WO2024075484A1 - Method for applying powder, method for producing secondary battery, method for producing all-solid-state battery, secondary battery and all-solid-state battery - Google Patents
Method for applying powder, method for producing secondary battery, method for producing all-solid-state battery, secondary battery and all-solid-state battery Download PDFInfo
- Publication number
- WO2024075484A1 WO2024075484A1 PCT/JP2023/033496 JP2023033496W WO2024075484A1 WO 2024075484 A1 WO2024075484 A1 WO 2024075484A1 JP 2023033496 W JP2023033496 W JP 2023033496W WO 2024075484 A1 WO2024075484 A1 WO 2024075484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- electrode
- roll
- solid
- applying
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 538
- 238000000034 method Methods 0.000 title claims description 83
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 239000002245 particle Substances 0.000 claims abstract description 73
- 239000011230 binding agent Substances 0.000 claims abstract description 54
- 239000003792 electrolyte Substances 0.000 claims abstract description 47
- 239000002904 solvent Substances 0.000 claims abstract description 40
- 239000002002 slurry Substances 0.000 claims abstract description 37
- 238000003825 pressing Methods 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000011149 active material Substances 0.000 claims abstract description 23
- 229920000642 polymer Polymers 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims description 112
- 239000011248 coating agent Substances 0.000 claims description 108
- 230000008569 process Effects 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 18
- 238000007600 charging Methods 0.000 claims description 16
- 238000005192 partition Methods 0.000 claims description 14
- 230000000087 stabilizing effect Effects 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000007786 electrostatic charging Methods 0.000 claims description 10
- 239000010419 fine particle Substances 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 239000011258 core-shell material Substances 0.000 claims description 7
- 239000007772 electrode material Substances 0.000 claims description 7
- 238000011049 filling Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002270 dispersing agent Substances 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 3
- 239000002134 carbon nanofiber Substances 0.000 claims description 2
- 238000007908 dry granulation Methods 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 abstract description 11
- 238000002156 mixing Methods 0.000 abstract description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 7
- 239000011737 fluorine Substances 0.000 abstract description 7
- 229910052731 fluorine Inorganic materials 0.000 abstract description 7
- 238000009835 boiling Methods 0.000 abstract description 6
- 238000009434 installation Methods 0.000 abstract description 2
- 239000003960 organic solvent Substances 0.000 abstract description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 67
- 239000010410 layer Substances 0.000 description 56
- 239000002131 composite material Substances 0.000 description 23
- 239000010408 film Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 239000011246 composite particle Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 239000002482 conductive additive Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 239000011267 electrode slurry Substances 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000002001 electrolyte material Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/04—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
- B05D1/06—Applying particulate materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a powder coating method, a method for manufacturing a secondary battery, a method for manufacturing an all-solid-state battery, a secondary battery, and an all-solid-state battery.
- electrodes for secondary batteries such as lithium-ion batteries (LIBs) have often used resin-based binders with a solid content of less than a few percent by weight.
- Fluorine-based binders such as polyvinylidene fluoride (PVDF) have been widely used, especially for the positive electrode, due to their heat resistance, solvent resistance, and durability.
- a composite slurry is made from active material particles, conductive additives, binders, and solvents, which is then applied to a current collector such as aluminum foil, copper foil, or stainless steel foil and dried to form the electrode.
- a composite slurry is made from active material particles, electrolyte particles or fibers, conductive additives, binders, and solvents, which is then applied to a current collector and dried to form the electrode.
- electrodes for secondary batteries such as LIBs were formed by creating a slurry from active material, binder, conductive additive, and a solvent to dissolve the binder, which was then coated on a moving current collector using a die head and dried. Increasing the coating speed led to huge drying ovens, sometimes reaching a total length of over 100 m.
- the general power and heat sources for drying ovens are sources of carbon dioxide emissions, and while this can contribute to carbon neutrality (CN) in electric vehicles, it is counterproductive from the perspective of life cycle assessment (LCA).
- the objective of the present invention is to contribute to carbon neutrality by converting the manufacturing method of electrodes and batteries, particularly slurry-type, for existing secondary batteries and next-generation secondary batteries in general, particularly all-solid-state batteries, into a dry method or a method equivalent thereto. Another important goal is to reduce the cost per unit watt-hour in terms of manufacturing costs. To achieve this, it is necessary to further pursue resource conservation, energy conservation, and space conservation. It is also necessary to make the total productivity of the products, such as electrode formation and battery cells, at least equivalent to that of conventional methods. To achieve this, the solvents required for electrode and electrolyte materials must be handled in a small, sealed or nearly sealed space in the limited space of the upstream process, the process must be completed, and the solvent must be recovered.
- the dry electrode formation method using powders that does not use solvents when forming electrodes can be ideal because it requires only pressing with a press and can form electrodes with short heating and pressing as necessary, and the installation area is small, and especially when the binder is a thermoplastic resin such as a polymeric fluorine-based resin, there is no need for heating time for crosslinking reaction.
- the inventor has already proposed a powder coating method and film formation method that are also suitable for LIB electrode formation prior to this information.
- the following major challenges are unavoidable and high hurdles.
- the binder which is the resin content of LIB electrode powder
- the binder is less than a few percent of the total solids by weight, and especially recently, due to performance improvements, it is less than 1%, which is too large a gap compared to powders for powder coating. Therefore, it was almost impossible to manufacture powders that are close to the ideal spherical shape. For this reason, it was difficult to make the particle size distribution of powder particles uniform for each lot.
- a general volumetric feeder could not be applied to the formation of LIB electrodes, which requires coating weight per unit centimeter area and coating film uniformity. Also, if the resin content is small, it was not possible to apply data for conventional production lines in which the powder is electrostatically charged and electrostatically coated on an earthed object. Even if such powder was transported using a method for adjusting the thickness of the powder supplied by a doctor blade, such as an electric screw-type auger feeder or a volumetric feeder using an electric table, it was not possible to make the coating weight per unit area constant, for example, the electrode weight per unit area equivalent to a film thickness of 60 to 100 ⁇ 2.5 micrometers.
- powder particles become an air-powder mixture with a large amount of gas, as typified by cedar pollen and PM2.5 of about 30 micrometers, they behave like aerosols, floating in the air and being affected by the flow of gas. Even if the powder particles of general electrostatic powder coating, which have an average particle size of about 20 to 80 micrometers and are rich in resin, were electrostatically charged, they could not be electrostatically attached to the target object in a high-speed airflow. Even if powder is electrostatically charged and sprayed on an object moving at a speed of several tens of meters per minute or more, for example, 60 meters per minute or more, it is not possible to adhere more than 50% of the powder.
- the electrode composite particles for LIBs and solid-state batteries which have a low binder content, become unstable in charging, making it even more difficult to apply them to the target object.
- the line speed for slurry coating to form LIB electrodes is high, at over 60 meters per minute, so high-speed powder coating formation using powder instead of slurry was far removed from industry common sense.
- Cited Document 1 proposes a method for producing an electrode for a lithium ion battery using a pair of press rolls, the method including a step of applying a binder coating liquid to a substrate, a step of supplying powder containing an electrode active material from a hopper and adjusting it with a squeegee to control the basis weight of the powder and removing the powder supplied outside the electrode width.
- the cited document 2 discloses a powder coating method invented by the present inventor and discloses its industrial applicability in the formation of electrodes for secondary batteries such as LIBs. In both of the methods described in the above documents, there are many difficult factors to apply a fixed amount of powder, unlike liquids.
- the coating weight per unit time can be made constant simply by keeping the viscosity, pressure, and nozzle diameter constant. If the temperature of the liquid can be kept constant and the density can be kept constant, the coating weight can be made constant by pumping with a volumetric pump, making it easy to manage. For solutions and emulsions, the coating weight per short period of time, for example, per millisecond, can be made constant by keeping the temperature constant and the above measures constant.
- the electrode slurry is made up of active material particles, conductive additives, binders or binder solutions and solvents, and in the case of solid-state batteries, electrolytes.
- the dispersion state is different at the time of discharge, it will cause a fatal defect. Therefore, the longer the distance and time from stable mixing and dispersion to application, the higher the risk. This is because at the manufacturing speed of LIBs at 60 meters per minute, it takes only one second to travel one meter. In other words, if poorly dispersed electrode slurry is applied in just one millisecond, one millimeter will be defective. Therefore, in the present invention, the electrode composite powder is produced in advance with a compact device in which the mixing and dispersion is adequately controlled in milliseconds.
- the mixing and dispersion device may be a static mixer or the like, and although not particularly limited, an OHR mixer that utilizes centrifugal force and centripetal force to finely disperse, or a dynamic mixer that rotates at high speed to mix and disperse, etc., are even better because they can mix and disperse uniformly and instantly in milliseconds.
- the average particle diameter of the composite powder should be larger than the particle diameter of the active material. In other words, it should be about 5 micrometers or more. If you want to increase the powder particle diameter, in the present invention, you can create a slurry of small-diameter powder and at least a solvent to create large-diameter powder particles in which multiple powders are aggregated.
- the electrode can be formed by applying it to an object such as a current collector with a powder coating device and pressing it. Therefore, even if it is a powder slurry, the composite ratio is stable regardless of the composite powder particle diameter, so a powder slurry consisting of a poor solvent for the binder of the composite powder, especially a low-boiling point solvent, or a solvent containing a poor solvent, can be created.
- the poor solvent may be liquefied carbon dioxide gas obtained by liquefying the recovered carbon dioxide gas or a supercritical fluid thereof.
- the powder slurry is applied to the target object using a die coater or spray coating device, and the poor solvent is evaporated in a short time of seconds to form an electrode powder layer, which is then pressed to form an electrode.
- the evaporated solvent can be recovered using a small recovery device. If necessary, a small amount of binder solution, binder nanoparticles, or short fibers limited to a few percent or less of the solid content of the electrode may be added to the powder slurry.
- the solvent can be evaporated in a short time of seconds, so the solvent recovery device can be made small, and electrodes can be formed using only a roll press, which has a much greater advantage than the conventional slurry method.
- the electrode composite slurry is first granulated into powder while recovering the solvent in a compact device upstream of the electrode production line.
- the upstream includes the process of producing electrode active materials, electrolytes, etc., and is because the composite powder can be produced by consolidating electrode powder for several or several tens of electrode production lines in a relatively small facility.
- electrolyte materials can be added and mixed.
- active material particles and electrolyte core-shell particles can be created, and conductive additives, binders, and solvents can be added to make a composite slurry, which can then be granulated.
- the dispersed composite slurry can be granulated using centrifugal granulation methods such as high-speed rotating disks and bells, which are in the category of spray dryers, and the granulation process can be performed while causing electrostatic repulsion to prevent blocking between particles during granulation.
- Powder particles with little binder tend to crumble during the handling process, and each part of the mixture is likely to fall off. If the particles are not charged, as in Reference 1, the powder will partially crumble with a slight mechanical impact and become fine powder, which will fly away and float, and will be affected by wind currents with typical aerosol fluid behavior. Such fine powder is difficult to attach and fix to the target object. The effect of the binder applied to the target object at the beginning cannot be expected for such fine powder. Due to the nature of special powders for secondary batteries, it is difficult to keep the powder coating weight per unit area constant. In anticipation of this, Reference 2 devise a method for stabilizing the coating weight per unit area of the final substrate.
- the powder will be affected by the flow speed and volume of the gas flow (e.g. compressed gas) that transports it, and the powder that collides with the target object will bounce back along with the gas, resulting in extremely poor coating efficiency. Furthermore, if the air-powder mixture is not uniformly fluidized and dispersed, the agglomerated powder transported by a fixed-volume feeder or the like will be applied as is. Furthermore, as mentioned above, even small mechanical vibrations can cause part of the powder layer to fall off and scatter, and become suspended in the high-speed moving gas flow, making it impossible to solve problems with workability and quality.
- the gas flow e.g. compressed gas
- active material particles and electrolyte particles may be mixed in advance in a dry state to form a core-shell structure, or the mixture may be thin-film laminated in a single device.
- the conductive assistant and binder solution may be thin-film laminated in separate devices, or the composite may be made into a slurry and a small amount may be thin-film laminated between the core-shell layers to form a uniformly mixed electrode layer.
- the core-shell particles may be mixed with the conductive assistant and binder to form a composite powder.
- the composite powder for electrodes may be made into a slurry with a solvent as described above.
- the small particle size granulated powder may be made into a slurry and granulated multiple times to gradually increase the granulated particle size and granulate to the desired particle size to form a powder.
- a LIB electrode composite powder an all-solid-state battery electrode composite powder, or an all-solid-state battery composite powder consisting of a core shell
- each material other than the binder has a low electrical resistance and is difficult to charge.
- conductive assistant protrusions such as carbon fibers present on the surface of the powder particles, they act as antennas for the charged powder particles, and tend to be more prone to discharge.
- the present invention has been made to solve the above-mentioned problems, and is as follows: 1. To stabilize the supply amount even for powder whose flow (fuldize) in the air-powder mixture is unstable. 2. Shorten the process from powder supply to coating and eliminate piping and other flow paths as much as possible. 3. Even powders with low electrostatic charging efficiency can be easily attached to objects after charging. 4. Even if the object is moving at high speed, for example 60 meters per minute or more, the structure should be designed to be less susceptible to wind when applying powder. 5. The next process, pressing or hot pressing, allows for high-performance pressing to form electrodes. To solve the above problems. Therefore, in the present invention, we have focused on the following: 1. Stabilize the amount of powder sucked or sprayed. 2.
- the powder is applied to the object by adsorbing, transferring, and releasing it using a porous hollow roll or porous belt. 3. When the direction of powder movement in the gas-powder mixture has stabilized, the excess gas is discharged. 4. The structure must be designed to prevent disturbances when the powder is applied to the target object (especially the coating part of the coating device). 5. To provide a coating method that enables the formation of multiple rows of electrodes using multiple rolls with short face lengths to achieve high precision with a line pressure of up to about 50 kN/cm.
- the bulk density per square centimeter is made constant in order to make the coating weight per unit area of the powder constant before supply.
- the powder on the porous object is sucked from the opposite side of the porous object, the powder layer is leveled to the desired thickness with a squeegee or the like to make the bulk density constant, and then it is configured to be transported.
- the ejector pump is operated at high pressure in a pulsed manner in milliseconds, and even powder that is difficult to flow on a porous plate is forcibly adsorbed with pulse negative pressure and pushed downstream with a high pressure pulse flow, for example 0.3 MPa or more.
- the powder is adsorbed to a porous hollow roll or porous belt with negative pressure, moved with a constant bulk density, and the powder is released at the desired location and applied to the target object.
- the structure is designed so that the wind flow generated by the object moving at high speed does not affect the coating device and the object.
- the powder transport is of the powder adsorption roll type or adsorption belt type, the roll or belt is also partially enclosed at the coating position, making the whole of it the coating device, and the structure of the coating device is not affected by external factors.
- the coating device has an exhaust port for excess gas at least downstream of the coating device, and is designed to exhaust excess gas that affects powder adhesion.
- the small amount of powder discharged together with the excess gas in the coating device is always the same under the same conditions, so it adheres to the target at approximately the same ratio. Therefore, the amount of powder per unit area on the target adheres at the same ratio as the amount of powder supplied. 4.
- the electrode is designed to be compatible with wide-width objects, and an electrode powder layer with multiple electrode patterns is formed around the periphery of the uncoated area, allowing the electrode to be pressed with a roll with high press accuracy and a short face length in a later process.
- the linear pressure of the press roll is required to be as high as about 10 kN/cm to 50 kN/cm depending on the lamination process.
- the present invention is not limited to one application and one pressing, but multiple powder applications and multiple pressings or temporary pressings can be performed. Of the multiple pressings, only the final pressing needs to be performed with a high linear pressure. In addition, multiple pressings may be performed by temporarily pressing the entire electrode powder layer of a wide current collector with a single roll with a long face length.
- the electrodes on the pre-pressed current collector are slit, and then heated as necessary with a high-performance roll having a short surface length and pressed at high linear pressure for each electrode width. Therefore, it is possible to form multiple stripe electrodes with narrow electrode widths.
- the method for producing a secondary battery such as a LIB can be used to form electrodes for secondary batteries in general, electrodes for next-generation secondary batteries such as all-solid-state batteries and air batteries, electrodes for capacitors including electric double-layer capacitors, and further, by combining a dry method and a wet method, electrodes for fuel cells and water electrolysis, and microporous layers for gas diffusion layers can be formed. Furthermore, the method can be suitably applied to the fields of powder coating and powder adhesion for general metal flat plates, long plates, nonwoven fabrics, films, etc. Furthermore, each layer of a next-generation solar cell power generation layer can be formed by applying nano-sized or submicron fine powder that does not require a binder directly or in powder slurry form. Therefore, the present invention is as follows.
- the present invention provides a method for applying powder to a moving grounded object, comprising the steps of: filling a porous object with powder; stabilizing the weight of powder sucked in per second when sucking the powder and moving it downstream; sucking the powder through a suction port and transporting it as an air-powder mixture to a nozzle that communicates with a flow path by a pressure difference; discharging excess gas from the air-powder mixture to the outside midway through the flow path to increase the powder density per volume in the downstream flow path; connecting the nozzle to a powder application device, the inside of which is an opening facing the moving object and which is made of a structure with a space through which the powder flow moves; electrostatically charging the powder from the time of suction until it adheres to the object; and applying the powder to a moving object that is in contact with or close to the opening of the powder application device, which is grounded.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, which includes the steps of: filling a porous body with electrode powder; stabilizing the weight of the powder sucked in per second when sucking the powder and moving it downstream; sucking the powder through a suction port and transporting it as an air-powder mixture to a nozzle that communicates with a flow path by a pressure difference; discharging excess gas from the air-powder mixture to the outside midway through the flow path to increase the powder density per volume in the downstream flow path; connecting the nozzle to a powder coating device, which has an opening on the side facing the moving object, and has a structure with a space through which the powder flow moves inside the powder coating device, and electrostatically charging the powder between the time of suction and the time of attachment to the object; attaching the powder to an earthed object that is in contact with or in close proximity to the opening of the powder coating device to form a powder electrode layer; and pressing the powder electrode layer with a roll to form an electrode.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the method for stabilizing the suction weight of powder per second during suction of the powder is performed by operating an ejector pump with a compressed gas of 0.3 MPa or more and a pulse opening and closing of 10 cycles or more per second when sucking and pumping the powder on the porous body with the ejector pump.
- the method of the present invention for stabilizing the suction weight of powder per second during suction of the powder provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that when sucking powder with a constant bulk density into a recess of a porous object, negative pressure is applied to the porous surface opposite the recess, and the powder is volumetrically filled into the recess to make the bulk density of the powder in the recess constant, thereby stabilizing the bulk density of the powder in the recess per volume.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the position of the flow path for discharging excess gas from the gas-powder mixture is upstream of the point where the cross-sectional area of the flow path is reduced to 1/4 or less, and the powder density of the downstream flow path with the smaller cross-sectional area is increased to move the powder.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that at least one corona electrode or elongated electrode is arranged in a shape corresponding to a wide area in the space inside the powder coating device of the present invention, the powder is charged, at least both sides and the wall of the upstream part of the space are made of a material that electrostatically repels the charged powder, and the wall is structured to block the flow of external wind with the object moving in contact with or close to the object side end of the wall, at least the walls on both sides in the moving direction of the object regulate the flow of the powder flow to cause the powder to adhere to the object, the space is extended downstream, the powder that does not adhere to the object is electrostatically repelled or recharged by the corona electrode located downstream, increasing the chance of it adhering to the object as it moves downstream, and at least the excess gas inside the coating device is discharged from the most downstream exhaust port of the powder device.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that a plurality of partitions are provided on the inside of both side walls of the coating device, and a single or multiple nozzles are provided between the partitions, and the partitions form a plurality of stripe-shaped powder electrode layers and uncoated areas in the width direction perpendicular to the target object.
- the present invention provides a method for manufacturing a secondary battery, which is characterized by a step of vacuum-sucking the powder scattered in the electrode uncoated area between the powder layer electrodes in the moving direction of the object along the width of the electrodes and discharging it to the outside, and further vacuum-sucking the powder other than the electrode pattern on the object perpendicular to the electrodes in the moving direction of the object to form the electrode uncoated area, thereby forming the powder uncoated area and the powder electrode pattern layer.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the electrode is formed by stacking powder on an object and pressing with a roll multiple times, and at least in the final press, the object and the powder layer are heated to a temperature equal to or higher than the softening point of the binder contained in the electrode powder, and pressed with a linear pressure of 10 kN/cm or more to form an electrode.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that in the roll press process for laminating the current collector, negative electrode layer, electrolyte layer, positive electrode layer, and current collector, which is a subsequent process for forming the electrodes, the roll temperature or powder temperature is heated to a temperature equal to or higher than the softening point of the binder or electrolyte polymer contained in the electrode powder, and pressed with a linear pressure of 10 kN/cm to 50 kN/cm.
- the present invention provides a method for producing a secondary battery or an all-solid-state battery, characterized in that the electrode powder is a powder granulated from at least one selected from among active material particles for electrodes, electrolyte particles or fibers, binders, electrolyte polymers, conductive assistants, and core-shell particles obtained by dry granulation of active material particles and electrolytes.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, which is characterized in that, before applying electrode powder to the current collector of the object of the present invention, a dispersant is added to a conductive assistant consisting of carbon nanotubes or carbon nanofibers, and then a binder solution or a slurry consisting of binder fine particles having an average particle size of 0.1 micrometers or less and a poor solvent is selected and added to the current collector, and the liquid having a solid content of 1.5% or less is applied to a wet thickness of 15 micrometers or less.
- the present invention provides a method for applying powder to an object by sucking in the powder supply position of a porous hollow roll rotating in the moving direction of the object, depositing and stacking the powder on the outer periphery of the roll, and releasing the powder at the application position to the object, by creating a negative pressure inside the roll at the powder loading position to suck in the powder and deposit the powder on the surface of the roll to form a powder layer and stabilize the bulk density of the powder layer, providing an electrostatic charging means between the roll and the object to charge the powder, releasing the powder from inside the roll at least at the closest position to the roll of the object by compressed gas, earthing the powder on the surface of the roll and depositing it on the moving object, and providing an enclosure means with an exhaust port for excess gas between the roll and the object to prevent the influence of wind from the outside and the outflow of the powder to the outside of the application device.
- the present invention provides a powder application method characterized in that a hollow roll into which the powder is filled has at least one porous recessed shape, the powder is filled into the recessed portion while being sucked from the hollow side of the roll, and in an application device located close to the object, the powder in the recessed portion is sprayed from the hollow side by positive pressure gas to apply it to the object.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the powder is applied to an object by sucking the powder at a supply position of the electrode powder of a porous hollow roll rotating in the moving direction of the object, depositing and stacking the powder on the outer periphery of the roll, and releasing the powder at a coating position for the object, by applying the powder to the object by applying a negative pressure inside the roll at the powder loading position to suck the powder and deposit the powder on the surface of the roll to form a powder layer and stabilizing the bulk density of the powder layer, providing an electrostatic charging means between the roll and the object to charge the powder, at least at the closest position of the object to the roll, releasing the powder from inside the roll with compressed gas, and depositing the powder on the surface of the roll to the moving object while being grounded, and applying the powder to the object, and providing an enclosure means with an exhaust port for excess gas between the roll and the object as a coating device to prevent the influence of wind from the outside and the outflow
- the present invention provides a method for applying powder to an object by applying a powder on a porous belt that rotates in the direction of movement of the object, comprising the steps of: applying negative pressure to the opposite side of the belt at a powder supply position to suck in the powder and deposit the powder on at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means; detaching and earthing the powder on the belt at an application position for the object to deposit the powder on the moving object; and providing an enclosure with an exhaust port for excess gas between the belt and the object at the application position to prevent the effect of wind from outside and the outflow of powder to the outside as an application device, thereby applying powder to the object.
- the present invention provides a method for manufacturing a secondary battery or an all-solid-state battery by applying an electrode powder on a porous belt that rotates in the moving direction of the object to the object to form an electrode, comprising the steps of: applying a negative pressure to the opposite side of the belt at the powder supply position to suck in the powder and attach it to at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means; removing and earthing the powder on the belt at the application position to the object to attach the powder to the moving object; and providing an enclosure with an outlet for excess gas between the belt and the object at the application position as an application device to prevent the influence of wind from the outside and the outflow of the powder to the outside, thereby applying the electrode powder to the object to form an electrode.
- the composite material for electrodes of secondary batteries and all-solid-state batteries of the present invention can be made into particles by mixing at least active material particles for electrodes, inorganic electrolyte particles, inorganic electrolyte fibers, inorganic fine particles, binders, electrolyte polymers, and conductive assistants.
- the particles can be made into particles by mixing multiple materials and granulating them, or by coating the core particles with a liquid such as a slurry or solution containing a single or different materials to encapsulate them.
- the active material particles can be dry-coated with electrolyte particles to make particles with the active material particles as the core and the electrolyte as the shell.
- a milling method or mechanochemical method in which multiple fine particles, such as nanoparticles, are mixed and made into particles can also be used.
- these particles will be referred to as composite particles or mixed particles hereinafter.
- PVDF polyvinylidene fluoride
- NMP normal methylpyrrolidone
- DMF dimethylpyrrolidone
- the binder is foamed with gas in advance to increase its volume and expand the bonding area. Therefore, a binder with elasticity has the effect of filling the voids between active material particles together with fine active material particles and conductive assistant.
- polyethylene oxide (PEO) which is used as an electrolyte polymer
- PEO polyethylene oxide
- PTFE polyethylene oxide
- PVDF polyethylene styrene
- the active material and electrolyte particles granulated by this method can be handled and applied as powder.
- application can be performed with high precision by using Patent No. 6328104 and Patent No. 6481154, which the inventor invented and holds the rights to.
- a film When applying as a powder, a film can be formed by pressing after application, or by heating to a temperature above the softening point of the binder and pressing after laminating the electrolyte layer and counter electrode.
