WO2024075440A1 - Refrigerated container - Google Patents

Refrigerated container Download PDF

Info

Publication number
WO2024075440A1
WO2024075440A1 PCT/JP2023/031474 JP2023031474W WO2024075440A1 WO 2024075440 A1 WO2024075440 A1 WO 2024075440A1 JP 2023031474 W JP2023031474 W JP 2023031474W WO 2024075440 A1 WO2024075440 A1 WO 2024075440A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
warm air
gas
air introduction
container
Prior art date
Application number
PCT/JP2023/031474
Other languages
French (fr)
Japanese (ja)
Inventor
亮 ▲高▼田
和貴 吉田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024075440A1 publication Critical patent/WO2024075440A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Definitions

  • the present disclosure relates to a refrigeration container configured to be capable of cooling a gas inside a container body.
  • a refrigerated container is a container equipped with a refrigeration function that freezes or refrigerates cargo and other items stored inside.
  • a conventional air refrigerant type refrigerator in which the air in a chamber that needs to be cooled is taken in as the refrigerant for the air refrigerant type refrigerator, and the refrigerant air cooled by the refrigerator is blown directly into the chamber that needs to be cooled to cool the chamber (see Patent Document 1).
  • the air that has become high-pressure and high-temperature in the compressor is cooled by a cooler, and then reduced to low-pressure and low-temperature in the expander.
  • the air refrigerant type refrigerator described in Patent Document 1 is capable of freezing operation to cool the air in the room that needs to be cooled, but does not have a function for performing warm-up operation to warm up the air in the room that needs to be cooled.
  • the temperature outside the container outside air temperature
  • warm-up air is required inside the container.
  • a device for performing warm-up operation to warm up the inside of the container is installed inside the container, the cargo space inside the container will be narrowed.
  • a separate power source, piping, etc. is required to suck the gas warmed by the device into the container, thereby narrowing the cargo space inside the container.
  • At least one embodiment of the present invention aims to provide a refrigerated container that can prevent a reduction in cargo space inside the container and can raise and lower the temperature inside the container.
  • a refrigerated container comprises: A refrigeration container configured to be able to cool an internal gas, which is a gas inside a container body, The container body; a circulation line having an inlet and an outlet, each of which is provided inside the container body; a compressor provided in the circulation line and configured to compress a circulation gas that is the gas sucked into the circulation line from inside the container body through the suction port; a heat exchanger provided in the circulation line and configured to cool the circulation gas compressed in the compressor; an expander provided in the circulation line and configured to expand the circulation gas cooled by the heat exchanger; a warm air introduction line for extracting the circulating gas having a higher temperature than the internal gas from between the compressor and the heat exchanger of the circulating line and guiding the gas to the container body.
  • At least one embodiment of the present disclosure provides a refrigerated container that can prevent the reduction of cargo space inside the container and can raise and lower the temperature inside the container.
  • FIG. 1 is a schematic perspective view of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view of the refrigerated container shown in FIG. 1 from another angle.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 3 is a view of a refrigeration container according to an embodiment of the present disclosure, as viewed from the direction indicated by arrow A in FIG. 5 is a view of the refrigeration container shown in FIG. 4 as viewed from the direction indicated by arrow B in FIG. 2.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic perspective view of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view of the refrigerated container shown in FIG. 1 from another angle.
  • FIG. 2 is a diagram illustrating a schematic diagram of
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 3 is a view of a refrigeration container according to an embodiment of the present disclosure, as viewed from the direction indicated by arrow A in FIG. FIG.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view of a warm air flow control device for a refrigerated container according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a deodorization apparatus for a refrigerated container according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic perspective view of a refrigerated container 100 according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic perspective view of the refrigerated container 100 shown in Fig. 1, seen from another direction. In Fig. 2, the inside of the refrigerated container 100 is shown by omitting some walls constituting the refrigerated container 100.
  • the refrigerated container 100 comprises a container body 1 having an inner space 2 capable of accommodating cargo and other items.
  • the refrigerated container 100 is configured to be capable of cooling gas such as air inside the container body 1 (i.e., the inner space 2).
  • the container body 1 has a number of walls 4-9 that form the inner space 2.
  • Each of the multiple walls 4-9 separates the inner space 2 and the outer space 3 of the container body 1.
  • the multiple walls 4-9 include a ceiling wall 4, a bottom wall 5, a pair of short side walls 6, 7, and a pair of long side walls 8, 9.
  • the container body 1 may be a transport container used for transporting cargo, etc.
  • the container body 1 may be a standard transport container, such as a 10 ft container, a 20 ft container, or a 40 ft container.
  • FIG. 3 is a schematic diagram showing the circuit of the refrigeration machine (refrigeration cycle) of a refrigerated container 100 according to one embodiment of the present disclosure.
  • FIG. 4 is a diagram of the refrigerated container 100 according to one embodiment of the present disclosure, viewed from the direction indicated by arrow A in FIG. 2 (longitudinal direction of the container body 1).
  • FIG. 5 is a diagram of the refrigerated container 100 shown in FIG. 4, viewed from inside the container body 1, in the direction indicated by arrow B in FIG. 2 (opposite direction to FIG. 4).
  • the inner space 2 of the container body 1 is provided with a blowing section 14 including a blowing port 16 (opening) for blowing gas such as air into the inside of the container body 1, and a suction section 18 including a suction port 20 (opening) for sucking in gas such as air inside the container body 1.
  • a blowing section 14 and the suction section 18 are not shown in Figures 3 to 5.
  • the refrigerated container 100 includes a circulation line 22 having the above-mentioned suction port 20 and outlet port 16, a compressor 24, a heat exchanger 26, and an expander 28.
  • the compressor 24, the heat exchanger 26, and the expander 28 are each provided in the circulation line 22.
  • the circulation line 22, the compressor 24, the heat exchanger 26, and the expander 28 constitute a refrigeration machine (refrigeration cycle) 30 that extracts internal gas, which is the gas inside the container body 1, and uses it as a heat medium.
  • the refrigerated container 100 is capable of adjusting the temperature of the internal gas by the refrigeration machine 30.
  • the circulation line 22 is a passage extending from the suction port 20 to the blowing port 16, through which the circulation gas, which is gas sucked from inside the container body 1 via the suction port 20, flows.
  • the compressor 24 is configured to compress the gas (circulation gas) sucked into the circulation line 22 from inside the container body 1 via the suction port 20. By driving the compressor 24, the gas inside the container body 1 (internal gas) is sucked into the circulation line 22 via the suction port 20.
  • the circulation gas compressed in the compressor 24 is heated and pressurized higher than before it was introduced into the compressor 24, becoming a high-temperature, high-pressure gas.
  • the heat exchanger 26 is configured to cool the high-temperature, high-pressure circulating gas compressed in the compressor 24.
  • the expander 28 is configured to expand the circulating gas cooled in the heat exchanger 26.
  • the low-temperature circulating gas expanded in the expander 28 is guided to the outlet 16 by the circulation line 22 and blown out from the circulation line 22 through the outlet 16 into the inside of the container body 1.
  • the circulation line 22 includes a suction gas line 22A for guiding the circulating gas sucked in from the suction port 20 to the compressor 24, a compressed gas line 22B for guiding the circulating gas compressed in the compressor 24 to the expander 28, and an expanded gas line 22C for guiding the circulating gas expanded in the expander 28 to the outlet 16.
  • the heat exchanger 26 is configured to perform heat exchange between the circulating gas flowing through the suction gas line 22A and the circulating gas flowing through the compressed gas line 22B.
  • the circulating gas flowing through the compressed gas line 22B is compressed in the compressor 24, and is therefore at a higher temperature than the circulating gas flowing through the suction gas line 22A.
  • the heat exchange in the heat exchanger 26 the circulating gas flowing through the compressed gas line 22B is cooled by the circulating gas flowing through the suction gas line 22A, and the circulating gas flowing through the suction gas line 22A is heated by the circulating gas flowing through the compressed gas line 22B.
