higher and 160°C or lower. From the viewpoint of increasing the molecular weight of the polymer compound, 60°C or higher and 120°C or lower are preferable. The temperature may also be raised to near the boiling point of the solvent and refluxed.
  • the reaction time may end when the desired degree of polymerization is reached, but is usually 0.1 hours or higher and 200 hours or lower. A reaction time of 0.5 hours or higher and 30 hours or lower is efficient and preferable.
  • the polymer compound according to the present disclosure contains, as a structural unit, one or more aromatic hydrocarbon ring groups or aromatic heterocyclic groups represented by Ar 1 in formula (1) and one or more aromatic hydrocarbon ring groups or aromatic heterocyclic groups represented by Ar 4 in formula (11).
  • the polymer compound according to the present disclosure preferably contains two or more, and more preferably three or more, aromatic hydrocarbon ring groups or aromatic heterocyclic groups represented by Ar 1 in formula (1) as structural units.
  • the polymer compound according to the present disclosure When the polymer compound according to the present disclosure is used in an element, it is desirable for the polymer compound to have high solubility in a solvent from the viewpoint of ease of element fabrication. Specifically, it is preferable for the polymer compound according to the present disclosure to have a solubility that allows a solution containing 0.01 weight (wt) % or more of the polymer compound to be prepared, more preferably a solubility that allows a solution containing 0.1 wt % or more of the polymer compound to be prepared, and even more preferably a solubility that allows a solution containing 0.2 wt % or more to be prepared.
  • the weight average molecular weight of the polymer compound according to the present disclosure is preferably 3,000 or more and 10,000,000 or less.
  • the weight average molecular weight of the polymer compound according to the present disclosure is preferably 4,000 or more and 5,000,000 or less, and further preferably 5,000 or more and 1,000,000 or less.
  • the weight average molecular weight of the polymer compound according to this disclosure refers to the weight average molecular weight calculated in terms of polystyrene using gel permeation chromatography (GPC) and a polystyrene standard sample.
  • the terminal groups of the polymer compounds according to the present disclosure may be protected with stable groups, since if the reactive groups remain as they are, the characteristics and lifespan of the resulting element may be reduced when used in the fabrication of an element.
  • Those having a conjugated bond continuous with the conjugated structure of the main chain are preferred, and they may also have a structure in which they are bonded to an aryl group or a heterocyclic group via a vinylene group, for example.
  • the polymer compound according to the present disclosure can exhibit high electron and hole transport properties, when an organic thin film containing the polymer compound is used in an element, it can transport electrons and holes injected from an electrode, or charges generated by light absorption.
  • the polymer compound can be suitably used in various electronic elements such as photoelectric conversion elements, organic thin film transistors, and organic electroluminescence elements.
  • the polymer compound according to the present disclosure is used as a material for the active layer.
  • the polymer compound according to the present disclosure is used in the organic semiconductor layer (active layer) that serves as the current path between the source electrode and the drain electrode.
  • the polymer compound according to the present disclosure is used in the light-emitting layer.
  • the filtrate was then totally concentrated with a rotary evaporator to obtain a concentrated liquid.
  • the concentrate was purified by silica gel column chromatography (hexane as a developing solvent) to obtain 532.2 g of Compound 1 (1.68 mol in molar terms, yield 67%).
  • the mixture was then stirred for 1 hour, and an aqueous solution of ammonium chloride was poured into the reaction solution to stop the reaction and separate the liquids.
  • the organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration, after which the filtrate was totally concentrated with a rotary evaporator to obtain a concentrated liquid.
  • ⁇ Storage stability evaluation> The reactive compounds obtained in each example were used to evaluate storage stability according to the following procedure. The storage stability was evaluated by calculating the initial purity and the purity after the storage test, and then calculating the purity maintenance rate from the calculated initial purity and the purity after the storage test. Here, a higher purity maintenance rate indicates higher storage stability.
  • the reactive compound obtained in each example was added to a vial, and the vial was purged with nitrogen.
  • the vial containing the reactive compound was then stored at 40° C. for one week.
  • the purity of the reactive compound after storage was calculated by the internal standard method of 1 H-NMR measurement.
  • Purity maintenance rate (%) (purity after storage test ⁇ initial purity) ⁇ 100
  • a measurement sample for 1 H-NMR measurement is prepared with the following composition.
  • - Composition of measurement data - Deuterated chloroform (Tokyo Chemical Industry Co., Ltd., 99.8 atom% D, does not contain tetramethylsilane): 0.6 mL ⁇ Standard substance: 1,4-bis(trimethylsilyl)benzene-d4 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.): 1.0 mg Reactive compound: 6.0 mg
  • the measurement sample is subjected to 1 H-NMR measurement. From the obtained NMR spectrum, the purity (P sample ) of the reactive compound is calculated according to the following formula (II).
  • Table 21 shows the results of calculating the initial purity, purity after storage test, and purity maintenance rate of the reactive compounds obtained in each example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention addresses the problem of providing a reactive compound having excellent storage stability. The present invention relates to a reactive compound represented by formula (1). (In formula (1), Ar1 denotes an aromatic hydrocarbon cyclic group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings, Ar2 denotes an aromatic hydrocarbon cyclic group, X denotes a group represented by -O- or a group represented by -NH-, Y denotes a group represented by -O-, a group represented by -NH-, a group represented by -O-CH2-, a group represented by -CH2-NH-, a group represented by -NH-C(=O)-, or a group represented by -C(=O)-O-, and n denotes an integer from 1 to 4.)