- the powder can be made more fluid by using a matrix of high molecular weight PVDF, PTFE and PEO or by mixing them together, and further mixing them with ceramic fine particles.
- Oxide-based electrolyte particles and sulfide-based electrolyte particles can be used alone or mixed with the binder or electrolyte polymer.
- a poor solvent, recovered liquefied carbon dioxide gas or its supercritical fluid is added to make a slurry, which is then sprayed onto a heated object, allowing instantaneous dry coating that is denser than powder coating, and the desired coating film can be obtained.
- sulfide-based electrolytes such as argyrodite-based electrolytes
- argyrodite-based electrolytes have good ionic conductivity, but require a dehumidified atmosphere with a dew point of -50°C or even -70°C or lower, or the filling of an inert gas such as argon gas, which tends to increase the size of the equipment. Therefore, in this invention, not only can the compact device apply powder and press or heat press, but also the DRY on WET method, which enhances the adhesion of the powder, can be used.
- a conductive assistant such as carbon nanotubes, a dispersant that has an anchoring effect on the target object, binder fine particles or short fibers with a low solid content, and a slurry made of a solvent mainly composed of a poor solvent for the binder are applied, and then the powder is applied and heat pressed to create a dry electrode layer with high adhesion to the interface with the target object.
- conventional electrodes for secondary batteries and all-solid-state batteries were formed by mixing a mixture of materials selected from at least electrode active material particles, inorganic electrolyte particles, inorganic electrolyte fibers, inorganic fine particles, fluorine-based binders, polymeric ion-conductive electrolyte polymers, and conductive assistants with a high-boiling point solvent such as NMP that can dissolve PVDF, etc., to form a slurry, which was then applied to objects such as current collectors.
- a high-boiling point solvent such as NMP that can dissolve PVDF, etc.
- a selected mixed material from the above-mentioned electrode materials for secondary batteries, etc. is handled as a particulate powder, which is applied to an object such as a current collector, and then heated to above the softening point of the thermoplastic or electrolyte polymer, or above the melting point if possible, and pressed to form an electrode.
- powders that are not smooth and suitable for powder fluidity such as binders and electrolyte polymers, for example polymers such as PEO, can be mixed with other hard polymers, such as PTFE or inorganic fine particles, and handled as polymer particles.
- the inorganic fine particles can be oxide-based electrolyte particles, sulfide-based particles, or fibers. A mixture of these is also acceptable.
- 1-2 is a schematic cross-sectional side view of a powder coating unit for coating an object with electrode powder according to an embodiment of the present invention.
- 2-1 A schematic cross-sectional plan view of multiple powder nozzles, an electrostatic electrode, and a gas or powder flow outlet according to an embodiment of the present invention.
- 2-2 A schematic cross-sectional plan view of an embodiment of the present invention in which multiple partition sections are provided in parallel in the direction of movement of the target object in the application section.
- 2-3 A schematic cross-sectional side view of a powder application section according to a practical embodiment of the present invention.
- 1 is a schematic cross-sectional side view of a powder coating unit according to an embodiment of the present invention, showing how powder is applied to an object moving below the powder coating unit.
- FIG. 1 is a schematic cross-sectional side view of an embodiment of the present invention in which an electrode liquid, for example a slurry, is applied to an object and then powder coating is performed thereon.
- the bottom surface of the powder coating unit according to the embodiment of the present invention is a rotating body.
- the rotating body can have a porous surface, and compressed gas can be added to the coating unit to fill the powder.
- the bottom surface of the powder coating unit according to the embodiment of the present invention is a circulating belt, and the belt is porous so that compressed gas can be added to fluodize the powder.
- FIG. 1 is a schematic cross-sectional view showing the supply of powder to a porous roll and the application of the powder to an object by separation of the powder within a coating device according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing the supply of powder to a porous belt, the separation of the powder within a coating device, and the coating of the powder onto an object in an embodiment of the present invention.
- powder is applied onto an object 1 through a suction port 3 of a powder pump 4 such as an ejector pump.
- the gas is sucked in through the flow passage 5 and is forced out into the flow passage 5.
- the flow passage 5 may be a pipe or tube with an inner diameter of about 6 mm to 12 mm, such as a metal pipe, rubber, ceramics, or plastic.
- the flow passage 7 beyond the flow passage 5 can be narrowed to enrich the powder density of the powder fluid. By enriching the powder ratio and smoothly moving the powder into the narrow tube, mainly excess gas can be discharged to the outside from the outlets 6, 6'.
- the outlets 6, 6' are connected to a mini cyclone (not shown) or the like, and the powder mixed in the surplus gas can be collected and reused.
- the tube with a narrow inner diameter can also be a tube made of PTFE or PFA with an inner diameter of about 4 mm to 2 mm. It can be 1 mm or 5 mm.
- the tube can be made of a material that is easily charged with binders, electrolyte polymers, etc.
- the powder is a polyamide-based powder such as nylon
- the inner surface of the tube should be PTFE, and efficient frictional charging can be achieved by earthing the outer surface of the tube.
- the positive electrode binder of a secondary battery is notably mostly fluorine-based, and the active material is hard and easy to scrape the inner surface of the tube, but in order to ignore contamination due to wear on the inner surface of the tube, a fluorine-based tube with good slipperiness of powder such as PTFE or PFA is selected, and the powder can be ionized by ionizing the gas in the atmosphere with a corona electrode and ionizing the powder that comes into contact with it.
- the negative electrode is good for ionizing air (mainly oxygen), and the positive electrode is good for charging nitrogen.
- the present invention provides exhaust ports 6, 6' that allow excess gas to escape from the middle of the flow path, and the powder from the nozzle 8 can be made powder-rich.
- the exhaust can be evenly released around the entire circumference outside the tube, and the excess gas can also be released from one or more exhaust ports 6, 6'. If an exhaust means is provided immediately before narrowing the inner diameter of the flow path tube, the exhaust of excess gas becomes more effective. If the inner diameter of the tube suddenly changes from a large diameter to a small diameter, the powder fluid containing a large amount of compressed gas cannot flow into the small diameter tube and flows back to the ejector pump side.
- the tube should be gradually tapered to ensure a smooth flow.
- the powder is ejected from the nozzle 8, charged by electrostatic electrodes 11, 11', 11'' arranged in the powder coating section 16, flows out from the end 15 of the powder coating section 16, and adheres to the object 12 moving close to the end 15.
- the nozzle 8 may be angled toward the object 12 so that the powder collides with it and adheres to it.
- the electrostatic charge may already be charged in the flow path upstream of the nozzle or on the object 1 upstream of that.
- the object 12 may be placed via a conductive object such as a metal roll, and the end 15 and the object may be at a level where they are almost in contact, which may be about 0.5 to 3 mm. Therefore, even if the object moves at high speed, the wind flow that affects the adhesion of the powder can be prevented by a wall or the like and can be ignored. Furthermore, the powder is charged, and therefore the powder can be efficiently attached to the object in the powder coating section 16.
- the unattached powder and air flow move downstream, including the bottom 14, so the excess air flow and the powder that did not adhere to the object 12 are discharged by suction from the discharge port 10, and the powder is recovered and reused.
- the powder is ejected from the nozzle 8, moves along the walls 9, 9' on both sides, and is charged by the electrostatic discharge section, and the excess gas and powder that does not adhere to the object are sucked in and discharged from the discharge port 10.
- the number of nozzles It can be one or more.
- the distance between the walls but if you want to form the electrodes in a narrow stripe shape, it is better to set it to about 5 to 30 mm per nozzle. If you want to have electrodes with a wide width, you can install the desired number of powder coating sections in parallel.
- the powder coating section longer in the direction of movement of the object and keep the contact time of the powder longer, so that the powder can be attached more efficiently.
- the moving speed of the object is 60 m per minute, a length of 0.5 to 1 m or more is good. In this way, the contact time between the object and the powder will be 0.5 to 1 second or more.
- the particle size of the powder is large and the specific gravity is heavy, the bottom can be made porous and gas can be added to move it while it flows. The discharged powder can be sucked up and collected using a cyclone device (not shown) and reused.
- powder is ejected from the nozzles 28, 28', 28'', and moves while being restricted in the lateral direction by the walls 29, 29', becomes charged at the electrostatic discharge parts 21, 21', and adheres to the object moving above it (not shown).
- Static electricity is generated by an electrostatic generator (not shown) and is connected to an electrostatic cable 22 made of a conductor with resistance covered with an insulating material.
- sparks may occur when the metal foil of the object comes into contact with it, so a material with resistance that does not allow the current to flow suddenly and does not spark should be selected.
- a thin corona pin is suitable for the discharge point, and the discharge current is at the microampere level, for example, 50 microamperes, and the voltage is adjusted to a range of about 20,000 to 700,000 volts.
- polypropylene or other materials to which charged powder does not easily adhere due to electrostatic repulsion should be selected for the walls 29, 29' and the bottom 26 of the powder coating part.
- the desired number of nozzles can be selected from, for example, 1 to 100.
- the nozzles can enter the powder coating part, and the walls can be processed to make them into nozzles.
- partitions 25, 25' can be provided between walls 29, 29' for the desired number of nozzles.
- the main purpose of the partitions is to regulate the widthwise flow of powder downstream between the wide walls and move it into a laminar flow.
- the partitions can regulate the flow of powder in the direction of movement of the object.
- the tip in particular should be as thin as possible so that the partitions do not become a shadow and inhibit the powder from adhering to the object (not shown).
- the end of the partition 25 is located away from the wall end 209 so as not to interfere with adhesion to the target object.
- the bottom 24 is made porous and can be made into a powder fluidized bed by introducing compressed gas from the outside. Therefore, the powder that is sprayed out from the nozzle 28 and settles at the bottom can be moved while being fluidized. Excess gas and powder that does not adhere to the target object (not shown) can be sucked in from the discharge port 20 and transported to a cyclone (not shown) for recovery and reuse.
- powder is sprayed from the nozzle 38 of the powder application section located above the moving object 32, charged by the electrostatic discharge section 31, and falls or adheres to the object 32 in a directional manner to form a powder layer 102. Excess gas from the sprayed air-powder mixture and powder that does not adhere to the object are sucked in from the discharge port 30, allowing the powder to be collected.
- the position of the discharge port 30 is not limited. With this positional relationship, there is also no need to provide a special compressed gas-based filling function at the bottom 34 for powder fluidization.
- the powder layer 202 applied to the object 42 is moved to the pressing means 45, 45' and pressed.
- the pressing means may be heated, for example, a roll-type pressing means having an induction heating function.
- the roll pressing means may be a line press in the roll width direction. Since the pressing only needs to fix the powder until the next process, heating and pre-pressing to raise the binder above its softening point are sufficient. Therefore, when there is a small amount of binder, etc., the powder surface before pressing can be prevented from moving by evaporating it at 200°C or less or in a vacuum until the final heating and pressing process, or the object can be temporarily fixed by applying a viscous monomer or liquid plasticizer that is not a problem if it remains.
- a liquid is applied to a moving object 52 by a liquid application device to form a liquid coating layer 350.
- electrode powder is applied by a powder application device 310 to form a powder coating layer 302.
- the liquid may be a slurry for electrodes. It is desirable that the liquid easily penetrates into the gaps of the powder layer to be applied in the next process, is easily wetted, and evaporates instantly by heat or vacuum. In addition, in order to form a dense interface with the target object, it is desirable that the particle size of the electrode composite particles is smaller than the particle size of the powder.
- a liquid can be applied on the powder coating layer in the form of a thin film of a slurry or the like having a smaller average composite particle size or made of electrolyte particles using a liquid application device (not shown).
- the purpose is to improve the smoothness of the electrode or to form fine irregularities to improve the surface area. Therefore, a more uniform surface can be formed by applying the slurry or the like on the powder layer after hot pressing.
- the air-powder mixture is ejected from an ejection port 68, charged by an electrostatic discharge section 61, and adheres to an object 62. Excess air and powder that does not adhere to the object are sucked through an exhaust port 60, and the collected powder can be reused.
- This method uses a roll 64 instead of the bottom of the powder coating device. The roll 64 can be rotated.
- FIG. 7 is a diagram showing the configuration of a powder coating device for coating a moving object 72 with powder.
- Powder is ejected from a powder ejection port 78 and adheres to the object. Excess gas and powder that has not adhered to the object are sucked from an exhaust port, and the collected powder can be reused.
- the bottom of the powder coating device is a belt 74 that moves in the direction of movement of the object.
- the belt may be porous, for example a screen belt with fine openings, and pressurized gas may be applied to the belt 74 outside the coating device to form a full die structure at the bottom of the powder coating device to prevent the powder from accumulating at the bottom. Excess gas used in full die can be sucked out from the exhaust port.
- the roll is a hollow roll 84, and the hollow roll 84 is made porous, so that the inside 830 of the porous part of the hollow roll 84 can be made negative pressure at the position of the powder supplying device 802, and the powder can be attached to the surface of the roll.
- the gap between the rolls can be adjusted with a squeegee 801 to obtain a desired powder layer thickness with a stable bulk density. If the thickness of the lithium iron phosphate electrode powder after pressing is about 150 micrometers and the true specific gravity is about 2.3, the bulk density of the powder before supply is 0.8 to 0.9, so the powder layer thickness is about three times as thick, 450 micrometers.
- Such low bulk density powder falls when moved by a rotating body or the like, so it is necessary to further increase the bulk density by sucking it with a vacuum from the other side on a porous body.
- the powder layer with increased bulk density is moved to powder coating device 810, and since the roll can be structured so that compressed gas is fed from inside the roll at least closest to the object 82 or at a desired position, a positive pressure 820 is created inside the hollow space, causing the powder on the roll to be released and coated from below onto the object 82 moving above coating device 810.
- the powder is charged and earthed by static electricity generator 81, and adheres to the moving object to form a powder layer. If the gas used to spray the powder can be given directionality, it becomes surplus gas after coating and can be discharged from the exhaust port 80.
- Discharge may also be by suction.
- the coating device 810 can also prevent the flow of gas generated by the movement of the target object 82 outside the device. Therefore, the coating device 810 and the target object 82 can be close to each other by a few millimeters or less. At least the upstream side of the coating device can be in contact with each other. The small amount of powder discharged together with the excess gas during suction can be recovered and reused. The powder flow inside the coating device 810 is not affected by the wind flow outside the device, so a powder layer can be efficiently formed on the object 82 moving at high speed.
- a desired number of combinations of powder coating device 810, roll 84, and powder supply device 802 can be installed in the direction of movement of the object and stacked.
- Powder of the same type can be stacked, or different types of powder can be stacked.
- the charge/discharge performance can be improved by increasing the amount of electrolyte as the ratio of active material to electrolyte increases with distance from the current collector and applying at an angle.
- a groove of the electrode width can be formed around the porous hollow roll, and a recess can be formed on the cross section of the roll.
- the desired number of recesses can be formed and the powder can be adsorbed and filled in the porous parts in the same way, it is also possible to fill a large amount of powder depending on the shape of the recesses and apply the powder to the object in a thick film.
- the hollow roll 84 and the application device 802 can be reversed to move the object 82 moving under the application device with the opening facing downward, with the powder adsorbed to the porous roll or grooves at the top of the roll, and the powder can be released at the bottom and applied to the object.
- the powder can be released and applied to the object in either direction.
- the speed of the object and the rotation speed of the outer periphery of the hollow roll can be made constant, and the coating weight per unit area can be made constant by following the speed of the object moving roll-to-roll.
- a powder layer with a stable bulk density can be formed on the surface of a porous belt 94 that rotates in synchronization with the moving direction of the object by supplying powder 900 by a powder supplying device 902 at a desired position and applying negative pressure to the opposite side of the belt.
- a powder layer of a desired thickness can be formed on the belt by adjusting the gap with a squeegee 910.
- the powder supplying device 902 may be an auger feeder or the like, and the powder may be fluidized in a fluidized bed to adhere to the belt, or the powder may be sprayed to adhere. Therefore, the means of supply and adhesion are not limited.
- the powder layer moves together with the belt 94 and enters the powder coating device 901.
- compressed gas is discharged from the opposite side of the belt, and the powder on the belt 94 is separated, and the charged powder is grounded by static electricity generating devices 91, 91' and applied to the moving object to form a powder layer.
- a plurality of compressed gas ejection devices 920, 920' may be arranged in the belt moving direction to separate the powder on the belt and make it adhere to the object, or the powder may be ejected in a pulsed manner to coat the object with multiple layers of powder. If the compressed gas used to eject the powder can be given directionality, it becomes surplus gas and can be discharged from the exhaust port 90. Discharge can also be achieved by creating negative pressure and sucking.
- the coating device 910 also serves to prevent wind currents caused by the movement of the target object 92 outside the device. For this reason, this can be achieved by coating the target object with at least contact between the upstream part of the coating device 910 and the target object or by keeping the distance between the upstream part and the target object within a few millimeters.
- a desired number of combinations of powder coating devices 910, belts 94, and powder supply devices 902 can be installed in the direction of movement of the object and stacked.
- the powder can be the same type, or different types of powder can be stacked.
- the ratio of active material to electrolyte can be increased as the amount of electrolyte increases with distance from the current collector, and gradient coating can be used to improve charge/discharge performance. At least temporary pressing can be repeated for each layer.
- the surface opposite to the porous belt on the powder supply side is subjected to negative pressure and suction, so that the bulk density of the powder layer can be made constant.
- the side of the target object 92 is open, and an excess gas exhaust port 90 is provided downstream of the coating device 910 that encloses the powder layer moving on the belt 94, and the excess gas is exhausted through the exhaust port 90, so that the powder can be prevented from scattering to places other than the desired place on the target object.
- the small amount of powder discharged from the exhaust port can be sucked up and collected using a mini cyclone or similar device for reuse.
- the gist of the present invention is to make a powder of composite particles of a composite material for secondary battery electrodes, which includes an all-solid-state battery electrode, and apply the mixture to an object such as a current collector while preventing the powder from agglomerating into a desired ratio, and then heat it as necessary in a short press to form an electrode.
- an object such as a current collector
- a surfactant, a dispersant, etc. can be selected and mixed with a resin such as a binder with a small amount of anchor effect dissolved or dispersed in a solvent that evaporates in a later process and applied.
- a powder of fine particles smaller than the average particle size of the powder of the active material, etc. can be mixed.
- a slurry of the electrode material in which the binder has been dissolved or swollen can be applied.
- the solvent or a plasticizer that can evaporate in a later process can be applied in a small amount to the surface of the powder layer to fix the powder layer until the pressing process.
- the powder-coated surface that comes into contact with the electrolyte layer can be provided with a micron-level fine uneven surface to increase the surface area and improve adhesion with the electrolyte layer, so fine powder can be applied to at least one side of the electrode layer and electrolyte layer.
- the present invention allows the formation of electrodes for secondary batteries. It is even possible to form electrodes for all-solid-state batteries and semi-solid-state batteries.
- the manufacturing method for secondary batteries such as LIBs can be used to form electrodes for secondary batteries in general, electrodes for next-generation secondary batteries such as all-solid-state batteries and air batteries, for example, electrodes for capacitors including electric double-layer capacitors, and further, by using the dry method and the wet method alone or in combination, to form electrodes for fuel cells and water electrolysis, and microporous layers for gas diffusion layers.
- it can be suitably applied to the coating and adhesion of powder to general metal flat plates, long plates, nonwoven fabrics, films, etc.
- the use of nano-sized or submicron fine powders can further expand the field of application, and it can be used to form each layer of next-generation solar cells, for example.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
[Problem] An electrode of a secondary battery such as LIB and an electrode of an all-solid-state battery have been formed by: preparing a slurry using an active material, a binder, an electrolyte polymer, inorganic electrolyte particles, inorganic electrolyte fibers, a conductive assistant and a solvent that dissolves the binder and the like; applying the slurry to an object such as a collector; and drying and pressing the slurry thereon. Particularly, since the polymer for the positive electrode is a fluorine-based binder such as vinylidene fluoride, an organic solvent that dissolves the polymer has a high boiling point, and a drying furnace therefor is a large device of more than 100 m and requires a large installation area. Consequently, a device for recovering the solvent is large in size and consumes a large amount of energy, and even a battery for battery cars has involved a big problem in terms of CO2 emissions based on LCA. [Solution] By instantaneously changing a slurry, which is obtained by uniformly mixing electrode mixture materials, into a powder by a dedicated device, the powder particles have the same proportions of the materials regardless of the diameters of the particles. By applying the powder directly to an object, or by applying a powder slurry mainly composed of the powder and a solvent having a low boiling point to an object and volatilizing and recovering the solvent within a short period of time, a denser powder layer is formed. According to the present invention, an electrode can be formed by only performing roll pressing.
Description
本発明は、粉体の塗布方法、二次電池の製造方法、全固体電池の製造方法、二次電池、全固体電池に関する。
従来リチウムイオンバッテリー(LIB)などの二次電池の電極には固形分の重量比で数パーセント以下の樹脂系バインダーが多く使用されていた。耐熱性や耐溶剤性、耐久性の面から特に正極ではフッ化ビニリデン(PVDF)などのフッ素系バインダーが多用されていた。
LIBの電極は活物質粒子と導電助剤とバインダーと溶媒で合材スラリーを作成しアルミニウム箔や銅箔、ステンレススチール箔などの集電体に塗布し乾燥させ電極を形成していた。全固体電池の電極には活物質粒子、電解質粒子や繊維、導電助剤、バインダーと溶媒で合材スラリーを作成し集電体に塗布して乾燥し電極を形成していた。 The present invention relates to a powder coating method, a method for manufacturing a secondary battery, a method for manufacturing an all-solid-state battery, a secondary battery, and an all-solid-state battery.
Conventionally, electrodes for secondary batteries such as lithium-ion batteries (LIBs) have often used resin-based binders with a solid content of less than a few percent by weight. Fluorine-based binders such as polyvinylidene fluoride (PVDF) have been widely used, especially for the positive electrode, due to their heat resistance, solvent resistance, and durability.
For LIB electrodes, a composite slurry is made from active material particles, conductive additives, binders, and solvents, which is then applied to a current collector such as aluminum foil, copper foil, or stainless steel foil and dried to form the electrode.For all-solid-state battery electrodes, a composite slurry is made from active material particles, electrolyte particles or fibers, conductive additives, binders, and solvents, which is then applied to a current collector and dried to form the electrode.
従来リチウムイオンバッテリー(LIB)などの二次電池の電極には固形分の重量比で数パーセント以下の樹脂系バインダーが多く使用されていた。耐熱性や耐溶剤性、耐久性の面から特に正極ではフッ化ビニリデン(PVDF)などのフッ素系バインダーが多用されていた。
LIBの電極は活物質粒子と導電助剤とバインダーと溶媒で合材スラリーを作成しアルミニウム箔や銅箔、ステンレススチール箔などの集電体に塗布し乾燥させ電極を形成していた。全固体電池の電極には活物質粒子、電解質粒子や繊維、導電助剤、バインダーと溶媒で合材スラリーを作成し集電体に塗布して乾燥し電極を形成していた。 The present invention relates to a powder coating method, a method for manufacturing a secondary battery, a method for manufacturing an all-solid-state battery, a secondary battery, and an all-solid-state battery.
Conventionally, electrodes for secondary batteries such as lithium-ion batteries (LIBs) have often used resin-based binders with a solid content of less than a few percent by weight. Fluorine-based binders such as polyvinylidene fluoride (PVDF) have been widely used, especially for the positive electrode, due to their heat resistance, solvent resistance, and durability.
For LIB electrodes, a composite slurry is made from active material particles, conductive additives, binders, and solvents, which is then applied to a current collector such as aluminum foil, copper foil, or stainless steel foil and dried to form the electrode.For all-solid-state battery electrodes, a composite slurry is made from active material particles, electrolyte particles or fibers, conductive additives, binders, and solvents, which is then applied to a current collector and dried to form the electrode.
しかしPVDFなどのフッ素系や高分子のバインダーを溶解するのが難しくノルマルメチルピロリドン(NMP)やDMFなどの限られた特殊溶媒しかなかなく業界ではNMPを使用する傾向にあった。
しかしこれらの溶媒は沸点が高く溶媒を蒸発させスラリーを乾燥させるための生産ラインの乾燥装置は100メートル長さの超大型のオーブンを必要としていた。また揮発した溶媒を回収するための装置には高いイニシャルコストとランニングコストを必要としていた。そのため多くのエネルギーを浪費することになるので電気自動車(EV)は環境に良いとされながらEV製造過程ではカーボンニュートラルへの貢献は高くなかった。 However, it is difficult to dissolve fluorine-based and polymeric binders such as PVDF, and only a limited number of special solvents such as normal methylpyrrolidone (NMP) and DMF are available, so the industry has tended to use NMP.
However, these solvents have high boiling points, and the drying equipment on the production line to evaporate the solvent and dry the slurry required an extra-large oven 100 meters long. In addition, the equipment to recover the evaporated solvent required high initial and running costs. As a result, a lot of energy was wasted, so although electric vehicles (EVs) are said to be environmentally friendly, the EV manufacturing process did not contribute much to carbon neutrality.
しかしこれらの溶媒は沸点が高く溶媒を蒸発させスラリーを乾燥させるための生産ラインの乾燥装置は100メートル長さの超大型のオーブンを必要としていた。また揮発した溶媒を回収するための装置には高いイニシャルコストとランニングコストを必要としていた。そのため多くのエネルギーを浪費することになるので電気自動車(EV)は環境に良いとされながらEV製造過程ではカーボンニュートラルへの貢献は高くなかった。 However, it is difficult to dissolve fluorine-based and polymeric binders such as PVDF, and only a limited number of special solvents such as normal methylpyrrolidone (NMP) and DMF are available, so the industry has tended to use NMP.
However, these solvents have high boiling points, and the drying equipment on the production line to evaporate the solvent and dry the slurry required an extra-large oven 100 meters long. In addition, the equipment to recover the evaporated solvent required high initial and running costs. As a result, a lot of energy was wasted, so although electric vehicles (EVs) are said to be environmentally friendly, the EV manufacturing process did not contribute much to carbon neutrality.