  • the heat exchanger 26 includes a low-temperature side heat exchange section 261 provided in the suction gas line 22A through which the circulating gas flows, and a high-temperature side heat exchange section 262 provided in the compressed gas line 22B through which the circulating gas flows, and heat is transferred from the circulating gas flowing through the high-temperature side heat exchange section 262 to the circulating gas flowing through the low-temperature side heat exchange section 261.
  • the refrigerated container 100 may further include a cooler 32 provided between the compressor 24 and the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22.
  • the cooler 32 is provided upstream of the heat exchanger 26 of the compressed gas line 22B and is configured to perform heat exchange between the circulation gas flowing through the compressed gas line 22B (circulation line 22) and a cooling liquid (e.g., water) that is lower in temperature than the circulation gas.
  • the circulation gas flowing through the compressed gas line 22B toward the heat exchanger 26 is cooled by the cooling liquid through the heat exchange in the cooler 32.
  • the circulation gas cooled in the cooler 32 is introduced into the heat exchanger 26 (high-temperature side heat exchange section 262) through the compressed gas line 22B.
  • the refrigerated container 100 further includes a cooling liquid circulation line 34 for circulating the cooling liquid.
  • the cooler 32 is supplied with the cooling liquid via the cooling liquid circulation line 34.
  • the cooling liquid circulation line 34 is provided with a radiator 38 constituting a cooling device 36 for cooling the cooling liquid, and a pump 42 for sending the cooling liquid in the cooling liquid circulation line 34.
  • the cooling device 36 includes a radiator 38 and a fan 40 for air-cooling the radiator 38.
  • the cooling liquid whose temperature has increased due to heat exchange with the circulating gas flowing through the compressed gas line 22B in the cooler 32 is sent to the cooling liquid circulation line 34 by the pump 42 and is cooled by the cooling device 36 including the radiator 38.
  • the cooling liquid cooled by the cooling device 36 is supplied to the cooler 32 via the cooling liquid circulation line 34.
  • the refrigerant circulating through the cooling liquid circulation line 34 is not limited to a liquid state, and may be a gas state.
  • the refrigerant circulating through the coolant circulation line 34 may be, for example, a fluorine-based refrigerant (refrigerant gas) such as R-1234ZE, or may be, for example, an antifreeze such as glycol water. It is preferable that the refrigerant circulating through the coolant circulation line 34 has a lower freezing point than water.
  • the expander 28 may be coupled to the compressor 24 via a rotating shaft 44.
  • the refrigerated container 100 further includes an electric motor 46 configured to generate a driving force for driving the compressor 24.
  • the compressor 24 includes an electric compressor configured to be driven by the electric motor 46 to compress the circulating gas.
  • the compressor 24 and the expander 28 are coaxially arranged with each other via a rotating shaft 44, which is an output shaft of the electric motor 46 for driving the compressor 24, and are connected to the rotating shaft 44, respectively.
  • the electric motor 46 is supplied with current from a power source (such as a generator) (not shown), and is driven by the current supplied from the power source to drive the rotating shaft 44, the compressor 24, and the expander 28.
  • a power source such as a generator
  • each of the suction gas line 22A, the compressed gas line 22B, and the expanded gas line 22C is formed by piping.
  • each of the piping that forms the circulation line 22 may be formed by multiple piping sections connected via flanges or the like.
  • the piping forming the suction gas line 22A includes a piping 23A provided between the suction port 20 and the inlet of the heat exchanger 26, and a piping 23B provided between the outlet of the heat exchanger 26 and the compressor 24.
  • the piping forming the compressed gas line 22B includes a piping 23C provided between the outlet of the compressor 24 and the inlet of the cooler 32, a piping 23D provided between the outlet of the cooler 32 and the inlet of the heat exchanger 26, and a piping 23E provided between the outlet of the heat exchanger 26 and the inlet of the expander 28.
  • the piping forming the expanded gas line 22C includes a piping 23F provided between the outlet of the expander 28 and the blow-out port 16.
  • FIG. 6 to 10 and Figure 12 are diagram showing a schematic diagram of a circuit of a refrigerator 30 of a refrigerated container 100 according to one embodiment of the present disclosure.
  • Figure 11 is a diagram showing a refrigerated container 100 according to one embodiment of the present disclosure (the refrigerated container 100 shown in Figure 12) as viewed from the direction indicated by arrow A in Figure 2.
  • a refrigerated container 100 according to some embodiments includes the above-mentioned container body 1, the above-mentioned circulation line 22, the above-mentioned compressor 24, the above-mentioned heat exchanger 26, the above-mentioned expander 28, and a warm air introduction line 50.
  • the warm air introduction line 50 forms at least a part of a flow path for extracting circulating gas that is hotter than the gas inside the container from between the compressor 24 and the heat exchanger 26 (high temperature side heat exchange section 262) of the circulation line 22 and guiding it to the container body 1.
  • each of the warm air introduction lines 50 is formed by piping. Note that each of the piping that forms the warm air introduction line 50 may be formed by multiple piping sections connected via flanges or the like.
  • the circulating gas flowing between the compressor 24 and the heat exchanger 26 (high temperature side heat exchange section 262) in the circulation line 22 has its temperature and pressure increased by being compressed in the compressor 24, and therefore becomes hotter and more pressurized than the gas inside the container.
  • the temperature inside the container can be raised by introducing this circulating gas, which is now hotter and more pressurized than the gas inside the container, into the container body 1 via the warm air introduction line 50.
  • a refrigeration unit 30 is constructed that includes a compressor 24, a heat exchanger 26, and an expander 28, each of which is provided in the circulation line 22, and uses the gas inside the container body 1 (internal gas) as a heat medium.
  • the gas inside the container body 1 naturally circulates from the outlet 16 to the inlet 20 due to the difference in pressure between the outlet 16 and the inlet 20, so no fan is required to circulate the air inside the container. Therefore, the internal temperature does not rise due to the provision of a fan and a fan motor inside the container body 1. Therefore, the internal temperature is easily maintained at a desired temperature.
  • a refrigeration container 100 can be obtained that can suppress the reduction of the cargo space inside the container and can stably maintain the internal temperature.
  • the warm air introduction line 50 allows the circulating gas, which has been heated by the compressor 24 to a temperature higher than the gas inside the container, to be returned to the inside of the container body 1, thereby raising the temperature inside the container.
  • the refrigerated container 100 can expand the adjustable range of the inside temperature to the higher temperature side while preventing the cargo space inside the container from being reduced.
  • the above-mentioned refrigerated container 100 further includes at least one warm air flow rate adjustment device (warm air flow rate adjustment valve) 52 that is provided in the warm air introduction line 50 and configured to adjust the flow rate of the circulating gas flowing through the warm air introduction line 50.
  • the warm air flow rate adjustment device 52 is configured to adjust the flow rate of the circulating gas guided downstream (downstream end 502 side) of the warm air flow rate adjustment device 52 by changing the opening degree of a valve body arranged in the warm air introduction line 50.
  • warm air flow rate adjustment device 52 may be an opening/closing valve whose opening degree can be adjusted to fully closed and fully open, or may be an opening degree adjustment valve whose opening degree can be adjusted to fully closed, fully open, and at least one intermediate opening degree between them.
  • the circulating gas flowing through the compressed gas line 22B is led to the inside of the container body 1 through the warm air introduction line 50 due to the difference in pressure between the upstream end 501 of the warm air introduction line 50 and the downstream end 502 of the warm air introduction line 50. For this reason, a fan for leading the circulating gas through the warm air introduction line 50 to the inside of the container body 1 is not required.
  • the warm air flow rate control device 52 adjusts the flow rate of the warm air (circulating gas) flowing through the warm air introduction line 50, making it possible to control the temperature rise inside the container body 1.