Description

反応性化合物、高分子化合物の製造方法及び中間体Reactive compounds, methods for producing polymeric compounds, and intermediates
 本開示は、反応性化合物、高分子化合物の製造方法及び中間体に関する。 This disclosure relates to reactive compounds, methods for producing polymer compounds, and intermediates.
 非特許文献1には、下記式(A)で表される反応性化合物が開示されている。特許文献1には、下記式(A)で表される反応性化合物が、下記式(B)で表される化合物と反応して高分子化合物が得られることが開示されている。 Non-Patent Document 1 discloses a reactive compound represented by the following formula (A). Patent Document 1 discloses that a polymer compound is obtained by reacting the reactive compound represented by the following formula (A) with a compound represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記反応性化合物は、時間経過とともに分解反応が進行し、保管安定性が低いことがあった。
 そこで、本開示の一実施形態が解決しようとする課題は、保管安定性に優れる反応性化合物を提供することである。
 また、本開示の他の一実施形態が解決しようとする課題は、保管安定性に優れる反応性化合物を用いた高分子化合物の製造方法を提供することである。
 さらに、本開示の他の一実施形態が解決しようとする課題は、保管安定性に優れる反応性化合物が得られる中間体を提供することである。
The reactive compounds may undergo decomposition reactions over time and may have poor storage stability.
Therefore, a problem to be solved by one embodiment of the present disclosure is to provide a reactive compound having excellent storage stability.
Another problem to be solved by another embodiment of the present disclosure is to provide a method for producing a polymer compound using a reactive compound having excellent storage stability.
Furthermore, a problem to be solved by another embodiment of the present disclosure is to provide an intermediate from which a reactive compound having excellent storage stability can be obtained.
 上記課題を解決するための手段には、以下の手段が含まれる。
<1> 下記式(1)で表される反応性化合物。
Means for solving the above problems include the following means.
<1> A reactive compound represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1)中、
 Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
 Arは、芳香族炭化水素環基を表し、
 Xは、-O-で表される基又は-NH-で表される基を表し、
 Yは、-O-で表される基、-NH-で表される基、-O-CH-で表される基、-CH-NH-で表される基、-NH-C(=O)-で表される基又は-C(=O)-O-で表される基を表し、
 nは、1以上4以下の整数を表す。
<2> 下記式(2)で表される<1>に記載の反応性化合物。
In formula (1),
Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
Ar2 represents an aromatic hydrocarbon ring group;
X represents a group represented by -O- or a group represented by -NH-;
Y represents a group represented by -O-, a group represented by -NH-, a group represented by -O-CH 2 -, a group represented by -CH 2 -NH-, a group represented by -NH-C(=O)- or a group represented by -C(=O)-O-;
n represents an integer of 1 or more and 4 or less.
<2> The reactive compound according to <1>, represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(2)中、
 Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
 Arは、芳香族炭化水素環基を表し、
 Xは、-O-で表される基又は-NH-で表される基を表し、
 Yは、-O-で表される基、-NH-で表される基、-O-CH-で表される基、-CH-NH-で表される基、-NH-C(=O)-で表される基又は-C(=O)-O-で表される基を表し、
 式(2)中における2つのAr、2つのX及び2つのYはそれぞれ同一であってもよいし、異なっていてもよい。
<3> Arが下記式(3)又は下記式(4)で表される基である<2>に記載の反応性化合物。
In formula (2),
Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
Ar2 represents an aromatic hydrocarbon ring group;
X represents a group represented by -O- or a group represented by -NH-;
Y represents a group represented by -O-, a group represented by -NH-, a group represented by -O-CH 2 -, a group represented by -CH 2 -NH-, a group represented by -NH-C(=O)- or a group represented by -C(=O)-O-;
In the formula (2), two Ar 2 , two X and two Y may be the same or different.
<3> The reactive compound according to <2>, wherein Ar 1 is a group represented by the following formula (3) or the following formula (4):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(3)及び式(4)中、
 Arは、炭素環基又は複素環基を表し、
 *は、結合手を表す。
<4> Arが下記式(5)で表される基である<2>又は<3>に記載の反応性化合物。
In formula (3) and formula (4),
Ar3 represents a carbocyclic group or a heterocyclic group;
* represents a bond.
<4> The reactive compound according to <2> or <3>, wherein Ar 1 is a group represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(5)中、
 Zは、下記式(Z-1)、下記式(Z-2)、下記式(Z-3)、下記式(Z-4)、下記式(Z-5)、下記式(Z-6)又は下記式(Z-7)で表される基を表し、
 *は、結合手を表す。
In formula (5),
Z represents a group represented by the following formula (Z-1), (Z-2), (Z-3), (Z-4), (Z-5), (Z-6), or (Z-7):
* represents a bond.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(Z-1)~式(Z-7)中、
 *は、結合手を表し、
 R及びRは、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。
<5> Arが下記式(6)で表される基である<2>~<4>のいずれか1つに記載の反応性化合物。
In formulas (Z-1) to (Z-7),
* represents a bond,
R 1 and R 2 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
<5> The reactive compound according to any one of <2> to <4>, wherein Ar 1 is a group represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(6)中、
 *は、結合手を表し、
 R11、R12、R13及びR14は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。
<6> 式(2)で表される化合物が下記式(7)、下記式(8)、下記式(9)又は下記式(10)で表される化合物である<2>に記載の反応性化合物。
In formula (6),
* represents a bond,
R 11 , R 12 , R 13 and R 14 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
<6> The reactive compound according to <2>, wherein the compound represented by formula (2) is a compound represented by the following formula (7), the following formula (8), the following formula (9), or the following formula (10).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(7)~式(10)中、R12及びR13は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。
<7> <1>~<6>のいずれか1つに記載の反応性化合物と、下記式(11)で表される化合物と、を反応させる、高分子化合物の製造方法。
In formulae (7) to (10), R 12 and R 13 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
<7> A method for producing a polymer compound, comprising reacting the reactive compound according to any one of <1> to <6> with a compound represented by the following formula (11):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(11)中、
 Arは、2価の芳香族炭化水素環基又は2価の芳香族複素環基を表し、
 HXは、それぞれ独立に、ハロゲン原子を表す。
<8> 下記式(12)で表される<1>~<6>のいずれか1つに記載の反応性化合物の中間体。
In formula (11),
Ar4 represents a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group;
Each HX independently represents a halogen atom.
<8> An intermediate of the reactive compound according to any one of <1> to <6>, represented by the following formula (12):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(12)中、
 Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
 Lは、水素原子又はハロゲン原子を表し、
 nは、1以上4以下の整数を表す。
In formula (12),
Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
L represents a hydrogen atom or a halogen atom;
n represents an integer of 1 or more and 4 or less.
 本開示の一実施形態によれば、保管安定性に優れる反応性化合物が提供される。
 本開示の他の一実施形態によれば、保管安定性に優れる反応性化合物を用いた高分子化合物の製造方法が提供される。
 本開示の他の一実施形態によれば、保管安定性に優れる反応性化合物が得られる中間体が提供される。
According to one embodiment of the present disclosure, a reactive compound having excellent storage stability is provided.
According to another embodiment of the present disclosure, there is provided a method for producing a polymer compound using a reactive compound having excellent storage stability.
According to another embodiment of the present disclosure, there is provided an intermediate which provides a reactive compound having excellent storage stability.
 以下、本発明の一実施形態にかかる化合物について説明し、さらには一実施形態にかかる化合物が用いられる光電変換素子について説明する。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。 Below, a compound according to one embodiment of the present invention will be described, and a photoelectric conversion element in which the compound according to one embodiment is used will be described. The present invention is not limited to the following description, and each component can be modified as appropriate without departing from the gist of the present invention.
 以下の説明において共通して用いられる用語についてまず説明する。
 本開示に係る反応性化合物は反応性基を含有する化合物である。
 「反応性基」は、下記式(R)で表される基である。
First, terms commonly used in the following description will be explained.
A reactive compound according to the present disclosure is a compound that contains a reactive group.
The "reactive group" is a group represented by the following formula (R):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(R)中、X、Y及びArは、式(1)におけるX、Y及びArとそれぞれ同義であり、*は結合手を表す。 In formula (R), X, Y and Ar2 are defined the same as X, Y and Ar2 in formula (1), respectively, and * represents a bond.
 「芳香族炭化水素環基」とは、無置換でも置換基を有していてもよく、2個以上の環が縮環していてもよい芳香族炭化水素環を構成する炭素原子に直接結合する水素原子を1個以上除いた残りの原子団を意味する。例えば「p価の芳香族炭化水素環基」(pは、1以上の整数を表す。)と称することがあるが、この場合、置換基を有していてもよい芳香族炭化水素環を構成する炭素原子に直接結合する水素原子p個を除いた残りの原子団を意味する。
 また「q個の環が縮環している芳香族炭化水素環基」(qは、2以上の整数を表す。)と称することがあるが、この場合、q個の環が縮環している芳香族炭化水素環基を意味する。
The term "aromatic hydrocarbon ring group" refers to the atomic group remaining after removing one or more hydrogen atoms directly bonded to carbon atoms constituting an aromatic hydrocarbon ring which may be unsubstituted or substituted and which may have two or more condensed rings. For example, it may be referred to as a "p-valent aromatic hydrocarbon ring group" (p is an integer of 1 or more), in which case it refers to the atomic group remaining after removing p hydrogen atoms directly bonded to carbon atoms constituting an aromatic hydrocarbon ring which may have a substituent.
In addition, it may be referred to as an "aromatic hydrocarbon ring group having q rings condensed therein" (q is an integer of 2 or more), and in this case, it means an aromatic hydrocarbon ring group having q rings condensed therein.
 「芳香族複素環基」とは、無置換でも置換基を有していてもよく、2個以上の環が縮環していてもよい芳香族複素環を構成する炭素原子又はヘテロ原子に直接結合している水素原子を1個以上除いた残りの原子団を意味する。例えば「p価の芳香族複素環基」(pは、1以上の整数を表す。)と称することがあるが、この場合、置換基を有していてもよい芳香族複素環を構成する炭素原子又はヘテロ原子に直接結合する水素原子p個を除いた残りの原子団を意味する。
 また「q個の環が縮環している芳香族複素環基」(qは、2以上の整数を表す。)と称することがあるが、この場合、q個の環が縮環している芳香族複素環基を意味する。
The term "aromatic heterocyclic group" refers to an atomic group remaining after removing one or more hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting an aromatic heterocyclic ring, which may be unsubstituted or substituted and may have two or more condensed rings. For example, it may be referred to as a "p-valent aromatic heterocyclic group" (p is an integer of 1 or more), in which case it refers to an atomic group remaining after removing p hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting an aromatic heterocyclic ring, which may have a substituent.
In addition, it may be referred to as an "aromatic heterocyclic group having q rings condensed therein" (q is an integer of 2 or more), and in this case, it means an aromatic heterocyclic group having q rings condensed therein.
 「置換基A」の例としては、ハロゲン原子、アルキル基(シクロアルキル基を含む)、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミ
ド基、酸イミド基、置換オキシカルボニル基、シアノ基、アルキルスルホニル基、及びニトロ基が挙げられる。なお、本明細書において炭素原子数という場合には、通常、当該炭素原子数には置換基Aの炭素原子数は含まれない。
Examples of "substituent A" include a halogen atom, an alkyl group (including a cycloalkyl group), an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a monovalent heterocyclic group, a substituted amino group, an acyl group, an imine residue, an amide group, an acid imide group, a substituted oxycarbonyl group, a cyano group, an alkylsulfonyl group, and a nitro group. Note that, in this specification, when referring to the number of carbon atoms, the number of carbon atoms does not usually include the number of carbon atoms of the substituent A.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
 アルキル基の炭素数としては、1以上50以下であることが好ましく、1以上30以下であることがより好ましく、1以上20以下であることが更に好ましい。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、2-エチルブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、n-オクチル基、2-エチルヘキシル基、3-n-プロピルヘプチル基、アダマンチル基、n-デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-n-ヘキシル-デシル基、n-ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基などが挙げられる。
The alkyl group preferably has 1 or more and 50 or less carbon atoms, more preferably has 1 or more and 30 or less carbon atoms, and further preferably has 1 or more and 20 or less carbon atoms.
Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isoamyl group, a 2-ethylbutyl group, an n-hexyl group, a cyclohexyl group, an n-heptyl group, a cyclohexylmethyl group, a cyclohexylethyl group, an n-octyl group, a 2-ethylhexyl group, a 3-n-propylheptyl group, an adamantyl group, an n-decyl group, a 3,7-dimethyloctyl group, a 2-ethyloctyl group, a 2-n-hexyl-decyl group, an n-dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, an eicosyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and an adamantyl group.
 アルケニル基の炭素数としては、2以上30以下であることが好ましく、3以上20以下であることがより好ましい。
 アルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基などが挙げられる。
The alkenyl group preferably has 2 or more and 30 or less carbon atoms, and more preferably has 3 or more and 20 or less carbon atoms.
Examples of the alkenyl group include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-hexenyl group, a 5-hexenyl group, and a 7-octenyl group.
 アルキニル基の炭素数としては、2以上20以下であることが好ましく、3以上20以下であることがより好ましい。
 アルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基などが挙げられる。
The alkynyl group preferably has 2 or more and 20 or less carbon atoms, and more preferably has 3 or more and 20 or less carbon atoms.
Examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, a 4-pentynyl group, a 1-hexynyl group, and a 5-hexynyl group.
 アルコキシ基の炭素数としては、1以上40以下であることが好ましく、1以上10以下であることがより好ましい。
 アルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、3-ヘプチルドデシルオキシ基、ラウリルオキシ基などが挙げられる。
The alkoxy group preferably has 1 or more and 40 or less carbon atoms, and more preferably has 1 or more and 10 or less carbon atoms.
Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a tert-butyloxy group, an n-pentyloxy group, an n-hexyloxy group, a cyclohexyloxy group, an n-heptyloxy group, an n-octyloxy group, a 2-ethylhexyloxy group, an n-nonyloxy group, an n-decyloxy group, a 3,7-dimethyloctyloxy group, a 3-heptyldodecyloxy group, and a lauryloxy group.
 アルキルチオ基の炭素数としては、1以上40以下であることが好ましく、1以上10以下であることがより好ましい。
 アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基などが挙げられる。
The alkylthio group preferably has 1 or more and 40 or less carbon atoms, and more preferably has 1 or more and 10 or less carbon atoms.
Examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, an octylthio group, a 2-ethylhexylthio group, a nonylthio group, a decylthio group, a 3,7-dimethyloctylthio group, a laurylthio group, and a trifluoromethylthio group.
 アリール基は、1価の芳香族炭化水素環基である。
 アリール基の炭素数としては、6以上30以下であることが好ましく、6以上20以下であることがより好ましい。
 アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基などが挙げられる。
An aryl group is a monovalent aromatic hydrocarbon ring group.
The aryl group preferably has 6 or more and 30 or less carbon atoms, and more preferably has 6 or more and 20 or less carbon atoms.
Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, a 2-phenylphenyl group, a 3-phenylphenyl group, and a 4-phenylphenyl group.
 アリールオキシ基の炭素数としては、6以上60以下であることが好ましく、6以上48以下であることがより好ましい。
 アリールオキシ基としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基などが挙げられる。
The aryloxy group preferably has 6 or more and 60 or less carbon atoms, and more preferably has 6 or more and 48 or less carbon atoms.
Examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 9-anthracenyloxy group, and a 1-pyrenyloxy group.
 アリールチオ基の炭素数としては、6以上60以下であることが好ましく、6以上48以下であることがより好ましい。
 アリールチオ基としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基(C1~C12は、その直後に記載された基の炭素原子数が1以上12以下であることを示す。以下も同様である。)、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基などが挙げられる。
The arylthio group preferably has 6 or more and 60 or less carbon atoms, and more preferably has 6 or more and 48 or less carbon atoms.
Examples of the arylthio group include a phenylthio group, a C1-C12 alkyloxyphenylthio group (C1-C12 indicates that the group immediately following it has 1 or more and 12 or less carbon atoms, and the same applies below), a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, a pentafluorophenylthio group, and the like.
 1価の複素環基の炭素数としては、2以上60以下であることが好ましく、4以上20以下であることがより好ましい。
 1価の複素環基としては、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、ピリミジニル基、トリアジニル基などが挙げられる。
The monovalent heterocyclic group preferably has 2 or more and 60 or less carbon atoms, and more preferably has 4 or more and 20 or less carbon atoms.
Examples of the monovalent heterocyclic group include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group, an isoquinolyl group, a pyrimidinyl group, and a triazinyl group.
 置換アミノ基は、置換基を有するアミノ基を意味する。アミノ基が有する置換基の例としては、アルキル基、アリール基、及び1価の複素環基が挙げられ、アルキル基、アリール基、又は1価の複素環基が好ましい。
 置換アミノ基の炭素数は、2以上30以下であることが好ましい。
 置換アミノ基としては、ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基などのジアリールアミノ基が挙げられる。
The substituted amino group means an amino group having a substituent. Examples of the substituent of the amino group include an alkyl group, an aryl group, and a monovalent heterocyclic group, and an alkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
The substituted amino group preferably has 2 or more and 30 or less carbon atoms.
Examples of the substituted amino group include dialkylamino groups such as a dimethylamino group and a diethylamino group; and diarylamino groups such as a diphenylamino group, a bis(4-methylphenyl)amino group, a bis(4-tert-butylphenyl)amino group, and a bis(3,5-di-tert-butylphenyl)amino group.
 アシル基の炭素数は、2以上20以下であることが好ましく、2以上18以下であることがより好ましい。
 アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基などが挙げられる。
The acyl group preferably has 2 or more and 20 or less carbon atoms, and more preferably has 2 or more and 18 or less carbon atoms.
Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
 イミン残基とは、イミン化合物から、炭素原子-窒素原子二重結合を構成する炭素原子又は窒素原子に直接結合する水素原子1つを除いた残りの原子団を意味する。「イミン化合物」とは、分子内に、炭素原子-窒素原子二重結合を有する有機化合物を意味する。イミン化合物の例として、アルジミン、ケチミン、及びアルジミン中の炭素原子-窒素原子二重結合を構成する窒素原子に結合している水素原子が、アルキル基等で置換された化合物が挙げられる。
 イミン残基の炭素数は、2以上20以下であることが好ましく、2以上18以下であることがより好ましい。
 イミン残基の例としては、下記の構造式で表される基が挙げられる。下記の構造式中*は結合手を表す。