上記の如く、従来LIB等の二次電池の電極形成は活物質、バインダー、導電助剤、バインダーを溶解する溶媒等でスラリーを作成し、移動する集電体にダイヘッド等で塗工し乾燥していた。塗工スピードを上げることで乾燥炉は巨大化して全長が100m以上に及ぶことさえあった。乾燥炉の一般的動力や熱源は炭酸ガスの排出源であり、電気自動車でカーボンニュートラル(CN)に貢献できる反面ライフサイクルアセスメント(LCA)の観点からすると逆行していた。
As mentioned above, conventionally, electrodes for secondary batteries such as LIBs were formed by creating a slurry from active material, binder, conductive additive, and a solvent to dissolve the binder, which was then coated on a moving current collector using a die head and dried. Increasing the coating speed led to huge drying ovens, sometimes reaching a total length of over 100 m. The general power and heat sources for drying ovens are sources of carbon dioxide emissions, and while this can contribute to carbon neutrality (CN) in electric vehicles, it is counterproductive from the perspective of life cycle assessment (LCA).
本発明の目的は既存の二次電池や次世代二次電池全般、特に全固体電池等の特にスラリー方式による電極や電池の製造方法をドライ方式またはそれに準じた方式にしてカーボンニュートラルに貢献することにある。また製造コストの面から単位ワット時当たりのコストを下げることも重要な目標の一つである。その為には、省資源、省エネルギー、省スペースをより一層追求することである。また電極形成や電池セルなどの成果物トータルの生産性を従来工法と少なくとも同等にすることである。
その為には電極材料や電解質材料用の必要とする溶媒は上流工程の限られたスペースで密閉または準密閉に近い小スペース内での工法でハンドリングし工程を完結し溶媒も回収すべきである。
そのような課題を解決するためWET工法の電極スラリーを集電体に塗布し乾燥する工法から電極合材をDRY(粉体)にして集電体に塗布し電極を形成するテスト規模の試みが米国の大学などの研究機関でなされている。
一方生産ラインに照準を合わせた工法で情報開示しているのがTESLA(テスラ)社である。テスラ社は二次電池の既存の電極用スラリーでの電極形成から電極用粉体での電極形成にチャレンジしトータルコストまで大幅に低減する画期的な二次電池ドライプロセスの情報を開示している。
電極用合材粒子からなる粉体を集電体に塗布しプレスロールで圧着することで従来の大型乾燥炉を不要とし更に溶剤回収装置を必要としないので設備の接地面積が1/10以下になるとしている。 The objective of the present invention is to contribute to carbon neutrality by converting the manufacturing method of electrodes and batteries, particularly slurry-type, for existing secondary batteries and next-generation secondary batteries in general, particularly all-solid-state batteries, into a dry method or a method equivalent thereto. Another important goal is to reduce the cost per unit watt-hour in terms of manufacturing costs. To achieve this, it is necessary to further pursue resource conservation, energy conservation, and space conservation. It is also necessary to make the total productivity of the products, such as electrode formation and battery cells, at least equivalent to that of conventional methods.
To achieve this, the solvents required for electrode and electrolyte materials must be handled in a small, sealed or nearly sealed space in the limited space of the upstream process, the process must be completed, and the solvent must be recovered.
To solve these problems, research institutes such as universities in the United States are conducting test-scale trials to form electrodes by forming the electrode mixture into a dry (powder) electrode mixture and applying it to the current collector, instead of the wet method of applying the electrode slurry to the current collector and drying it.
Meanwhile, Tesla has disclosed information on a method that is geared towards production lines. Tesla has challenged itself to form electrodes from powder instead of the existing electrode slurry for secondary batteries, and has disclosed information on a groundbreaking dry process for secondary batteries that significantly reduces the total cost.
By applying a powder made of electrode composite particles to a current collector and pressing it with a press roll, the conventional large drying oven is no longer necessary, and since there is no need for a solvent recovery device, the equipment's ground surface area is said to be 1/10 or less.
その為には電極材料や電解質材料用の必要とする溶媒は上流工程の限られたスペースで密閉または準密閉に近い小スペース内での工法でハンドリングし工程を完結し溶媒も回収すべきである。
そのような課題を解決するためWET工法の電極スラリーを集電体に塗布し乾燥する工法から電極合材をDRY(粉体)にして集電体に塗布し電極を形成するテスト規模の試みが米国の大学などの研究機関でなされている。
一方生産ラインに照準を合わせた工法で情報開示しているのがTESLA(テスラ)社である。テスラ社は二次電池の既存の電極用スラリーでの電極形成から電極用粉体での電極形成にチャレンジしトータルコストまで大幅に低減する画期的な二次電池ドライプロセスの情報を開示している。
電極用合材粒子からなる粉体を集電体に塗布しプレスロールで圧着することで従来の大型乾燥炉を不要とし更に溶剤回収装置を必要としないので設備の接地面積が1/10以下になるとしている。 The objective of the present invention is to contribute to carbon neutrality by converting the manufacturing method of electrodes and batteries, particularly slurry-type, for existing secondary batteries and next-generation secondary batteries in general, particularly all-solid-state batteries, into a dry method or a method equivalent thereto. Another important goal is to reduce the cost per unit watt-hour in terms of manufacturing costs. To achieve this, it is necessary to further pursue resource conservation, energy conservation, and space conservation. It is also necessary to make the total productivity of the products, such as electrode formation and battery cells, at least equivalent to that of conventional methods.
To achieve this, the solvents required for electrode and electrolyte materials must be handled in a small, sealed or nearly sealed space in the limited space of the upstream process, the process must be completed, and the solvent must be recovered.
To solve these problems, research institutes such as universities in the United States are conducting test-scale trials to form electrodes by forming the electrode mixture into a dry (powder) electrode mixture and applying it to the current collector, instead of the wet method of applying the electrode slurry to the current collector and drying it.
Meanwhile, Tesla has disclosed information on a method that is geared towards production lines. Tesla has challenged itself to form electrodes from powder instead of the existing electrode slurry for secondary batteries, and has disclosed information on a groundbreaking dry process for secondary batteries that significantly reduces the total cost.
By applying a powder made of electrode composite particles to a current collector and pressing it with a press roll, the conventional large drying oven is no longer necessary, and since there is no need for a solvent recovery device, the equipment's ground surface area is said to be 1/10 or less.
電極形成時、溶剤を使用しない粉体による電極ドライ形成法はプレスのみの圧着で必要により短時間の加熱と圧着で電極を形成できるので設置内面積が少なく特にバインダーが高分子のフッ素系等の熱可塑性樹脂の場合架橋反応する加熱時間は無くて良いので理想的である。本発明者はこれらの情報より前にLIBの電極形成にも対応した粉粒体の塗布方法と成膜方法を既に提案している。しかし高速の生産ラインでは電極用粉体または電極用合材を粉体にして適用する場合避けては通れない高いハードルの以下の大きな課題をかかえていた。粉体粒子群ハンドリング業界(例えば粉体塗料での塗装業界)の常識として粉体は微粉になるほど綿菓子の如くフワフワし凝集がひどく嵩比重が安定しないため容積的供給方法でも安定供給は難しかった。またLIB電極用粉体の樹脂分であるバインダーが重量比で全固形分の数パーセント以下特に最近は性能アップの為1パーセント以下と粉体塗装用の粉体とはギャップが大きすぎた。そのため理想的と言われる球形に近づけた粉体の製造はおおよそ不可能であった。その理由で例えばロットごとの粉体粒子の粒度分布を一定にすることは難しかった。よって単位センチメートル面積当たりの塗布重量や塗膜均一性を求めるLIB電極形成には一般的な容積的フィーダーは適用できなかった。また樹脂分が僅少であると粉体を静電気で帯電させてアース物体に静電塗装する従来の生産ライン向けデータを応用することはできなかった。ドクターブレードで供給された粉体の厚みを調整する方法、例えば電動スクリュー式のオーガフィーダーや電動テーブルを使用した容積式フィーダー等でこのような粉体を移送しても単位面積当たりの塗布重量を例えば60乃至100±2.5マイクロメートルの膜厚相当の単位面積当たりの電極重量を一定にすることはできなかった。また30マイクロメートル程度のスギ花粉やPM2.5に代表されるように粉体粒子は気体の量が多い気粉混合体になるとエアロゾル挙動と同じで空中に浮遊し気体の流れに左右されていた。また平均粒子径が20乃至80マイクロメートル程前後で樹脂分がリッチな一般の静電粉体塗装の粉体粒子群さえ静電気的に帯電させても高速気流の中で対象物に静電気的に付着させることはできなかった。分速数十メートル以上例えば分速60メートル以上のスピードで移動する対象物に粉体を静電気で帯電させてスプレイしても粉体を50パーセント以上付着させることはできなかった。高速移動する対象物で発生する気流の流れに粉体流は乗り移動して対象物以外に飛散する為である。前記の様に強制的に静電気を帯電させた粉体でさえ風速が早く風量が多いとそのエネルギーに負けるので対象物への付着量は極めて少なかった。そして対象物以外の周囲に粉体が飛散していた。一般的な粉体塗装用粉体は静電気的に十分帯電しやすい樹脂量で構成された粉体となっていた。一方、二次電池電極形成のため活物質粒子などのバインダーは絶縁体のため固形分トータルの数パーセント以下更には1%以下と微量が良いとされていた。
そのためバインダー含有率の低いLIBや全固体電池の電極用合材粒子は帯電が不安定になるので更に対象物への塗着が難しかった。
かつ前記の様にLIB電極形成のスラリー塗工のラインスピードは分速60m以上の高速のため、スラリーの替わりの粉体による高速粉体塗膜形成は業界の常識とかけ離れていた。 The dry electrode formation method using powders that does not use solvents when forming electrodes can be ideal because it requires only pressing with a press and can form electrodes with short heating and pressing as necessary, and the installation area is small, and especially when the binder is a thermoplastic resin such as a polymeric fluorine-based resin, there is no need for heating time for crosslinking reaction. The inventor has already proposed a powder coating method and film formation method that are also suitable for LIB electrode formation prior to this information. However, when applying electrode powders or electrode composite materials in powder form on a high-speed production line, the following major challenges are unavoidable and high hurdles. It is common knowledge in the powder particle handling industry (for example, the powder coating industry) that the finer the powder, the fluffier it becomes like cotton candy, and the more severe the agglomeration is, and the more unstable the bulk density is, so it is difficult to supply it stably even with a volumetric supply method. In addition, the binder, which is the resin content of LIB electrode powder, is less than a few percent of the total solids by weight, and especially recently, due to performance improvements, it is less than 1%, which is too large a gap compared to powders for powder coating. Therefore, it was almost impossible to manufacture powders that are close to the ideal spherical shape. For this reason, it was difficult to make the particle size distribution of powder particles uniform for each lot. Therefore, a general volumetric feeder could not be applied to the formation of LIB electrodes, which requires coating weight per unit centimeter area and coating film uniformity. Also, if the resin content is small, it was not possible to apply data for conventional production lines in which the powder is electrostatically charged and electrostatically coated on an earthed object. Even if such powder was transported using a method for adjusting the thickness of the powder supplied by a doctor blade, such as an electric screw-type auger feeder or a volumetric feeder using an electric table, it was not possible to make the coating weight per unit area constant, for example, the electrode weight per unit area equivalent to a film thickness of 60 to 100 ± 2.5 micrometers. Also, when powder particles become an air-powder mixture with a large amount of gas, as typified by cedar pollen and PM2.5 of about 30 micrometers, they behave like aerosols, floating in the air and being affected by the flow of gas. Even if the powder particles of general electrostatic powder coating, which have an average particle size of about 20 to 80 micrometers and are rich in resin, were electrostatically charged, they could not be electrostatically attached to the target object in a high-speed airflow. Even if powder is electrostatically charged and sprayed on an object moving at a speed of several tens of meters per minute or more, for example, 60 meters per minute or more, it is not possible to adhere more than 50% of the powder. This is because the powder flow rides on the air current generated by the object moving at high speed and scatters to places other than the object. Even powder that is forcibly charged with static electricity as described above is overwhelmed by the energy of the high speed wind and large volume of air, so the amount of powder that adheres to the object is extremely small. And the powder is scattered around the area other than the object. General powder coating powder is made of a resin amount that is easily charged with static electricity. On the other hand, binders such as active material particles for forming secondary battery electrodes are insulators, so it was considered that a small amount of less than a few percent of the total solid content, or even less than 1%, is good.
As a result, the electrode composite particles for LIBs and solid-state batteries, which have a low binder content, become unstable in charging, making it even more difficult to apply them to the target object.
Furthermore, as mentioned above, the line speed for slurry coating to form LIB electrodes is high, at over 60 meters per minute, so high-speed powder coating formation using powder instead of slurry was far removed from industry common sense.
そのためバインダー含有率の低いLIBや全固体電池の電極用合材粒子は帯電が不安定になるので更に対象物への塗着が難しかった。
かつ前記の様にLIB電極形成のスラリー塗工のラインスピードは分速60m以上の高速のため、スラリーの替わりの粉体による高速粉体塗膜形成は業界の常識とかけ離れていた。 The dry electrode formation method using powders that does not use solvents when forming electrodes can be ideal because it requires only pressing with a press and can form electrodes with short heating and pressing as necessary, and the installation area is small, and especially when the binder is a thermoplastic resin such as a polymeric fluorine-based resin, there is no need for heating time for crosslinking reaction. The inventor has already proposed a powder coating method and film formation method that are also suitable for LIB electrode formation prior to this information. However, when applying electrode powders or electrode composite materials in powder form on a high-speed production line, the following major challenges are unavoidable and high hurdles. It is common knowledge in the powder particle handling industry (for example, the powder coating industry) that the finer the powder, the fluffier it becomes like cotton candy, and the more severe the agglomeration is, and the more unstable the bulk density is, so it is difficult to supply it stably even with a volumetric supply method. In addition, the binder, which is the resin content of LIB electrode powder, is less than a few percent of the total solids by weight, and especially recently, due to performance improvements, it is less than 1%, which is too large a gap compared to powders for powder coating. Therefore, it was almost impossible to manufacture powders that are close to the ideal spherical shape. For this reason, it was difficult to make the particle size distribution of powder particles uniform for each lot. Therefore, a general volumetric feeder could not be applied to the formation of LIB electrodes, which requires coating weight per unit centimeter area and coating film uniformity. Also, if the resin content is small, it was not possible to apply data for conventional production lines in which the powder is electrostatically charged and electrostatically coated on an earthed object. Even if such powder was transported using a method for adjusting the thickness of the powder supplied by a doctor blade, such as an electric screw-type auger feeder or a volumetric feeder using an electric table, it was not possible to make the coating weight per unit area constant, for example, the electrode weight per unit area equivalent to a film thickness of 60 to 100 ± 2.5 micrometers. Also, when powder particles become an air-powder mixture with a large amount of gas, as typified by cedar pollen and PM2.5 of about 30 micrometers, they behave like aerosols, floating in the air and being affected by the flow of gas. Even if the powder particles of general electrostatic powder coating, which have an average particle size of about 20 to 80 micrometers and are rich in resin, were electrostatically charged, they could not be electrostatically attached to the target object in a high-speed airflow. Even if powder is electrostatically charged and sprayed on an object moving at a speed of several tens of meters per minute or more, for example, 60 meters per minute or more, it is not possible to adhere more than 50% of the powder. This is because the powder flow rides on the air current generated by the object moving at high speed and scatters to places other than the object. Even powder that is forcibly charged with static electricity as described above is overwhelmed by the energy of the high speed wind and large volume of air, so the amount of powder that adheres to the object is extremely small. And the powder is scattered around the area other than the object. General powder coating powder is made of a resin amount that is easily charged with static electricity. On the other hand, binders such as active material particles for forming secondary battery electrodes are insulators, so it was considered that a small amount of less than a few percent of the total solid content, or even less than 1%, is good.
As a result, the electrode composite particles for LIBs and solid-state batteries, which have a low binder content, become unstable in charging, making it even more difficult to apply them to the target object.
Furthermore, as mentioned above, the line speed for slurry coating to form LIB electrodes is high, at over 60 meters per minute, so high-speed powder coating formation using powder instead of slurry was far removed from industry common sense.
引用文献1には基材に結着材塗液を塗布する工程と電極活物質を含む粉体をホッパーから供給しスキージーで調整し、粉体の目付量を制御し、電極幅外に供給された粉体を取り除く工程と、一対のプレスロールでリチウムイオン電池用電極を製造する方法が提案されている。
引用文献2は前記の本発明者により発明した粉粒体の塗布方法であって産業上の利用可能性でLIBなどの二次電池の電極形成への応用を開示している。
上記二つの文献の方法とも粉体の定量塗布は液体と違い難しいファクターが多い。液体や溶融体は粘度を一定にし、圧力を一定にし、吐出口径を一定にするだけで単位時間当たりの塗布重量は一定になる。液体の温度を一定にして密度を一定にすることができると容積ポンプで圧送することで塗布重量は一定になり管理しやすい。溶液やエマルジョンなどは温度を一定にすることで上記の手段を一定にさえしたら短時間当たり例えば1ミリ秒あたりの塗布重量さえ一定にできる。しかし活物質粒子と導電助剤とバインダーまたはバインダー溶液と溶媒、全固体電池の場合電解質を加えてなる電極用スラリーになる。比重の違う3種以上の不揮発分材料の混合体なので吐出時、分散状態が違うと致命的な欠陥になる。そのため安定混合分散した後塗布するまでの距離や時間が長いほどリスクが高くなる。LIBの製造速度である分速60メートルでは所要時間が僅か1秒で1メートル進んでしまうためである。つまり僅少の1ミリ秒分散が悪い電極スラリーを塗布すると1ミリメートルは不良になる。そのため本発明は混合分散がミリ秒単位で十分管理されたコンパクトな装置で予め電極用合材粉体を製造する。混合分散装置はスタティックミキサー等でよく、特に限定しないが微細に分散できる遠心力と向心力を利用したOHRミキサーや高速で回転させて混合分散させるダイナミックミキサー等は均一に瞬時にミリ秒単位の混合分散ができるので尚良い。合材粉体平均粒子径は活物質の粒子径より大きくしたら良い。つまり5マイクロメートル程度以上になる。粉体粒子径を大きくしたい場合、本発明では小径粉体と少なくとも溶媒でスラリーにして粉体が複数集合した大径粉体粒子を作成できる。本発明では粒子径が違っても合材内のそれぞれの材料の比率は同じなので電極合材粉体の粒子径に関係なく集電体等の対象物に粉体塗布装置で塗布しプレスして電極を形成できる。そのためパウダースラリーにしても合材粉体粒子径に関係なく合材比率は安定しているので、合材粉体のバインダーの貧溶媒特に低沸点溶媒、または貧溶媒を含む溶媒とからなるパウダースラリーを作成できる。貧溶媒は回収した炭酸ガスを液化させた液化炭酸ガスまたはその超臨界性流体で良い。そして対象物にパウダースラリーをダイコートやスプレイ塗布装置などで塗布し貧溶媒などを秒単位の短時間で揮発させ電極粉体層を形成しプレスして電極を形成できる。揮発した溶媒は小型回収装置で回収できる。必要により前記パウダースラリーに電極の固形分の許容される数パーセント以下に制限した微量のバインダー溶液やバインダーナノ微粒子または短繊維を付加しても良い。
パウダースラリーの場合秒単位の短時間で溶媒を揮発できるので溶媒回収装置も小型にできて、ロールプレスだけで電極形成ができるので従来のスラリー方式よりはるかに大きなメリットがある。しかし電池製造ラインでは石油に由来する有機溶剤を含まない溶媒からなるパウダースラリーや究極の粉体のみで電極形成することが理想である。そのため本発明では電極製造ラインの上流でまず電極用合材スラリーをコンパクトな装置で溶剤を回収しながら粉体に造粒することを提案する。上流とは電極活物質や電解質等を製造する工程が含まれ、電極製造ライン数ラインや数十ライン向けの電極用粉体を比較的小さな面積の設備で集約して合材粉体を製造できるためである。
全固体電池の場合は電解質材料を付加して配合したらよい。全固体電池向けに合材にするには活物質粒子と電解質のコアシェル粒子を作成し、導電助剤やバインダーと溶媒を付加し合材スラリーにして造粒しても良い。分散した合材スラリーはスプレイドライヤーの範疇である高速回転ディスクやベル等の遠心力造粒方法等で造粒でき造粒過程を静電反発させながら行うことで造粒中の粒子同士のブロッキングを防ぐことができる。Cited Document 1 proposes a method for producing an electrode for a lithium ion battery using a pair of press rolls, the method including a step of applying a binder coating liquid to a substrate, a step of supplying powder containing an electrode active material from a hopper and adjusting it with a squeegee to control the basis weight of the powder and removing the powder supplied outside the electrode width.
The citeddocument 2 discloses a powder coating method invented by the present inventor and discloses its industrial applicability in the formation of electrodes for secondary batteries such as LIBs.
In both of the methods described in the above documents, there are many difficult factors to apply a fixed amount of powder, unlike liquids. For liquids and molten materials, the coating weight per unit time can be made constant simply by keeping the viscosity, pressure, and nozzle diameter constant. If the temperature of the liquid can be kept constant and the density can be kept constant, the coating weight can be made constant by pumping with a volumetric pump, making it easy to manage. For solutions and emulsions, the coating weight per short period of time, for example, per millisecond, can be made constant by keeping the temperature constant and the above measures constant. However, the electrode slurry is made up of active material particles, conductive additives, binders or binder solutions and solvents, and in the case of solid-state batteries, electrolytes. Since it is a mixture of three or more non-volatile materials with different specific gravities, if the dispersion state is different at the time of discharge, it will cause a fatal defect. Therefore, the longer the distance and time from stable mixing and dispersion to application, the higher the risk. This is because at the manufacturing speed of LIBs at 60 meters per minute, it takes only one second to travel one meter. In other words, if poorly dispersed electrode slurry is applied in just one millisecond, one millimeter will be defective. Therefore, in the present invention, the electrode composite powder is produced in advance with a compact device in which the mixing and dispersion is adequately controlled in milliseconds. The mixing and dispersion device may be a static mixer or the like, and although not particularly limited, an OHR mixer that utilizes centrifugal force and centripetal force to finely disperse, or a dynamic mixer that rotates at high speed to mix and disperse, etc., are even better because they can mix and disperse uniformly and instantly in milliseconds. The average particle diameter of the composite powder should be larger than the particle diameter of the active material. In other words, it should be about 5 micrometers or more. If you want to increase the powder particle diameter, in the present invention, you can create a slurry of small-diameter powder and at least a solvent to create large-diameter powder particles in which multiple powders are aggregated. In the present invention, even if the particle diameter is different, the ratio of each material in the composite is the same, so regardless of the particle diameter of the electrode composite powder, the electrode can be formed by applying it to an object such as a current collector with a powder coating device and pressing it. Therefore, even if it is a powder slurry, the composite ratio is stable regardless of the composite powder particle diameter, so a powder slurry consisting of a poor solvent for the binder of the composite powder, especially a low-boiling point solvent, or a solvent containing a poor solvent, can be created. The poor solvent may be liquefied carbon dioxide gas obtained by liquefying the recovered carbon dioxide gas or a supercritical fluid thereof. The powder slurry is applied to the target object using a die coater or spray coating device, and the poor solvent is evaporated in a short time of seconds to form an electrode powder layer, which is then pressed to form an electrode. The evaporated solvent can be recovered using a small recovery device. If necessary, a small amount of binder solution, binder nanoparticles, or short fibers limited to a few percent or less of the solid content of the electrode may be added to the powder slurry.
In the case of powder slurry, the solvent can be evaporated in a short time of seconds, so the solvent recovery device can be made small, and electrodes can be formed using only a roll press, which has a much greater advantage than the conventional slurry method. However, in battery production lines, it is ideal to form electrodes using only powder slurry or ultimate powder made of a solvent that does not contain organic solvents derived from petroleum. Therefore, in this invention, we propose that the electrode composite slurry is first granulated into powder while recovering the solvent in a compact device upstream of the electrode production line. The upstream includes the process of producing electrode active materials, electrolytes, etc., and is because the composite powder can be produced by consolidating electrode powder for several or several tens of electrode production lines in a relatively small facility.
In the case of all-solid-state batteries, electrolyte materials can be added and mixed. To make a composite for all-solid-state batteries, active material particles and electrolyte core-shell particles can be created, and conductive additives, binders, and solvents can be added to make a composite slurry, which can then be granulated. The dispersed composite slurry can be granulated using centrifugal granulation methods such as high-speed rotating disks and bells, which are in the category of spray dryers, and the granulation process can be performed while causing electrostatic repulsion to prevent blocking between particles during granulation.