  • the temperature rise control can be simplified. Note that increasing or decreasing the output (rotation speed) of the electric motor 46 increases or decreases the flow rate of the circulating gas discharged from the compressor 24 and flowing through the compressed gas line 22B. For this reason, it is preferable to include not only the opening degree of the warm air flow rate control device 52 but also the output (rotation speed) of the electric motor 46 as parameters for controlling the temperature rise inside the container body 1.
  • the above-mentioned refrigerated container 100 further includes at least one circulating gas flow rate control device (circulating gas flow rate control valve) 29 that is provided in the circulation line 22 through which the warm air introduction line 50 bypasses and is configured to adjust the flow rate of the circulating gas flowing through the circulation line 22.
  • the circulation line 22 through which the warm air introduction line 50 bypasses is a portion of the circulation line 22 between the connection positions P1 and P2 to which the upstream end 501 of the warm air introduction line 50 is connected and the connection position P4 to which the downstream end 502 of the warm air introduction line 50 is connected.
  • circulating gas flow rate control device circulating gas flow rate control valve
  • the circulating gas flow rate control device 29 is provided between the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22 and the connection position P4, but may be provided between the connection positions P1 and P2 of the circulation line 22 and the heat exchanger 26 (high-temperature side heat exchange section 262).
  • the circulating gas flow rate control device 29 is configured to be able to adjust the flow rate of the circulating gas that is guided downstream of the circulating gas flow rate control device 29 (towards the expander 28) by changing the opening of a valve element arranged in the circulation line 22, which the warm air introduction line 50 bypasses.
  • the circulating gas flow rate control device 29 may be an on-off valve whose opening can be adjusted to fully closed and fully open, or an opening adjustment valve whose opening can be adjusted to fully closed, fully open, and at least one intermediate opening between these.
  • the circulating gas flowing through the compressed gas line 22B is led into the inside of the container body 1 via the warm air introduction line 50 due to the difference in pressure between the upstream end 501 of the warm air introduction line 50 and the downstream end 502. Therefore, a fan is not required to guide the circulating gas into the container body 1 through the warm air introduction line 50.
  • the warm air flow rate regulator 52 and the circulating gas flow rate regulator 29 can be used to adjust the flow rate of the warm air (circulating gas) flowing through the warm air inlet line 50, making it possible to control the temperature rise inside the container body 1.
  • the above temperature rise control can be simplified.
  • the upstream end 501 of the above-mentioned warm air introduction line 50 is connected to the compressed gas line 22B (piping 23D) at a connection position P1 located between the cooler 32 of the compressed gas line 22B (circulation line 22) and the heat exchanger 26 (high-temperature side heat exchange section 262), as shown in Figures 3, 4, 6, 7, 9, 11 and 12.
  • the circulation gas cooled in the cooler 32 is introduced into the warm air introduction line 50.
  • the piping forming the warm air introduction line 50 includes a piping 55A provided between the connection position P1 of the piping 23D (compressed gas line 22B) and the inlet of the warm air flow control device 52.
  • the piping 55A has the upstream end 501 described above.
  • the circulating gas pressurized in the compressor 24 reaches a high temperature of 100°C or more.
  • the circulating gas cooled in the cooler 32 reaches a room temperature of 0°C or more and 60°C or less. In this case, the room temperature, high pressure circulating gas is introduced into the container body 1 via the warm air introduction line 50.
  • the circulating gas heated to a high temperature by the compressor 24 is cooled in the cooler 32, thereby reducing the temperature difference between the circulating gas (warm air) introduced into the container body 1 via the warm air introduction line 50 and the gas inside the container.
  • the temperature rise of the gas inside the container caused by the warm air can be made slower, thereby suppressing damage caused by thermal distortion inside the container body 1.
  • the upstream end 501 of the warm air introduction line 50 described above is connected to the compressed gas line 22B (piping 23C) at a connection position P2 located between the compressor 24 and the cooler 32 of the compressed gas line 22B (circulation line 22), as shown in Figures 8 and 10.
  • the piping forming the warm air introduction line 50 includes a piping 55B provided between the connection position P2 of the piping 23C (compressed gas line 22B) and the inlet of the warm air flow control device 52.
  • the piping 55B has the upstream end 501 described above.
  • the circulating gas pressurized in the compressor 24 reaches a high temperature of 100°C or more.
  • the high-temperature, high-pressure circulating gas that has not been cooled in the cooler 32 is introduced into the inside of the container body 1 via the warm air introduction line 50.
  • the circulating gas that has passed through the cooler 32 is introduced into the container body 1 as warm air, it is necessary to take into account the temperature change caused by the cooler 32 when controlling the temperature rise inside the container body 1.
  • the circulating gas that has been heated by the compressor 24 is introduced into the container body 1 as warm air without passing through the cooler 32. In this case, it is not necessary to take into account the temperature change caused by the cooler 32 when controlling the temperature rise inside the container body 1, so the above-mentioned temperature rise control can be simplified.
  • the downstream end 502 of the above-mentioned warm air introduction line 50 is formed with an outlet 503 (opening) for blowing gas such as air into the inside of the container body 1.
  • the above-mentioned suction section 18 may include the suction port 20 and the outlet 503. The circulating gas flowing through the warm air introduction line 50 is guided to the outlet 503 and is blown out from the warm air introduction line 50 into the inside of the container body 1 via the outlet 503.
  • the piping forming the warm air introduction line 50 includes the above-mentioned piping 55A and piping 56A provided between the outlet of the warm air flow control device 52 and the air outlet 503.
  • the piping 56A has the above-mentioned downstream end 502.
  • the piping forming the warm air introduction line 50 may also include the above-mentioned piping 55B and the above-mentioned piping 56A.
  • the downstream end 502 of the warm air introduction line 50 described above is connected to the expansion gas line 22C (piping 23F) at a connection position P3 located between the expander 28 of the circulation line 22 and the outlet 16 (expansion gas line 22C).
  • the circulation gas flowing through the warm air introduction line 50 is introduced into the inside of the container body 1 via the downstream side of the connection position P3 of the expansion gas line 22C.
  • the piping forming the warm air introduction line 50 includes either the piping 55A or the piping 55B described above, and a piping 56B provided between the outlet of the warm air flow control device 52 and the connection position P3 of the piping 23F (expanded gas line 22C).
  • the piping 56B has the downstream end 502 described above.
  • a part of the circulation line 22, such as the outlet 16 (between the connection position P3 of the expansion gas line 22C and the outlet 16) can be used as a flow path for the warm air (the circulating gas flowing through the warm air introduction line 50).
  • the warm air the circulating gas flowing through the warm air introduction line 50.
  • the circulation line 22, which the warm air introduction line 50 bypasses has a large pressure loss due to the expander 28 provided in the circulation line 22, so that when the warm air introduction line 50 is open, a large amount of circulation gas can be guided to the warm air introduction line 50 side.
  • the above-mentioned circulation gas flow rate control device 29 does not need to be provided.
  • the circulation gas passing through the warm air introduction line 50 is hotter than the circulation gas passing through the circulation line 22, which the warm air introduction line 50 bypasses. Therefore, according to the above configuration, a large amount of relatively high-temperature circulation gas can be guided into the inside of the container body 1 via the warm air introduction line 50, so that the heating capacity inside the container body 1 can be increased.
  • the downstream end 502 of the warm air introduction line 50 described above is connected to the compressed gas line 22B at a connection position P4 located between the heat exchanger 26 (high temperature side heat exchange section 262) of the compressed gas line 22B (circulation line 22) and the expander 28.
  • the circulation gas flowing through the warm air introduction line 50 is introduced into the inside of the container body 1 downstream of the connection position P4 of the compressed gas line 22B, via the expander 28 and the expanded gas line 22C.
  • the piping forming the warm air introduction line 50 includes either the piping 55A or the piping 55B described above, and a piping 56C provided between the outlet of the warm air flow control device 52 and the connection position P4 of the compressed gas line 22B.
  • the piping 56C has the downstream end 502 described above.
  • a part of the circulation line 22, such as the outlet 16 (between the connection position P4 of the circulation line 22 and the outlet 16) can be used as a flow path for the warm air (the circulating gas flowing through the warm air introduction line 50).