The imine residue refers to the remaining atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom or nitrogen atom constituting a carbon-nitrogen double bond from an imine compound. The "imine compound" refers to an organic compound having a carbon-nitrogen double bond in the molecule. Examples of imine compounds include aldimines, ketimines, and compounds in which the hydrogen atom bonded to the nitrogen atom constituting the carbon-nitrogen double bond in an aldimine is substituted with an alkyl group or the like.
The imine residue preferably has 2 or more and 20 or less carbon atoms, and more preferably has 2 or more and 18 or less carbon atoms.
Examples of the imine residue include groups represented by the following structural formula: In the following structural formula, * represents a bond.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 アミド基の炭素数は、1以上20以下であることが好ましく、1以上18以下であることがより好ましい。
 アミド基としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基などが挙げられる。
The amide group preferably has 1 or more and 20 or less carbon atoms, and more preferably has 1 or more and 18 or less carbon atoms.
Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, a ditrifluoroacetamide group, and a dipentafluorobenzamide group.
 酸イミド基とは、酸イミドから窒素原子に結合した水素原子を1個除いた残りの原子団を意味する。
 酸イミド基の炭素数は、4以上20以下であることが好ましい。
 酸イミド基としては、下記の構造式で表される基が挙げられる。下記の構造式中*は結合手を表す。
The acid imide group means an atomic group remaining after removing one hydrogen atom bonded to the nitrogen atom from an acid imide.
The acid imide group preferably has 4 or more and 20 or less carbon atoms.
Examples of the acid imide group include groups represented by the following structural formula: In the following structural formula, * represents a bond.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 置換オキシカルボニル基とは、R’-O-(C=O)-で表される基を意味する。ここで、R’は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を表す。
 置換オキシカルボニル基の炭素数は、2以上60以下であることが好ましく、2以上48以下であることがより好ましい。
 置換オキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、
ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基などが挙げられる。
The substituted oxycarbonyl group means a group represented by R'-O-(C=O)-, where R' represents an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
The substituted oxycarbonyl group preferably has 2 or more and 60 or less carbon atoms, and more preferably has 2 or more and 48 or less carbon atoms.
Examples of the substituted oxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, a hexyloxycarbonyl group, a cyclohexyloxycarbonyl group, a heptyloxycarbonyl group, an octyloxycarbonyl group, a 2-ethylhexyloxycarbonyl group, a nonyloxycarbonyl group, a decyloxycarbonyl group, a 3,7-dimethyloctyloxycarbonyl group, a dodecyloxycarbonyl group, and a trifluoromethoxycarbonyl group.
Examples of the alkyl group include a pentafluoroethoxycarbonyl group, a perfluorobutoxycarbonyl group, a perfluorohexyloxycarbonyl group, a perfluorooctyloxycarbonyl group, a phenoxycarbonyl group, a naphthoxycarbonyl group, and a pyridyloxycarbonyl group.
 アルキルスルホニル基の炭素数は、1以上30以下であることが好ましい。
 アルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、ドデシルスルホニル基などが挙げられる。
The alkylsulfonyl group preferably has 1 or more and 30 or less carbon atoms.
Examples of the alkylsulfonyl group include a methylsulfonyl group, an ethylsulfonyl group, and a dodecylsulfonyl group.
<反応性化合物>
 本開示に係る反応性化合物は、下記式(1)で表される。
<Reactive Compounds>
The reactive compound according to the present disclosure is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(1)中、
 Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
 Arは、芳香族炭化水素環基を表し、
 Xは、-O-で表される基又は-NH-で表される基を表し、
 Yは、-O-で表される基、-NH-で表される基、-O-CH-で表される基、-CH-NH-で表される基、-NH-C(=O)-で表される基又は-C(=O)-O-で表される基を表し、
 nは、1以上4以下の整数を表す。
In formula (1),
Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
Ar2 represents an aromatic hydrocarbon ring group;
X represents a group represented by -O- or a group represented by -NH-;
Y represents a group represented by -O-, a group represented by -NH-, a group represented by -O-CH 2 -, a group represented by -CH 2 -NH-, a group represented by -NH-C(=O)- or a group represented by -C(=O)-O-;
n represents an integer of 1 or more and 4 or less.
 本開示に係る反応性化合物は、他の化合物と反応した際に反応性基が脱離し、反応性基に結合していた原子団が他の化合物中の原子と結合を形成する化合物である。
 反応としては、例えば、鈴木・宮浦カップリング反応が挙げられる。
The reactive compound according to the present disclosure is a compound in which, when it reacts with another compound, a reactive group is eliminated and the atomic group bonded to the reactive group forms a bond with an atom in the other compound.
An example of the reaction is the Suzuki-Miyaura coupling reaction.
 本開示に係る反応性化合物は、上記構成により、保管安定性に優れる。その理由は、次の通り推測される。
 式(1)中、反応性基の構造安定性が高いため、時間経過とともに生じる分解反応が抑制されやすい。そのため、本開示に係る反応性化合物は保管安定性に優れると推測される。
The reactive compound according to the present disclosure has excellent storage stability due to the above-mentioned constitution, and the reason for this is presumed to be as follows.
In formula (1), the reactive group has high structural stability, and therefore decomposition reactions occurring over time are easily suppressed, and therefore it is presumed that the reactive compound according to the present disclosure has excellent storage stability.
(Ar
 式(1)中、Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表す。
 また、Arは、1価以上4価以下の芳香族炭化水素環基又は1価以上4価以下の芳香族複素環基である。
(Ar 1 )
In formula (1), Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings.
Ar 1 is an aromatic hydrocarbon ring group having a valence of 1 to 4, or an aromatic heterocyclic group having a valence of 1 to 4.
 保管安定性の観点から、Arは、1価以上3価以下の芳香族炭化水素環基又は1価以上3価以下の芳香族複素環基であることが好ましい。
 保管安定性及び反応性の観点から、Arは、2価の芳香族炭化水素環基若しくは2価の芳香族複素環基であることがより好ましい。すなわち、本開示に係る反応性化合物は、下記式(2)で表される化合物であることが好ましい。
From the viewpoint of storage stability, Ar 1 is preferably a monovalent or greater and trivalent aromatic hydrocarbon ring group or a monovalent or greater and trivalent aromatic heterocyclic group.
From the viewpoint of storage stability and reactivity, Ar 1 is more preferably a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group. That is, the reactive compound according to the present disclosure is preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(2)中、Ar、Ar、X及びYは、式(1)におけるAr、Ar、X及びYとそれぞれ同義であり、式(2)中における2つのAr、2つのX及び2つのYはそれぞれ同一であってもよいし、異なっていてもよい。 In formula (2), Ar 1 , Ar 2 , X and Y are respectively defined as Ar 1 , Ar 2 , X and Y in formula (1), and two Ar 2 , two X and two Y in formula (2) may be the same or different.
 式(1)又は式(2)中のArにおける、芳香族炭化水素環基としては、例えば、以下の式Ar-(A1)~式Ar-(A15)で表される基が挙げられる。 Examples of the aromatic hydrocarbon ring group for Ar 1 in formula (1) or formula (2) include groups represented by the following formulae Ar 1 -(A1) to Ar 1 -(A15).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 Ar-(A1)~式Ar-(A15)中、*は結合手を表す。
 Ar-(A1)中、mは0以上の整数を表す。
 Ar-(A11)~式Ar-(A15)中、R11、R12、R13、R14、R15及びR16は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。R11、R12、R13、R14、R15及びR16で表される1価の基としては、R及びRで表される1価の基と同一の基が挙げられ、好ましい態様も同一である。
In formulae Ar 1 -(A1) to Ar 1 -(A15), * represents a bond.
In Ar 1 -(A1), m represents an integer of 0 or more.
In the formulae Ar 1 -(A11) to Ar 1 -(A15), R 11 , R 12 , R 13 , R 14 , R 15 and R 16 each independently represent a hydrogen atom or a monovalent group, and may be the same or different. Examples of the monovalent group represented by R 11 , R 12 , R 13 , R 14 , R 15 and R 16 include the same groups as the monovalent groups represented by R 1 and R 2 , and the preferred embodiments are also the same.
 保管安定性の観点から、Arにおける芳香族複素環基としては、下記式(3)又は下記式(4)で表される基であることが好ましい。 From the viewpoint of storage stability, the aromatic heterocyclic group for Ar 1 is preferably a group represented by the following formula (3) or (4).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(3)及び式(4)中、Arは、炭素環基又は複素環基を表し、*は、結合手を表す。
 Arで表される炭素環基及び複素環基は、それぞれ置換基を有していてもよい。置換基としては、置換基としては上述の置換基Aが挙げられる。
 また、Arで表される炭素環基及び複素環基は、それぞれ単環であってもよく、縮合環であってもよい。
 Arで表される炭素環基及び複素環基は、5員環又は6員環であることが好ましい。
In formula (3) and formula (4), Ar3 represents a carbocyclic group or a heterocyclic group, and * represents a bond.
The carbocyclic group and heterocyclic group represented by Ar3 may each have a substituent. Examples of the substituent include the substituent A described above.
Moreover, the carbocyclic group and heterocyclic group represented by Ar3 may each be a monocyclic ring or a condensed ring.
The carbocyclic and heterocyclic groups represented by Ar3 are preferably 5- or 6-membered rings.
 保管安定性の観点から、Arは、下記式(5)で表される基であることが好ましい。 From the viewpoint of storage stability, Ar 1 is preferably a group represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式(5)中、Zは、下記式(Z-1)、下記式(Z-2)、下記式(Z-3)、下記式(Z-4)、下記式(Z-5)、下記式(Z-6)又は下記式(Z-7)で表される基を表し、*は、結合手を表す。 In formula (5), Z represents a group represented by formula (Z-1), (Z-2), (Z-3), (Z-4), (Z-5), (Z-6) or (Z-7), and * represents a bond.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(Z-1)~式(Z-7)中、*は、結合手を表し、R及びRは、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。
 1価の基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基、シアノ基が挙げられる。
 1価の基は置換基を有していてもよく、置換基としては上述の置換基Aが挙げられる。
 保管安定性の観点から、1価の基としては、アルキル基及びアリール基からなる群から選択される少なくとも1種であることが好ましい。
In formulae (Z-1) to (Z-7), * represents a bond, and R 1 and R 2 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
Examples of the monovalent group include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an acyl group, an acyloxy group, an amido group, an acid imide group, an amino group, a heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group, and a cyano group.
The monovalent group may have a substituent, and examples of the substituent include the substituent A described above.
From the viewpoint of storage stability, the monovalent group is preferably at least one type selected from the group consisting of an alkyl group and an aryl group.
 アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基であってもよい。
 アルキル基の炭素数は、1以上30以下であることが好ましい。
 アルキル基は置換基を有していてもよく、置換基としては上述の置換基Aが挙げられる。
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル墓、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。
The alkyl group may be linear or branched, or may be a cycloalkyl group.
The alkyl group preferably has 1 or more and 30 or less carbon atoms.
The alkyl group may have a substituent, and examples of the substituent include the above-mentioned substituent A.
Specific examples of the alkyl group include chain alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
 アリール基は、1価の芳香族炭化水素環基と同義であり、炭素数は6以上60以下であることが好ましい。
 アリール基は置換基を有していてもよく、置換基としては上述の置換基Aが挙げられる。
 アリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基等が挙げられる。
The aryl group has the same meaning as a monovalent aromatic hydrocarbon ring group, and preferably has 6 to 60 carbon atoms.
The aryl group may have a substituent, and examples of the substituent include the above-mentioned substituent A.
Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, a 2-phenylphenyl group, a 3-phenylphenyl group, and a 4-phenylphenyl group.
 R及びRで表される1価の基のうち、アルキル基及びアリール基以外の基の具体的態様は国際公開第2014/112656号の段落0022~0048を参照する。 For specific examples of the monovalent groups represented by R 1 and R 2 other than an alkyl group and an aryl group, see paragraphs 0022 to 0048 of WO 2014/112656.
 Arにおける、芳香族複素環基としては、例えば、以下の式Ar-(B1)~式Ar-(B87)で表される基が挙げられる。 Examples of the aromatic heterocyclic group for Ar 1 include groups represented by the following formulae Ar 1 -(B1) to Ar 1 -(B87).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 式Ar-(B1)~式Ar-(B87)中、*は、結合手を表し、R11、R12、R13、R14、R15、R16、R17及びR18は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。
 R11、R12、R13、R14、R15、R16、R17及びR18で表される1価の基としては、R及びRで表される1価の基と同一の基が挙げられ、好ましい態様も同一である。
In formulae Ar 1 -(B1) to Ar 1 -(B87), * represents a bond, and R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom or a monovalent group and may be the same or different.
The monovalent groups represented by R11 , R12 , R13 , R14 , R15 , R16 , R17 , and R18 include the same groups as the monovalent groups represented by R1 and R2 , and preferred embodiments are also the same.
 保管安定性の観点から、式Ar-(B9)、式Ar-(B16)、式Ar-(B17)、式Ar-(B20)、式Ar-(B21)、式Ar-(B22)、式Ar
-(B23)、式Ar-(B25)、式Ar-(B26)、式Ar-(B27)(すなわち、下記式(6))又は式Ar-(B28)であることが好ましく、式Ar-(B27)(すなわち、下記式(6))で表される基であることがより好ましい。
From the viewpoint of storage stability, the formulae Ar 1 -(B9), Ar 1 -(B16), Ar 1 -(B17), Ar 1 -(B20), Ar 1 -(B21), Ar 1 -(B22), and Ar
Preferably, it is a group represented by formula Ar 1 -(B23), formula Ar 1 -(B25), formula Ar 1 -(B26), formula Ar 1 -(B27) (i.e., formula (6) below) or formula Ar 1 -(B28), and more preferably a group represented by formula Ar 1 -(B27) (i.e., formula (6) below).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 式(6)中、*は、結合手を表し、R11、R12、R13及びR14は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。 In formula (6), * represents a bond, and R 11 , R 12 , R 13 and R 14 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
(反応性基)
 本開示に係る反応性化合物は反応性基を有する。
 反応性基中、Arは、芳香族炭化水素環基を表し、Xは、-O-で表される基又は-NH-で表される基を表し、Yは、-O-で表される基、-NH-で表される基、-O-CH-で表される基、-CH-NH-で表される基、-NH-C(=O)-で表される基又は-C(=O)-O-で表される基を表し、nは、1以上4以下の整数を表す。
(Reactive Group)
The reactive compound according to the present disclosure has a reactive group.
In the reactive group, Ar 2 represents an aromatic hydrocarbon ring group, X represents a group represented by -O- or a group represented by -NH-, Y represents a group represented by -O-, a group represented by -NH-, a group represented by -O-CH 2 -, a group represented by -CH 2 -NH-, a group represented by -NH-C(=O)- or a group represented by -C(=O)-O-, and n represents an integer of 1 or more and 4 or less.
 Arで表される芳香族炭化水素環基としては、2価の芳香族炭化水素環基が挙げられる。
 2価の芳香族炭化水素環基としては、具体的には、フェニレン基、ナフチレン基、アントリレン基、フェナントニレン基等が挙げられ、保管安定性の観点から、フェニレン基又はナフチレン基であることが好ましく、フェニレン基であることがより好ましい。
 Arで表される芳香族炭化水素環基は、無置換でも置換基を有してもよい。置換基としては上述の置換基Aが挙げられる。
The aromatic hydrocarbon ring group represented by Ar2 includes a divalent aromatic hydrocarbon ring group.
Specific examples of the divalent aromatic hydrocarbon ring group include a phenylene group, a naphthylene group, an anthrylene group, and a phenanthonylene group. From the viewpoint of storage stability, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
The aromatic hydrocarbon ring group represented by Ar2 may be unsubstituted or may have a substituent. Examples of the substituent include the above-mentioned substituent A.
 保管安定性の観点から、Yは、-O-で表される基、-O-CH-で表される基又は-NH-C(=O)-で表される基であることが好ましく、-O-CH-で表される基又は-NH-C(=O)-で表される基であることがより好ましく、-NH-C(=O)-で表される基であることが更に好ましい。
 保管安定性の観点から、nは、1以上3以下の整数であることが好ましく、1以上2以下の整数であることがより好ましく、2であることが更に好ましい。
 反応性基としては、例えば、下記式(R1)~式(R4)で表される基が挙げられる。なお、下記式(R1)~式(R4)中、*は結合手を表す。
From the viewpoint of storage stability, Y is preferably a group represented by -O-, a group represented by -O-CH 2 - or a group represented by -NH-C(=O)-, more preferably a group represented by -O-CH 2 - or a group represented by -NH-C(=O)-, and even more preferably a group represented by -NH-C(=O)-.
From the viewpoint of storage stability, n is preferably an integer of 1 or more and 3 or less, more preferably an integer of 1 or more and 2 or less, and even more preferably 2.
Examples of the reactive group include groups represented by the following formulae (R1) to (R4): In the following formulae (R1) to (R4), * represents a bond.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 保管安定性の観点から、本開示に係る反応性化合物は下記式(7)、下記式(8)、下記式(9)又は下記式(10)で表される化合物であることが好ましい。 From the viewpoint of storage stability, the reactive compound according to the present disclosure is preferably a compound represented by the following formula (7), the following formula (8), the following formula (9) or the following formula (10).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 式(7)~式(10)中、R12及びR13は、式Ar-(B1)~式Ar-(B87)中におけるR12及びR13とそれぞれ同義である。 In formulae (7) to (10), R 12 and R 13 have the same definitions as R 12 and R 13 in formulae Ar 1 -(B1) to Ar 1 -(B87), respectively.
 表1~表18に、反応性化合物の具体例について記載するが、これに限定されるものではない。
 なお、表1~表18中における「Ar」の下欄に記載の「R11」、「R12」、「R13」、「R14」、「R15」、「R16」、「R17」及び「R18」は、式Ar-(A1)~式Ar-(A15)及び式Ar-(B1)~式Ar-(B87)におけるR11、R12、R13、R14、R15、R16、R17及びR18を意味する。
 表1~表18中における「反応性基」の下欄に記載の「Ar」、「X」、「Y」及び「n」は式(1)におけるAr、X、Y及びnを意味する。
 表1~表18中における「反応性基」の下欄に記載の「式」は、反応性基が上記式(R1)~式(R4)のいずれかに該当する場合に、該当するものを示す。
 表1~表18中における「Ar」の下欄に記載の「置換基」は、Arで表される芳香族炭化水素環基が置換基を有する場合、その置換基の種類を示す。
 表1~表18中における「Ar」の下欄に記載の「置換位置」は、Arで表される芳香族炭化水素環基が置換基を有する場合、芳香族炭化水素環基を形成する炭素原子のうち、どの炭素原子上に置換基を有するかを示す。なお、置換基を有する炭素原子は下記方法で規定される位置番号を使用して表す。
・位置番号の規定方法
 Arで表される芳香族炭化水素環基を形成する炭素原子のうち、Xで表される基と結合を形成する炭素原子を位置番号1の炭素原子とする。そして、位置番号1の炭素原子から時計回りに、位置番号1の炭素原子に隣接する炭素原子を起点として、2から連続する整数を各炭素原子に定め、これを各炭素原子の位置番号とする。
 なお、Arで表される芳香族炭化水素環基が縮環している場合、炭素原子の位置番号は、複数の環に共有される炭素原子同士の位置番号が連続した値とならないようにする。
 ここで、位置番号の一例について、下記式(EX1)及び下記式(EX2)に示す。
Tables 1 to 18 show specific examples of reactive compounds, but the present invention is not limited thereto.
In addition, "R 11 ", "R 12 ", "R 13 ", "R 14 ", "R 15 ", "R 16 ", "R 17 " and "R 18 " in the column under "Ar 1 " in Tables 1 to 18 mean R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 in formulae Ar 1 -(A1) to Ar 1 -( A15 ) and formulae Ar 1 -( B1 ) to Ar 1 -( B87 ).
In Tables 1 to 18, "Ar 2 ", "X", "Y" and "n" described in the column under "Reactive Group" mean Ar 2 , X, Y and n in formula (1).
In Tables 1 to 18, the "formula" described in the column under "reactive group" indicates the corresponding reactive group when it corresponds to any of the above formulas (R1) to (R4).