引用文献2は前記の本発明者により発明した粉粒体の塗布方法であって産業上の利用可能性でLIBなどの二次電池の電極形成への応用を開示している。
上記二つの文献の方法とも粉体の定量塗布は液体と違い難しいファクターが多い。液体や溶融体は粘度を一定にし、圧力を一定にし、吐出口径を一定にするだけで単位時間当たりの塗布重量は一定になる。液体の温度を一定にして密度を一定にすることができると容積ポンプで圧送することで塗布重量は一定になり管理しやすい。溶液やエマルジョンなどは温度を一定にすることで上記の手段を一定にさえしたら短時間当たり例えば1ミリ秒あたりの塗布重量さえ一定にできる。しかし活物質粒子と導電助剤とバインダーまたはバインダー溶液と溶媒、全固体電池の場合電解質を加えてなる電極用スラリーになる。比重の違う3種以上の不揮発分材料の混合体なので吐出時、分散状態が違うと致命的な欠陥になる。そのため安定混合分散した後塗布するまでの距離や時間が長いほどリスクが高くなる。LIBの製造速度である分速60メートルでは所要時間が僅か1秒で1メートル進んでしまうためである。つまり僅少の1ミリ秒分散が悪い電極スラリーを塗布すると1ミリメートルは不良になる。そのため本発明は混合分散がミリ秒単位で十分管理されたコンパクトな装置で予め電極用合材粉体を製造する。混合分散装置はスタティックミキサー等でよく、特に限定しないが微細に分散できる遠心力と向心力を利用したOHRミキサーや高速で回転させて混合分散させるダイナミックミキサー等は均一に瞬時にミリ秒単位の混合分散ができるので尚良い。合材粉体平均粒子径は活物質の粒子径より大きくしたら良い。つまり5マイクロメートル程度以上になる。粉体粒子径を大きくしたい場合、本発明では小径粉体と少なくとも溶媒でスラリーにして粉体が複数集合した大径粉体粒子を作成できる。本発明では粒子径が違っても合材内のそれぞれの材料の比率は同じなので電極合材粉体の粒子径に関係なく集電体等の対象物に粉体塗布装置で塗布しプレスして電極を形成できる。そのためパウダースラリーにしても合材粉体粒子径に関係なく合材比率は安定しているので、合材粉体のバインダーの貧溶媒特に低沸点溶媒、または貧溶媒を含む溶媒とからなるパウダースラリーを作成できる。貧溶媒は回収した炭酸ガスを液化させた液化炭酸ガスまたはその超臨界性流体で良い。そして対象物にパウダースラリーをダイコートやスプレイ塗布装置などで塗布し貧溶媒などを秒単位の短時間で揮発させ電極粉体層を形成しプレスして電極を形成できる。揮発した溶媒は小型回収装置で回収できる。必要により前記パウダースラリーに電極の固形分の許容される数パーセント以下に制限した微量のバインダー溶液やバインダーナノ微粒子または短繊維を付加しても良い。
パウダースラリーの場合秒単位の短時間で溶媒を揮発できるので溶媒回収装置も小型にできて、ロールプレスだけで電極形成ができるので従来のスラリー方式よりはるかに大きなメリットがある。しかし電池製造ラインでは石油に由来する有機溶剤を含まない溶媒からなるパウダースラリーや究極の粉体のみで電極形成することが理想である。そのため本発明では電極製造ラインの上流でまず電極用合材スラリーをコンパクトな装置で溶剤を回収しながら粉体に造粒することを提案する。上流とは電極活物質や電解質等を製造する工程が含まれ、電極製造ライン数ラインや数十ライン向けの電極用粉体を比較的小さな面積の設備で集約して合材粉体を製造できるためである。
全固体電池の場合は電解質材料を付加して配合したらよい。全固体電池向けに合材にするには活物質粒子と電解質のコアシェル粒子を作成し、導電助剤やバインダーと溶媒を付加し合材スラリーにして造粒しても良い。分散した合材スラリーはスプレイドライヤーの範疇である高速回転ディスクやベル等の遠心力造粒方法等で造粒でき造粒過程を静電反発させながら行うことで造粒中の粒子同士のブロッキングを防ぐことができる。
The cited
In both of the methods described in the above documents, there are many difficult factors to apply a fixed amount of powder, unlike liquids. For liquids and molten materials, the coating weight per unit time can be made constant simply by keeping the viscosity, pressure, and nozzle diameter constant. If the temperature of the liquid can be kept constant and the density can be kept constant, the coating weight can be made constant by pumping with a volumetric pump, making it easy to manage. For solutions and emulsions, the coating weight per short period of time, for example, per millisecond, can be made constant by keeping the temperature constant and the above measures constant. However, the electrode slurry is made up of active material particles, conductive additives, binders or binder solutions and solvents, and in the case of solid-state batteries, electrolytes. Since it is a mixture of three or more non-volatile materials with different specific gravities, if the dispersion state is different at the time of discharge, it will cause a fatal defect. Therefore, the longer the distance and time from stable mixing and dispersion to application, the higher the risk. This is because at the manufacturing speed of LIBs at 60 meters per minute, it takes only one second to travel one meter. In other words, if poorly dispersed electrode slurry is applied in just one millisecond, one millimeter will be defective. Therefore, in the present invention, the electrode composite powder is produced in advance with a compact device in which the mixing and dispersion is adequately controlled in milliseconds. The mixing and dispersion device may be a static mixer or the like, and although not particularly limited, an OHR mixer that utilizes centrifugal force and centripetal force to finely disperse, or a dynamic mixer that rotates at high speed to mix and disperse, etc., are even better because they can mix and disperse uniformly and instantly in milliseconds. The average particle diameter of the composite powder should be larger than the particle diameter of the active material. In other words, it should be about 5 micrometers or more. If you want to increase the powder particle diameter, in the present invention, you can create a slurry of small-diameter powder and at least a solvent to create large-diameter powder particles in which multiple powders are aggregated. In the present invention, even if the particle diameter is different, the ratio of each material in the composite is the same, so regardless of the particle diameter of the electrode composite powder, the electrode can be formed by applying it to an object such as a current collector with a powder coating device and pressing it. Therefore, even if it is a powder slurry, the composite ratio is stable regardless of the composite powder particle diameter, so a powder slurry consisting of a poor solvent for the binder of the composite powder, especially a low-boiling point solvent, or a solvent containing a poor solvent, can be created. The poor solvent may be liquefied carbon dioxide gas obtained by liquefying the recovered carbon dioxide gas or a supercritical fluid thereof. The powder slurry is applied to the target object using a die coater or spray coating device, and the poor solvent is evaporated in a short time of seconds to form an electrode powder layer, which is then pressed to form an electrode. The evaporated solvent can be recovered using a small recovery device. If necessary, a small amount of binder solution, binder nanoparticles, or short fibers limited to a few percent or less of the solid content of the electrode may be added to the powder slurry.
In the case of powder slurry, the solvent can be evaporated in a short time of seconds, so the solvent recovery device can be made small, and electrodes can be formed using only a roll press, which has a much greater advantage than the conventional slurry method. However, in battery production lines, it is ideal to form electrodes using only powder slurry or ultimate powder made of a solvent that does not contain organic solvents derived from petroleum. Therefore, in this invention, we propose that the electrode composite slurry is first granulated into powder while recovering the solvent in a compact device upstream of the electrode production line. The upstream includes the process of producing electrode active materials, electrolytes, etc., and is because the composite powder can be produced by consolidating electrode powder for several or several tens of electrode production lines in a relatively small facility.
In the case of all-solid-state batteries, electrolyte materials can be added and mixed. To make a composite for all-solid-state batteries, active material particles and electrolyte core-shell particles can be created, and conductive additives, binders, and solvents can be added to make a composite slurry, which can then be granulated. The dispersed composite slurry can be granulated using centrifugal granulation methods such as high-speed rotating disks and bells, which are in the category of spray dryers, and the granulation process can be performed while causing electrostatic repulsion to prevent blocking between particles during granulation.
バインダーが少ない粉体粒子はハンドリングの工程でも崩れやすく合材の各部位が脱落しやすい。参考文献1のような粒子が帯電していない場合粉体が少しの機械的衝撃で部分的に崩壊し微粉になるほど飛散し浮遊し典型的なエアロゾル流体の挙動で風の流れに左右される状態になる。そのよう微粉は対象物に付着させ固定するのが難しかった。そのような微粉には対象物に最初に塗布した結着材の効果は期待できなかった。
二次電池向けの特殊粉体の性質上、単位面積当たりの粉体の塗布重量を一定にしにくい粉粒体の特性を見越して参考文献2では最終被塗物の単位面積当たりの塗布重量を安定させるため工夫がなされている。
特にバインダーが僅少の粉体はロットだけでなく経時的にも物理的条件例えばホッパー内の粉体の自重や分散状況が変化するだけで嵩比重が変化する。そもそもそのような粉体は一般の容積式フィーダー等では供給中の嵩比重の変化を検知できず、それに追従できないため単位面積当たりの塗布重量を一定にできない。よって被塗物に塗布した単位面積当たりの塗布重量は変化する。文献2はそのような粉粒体の供給側の課題を解決し結果被塗物への塗布の課題も解決する方法を提案している。しかし高速ラインスピードに対応するための手段が説明されていない。 Powder particles with little binder tend to crumble during the handling process, and each part of the mixture is likely to fall off. If the particles are not charged, as inReference 1, the powder will partially crumble with a slight mechanical impact and become fine powder, which will fly away and float, and will be affected by wind currents with typical aerosol fluid behavior. Such fine powder is difficult to attach and fix to the target object. The effect of the binder applied to the target object at the beginning cannot be expected for such fine powder.
Due to the nature of special powders for secondary batteries, it is difficult to keep the powder coating weight per unit area constant. In anticipation of this,Reference 2 devise a method for stabilizing the coating weight per unit area of the final substrate.
In particular, for powders with only a small amount of binder, the bulk density changes not only with the lot but also over time, depending on the physical conditions, such as the weight of the powder itself in the hopper or the dispersion state. In the first place, with such powders, a general volumetric feeder cannot detect the change in bulk density during feeding, and cannot follow it, so the coating weight per unit area cannot be kept constant. Therefore, the coating weight per unit area applied to the substrate changes.Reference 2 proposes a method to solve the problems on the supply side of such powder and granular materials, and as a result, to solve the problems of coating the substrate. However, it does not explain the means to accommodate high-speed line speeds.
二次電池向けの特殊粉体の性質上、単位面積当たりの粉体の塗布重量を一定にしにくい粉粒体の特性を見越して参考文献2では最終被塗物の単位面積当たりの塗布重量を安定させるため工夫がなされている。
特にバインダーが僅少の粉体はロットだけでなく経時的にも物理的条件例えばホッパー内の粉体の自重や分散状況が変化するだけで嵩比重が変化する。そもそもそのような粉体は一般の容積式フィーダー等では供給中の嵩比重の変化を検知できず、それに追従できないため単位面積当たりの塗布重量を一定にできない。よって被塗物に塗布した単位面積当たりの塗布重量は変化する。文献2はそのような粉粒体の供給側の課題を解決し結果被塗物への塗布の課題も解決する方法を提案している。しかし高速ラインスピードに対応するための手段が説明されていない。 Powder particles with little binder tend to crumble during the handling process, and each part of the mixture is likely to fall off. If the particles are not charged, as in
Due to the nature of special powders for secondary batteries, it is difficult to keep the powder coating weight per unit area constant. In anticipation of this,
In particular, for powders with only a small amount of binder, the bulk density changes not only with the lot but also over time, depending on the physical conditions, such as the weight of the powder itself in the hopper or the dispersion state. In the first place, with such powders, a general volumetric feeder cannot detect the change in bulk density during feeding, and cannot follow it, so the coating weight per unit area cannot be kept constant. Therefore, the coating weight per unit area applied to the substrate changes.
帯電効果が低いと粉体は移送するガス流例えば圧縮気体の流速や流量に左右され対象物に衝突した粉体は気体と一緒に跳ね返り塗着効率は極めて悪くなる。また気粉混合体で均一に流動分散しないと定量式フィーダー等で移送された凝集した粉体はそのまま塗布される。更に前記の様に機械的な細かい振動でも粉体層の一部は脱落し飛散し高速移動する気体流で浮遊するので作業性や品質的な課題を解決できなかった。
If the charging effect is low, the powder will be affected by the flow speed and volume of the gas flow (e.g. compressed gas) that transports it, and the powder that collides with the target object will bounce back along with the gas, resulting in extremely poor coating efficiency. Furthermore, if the air-powder mixture is not uniformly fluidized and dispersed, the agglomerated powder transported by a fixed-volume feeder or the like will be applied as is. Furthermore, as mentioned above, even small mechanical vibrations can cause part of the powder layer to fall off and scatter, and become suspended in the high-speed moving gas flow, making it impossible to solve problems with workability and quality.
本発明では全固体電池用向けには予め活物質粒子と電解質粒子等は乾式混合してコアシェル構造にしても良いそれを単独装置で薄膜積層することもできる。導電助剤とバインダー溶液は別々の装置で薄膜積層できるし合材をスラリーにして微量を前記コアシェル層の間に薄膜で積層し均一な混合状態の電極層を形成できる。コアシェル粒子は導電助剤やバインダーを一緒に合材粉体としても良い。電極用合材粉体は前記の様に溶媒とでスラリーにすることができる。又は必要により小粒子径造粒粉体をスラリーにして複数回造粒を繰り返すことで造粒粒子径を段階的に大きくして所望する粒子径に造粒して粉体にすることができる。またLIB電極合材粉体でも全固体電池電極合材粉体でもあるいはコアシェルからなる全固体電池合材粉体でも粉体のバインダーが帯電してもバインダー以外の各素材は電気的抵抗値が低く帯電しにくかった。また粉体粒子の表面に存在するカーボンファイバーなどの導電助剤突起物があると帯電粉体粒子のアンテナの役割をするので更に放電しやすい傾向にあった。
In the present invention, for all-solid-state batteries, active material particles and electrolyte particles may be mixed in advance in a dry state to form a core-shell structure, or the mixture may be thin-film laminated in a single device. The conductive assistant and binder solution may be thin-film laminated in separate devices, or the composite may be made into a slurry and a small amount may be thin-film laminated between the core-shell layers to form a uniformly mixed electrode layer. The core-shell particles may be mixed with the conductive assistant and binder to form a composite powder. The composite powder for electrodes may be made into a slurry with a solvent as described above. Alternatively, if necessary, the small particle size granulated powder may be made into a slurry and granulated multiple times to gradually increase the granulated particle size and granulate to the desired particle size to form a powder. In addition, whether it is a LIB electrode composite powder, an all-solid-state battery electrode composite powder, or an all-solid-state battery composite powder consisting of a core shell, even if the binder of the powder is charged, each material other than the binder has a low electrical resistance and is difficult to charge. In addition, if there are conductive assistant protrusions such as carbon fibers present on the surface of the powder particles, they act as antennas for the charged powder particles, and tend to be more prone to discharge.
本発明は、上述した課題を解決するためになされたもので
1.気粉混合体での流動(フルダイズ)が不安定な粉体であっても供給量を安定させる。
2.粉体供給から塗布までの行程を短くし可能な限り配管などの流路を無くする。
3.静電気的に帯電効率が低い粉体でも帯電後対象物に付着させやすくする。
4.高速、例えば分速60メートル以上で移動する対象物であっても粉体塗布時は、風の影響を受けにくい構造にする。
5.次工程のプレスまたは熱プレスで高性能にプレスして電極を形成できるようにする。
以上の課題を解決する。
そのため本発明では以下のことに特に注力した。
1.粉体の吸引量または噴出量を安定させる。
2.多孔質中空ロールまたは多孔質ベルトで粉体を吸着し移動し離脱させ粉体を対象物に塗布する。
3.気粉混合体の粉体移動方向性が安定したら余剰気体を排出する。
4.粉体の対象物への付着時、外乱の影響を受けない構造にする。(塗布装置の特に塗布部)
5.線圧が50kN/cm程度までの高圧、高精度にするため短い面長の複数のロールで複数列の電極形成を可能にする塗布方法を提供する。 The present invention has been made to solve the above-mentioned problems, and is as follows: 1. To stabilize the supply amount even for powder whose flow (fuldize) in the air-powder mixture is unstable.
2. Shorten the process from powder supply to coating and eliminate piping and other flow paths as much as possible.
3. Even powders with low electrostatic charging efficiency can be easily attached to objects after charging.
4. Even if the object is moving at high speed, for example 60 meters per minute or more, the structure should be designed to be less susceptible to wind when applying powder.
5. The next process, pressing or hot pressing, allows for high-performance pressing to form electrodes.
To solve the above problems.
Therefore, in the present invention, we have focused on the following:
1. Stabilize the amount of powder sucked or sprayed.
2. The powder is applied to the object by adsorbing, transferring, and releasing it using a porous hollow roll or porous belt.
3. When the direction of powder movement in the gas-powder mixture has stabilized, the excess gas is discharged.
4. The structure must be designed to prevent disturbances when the powder is applied to the target object (especially the coating part of the coating device).
5. To provide a coating method that enables the formation of multiple rows of electrodes using multiple rolls with short face lengths to achieve high precision with a line pressure of up to about 50 kN/cm.
1.気粉混合体での流動(フルダイズ)が不安定な粉体であっても供給量を安定させる。
2.粉体供給から塗布までの行程を短くし可能な限り配管などの流路を無くする。
3.静電気的に帯電効率が低い粉体でも帯電後対象物に付着させやすくする。
4.高速、例えば分速60メートル以上で移動する対象物であっても粉体塗布時は、風の影響を受けにくい構造にする。
5.次工程のプレスまたは熱プレスで高性能にプレスして電極を形成できるようにする。
以上の課題を解決する。
そのため本発明では以下のことに特に注力した。
1.粉体の吸引量または噴出量を安定させる。
2.多孔質中空ロールまたは多孔質ベルトで粉体を吸着し移動し離脱させ粉体を対象物に塗布する。
3.気粉混合体の粉体移動方向性が安定したら余剰気体を排出する。
4.粉体の対象物への付着時、外乱の影響を受けない構造にする。(塗布装置の特に塗布部)
5.線圧が50kN/cm程度までの高圧、高精度にするため短い面長の複数のロールで複数列の電極形成を可能にする塗布方法を提供する。 The present invention has been made to solve the above-mentioned problems, and is as follows: 1. To stabilize the supply amount even for powder whose flow (fuldize) in the air-powder mixture is unstable.
2. Shorten the process from powder supply to coating and eliminate piping and other flow paths as much as possible.
3. Even powders with low electrostatic charging efficiency can be easily attached to objects after charging.
4. Even if the object is moving at high speed, for example 60 meters per minute or more, the structure should be designed to be less susceptible to wind when applying powder.
5. The next process, pressing or hot pressing, allows for high-performance pressing to form electrodes.
To solve the above problems.
Therefore, in the present invention, we have focused on the following:
1. Stabilize the amount of powder sucked or sprayed.
2. The powder is applied to the object by adsorbing, transferring, and releasing it using a porous hollow roll or porous belt.
3. When the direction of powder movement in the gas-powder mixture has stabilized, the excess gas is discharged.
4. The structure must be designed to prevent disturbances when the powder is applied to the target object (especially the coating part of the coating device).
5. To provide a coating method that enables the formation of multiple rows of electrodes using multiple rolls with short face lengths to achieve high precision with a line pressure of up to about 50 kN/cm.
そのため本発明では
1.供給前の粉体の単位面積当たりの塗布重量を一定にするため平方センチメートル当たりの嵩比重を一定にすることとした。一例として多孔質物体上の粉体を多孔質の反対側から吸引して粉体層を所望する厚みにスキージーなどで均し嵩密度を一定にし、それを移送する構成にした。またはエジェクターポンプを高圧でミリ秒単位のパルス的に作動させ、多孔板上で流動しにくい粉体でもパルス負圧で強引に吸着し下流に高圧例えば0.3MPa以上のパルス流で押し込む。多孔質中空ロールまたは多孔質ベルトに粉体を負圧で吸着し嵩密度を一定にして移動し所望する箇所で粉体を離脱させ粉体を対象物に塗布する構成にした。
2.高速移動する対象物により発生する風の流れを塗布装置と対象物間では影響がない構造とした。粉体搬送が粉体吸着ロールタイプまたは吸着ベルトタイプの場合、塗布位置ではロールやベルトの一部も囲いその全部を塗布装置にして外因の影響を受けない塗布装置の構造体とした。
3.塗布装置内の余剰気体排出口を塗布装置の少なくとも下流側に設け、粉体付着に影響する余剰な気体を排出する構造にした。塗布装置内余剰気体と一緒に排出される僅少の粉体比率は同じ条件下で行われ常に同じなので対象物にほぼ同じ比率で付着する。そのため対象物上の単位面積当たりの粉体重量は粉体の供給量と同じ比率で付着することになる。
4.広幅対象物に広幅に対応した電極であって未塗工部の周縁と複数の電極パターンの電極粉体層を形成し後工程で面長が短いプレス精度の高いロールでプレスできる電極も形成できる構成とした。
全固体電池ではプレスロールの線圧が積層工程により10kN/cm乃至50kN/cm程度の高い線圧が必要とされている。そのため薄い例えば10マイクロメートル程度の集電体に比重の高い電極粉体をプレス後100マイクロメートル程度の高密度の厚みを所望する場合、粉体塗布時の厚みは数百マイクロメートル程度になる。高速例えば60m/min.以上での固定されていない電極粉体層のハンドリングは容易ではない。そのため本発明では1回の塗布と1回のプレスに限定せず、複数回の粉体塗布と複数回のプレスまたは仮プレスを行うことができる。複数回のプレスの内、線圧を高くするプレスは最終の1回だけで良い。また複数回のプレスは広幅の集電体の電極粉体層全部を一つの面長の長いロールで仮プレスしても良い。
本発明では予め仮プレスした集電体上の電極をスリットして、面長が短い高性能ロールで必要により加熱して電極幅ごとに高線圧でプレスができる。そのため電極幅が狭い複数のストライプ電極も形成できる構成にした。 Therefore, in the present invention, 1. The bulk density per square centimeter is made constant in order to make the coating weight per unit area of the powder constant before supply. As an example, the powder on the porous object is sucked from the opposite side of the porous object, the powder layer is leveled to the desired thickness with a squeegee or the like to make the bulk density constant, and then it is configured to be transported. Or, the ejector pump is operated at high pressure in a pulsed manner in milliseconds, and even powder that is difficult to flow on a porous plate is forcibly adsorbed with pulse negative pressure and pushed downstream with a high pressure pulse flow, for example 0.3 MPa or more. The powder is adsorbed to a porous hollow roll or porous belt with negative pressure, moved with a constant bulk density, and the powder is released at the desired location and applied to the target object.
2. The structure is designed so that the wind flow generated by the object moving at high speed does not affect the coating device and the object. When the powder transport is of the powder adsorption roll type or adsorption belt type, the roll or belt is also partially enclosed at the coating position, making the whole of it the coating device, and the structure of the coating device is not affected by external factors.
3. The coating device has an exhaust port for excess gas at least downstream of the coating device, and is designed to exhaust excess gas that affects powder adhesion. The small amount of powder discharged together with the excess gas in the coating device is always the same under the same conditions, so it adheres to the target at approximately the same ratio. Therefore, the amount of powder per unit area on the target adheres at the same ratio as the amount of powder supplied.
4. The electrode is designed to be compatible with wide-width objects, and an electrode powder layer with multiple electrode patterns is formed around the periphery of the uncoated area, allowing the electrode to be pressed with a roll with high press accuracy and a short face length in a later process.
In an all-solid-state battery, the linear pressure of the press roll is required to be as high as about 10 kN/cm to 50 kN/cm depending on the lamination process. Therefore, if a high density thickness of about 100 micrometers is desired after pressing high specific gravity electrode powder onto a thin current collector, for example, about 10 micrometers, the thickness at the time of powder application will be about several hundred micrometers. It is not easy to handle an electrode powder layer that is not fixed at a high speed, for example, 60 m/min. or higher. Therefore, the present invention is not limited to one application and one pressing, but multiple powder applications and multiple pressings or temporary pressings can be performed. Of the multiple pressings, only the final pressing needs to be performed with a high linear pressure. In addition, multiple pressings may be performed by temporarily pressing the entire electrode powder layer of a wide current collector with a single roll with a long face length.
In the present invention, the electrodes on the pre-pressed current collector are slit, and then heated as necessary with a high-performance roll having a short surface length and pressed at high linear pressure for each electrode width. Therefore, it is possible to form multiple stripe electrodes with narrow electrode widths.
1.供給前の粉体の単位面積当たりの塗布重量を一定にするため平方センチメートル当たりの嵩比重を一定にすることとした。一例として多孔質物体上の粉体を多孔質の反対側から吸引して粉体層を所望する厚みにスキージーなどで均し嵩密度を一定にし、それを移送する構成にした。またはエジェクターポンプを高圧でミリ秒単位のパルス的に作動させ、多孔板上で流動しにくい粉体でもパルス負圧で強引に吸着し下流に高圧例えば0.3MPa以上のパルス流で押し込む。多孔質中空ロールまたは多孔質ベルトに粉体を負圧で吸着し嵩密度を一定にして移動し所望する箇所で粉体を離脱させ粉体を対象物に塗布する構成にした。
2.高速移動する対象物により発生する風の流れを塗布装置と対象物間では影響がない構造とした。粉体搬送が粉体吸着ロールタイプまたは吸着ベルトタイプの場合、塗布位置ではロールやベルトの一部も囲いその全部を塗布装置にして外因の影響を受けない塗布装置の構造体とした。
3.塗布装置内の余剰気体排出口を塗布装置の少なくとも下流側に設け、粉体付着に影響する余剰な気体を排出する構造にした。塗布装置内余剰気体と一緒に排出される僅少の粉体比率は同じ条件下で行われ常に同じなので対象物にほぼ同じ比率で付着する。そのため対象物上の単位面積当たりの粉体重量は粉体の供給量と同じ比率で付着することになる。
4.広幅対象物に広幅に対応した電極であって未塗工部の周縁と複数の電極パターンの電極粉体層を形成し後工程で面長が短いプレス精度の高いロールでプレスできる電極も形成できる構成とした。
全固体電池ではプレスロールの線圧が積層工程により10kN/cm乃至50kN/cm程度の高い線圧が必要とされている。そのため薄い例えば10マイクロメートル程度の集電体に比重の高い電極粉体をプレス後100マイクロメートル程度の高密度の厚みを所望する場合、粉体塗布時の厚みは数百マイクロメートル程度になる。高速例えば60m/min.以上での固定されていない電極粉体層のハンドリングは容易ではない。そのため本発明では1回の塗布と1回のプレスに限定せず、複数回の粉体塗布と複数回のプレスまたは仮プレスを行うことができる。複数回のプレスの内、線圧を高くするプレスは最終の1回だけで良い。また複数回のプレスは広幅の集電体の電極粉体層全部を一つの面長の長いロールで仮プレスしても良い。
本発明では予め仮プレスした集電体上の電極をスリットして、面長が短い高性能ロールで必要により加熱して電極幅ごとに高線圧でプレスができる。そのため電極幅が狭い複数のストライプ電極も形成できる構成にした。 Therefore, in the present invention, 1. The bulk density per square centimeter is made constant in order to make the coating weight per unit area of the powder constant before supply. As an example, the powder on the porous object is sucked from the opposite side of the porous object, the powder layer is leveled to the desired thickness with a squeegee or the like to make the bulk density constant, and then it is configured to be transported. Or, the ejector pump is operated at high pressure in a pulsed manner in milliseconds, and even powder that is difficult to flow on a porous plate is forcibly adsorbed with pulse negative pressure and pushed downstream with a high pressure pulse flow, for example 0.3 MPa or more. The powder is adsorbed to a porous hollow roll or porous belt with negative pressure, moved with a constant bulk density, and the powder is released at the desired location and applied to the target object.