  • the warm air the circulating gas flowing through the warm air introduction line 50.
  • the downstream end 502 of the warm air introduction line 50 is connected upstream of the expander 28 of the circulation line 22, the heat input from the warm air introduction line 50 to the downstream side of the expander 28 of the circulation line 22 can be suppressed compared to when it is connected downstream of the expander 28 of the circulation line 22, and the gain in cooling performance during refrigeration operation of the refrigerated container 100 is large.
  • each of the compressor 24, the cooler 32, the heat exchanger 26 and the expander 28, which are respectively provided in the circulation line 22, is arranged in the outer space 3 of the container body 1 along the partition 10 that separates the inner space 2 and the outer space 3 of the container body 1.
  • the above-mentioned devices provided in the circulation line 22 are arranged along the short side wall 7 serving as the partition wall 10.
  • FIG. 1 some of the above-mentioned devices provided in the circulation line 22 are shown diagrammatically by two-dot chain lines.
  • the above-mentioned refrigerated container 100 may be provided with a cover 12 that is arranged to surround the above-mentioned equipment provided in the outer space 3 of the container body 1 from above, below and the sides.
  • the piping 23A between the suction port 20 and the heat exchanger 26 may be arranged to pass through a through hole 25 provided in the short side wall 7 (partition wall 10). Also, the piping 23F between the expander 28 and the outlet port 16 may be arranged to pass through a through hole 27 provided in the short side wall 7 (partition wall 10).
  • the compressor 24, the cooler 32, the heat exchanger 26, and the expander 28 are each installed in the outer space 3 of the container body 1.
  • these devices are not installed in the inner space 2 of the container body 1, a large cargo space can be secured inside the container.
  • the above configuration does not require the installation of a heat exchanger such as an evaporator in the inner space 2 of the container body 1, there is no need to perform a defrost operation to defrost such a heat exchanger. Therefore, it is easy to maintain the temperature inside the container at a desired temperature.
  • the devices that make up the refrigerator 30 are arranged in a relatively narrow space along the bulkhead 10 in the outer space 3 of the container body 1. In this way, since the installation area of the refrigerator 30 added to the container body 1 is small, the refrigerated container 100 including the refrigerator 30 can be suitably used as a container for transportation, etc.
  • each of the compressor 24, the cooler 32, the heat exchanger 26 and the expander 28 provided in the circulation line 22 is disposed in the outer space 3 of the container body 1 along the partition wall 10 that separates the inner space 2 and the outer space 3 of the container body 1.
  • the circulation line 22 and the warm air introduction line 50 are also disposed in the outer space 3 along the partition wall 10.
  • the above-mentioned warm air introduction line 50 is arranged so as not to intersect with the cooling gas line 22D connecting the heat exchanger 26 and the expander 28 of the circulation line 22 when viewed vertically with respect to the outer surface 101 of the partition 10 facing the outer space 3 as shown in Figures 4 and 11.
  • the compressor 24 and the expander 28 are arranged side by side in the horizontal direction.
  • the heat exchanger 26 and the cooling gas line 22D are arranged vertically above (on one side) the compressor 24 and the expander 28, and the cooler 32 and the warm air introduction line 50 are arranged vertically below (on the other side) the compressor 24 and the expander 28.
  • the cooler 32 and the warm air introduction line 50 are arranged vertically on the opposite side of the compressor 24 and the expander 28 from the heat exchanger 26 and the cooling gas line 22D.
  • the above configuration reduces the heat input from the circulating gas (warm air) flowing through the warm air inlet line 50 to the circulating gas (cold air) flowing through the cooling gas line 22D, thereby improving the performance of the refrigeration container 100 during refrigeration operation.
  • the above-mentioned refrigerated container 100 includes the above-mentioned warm air introduction line 50, the upstream end 501 of which is connected between the cooler 32 and the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22, the above-mentioned electric motor 46, the cold medium supply line 60, and the cold medium return line 62.
  • the cold medium supply line 60 has one end connected to the warm air introduction line 50 and forms at least a part of a flow path for extracting circulating gas from the warm air introduction line 50 and supplying the extracted circulating gas to the electric motor 46 as a cold medium for cooling the electric motor 46.
  • the cold medium return line 62 forms at least a part of a flow path for returning the circulating gas supplied to the electric motor 46 via the cold medium supply line 60 to the circulation line 22 upstream of the compressor 24.
  • the upstream end (one end) of the cold medium supply line 60 is connected upstream of the warm air flow control device 52 of the warm air introduction line 50 (upstream end 501 side).
  • the downstream end (one end) of the cold medium return line 62 is connected between the low-temperature side heat exchange section 261 (heat exchanger 26) of the circulation line 22 and the compressor 24.
  • the upstream end (one end) of the cold medium supply line 60 may be connected between the cooler 32 and the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22.
  • the refrigerated container 100 may be equipped with a motor cooler 64.
  • the circulating gas cooled in the cooler 32 is guided to the motor cooler 64 via the cooling medium supply line 60.
  • the motor cooler 64 is configured to perform heat exchange between the electric motor 46 and the circulating gas that is guided to the motor cooler 64 and has a lower temperature than the electric motor 46.
  • the electric motor 46 is cooled by the circulating gas guided to the motor cooler 64 through the heat exchange in the motor cooler 64.
  • the circulating gas that has cooled the electric motor 46 in the motor cooler 64 is returned to the circulation line 22 upstream of the compressor 24 via the cooling medium return line 62.
  • the refrigerated container 100 is equipped with a cold medium supply line 60 and a cold medium return line 62, so that the electric motor 46 can be cooled by the circulating gas extracted from the warm air introduction line 50, and the circulating gas that has cooled the electric motor 46 can be returned to the circulation line 22.
  • parts of the circulation line 22 and the warm air introduction line 50 can be used as a flow path for the cold medium (circulating gas) that cools the electric motor 46, so the structure of the refrigerated container 100 can be made more compact and lightweight.
  • FIG. 13 is a schematic cross-sectional view of a warm air flow regulation device 52 (53, 54) of a refrigerated container according to one embodiment of the present disclosure.
  • the at least one warm air flow control device (warm air flow control valve) 52 described above includes a first warm air flow control device (warm air flow control valve) 53 provided in the warm air introduction line 50, and a second warm air flow control device (warm air flow control valve) 54 provided downstream (downstream end 502 side) of the first warm air flow control device 53 in the warm air introduction line 50.
  • the first warm air flow control device 53 and the second warm air flow control device 54 are also applicable to the embodiments shown in the above-mentioned FIGS. 1 to 10.
  • Each of the first warm air flow control device 53 and the second warm air flow control device 54 is configured to be able to adjust the flow rate of the circulating gas guided downstream (downstream end 502 side) of the warm air flow control device 52 (53, 54) by changing the opening degree of the valve bodies 531, 541 arranged in the warm air introduction line 50.
  • Each of the first warm air flow control device 53 and the second warm air flow control device 54 may be an opening/closing valve whose opening degree can be adjusted to fully closed and fully open, or an opening degree adjustment valve whose opening degree can be adjusted to fully closed, fully open, and at least one intermediate opening degree between them.
  • the heat insulation properties of the warm air introduction line 50 can be improved. This makes it possible to suppress heat input downstream of the second warm air flow rate control device 54 in the warm air introduction line 50 when the two warm air flow rate control devices 53, 54 are closed.
  • the first warm air flow control device 53 and the second warm air flow control device 54 each have a flange portion 532, 542.
  • the flange portion 542 is fastened to the flange portion 532 via fastening members (bolts and nuts in the illustrated example) 522, with a packing 521, which is a heat insulating material, sandwiched between the flange portion 532 and the packing 521.
  • the packing 521 By disposing the packing 521 between the two warm air flow control devices 53, 54, the heat insulation properties of the warm air introduction line 50 can be improved. This makes it possible to suppress heat input downstream of the second warm air flow control device 54 in the warm air introduction line 50 when the two warm air flow control devices 53, 54 are closed.