In Tables 1 to 18, the "substituent" shown in the column under "Ar 2 " indicates the type of the substituent when the aromatic hydrocarbon ring group represented by Ar 2 has a substituent.
The "substitution position" shown in the column under "Ar 2 " in Tables 1 to 18 indicates which carbon atom among the carbon atoms forming the aromatic hydrocarbon ring group has a substituent, when the aromatic hydrocarbon ring group represented by Ar 2 has a substituent. The carbon atom having a substituent is represented using the position number defined by the following method.
Method of Defining Position Numbers Among the carbon atoms forming the aromatic hydrocarbon ring group represented by Ar2 , the carbon atom forming a bond with the group represented by X is designated as the carbon atom with position number 1. Then, clockwise from the carbon atom with position number 1, starting from the carbon atom adjacent to the carbon atom with position number 1, consecutive integers starting from 2 are assigned to each carbon atom, and these are designated as the position numbers of each carbon atom.
When the aromatic hydrocarbon ring group represented by Ar2 is a condensed ring, the position numbers of the carbon atoms are set so that the position numbers of the carbon atoms shared by a plurality of rings do not have consecutive values.
Here, an example of the position number is shown in the following formula (EX1) and formula (EX2).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 なお、式(EX1)及び式(EX2)中に記載している数字が炭素原子の位置番号を意味する。 The numbers in formula (EX1) and formula (EX2) refer to the position numbers of the carbon atoms.
 また、表1~表18中の略称は以下の通りである。
・「H」:水素
・「Me」:メチル基
・「F」:フッ素基
・「S1」:下記式(S1)で表される基を表す。
・「S2」:下記式(S2)で表される基を表す。
・「S3」:下記式(S3)で表される基を表す。
・「S4」:下記式(S4)で表される基を表す。
・「S5」:下記式(S5)で表される基を表す。
・「S6」:下記式(S6)で表される基を表す。
・「S7」:下記式(S7)で表される基を表す。
・「S8」:下記式(S8)で表される基を表す。
・「S9」:下記式(S9)で表される基を表す。
・「S10」:下記式(S10)で表される基を表す。
・「S11」:下記式(S11)で表される基を表す。
・「S12」:下記式(S12)で表される基を表す。
・「S13」:下記式(S13)で表される基を表す。
・「S14」:下記式(S14)で表される基を表す。
The abbreviations in Tables 1 to 18 are as follows.
"H": hydrogen; "Me": methyl group; "F": fluorine group; "S1": a group represented by the following formula (S1).
"S2": represents a group represented by the following formula (S2).
"S3": represents a group represented by the following formula (S3).
"S4": represents a group represented by the following formula (S4).
"S5": represents a group represented by the following formula (S5).
"S6": represents a group represented by the following formula (S6).
"S7": represents a group represented by the following formula (S7).
"S8": represents a group represented by the following formula (S8).
"S9": represents a group represented by the following formula (S9).
"S10": represents a group represented by the following formula (S10).
"S11": represents a group represented by the following formula (S11).
"S12": represents a group represented by the following formula (S12).
"S13": represents a group represented by the following formula (S13).
"S14": represents a group represented by the following formula (S14).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 ここで、本開示に係る反応性化合物として式(S1)で表される基を含有する化合物は、例えば、後述の式(11)で表される化合物との反応により高分子化合物を得た場合、該高分子化合物の耐熱性が向上しやすくなる。そのため、式(S1)で表される基を含有する反応性化合物は高分子化合物の耐熱性向上剤として好適に使用可能である。
 また、本開示に係る反応性化合物として式(S1)で表される基を含有する化合物は、例えば、後述の式(11)で表される化合物との反応により高分子化合物を得た場合、該高分子化合物の溶媒に対する溶解性が向上しやすくなる。そのため、式(S1)で表される基を含有する反応性化合物は高分子化合物の溶解性向上剤として好適に使用可能である
Here, when a polymer compound is obtained by reacting a compound containing a group represented by formula (S1) as a reactive compound according to the present disclosure with a compound represented by formula (11) described below, the heat resistance of the polymer compound is likely to be improved. Therefore, the reactive compound containing a group represented by formula (S1) can be suitably used as a heat resistance improver for polymer compounds.
In addition, when a polymer compound is obtained by reacting a compound containing a group represented by formula (S1) as a reactive compound according to the present disclosure with a compound represented by formula (11) described below, the solubility of the polymer compound in a solvent is likely to be improved. Therefore, the reactive compound containing a group represented by formula (S1) can be suitably used as a solubility enhancer for polymer compounds.
 式(S1)で表される基を含有する反応性化合物としては、耐熱性向上剤及び溶解性向上剤として適用する場合、化合物477、化合物478、化合物479又は化合物480であることが好ましい。 When the reactive compound containing a group represented by formula (S1) is used as a heat resistance improver and a solubility improver, it is preferably compound 477, compound 478, compound 479, or compound 480.
(反応性化合物の製造方法)
 本開示に係る反応性化合物は、下記式(12)で表される中間体を原料として用いることにより好適に合成することができる。
(Method for producing reactive compounds)
The reactive compound according to the present disclosure can be suitably synthesized by using an intermediate represented by the following formula (12) as a raw material.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 式(12)中、Ar及びnは、式(1)におけるAr及びnと同義であり、Lは、水素原子又はハロゲン原子を表す。
 ここで、式(12)中、Ar及びnの好ましい態様は、式(1)におけるAr及びnの好ましい態様と同一である。
 Lにおけるハロゲン原子としては、塩素、臭素、ヨウ素が挙げられる。
In formula (12), Ar 1 and n are defined as Ar 1 and n in formula (1), and L represents a hydrogen atom or a halogen atom.
In the formula (12), the preferred embodiments of Ar 1 and n are the same as those of Ar 1 and n in the formula (1).
The halogen atom in L includes chlorine, bromine and iodine.
 式(12)中、Arは、式(3)又は式(4)で表される基であることが好ましく、式(5)で表される基であることがより好ましく、式(6)で表される基であることが更に好ましい。
 式(12)中、Lは、水素原子、臭素又はヨウ素であることが好ましく、水素原子であることがより好ましい。
In formula (12), Ar 1 is preferably a group represented by formula (3) or formula (4), more preferably a group represented by formula (5), and further preferably a group represented by formula (6).
In formula (12), L is preferably a hydrogen atom, bromine or iodine, and more preferably a hydrogen atom.
 中間体としては、例えば、Arが表1~表18に記載されたArと同一であり、nが2である化合物が挙げられる。 As the intermediate, for example, a compound in which Ar 1 is the same as Ar 1 described in Tables 1 to 18 and n is 2 can be mentioned.
 表19及び表20に中間体の具体例について記載するが、これに限定されるものではない。
 表19及び表20中における「Ar」の下欄に記載の「R11」、「R12」、「R13」、「R14」、「R15」、「R16」、「R17」及び「R18」は、式Ar-(B1)~式Ar-(B87)におけるR11、R12、R13、R14、R15、R16、R17及びR18を意味する。
 表19及び表20中における「L」及び「n」は式(12)におけるL及びnを意味する。
 表19及び表20中における、「H」、「S1」、「S2」、「S3」、「S4」、「S5」、「S6」、「S7」、「S8」、「S9」、「S10」、「S11」、「S12」、「S13」及び「S14」の意味は表1~表18におけるものと同一である。
Specific examples of intermediates are shown in Tables 19 and 20, but the invention is not limited thereto.
"R 11 ", "R 12 ", "R 13 ", "R 14 ", "R 15 ", "R 16 ", "R 17 " and "R 18 " in the column under "Ar 1 " in Tables 19 and 20 mean R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 in Formulae Ar 1 -(B1) to Ar 1 - (B87).
In Tables 19 and 20, "L" and "n" refer to L and n in formula (12).
The meanings of "H", "S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10", "S11", "S12", "S13" and "S14" in Tables 19 and 20 are the same as those in Tables 1 to 18.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 反応性の観点から、中間体としては、化合物12-1、化合物12-2、化合物12-5、化合物12-6、化合物12-9、化合物12-10、化合物12-13、化合物12-14、化合物12-39、又は化合物12-40で表される化合物であることが好ましく、化合物12-13又は化合物12-14で表される化合物であることがより好ましく、化合物12-13で表される化合物であることが更に好ましい。 From the viewpoint of reactivity, the intermediate is preferably a compound represented by compound 12-1, compound 12-2, compound 12-5, compound 12-6, compound 12-9, compound 12-10, compound 12-13, compound 12-14, compound 12-39, or compound 12-40, more preferably a compound represented by compound 12-13 or compound 12-14, and even more preferably a compound represented by compound 12-13.
 式(12)で表される中間体を、本開示に係る反応性化合物へ変換する方法としては、例えば、ジエチルエーテル溶媒中、式(12)で表される中間体に対し、n-ブチルリチウム等の塩基を用い、ジリチオ化を行った後、トリメトキシボランもしくはトリイソプロポキシボラン等を作用させ、該当するボロン酸を合成した後、2-ヒドロキシベンジルアルコール、4-メチルカテコール、2,3-ナフタレンジオール、2-アミノベンズアミド等の極性基含有芳香族化合物と反応することで変換できる。 As a method for converting the intermediate represented by formula (12) into the reactive compound according to the present disclosure, for example, in a diethyl ether solvent, the intermediate represented by formula (12) is subjected to dilithiation using a base such as n-butyl lithium, and then the corresponding boronic acid is synthesized by reacting it with a polar group-containing aromatic compound such as 2-hydroxybenzyl alcohol, 4-methylcatechol, 2,3-naphthalenediol, or 2-aminobenzamide.
 本開示に係る反応性化合物は、再結晶法により容易に高純度化する事ができる。再結晶に使用する溶媒の例示としては、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、シクロヘキサン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、酢酸エチル等が挙げられ、単体溶媒であっても混合溶媒であってもよい。好ましくは、トルエン又は酢酸エチルの単独溶媒、n-ヘプタンとトルエンの混合溶媒、及びn-ヘプタンと酢酸エチルの混合溶媒が挙げられる。 The reactive compounds disclosed herein can be easily purified by recrystallization. Examples of solvents used for recrystallization include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, cyclohexane, benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, ethyl acetate, etc., and may be a single solvent or a mixed solvent. Preferred examples include a single solvent of toluene or ethyl acetate, a mixed solvent of n-heptane and toluene, and a mixed solvent of n-heptane and ethyl acetate.
<高分子化合物の製造方法>
 本開示に係る高分子化合物の製造方法は、本開示に係る反応性化合物と、下記式(11)で表される化合物と、を反応させる。
<Method of Producing Polymer Compound>
The method for producing a polymer compound according to the present disclosure comprises reacting a reactive compound according to the present disclosure with a compound represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 式(11)中、Arは、2価の芳香族炭化水素環基又は2価の芳香族複素環基を表し、HXは、それぞれ独立に、ハロゲン原子を表す。 In formula (11), Ar 4 represents a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group, and each HX independently represents a halogen atom.
(式(11)で表される化合物)
 Arで表される2価の芳香族炭化水素環基又は2価の芳香族複素環基としては、本開示に係る高分子化合物を有機薄膜太陽電池の活性層として用いた場合、開放端電圧を高める観点、あるいは有機光検出素子の活性層として用いた場合、暗電流を抑える観点からは、式(Cy-1)~式(Cy-5)で表される基であることが好ましい。
(Compound represented by formula (11))
As the divalent aromatic hydrocarbon ring group or divalent aromatic heterocyclic group represented by Ar4 , from the viewpoint of increasing the open circuit voltage when the polymer compound according to the present disclosure is used as an active layer of an organic thin-film solar cell, or from the viewpoint of suppressing the dark current when the polymer compound is used as an active layer of an organic light-detecting element, a group represented by any of formulas (Cy-1) to (Cy-5) is preferable.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 式(Cy-1)~式(Cy-5)中、R及びRは、式(Z-1)~式(Z-7)におけるR及びRとそれぞれ同義である。R21及びR22は、それぞれ独立に、水素原子、ハロゲン原子又は1価の基を表す。R21とR22は、連結して環状構造を形成してもよい。環Cyは、同一又は相異なり、置換基を有していてもよい芳香環を表し、置換基としては上述の置換基Aが挙げられる。R23は、2価の基を表す。また*は、結合手を表す。 In formula (Cy-1) to formula (Cy-5), R 1 and R 2 are the same as R 1 and R 2 in formula (Z-1) to formula (Z-7). R 21 and R 22 each independently represent a hydrogen atom, a halogen atom, or a monovalent group. R 21 and R 22 may be linked to form a cyclic structure. Ring Cy is the same or different and represents an aromatic ring which may have a substituent, and examples of the substituent include the above-mentioned substituent A. R 23 represents a divalent group. Also, * represents a bond.
 式(Cy-1)中、R21及びR22で表されるハロゲン原子及び1価の基の具体例は
、R及びRで表されるハロゲン原子及び1価の基の具体例と同じである。
In formula (Cy-1), specific examples of the halogen atom and monovalent group represented by R 21 and R 22 are the same as the specific examples of the halogen atom and monovalent group represented by R 1 and R 2 .
 R21及びR22は、互いに連結して環状構造を形成してもよい。該環状構造の具体例としては、式(D-1)~式(D-5)で表される構造が挙げられる。なお、式(D-1)~式(D-5)中、R及びRは、式(Z-1)~式(Z-7)におけるR及びRとそれぞれ同義であり、*は結合手を表す。 R 21 and R 22 may be linked to each other to form a cyclic structure. Specific examples of the cyclic structure include structures represented by formulae (D-1) to (D-5). In formulae (D-1) to (D-5), R 1 and R 2 have the same meanings as R 1 and R 2 in formulae (Z-1) to (Z-7), respectively, and * represents a bond.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 式(Cy-1)~式(Cy-5)中、環Cyで表される芳香環は、単環であっても、縮合環であってもよい。単環である芳香環としては、例えば、ベンゼン環、ピロール環、フラン環、チオフェン環、オキサゾール環、チアゾール環、チアジアゾール環、ピラゾール環、ピリジン環、ピラジン環、イミダゾール環、トリアゾール環、イソオキサゾール環、イソチアゾール環、ピリミジン環、ピリダジン環及びトリアジン環が挙げられる。 In formulas (Cy-1) to (Cy-5), the aromatic ring represented by the ring Cy may be a monocyclic ring or a condensed ring. Examples of monocyclic aromatic rings include a benzene ring, a pyrrole ring, a furan ring, a thiophene ring, an oxazole ring, a thiazole ring, a thiadiazole ring, a pyrazole ring, a pyridine ring, a pyrazine ring, an imidazole ring, a triazole ring, an isoxazole ring, an isothiazole ring, a pyrimidine ring, a pyridazine ring, and a triazine ring.
 縮合環である芳香環としては、前記の単環に任意の環が縮合した芳香環が挙げられる。単環に縮合する環としては、例えば、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、チアジアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、プラゾリジン環、フラザン環、トリアゾール環、チアジアゾール環、オキサジアゾール環、テトラゾール環、ピラン環、ピリジン環,ピペリジン環、チオピラン環、リダジン環、ピリミジン環、ピラジン環、ピペラジン環、モルホリン環、トリアジン環、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、インドール環、イソインドール環、インドリジン環、インドリン環、イソインドリン環、クロメン環、クロマン環、イソクロマン環、ベンゾピラン環、キノリン環、イソキノリン環、キノリジン環、ベンゾイミダゾール環、ベンゾチアゾール環、インダゾール環、ナフチリジン環、キノキサリン環、キナゾリン環、キナゾリジン環、シンノリン環、フタラジン環、プリン環、プテリジン環、カルバゾール環、キサンテン環、フェナントリジン環、アクリジン環、β-カルボリン環、ペリミジン環、フェナントロリン環、チアントレン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環及びフェナジン環が挙げられる。  Aromatic rings that are fused rings include aromatic rings in which any ring is fused to the above-mentioned monocyclic ring. Examples of rings fused to a monocyclic ring include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, a thiadiazole ring, an imidazole ring, an imidazoline ring, an imidazolidine ring, a pyrazole ring, a pyrazoline ring, a prazolidine ring, a furazan ring, a triazole ring, a thiadiazole ring, an oxadiazole ring, a tetrazole ring, a pyran ring, a pyridine ring, a piperidine ring, a thiopyran ring, a ridazine ring, a pyrimidine ring, a pyrazine ring, a piperazine ring, a morpholine ring, a triazine ring, a benzofuran ring, an isobenzofuran ring, a benzothiophene ring, and an indole ring. , isoindole ring, indolizine ring, indoline ring, isoindoline ring, chromene ring, chroman ring, isochroman ring, benzopyran ring, quinoline ring, isoquinoline ring, quinolizine ring, benzimidazole ring, benzothiazole ring, indazole ring, naphthyridine ring, quinoxaline ring, quinazoline ring, quinazolidine ring, cinnoline ring, phthalazine ring, purine ring, pteridine ring, carbazole ring, xanthene ring, phenanthridine ring, acridine ring, β-carboline ring, perimidine ring, phenanthroline ring, thianthrene ring, phenoxathiin ring, phenoxazine ring, phenothiazine ring, and phenazine ring.
 環Cyにおいて、芳香環は置換基を有していてもよい。芳香環が有していてもよい置換基としては、例えば、ハロゲン原子及び1価の基が挙げられる。該ハロゲン原子及び1価の基の具体例は、R及びRで表されるものと同じである。 In the ring Cy, the aromatic ring may have a substituent. Examples of the substituent that the aromatic ring may have include a halogen atom and a monovalent group. Specific examples of the halogen atom and the monovalent group are the same as those represented by R1 and R2 .
 式(Cy-5)中、R23で表される2価の基としては、例えば、式(b-1)~式(b-7)で表される基が挙げられる。 In formula (Cy-5), examples of the divalent group represented by R 23 include groups represented by formulae (b-1) to (b-7).
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 式(b-1)~式(b-7)中、R及びRは、式(Z-1)~式(Z-7)におけるR及びRとそれぞれ同義であり、*は、結合手を表す。 In formulae (b-1) to (b-7), R 1 and R 2 have the same meanings as R 1 and R 2 in formulae (Z-1) to (Z-7), respectively, and * represents a bond.
 本開示に係る高分子化合物を有機光検出素子材料に用いる場合、式(Cy-1)~式(Cy-5)で表される基としては、暗電流抑制の観点からは、式(Cy-2)又は式(Cy-3)で表される基であることが好ましく、式(Cy-3)で表される基であることがより好ましい。 When the polymer compound according to the present disclosure is used as an organic light-detecting element material, the groups represented by formulas (Cy-1) to (Cy-5) are preferably groups represented by formula (Cy-2) or formula (Cy-3) from the viewpoint of suppressing dark current, and more preferably groups represented by formula (Cy-3).
 式(Cy-1)~式(Cy-5)で表される基としては、例えば、以下に示す式(C-1)~式(C-31)で表される基が挙げられる。 Examples of groups represented by formulas (Cy-1) to (Cy-5) include groups represented by formulas (C-1) to (C-31) shown below.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 式(C-1)~式(C-29)中、R31~R38は水素原子又は1価の基を表す。また、式(C-1)~式(C-31)中、*は、結合手を表す。
 R31~R38で表される1価の基としては、R及びRで表される1価の基と同一のものが挙げられ、好ましい態様も同一である。
In formulae (C-1) to (C-29), R 31 to R 38 represent a hydrogen atom or a monovalent group, and in formulae (C-1) to (C-31), * represents a bond.
The monovalent groups represented by R 31 to R 38 include the same groups as the monovalent groups represented by R 1 and R 2 , and preferred embodiments are also the same.
 本開示に係る高分子化合物を有機光検出素子材料に用いる場合、式(C-15)で表される基としては、暗電流抑制の観点からは、式(C-32)で表される基及び式(C-33)で表される基であることが好ましい。なお、式(C-32)及び式(C-33)中、*は、結合手を表す。 When the polymer compound according to the present disclosure is used as an organic light-detecting element material, the group represented by formula (C-15) is preferably a group represented by formula (C-32) or a group represented by formula (C-33) from the viewpoint of suppressing dark current. In formulas (C-32) and (C-33), * represents a bond.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 本開示に係る高分子化合物を有機光検出素子材料に用いる場合、式(Cy-1)~式(Cy-5)で表される基としては、式(C-30)又は式(C-31)で表される基であることが好ましく、暗電流抑制の観点からは、式(C-31)で表される基であることがより好ましい。 When the polymer compound according to the present disclosure is used as an organic light-detecting element material, the groups represented by formulas (Cy-1) to (Cy-5) are preferably groups represented by formula (C-30) or formula (C-31), and from the viewpoint of suppressing dark current, the groups represented by formula (C-31) are more preferable.