2. The structure is designed so that the wind flow generated by the object moving at high speed does not affect the coating device and the object. When the powder transport is of the powder adsorption roll type or adsorption belt type, the roll or belt is also partially enclosed at the coating position, making the whole of it the coating device, and the structure of the coating device is not affected by external factors.
3. The coating device has an exhaust port for excess gas at least downstream of the coating device, and is designed to exhaust excess gas that affects powder adhesion. The small amount of powder discharged together with the excess gas in the coating device is always the same under the same conditions, so it adheres to the target at approximately the same ratio. Therefore, the amount of powder per unit area on the target adheres at the same ratio as the amount of powder supplied.
4. The electrode is designed to be compatible with wide-width objects, and an electrode powder layer with multiple electrode patterns is formed around the periphery of the uncoated area, allowing the electrode to be pressed with a roll with high press accuracy and a short face length in a later process.
In an all-solid-state battery, the linear pressure of the press roll is required to be as high as about 10 kN/cm to 50 kN/cm depending on the lamination process. Therefore, if a high density thickness of about 100 micrometers is desired after pressing high specific gravity electrode powder onto a thin current collector, for example, about 10 micrometers, the thickness at the time of powder application will be about several hundred micrometers. It is not easy to handle an electrode powder layer that is not fixed at a high speed, for example, 60 m/min. or higher. Therefore, the present invention is not limited to one application and one pressing, but multiple powder applications and multiple pressings or temporary pressings can be performed. Of the multiple pressings, only the final pressing needs to be performed with a high linear pressure. In addition, multiple pressings may be performed by temporarily pressing the entire electrode powder layer of a wide current collector with a single roll with a long face length.
In the present invention, the electrodes on the pre-pressed current collector are slit, and then heated as necessary with a high-performance roll having a short surface length and pressed at high linear pressure for each electrode width. Therefore, it is possible to form multiple stripe electrodes with narrow electrode widths.
本発明のLIB等の二次電池の製造方法は二次電池全般の電極形成、次世代二次電池の全固体電池や空気電池などの電極形成、例えば電気二重層コンデンサ―等を含むキャパシターの電極、更にはDry法とWet法の組み合わせで燃料電池や水電解の電極形成やガスディフュージョンレイヤーのマイクロポーラスレイヤー形成等ができる。更には一般の金属平板や長尺板、不織布、フィルムなどの粉体の塗装や粉体の接着分野にさえ好適に応用できる。更にバインダーを必要としないナノサイズやサブミクロンの微粒子粉の粉体を直接またはパウダースラ―リーにして塗布することで次世代太陽電池発電層などの各層の形成ができる。
そのため本発明は以下の内容とした。 The method for producing a secondary battery such as a LIB according to the present invention can be used to form electrodes for secondary batteries in general, electrodes for next-generation secondary batteries such as all-solid-state batteries and air batteries, electrodes for capacitors including electric double-layer capacitors, and further, by combining a dry method and a wet method, electrodes for fuel cells and water electrolysis, and microporous layers for gas diffusion layers can be formed. Furthermore, the method can be suitably applied to the fields of powder coating and powder adhesion for general metal flat plates, long plates, nonwoven fabrics, films, etc. Furthermore, each layer of a next-generation solar cell power generation layer can be formed by applying nano-sized or submicron fine powder that does not require a binder directly or in powder slurry form.
Therefore, the present invention is as follows.
そのため本発明は以下の内容とした。 The method for producing a secondary battery such as a LIB according to the present invention can be used to form electrodes for secondary batteries in general, electrodes for next-generation secondary batteries such as all-solid-state batteries and air batteries, electrodes for capacitors including electric double-layer capacitors, and further, by combining a dry method and a wet method, electrodes for fuel cells and water electrolysis, and microporous layers for gas diffusion layers can be formed. Furthermore, the method can be suitably applied to the fields of powder coating and powder adhesion for general metal flat plates, long plates, nonwoven fabrics, films, etc. Furthermore, each layer of a next-generation solar cell power generation layer can be formed by applying nano-sized or submicron fine powder that does not require a binder directly or in powder slurry form.
Therefore, the present invention is as follows.
本発明はアースし移動する対象物に粉体を塗布する方法であって、多孔質物体上に粉体を充填する工程と、該粉体を吸引して下流に移動するにあたり、吸引時の粉体の秒単位時間当たりの吸引重量を安定させる工程と、前記粉体を吸引口から吸引して気粉混合体として圧力差で流路が連通する噴出口まで移送する工程と、前記流路の途中で気粉混合体の余剰な気体を外部へ排出し下流の流路内の体積当たりの粉体の密度を高くする工程と、移動する対象物に対峙した面が開口する粉体塗布装置内部は粉体流が移動する空間を持つ構造体からなり、前記噴出口を塗布装置に連通させる工程と、前記粉体は吸引時から対象物に付着するまでの間に静電気的に帯電させる工程と、アースし前記粉体塗布装置開口部に接触又は近接して移動する対象物に粉体を付着させ塗布する工程とからなる粉体の塗布方法を提供する。
The present invention provides a method for applying powder to a moving grounded object, comprising the steps of: filling a porous object with powder; stabilizing the weight of powder sucked in per second when sucking the powder and moving it downstream; sucking the powder through a suction port and transporting it as an air-powder mixture to a nozzle that communicates with a flow path by a pressure difference; discharging excess gas from the air-powder mixture to the outside midway through the flow path to increase the powder density per volume in the downstream flow path; connecting the nozzle to a powder application device, the inside of which is an opening facing the moving object and which is made of a structure with a space through which the powder flow moves; electrostatically charging the powder from the time of suction until it adheres to the object; and applying the powder to a moving object that is in contact with or close to the opening of the powder application device, which is grounded.
本発明は二次電池の製造方法または全固体電池の製造方法であって、多孔質物体上に電極用粉体を充填する工程と、該粉体を吸引して下流に移動するにあたり、吸引時の粉体の秒単位時間当たりの吸引重量を安定させる工程と、前記粉体を吸引口から吸引して気粉混合体として圧力差で流路が連通する噴出口まで移送する工程と、前記流路の途中で気粉混合体の余剰な気体を外部へ排出し下流の流路内の体積当たりの粉体の密度を高くする工程と、移動する対象物に対峙した面が開口する粉体塗布装置内部は粉体流が移動する空間を持つ構造体からなり、前記噴出口を塗布装置に連通させる工程と、前記粉体は吸引時から対象物に付着するまでの間に静電気的に帯電させる工程と、アースし前記粉体塗布装置開口部に接触又は近接して移動する対象物に粉体を付着させ粉体電極層を形成する工程と、該粉体電極層をロールでプレスし電極を形成してなることを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, which includes the steps of: filling a porous body with electrode powder; stabilizing the weight of the powder sucked in per second when sucking the powder and moving it downstream; sucking the powder through a suction port and transporting it as an air-powder mixture to a nozzle that communicates with a flow path by a pressure difference; discharging excess gas from the air-powder mixture to the outside midway through the flow path to increase the powder density per volume in the downstream flow path; connecting the nozzle to a powder coating device, which has an opening on the side facing the moving object, and has a structure with a space through which the powder flow moves inside the powder coating device, and electrostatically charging the powder between the time of suction and the time of attachment to the object; attaching the powder to an earthed object that is in contact with or in close proximity to the opening of the powder coating device to form a powder electrode layer; and pressing the powder electrode layer with a roll to form an electrode.
本発明の前記粉体の吸引時の粉体の秒単位時間当たりの吸引重量を安定させる方法は多孔物体上の粉体をエジェクターポンプで吸引し圧送するにあたり0.3MPa以上の圧縮気体で1秒当たり10サイクル以上のパルス開閉でエジェクターポンプを作動させることにより行うことを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the method for stabilizing the suction weight of powder per second during suction of the powder is performed by operating an ejector pump with a compressed gas of 0.3 MPa or more and a pulse opening and closing of 10 cycles or more per second when sucking and pumping the powder on the porous body with the ejector pump.
本発明の前記粉体の吸引時の粉体の秒単位時間当たりの吸引重量を安定させる方法は、多孔物体の凹部の嵩密度が一定の粉体を吸引するにあたり、該凹部の反対側の多孔面を負圧にし、粉体を凹部に容積的に充填し凹部の粉体の嵩比重を一定にすることで体積当たりの凹部の粉体の嵩比重を安定させることを特徴とする二次電池又は全固体電池の製造方法を提供する。
The method of the present invention for stabilizing the suction weight of powder per second during suction of the powder provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that when sucking powder with a constant bulk density into a recess of a porous object, negative pressure is applied to the porous surface opposite the recess, and the powder is volumetrically filled into the recess to make the bulk density of the powder in the recess constant, thereby stabilizing the bulk density of the powder in the recess per volume.
本発明の前記気粉混合体の余剰な気体を排出する流路の位置は、該流路の断面積を1/4以下に小さくする箇所の上流であって、下流の断面積の小さい流路の体積の粉体密度を高くして粉体を移動することを特徴とする二次電または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the position of the flow path for discharging excess gas from the gas-powder mixture is upstream of the point where the cross-sectional area of the flow path is reduced to 1/4 or less, and the powder density of the downstream flow path with the smaller cross-sectional area is increased to move the powder.
本発明の前記粉体塗布装置の内部の空間に少なくとも一つのコロナ電極または細長い電極を広い面積に対応した形状にして配置し粉体を帯電させ、少なくとも前記空間の両側と上流部の壁は帯電した粉体が静電反発する材質とし、該壁の対象物側端部に接触又は近接して移動する対象物とで外部の風の流れを遮る構造とし、少なくとも対象物の移動方向の両側の壁は粉体流の流れを規制して粉体を対象物に付着させ、前記空間を下流側に長く展開し、対象物に付着しなかった粉体は下流に位置するコロナ電極で静電反発または再度帯電させて下流に移動しながら対象物に付着するチャンスを増やし、塗布装置内部の少なくとも余剰気体は前記粉体装置の最下流の排出口から排出させることを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that at least one corona electrode or elongated electrode is arranged in a shape corresponding to a wide area in the space inside the powder coating device of the present invention, the powder is charged, at least both sides and the wall of the upstream part of the space are made of a material that electrostatically repels the charged powder, and the wall is structured to block the flow of external wind with the object moving in contact with or close to the object side end of the wall, at least the walls on both sides in the moving direction of the object regulate the flow of the powder flow to cause the powder to adhere to the object, the space is extended downstream, the powder that does not adhere to the object is electrostatically repelled or recharged by the corona electrode located downstream, increasing the chance of it adhering to the object as it moves downstream, and at least the excess gas inside the coating device is discharged from the most downstream exhaust port of the powder device.
本発明の前記塗布装置の両側の壁部の内側に複数の仕切りを設け、該仕切りの間に単数または複数の噴出口を存在させ前記仕切りにより対象物と直交する幅方向に複数のストライプ状粉体電極層と未塗工部を形成することを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that a plurality of partitions are provided on the inside of both side walls of the coating device, and a single or multiple nozzles are provided between the partitions, and the partitions form a plurality of stripe-shaped powder electrode layers and uncoated areas in the width direction perpendicular to the target object.
本発明の前記対象物移動方向の粉体層電極間の電極未塗工部領域に飛散した粉体を電極の幅に沿って真空で吸引し外部へ排出する工程と、更に対象物移動方向の電極と直交して電極未塗工部領域形成のため対象物上の電極パターン以外の粉体を真空で吸引し粉体未塗工部と粉体電極パターン層を形成することを特徴とする二次電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery, which is characterized by a step of vacuum-sucking the powder scattered in the electrode uncoated area between the powder layer electrodes in the moving direction of the object along the width of the electrodes and discharging it to the outside, and further vacuum-sucking the powder other than the electrode pattern on the object perpendicular to the electrodes in the moving direction of the object to form the electrode uncoated area, thereby forming the powder uncoated area and the powder electrode pattern layer.
本発明の前記電極の形成は対象物への粉体の積層とロールでのプレスを複数回行い少なくとも最終プレスでは少対象物と粉体層を電極用粉体に含まれるバインダーの軟化点以上の温度に加熱し、10kN/cm以上の線圧で加圧して電極を形成することを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the electrode is formed by stacking powder on an object and pressing with a roll multiple times, and at least in the final press, the object and the powder layer are heated to a temperature equal to or higher than the softening point of the binder contained in the electrode powder, and pressed with a linear pressure of 10 kN/cm or more to form an electrode.
本発明の前記電極形成の後工程の集電体、負極層、電解質層、正極層、集電体の積層のロールプレス工程ではロール温度または粉体温度を電極用粉体に含まれるバインダーまたは電解質ポリマーの軟化点以上に加熱して10kN/cm乃至50 kN/cmの線圧でプレスすることを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that in the roll press process for laminating the current collector, negative electrode layer, electrolyte layer, positive electrode layer, and current collector, which is a subsequent process for forming the electrodes, the roll temperature or powder temperature is heated to a temperature equal to or higher than the softening point of the binder or electrolyte polymer contained in the electrode powder, and pressed with a linear pressure of 10 kN/cm to 50 kN/cm.
本発明の前記電極用粉体は少なくとも電極用活物質粒子、電解質粒子又は繊維、バインダー、電解質ポリマー、導電助剤、活物質粒子と電解質の乾式造粒によるコアシェル粒子の中から選択し造粒した粉体であることを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for producing a secondary battery or an all-solid-state battery, characterized in that the electrode powder is a powder granulated from at least one selected from among active material particles for electrodes, electrolyte particles or fibers, binders, electrolyte polymers, conductive assistants, and core-shell particles obtained by dry granulation of active material particles and electrolytes.
本発明の前記対象物の集電体に電極粉体塗布前にカーボンナノチューブまたはカーボンナノファイバーからなる導電助剤に分散剤を加え、更にバインダー溶液または平均粒子径が0.1マイクロメートル以下のバインダー微粒子と貧溶媒からなるスラリーを選択して加え固形分が1.5パーセント以下にした液体を15マイクロメートル以下のウェット厚みで塗布することを特徴とする二次電池又は全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, which is characterized in that, before applying electrode powder to the current collector of the object of the present invention, a dispersant is added to a conductive assistant consisting of carbon nanotubes or carbon nanofibers, and then a binder solution or a slurry consisting of binder fine particles having an average particle size of 0.1 micrometers or less and a poor solvent is selected and added to the current collector, and the liquid having a solid content of 1.5% or less is applied to a wet thickness of 15 micrometers or less.
本発明は対象物の移動方向に回転する多孔質中空ロールの粉体の供給位置で該粉体を吸引しロールの外周に前記粉体を付着積層し、前記対象物への塗布位置で前記粉体を離脱させ対象物に付着させるにあたり、該粉体を充填する位置では前記ロールの内部を負圧にして前記粉体を吸引しロールの表面に粉体を付着させ粉体層を形成し該粉体層の嵩比重を安定させる工程と、前記ロールと対象物間に静電気的帯電手段を設け粉体を帯電させる工程と、前記対象物のロールへの少なくとも最接近位置ではロールの内部から圧縮気体で粉体を離脱させて前記ロール表面の粉体をアースして移動する対象物に付着させる工程と、前記ロールと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の塗布装置外への流出を防止する工程とにより対象物に粉体を塗布することを特徴とする粉体の塗布方法を提供する。
The present invention provides a method for applying powder to an object by sucking in the powder supply position of a porous hollow roll rotating in the moving direction of the object, depositing and stacking the powder on the outer periphery of the roll, and releasing the powder at the application position to the object, by creating a negative pressure inside the roll at the powder loading position to suck in the powder and deposit the powder on the surface of the roll to form a powder layer and stabilize the bulk density of the powder layer, providing an electrostatic charging means between the roll and the object to charge the powder, releasing the powder from inside the roll at least at the closest position to the roll of the object by compressed gas, earthing the powder on the surface of the roll and depositing it on the moving object, and providing an enclosure means with an exhaust port for excess gas between the roll and the object to prevent the influence of wind from the outside and the outflow of the powder to the outside of the application device.
本発明は前記粉体を充填する中空ロールが多孔質の少なくとも一つの凹部形状を有し、該凹部に前記粉体を前記ロールの中空側から吸引しながら充填し、対象物に近接した塗布装置内では凹部の粉体を前記中空側からプラス圧の気体で噴出し前記対象物に塗布することを特徴とする粉体の塗布方法を提供する。
The present invention provides a powder application method characterized in that a hollow roll into which the powder is filled has at least one porous recessed shape, the powder is filled into the recessed portion while being sucked from the hollow side of the roll, and in an application device located close to the object, the powder in the recessed portion is sprayed from the hollow side by positive pressure gas to apply it to the object.
本発明は対象物の移動方向に回転する多孔質中空ロールの電極用粉体の供給位置で該粉体を吸引しロールの外周に前記粉体を付着積層し、前記対象物への塗布位置で前記粉体を離脱させ対象物に付着させるにあたり、該粉体を充填する位置では前記ロールの内部を負圧にして前記粉体を吸引しロールの表面に粉体を付着させ粉体層を形成し該粉体層の嵩比重を安定させる工程と、前記ロールと対象物間に静電気的帯電手段を設け粉体を帯電させる工程と、少なくとも対象物の前記ロールへの最接近位置ではロールの内部から圧縮気体で粉体を離脱させて前記ロール表面の前記粉体を、アースして移動する対象物に付着させ塗布する工程と、前記ロールと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の塗布装置外部への流出を防止する工程とにより対象物に粉体を塗布することを特徴とする二次電池又は全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the powder is applied to an object by sucking the powder at a supply position of the electrode powder of a porous hollow roll rotating in the moving direction of the object, depositing and stacking the powder on the outer periphery of the roll, and releasing the powder at a coating position for the object, by applying the powder to the object by applying a negative pressure inside the roll at the powder loading position to suck the powder and deposit the powder on the surface of the roll to form a powder layer and stabilizing the bulk density of the powder layer, providing an electrostatic charging means between the roll and the object to charge the powder, at least at the closest position of the object to the roll, releasing the powder from inside the roll with compressed gas, and depositing the powder on the surface of the roll to the moving object while being grounded, and applying the powder to the object, and providing an enclosure means with an exhaust port for excess gas between the roll and the object as a coating device to prevent the influence of wind from the outside and the outflow of the powder to the outside of the coating device.
本発明は対象物の移動方向に回転移動する多孔質ベルト上の粉体を対象物に塗布する方法であって、粉体の供給位置で前記ベルトの反対側を負圧にして粉体を吸引して少なくともベルト表面に粉体を付着する工程と、前記ベルトと対象物間の粉体に静電気帯電手段で粉体を帯電させる工程と、前記対象物への塗布位置でベルト上の粉体を離脱させアースして移動する対象物に粉体を付着させる工程と、塗布位置の前記ベルトと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の外部への流出を防止する工程とにより対象物に粉体を塗布することを特徴とする粉体の塗布方法を提供する。
The present invention provides a method for applying powder to an object by applying a powder on a porous belt that rotates in the direction of movement of the object, comprising the steps of: applying negative pressure to the opposite side of the belt at a powder supply position to suck in the powder and deposit the powder on at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means; detaching and earthing the powder on the belt at an application position for the object to deposit the powder on the moving object; and providing an enclosure with an exhaust port for excess gas between the belt and the object at the application position to prevent the effect of wind from outside and the outflow of powder to the outside as an application device, thereby applying powder to the object.
本発明は対象物の移動方向に回転移動する多孔質ベルト上の電極用粉体を対象物に塗布し電極を形成して二次電池または全固体電池を製造する方法であって、前記粉体の供給位置で前記ベルトの反対側を負圧にして粉体を吸引して少なくともベルト表面に粉体を付着する工程と、前記ベルトと対象物間の粉体に静電気帯電手段で粉体を帯電させる工程と、前記対象物への塗布位置でベルト上の粉体を離脱させアースして移動する対象物に粉体を付着させる工程と、塗布位置の前記ベルトと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の外部への流出を防止する工程とにより対象物に電極用粉体を塗布し電極を形成してなることを特徴とする二次電池または全固体電池の製造方法を提供する。
The present invention provides a method for manufacturing a secondary battery or an all-solid-state battery by applying an electrode powder on a porous belt that rotates in the moving direction of the object to the object to form an electrode, comprising the steps of: applying a negative pressure to the opposite side of the belt at the powder supply position to suck in the powder and attach it to at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means; removing and earthing the powder on the belt at the application position to the object to attach the powder to the moving object; and providing an enclosure with an outlet for excess gas between the belt and the object at the application position as an application device to prevent the influence of wind from the outside and the outflow of the powder to the outside, thereby applying the electrode powder to the object to form an electrode.
本発明の二次電池や全固体電池電極用合材は、少なくとも電極用活物質粒子、無機電解質粒子、無機電解質繊維、無機微粒子、バインダー、電解質ポリマー、導電助剤から選択し混合して粒子化することができる。粒子化は複数の材料を混合し粒子化する造粒で良く、核になる粒子に単一または異種の材料を含むスラリーや溶液などの液体をコーティングしカプセル化しても良い。また活物質粒子に電解質粒子を乾式で被覆し活物質粒子がコアで電荷質がシェルの粒子にしても良い。複数の微細粒子例えばナノ粒子等を混合しながら粒子化するミリング法やメカノケミカル法でも良い。本発明ではこれら粒子化の手段を問わず、以降これら粒子を合材粒子、または混合粒子として表現する。
The composite material for electrodes of secondary batteries and all-solid-state batteries of the present invention can be made into particles by mixing at least active material particles for electrodes, inorganic electrolyte particles, inorganic electrolyte fibers, inorganic fine particles, binders, electrolyte polymers, and conductive assistants. The particles can be made into particles by mixing multiple materials and granulating them, or by coating the core particles with a liquid such as a slurry or solution containing a single or different materials to encapsulate them. Alternatively, the active material particles can be dry-coated with electrolyte particles to make particles with the active material particles as the core and the electrolyte as the shell. A milling method or mechanochemical method in which multiple fine particles, such as nanoparticles, are mixed and made into particles can also be used. In the present invention, regardless of the means of making the particles, these particles will be referred to as composite particles or mixed particles hereinafter.
通常リチウムイオン電池等の電極バインダーはフッ化ビニリデン(PVDF)が多く使用されそれを溶解させるにはノルマルメチルピロリドン(NMP)やDMFなど限られた高沸点溶媒のみになる。そのため電極スラリーなどの塗布後の乾燥時間が長くなり厚膜を形成するとクラックが発生するなどの問題が発生していた。本発明では予めバインダーをガスでフォーム化して体積を大きくし接着面積を広げることができる。そのため伸びのあるバインダーは活物質粒子同士の空隙部を微粒子の活物質粒子や導電助剤と共に充填する効果がある。そのため電解質ポリマーとして用いられるポリエチレンオキサイド(PEO)とPTFEやPVDFを混合して融点を低下せガスを混入して発泡バインダーを得ることができる。この方法で造粒した活物質や電解質粒子等はパウダーとしてハンドリングし塗布することができる。塗布は上記方法以外に発明者が発明し権利を有する特許第6328104号、特許第6481154号を使用することで高精度に行うことができる。
Normally, polyvinylidene fluoride (PVDF) is often used as an electrode binder for lithium-ion batteries, and only limited high-boiling solvents such as normal methylpyrrolidone (NMP) and DMF can dissolve it. Therefore, problems such as cracks occurring when a thick film is formed due to the long drying time after application of electrode slurry, etc. have occurred. In the present invention, the binder is foamed with gas in advance to increase its volume and expand the bonding area. Therefore, a binder with elasticity has the effect of filling the voids between active material particles together with fine active material particles and conductive assistant. For this reason, polyethylene oxide (PEO), which is used as an electrolyte polymer, can be mixed with PTFE or PVDF to lower the melting point and mix gas to obtain a foamed binder. The active material and electrolyte particles granulated by this method can be handled and applied as powder. In addition to the above method, application can be performed with high precision by using Patent No. 6328104 and Patent No. 6481154, which the inventor invented and holds the rights to.
粉体として塗布する場合塗布後はプレスであるいは電解質層や相手極の積層後プレスはパインダーの軟化点以上に加熱しプレスして造膜できる。
分子量の高いPVDF、 PTFEとPEOとのマトリックス或いは混合し更にはセラミック微粉粒子を混合して粉体の流動性を上げることができる。酸化物系電解質粒子、硫化物系電解質粒子は単独でも前記バインダーや電解質ポリマーと混合して使用できる。本発明では貧溶媒や回収した液化炭酸ガスやその超臨界性流体を付加したスラリーにしスプレイして特に加熱した対象物にスプレイすることで瞬時に粉体塗布より密なドライ塗布ができるので所望する塗膜にすることができる。 When applying as a powder, a film can be formed by pressing after application, or by heating to a temperature above the softening point of the binder and pressing after laminating the electrolyte layer and counter electrode.
The powder can be made more fluid by using a matrix of high molecular weight PVDF, PTFE and PEO or by mixing them together, and further mixing them with ceramic fine particles. Oxide-based electrolyte particles and sulfide-based electrolyte particles can be used alone or mixed with the binder or electrolyte polymer. In the present invention, a poor solvent, recovered liquefied carbon dioxide gas or its supercritical fluid is added to make a slurry, which is then sprayed onto a heated object, allowing instantaneous dry coating that is denser than powder coating, and the desired coating film can be obtained.