  • FIG. 14 and 15 are diagram showing a schematic circuit of the refrigerator 30 of the refrigerated container 100 according to one embodiment of the present disclosure.
  • Figure 16 is a schematic diagram of the deodorization device 70 of the refrigerated container 100 according to one embodiment of the present disclosure.
  • the refrigerated container 100 described above further comprises a deodorizing device 70 configured to emit a substance having a deodorizing effect on the circulating gas, which is also applicable to the embodiments shown in Figures 1 to 13 described above.
  • the deodorizing device 70 is preferably configured to generate a substance having a deodorizing effect from the circulating gas.
  • the internal gas and the circulating gas include air
  • the deodorizing device 70 includes an ozone generator 70A configured to generate ozone from the air contained in the circulating gas.
  • the ozone generator 70A includes a pair of electrodes 71, 72 arranged opposite each other, and an inductor 73 arranged between the pair of electrodes 71, 72.
  • the ozone generator 70A may be configured to generate ozone by irradiating the air contained in the circulating gas with radiation.
  • the deodorizing device 70 may be configured to generate a substance with moisture-derived deodorizing properties by applying a high voltage or irradiating ultrasonic waves to at least one of the moisture contained in the circulating gas and the water stored in the deodorizing device 70.
  • the substance with moisture-derived deodorizing properties may be electrically charged fine particles.
  • the deodorizing device 70 sterilizes and deodorizes the circulating gas by releasing substances with deodorizing properties derived from ozone and moisture into the circulating gas.
  • the circulating gas (air) flowing through the above-mentioned circulation line 22 and warm air introduction line 50 is dry, so it is easy to generate substances with deodorizing properties, and the deodorizing effect of the substances with deodorizing properties is high.
  • the deodorizing device 70 can deodorize the circulating gas by releasing a substance having a deodorizing effect on the circulating gas.
  • the circulating gas deodorized by the deodorizing device 70 can then be returned to the inside of the container body 1 to deodorize the inside gas.
  • the deodorizing device 70 can be installed outside the container body 1, so that a large cargo space can be secured inside the container body 1.
  • the deodorizing device 70 it is preferable to install the deodorizing device 70 on a line through which the gas (circulating gas) taken out from inside the container body 1 flows, such as the circulation line 22 or the warm air introduction line 50.
  • the circulation line 22 or the warm air introduction line 50 can be used as a fluid flow path between the container body 1 and the deodorizing device 70, so that the structure of the refrigerated container 100 can be made compact and lightweight.
  • the deodorizing device 70 described above is provided in the warm air introduction line 50.
  • the deodorizing device 70 is installed upstream (upstream end 501 side) of the warm air flow rate adjustment device 52 in the warm air introduction line 50.
  • the deodorizing device 70 in the warm air introduction line 50, it is possible to prevent the deodorizing substance from being introduced into the expander 28, which is a low-temperature environment. This prevents the deodorizing substance from losing its effectiveness or freezing in the expander 28, so that an effective deodorizing effect can be obtained even if the amount of the deodorizing substance released from the deodorizing device 70 is reduced. Furthermore, by providing the deodorizing device 70 in the warm air introduction line 50, the deodorizing substance is introduced into the inside of the container body 1, so that the gas inside the container can be directly sterilized and deodorized by the deodorizing substance.
  • the deodorizing device 70 described above is installed in the normal temperature environment section in the circulation line 22 where the circulating gas at normal temperature (0°C or higher and 60°C or lower) flows.
  • the deodorizing device 70 described above may be installed between the cooler 32 and the heat exchanger 26 (high temperature side heat exchange section 262) of the circulation line 22, which is one of the normal temperature environment sections.
  • the deodorizing device 70 described above may also be installed between the low temperature side heat exchange section 261 (heat exchanger 26) of the circulation line 22, which is one of the normal temperature environment sections, and the compressor 24.
  • the deodorizing device 70 in the above-mentioned normal temperature environment part of the circulation line 22, it is possible to prevent the deodorizing substance from being led to the expander 28, which is in a low temperature environment. This prevents the deodorizing substance from being reduced in effectiveness or freezing in the expander 28, so that the deodorizing effect can be effectively obtained even if the amount of the deodorizing substance released from the deodorizing device 70 is reduced.
  • the pressure is relatively low between the low-temperature side heat exchanger 261 (heat exchanger 26) of the circulation line 22 and the compressor 24, it is easy to release the deodorizing substance to the circulation gas.
  • the circulation gas flowing between the low-temperature side heat exchanger 261 (heat exchanger 26) of the circulation line 22 and the compressor 24 becomes dry air at normal temperature even in a refrigerated container 100 that cools the gas inside the container to an ultra-low temperature of -40°C or less, so that it is easy to generate the deodorizing substance, and the deodorizing effect of the deodorizing substance is high.
  • At least one of the heat exchanger 26 or the cooler 32 may include a plate heat exchanger or a microchannel heat exchanger.
  • the plate heat exchanger or the microchannel heat exchanger may be formed from a material including aluminum or titanium.
  • the suction port 20 is provided with a filter portion 21 for removing foreign matter, as shown in FIG. 5.
  • the filter portion 21 includes a member having a plurality of holes or a mesh, and has a plurality of openings formed by the holes, mesh, etc.
  • the partition wall 10 (short side wall 7 of the container body 1 in the example shown in FIG. 1) that separates the area where the compressor 24, cooler 32, heat exchanger 26, and expander 28 are installed outside the container body 1 from the inner space 2 of the container body 1 extends along a plane perpendicular to the longitudinal direction of the container body 1.
  • the equipment constituting the refrigeration unit 30 (compressor 24, heat exchanger 26, expander 28) is arranged in a relatively narrow space along the bulkhead 10 (short side wall 7), which is a relatively small wall extending along a plane perpendicular to the longitudinal direction of the container body 1. This makes it possible to reduce the installation area of the refrigeration unit 30 added to the container body 1, and the refrigerated container 100 including the refrigeration unit 30 can be suitably used as a container for transportation, etc.
  • the compressor 24, cooler 32, heat exchanger 26, and expander 28 may be arranged in the outer space 3 such that the length L1 from the partition wall 10 in the longitudinal direction of the container body 1 is within a range of 1/10 or less of the length L0 of the container body 1 (see Figure 1).
  • the installation area for the equipment that constitutes the refrigeration unit 30 is within a range of 1/10 or less of the length L0 of the container body 1. Therefore, since the installation area for the refrigeration unit 30 added to the container body 1 is small, the refrigeration container 100 including the refrigeration unit 30 can be suitably used as a container for transportation, etc.
  • the length (L1) of the above-mentioned installation area may be 610 mm or less.
  • expressions expressing relative or absolute configuration do not only strictly express such a configuration, but also express a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
  • expressions indicating that things are in an equal state such as “identical,””equal,” and “homogeneous,” not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
  • expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
  • the expressions "comprise,””include,” or “have” a certain element are not exclusive expressions that exclude the presence of other elements.
  • a refrigeration container (100) configured to be capable of cooling an internal gas, which is a gas inside a container body (1), The container body (1), a circulation line (22) having an inlet (20) and an outlet (16) respectively provided inside the container body (1); a compressor (24) provided in the circulation line (22) and configured to compress the circulation gas, which is the gas sucked into the circulation line (22) from inside the container body (1) through the suction port (20); a heat exchanger (26) provided in the circulation line (22) and configured to cool the circulation gas compressed in the compressor (24); an expander (28) provided in the circulation line (22) and configured to expand the circulation gas cooled by the heat exchanger (26); and a warm air introduction line (50) for extracting the circulating gas having a higher temperature than the internal gas from between the compressor (24) and the heat exchanger (26) of the circulating line (22) and guiding the gas to the container body (1).