 式(11)中、HXで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子及びヨウ素原子から選択される少なくとも1種であることが好ましく、臭素原子であることがさらに好ましい。 In formula (11), examples of the halogen atom represented by HX include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of synthesis of the polymer compound, it is preferable that the halogen atom is at least one selected from a bromine atom and an iodine atom, and it is more preferable that the halogen atom is a bromine atom.
(反応性化合物と、式(11)で表される化合物と、の反応)
 本開示に係る高分子化合物の製造方法において、反応性化合物と、式(11)で表される化合物と、を反応させる方法は特に限定されないが、高分子化合物の合成の容易さからは、鈴木・宮浦カップリング反応を用いる方法が好ましい。
(Reaction of reactive compound with compound represented by formula (11))
In the method for producing a polymer compound according to the present disclosure, the method for reacting a reactive compound with a compound represented by formula (11) is not particularly limited. From the viewpoint of ease of synthesis of the polymer compound, a method using the Suzuki-Miyaura coupling reaction is preferred.
 鈴木・宮浦カップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法が挙げられる。 The Suzuki-Miyaura coupling reaction can be carried out in any solvent using a palladium catalyst in the presence of a base.
 鈴木・宮浦カップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられるが、反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。 Palladium catalysts used in the Suzuki-Miyaura coupling reaction include, for example, Pd(0) catalysts and Pd(II) catalysts. Specific examples include palladium [tetrakis(triphenylphosphine)], palladium acetates, dichlorobis(triphenylphosphine)palladium, palladium acetate, tris(dibenzylideneacetone)dipalladium, and bis(dibenzylideneacetone)palladium. From the standpoint of ease of reaction (polymerization) operations and reaction (polymerization) speed, however, dichlorobis(triphenylphosphine)palladium, palladium acetate, and tris(dibenzylideneacetone)dipalladium are preferred.
 パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(1)で表される反応性化合物(すなわち、本開示に係る反応性化合物)1モルに対して、通常、0.0001モル以上0.5モル以下であり、好ましくは0.0003モル以上0.1モル以下である。 The amount of palladium catalyst added is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 moles or more and 0.5 moles or less, and preferably 0.0003 moles or more and 0.1 moles or less, per mole of the reactive compound represented by formula (1) (i.e., the reactive compound according to the present disclosure).
 鈴木・宮浦カップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(o-メトキシフェニル)ホスフィン等のリン化合物を配位子として添加することができる。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル以上100モル以下であり、好ましくは0.9モル以上20モル以下であり、さらに好ましくは1モル以上10モル以下である。 When palladium acetates are used as the palladium catalyst in the Suzuki-Miyaura coupling reaction, phosphorus compounds such as triphenylphosphine, tri(o-tolyl)phosphine, and tri(o-methoxyphenyl)phosphine can be added as ligands. In this case, the amount of ligand added is usually 0.5 to 100 moles, preferably 0.9 to 20 moles, and more preferably 1 to 10 moles, per mole of palladium catalyst.
 鈴木・宮浦カップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリ
ウム、リン酸カリウムが挙げられる。有機塩基としては、例えば、トリエチルアミン、トリブチルアミンが挙げられる。無機塩としては、例えば、フッ化セシウムが挙げられる。
Examples of the base used in the Suzuki-Miyaura coupling reaction include inorganic bases, organic bases, and inorganic salts. Examples of the inorganic base include potassium carbonate, sodium carbonate, barium hydroxide, and potassium phosphate. Examples of the organic base include triethylamine and tributylamine. Examples of the inorganic salt include cesium fluoride.
 塩基の添加量は、式(1)で表される反応性化合物(すなわち、本開示に係る反応性化合物)1モルに対して、通常、0.5モル以上100モル以下であり、好ましくは0.9モル以上20モル以下であり、さらに好ましくは1モル以上10モル以下である。 The amount of base added is usually 0.5 moles or more and 100 moles or less, preferably 0.9 moles or more and 20 moles or less, and more preferably 1 mole or more and 10 moles or less, per mole of the reactive compound represented by formula (1) (i.e., the reactive compound according to the present disclosure).
 鈴木・宮浦カップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N-ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフラン、塩化メチレン等が例示される。本開示に係る高分子化合物の溶解性の観点からは、トルエン又はテトラヒドロフランであることが好ましい。 The Suzuki-Miyaura coupling reaction is usually carried out in a solvent. Examples of the solvent include N,N-dimethylformamide, toluene, dimethoxyethane, tetrahydrofuran, methylene chloride, etc. From the viewpoint of the solubility of the polymer compound according to the present disclosure, toluene or tetrahydrofuran is preferable.
 また、塩基の添加として、塩基を含む水溶液を反応液に加え、水相と有機相の2相系で反応させてもよい。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、塩基を含む水溶液を反応液に加えて反応させる。
 なお、2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。
Alternatively, the base may be added by adding an aqueous solution containing the base to the reaction solution and reacting in a two-phase system of an aqueous phase and an organic phase. When an inorganic salt is used as the base, the aqueous solution containing the base is usually added to the reaction solution to react, from the viewpoint of the solubility of the inorganic salt.
When the reaction is carried out in a two-phase system, a phase transfer catalyst such as a quaternary ammonium salt may be added, if necessary.
 鈴木・宮浦カップリング反応を行う温度は、前記溶媒にもよるが、通常、40℃以上160℃以下である。高分子化合物の高分子量化の観点からは、60℃以上120℃以下が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。反応時間は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間以上200時間以下である。反応時間は0.5時間以上30時間以下が効率的で好ましい。 The temperature at which the Suzuki-Miyaura coupling reaction is carried out depends on the solvent, but is usually 40°C or higher and 160°C or lower. From the viewpoint of increasing the molecular weight of the polymer compound, 60°C or higher and 120°C or lower are preferable. The temperature may also be raised to near the boiling point of the solvent and refluxed. The reaction time may end when the desired degree of polymerization is reached, but is usually 0.1 hours or higher and 200 hours or lower. A reaction time of 0.5 hours or higher and 30 hours or lower is efficient and preferable.
(高分子化合物)
 本開示に係る高分子化合物は、式(1)中におけるArで表される芳香族炭化水素環基又は芳香族複素環基、及び式(11)中におけるArで表される芳香族炭化水素環基又は芳香族複素環基を構成単位としてそれぞれ1つ以上含む。
 本開示に係る高分子化合物は、式(1)中におけるArで表される芳香族炭化水素環基又は芳香族複素環基を構成単位として、2つ以上含むことが好ましく、3つ以上含むことが更に好ましい。
(Polymer Compound)
The polymer compound according to the present disclosure contains, as a structural unit, one or more aromatic hydrocarbon ring groups or aromatic heterocyclic groups represented by Ar 1 in formula (1) and one or more aromatic hydrocarbon ring groups or aromatic heterocyclic groups represented by Ar 4 in formula (11).
The polymer compound according to the present disclosure preferably contains two or more, and more preferably three or more, aromatic hydrocarbon ring groups or aromatic heterocyclic groups represented by Ar 1 in formula (1) as structural units.
 本開示に係る高分子化合物を素子に用いる場合、素子作製の容易性の観点からは、高分子化合物の溶媒への溶解度が高いことが望ましい。具体的には、本開示に係る高分子化合物が、該高分子化合物を0.01重量(wt)%以上含む溶液を作製し得る溶解性を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解性を有することがより好ましく、0.2wt%以上含む溶液を作製し得る溶解性を有することがさらに好ましい。 When the polymer compound according to the present disclosure is used in an element, it is desirable for the polymer compound to have high solubility in a solvent from the viewpoint of ease of element fabrication. Specifically, it is preferable for the polymer compound according to the present disclosure to have a solubility that allows a solution containing 0.01 weight (wt) % or more of the polymer compound to be prepared, more preferably a solubility that allows a solution containing 0.1 wt % or more of the polymer compound to be prepared, and even more preferably a solubility that allows a solution containing 0.2 wt % or more to be prepared.
 本開示に係る高分子化合物の重量平均分子量は、3,000以上10,000,000以下であることが好ましい。
 本開示に係る高分子化合物の重量平均分子量が3,000以上であると、素子作製時に形成した膜に欠陥が生じにくくなる。また、本開示に係る高分子化合物の10,000,000以下であると溶媒への溶解性や素子作製時の塗布性が向上しやすくなる。
 本開示に係る高分子化合物の重量平均分子量は、4,000以上5,000,000以下であることがより好ましく、5,000以上1,000,000以下であることが更に好ましい。
The weight average molecular weight of the polymer compound according to the present disclosure is preferably 3,000 or more and 10,000,000 or less.
When the weight average molecular weight of the polymer compound according to the present disclosure is 3,000 or more, defects are unlikely to occur in the film formed during device fabrication. Also, when the weight average molecular weight of the polymer compound according to the present disclosure is 10,000,000 or less, the solubility in a solvent and the coatability during device fabrication are likely to be improved.
The weight average molecular weight of the polymer compound according to the present disclosure is more preferably 4,000 or more and 5,000,000 or less, and further preferably 5,000 or more and 1,000,000 or less.
 本開示に係る高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の重量平均分子量を指す。 The weight average molecular weight of the polymer compound according to this disclosure refers to the weight average molecular weight calculated in terms of polystyrene using gel permeation chromatography (GPC) and a polystyrene standard sample.
 本開示に係る高分子化合物の末端基は、反応性基がそのまま残っていると、素子の作製に用いたときに得られる素子の特性や寿命が低下する可能性があるので、安定な基で保護されていてもよい。主鎖の共役構造と連続した共役結合を有しているものが好ましく、また、例えば、ビニレン基を介してアリール基又は複素環基と結合している構造であってもよい。 The terminal groups of the polymer compounds according to the present disclosure may be protected with stable groups, since if the reactive groups remain as they are, the characteristics and lifespan of the resulting element may be reduced when used in the fabrication of an element. Those having a conjugated bond continuous with the conjugated structure of the main chain are preferred, and they may also have a structure in which they are bonded to an aryl group or a heterocyclic group via a vinylene group, for example.
(高分子化合物の用途)
 本開示に係る高分子化合物は、高い電子及びホール輸送性を発揮し得ることから、該高分子化合物を含む有機薄膜を素子に用いた場合、電極から注入された電子やホール、又は、光吸収によって発生した電荷を輸送することができる。これらの特性を活かして光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子等の種々の電子素子に好適に用いることができる。
(Applications of polymer compounds)
Since the polymer compound according to the present disclosure can exhibit high electron and hole transport properties, when an organic thin film containing the polymer compound is used in an element, it can transport electrons and holes injected from an electrode, or charges generated by light absorption. By utilizing these properties, the polymer compound can be suitably used in various electronic elements such as photoelectric conversion elements, organic thin film transistors, and organic electroluminescence elements.
 たとえば、光電変換素子において、本開示に係る高分子化合物は活性層の材料として用いられる。また有機薄膜トランジスタにおいて、本開示に係る高分子化合物は、ソース電極とドレイン電極との電極間の電流経路となる有機半導体層(活性層)に用いられる。また有機エレクトロルミネッセンス素子において、本開示に係る高分子化合物は、発光層に用いられる。 For example, in a photoelectric conversion element, the polymer compound according to the present disclosure is used as a material for the active layer. In an organic thin-film transistor, the polymer compound according to the present disclosure is used in the organic semiconductor layer (active layer) that serves as the current path between the source electrode and the drain electrode. In an organic electroluminescence element, the polymer compound according to the present disclosure is used in the light-emitting layer.
 以下に実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。 The following examples are provided, but the present invention is not limited to these examples.
<NMR測定>
 化合物の生成確認のためのプロトンNMR測定(以下、H-NMR測定と称する)は、化合物を重クロロホルムに溶解させ、核磁気共鳴(NMR:Nuclear Magnetic Resonance)装置(日本電子株式会社製、プロトンの共鳴周波数400MHz)を用いて行った。
<NMR Measurement>
Proton NMR measurement (hereinafter referred to as 1 H-NMR measurement) for confirming the production of the compound was performed by dissolving the compound in deuterated chloroform and using a nuclear magnetic resonance (NMR) device (manufactured by JEOL Ltd., proton resonance frequency 400 MHz).
<中間体の合成>
(化合物1の合成)
<Synthesis of intermediates>
(Synthesis of Compound 1)
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 窒素置換したフラスコにマグネシウムを65.2g(モル換算で2.68mol)、テトラヒドロフラン(以下、単にTHFと称する)を275mL、ヨウ素を2粒加え、撹拌した。ヨウ素の紫色が消えた後に、1-Bromo-3-hexylbenzeneを612.9g(モル換算で2.54mol)及びTHFを4730mL含む溶液を滴下し、グリニャール試薬を発生させた。
 別のフラスコに1,3-Dibromobenzeneを550g(モル換算で2.3
3mol)、THFを2783mL、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)のジクロロメタン複合体(換言するとPdCl(dppf)-CHCl)を7.62g(モル換算で9.33mmol)加え、撹拌し、10℃まで冷却した。
 調整済みのグリニャール試薬を内温が10℃を超えない様に滴下した。その後1時間撹拌し、反応液に水を注いで反応を停止させ、分液した。有機層を硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した後、ろ液をロータリーエバポレーターで全量濃縮し、濃縮液を得た。
 濃縮液をシリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン溶媒)で精製することで化合物1を532.2g(モル換算で1.68mol,収率67%)得た。
In a flask purged with nitrogen, 65.2 g of magnesium (2.68 mol in molar terms), 275 mL of tetrahydrofuran (hereinafter simply referred to as THF), and two grains of iodine were added and stirred. After the purple color of the iodine disappeared, a solution containing 612.9 g of 1-bromo-3-hexylbenzene (2.54 mol in molar terms) and 4730 mL of THF was added dropwise to generate a Grignard reagent.
In a separate flask, add 550 g of 1,3-Dibromobenzene (2.3 moles).
3 mol), 2783 mL of THF, and 7.62 g (9.33 mmol in molar terms) of [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (in other words, PdCl 2 (dppf)-CH 2 Cl 2 ) were added, stirred, and cooled to 10°C.
The prepared Grignard reagent was added dropwise so that the internal temperature did not exceed 10° C. After stirring for 1 hour, water was poured into the reaction solution to stop the reaction and the liquids were separated. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. The filtrate was then totally concentrated with a rotary evaporator to obtain a concentrated liquid.
The concentrate was purified by silica gel column chromatography (hexane as a developing solvent) to obtain 532.2 g of Compound 1 (1.68 mol in molar terms, yield 67%).
 化合物1のH-NMR測定結果は以下の通りである。
 δ(ppm):7.73(t,1H),7.52-7.50(dt,1H),7.48-7.45(dq,1H),7.38-7.28(m,4H),7.21-7.18(m,1H),2.67(t,2H),1.69-1.58(m,2H),1.40-1.28(m,6H),0.89(t,3H)
The 1 H-NMR measurement results of compound 1 are as follows.
δ(ppm): 7.73(t,1H), 7.52-7.50(dt,1H), 7.48-7.45(dq,1H), 7.38-7.28(m,4H), 7.21-7.18(m,1H), 2.67(t,2H), 1.69-1.58(m,2H), 1.40-1.28(m,6H), 0.89(t,3H)
(化合物3の合成) (Synthesis of compound 3)
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 窒素置換した容量1Lの4つ口フラスコにマグネシウムを1.61g(モル換算で0.066mol)、THFを53mL、ヨウ素を32mg加え、撹拌した。ヨウ素の紫色が消えた後に、化合物1を19.8g(モル換算で0.063mmol)及びTHFを40mL含む溶液を滴下し、グリニャール試薬を発生させた。
 国際公開2011/136311号に記載の方法で合成した化合物2を5.21g(モル換算で0.025mol)及びTHFを120mL含む溶液を内温が40℃を超えない様に、上記グリニャール試薬を含むフラスコに滴下した。その後1時間撹拌し、反応液に塩化アンモニウム水溶液を注いで反応を停止させ、分液した。有機層を硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した後、ろ液をロータリーエバポレーターで全量濃縮し、濃縮液を得た。
In a 1 L four-neck flask purged with nitrogen, 1.61 g of magnesium (0.066 mol in molar terms), 53 mL of THF, and 32 mg of iodine were added and stirred. After the purple color of iodine disappeared, a solution containing 19.8 g of compound 1 (0.063 mmol in molar terms) and 40 mL of THF was added dropwise to generate a Grignard reagent.
A solution containing 5.21 g (0.025 mol in terms of moles) of compound 2 synthesized by the method described in International Publication No. 2011/136311 and 120 mL of THF was dropped into the flask containing the Grignard reagent so that the internal temperature did not exceed 40° C. The mixture was then stirred for 1 hour, and an aqueous solution of ammonium chloride was poured into the reaction solution to stop the reaction and separate the liquids. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration, after which the filtrate was totally concentrated with a rotary evaporator to obtain a concentrated liquid.
 濃縮液をシリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン及び酢酸エチル)で精製することで、化合物3を14.21g(モル換算で20.7mmol,収率83%)得た。 The concentrated solution was purified by silica gel column chromatography (eluent: hexane and ethyl acetate) to obtain 14.21 g of compound 3 (20.7 mmol in molar terms, yield 83%).
 化合物3のH-NMR測定結果は以下の通りである。
 δ(ppm):7.82-7.76(m,1H),7.64(s,2H),7.43(m,2H),7.31(m,10H),7.25(m,2H),7.21(m,1H),7.13(m,2H),6.91(d,1H),6.64(d,1H),6.43(d,1H),3.72-3.64(m,1H),2.63(t,4H),1.61(m,4H),1.22-1.34(m,12H),0.86(t,6H)
The 1 H-NMR measurement results of compound 3 are as follows.
δ(ppm): 7.82-7.76(m,1H), 7.64(s,2H), 7.43(m,2H), 7.31(m,10H), 7.25(m,2H), 7.21(m,1H), 7.13(m,2H), 6.91(d,1H), 6.64(d,1H), 6.43(d,1H), 3.72-3.64(m,1H), 2.63(t,4H), 1.61(m,4H), 1.22-1.34(m,12H), 0.86(t,6H)
(中間体である化合物4の合成) (Synthesis of intermediate compound 4)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 容量500mLの四つ口フラスコに化合物3を14.21g(モル換算で0.0208mmol)、ヘプタンを130g仕込み、反応容器内を窒素置換した後にトリフルオロ酢酸を0.409g(モル換算で0.0036mmol)仕込み60℃に昇温し、30分撹拌した後に室温まで冷却した。
 反応溶液を水で2回洗浄した後、有機層を硫酸マグネシウムで脱水し、シリカゲルを充填した桐山ロートに通液させ、ろ液をロータリーエバポレーターで全量濃縮することで中間体である化合物4(表19中、化合物12-13に該当)を13.37g(収率96.6%)得た。
A 500 mL four-neck flask was charged with 14.21 g (0.0208 mmol in terms of moles) of compound 3 and 130 g of heptane. The atmosphere inside the reaction vessel was replaced with nitrogen, and then 0.409 g (0.0036 mmol in terms of moles) of trifluoroacetic acid was added. The mixture was heated to 60° C., stirred for 30 minutes, and then cooled to room temperature.
The reaction solution was washed twice with water, and then the organic layer was dehydrated with magnesium sulfate and passed through a Kiriyama funnel filled with silica gel. The filtrate was totally concentrated using a rotary evaporator, thereby obtaining 13.37 g (yield 96.6%) of an intermediate compound 4 (corresponding to compound 12-13 in Table 19).