分子量の高いPVDF、 PTFEとPEOとのマトリックス或いは混合し更にはセラミック微粉粒子を混合して粉体の流動性を上げることができる。酸化物系電解質粒子、硫化物系電解質粒子は単独でも前記バインダーや電解質ポリマーと混合して使用できる。本発明では貧溶媒や回収した液化炭酸ガスやその超臨界性流体を付加したスラリーにしスプレイして特に加熱した対象物にスプレイすることで瞬時に粉体塗布より密なドライ塗布ができるので所望する塗膜にすることができる。 When applying as a powder, a film can be formed by pressing after application, or by heating to a temperature above the softening point of the binder and pressing after laminating the electrolyte layer and counter electrode.
The powder can be made more fluid by using a matrix of high molecular weight PVDF, PTFE and PEO or by mixing them together, and further mixing them with ceramic fine particles. Oxide-based electrolyte particles and sulfide-based electrolyte particles can be used alone or mixed with the binder or electrolyte polymer. In the present invention, a poor solvent, recovered liquefied carbon dioxide gas or its supercritical fluid is added to make a slurry, which is then sprayed onto a heated object, allowing instantaneous dry coating that is denser than powder coating, and the desired coating film can be obtained.
一方、硫化物系電解質例えばアルジロダイト系はイオン伝道度が良いが露点がマイナス50℃更にはマイナス70℃以下の除湿雰囲気やアルゴンガス等の不活性ガスの封入が必要で、設備が大型化する傾向にあった。
そのため本発明ではコンパクトな装置の粉体だけの塗布とプレスまたは熱プレスだけでなく、粉体の密着性を高めるDRY on WET(ドライ オンウェット)法まで使用できる。カーボンナノチューブなどの導電助剤と対象物へのアンカー効果がある分散剤や固形分の少ないバインダー微粒子または短繊維とバインダーの貧溶媒が主の溶媒からなるスラリー等を塗布し次いで粉体を塗布し加熱プレスすることで対象物との界面の密着性の高いドライ電極層ができる。 On the other hand, sulfide-based electrolytes, such as argyrodite-based electrolytes, have good ionic conductivity, but require a dehumidified atmosphere with a dew point of -50°C or even -70°C or lower, or the filling of an inert gas such as argon gas, which tends to increase the size of the equipment.
Therefore, in this invention, not only can the compact device apply powder and press or heat press, but also the DRY on WET method, which enhances the adhesion of the powder, can be used. A conductive assistant such as carbon nanotubes, a dispersant that has an anchoring effect on the target object, binder fine particles or short fibers with a low solid content, and a slurry made of a solvent mainly composed of a poor solvent for the binder are applied, and then the powder is applied and heat pressed to create a dry electrode layer with high adhesion to the interface with the target object.
そのため本発明ではコンパクトな装置の粉体だけの塗布とプレスまたは熱プレスだけでなく、粉体の密着性を高めるDRY on WET(ドライ オンウェット)法まで使用できる。カーボンナノチューブなどの導電助剤と対象物へのアンカー効果がある分散剤や固形分の少ないバインダー微粒子または短繊維とバインダーの貧溶媒が主の溶媒からなるスラリー等を塗布し次いで粉体を塗布し加熱プレスすることで対象物との界面の密着性の高いドライ電極層ができる。 On the other hand, sulfide-based electrolytes, such as argyrodite-based electrolytes, have good ionic conductivity, but require a dehumidified atmosphere with a dew point of -50°C or even -70°C or lower, or the filling of an inert gas such as argon gas, which tends to increase the size of the equipment.
Therefore, in this invention, not only can the compact device apply powder and press or heat press, but also the DRY on WET method, which enhances the adhesion of the powder, can be used. A conductive assistant such as carbon nanotubes, a dispersant that has an anchoring effect on the target object, binder fine particles or short fibers with a low solid content, and a slurry made of a solvent mainly composed of a poor solvent for the binder are applied, and then the powder is applied and heat pressed to create a dry electrode layer with high adhesion to the interface with the target object.
上記のように従来の二次電池や全固体電池の電極形成は少なくとも電極用活物質粒子、無機電解質粒子、無機電解質繊維、無機微粒子、フッ素系バインダーや高分子のイオン伝導性電解質ポリマー、導電助剤から選択した混合材料とPVDF等を溶解できるNMPなどの高沸点溶剤を混合しスラリーにして集電体等の対象物に塗布していた。そのため二次電池の高速ラインでは100m前後の長い乾燥炉を必要としていた。
そのため莫大な工場設置スペースと動力や乾燥の為のエネルギーを必要としていた。
本発明は二次電池などの前記電極材料の内選択した混合材料を粒子にした粉体としてハンドリングし集電体等の対象物に塗布し、熱可塑性や電解質ポリマーの軟化点以上、可能なら融点以上に加熱しプレスすることで電極を形成できる。
しかしバインダーや電解質ポリマーなどの、粉体の流動性に適さないサラサラしない粉体、例えばPEOなどのポリマーは他の固いポリマー例えばPTFEや無機系微粒子等を混合しポリマー粒子としてハンドリングすることができる。無機微粒子は酸化物系電解質粒子や硫化物系粒子或いは繊維でよい。これらの混合物でよい。特にポリマー粒子の外部に添加し流動性を上げることができる。そのため活物質粒子と電解質の接触はプレスによるポリマーの延びで空隙の課題も解消できる。合材粒子の場合ポリマーをフォーム化すると尚よい。 As described above, conventional electrodes for secondary batteries and all-solid-state batteries were formed by mixing a mixture of materials selected from at least electrode active material particles, inorganic electrolyte particles, inorganic electrolyte fibers, inorganic fine particles, fluorine-based binders, polymeric ion-conductive electrolyte polymers, and conductive assistants with a high-boiling point solvent such as NMP that can dissolve PVDF, etc., to form a slurry, which was then applied to objects such as current collectors. For this reason, high-speed secondary battery production lines required long drying ovens of around 100 m.
This required a huge amount of space for the factory, as well as energy for powering and drying the process.
In the present invention, a selected mixed material from the above-mentioned electrode materials for secondary batteries, etc., is handled as a particulate powder, which is applied to an object such as a current collector, and then heated to above the softening point of the thermoplastic or electrolyte polymer, or above the melting point if possible, and pressed to form an electrode.
However, powders that are not smooth and suitable for powder fluidity, such as binders and electrolyte polymers, for example polymers such as PEO, can be mixed with other hard polymers, such as PTFE or inorganic fine particles, and handled as polymer particles. The inorganic fine particles can be oxide-based electrolyte particles, sulfide-based particles, or fibers. A mixture of these is also acceptable. In particular, they can be added to the outside of polymer particles to increase fluidity. Therefore, the contact between the active material particles and the electrolyte can be resolved by the stretching of the polymer by pressing, which also solves the problem of voids. In the case of composite particles, it is even better to foam the polymer.
そのため莫大な工場設置スペースと動力や乾燥の為のエネルギーを必要としていた。
本発明は二次電池などの前記電極材料の内選択した混合材料を粒子にした粉体としてハンドリングし集電体等の対象物に塗布し、熱可塑性や電解質ポリマーの軟化点以上、可能なら融点以上に加熱しプレスすることで電極を形成できる。
しかしバインダーや電解質ポリマーなどの、粉体の流動性に適さないサラサラしない粉体、例えばPEOなどのポリマーは他の固いポリマー例えばPTFEや無機系微粒子等を混合しポリマー粒子としてハンドリングすることができる。無機微粒子は酸化物系電解質粒子や硫化物系粒子或いは繊維でよい。これらの混合物でよい。特にポリマー粒子の外部に添加し流動性を上げることができる。そのため活物質粒子と電解質の接触はプレスによるポリマーの延びで空隙の課題も解消できる。合材粒子の場合ポリマーをフォーム化すると尚よい。 As described above, conventional electrodes for secondary batteries and all-solid-state batteries were formed by mixing a mixture of materials selected from at least electrode active material particles, inorganic electrolyte particles, inorganic electrolyte fibers, inorganic fine particles, fluorine-based binders, polymeric ion-conductive electrolyte polymers, and conductive assistants with a high-boiling point solvent such as NMP that can dissolve PVDF, etc., to form a slurry, which was then applied to objects such as current collectors. For this reason, high-speed secondary battery production lines required long drying ovens of around 100 m.
This required a huge amount of space for the factory, as well as energy for powering and drying the process.
In the present invention, a selected mixed material from the above-mentioned electrode materials for secondary batteries, etc., is handled as a particulate powder, which is applied to an object such as a current collector, and then heated to above the softening point of the thermoplastic or electrolyte polymer, or above the melting point if possible, and pressed to form an electrode.
However, powders that are not smooth and suitable for powder fluidity, such as binders and electrolyte polymers, for example polymers such as PEO, can be mixed with other hard polymers, such as PTFE or inorganic fine particles, and handled as polymer particles. The inorganic fine particles can be oxide-based electrolyte particles, sulfide-based particles, or fibers. A mixture of these is also acceptable. In particular, they can be added to the outside of polymer particles to increase fluidity. Therefore, the contact between the active material particles and the electrolyte can be resolved by the stretching of the polymer by pressing, which also solves the problem of voids. In the case of composite particles, it is even better to foam the polymer.
以下図面を参照して本発明の好適な実施形態について説明する。尚、以下の実施形態は発明の理解を容易にするための一例にすぎず、本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。
The following describes a preferred embodiment of the present invention with reference to the drawings. Note that the following embodiment is merely an example to facilitate understanding of the invention, and does not exclude additions, substitutions, modifications, etc. that can be implemented by a person skilled in the art within the scope of the technical concept of the present invention.
図面は本発明の好適な実施の形態を機略的に示している。
The drawings show a schematic representation of a preferred embodiment of the present invention.
図1において物体1の上に施与された粉体はエジェクターポンプなどの粉体用ポンプ4の吸引口3
で吸引され、流路5に圧出される。流路5は金属パイプ、ゴム、セラミックス、プラスチックなどの内径が6mm乃至12mm程度のパイプやチューブの流路で良い。その先の流路7は粉体流体の粉体の密度をリッチにするため細くすることができる。粉体比率をリッチにしスムーズに粉体を細いチューブ内に移動するため主に過剰な気体を排出口6,6’から外部に排出できる。排出口6、6’は図示しないミニサイクロンなどに接続され排気され余剰気体に混入している粉体は回収し再利用できる。また細い内径のチューブは例えば内径が4mm乃至2mm前後のPTFEやPFAのチューブにすることもできる。1mmでも5mmでも良い。チューブは粉体の摩擦帯電をさせやすくするためバインダーや電解質ポリマー等が帯電しやすい材質を選ぶことができる。例えば粉体がナイロンなどのポリアミド系の場合、チューブ内面はPTFEが良くチューブ外面をアースすれば効率よい摩擦帯電ができる。一般的に耐熱耐薬品性の観点から二次電池の正極バインダーは幸いなことにフッ素系が多く、活物質は固くチューブの内面を削り易いがチューブの内面の摩耗でのコンタミを無視するためにはPTFE、PFAなどの粉体の滑り性の良いフッ素系チューブを選択し、粉体はコロナ電極で雰囲気の気体をイオン化しそれに接触する粉体をイオン化することができる。帯電は空気(主に酸素)をイオン化する際はマイナス極が良く、窒素を帯電する場合はプラス電極が良い。また途中で流路の内径を細くするしないに係わらず流路の途中から余剰気体を逃がす排出口6、6’を本発明では設け噴出口8からの粉体は粉体リッチにすることができる。排気はチューブ外に全周囲に均等に逃がすことができ1乃至複数の排出口6、6‘から余剰気体を逃がすこともできる。流路チューブの内径を細くする直前に排気手段を設けると余剰気体の排出はより効果的になる。内径が大径から急に小径チューブにすると圧縮気体を多く含む粉流体は小径チューブに流れ込むことができずエジェクターポンプ側に逆流する。そのため余剰気体を外部に排出口6等から排出しながら粉リッチの流体にして細いチューブに送り込むことが重要である。余剰気体排出は自然排気で良く気体に混入した粉体は図示しない小型サイクロン装置等で回収し再利用できる。大径から小径にするにはスムーズなフローになるようにテーパーで徐々に絞るべきである。
粉体は噴出口8から噴出され粉体塗布部16内に配置した静電電極11,11‘,11‘’で帯電され粉体塗布部16の端部15から流出し端部15に近接して移動する対象物12に付着する。前記噴出口8は対象物12に向けて角度をつけて粉体が衝突するようにして付着させて良い。また静電気による帯電は噴出口の上流の流路内やその上流の物体1上で既に荷電していても良い。対象物12は金属ロール等の導電性物体を経由して設置して前記端部15と対象物間はほぼ接触するぐらいのレベルで良く、0.5乃至3mm程度で良い。そのため対象物が高速で移動しても粉体の付着に影響する風の流れは壁等で防御でき無視できる。更に帯電しそのため粉体塗布部16で効率よく対象物に粉体を付着できる。付着しなかった粉体や気流は底部14も含めて下流に移動しているので余剰な気流や対象物12に付着しなかった粉体は排出口10から吸引するなどして排出して粉体は回収して再利用される。 In FIG. 1, powder is applied onto anobject 1 through a suction port 3 of a powder pump 4 such as an ejector pump.
The gas is sucked in through theflow passage 5 and is forced out into the flow passage 5. The flow passage 5 may be a pipe or tube with an inner diameter of about 6 mm to 12 mm, such as a metal pipe, rubber, ceramics, or plastic. The flow passage 7 beyond the flow passage 5 can be narrowed to enrich the powder density of the powder fluid. By enriching the powder ratio and smoothly moving the powder into the narrow tube, mainly excess gas can be discharged to the outside from the outlets 6, 6'. The outlets 6, 6' are connected to a mini cyclone (not shown) or the like, and the powder mixed in the surplus gas can be collected and reused. The tube with a narrow inner diameter can also be a tube made of PTFE or PFA with an inner diameter of about 4 mm to 2 mm. It can be 1 mm or 5 mm. In order to facilitate frictional charging of the powder, the tube can be made of a material that is easily charged with binders, electrolyte polymers, etc. For example, if the powder is a polyamide-based powder such as nylon, the inner surface of the tube should be PTFE, and efficient frictional charging can be achieved by earthing the outer surface of the tube. Generally, from the viewpoint of heat and chemical resistance, the positive electrode binder of a secondary battery is fortunately mostly fluorine-based, and the active material is hard and easy to scrape the inner surface of the tube, but in order to ignore contamination due to wear on the inner surface of the tube, a fluorine-based tube with good slipperiness of powder such as PTFE or PFA is selected, and the powder can be ionized by ionizing the gas in the atmosphere with a corona electrode and ionizing the powder that comes into contact with it. When charging, the negative electrode is good for ionizing air (mainly oxygen), and the positive electrode is good for charging nitrogen. In addition, regardless of whether the inner diameter of the flow path is narrowed in the middle, the present invention provides exhaust ports 6, 6' that allow excess gas to escape from the middle of the flow path, and the powder from the nozzle 8 can be made powder-rich. The exhaust can be evenly released around the entire circumference outside the tube, and the excess gas can also be released from one or more exhaust ports 6, 6'. If an exhaust means is provided immediately before narrowing the inner diameter of the flow path tube, the exhaust of excess gas becomes more effective. If the inner diameter of the tube suddenly changes from a large diameter to a small diameter, the powder fluid containing a large amount of compressed gas cannot flow into the small diameter tube and flows back to the ejector pump side. Therefore, it is important to make a powder-rich fluid while discharging the excess gas to the outside from the exhaust port 6, etc., and send it into the thin tube. The excess gas can be discharged by natural exhaust, and the powder mixed in the gas can be collected and reused using a small cyclone device (not shown). When changing from a large diameter to a small diameter, the tube should be gradually tapered to ensure a smooth flow.
The powder is ejected from thenozzle 8, charged by electrostatic electrodes 11, 11', 11'' arranged in the powder coating section 16, flows out from the end 15 of the powder coating section 16, and adheres to the object 12 moving close to the end 15. The nozzle 8 may be angled toward the object 12 so that the powder collides with it and adheres to it. The electrostatic charge may already be charged in the flow path upstream of the nozzle or on the object 1 upstream of that. The object 12 may be placed via a conductive object such as a metal roll, and the end 15 and the object may be at a level where they are almost in contact, which may be about 0.5 to 3 mm. Therefore, even if the object moves at high speed, the wind flow that affects the adhesion of the powder can be prevented by a wall or the like and can be ignored. Furthermore, the powder is charged, and therefore the powder can be efficiently attached to the object in the powder coating section 16. The unattached powder and air flow move downstream, including the bottom 14, so the excess air flow and the powder that did not adhere to the object 12 are discharged by suction from the discharge port 10, and the powder is recovered and reused.
で吸引され、流路5に圧出される。流路5は金属パイプ、ゴム、セラミックス、プラスチックなどの内径が6mm乃至12mm程度のパイプやチューブの流路で良い。その先の流路7は粉体流体の粉体の密度をリッチにするため細くすることができる。粉体比率をリッチにしスムーズに粉体を細いチューブ内に移動するため主に過剰な気体を排出口6,6’から外部に排出できる。排出口6、6’は図示しないミニサイクロンなどに接続され排気され余剰気体に混入している粉体は回収し再利用できる。また細い内径のチューブは例えば内径が4mm乃至2mm前後のPTFEやPFAのチューブにすることもできる。1mmでも5mmでも良い。チューブは粉体の摩擦帯電をさせやすくするためバインダーや電解質ポリマー等が帯電しやすい材質を選ぶことができる。例えば粉体がナイロンなどのポリアミド系の場合、チューブ内面はPTFEが良くチューブ外面をアースすれば効率よい摩擦帯電ができる。一般的に耐熱耐薬品性の観点から二次電池の正極バインダーは幸いなことにフッ素系が多く、活物質は固くチューブの内面を削り易いがチューブの内面の摩耗でのコンタミを無視するためにはPTFE、PFAなどの粉体の滑り性の良いフッ素系チューブを選択し、粉体はコロナ電極で雰囲気の気体をイオン化しそれに接触する粉体をイオン化することができる。帯電は空気(主に酸素)をイオン化する際はマイナス極が良く、窒素を帯電する場合はプラス電極が良い。また途中で流路の内径を細くするしないに係わらず流路の途中から余剰気体を逃がす排出口6、6’を本発明では設け噴出口8からの粉体は粉体リッチにすることができる。排気はチューブ外に全周囲に均等に逃がすことができ1乃至複数の排出口6、6‘から余剰気体を逃がすこともできる。流路チューブの内径を細くする直前に排気手段を設けると余剰気体の排出はより効果的になる。内径が大径から急に小径チューブにすると圧縮気体を多く含む粉流体は小径チューブに流れ込むことができずエジェクターポンプ側に逆流する。そのため余剰気体を外部に排出口6等から排出しながら粉リッチの流体にして細いチューブに送り込むことが重要である。余剰気体排出は自然排気で良く気体に混入した粉体は図示しない小型サイクロン装置等で回収し再利用できる。大径から小径にするにはスムーズなフローになるようにテーパーで徐々に絞るべきである。
粉体は噴出口8から噴出され粉体塗布部16内に配置した静電電極11,11‘,11‘’で帯電され粉体塗布部16の端部15から流出し端部15に近接して移動する対象物12に付着する。前記噴出口8は対象物12に向けて角度をつけて粉体が衝突するようにして付着させて良い。また静電気による帯電は噴出口の上流の流路内やその上流の物体1上で既に荷電していても良い。対象物12は金属ロール等の導電性物体を経由して設置して前記端部15と対象物間はほぼ接触するぐらいのレベルで良く、0.5乃至3mm程度で良い。そのため対象物が高速で移動しても粉体の付着に影響する風の流れは壁等で防御でき無視できる。更に帯電しそのため粉体塗布部16で効率よく対象物に粉体を付着できる。付着しなかった粉体や気流は底部14も含めて下流に移動しているので余剰な気流や対象物12に付着しなかった粉体は排出口10から吸引するなどして排出して粉体は回収して再利用される。 In FIG. 1, powder is applied onto an
The gas is sucked in through the
The powder is ejected from the
図1-2に於いて粉体は噴出口8から噴出され両側の壁9,9‘に沿って移動し静電放電部で帯電し、余剰な気体や対象物に付着しなかった粉体は排出口10より吸引され排出される。噴出口の数は限定しない。1個でも良く複数で良い。壁間の距離も限定しないが電極を細幅ストライプ状に形成したい場合は噴出口1個当たり5~30mm程度に設定した方が良い。広い幅の電極を所望する場合は、粉体塗布部は並列に所望する数だけ設置できる。また高速で移動する集電体等の対象物に塗布したい場合は対象物の移動方向に粉体塗布部は長くして粉体の接触時間を長く保った方が効率よく粉体を付着できる。対象物の移動速度が分速60mの場合は0.5乃至1mあるいはそれ以上の長さが良い。そうすると対象物と粉体の接触時間が0.5乃至1秒あるいはそれ以上になる。粉体の粒子径が大きく比重が重い場合は底部を多孔質にして気体を付加して流動させながら移動できる。排出された粉体は図示しないサイクロン装置などで吸引し回収して再利用できる。
In FIG. 1-2, the powder is ejected from the nozzle 8, moves along the walls 9, 9' on both sides, and is charged by the electrostatic discharge section, and the excess gas and powder that does not adhere to the object are sucked in and discharged from the discharge port 10. There is no limit to the number of nozzles. It can be one or more. There is no limit to the distance between the walls, but if you want to form the electrodes in a narrow stripe shape, it is better to set it to about 5 to 30 mm per nozzle. If you want to have electrodes with a wide width, you can install the desired number of powder coating sections in parallel. Also, if you want to coat an object such as a collector that moves at high speed, it is better to make the powder coating section longer in the direction of movement of the object and keep the contact time of the powder longer, so that the powder can be attached more efficiently. If the moving speed of the object is 60 m per minute, a length of 0.5 to 1 m or more is good. In this way, the contact time between the object and the powder will be 0.5 to 1 second or more. If the particle size of the powder is large and the specific gravity is heavy, the bottom can be made porous and gas can be added to move it while it flows. The discharged powder can be sucked up and collected using a cyclone device (not shown) and reused.
図2において複数の粉体噴出口粉体は噴出口28,28´、28’’から噴出され壁29、29‘で横方向が規制されながら移動し静電放電部21,21’で帯電し、図示しないその上部を移動する対象物に付着する。静電気は図示していない静電発生装置で発生させ抵抗を備えた導線などを絶縁材料で被覆した静電ケーブル22に接続される。抵抗が低い金属線などの場合対象物の金属の箔が接したときスパークすることがあるので電流が急激に流れない抵抗を持ったスパークしない材質を選ぶべきである。また放電箇所は細いコロナピンで良く放電の電流はマイクロアンペアレベルで良く例えば50マイクロアンペア、電圧は2万~70万ボルト程度の範囲で電圧を調整したら良い。また壁部29、29‘や粉体塗布部底部26はポリプロピレンなど帯電した粉体が静電反発などで付着しにくい材質を選択したら良い。噴出口は例えば1乃至100個から所望する数を選択できる。また噴出口は粉体塗布部に侵入できるし壁部を加工して噴出口にできる。
In FIG. 2, powder is ejected from the nozzles 28, 28', 28'', and moves while being restricted in the lateral direction by the walls 29, 29', becomes charged at the electrostatic discharge parts 21, 21', and adheres to the object moving above it (not shown). Static electricity is generated by an electrostatic generator (not shown) and is connected to an electrostatic cable 22 made of a conductor with resistance covered with an insulating material. In the case of a metal wire with low resistance, sparks may occur when the metal foil of the object comes into contact with it, so a material with resistance that does not allow the current to flow suddenly and does not spark should be selected. In addition, a thin corona pin is suitable for the discharge point, and the discharge current is at the microampere level, for example, 50 microamperes, and the voltage is adjusted to a range of about 20,000 to 700,000 volts. In addition, polypropylene or other materials to which charged powder does not easily adhere due to electrostatic repulsion should be selected for the walls 29, 29' and the bottom 26 of the powder coating part. The desired number of nozzles can be selected from, for example, 1 to 100. In addition, the nozzles can enter the powder coating part, and the walls can be processed to make them into nozzles.
図2-2において壁29、29‘間は所望する噴出口の数ごとに仕切り部25、25’を設けることができる仕切り部の目的は広幅の壁間の粉体の下流への流れの横幅方向の規制をし層流に移動することを主な目的とする。仕切り部25、25‘間仕切り部と壁間に噴出口は1個でも良く複数でも良い。仕切り部は対象物の移動方向の粉体流の流れを規制できる。一方仕切り部が陰になり粉体の図示されない対象物への付着が阻害されないように可能な限り特に先端部は細くすべきである。
In Figure 2-2, partitions 25, 25' can be provided between walls 29, 29' for the desired number of nozzles. The main purpose of the partitions is to regulate the widthwise flow of powder downstream between the wide walls and move it into a laminar flow. There may be one or more nozzles between partitions 25, 25' and the walls. The partitions can regulate the flow of powder in the direction of movement of the object. On the other hand, the tip in particular should be as thin as possible so that the partitions do not become a shadow and inhibit the powder from adhering to the object (not shown).
図2-3は壁端部209より仕切り部25の端部は対象物への付着に邪魔にならないように、対象物からから遠ざかる箇所に位置する。底部24は多孔質にして外部から圧縮気体を取り入れることで粉体流動層にすることができる。そのため噴出口28から噴出し底部に沈殿する粉体を流動させながら移動できる。余剰な気体や図示しない対象物に付着しなかった粉体は排出口20から吸引し図示しないサイクロンに移送し回収して再利用できる。
In Figure 2-3, the end of the partition 25 is located away from the wall end 209 so as not to interfere with adhesion to the target object. The bottom 24 is made porous and can be made into a powder fluidized bed by introducing compressed gas from the outside. Therefore, the powder that is sprayed out from the nozzle 28 and settles at the bottom can be moved while being fluidized. Excess gas and powder that does not adhere to the target object (not shown) can be sucked in from the discharge port 20 and transported to a cyclone (not shown) for recovery and reuse.