  • a refrigeration machine (30) is constructed that includes a compressor (24), a heat exchanger (26), and an expander (28) that are respectively provided in the circulation line (22), and uses the gas (internal gas) inside the container body (1) as a heat medium.
  • the gas inside the container body (1) naturally circulates from the outlet (16) to the inlet (20) due to the difference in pressure between the outlet (16) and the inlet (20), so no fan is required to circulate the circulating gas. Therefore, the internal temperature does not increase due to the provision of a fan and a fan motor inside the container body (1). Therefore, the internal temperature is easily maintained at a desired temperature.
  • a refrigeration container (100) is obtained that can suppress the reduction of the cargo space inside the container and can stably maintain the internal temperature.
  • the warm air introduction line (50) allows the circulating gas, which has been heated by the compressor (24) to a temperature higher than the internal gas, to be returned to the inside of the container body (1), thereby raising the internal temperature.
  • the warm air introduction line (50) on the outside of the container body (1), the refrigerated container (100) can expand the adjustable range of the internal temperature to the higher temperature side while preventing the reduction of the cargo space inside the container.
  • the refrigerated container (100) comprises: a cooler (32) provided in the circulation line (22) downstream of the compressor (24) and upstream of the heat exchanger (24), the cooler (32) being configured to perform heat exchange between the circulation gas and a cooling liquid;
  • the upstream end (501) of the warm air introduction line (50) was connected to the circulation line (22) between the cooler (32) and the heat exchanger (26).
  • the circulating gas heated by the compressor (24) is cooled in the cooler (32), thereby reducing the temperature difference between the circulating gas (warm air) introduced into the container body (1) via the warm air introduction line (50) and the gas inside the container.
  • the temperature rise of the gas inside the container due to the warm air can be made gentler, thereby suppressing damage caused by thermal distortion inside the container body (1).
  • the refrigerated container (100) comprises: a cooler (32) provided in the circulation line (22) downstream of the compressor (24) and upstream of the heat exchanger (24), the cooler (32) being configured to perform heat exchange between the circulation gas and a cooling liquid;
  • the upstream end (501) of the warm air introduction line (50) was connected to the circulation line (22) between the cooler (32) and the compressor (24).
  • the circulating gas that has passed through the cooler (32) is introduced into the container body (1) as warm air, it is necessary to take into account the temperature change caused by the cooler (32) when controlling the temperature rise inside the container body (1).
  • the circulating gas that has been heated by the compressor (24) is introduced into the container body (1) as warm air without passing through the cooler (32). In this case, it is not necessary to take into account the temperature change caused by the cooler (32) when controlling the temperature rise inside the container body (1), so the temperature rise control can be simplified.
  • the system further includes at least one warm air flow rate adjustment device (52) provided in the warm air introduction line (50) and configured to be able to adjust the flow rate of the gas flowing through the warm air introduction line (50).
  • the warm air flow rate regulator (52) adjusts the flow rate of the warm air (circulating gas) flowing through the warm air inlet line (50), making it possible to control the temperature rise inside the container body (1).
  • the temperature rise control can be simplified.
  • the at least one warm air flow regulator (52) comprises: A first warm air flow rate control device (53) provided in the warm air introduction line (50); and a second warm air flow control device (54) provided on the warm air introduction line (50) downstream of the first warm air flow control device (53).
  • the configuration of 5) above by providing two warm air flow rate control devices (53, 54) in the warm air introduction line (50), the heat insulation of the warm air introduction line (50) can be improved. This makes it possible to suppress heat input downstream of the second warm air flow rate control device (54) of the warm air introduction line (50) when the two warm air flow rate control devices (53, 54) are closed.
  • the refrigeration container (100) according to any one of 1) to 5) above, The downstream end (502) of the warm air introduction line (50) was connected to the circulation line (22) between the expander (28) and the air outlet (16).
  • a part of the circulation line (22), such as the air outlet (16), can be used as a flow path for the warm air (the circulating gas flowing through the warm air inlet line 50).
  • the warm air the circulating gas flowing through the warm air inlet line 50.
  • the circulation line (22) bypassed by the warm air introduction line (50) has a large pressure loss due to the expander (28) provided in the circulation line (22), so that when the warm air introduction line (50) is open, a large amount of circulating gas can be guided to the warm air introduction line (50).
  • the circulating gas passing through the warm air introduction line (50) is at a higher temperature than the circulating gas passing through the circulation line (22) bypassed by the warm air introduction line (50). Therefore, according to the configuration of 6) above, a large amount of relatively high-temperature circulating gas can be guided into the inside of the container body (1) via the warm air introduction line (50), so that the heating capacity inside the container body (1) can be increased.
  • the refrigeration container (100) according to any one of 1) to 5) above, The downstream end (502) of the warm air introduction line (50) was connected to the circulation line (22) between the heat exchanger (24) and the expander (28).
  • a part of the circulation line (22), such as the air outlet (16), can be used as a flow path for the warm air (the circulating gas flowing through the warm air inlet line 50).
  • the warm air the circulating gas flowing through the warm air inlet line 50.
  • the downstream end of the warm air introduction line (50) is connected upstream of the expander (28) of the circulation line (22)
  • the heat input from the warm air introduction line (50) to the downstream side of the expander (28) of the circulation line (22) can be suppressed compared to the case where the warm air introduction line (50) is connected downstream of the expander (28) of the circulation line (22), and the gain in cooling performance during refrigeration operation of the refrigerated container (100) is large.
  • the refrigeration container (100) according to any one of 1) to 7) above, the circulation line (22) and the warm air introduction line (50) are arranged in the outer space (3) of the container body (1) along a partition wall (10) that separates the inner space (2) of the container body (1) from the outer space (3);
  • the warm air introduction line (50) When viewed in a vertical direction with respect to an outer surface (101) of the partition wall (10) facing the outer space (3),
  • the circulation line (22) is arranged so as not to cross the cooling gas line (22D) connecting the heat exchanger (26) and the expander (28).
  • the configuration of 7) above can reduce the heat input from the circulating gas (warm air) flowing through the warm air inlet line (50) to the circulating gas (cold air) flowing through the cooling gas line (22D), thereby improving the performance of the refrigeration container (100) during refrigeration operation.
  • the refrigeration container (100) according to 2) above, an electric motor (46) configured to generate a driving force for driving the compressor (24); a cold medium supply line (60) connected at one end to the warm air introduction line (50) for extracting the circulating gas from the warm air introduction line (50) and supplying the gas to the electric motor (46) as a cold medium for cooling the electric motor (46);
  • the cooling medium supply system further includes a cooling medium return line (62) for returning the circulating gas supplied to the electric motor (46) via the cooling medium supply line (60) to the upstream side of the compressor (24) of the circulation line (22).
  • the refrigerated container (100) is equipped with a cold medium supply line (60) and a cold medium return line (62), so that the electric motor can be cooled by the circulating gas extracted from the warm air introduction line, and the circulating gas that has cooled the electric motor can be returned to the circulation line.
  • parts of the circulation line (22) and the warm air introduction line (50), etc. can be used as the flow path for the cold medium (circulating gas) that cools the electric motor, so that the structure of the refrigerated container (100) can be made more compact and lightweight.
  • the refrigeration container (100) according to any one of 1) to 9) above,
  • the system further comprises a deodorizing device (70) configured to emit a substance having a deodorizing effect on the circulating gas.
  • the deodorizing device (70) can deodorize the circulating gas by emitting a substance having a deodorizing effect on the circulating gas.
  • the circulating gas deodorized by the deodorizing device (70) can then be returned to the inside of the container body (1) to deodorize the inside gas.
  • the deodorizing device (70) can be provided outside the container body (1), so that a large cargo space can be secured inside the container body (1).
  • the deodorizing device (70) When providing the deodorizing device (70) outside the container body (1), it is preferable to provide the deodorizing device (70) on a line through which the gas (circulating gas) taken out from inside the container body (1) flows, such as the circulation line (22) or the warm air introduction line (50).