 化合物4のH-NMR測定結果は以下の通りである。
 δ(ppm):7.73(s,2H),7.64(s,2H),7.45-7.43(m,7H),7.33-7.31(m,2H),7.26(s,2H),7.22(s,1H),7.16-7.13(m,1H),6.93(d,1H),6.65(d,1H),6.44(d,1H),2.64(t,4H),1.67-1.58(m,4H),1.34-1.26(m,12H),0.86(t,6H)
The 1 H-NMR measurement results of compound 4 are as follows.
δ(ppm): 7.73(s,2H), 7.64(s,2H), 7.45-7.43(m,7H), 7.33-7.31(m,2H), 7.26(s,2H), 7.22(s,1H), 7.16-7.13(m,1H), 6.93(d,1H), 6.65(d,1H), 6.44(d,1H), 2.64(t,4H), 1.67-1.58(m,4H), 1.34-1.26(m,12H), 0.86(t,6H)
<実施例1> <Example 1>
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 窒素で置換した容量300mLの四つ口フラスコに、中間体である化合物4を5.01g(モル換算で7.51mmol)、テトラエチルエチレンジアミンを0.873g(モル換算で7.51mmol)、脱水THFを75mL入れ、攪拌して溶解させた。次いで溶液をドライアイス及びアセトンを含む冷却槽で-78℃まで冷却した後、塩基としてn-ブチルリチウム溶液(濃度1.57mol/L、ヘキサン溶液)を12.0mL滴下し、-78℃で2時間攪拌した。-78℃を維持したまま、トリイソプロポキシボラン3.96g(モル換算で21.0mmol)をTHF8mLに溶解した溶液を滴下し、-78℃でさらに1時間攪拌した後、室温まで昇温させた。次に反応液に10%酢酸水溶液を65g入れ、分液した。有機層を硫酸マグネシウムで脱水した後に、濾過によって硫酸マグネシウムを除いた。ろ液に極性基含有芳香族化合物として2-ヒドロキシベンジルアルコール2.05g(モル換算で16.5mmol)を加え、60分間攪拌を行った後、減圧下で溶媒を留去し、酢酸エチル及びヘキサンで再結晶を行うことで反応性化合物である化合物5(表11中、化合物107に該当)を5.13g(モル換算で5.51mol、収率73.3%)得た。 In a 300 mL four-neck flask purged with nitrogen, 5.01 g (7.51 mmol in molar terms) of the intermediate compound 4, 0.873 g (7.51 mmol in molar terms) of tetraethylethylenediamine, and 75 mL of dehydrated THF were placed and stirred to dissolve. The solution was then cooled to -78°C in a cooling bath containing dry ice and acetone, after which 12.0 mL of n-butyllithium solution (concentration 1.57 mol/L, hexane solution) was added dropwise as a base and stirred at -78°C for 2 hours. While maintaining the temperature at -78°C, a solution of 3.96 g (21.0 mmol in molar terms) of triisopropoxyborane in 8 mL of THF was added dropwise, and the mixture was stirred at -78°C for another hour, after which it was warmed to room temperature. Next, 65 g of 10% aqueous acetic acid was added to the reaction solution, and the liquids were separated. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. 2.05 g (16.5 mmol in molar terms) of 2-hydroxybenzyl alcohol was added to the filtrate as a polar group-containing aromatic compound, and the mixture was stirred for 60 minutes. The solvent was then removed under reduced pressure, and recrystallization was carried out with ethyl acetate and hexane to obtain 5.13 g (5.51 mol in molar terms, yield 73.3%) of the reactive compound Compound 5 (corresponding to Compound 107 in Table 11).
 化合物5のH-NMR測定結果は以下の通りである。
 δ(ppm):7.65(t,JHH=1.8Hz,2H),7.54(dt,JHH=7.8,1.5Hz,2H),7.20-7.42(m,14H),7.13(dt,JHH=7.0,1.6Hz,2H),6.96-7.06(m,6H),5.18(d,JHH=3.2Hz,4H),2.62(t,JHH=7.8Hz,4H),1.57-1.65(m,4H),1.25-1.34(m,12H),0.86(t,JHH=6.9Hz,6H)
 なお、JHHは結合定数を表す。
The 1 H-NMR measurement results of compound 5 are as follows.
δ (ppm): 7.65 (t, J = 1.8 Hz, 2H), 7.54 (dt, J = 7.8, 1.5 Hz, 2H), 7.20-7.42 (m, 14H), 7.13 (dt, J = 7.0, 1.6 Hz, 2H), 6.96-7.06 (m, 6H), 5.18 (d, J = 3.2 Hz, 4H), 2.62 (t, J = 7.8 Hz, 4H), 1.57-1.65 (m, 4H), 1.25-1.34 (m, 12H), 0.86 (t, J = 6.9 Hz, 6H)
In addition, JHH represents a coupling constant.
<実施例2> <Example 2>
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 窒素で置換した容量300mL四つ口フラスコに、中間体である化合物4を3.2g(モル換算で0.005mol)、テトラエチルエチレンジアミンを0.56g(モル換算で0.005mol)、脱水THFを50mL入れ、攪拌して溶解させた。次いで溶液をドライアイス及びアセトンを含む冷却槽で-78℃まで冷却した後、塩基としてn-ブチルリチウム溶液(濃度1.57mol/L、ヘキサン溶液)を7.7mL滴下し、-78℃で2時間攪拌した。-78℃を維持したまま、トリイソプロポキシボラン2.53g(モル換算で0.013mmol)をTHF5mLに溶解させた液を滴下し、-78℃でさらに1時間攪拌した後、室温まで昇温させた。次に反応液に10%酢酸水溶液を43g入れ、分液した。有機層を硫酸マグネシウムで脱水した後に、濾過によって硫酸マグネシウムを除いた。ろ液に極性基含有芳香族化合物として2-アミノベンズアミド1.96g(モル換算で0.014mmol)を加え、60分間攪拌を行った後、減圧下で溶媒を留去し、酢酸エチル及びヘキサンで再結晶を行うことで反応性化合物である化合物6(表11
中、化合物108に該当)を3.98g(モル換算で4.17mmol、収率87%)得た。
In a 300 mL four-neck flask substituted with nitrogen, 3.2 g (0.005 mol in molar terms) of compound 4, which is an intermediate, 0.56 g (0.005 mol in molar terms), and 50 mL of dehydrated THF were placed and stirred to dissolve. The solution was then cooled to -78°C in a cooling bath containing dry ice and acetone, and 7.7 mL of n-butyllithium solution (concentration 1.57 mol/L, hexane solution) was added dropwise as a base, and the mixture was stirred at -78°C for 2 hours. While maintaining the temperature at -78°C, a solution in which 2.53 g (0.013 mmol in molar terms) of triisopropoxyborane was dissolved in 5 mL of THF was added dropwise, and the mixture was stirred at -78°C for another hour, and then the mixture was warmed to room temperature. Next, 43 g of a 10% aqueous acetic acid solution was added to the reaction solution, and the mixture was separated. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. To the filtrate, 1.96 g (0.014 mmol in terms of moles) of 2-aminobenzamide was added as a polar group-containing aromatic compound, and the mixture was stirred for 60 minutes. The solvent was then removed under reduced pressure, and recrystallization was carried out with ethyl acetate and hexane to obtain Compound 6 (Table 11), which is a reactive compound.
Of these, 3.98 g (corresponding to compound 108) was obtained (4.17 mmol in molar terms, yield 87%).
 化合物6のH-NMR測定結果は以下の通りである。
 δ(ppm):8.19(t,2H),7.66(s, 2H), 7.58-7.22(m, 13H), 7.15-7.10(m, 5H), 7.04(dd, 2H), 7.00(s, 1H), 6.69(d,2H),2.61(t,4H),1.73 (br, 1H)1.63-1.55(m,4H),1.34-1.24(m,12H),0.86(t,6H)
The 1 H-NMR measurement results of compound 6 are as follows.
δ(ppm): 8.19(t,2H), 7.66(s,2H), 7.58-7.22(m,13H), 7.15-7.10(m,5H), 7.04(dd,2H), 7.00(s,1H), 6.69(d,2H), 2.61(t,4H), 1.73(br,1H)1.63-1.55(m,4H), 1.34-1.24(m,12H), 0.86(t,6H)
<実施例3> <Example 3>
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 窒素で置換した容量300mLの四つ口フラスコに、中間体である化合物4を4.95g(モル換算で0.007mol)、テトラエチルエチレンジアミンを0.86g(モル換算で0.007mol)、脱水THFを87mL入れ、攪拌して溶解させた。次いで溶液をドライアイス及びアセトンを含む冷却槽で-78℃まで冷却した後、塩基としてn-ブチルリチウム溶液(濃度1.57mol/L、ヘキサン溶液)を11.7mL滴下し、-78℃で2時間攪拌した。-78℃を維持したまま、トリイソプロポキシボラン3.91g(モル換算で0.021mmol)をTHF8mLに溶解させた液を滴下し、-78℃でさらに1時間攪拌した後、室温まで昇温させた。次に反応液に10%酢酸水溶液を65g入れ、分液した。有機層を硫酸マグネシウムで脱水した後に、濾過によって硫酸マグネシウムを除いた。ろ液に極性基含有芳香族化合物として4-メチルカテコール2.02g(モル換算で0.016mmol)を加え、60分間攪拌を行った後、減圧下で溶媒を留去し、酢酸エチル及びヘキサンで再結晶を行うことで反応性化合物である化合物7(表11中、化合物105に該当)を4.09g(モル換算で4.39mmol、収率59%)得た。 In a 300mL four-neck flask purged with nitrogen, 4.95g (0.007mol in molar terms) of intermediate compound 4, 0.86g (0.007mol in molar terms) of tetraethylethylenediamine, and 87mL of dehydrated THF were placed and stirred to dissolve. The solution was then cooled to -78°C in a cooling bath containing dry ice and acetone, after which 11.7mL of n-butyllithium solution (concentration 1.57mol/L, hexane solution) was added dropwise as a base and stirred at -78°C for 2 hours. While maintaining the temperature at -78°C, a solution of 3.91g (0.021mmol in molar terms) of triisopropoxyborane in 8mL of THF was added dropwise, and the mixture was stirred at -78°C for another hour, after which it was warmed to room temperature. Next, 65g of 10% aqueous acetic acid was added to the reaction solution, and the liquids were separated. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. 2.02 g (0.016 mmol in molar terms) of 4-methylcatechol was added to the filtrate as a polar group-containing aromatic compound, and the mixture was stirred for 60 minutes. The solvent was then removed under reduced pressure, and the mixture was recrystallized from ethyl acetate and hexane to obtain 4.09 g (4.39 mmol in molar terms, 59% yield) of the reactive compound Compound 7 (corresponding to Compound 105 in Table 11).
 化合物7のH-NMR測定結果は以下の通りである。
 δ(ppm):7.65(t,2H),7,57(s,1H),7.55(t,1H),7.54(t,1H),7.40-7.36(m,3H),7.32-7.26(m,8H),7.13-7.02(m,6H),6.96-6.87(m,2H),2.61(t,4H),2.37(d,6H),1.63-1.53(m,4H),1.32-1.25(m,12H),0.86(t,6H)
The 1 H-NMR measurement results of compound 7 are as follows.
δ(ppm): 7.65(t,2H), 7.57(s,1H), 7.55(t,1H), 7.54(t,1H), 7.40-7.36(m,3H), 7.32-7.26(m,8H), 7.13-7.02(m,6H), 6.96-6.87(m,2H), 2.61(t,4H), 2.37(d,6H), 1.63-1.53(m,4H), 1.32-1.25(m,12H), 0.86(t,6H)
<実施例4> <Example 4>
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 窒素で置換した容量300mLの四つ口フラスコに、中間体である化合物4を5.3g(モル換算で0.008mol)、テトラエチルエチレンジアミンを0.93g(モル換算で0.008mol)、脱水THFを83mL入れ、攪拌して溶解させた。次いで溶液をドライアイス及びアセトンを含む冷却槽で-78℃まで冷却した後、塩基としてn-ブチルリチウム溶液(濃度1.57mol/L、ヘキサン溶液)を12.7mL滴下し、-78℃で2時間攪拌した。-78℃を維持したまま、トリイソプロポキシボラン4.19g(モル換算で0.022mmol)をTHF8.3mLに溶解させた液を滴下し、-78℃でさらに1時間攪拌した後、室温まで昇温させた。次に反応液に10%酢酸水溶液を71g入れ、分液した。有機層を硫酸マグネシウムで脱水した後に、濾過によって硫酸マグネシウムを除いた。ろ液に極性基含有芳香族化合物として2,3-ナフタレンジオール3.83g(モル換算で0.024mmol)を加え、60分間攪拌を行った後、減圧下で溶媒を留去し、酢酸エチル及びヘキサンで再結晶を行うことで反応性化合物である化合物8(表11中、化合物106に該当)を4.37g(モル換算で4.36mmol、収率54%)得た。 In a 300mL four-neck flask purged with nitrogen, 5.3g (0.008mol in molar terms) of intermediate compound 4, 0.93g (0.008mol in molar terms) of tetraethylethylenediamine, and 83mL of dehydrated THF were placed and stirred to dissolve. The solution was then cooled to -78°C in a cooling bath containing dry ice and acetone, after which 12.7mL of n-butyllithium solution (concentration 1.57mol/L, hexane solution) was added dropwise as a base and stirred at -78°C for 2 hours. While maintaining the temperature at -78°C, a solution of 4.19g (0.022mmol in molar terms) of triisopropoxyborane in 8.3mL of THF was added dropwise, and the mixture was stirred at -78°C for another hour, after which it was warmed to room temperature. Next, 71g of 10% aqueous acetic acid was added to the reaction solution and the liquids were separated. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. 3.83 g (0.024 mmol in molar terms) of 2,3-naphthalenediol was added to the filtrate as a polar group-containing aromatic compound, and the mixture was stirred for 60 minutes. The solvent was then removed under reduced pressure, and the mixture was recrystallized from ethyl acetate and hexane to obtain 4.37 g (4.36 mmol in molar terms, 54% yield) of the reactive compound Compound 8 (corresponding to Compound 106 in Table 11).
 化合物8のH-NMR測定結果は以下の通りである。
 δ(ppm):7.85-7.82(m,4H),7.69(t,2H),7.67(s,1H),7.61(s,2H),7.59(t,1H),7.58(m,3H),7.47(s,1H),7.46-7.40(m,6H),7.36-7.27(m,8H),7.15(t,1H),7.13(t,1H),2.63(t,4H),1.65-1.55(m,4H),1.34-1.24(m,12H),0.86(t,6H)
The 1 H-NMR measurement results of compound 8 are as follows.
δ(ppm): 7.85-7.82(m,4H), 7.69(t,2H), 7.67(s,1H), 7.61(s,2H), 7.59(t,1H), 7.58(m,3H), 7.47(s,1H), 7.46-7.40(m,6H), 7.36-7.27(m,8H), 7.15(t,1H), 7.13(t,1H), 2.63(t,4H), 1.65-1.55(m,4H), 1.34-1.24(m,12H), 0.86(t,6H)
<比較例1> <Comparative Example 1>
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 窒素で置換した容量300mLの四つ口フラスコに、化合物4を0.67g(モル換算で0.001mol)、テトラエチルエチレンジアミンを0.12g(モル換算で0.001mol)、脱水THFを10.6mL入れ、攪拌して溶解させた。次いで溶液をドラ
イアイス及びアセトンを含む冷却槽で-78℃まで冷却した後、n-ブチルリチウム溶液(濃度1.57mol/L、ヘキサン溶液)を1.6mL滴下し、-78℃で2時間攪拌した。-78℃を維持したまま、トリイソプロポキシボラン0.53g(モル換算で0.003mmol)をTHF1.1mLに溶解させた液を滴下し、-78℃でさらに1時間攪拌した後、室温まで昇温させた。次に反応液に10%酢酸水溶液を9g入れ、分液した。有機層を硫酸マグネシウムで脱水した後に、濾過によって硫酸マグネシウムを除いた。ろ液にピナコール0.35g(モル換算で0.003mmol)を加え、60分間攪拌を行った後、減圧下で溶媒を留去し、酢酸エチル及びヘキサンで再結晶を行うことで比較対象としての反応性化合物である化合物9を0.83g(モル換算で0.9mmol、収率90%)得た。
In a 300mL four-neck flask substituted with nitrogen, 0.67g of compound 4 (0.001mol in molar terms), 0.12g of tetraethylethylenediamine (0.001mol in molar terms), and 10.6mL of dehydrated THF were added and stirred to dissolve. The solution was then cooled to -78°C in a cooling bath containing dry ice and acetone, and 1.6mL of n-butyllithium solution (concentration 1.57mol/L, hexane solution) was added dropwise, and the mixture was stirred at -78°C for 2 hours. While maintaining the temperature at -78°C, a solution in which 0.53g of triisopropoxyborane (0.003mmol in molar terms) was dissolved in 1.1mL of THF was added dropwise, and the mixture was stirred at -78°C for another hour, and then the mixture was heated to room temperature. Next, 9g of a 10% aqueous acetic acid solution was added to the reaction solution, and the mixture was separated. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. To the filtrate, 0.35 g (0.003 mmol in terms of moles) of pinacol was added, and the mixture was stirred for 60 minutes. The solvent was then removed under reduced pressure, and recrystallization was carried out using ethyl acetate and hexane to obtain 0.83 g (0.9 mmol in terms of moles, yield 90%) of Compound 9, which is a reactive compound for comparison.
 化合物9のH-NMR測定結果は以下の通りである。
 δ(ppm):7.61(t,2H),7.51(dt,2H),7.36-7.26(m,7H),7.18(dt,2H),7.13(dt,2H),7.05(s,1H),2.62(t,4H),1.66-1.58(m,4H),1.38-1.25(m,36H),0.86(t,6H)
The 1 H-NMR measurement results of compound 9 are as follows.
δ(ppm): 7.61(t,2H), 7.51(dt,2H), 7.36-7.26(m,7H), 7.18(dt,2H), 7.13(dt,2H), 7.05(s,1H), 2.62(t,4H), 1.66-1.58(m,4H), 1.38-1.25(m,36H), 0.86(t,6H)
<保管安定性評価>
 各例で得られた反応性化合物を用いて下記手順で保管安定性評価を行った。
 保管安定性の評価は、初期純度及び保管試験後純度をそれぞれ算出し、算出した初期純度及び保管試験後純度から、純度維持率を算出することで評価した。ここで純度維持率の値が高いほど保管安定性が高いことを意味する。
<Storage stability evaluation>
The reactive compounds obtained in each example were used to evaluate storage stability according to the following procedure.
The storage stability was evaluated by calculating the initial purity and the purity after the storage test, and then calculating the purity maintenance rate from the calculated initial purity and the purity after the storage test. Here, a higher purity maintenance rate indicates higher storage stability.
(初期純度の算出)
 各例で得られた反応性化合物の純度をH-NMR測定の内部標準法により算出した。
 H-NMR測定の内部標準法による純度の算出手順については後述する。
(Calculation of initial purity)
The purity of the reactive compound obtained in each example was calculated by the internal standard method of 1 H-NMR measurement.
The procedure for calculating the purity by the internal standard method in 1 H-NMR measurement will be described later.
(保管試験後純度)
 各例で得られた反応性化合物をバイアル中に加え、窒素置換を行った。そして反応性化合物を含むバイアルを40℃で1週間保管した。保管後の反応性化合物の純度をH-NMR測定の内部標準法により算出した。
(Purity after storage test)
The reactive compound obtained in each example was added to a vial, and the vial was purged with nitrogen. The vial containing the reactive compound was then stored at 40° C. for one week. The purity of the reactive compound after storage was calculated by the internal standard method of 1 H-NMR measurement.
(純度維持率の算出)
 上記手順で算出した初期純度及び保管試験後純度を用いて下記式(I)により純度維持率を算出した。
 式(I):純度維持率(%)=(保管試験後純度÷初期純度)×100
(Calculation of Purity Maintenance Rate)
The purity maintenance rate was calculated according to the following formula (I) using the initial purity and the purity after the storage test calculated by the above procedure.
Formula (I): Purity maintenance rate (%) = (purity after storage test ÷ initial purity) × 100
H-NMR測定の内部標準法による純度の算出手順)
 下記組成にてH-NMR測定用の測定試料を調整する。
-測定資料の組成-
・重クロロホルム(東京化成工業社製、99.8atom%D、テトラメチルシランを含有しない):0.6mL
・標準物質として1,4-ビス(トリメチルシリル)ベンゼン-d4(富士フイルム和光純薬社製):1.0mg
・反応性化合物:6.0mg
 つづいて、測定試料を用いてH-NMR測定を行う。得られたNMRスペクトルから下記式(II)により反応性化合物の純度(Psample)を算出する。
(Procedure for calculating purity by the internal standard method in 1 H-NMR measurement)
A measurement sample for 1 H-NMR measurement is prepared with the following composition.
- Composition of measurement data -
Deuterated chloroform (Tokyo Chemical Industry Co., Ltd., 99.8 atom% D, does not contain tetramethylsilane): 0.6 mL
・Standard substance: 1,4-bis(trimethylsilyl)benzene-d4 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.): 1.0 mg
Reactive compound: 6.0 mg
Next, the measurement sample is subjected to 1 H-NMR measurement. From the obtained NMR spectrum, the purity (P sample ) of the reactive compound is calculated according to the following formula (II).
Figure JPOXMLDOC01-appb-M000086
Figure JPOXMLDOC01-appb-M000086
 式(II)中の記号について以下に説明する。
 Psample:反応性化合物の純度(%)
 Isample:NMRスペクトルにおける、反応性化合物に由来するピーク(化合物5:5.18ppmのピーク、化合物6:8.19ppmのピーク、化合物7:7.65ppmのピーク、化合物8:7.67ppmのピーク、化合物9:7.05ppmのピーク)の積分値
 Hsample:NMRスペクトルにおける、反応性化合物に由来するピーク(各化合物で参照したピーク位置はIsampleにおけるものと同一である)のプロトン数
 Msample:反応性化合物の分子量
 Wsample:測定試料中における反応性化合物の質量(すなわち、6.0mg)
 Pstd:標準物質の純度(%)
 Istd:NMRスペクトルにおける、標準物質に由来するピーク(0.27ppmのピーク)の積分値
 Hstd:NMRスペクトルにおける、標準物質に由来するピーク(参照したピーク位置はIstdにおけるものと同一である)のプロトン数
 Mstd:標準物質の分子量
 Wstd:測定試料中における標準物質の質量(すなわち、1.0mg)
The symbols in formula (II) are explained below.
P sample : Purity of reactive compound (%)
I sample : integral value of peaks derived from reactive compounds in the NMR spectrum (compound 5: peak at 5.18 ppm, compound 6: peak at 8.19 ppm, compound 7: peak at 7.65 ppm, compound 8: peak at 7.67 ppm, compound 9: peak at 7.05 ppm) H sample : number of protons of peaks derived from reactive compounds in the NMR spectrum (peak positions referenced for each compound are the same as those in I sample ) M sample : molecular weight of reactive compound W sample : mass of reactive compound in the measurement sample (i.e., 6.0 mg)
P std : Purity of standard material (%)
I std : integral value of the peak (peak at 0.27 ppm) derived from the standard substance in the NMR spectrum H std : number of protons of the peak (referenced peak position is the same as that in I std ) derived from the standard substance in the NMR spectrum M std : molecular weight of the standard substance W std : mass of the standard substance in the measurement sample (i.e., 1.0 mg)
 表21中に、各例で得られた反応性化合物の初期純度、保管試験後純度及び純度維持率を算出した結果を示す。 Table 21 shows the results of calculating the initial purity, purity after storage test, and purity maintenance rate of the reactive compounds obtained in each example.
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000087
 上記結果から、本実施例の反応性化合物は、保管安定性に優れることがわかる。 The above results show that the reactive compound of this example has excellent storage stability.