図3は移動する対象物32の上部に位置する粉体塗布部の噴出口38より粉体は噴出し静電放電部31で帯電しながら落下または方向性を持って対象物32に付着し粉体層102を形成する。噴出する気粉混合体の余剰気体や対象物に付着しなかった粉体は排出口30から吸引され粉体は回収できる。排出口30の位置は限定されない。またこの位置関係では底部34に粉体流動の為の特別な圧縮気体によるフルダイズの機能を設ける必要はない。
In Figure 3, powder is sprayed from the nozzle 38 of the powder application section located above the moving object 32, charged by the electrostatic discharge section 31, and falls or adheres to the object 32 in a directional manner to form a powder layer 102. Excess gas from the sprayed air-powder mixture and powder that does not adhere to the object are sucked in from the discharge port 30, allowing the powder to be collected. The position of the discharge port 30 is not limited. With this positional relationship, there is also no need to provide a special compressed gas-based filling function at the bottom 34 for powder fluidization.
図4において対象物42に塗布された粉体層202はプレス手段45,45‘に移動し圧着される。プレス手段は加熱して良く例えば誘導加熱機能を持つロール式プレス手段で良い。ロールプレス手段はロール幅方向に対して線でのプレスで良い。プレスは次工程までパウダーを固定するだけで良いためバインダーを軟化点以上にするための加熱とプレプレスで良い。
そのためバインダー等が少ない場合、プレス前の粉体面が移動しないように最終の加熱プレス工程までの間、200℃以下でまたは及び真空で蒸発させるまたは残留しても問題ない粘性モノマーや液体の可塑剤等を塗布し仮固定できる対象物。 In Fig. 4, thepowder layer 202 applied to the object 42 is moved to the pressing means 45, 45' and pressed. The pressing means may be heated, for example, a roll-type pressing means having an induction heating function. The roll pressing means may be a line press in the roll width direction. Since the pressing only needs to fix the powder until the next process, heating and pre-pressing to raise the binder above its softening point are sufficient.
Therefore, when there is a small amount of binder, etc., the powder surface before pressing can be prevented from moving by evaporating it at 200°C or less or in a vacuum until the final heating and pressing process, or the object can be temporarily fixed by applying a viscous monomer or liquid plasticizer that is not a problem if it remains.
そのためバインダー等が少ない場合、プレス前の粉体面が移動しないように最終の加熱プレス工程までの間、200℃以下でまたは及び真空で蒸発させるまたは残留しても問題ない粘性モノマーや液体の可塑剤等を塗布し仮固定できる対象物。 In Fig. 4, the
Therefore, when there is a small amount of binder, etc., the powder surface before pressing can be prevented from moving by evaporating it at 200°C or less or in a vacuum until the final heating and pressing process, or the object can be temporarily fixed by applying a viscous monomer or liquid plasticizer that is not a problem if it remains.
図5において移動する対象物52に液体塗布装置で液体を塗布し液体塗布層350を形成する。次工程で電極用粉体が粉体塗布装置310で塗布され粉体塗布層302を形成する。
液体は電極用スラリーで良い。液体は次工程で塗布する粉体層の隙間に浸透しやすく、濡れやすくかつ熱や真空で瞬間的に蒸発することが望ましい。また対象物と緻密な界面を形成するため電極用合材粒子の粒子径は粉体用粒子径より小さいことが望ましい。本発明では粉体塗布層の上に図示しない液体塗布装置で更に合材平均粒子径が小さいまたは電解質粒子からなるスラリー等の薄膜で液体を塗布することができる。目的は電極の平滑性を向上る、または微細な凹凸を形成させ表面積を向上させることである。そのため粉体層上のスラリー等の塗布は加熱プレス後行うことでより均一な面を形成できる。 5, a liquid is applied to a movingobject 52 by a liquid application device to form a liquid coating layer 350. In the next step, electrode powder is applied by a powder application device 310 to form a powder coating layer 302.
The liquid may be a slurry for electrodes. It is desirable that the liquid easily penetrates into the gaps of the powder layer to be applied in the next process, is easily wetted, and evaporates instantly by heat or vacuum. In addition, in order to form a dense interface with the target object, it is desirable that the particle size of the electrode composite particles is smaller than the particle size of the powder. In the present invention, a liquid can be applied on the powder coating layer in the form of a thin film of a slurry or the like having a smaller average composite particle size or made of electrolyte particles using a liquid application device (not shown). The purpose is to improve the smoothness of the electrode or to form fine irregularities to improve the surface area. Therefore, a more uniform surface can be formed by applying the slurry or the like on the powder layer after hot pressing.
液体は電極用スラリーで良い。液体は次工程で塗布する粉体層の隙間に浸透しやすく、濡れやすくかつ熱や真空で瞬間的に蒸発することが望ましい。また対象物と緻密な界面を形成するため電極用合材粒子の粒子径は粉体用粒子径より小さいことが望ましい。本発明では粉体塗布層の上に図示しない液体塗布装置で更に合材平均粒子径が小さいまたは電解質粒子からなるスラリー等の薄膜で液体を塗布することができる。目的は電極の平滑性を向上る、または微細な凹凸を形成させ表面積を向上させることである。そのため粉体層上のスラリー等の塗布は加熱プレス後行うことでより均一な面を形成できる。 5, a liquid is applied to a moving
The liquid may be a slurry for electrodes. It is desirable that the liquid easily penetrates into the gaps of the powder layer to be applied in the next process, is easily wetted, and evaporates instantly by heat or vacuum. In addition, in order to form a dense interface with the target object, it is desirable that the particle size of the electrode composite particles is smaller than the particle size of the powder. In the present invention, a liquid can be applied on the powder coating layer in the form of a thin film of a slurry or the like having a smaller average composite particle size or made of electrolyte particles using a liquid application device (not shown). The purpose is to improve the smoothness of the electrode or to form fine irregularities to improve the surface area. Therefore, a more uniform surface can be formed by applying the slurry or the like on the powder layer after hot pressing.
図6において気粉混合体は噴出口68から噴出し静電気放電部61で帯電され対象物62に付着する。余剰気体や対象物に付着しなかった粉体は排出口60から吸引され回収された粉体は再利用できる。粉体塗布装置の底部の代わりにロール64を用いる方法である。ロール64は回転させることができる。
In Figure 6, the air-powder mixture is ejected from an ejection port 68, charged by an electrostatic discharge section 61, and adheres to an object 62. Excess air and powder that does not adhere to the object are sucked through an exhaust port 60, and the collected powder can be reused. This method uses a roll 64 instead of the bottom of the powder coating device. The roll 64 can be rotated.
図7は移動する対象物72に粉体塗布装置で粉体を塗布する構成図である。粉体噴出口78から粉体は噴出され対象物に付着する。余剰な気体や対象物に付着しなかった粉体は排出口から吸引され回収された粉体は再利用できる。粉体塗布装置の底部は対象物の移動方向に移動するベルト74になっている。
ベルトは多孔質で例えば細かい開口のスクリーンなどのベルトで良く、塗布装置外のベル74トに加圧気体を付加し粉体塗布装置の底部のベルト部をフルダイズ構造にして粉体の底部への体積を防止できる。またフルダイズで使用した余剰な気体は排出口より吸引できる。 7 is a diagram showing the configuration of a powder coating device for coating a movingobject 72 with powder. Powder is ejected from a powder ejection port 78 and adheres to the object. Excess gas and powder that has not adhered to the object are sucked from an exhaust port, and the collected powder can be reused. The bottom of the powder coating device is a belt 74 that moves in the direction of movement of the object.
The belt may be porous, for example a screen belt with fine openings, and pressurized gas may be applied to thebelt 74 outside the coating device to form a full die structure at the bottom of the powder coating device to prevent the powder from accumulating at the bottom. Excess gas used in full die can be sucked out from the exhaust port.
ベルトは多孔質で例えば細かい開口のスクリーンなどのベルトで良く、塗布装置外のベル74トに加圧気体を付加し粉体塗布装置の底部のベルト部をフルダイズ構造にして粉体の底部への体積を防止できる。またフルダイズで使用した余剰な気体は排出口より吸引できる。 7 is a diagram showing the configuration of a powder coating device for coating a moving
The belt may be porous, for example a screen belt with fine openings, and pressurized gas may be applied to the
図8はロールを中空ロール84にして中空ロール84は多孔質にすることで粉体供給装置802の位置で中空ロール84の多孔質部の内部830を負圧にして粉体をロールの表面に付着させることができる。またスキージー801でロール間のギャップを調整して嵩比重の安定した所望する粉体層の厚みにすることができる。リチウムリン酸鉄電極粉体のプレス後の厚みが150マイクロメートル程度で真比重が2.3程度の場合、供給前の粉体の嵩比重は0.8乃至0.9であるので粉体層厚みは約3倍の450マイクロメートルになる。そのような嵩比重の低い粉体は回転体等で移動すると落下するので多孔質物体上で反対側から真空で吸引し更に嵩比重を高める必要がある。嵩比重を高くした粉体層は粉体塗布装置810に移動し、対象物82に少なくとも最接近したあるいは所望する位置でロールの内部から圧縮気体を送り込む構造にできるので中空内部をプラス圧820にしてロール上の粉体を離脱させ塗布装置810の上側を移動する対象物82に下側から塗布できる。粉体は静電気発生装置81で帯電させアースし移動する対象物に付着し粉体層を形成できる。
粉体噴出に使用した気体は粉体に方向性さえ付与出来たら塗布後は余剰気体になるので排出口80から排出できる。排出は吸引しても良い。また塗布装置810は装置外の対象物82の移動により発生した気体の流れを防御できる。そのため塗布装置810と対象物82は数ミリメートル以下に近接することができる。塗布装置の少なくとも上流側は接触させることができる。
吸引時余剰気体と一緒に排出した微量の粉体は回収し再利用できる。塗装装置内810の粉体流は装置外の風の流れに影響されないので高速で移動する対象物82に効率よく粉体層を形成できる。粉体塗布装置810とロール84、粉体供給装置802の組み合わせは所望する数を対象物の移動法方向に複数設置でき積層できる。粉体は同じ種類を積層できる。または異種の粉体を積層できる。例えば全固体電池の場合、活物質と電解質の比率を集電体から離れるに従い電解質量を増やし傾斜塗布をすることで充放電性能を高めることができる。
粉体供給量を増やしたい場合は、例えば多孔質中空ロールに電極幅の溝を一周形成し、ロール断面に凹部を形成できる。そのため所望する数の凹部を形成し粉体を同じように多孔質部に吸着充填できるので凹部の形状により大量に粉体を充填し厚膜に対象物に粉体を塗布することもできる。塗布装置の開口部を下側に向けてその下を移動する対象物82に、中空ロール84、塗布装置802を反転してロールの上部で粉体を多孔質ロールや溝部に吸着する構造にして移動し最下部で粉体を離脱させて対象物に塗布することができる。いずれの向きでも粉体を離脱させ対象物に塗布できる。対象物のスピードと中空ロールの外周の回転スピードは等速にしてロール ツー ロールで移動する対象物のスピードに追従して単位面積当たりの塗布重量を一定にできる。 In FIG. 8, the roll is ahollow roll 84, and the hollow roll 84 is made porous, so that the inside 830 of the porous part of the hollow roll 84 can be made negative pressure at the position of the powder supplying device 802, and the powder can be attached to the surface of the roll. In addition, the gap between the rolls can be adjusted with a squeegee 801 to obtain a desired powder layer thickness with a stable bulk density. If the thickness of the lithium iron phosphate electrode powder after pressing is about 150 micrometers and the true specific gravity is about 2.3, the bulk density of the powder before supply is 0.8 to 0.9, so the powder layer thickness is about three times as thick, 450 micrometers. Such low bulk density powder falls when moved by a rotating body or the like, so it is necessary to further increase the bulk density by sucking it with a vacuum from the other side on a porous body. The powder layer with increased bulk density is moved to powder coating device 810, and since the roll can be structured so that compressed gas is fed from inside the roll at least closest to the object 82 or at a desired position, a positive pressure 820 is created inside the hollow space, causing the powder on the roll to be released and coated from below onto the object 82 moving above coating device 810. The powder is charged and earthed by static electricity generator 81, and adheres to the moving object to form a powder layer.
If the gas used to spray the powder can be given directionality, it becomes surplus gas after coating and can be discharged from theexhaust port 80. Discharge may also be by suction. The coating device 810 can also prevent the flow of gas generated by the movement of the target object 82 outside the device. Therefore, the coating device 810 and the target object 82 can be close to each other by a few millimeters or less. At least the upstream side of the coating device can be in contact with each other.
The small amount of powder discharged together with the excess gas during suction can be recovered and reused. The powder flow inside thecoating device 810 is not affected by the wind flow outside the device, so a powder layer can be efficiently formed on the object 82 moving at high speed. A desired number of combinations of powder coating device 810, roll 84, and powder supply device 802 can be installed in the direction of movement of the object and stacked. Powder of the same type can be stacked, or different types of powder can be stacked. For example, in the case of an all-solid-state battery, the charge/discharge performance can be improved by increasing the amount of electrolyte as the ratio of active material to electrolyte increases with distance from the current collector and applying at an angle.
If it is desired to increase the amount of powder supply, for example, a groove of the electrode width can be formed around the porous hollow roll, and a recess can be formed on the cross section of the roll. Therefore, since the desired number of recesses can be formed and the powder can be adsorbed and filled in the porous parts in the same way, it is also possible to fill a large amount of powder depending on the shape of the recesses and apply the powder to the object in a thick film. Thehollow roll 84 and the application device 802 can be reversed to move the object 82 moving under the application device with the opening facing downward, with the powder adsorbed to the porous roll or grooves at the top of the roll, and the powder can be released at the bottom and applied to the object. The powder can be released and applied to the object in either direction. The speed of the object and the rotation speed of the outer periphery of the hollow roll can be made constant, and the coating weight per unit area can be made constant by following the speed of the object moving roll-to-roll.
粉体噴出に使用した気体は粉体に方向性さえ付与出来たら塗布後は余剰気体になるので排出口80から排出できる。排出は吸引しても良い。また塗布装置810は装置外の対象物82の移動により発生した気体の流れを防御できる。そのため塗布装置810と対象物82は数ミリメートル以下に近接することができる。塗布装置の少なくとも上流側は接触させることができる。
吸引時余剰気体と一緒に排出した微量の粉体は回収し再利用できる。塗装装置内810の粉体流は装置外の風の流れに影響されないので高速で移動する対象物82に効率よく粉体層を形成できる。粉体塗布装置810とロール84、粉体供給装置802の組み合わせは所望する数を対象物の移動法方向に複数設置でき積層できる。粉体は同じ種類を積層できる。または異種の粉体を積層できる。例えば全固体電池の場合、活物質と電解質の比率を集電体から離れるに従い電解質量を増やし傾斜塗布をすることで充放電性能を高めることができる。
粉体供給量を増やしたい場合は、例えば多孔質中空ロールに電極幅の溝を一周形成し、ロール断面に凹部を形成できる。そのため所望する数の凹部を形成し粉体を同じように多孔質部に吸着充填できるので凹部の形状により大量に粉体を充填し厚膜に対象物に粉体を塗布することもできる。塗布装置の開口部を下側に向けてその下を移動する対象物82に、中空ロール84、塗布装置802を反転してロールの上部で粉体を多孔質ロールや溝部に吸着する構造にして移動し最下部で粉体を離脱させて対象物に塗布することができる。いずれの向きでも粉体を離脱させ対象物に塗布できる。対象物のスピードと中空ロールの外周の回転スピードは等速にしてロール ツー ロールで移動する対象物のスピードに追従して単位面積当たりの塗布重量を一定にできる。 In FIG. 8, the roll is a
If the gas used to spray the powder can be given directionality, it becomes surplus gas after coating and can be discharged from the
The small amount of powder discharged together with the excess gas during suction can be recovered and reused. The powder flow inside the
If it is desired to increase the amount of powder supply, for example, a groove of the electrode width can be formed around the porous hollow roll, and a recess can be formed on the cross section of the roll. Therefore, since the desired number of recesses can be formed and the powder can be adsorbed and filled in the porous parts in the same way, it is also possible to fill a large amount of powder depending on the shape of the recesses and apply the powder to the object in a thick film. The
図9は対象物の移動方向に同調して回転移動する多孔質ベルト94の所望する位置で粉体供給装置902により粉体900を供給しベルトの反対側を負圧にすることでベルトの表面に嵩密度が安定した粉体層を形成できる。スキージー910でギャップを調整することで所望する厚みの粉体層をベルト上に形成できる。粉体供給装置902はオーガフィーダーなどの供給で良く、粉体を流動層でフルダイズさせてベルトに付着させても良く粉体をスプレイで付着させても良い。そのため供給や付着の手段を限定しない。粉体層はベルト94と一緒に移動し粉体塗布装置901内に侵入する。対象物92に対峙した所望する位置でベルトの反対側から圧縮気体吐出装置920から圧縮気体を吐出し、ベルト94上の粉体を離脱させ静電気発生装置91,91‘で帯電した粉体をアースし移動する対象物に塗布し粉体層を形成する。圧縮気体噴出装置920,920’はベルト移動方向に複数配列してベルト上の粉体を離脱させて対象物に付着させても良い。あるいはパルス的に噴出して対象物上で粉体を重ね塗りしても良い。
粉体噴出に使用した圧縮気体は方向性さえ付与出来たら余剰気体になるので排気口90から排出できる。排出は負圧にして吸引しても良い。また塗布装置910は装置外の対象物92移動により発生した風の流れを防ぐ役目をする。その為少なくとも塗布装置910の上流部と対象物間は接触乃至数ミリメートル以下にして塗布することでそれを達成できる。
粉体塗布装置910とベルト94と粉体供給装置902の組み合わせは所望する数を対象物の移動法方向に複数設置して積層できる。粉体は同じ種類で良く、異種の粉体の積層もできる。例えば全固体電池の場合活物質と電解質の比率を集電体から離れるに従い電解質量を増やし傾斜塗布をすることで充放電性能を高めることができる。1層ごとに少なくとも仮プレスを繰り返すことができる。
本発明では粉体の供給する側の多孔質ベルトの反対面を負圧にして吸引しているので粉体層の嵩比重は一定にできる。本発明では対象物92側を開口しベルト94で移動する粉体層を含めて囲った塗布装置910の下流に余剰気体排出口90を設け排出することで対象物の所望する箇所以外への粉体の飛散を防止できる。
排気口から排出した微量の粉体は吸引してミニサイクロンなどで回収し再利用できる。 In FIG. 9, a powder layer with a stable bulk density can be formed on the surface of aporous belt 94 that rotates in synchronization with the moving direction of the object by supplying powder 900 by a powder supplying device 902 at a desired position and applying negative pressure to the opposite side of the belt. A powder layer of a desired thickness can be formed on the belt by adjusting the gap with a squeegee 910. The powder supplying device 902 may be an auger feeder or the like, and the powder may be fluidized in a fluidized bed to adhere to the belt, or the powder may be sprayed to adhere. Therefore, the means of supply and adhesion are not limited. The powder layer moves together with the belt 94 and enters the powder coating device 901. At a desired position facing the object 92, compressed gas is discharged from the opposite side of the belt, and the powder on the belt 94 is separated, and the charged powder is grounded by static electricity generating devices 91, 91' and applied to the moving object to form a powder layer. A plurality of compressed gas ejection devices 920, 920' may be arranged in the belt moving direction to separate the powder on the belt and make it adhere to the object, or the powder may be ejected in a pulsed manner to coat the object with multiple layers of powder.
If the compressed gas used to eject the powder can be given directionality, it becomes surplus gas and can be discharged from theexhaust port 90. Discharge can also be achieved by creating negative pressure and sucking. The coating device 910 also serves to prevent wind currents caused by the movement of the target object 92 outside the device. For this reason, this can be achieved by coating the target object with at least contact between the upstream part of the coating device 910 and the target object or by keeping the distance between the upstream part and the target object within a few millimeters.
A desired number of combinations ofpowder coating devices 910, belts 94, and powder supply devices 902 can be installed in the direction of movement of the object and stacked. The powder can be the same type, or different types of powder can be stacked. For example, in the case of an all-solid-state battery, the ratio of active material to electrolyte can be increased as the amount of electrolyte increases with distance from the current collector, and gradient coating can be used to improve charge/discharge performance. At least temporary pressing can be repeated for each layer.
In the present invention, the surface opposite to the porous belt on the powder supply side is subjected to negative pressure and suction, so that the bulk density of the powder layer can be made constant. In the present invention, the side of thetarget object 92 is open, and an excess gas exhaust port 90 is provided downstream of the coating device 910 that encloses the powder layer moving on the belt 94, and the excess gas is exhausted through the exhaust port 90, so that the powder can be prevented from scattering to places other than the desired place on the target object.
The small amount of powder discharged from the exhaust port can be sucked up and collected using a mini cyclone or similar device for reuse.
粉体噴出に使用した圧縮気体は方向性さえ付与出来たら余剰気体になるので排気口90から排出できる。排出は負圧にして吸引しても良い。また塗布装置910は装置外の対象物92移動により発生した風の流れを防ぐ役目をする。その為少なくとも塗布装置910の上流部と対象物間は接触乃至数ミリメートル以下にして塗布することでそれを達成できる。
粉体塗布装置910とベルト94と粉体供給装置902の組み合わせは所望する数を対象物の移動法方向に複数設置して積層できる。粉体は同じ種類で良く、異種の粉体の積層もできる。例えば全固体電池の場合活物質と電解質の比率を集電体から離れるに従い電解質量を増やし傾斜塗布をすることで充放電性能を高めることができる。1層ごとに少なくとも仮プレスを繰り返すことができる。
本発明では粉体の供給する側の多孔質ベルトの反対面を負圧にして吸引しているので粉体層の嵩比重は一定にできる。本発明では対象物92側を開口しベルト94で移動する粉体層を含めて囲った塗布装置910の下流に余剰気体排出口90を設け排出することで対象物の所望する箇所以外への粉体の飛散を防止できる。
排気口から排出した微量の粉体は吸引してミニサイクロンなどで回収し再利用できる。 In FIG. 9, a powder layer with a stable bulk density can be formed on the surface of a
If the compressed gas used to eject the powder can be given directionality, it becomes surplus gas and can be discharged from the
A desired number of combinations of
In the present invention, the surface opposite to the porous belt on the powder supply side is subjected to negative pressure and suction, so that the bulk density of the powder layer can be made constant. In the present invention, the side of the
The small amount of powder discharged from the exhaust port can be sucked up and collected using a mini cyclone or similar device for reuse.
上記の様に本発明の主旨は全固体電池電極を含む二次電池電極用材料の合材を合材粒子の粉体にして、所望する比率の気粉混合体にして粉体の凝集を防止しながら集電体等の対象物に塗布し、短時間のプレスで必要により加熱して電極を形成することにある。粉体の対象物への密着力を高め、対象物である集電体との界面の密着性を高めるためるために、後工程で揮発する溶媒に溶解させる或いは分散した微量のアンカー効果のあるバインダーなどの樹脂に界面活性剤、分散剤などを選択して混合して塗布できる。また集電体等の対象物との緻密度を向上させるため活物質等の粉体の平均粒子径より小さい微粉粒子の粉体を混合できる。更にはバインダーが溶解または膨潤した電極材料のスラリーを塗布することができる。電極粉体層形成後、前記溶媒や後工程で揮発可能な可塑剤等を微量粉体層表面に塗布しプレス工程までの間、粉体層を固定できる。電解質層と接触する該粉体塗布面はミクロンレベルの微細な凹凸面を設けて表面積を上げ電解質層との密着性を上げるため、電極層と電解質層の少なくとも片側に微粉の粉体を塗布することができる。
As described above, the gist of the present invention is to make a powder of composite particles of a composite material for secondary battery electrodes, which includes an all-solid-state battery electrode, and apply the mixture to an object such as a current collector while preventing the powder from agglomerating into a desired ratio, and then heat it as necessary in a short press to form an electrode. In order to increase the adhesion of the powder to the object and to increase the adhesion of the interface with the object, which is the current collector, a surfactant, a dispersant, etc. can be selected and mixed with a resin such as a binder with a small amount of anchor effect dissolved or dispersed in a solvent that evaporates in a later process and applied. In addition, in order to improve the density with the object such as the current collector, a powder of fine particles smaller than the average particle size of the powder of the active material, etc. can be mixed. Furthermore, a slurry of the electrode material in which the binder has been dissolved or swollen can be applied. After the electrode powder layer is formed, the solvent or a plasticizer that can evaporate in a later process can be applied in a small amount to the surface of the powder layer to fix the powder layer until the pressing process. The powder-coated surface that comes into contact with the electrolyte layer can be provided with a micron-level fine uneven surface to increase the surface area and improve adhesion with the electrolyte layer, so fine powder can be applied to at least one side of the electrode layer and electrolyte layer.
以上の様に本発明では二次電池の電極形成。全固体電池の電極形成、半固体電池の電極形成迄可能になる。前記の様にLIB等の二次電池の製造方法は二次電池全般の電極形成、次世代二次電池の全固体電池や空気電池などの電極形成、例えば電気二重層コンデンサ―等を含むキャパシターの電極、更にはDry法とWet法単独または組み合わせで燃料電池や水電解の電極形成やガスディフュージョンレイヤーのマイクロポーラスレイヤー形成等ができる。更には一般の金属平板や長尺板、不織布、フィルムなどへの粉体の塗装や粉体の接着分野にさえ好適に応用できる。更にナノサイズやサブミクロンの微粒子の粉体を使用することで応用分野は更に広がり例えば次世代太陽電池などの各層の形成に応用できる。
As described above, the present invention allows the formation of electrodes for secondary batteries. It is even possible to form electrodes for all-solid-state batteries and semi-solid-state batteries. As described above, the manufacturing method for secondary batteries such as LIBs can be used to form electrodes for secondary batteries in general, electrodes for next-generation secondary batteries such as all-solid-state batteries and air batteries, for example, electrodes for capacitors including electric double-layer capacitors, and further, by using the dry method and the wet method alone or in combination, to form electrodes for fuel cells and water electrolysis, and microporous layers for gas diffusion layers. Furthermore, it can be suitably applied to the coating and adhesion of powder to general metal flat plates, long plates, nonwoven fabrics, films, etc. Furthermore, the use of nano-sized or submicron fine powders can further expand the field of application, and it can be used to form each layer of next-generation solar cells, for example.