  • the circulation line (22) and the warm air introduction line (50) can be used as the gas flow path between the container body (1) and the deodorizing device (70), making the structure of the refrigeration container (100) more compact and lightweight.
  • the deodorizing device (70) in the warm air introduction line (50), it is possible to prevent the deodorizing substance from being introduced into the expander (28), which is a low-temperature environment. This prevents the deodorizing substance from losing its effectiveness or freezing in the expander (28), so that an effective deodorizing effect can be obtained even if the amount of the deodorizing substance released from the deodorizing device (70) is reduced. Furthermore, by providing the deodorizing device (70) in the warm air introduction line (50), the deodorizing substance is introduced into the inside of the container body (1), so that the gas inside the container can be directly disinfected and deodorized by the deodorizing substance.
  • Reference Signs List 1 Container body 2 Inner space 3 Outer space 4 Ceiling wall 5 Bottom wall 6, 7 Short side wall 8, 9 Long side wall 10 Partition wall 12 Cover 14 Blow-out section 16 Blow-out port 18 Suction section 20 Suction port 21 Filter section 22 Circulation line 22A Suction gas line 22B Compressed gas line 22C Expanded gas line 23A to 23H Pipe 24 Compressor 25, 27 Through hole 26 Heat exchanger 28 Expander 29 Circulation gas flow rate control device 30 Refrigerator 32 Cooler 34 Cooling liquid circulation line 36 Cooling device 38 Radiator 40 Fan 42 Pump 44 Rotating shaft 46 Electric motor 50 Warm air introduction line 52 Warm air flow rate control device 53 First warm air flow rate control device 54 Second warm air flow rate control device 60 Cold medium supply line 62 Cold medium return line 70 Deodorizing device 100 Refrigerated container

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

This refrigerated container, which is configured to be capable of cooling an in-container gas, this being a gas inside a container body, comprises: the container body; a circulating line having a suction port and a blowout port each provided inside the container body; a compressor configured to compress recirculating gas, this being gas sucked into the circulating line from the inside of the container body via the suction port; a heat exchanger configured to cool the recirculating gas compressed by the compressor; an expander configured to cause the recirculating gas cooled by the heat exchanger to expand; and a warm air introduction line for extracting the recirculating gas, that is at a higher temperature than the in-container gas, from the circulating line between the compressor and the heat exchanger, and guiding the extracted recirculating gas into the container body.

Description

冷凍コンテナRefrigerated container
 本開示は、コンテナ本体の内部の気体を冷却可能に構成された冷凍コンテナに関する。
 本願は、2022年10月7日に日本国特許庁に出願された特願2022-162030号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a refrigeration container configured to be capable of cooling a gas inside a container body.
This application claims priority based on Japanese Patent Application No. 2022-162030, filed with the Japan Patent Office on October 7, 2022, the contents of which are incorporated herein by reference.
 冷凍コンテナは、庫内に収容される貨物等の物品を冷凍又は冷蔵する冷凍機能を備えたコンテナである。 A refrigerated container is a container equipped with a refrigeration function that freezes or refrigerates cargo and other items stored inside.
 従来の空気冷媒式冷凍機には、要冷却室の空気を空気冷媒式冷凍機の冷媒として取入れ、冷凍機で冷却された冷媒空気を要冷却室に直接的に吹き出すことにより該要冷却室を冷却するものが知られている(特許文献1参照)。この冷凍機では、圧縮機において高圧高温になった空気を、冷却器で冷却後、膨張機で低圧低温とするようになっている。  A conventional air refrigerant type refrigerator is known in which the air in a chamber that needs to be cooled is taken in as the refrigerant for the air refrigerant type refrigerator, and the refrigerant air cooled by the refrigerator is blown directly into the chamber that needs to be cooled to cool the chamber (see Patent Document 1). In this refrigerator, the air that has become high-pressure and high-temperature in the compressor is cooled by a cooler, and then reduced to low-pressure and low-temperature in the expander.
特許第3824757号公報Patent No. 3824757
 特許文献1に記載の空気冷媒式冷凍機では、要冷却室の空気を冷却するための冷凍運転が可能であるが、要冷却室の空気を暖気するための暖気運転を行うための機能を有していない。例えば、冷凍コンテナを移送する際に、コンテナ庫外の温度(外気温)がコンテナ庫内の温度よりも低温となることがある。この場合には、コンテナ庫内の暖気が必要となる。しかしながら、コンテナ庫内を暖気するための暖気運転を行うための装置を庫内に設置すると、庫内の荷貨スペースが狭くなる。また、暖気運転を行うための装置を庫外に設置すると、該装置において暖められた気体をコンテナの庫内に吸い込むための動力源や配管等が別途必要となるため、庫内の荷貨スペースが狭くなる。 The air refrigerant type refrigerator described in Patent Document 1 is capable of freezing operation to cool the air in the room that needs to be cooled, but does not have a function for performing warm-up operation to warm up the air in the room that needs to be cooled. For example, when a refrigerated container is transported, the temperature outside the container (outside air temperature) may be lower than the temperature inside the container. In this case, warm-up air is required inside the container. However, if a device for performing warm-up operation to warm up the inside of the container is installed inside the container, the cargo space inside the container will be narrowed. In addition, if a device for performing warm-up operation is installed outside the container, a separate power source, piping, etc. is required to suck the gas warmed by the device into the container, thereby narrowing the cargo space inside the container.
 上述した事情に鑑みて、本発明の少なくとも一実施形態は、コンテナの庫内の荷貨スペースの縮小を抑制可能であるとともに、庫内温度を昇降可能な冷凍コンテナを提供することを目的とする。 In view of the above, at least one embodiment of the present invention aims to provide a refrigerated container that can prevent a reduction in cargo space inside the container and can raise and lower the temperature inside the container.
 本開示の一実施形態に係る冷凍コンテナは、
 コンテナ本体の内部の気体である庫内気体を冷却可能に構成された冷凍コンテナであって、
 前記コンテナ本体と、
 前記コンテナ本体の内部にそれぞれ設けられた吸込口及び吹出口を有する循環ラインと、
 前記循環ラインに設けられ、前記コンテナ本体の内部から前記吸込口を介して前記循環ラインに吸引された前記気体である循環気体を圧縮するように構成された圧縮機と、
 前記循環ラインに設けられ、前記圧縮機において圧縮された前記循環気体を冷却するように構成された熱交換器と、
 前記循環ラインに設けられ、前記熱交換器で冷却された前記循環気体を膨張させるように構成された膨張機と、
 前記循環ラインの前記圧縮機と前記熱交換器の間から前記庫内気体よりも高温の前記循環気体を抜き出して前記コンテナ本体に導くための暖気導入ラインと、を備える。
According to one embodiment of the present disclosure, a refrigerated container comprises:
A refrigeration container configured to be able to cool an internal gas, which is a gas inside a container body,
The container body;
a circulation line having an inlet and an outlet, each of which is provided inside the container body;
a compressor provided in the circulation line and configured to compress a circulation gas that is the gas sucked into the circulation line from inside the container body through the suction port;
a heat exchanger provided in the circulation line and configured to cool the circulation gas compressed in the compressor;
an expander provided in the circulation line and configured to expand the circulation gas cooled by the heat exchanger;
a warm air introduction line for extracting the circulating gas having a higher temperature than the internal gas from between the compressor and the heat exchanger of the circulating line and guiding the gas to the container body.
 本開示の少なくとも一実施形態によれば、コンテナの庫内の荷貨スペースの縮小を抑制可能であるとともに、庫内温度を昇降可能な冷凍コンテナが提供される。 At least one embodiment of the present disclosure provides a refrigerated container that can prevent the reduction of cargo space inside the container and can raise and lower the temperature inside the container.