Claims (8)

  1.  下記式(1)で表される反応性化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、
     Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
     Arは、芳香族炭化水素環基を表し、
     Xは、-O-で表される基又は-NH-で表される基を表し、
     Yは、-O-で表される基、-NH-で表される基、-O-CH-で表される基、-CH-NH-で表される基、-NH-C(=O)-で表される基又は-C(=O)-O-で表される基を表し、
     nは、1以上4以下の整数を表す。)
    A reactive compound represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1),
    Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
    Ar2 represents an aromatic hydrocarbon ring group;
    X represents a group represented by -O- or a group represented by -NH-;
    Y represents a group represented by -O-, a group represented by -NH-, a group represented by -O-CH 2 -, a group represented by -CH 2 -NH-, a group represented by -NH-C(=O)- or a group represented by -C(=O)-O-;
    n represents an integer of 1 to 4.
  2.  下記式(2)で表される請求項1に記載の反応性化合物。
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、
     Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
     Arは、芳香族炭化水素環基を表し、
     Xは、-O-で表される基又は-NH-で表される基を表し、
     Yは、-O-で表される基、-NH-で表される基、-O-CH-で表される基、-CH-NH-で表される基、-NH-C(=O)-で表される基又は-C(=O)-O-で表される基を表し、
     式(2)中における2つのAr、2つのX及び2つのYはそれぞれ同一であってもよいし、異なっていてもよい。)
    The reactive compound according to claim 1, represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000002