1 物体
2 粉体
3 吸引口
4 ポンプ
5、 流路
6、6 余剰気体排出口
7 第2流路
8、28、28‘、28’‘、38、58、68、78 噴出口
15、209 壁端部
9、9‘、19,19’、29、29‘ 壁
10、20,20‘、20’‘、30、50、60 余剰気体排出口
70、80、90 余剰気体排出口
64 ロール(粉体塗布装置底部)
74、94 ベルト(粉体塗布部底部)
11、11‘、11‘’、21、21‘、21’、 静電発生装置
31、61,61‘、81,81’、91,91‘ 静電発生装置
12、32、42、52、62、72、82、92 対象物(集電体)
13、33 、33‘ ロール(接地)
14、24、34 粉体塗布部底部
22 静電ケーブル
25、25‘ 仕切り部
45、45‘ プレス手段
101 粉体流
102、202、302 粉体塗布層
110、310 粉体塗布部
320 液体(スラリー)塗布装置
350 液体塗布層
302 スラリー/粉体塗布層(DRY ON WET)
800、900 粉体
801、901 スキージー
802、902 粉体供給装置 1Object 2 Powder 3 Suction port
4Pump 5 Flow path 6, 6 Excess gas exhaust port 7 Second flow path 8, 28, 28', 28'', 38, 58, 68, 78 Spout 15, 209 Wall end 9, 9', 19, 19', 29, 29' Wall 10, 20, 20', 20'', 30, 50, 60 Excess gas exhaust port 70, 80, 90 Excess gas exhaust port 64 Roll (bottom of powder coating device)
74, 94 Belt (bottom of powder coating section)
11, 11', 11'', 21, 21', 21', electrostatic generator 31, 61, 61', 81, 81', 91, 91' electrostatic generator 12, 32, 42, 52, 62, 72, 82, 92 target object (current collector)
13, 33, 33' Roll (ground)
14, 24, 34 Powder coating section bottom 22Electrostatic cable 25, 25' Partition section 45, 45' Pressing means 101 Powder flow 102, 202, 302 Powder coating layer 110, 310 Powder coating section 320 Liquid (slurry) coating device 350 Liquid coating layer 302 Slurry/powder coating layer (DRY ON WET)
800, 900 Powder 801, 901 Squeegee 802, 902 Powder supply device
2 粉体
3 吸引口
4 ポンプ
5、 流路
6、6 余剰気体排出口
7 第2流路
8、28、28‘、28’‘、38、58、68、78 噴出口
15、209 壁端部
9、9‘、19,19’、29、29‘ 壁
10、20,20‘、20’‘、30、50、60 余剰気体排出口
70、80、90 余剰気体排出口
64 ロール(粉体塗布装置底部)
74、94 ベルト(粉体塗布部底部)
11、11‘、11‘’、21、21‘、21’、 静電発生装置
31、61,61‘、81,81’、91,91‘ 静電発生装置
12、32、42、52、62、72、82、92 対象物(集電体)
13、33 、33‘ ロール(接地)
14、24、34 粉体塗布部底部
22 静電ケーブル
25、25‘ 仕切り部
45、45‘ プレス手段
101 粉体流
102、202、302 粉体塗布層
110、310 粉体塗布部
320 液体(スラリー)塗布装置
350 液体塗布層
302 スラリー/粉体塗布層(DRY ON WET)
800、900 粉体
801、901 スキージー
802、902 粉体供給装置 1
4
74, 94 Belt (bottom of powder coating section)
11, 11', 11'', 21, 21', 21',
13, 33, 33' Roll (ground)
14, 24, 34 Powder coating section bottom 22
800, 900
Claims (17)
- アースし移動する対象物に粉体を塗布する方法であって、多孔質物体上に粉体を充填する工程と、該粉体を吸引して下流に移動するにあたり、吸引時の粉体の秒単位時間当たりの吸引重量を安定させる工程と、前記粉体を吸引口から吸引して気粉混合体として圧力差で流路が連通する噴出口まで移送する工程と、前記流路の途中で気粉混合体の余剰な気体を外部へ排出し下流の流路内の体積当たりの粉体の密度を高くする工程と、移動する対象物に対峙した面が開口する粉体塗布装置内部は粉体流が移動する空間を持つ構造体からなり、前記噴出口を塗布装置に連通させる工程と、前記粉体は吸引時から対象物に付着するまでの間に静電気的に帯電させる工程と、アースし前記粉体塗布装置開口部に接触又は近接して移動する対象物に粉体を付着させ塗布する工程とからなる粉体の塗布方法。 A method for applying powder to a moving grounded object, comprising the steps of: filling a porous object with powder; stabilizing the weight of powder sucked in per second when sucking the powder and moving it downstream; sucking the powder through a suction port and transporting it as an air-powder mixture to a nozzle that communicates with a flow path by a pressure difference; discharging excess gas from the air-powder mixture to the outside midway through the flow path to increase the powder density per volume in the downstream flow path; a powder coating device with an opening facing the moving object has a structure with a space through which the powder flow moves, and communicating the nozzle to the coating device; electrostatically charging the powder from the time of suction until it adheres to the object; and applying the powder to a moving object that is in contact with or close to the opening of the powder coating device.
- 二次電池の製造方法または全固体電池の製造方法であって、多孔質物体上に電極用粉体を充填する工程と、該粉体を吸引して下流に移動するにあたり、吸引時の粉体の秒単位時間当たりの吸引重量を安定させる工程と、前記粉体を吸引口から吸引して気粉混合体として圧力差で流路が連通する噴出口まで移送する工程と、前記流路の途中で気粉混合体の余剰な気体を外部へ排出し下流の流路内の体積当たりの粉体の密度を高くする工程と、移動する対象物に対峙した面が開口する粉体塗布装置内部は粉体流が移動する空間を持つ構造体からなり、前記噴出口を塗布装置に連通させる工程と、前記粉体は吸引時から対象物に付着するまでの間に静電気的に帯電させる工程と、アースし前記粉体塗布装置開口部に接触又は近接して移動する対象物に粉体を付着させ粉体電極層を形成する工程と、該粉体電極層をロールでプレスし電極を形成してなることを特徴とする二次電池または全固体電池の製造方法。 A method for manufacturing a secondary battery or an all-solid-state battery, comprising the steps of: filling a porous body with electrode powder; stabilizing the weight of powder sucked in per second when sucking the powder and moving it downstream; sucking the powder through a suction port and transporting it as an air-powder mixture to a nozzle connected to a flow path by a pressure difference; discharging excess gas from the air-powder mixture to the outside midway through the flow path to increase the powder density per volume in the downstream flow path; connecting the nozzle to a powder coating device, the inside of which is a structure with a space through which the powder flow moves, and the surface facing the moving object is open, and the inside of the powder coating device is open, and the structure has an opening through which the powder flow moves; electrostatically charging the powder between the time of suction and the time of attachment to the object; attaching the powder to an earthed object that is in contact with or in close proximity to the opening of the powder coating device to form a powder electrode layer; and pressing the powder electrode layer with a roll to form an electrode.
- 前記粉体の吸引時の粉体の秒単位時間当たりの吸引重量を安定させる方法は多孔物体上の粉体をエジェクターポンプで吸引し圧送するにあたり0.3MPa以上の圧縮気体で1秒当たり10サイクル以上のパルス開閉でエジェクターポンプを作動させることにより行うことを特徴とする請求項2の二次電池または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that the method for stabilizing the suction weight of the powder per second during suction of the powder is performed by operating the ejector pump with a compressed gas of 0.3 MPa or more and a pulse opening and closing of 10 cycles or more per second when sucking and pumping the powder on the porous body with the ejector pump.
- 前記粉体の吸引時の粉体の秒単位時間当たりの吸引重量を安定させる方法は、多孔物体の凹部の嵩密度が一定の粉体を吸引するにあたり、該凹部の反対側の多孔面を負圧にし、粉体を凹部に容積的に充填し凹部の粉体の嵩比重を一定にすることで体積当たりの凹部の粉体の嵩比重を安定させることを特徴とする請求項2の二次電池又は全固体電池の製造方法。 The method for stabilizing the suction weight of powder per second during suction of the powder is characterized in that, when sucking powder with a constant bulk density in a recess of a porous object, the porous surface opposite the recess is subjected to negative pressure, the powder is volumetrically filled in the recess, and the bulk density of the powder in the recess is made constant, thereby stabilizing the bulk density of the powder in the recess per volume, according to the method for manufacturing a secondary battery or an all-solid-state battery of claim 2.
- 前記気粉混合体の余剰な気体を排出する流路の位置は、該流路の断面積を1/4以下に小さくする箇所の上流であって、下流の断面積の小さい流路の体積の粉体密度を高くして粉体を移動することを特徴とする請求項2の二次電または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that the position of the flow path for discharging the excess gas from the gas-powder mixture is upstream of the point where the cross-sectional area of the flow path is reduced to 1/4 or less, and the powder is moved by increasing the powder density in the downstream flow path with the smaller cross-sectional area.
- 前記粉体塗布装置の内部の空間に少なくとも一つのコロナ電極または細長い電極を広い面積に対応した形状にして配置し粉体を帯電させ、少なくとも前記空間の両側と上流部の壁は帯電した粉体が静電反発する材質とし、該壁の対象物側端部に接触又は近接して移動する対象物とで外部の風の流れを遮る構造とし、少なくとも対象物の移動方向の両側の壁は粉体流の流れを規制して粉体を対象物に付着させ、前記空間を下流側に長く展開し、対象物に付着しなかった粉体は下流に位置するコロナ電極で静電反発または再度帯電させて下流に移動しながら対象物に付着するチャンスを増やし、塗布装置内部の少なくとも余剰気体は前記粉体装置の最下流の排出口から排出させることを特徴とする請求項2の二次電池または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that at least one corona electrode or an elongated electrode is arranged in a shape corresponding to a wide area in the space inside the powder coating device to charge the powder, at least both sides and the wall of the upstream part of the space are made of a material that electrostatically repels the charged powder, and the wall is structured to block the flow of external wind with the object moving in contact with or close to the end of the wall on the object side, at least the walls on both sides in the moving direction of the object regulate the flow of the powder flow to cause the powder to adhere to the object, the space is extended downstream, the powder that has not adhered to the object is electrostatically repelled or recharged by the corona electrode located downstream to increase the chance of it adhering to the object as it moves downstream, and at least the excess gas inside the coating device is discharged from the most downstream exhaust port of the powder device.
- 前記塗布装置の両側の壁部の内側に複数の仕切りを設け、該仕切りの間に単数または複数の噴出口を存在させ前記仕切りにより対象物と直交する幅方向に複数のストライプ状粉体電極層と未塗工部を形成することを特徴とする請求項2の二次電池または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that a plurality of partitions are provided on the inside of both side walls of the coating device, and a single or multiple nozzles are provided between the partitions, and a plurality of stripe-shaped powder electrode layers and uncoated areas are formed in the width direction perpendicular to the object by the partitions.
- 前記対象物移動方向の粉体層電極間の電極未塗工部領域に飛散した粉体を電極の幅に沿って真空で吸引し外部へ排出する工程と、更に対象物移動方向の電極と直交して電極未塗工部領域形成のため対象物上の電極パターン以外の粉体を真空で吸引し粉体未塗工部と粉体電極パターン層を形成することを特徴とする請求項2の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 2, further comprising the steps of: sucking the powder scattered in the electrode uncoated area between the powder layer electrodes in the direction of movement of the object by vacuum along the width of the electrodes and discharging it to the outside; and further sucking the powder on the object other than the electrode pattern by vacuum perpendicular to the electrodes in the direction of movement of the object to form the electrode uncoated area, thereby forming the powder uncoated area and the powder electrode pattern layer.
- 前記電極の形成は対象物への粉体の積層とロールでのプレスを複数回行い少なくとも最終プレスでは少対象物と粉体層を電極用粉体に含まれるバインダーの軟化点以上の温度に加熱し、10kN/cm以上の線圧で加圧して電極を形成することを特徴とする請求項2の二次電池または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that the electrode is formed by stacking powder on the object and pressing with a roll multiple times, and in at least the final press, the object and the powder layer are heated to a temperature equal to or higher than the softening point of the binder contained in the electrode powder, and pressed with a linear pressure of 10 kN/cm or more to form the electrode.
- 前記電極形成の後工程の集電体、負極層、電解質層、正極層、集電体の積層のロールプレス工程ではロール温度または粉体温度を電極用粉体に含まれるバインダーまたは電解質ポリマーの軟化点以上に加熱して10kN/cm乃至50 kN/cmの線圧でプレスすることを特徴とする請求項2の二次電池または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that in the roll press process for laminating the current collector, the negative electrode layer, the electrolyte layer, the positive electrode layer, and the current collector, which is a process subsequent to the electrode formation, the roll temperature or the powder temperature is heated to a temperature equal to or higher than the softening point of the binder or the electrolyte polymer contained in the electrode powder, and pressing is performed with a linear pressure of 10 kN/cm to 50 kN/cm.
- 前記電極用粉体は少なくとも電極用活物質粒子、電解質粒子又は繊維、バインダー、電解質ポリマー、導電助剤、活物質粒子と電解質の乾式造粒によるコアシェル粒子の中から選択し造粒した粉体であることを特徴とする請求項2の二次電池または全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that the electrode powder is a granulated powder selected from at least electrode active material particles, electrolyte particles or fibers, binders, electrolyte polymers, conductive assistants, and core-shell particles obtained by dry granulation of active material particles and electrolytes.
- 前記対象物の集電体に電極粉体塗布前にカーボンナノチューブまたはカーボンナノファイバーからなる導電助剤に分散剤を加え、更にバインダー溶液または平均粒子径が0.1マイクロメートル以下のバインダー微粒子と貧溶媒からなるスラリーを選択して加え固形分が1.5パーセント以下にした液体を15マイクロメートル以下のウェット厚みで塗布することを特徴とする請求項2の二次電池又は全固体電池の製造方法。 The method for manufacturing a secondary battery or an all-solid-state battery according to claim 2, characterized in that a dispersant is added to a conductive assistant consisting of carbon nanotubes or carbon nanofibers before the electrode powder is applied to the current collector of the object, and a binder solution or a slurry consisting of binder fine particles having an average particle size of 0.1 micrometers or less and a poor solvent is further selected and added to the current collector to adjust the solid content to 1.5% or less, and the liquid is applied to a wet thickness of 15 micrometers or less.
- 対象物の移動方向に回転する多孔質中空ロールの粉体の供給位置で該粉体を吸引しロールの外周に前記粉体を付着積層し、前記対象物への塗布位置で前記粉体を離脱させ対象物に付着させるにあたり、該粉体を充填する位置では前記ロールの内部を負圧にして前記粉体を吸引しロールの表面に粉体を付着させ粉体層を形成し該粉体層の嵩比重を安定させる工程と、前記ロールと対象物間に静電気的帯電手段を設け 粉体を帯電させる工程と、前記対象物のロールへの少なくとも最接近位置ではロールの内部から圧縮気体で粉体を離脱させて前記ロール表面の粉体をアースして移動する対象物に付着させる工程と、前記ロールと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の塗布装置外への流出を防止する工程とにより対象物に粉体を塗布することを特徴とする粉体の塗布方法。 A method for applying powder to an object by sucking in powder at a powder supply position of a porous hollow roll rotating in the moving direction of the object, depositing and stacking the powder on the outer circumference of the roll, and detaching the powder at a coating position for the object by stabilizing the bulk density of the powder layer by creating a negative pressure inside the roll at the powder loading position to suck in the powder and deposit the powder on the surface of the roll to form a powder layer; providing an electrostatic charging means between the roll and the object to charge the powder; at least at the closest position of the object to the roll, using compressed gas to detach the powder from inside the roll, earthing the powder on the surface of the roll and depositing it on the moving object; and providing an enclosure with an exhaust port for excess gas between the roll and the object to prevent the effect of wind from the outside and the outflow of the powder outside the coating device.
- 前記粉体を充填する中空ロールが多孔質の少なくとも一つの凹部形状を有し、該凹部に前記粉体を前記ロールの中空側から吸引しながら充填し、対象物に近接した塗布装置内では凹部の粉体を前記中空側からプラス圧の気体で噴出し前記対象物に塗布することを特徴とする請求項13の粉体の塗布方法。 The powder application method of claim 13, characterized in that the hollow roll into which the powder is filled has at least one porous recessed shape, the powder is filled into the recessed portion while being sucked from the hollow side of the roll, and in an application device located close to the object, the powder in the recessed portion is sprayed from the hollow side with positive pressure gas to apply it to the object.
- 対象物の移動方向に回転する多孔質中空ロールの電極用粉体の供給位置で該粉体を吸引しロールの外周に前記粉体を付着積層し、前記対象物への塗布位置で前記粉体を離脱させ対象物に付着させるにあたり、該粉体を充填する位置では前記ロールの内部を負圧にして前記粉体を吸引しロールの表面に粉体を付着させ粉体層を形成し該粉体層の嵩比重を安定させる工程と、前記ロールと対象物間に静電気的帯電手段を設け粉体を帯電させる工程と、少なくとも対象物の前記ロールへの最接近位置ではロールの内部から圧縮気体で粉体を離脱させて前記ロール表面の前記粉体を、アースして移動する対象物に付着させ塗布する工程と、前記ロールと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の塗布装置外部への流出を防止する工程とにより対象物に粉体を塗布することを特徴とする二次電池又は全固体電池の製造方法。 A method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the powder is applied to an object by sucking the powder at a supply position of the electrode powder of a porous hollow roll rotating in the moving direction of the object, depositing and stacking the powder on the outer circumference of the roll, and releasing the powder at a coating position for the object, by applying the powder to the object by applying a negative pressure inside the roll at the powder loading position to suck the powder and deposit the powder on the surface of the roll to form a powder layer and stabilizing the bulk density of the powder layer, providing an electrostatic charging means between the roll and the object to charge the powder, at least at the closest position of the object to the roll, releasing the powder from inside the roll with compressed gas, and depositing the powder on the surface of the roll on the moving object while being grounded, and applying the powder to the object, and providing an enclosure means with an outlet for surplus gas between the roll and the object as a coating device to prevent the influence of wind from the outside and the outflow of the powder to the outside of the coating device.
- 対象物の移動方向に回転移動する多孔質ベルト上の粉体を対象物に塗布する方法であって、粉体の供給位置で前記ベルトの反対側を負圧にして粉体を吸引して少なくともベルト表面に粉体を付着する工程と、前記ベルトと対象物間の粉体に静電気帯電手段で粉体を帯電させる工程と、前記対象物への塗布位置でベルト上の粉体を離脱させアースして移動する対象物に粉体を付着させる工程と、塗布位置の前記ベルトと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の外部への流出を防止する工程とにより対象物に粉体を塗布することを特徴とする粉体の塗布方法。 A method for applying powder to an object by applying a powder on a porous belt that rotates in the direction of movement of the object, comprising the steps of: applying negative pressure to the opposite side of the belt at a powder supply position to suck in the powder and deposit the powder on at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means; detaching and earthing the powder on the belt at a coating position for the object to deposit the powder on the moving object; and providing an enclosure with an exhaust port for excess gas between the belt and the object at the coating position to prevent the effect of wind from outside and the outflow of powder to the outside as a coating device, thereby applying powder to the object.
- 対象物の移動方向に回転移動する多孔質ベルト上の電極用粉体を対象物に塗布し電極を形成して二次電池または全固体電池を製造する方法であって、前記粉体の供給位置で前記ベルトの反対側を負圧にして粉体を吸引して少なくともベルト表面に粉体を付着する工程と、前記ベルトと対象物間の粉体に静電気帯電手段で粉体を帯電させる工程と、前記対象物への塗布位置でベルト上の粉体を離脱させアースして移動する対象物に粉体を付着させる工程と、塗布位置の前記ベルトと対象物間は余剰気体の排出口を備えた囲い手段を設け塗布装置として外部からの風の影響と粉体の外部への流出を防止する工程とにより対象物に電極用粉体を塗布し電極を形成してなることを特徴とする二次電池または全固体電池の製造方法。 A method for manufacturing a secondary battery or an all-solid-state battery by applying an electrode powder on a porous belt that rotates in the moving direction of the object to the object to form an electrode, comprising the steps of: applying negative pressure to the opposite side of the belt at the powder supply position to suck in the powder and attach the powder to at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means; detaching and earthing the powder on the belt at the application position to the object to attach the powder to the moving object; and providing an enclosure with an outlet for excess gas between the belt and the object at the application position as an application device to prevent the influence of wind from outside and the outflow of the powder to the outside, thereby applying the electrode powder to the object to form an electrode. A method for manufacturing a secondary battery or an all-solid-state battery, characterized in that the electrode powder is applied to the object to form an electrode by the steps of: applying negative pressure to the opposite side of the belt at the powder supply position to suck in the powder and attach the powder to at least the belt surface; charging the powder between the belt and the object with an electrostatic charging means;
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022160917A JP2024054597A (en) | 2022-10-05 | 2022-10-05 | Powder application method, secondary battery manufacturing method, all-solid-state battery manufacturing method, secondary battery, and all-solid-state battery |
JP2022-160917 | 2022-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024075484A1 true WO2024075484A1 (en) | 2024-04-11 |
Family
ID=90607910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/033496 WO2024075484A1 (en) | 2022-10-05 | 2023-09-14 | Method for applying powder, method for producing secondary battery, method for producing all-solid-state battery, secondary battery and all-solid-state battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024054597A (en) |
WO (1) | WO2024075484A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016077982A (en) * | 2014-10-18 | 2016-05-16 | エムテックスマート株式会社 | Method for applying granular powder |
JP2016182579A (en) * | 2015-03-26 | 2016-10-20 | 富士ゼロックス株式会社 | Powder coating device, and powder coating method |
JP2018192380A (en) * | 2017-05-12 | 2018-12-06 | 新日鉄住金エンジニアリング株式会社 | Electrostatic powder coating device |
JP2020129495A (en) * | 2019-02-08 | 2020-08-27 | エムテックスマート株式会社 | Method for producing all-solid-state battery |
JP2021087905A (en) * | 2019-12-02 | 2021-06-10 | エムテックスマート株式会社 | Coating of granular material or film-forming method |
-
2022
- 2022-10-05 JP JP2022160917A patent/JP2024054597A/en active Pending
-
2023
- 2023-09-14 WO PCT/JP2023/033496 patent/WO2024075484A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016077982A (en) * | 2014-10-18 | 2016-05-16 | エムテックスマート株式会社 | Method for applying granular powder |
JP2016182579A (en) * | 2015-03-26 | 2016-10-20 | 富士ゼロックス株式会社 | Powder coating device, and powder coating method |
JP2018192380A (en) * | 2017-05-12 | 2018-12-06 | 新日鉄住金エンジニアリング株式会社 | Electrostatic powder coating device |
JP2020129495A (en) * | 2019-02-08 | 2020-08-27 | エムテックスマート株式会社 | Method for producing all-solid-state battery |
JP2021087905A (en) * | 2019-12-02 | 2021-06-10 | エムテックスマート株式会社 | Coating of granular material or film-forming method |
Also Published As
Publication number | Publication date |
---|---|
JP2024054597A (en) | 2024-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220131124A1 (en) | Method for manufacturing all-solid-state battery | |
US11967696B2 (en) | Processes for the manufacture of conductive particle films for lithium ion batteries and lithium ion batteries | |
US20150372286A1 (en) | Apparatus for material spray deposition of high solid percentage slurries for battery active material manufacture applications | |
US10312499B2 (en) | Coating particles of active electrode material for lithium secondary batteries | |
US20180277826A1 (en) | Combination of plasma coating and spray coating for lithium battery electrode fabrication | |
JP2022172307A (en) | Manufacturing method of all-solid battery | |
US12113201B2 (en) | Method for manufacturing all-solid-state battery | |
JP2016018725A (en) | Method for manufacturing electrode for lithium ion secondary battery | |
WO2021149737A1 (en) | Method for manufacturing secondary battery, or secondary battery | |
WO2024075484A1 (en) | Method for applying powder, method for producing secondary battery, method for producing all-solid-state battery, secondary battery and all-solid-state battery | |
US20220410203A1 (en) | Application or film formation method for particulate matter | |
JP2024112492A (en) | Coating method, manufacturing method of secondary battery, manufacturing method of all-solid-state battery, manufacturing method of semi-solid-state battery | |
KR102465331B1 (en) | Coating device and method for secondary battery electrode process | |
US20170324077A1 (en) | Plasma battery electrode coating on current collector pretreated with conducive material | |
WO2024009736A1 (en) | Method for manufacturing secondary battery and method for manufacturing all-solid-state battery | |
WO2024214718A1 (en) | Jetting method or coating method for fluid, method for producing secondary battery or all-solid-state battery, method for producing solar cell, and nozzle assembly | |
US11594784B2 (en) | Integrated fibrous separator | |
WO2022049974A1 (en) | Coating method, fuel cell manufacturing method or fuel cell, secondary battery manufacturing method or secondary battery, and all-solid battery manufacturing method or all-solid battery | |
JP2017199671A (en) | Method for manufacturing lithium ion secondary battery electrode | |
JP2024151398A (en) | Fluid ejection or application method, secondary battery or all-solid-state battery manufacturing method, solar cell manufacturing method, and nozzle assembly | |
CN115132955A (en) | Method for coating a carrier material with an active material for producing an electrode foil for a battery cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23874613 Country of ref document: EP Kind code of ref document: A1 |