    (In formula (2),
    Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
    Ar2 represents an aromatic hydrocarbon ring group;
    X represents a group represented by -O- or a group represented by -NH-;
    Y represents a group represented by -O-, a group represented by -NH-, a group represented by -O-CH 2 -, a group represented by -CH 2 -NH-, a group represented by -NH-C(=O)- or a group represented by -C(=O)-O-;
    In the formula (2), the two Ar 2 s, the two Xs, and the two Ys may be the same or different.
  3.  Arが下記式(3)又は下記式(4)で表される基である請求項2に記載の反応性化合物。
    Figure JPOXMLDOC01-appb-C000003

    (式(3)及び式(4)中、
     Arは、炭素環基又は複素環基を表し、
     *は、結合手を表す。)
    The reactive compound according to claim 2 , wherein Ar 1 is a group represented by the following formula (3) or the following formula (4):
    Figure JPOXMLDOC01-appb-C000003

    (In formula (3) and formula (4),
    Ar3 represents a carbocyclic group or a heterocyclic group;
    * represents a bond.)
  4.  Arが下記式(5)で表される基である請求項2に記載の反応性化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式(5)中、
     Zは、下記式(Z-1)、下記式(Z-2)、下記式(Z-3)、下記式(Z-4)、下記式(Z-5)、下記式(Z-6)又は下記式(Z-7)で表される基を表し、
     *は、結合手を表す。)
    Figure JPOXMLDOC01-appb-C000005

    (式(Z-1)~式(Z-7)中、
     *は、結合手を表し、
     R及びRは、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。)
    The reactive compound according to claim 2 , wherein Ar 1 is a group represented by the following formula (5):
    Figure JPOXMLDOC01-appb-C000004

    (In formula (5),
    Z represents a group represented by the following formula (Z-1), (Z-2), (Z-3), (Z-4), (Z-5), (Z-6), or (Z-7):
    * represents a bond.)
    Figure JPOXMLDOC01-appb-C000005

    (In formulas (Z-1) to (Z-7),
    * represents a bond,
    R1 and R2 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
  5.  Arが下記式(6)で表される基である請求項2に記載の反応性化合物。
    Figure JPOXMLDOC01-appb-C000006

    (式(6)中、
     *は、結合手を表し、
     R11、R12、R13及びR14は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。)
    The reactive compound according to claim 2 , wherein Ar 1 is a group represented by the following formula (6):
    Figure JPOXMLDOC01-appb-C000006

    (In formula (6),
    * represents a bond,
    R 11 , R 12 , R 13 and R 14 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.
  6.  式(2)で表される化合物が下記式(7)、下記式(8)、下記式(9)又は下記式(10)で表される化合物である請求項2に記載の反応性化合物。
    Figure JPOXMLDOC01-appb-C000007

    (式(7)~式(10)中、R12及びR13は、それぞれ独立に、水素原子又は1価の基を表し、それぞれ同一であってもよく異なっていてもよい。)
    The reactive compound according to claim 2, wherein the compound represented by formula (2) is a compound represented by the following formula (7), the following formula (8), the following formula (9), or the following formula (10):
    Figure JPOXMLDOC01-appb-C000007

    (In formulas (7) to (10), R 12 and R 13 each independently represent a hydrogen atom or a monovalent group, and may be the same or different.)
  7.  請求項1~請求項6のいずれか1項に記載の反応性化合物と、下記式(11)で表される化合物と、を反応させる、高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000008

    (式(11)中、
     Arは、2価の芳香族炭化水素環基又は2価の芳香族複素環基を表し、
     HXは、それぞれ独立に、ハロゲン原子を表す。)
    A method for producing a polymer compound, comprising reacting the reactive compound according to any one of claims 1 to 6 with a compound represented by the following formula (11):
    Figure JPOXMLDOC01-appb-C000008

    (In formula (11),
    Ar4 represents a divalent aromatic hydrocarbon ring group or a divalent aromatic heterocyclic group;
    Each HX independently represents a halogen atom.
  8.  下記式(12)で表される請求項1に記載の反応性化合物の中間体。
    Figure JPOXMLDOC01-appb-C000009

    (式(12)中、
     Arは、2個以上の環が縮環している芳香族炭化水素環基又は2個以上の環が縮環している芳香族複素環基を表し、
     Lは、水素原子又はハロゲン原子を表し、
     nは、1以上4以下の整数を表す。)
    An intermediate of the reactive compound according to claim 1, represented by the following formula (12):
    Figure JPOXMLDOC01-appb-C000009

    (In formula (12),
    Ar 1 represents an aromatic hydrocarbon ring group having two or more condensed rings or an aromatic heterocyclic group having two or more condensed rings;
    L represents a hydrogen atom or a halogen atom;
    n represents an integer of 1 to 4.
PCT/JP2023/034320 2022-10-06 2023-09-21 Reactive compound, production method for polymer compound, and intermediate WO2024075537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161970A JP2024055217A (en) 2022-10-06 2022-10-06 Reactive compounds, methods for producing polymeric compounds, and intermediates
JP2022-161970 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075537A1 true WO2024075537A1 (en) 2024-04-11

Family

ID=90608222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034320 WO2024075537A1 (en) 2022-10-06 2023-09-21 Reactive compound, production method for polymer compound, and intermediate

Country Status (2)

Country Link
JP (1) JP2024055217A (en)
WO (1) WO2024075537A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120295874A1 (en) * 2009-10-07 2012-11-22 Cornell University Coferons and methods of making and using them
WO2018220785A1 (en) * 2017-06-01 2018-12-06 住友化学株式会社 Method for producing polymer compound
WO2021156605A1 (en) * 2020-02-04 2021-08-12 Sumitomo Chemical Co., Ltd Photoactive material
WO2022065215A1 (en) * 2020-09-23 2022-03-31 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging sensor, image display device, infrared sensor, camera module, compound, and infrared absorber
JP2022093826A (en) * 2020-12-14 2022-06-24 住友化学株式会社 Method for producing polymer compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120295874A1 (en) * 2009-10-07 2012-11-22 Cornell University Coferons and methods of making and using them
WO2018220785A1 (en) * 2017-06-01 2018-12-06 住友化学株式会社 Method for producing polymer compound
WO2021156605A1 (en) * 2020-02-04 2021-08-12 Sumitomo Chemical Co., Ltd Photoactive material
WO2022065215A1 (en) * 2020-09-23 2022-03-31 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging sensor, image display device, infrared sensor, camera module, compound, and infrared absorber
JP2022093826A (en) * 2020-12-14 2022-06-24 住友化学株式会社 Method for producing polymer compound

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADENA ISSAIAN: "Mechanistic Studies of Formal Thioboration Reactions of Alkynes", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 82, no. 15, 4 August 2017 (2017-08-04), pages 8165 - 8178, XP093155744, ISSN: 0022-3263, DOI: 10.1021/acs.joc.7b01500 *
GREGORY L. GIBSON, THERESA M. MCCORMICK, DWIGHT S. SEFEROS: "Atomistic Band Gap Engineering in Donor–Acceptor Polymers", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 134, no. 1, 11 January 2012 (2012-01-11), pages 539 - 547, XP055195459, ISSN: 00027863, DOI: 10.1021/ja208917m *
HUAXING ZHANG: "An umpolung strategy for rapid access to thermally activated delayed fluorescence (TADF) materials based on phenazine", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 58, no. 10, 1 February 2022 (2022-02-01), UK , pages 1581 - 1584, XP093155741, ISSN: 1359-7345, DOI: 10.1039/D1CC06705B *
MASASHI KOYANAGI: "Anthranilamide-masked o -Iodoarylboronic Acids as Coupling Modules for Iterative Synthesis of ortho -Linked Oligoarenes", CHEMISTRY LETTERS, CHEMICAL SOCIETY OF JAPAN,NIPPON KAGAKUKAI, JP, vol. 42, no. 5, 5 May 2013 (2013-05-05), JP , pages 541 - 543, XP093155742, ISSN: 0366-7022, DOI: 10.1246/cl.130136 *
TAKESHI YAMAMOTO, AOI ISHIBASHI, MASASHI KOYANAGI, HIDEKI IHARA, NILS EICHENAUER, MICHINORI SUGINOME: "C–H Activation-Based Transformation of Naphthalenes to 3-Iodo-2-naphthylboronic Acid Derivatives for Use in Iterative Coupling Synthesis of Helical Oligo(naphthalene-2,3-diyl)s", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, CHEMICAL SOCIETY OF JAPAN,NIPPON KAGAKUKAI, JP, vol. 90, no. 5, 15 May 2017 (2017-05-15), JP , pages 604 - 606, XP009554318, ISSN: 0009-2673, DOI: 10.1246/bcsj.20170026 *
ボルハルトショアー 現代有機化学(第3版)[下], p. 683 p. 683, Naphthalene, Anthracene, Tetracene, Phenanthrene, compounds (a)-(e), non-official translation (VOLLHARDT, SCHORE-Modern organic chemistry (3rd edition) [part 2].) *

Also Published As

Publication number Publication date
JP2024055217A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
KR102169444B1 (en) Aromatic compound and organoelectro luminescent device comprising the compound
JP5940548B2 (en) Novel spirobifluorene compounds
JP3300827B2 (en) Oxadiazole compound and method for producing the same
KR102215780B1 (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR102118013B1 (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
JP5767915B2 (en) Boron-containing compounds
CN106986842A (en) The fluorene compound of spiral shell two for luminescent device
KR102149450B1 (en) Deuterated organic compounds for organic light-emitting diode and organic light-emitting diode including the same
JP2007238530A (en) ORGANIC pi ELECTRON-BASED MATERIAL HAVING BENZOBISAZOLE SKELETON AND METHOD FOR PRODUCING THE SAME
KR20180136377A (en) Novel compound and organic light emitting device comprising the same
KR20190141713A (en) Composition and Light-Emitting Device Using the Same
JP5294560B2 (en) Polymer phosphorescent organic semiconductor emitter material based on perarylated borane, its preparation and use
JP2004155728A (en) Method for producing metal complex
CN115417885A (en) Carbazole derivative and application thereof in organic light-emitting element
KR102085190B1 (en) Gold Complexes for OLED Applications
KR20190141714A (en) Composition and Light-Emitting Device Using the Same
JP2018083941A (en) Composition and light emitting element prepared therewith
JP7155477B2 (en) organic light emitting device
JP5742111B2 (en) Metal complexes containing nitrogen-containing aromatic ring ligands
KR102197019B1 (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
WO2019065388A1 (en) Composition and light-emitting device using same
WO2024075537A1 (en) Reactive compound, production method for polymer compound, and intermediate
Hammerstroem et al. Synthesis and characterization of luminescent 2, 7-disubstituted silafluorenes
JP2009196919A (en) New phenothiazine compound
CN113563204A (en) Triarylamine compound and application thereof in organic electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874666

Country of ref document: EP

Kind code of ref document: A1