本開示の一実施形態に係る冷凍コンテナの概略的な斜視図である。FIG. 1 is a schematic perspective view of a refrigeration container according to an embodiment of the present disclosure. 図1に示される冷凍コンテナを別の方向から視た概略的な斜視図である。FIG. 2 is a schematic perspective view of the refrigerated container shown in FIG. 1 from another angle. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナを図2中の矢印Aで示す方向から視た図である。FIG. 3 is a view of a refrigeration container according to an embodiment of the present disclosure, as viewed from the direction indicated by arrow A in FIG. 図4に示される冷凍コンテナを図2中の矢印Bで示す方向から視た図である。5 is a view of the refrigeration container shown in FIG. 4 as viewed from the direction indicated by arrow B in FIG. 2. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナを図2中の矢印Aで示す方向から視た図である。FIG. 3 is a view of a refrigeration container according to an embodiment of the present disclosure, as viewed from the direction indicated by arrow A in FIG. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの暖気流量調整装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a warm air flow control device for a refrigerated container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの冷凍機の回路を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic diagram of a refrigeration unit circuit of a refrigeration container according to an embodiment of the present disclosure. 本開示の一実施形態に係る冷凍コンテナの脱臭装置の概略図である。FIG. 1 is a schematic diagram of a deodorization apparatus for a refrigerated container according to an embodiment of the present disclosure.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Below, several embodiments of the present disclosure will be described with reference to the attached drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present disclosure and are merely illustrative examples.
(冷凍コンテナの構成)
 図1は、本開示の一実施形態に係る冷凍コンテナ100の概略的な斜視図である。図2は、図1に示される冷凍コンテナ100を別の方向から視た概略的な斜視図である。図2では、冷凍コンテナ100を構成する幾つかの壁を省略することで、冷凍コンテナ100の内部を示している。
(Configuration of refrigerated container)
Fig. 1 is a schematic perspective view of a refrigerated container 100 according to an embodiment of the present disclosure. Fig. 2 is a schematic perspective view of the refrigerated container 100 shown in Fig. 1, seen from another direction. In Fig. 2, the inside of the refrigerated container 100 is shown by omitting some walls constituting the refrigerated container 100.
 冷凍コンテナ100は、図1及び図2に示されるように、貨物などの物品を収容可能な内側空間2を有するコンテナ本体1を備える。冷凍コンテナ100は、コンテナ本体1の内部(すなわち、内側空間2)の空気などの気体を冷却可能に構成されている。コンテナ本体1は、内側空間2を形成する複数の壁4~9を有する。複数の壁4~9の各々により、コンテナ本体1の内側空間2と外側空間3とが仕切られる。複数の壁4~9は、天井壁4、底壁5、一対の短側壁6,7、及び、一対の長側壁8,9を含む。 As shown in Figures 1 and 2, the refrigerated container 100 comprises a container body 1 having an inner space 2 capable of accommodating cargo and other items. The refrigerated container 100 is configured to be capable of cooling gas such as air inside the container body 1 (i.e., the inner space 2). The container body 1 has a number of walls 4-9 that form the inner space 2. Each of the multiple walls 4-9 separates the inner space 2 and the outer space 3 of the container body 1. The multiple walls 4-9 include a ceiling wall 4, a bottom wall 5, a pair of short side walls 6, 7, and a pair of long side walls 8, 9.
 コンテナ本体1は、貨物などの輸送に用いられる輸送用コンテナであってもよい。コンテナ本体1は、10ftコンテナ、20ftコンテナ又は40ftコンテナなどの標準的な輸送コンテナであってもよい。 The container body 1 may be a transport container used for transporting cargo, etc. The container body 1 may be a standard transport container, such as a 10 ft container, a 20 ft container, or a 40 ft container.
 図3は、本開示の一実施形態に係る冷凍コンテナ100の冷凍機(冷凍サイクル)の回路を模式的に示す図である。図4は、本開示の一実施形態に係る冷凍コンテナ100を図2中の矢印Aで示す方向(コンテナ本体1の長手方向)から視た図である。図5は、図4に示される冷凍コンテナ100を、コンテナ本体1の内部から図2中の矢印Bで示す方向(図4とは反対方向)から視た図である。 FIG. 3 is a schematic diagram showing the circuit of the refrigeration machine (refrigeration cycle) of a refrigerated container 100 according to one embodiment of the present disclosure. FIG. 4 is a diagram of the refrigerated container 100 according to one embodiment of the present disclosure, viewed from the direction indicated by arrow A in FIG. 2 (longitudinal direction of the container body 1). FIG. 5 is a diagram of the refrigerated container 100 shown in FIG. 4, viewed from inside the container body 1, in the direction indicated by arrow B in FIG. 2 (opposite direction to FIG. 4).
 図2~図5に示されるように、コンテナ本体1の内側空間2には、空気などの気体をコンテナ本体1の内部に吹き出すための吹出口16(開口)を含む吹出部14と、コンテナ本体1の内部の空気などの気体を吸い込むための吸込口20(開口)を含む吸込部18と、が設けられている。なお、図3~図5では吹出部14及び吸込部18の図示は省略している。 As shown in Figures 2 to 5, the inner space 2 of the container body 1 is provided with a blowing section 14 including a blowing port 16 (opening) for blowing gas such as air into the inside of the container body 1, and a suction section 18 including a suction port 20 (opening) for sucking in gas such as air inside the container body 1. Note that the blowing section 14 and the suction section 18 are not shown in Figures 3 to 5.
(冷凍機)
 図3~図5に示されるように、冷凍コンテナ100は、上述の吸込口20及び吹出口16を有する循環ライン22と、圧縮機24と、熱交換器26と、膨張機28と、を備える。圧縮機24、熱交換器26及び膨張機28の各々は、循環ライン22に設けられる。循環ライン22、圧縮機24、熱交換器26及び膨張機28は、コンテナ本体1の内部の気体である庫内気体を取り出して熱媒体として使用する冷凍機(冷凍サイクル)30を構成する。冷凍コンテナ100は、冷凍機30により庫内気体の温度を調整可能である。
(refrigerator)
3 to 5, the refrigerated container 100 includes a circulation line 22 having the above-mentioned suction port 20 and outlet port 16, a compressor 24, a heat exchanger 26, and an expander 28. The compressor 24, the heat exchanger 26, and the expander 28 are each provided in the circulation line 22. The circulation line 22, the compressor 24, the heat exchanger 26, and the expander 28 constitute a refrigeration machine (refrigeration cycle) 30 that extracts internal gas, which is the gas inside the container body 1, and uses it as a heat medium. The refrigerated container 100 is capable of adjusting the temperature of the internal gas by the refrigeration machine 30.
 循環ライン22は、吸込口20から吹出口16まで延びる通路であり、吸込口20を介してコンテナ本体1の内部から吸引された気体である循環気体が流れるようになっている。圧縮機24は、コンテナ本体1の内部から吸込口20を介して循環ライン22に吸引された気体(循環気体)を圧縮するように構成される。圧縮機24を駆動させることで、コンテナ本体1の内部の気体(庫内気体)が吸込口20を介して循環ライン22に吸引される。圧縮機24において圧縮された循環気体は、圧縮機24に導入される前よりも昇温昇圧され、高温高圧の気体となる。 The circulation line 22 is a passage extending from the suction port 20 to the blowing port 16, through which the circulation gas, which is gas sucked from inside the container body 1 via the suction port 20, flows. The compressor 24 is configured to compress the gas (circulation gas) sucked into the circulation line 22 from inside the container body 1 via the suction port 20. By driving the compressor 24, the gas inside the container body 1 (internal gas) is sucked into the circulation line 22 via the suction port 20. The circulation gas compressed in the compressor 24 is heated and pressurized higher than before it was introduced into the compressor 24, becoming a high-temperature, high-pressure gas.
 熱交換器26は、圧縮機24において圧縮された高温高圧の循環気体を冷却するように構成される。膨張機28は、熱交換器26において冷却された循環気体を膨張させるように構成される。膨張機28において膨張された低温の循環気体は、循環ライン22により吹出口16に導かれ、吹出口16を介して循環ライン22からコンテナ本体1の内部に吹き出されるようになっている。 The heat exchanger 26 is configured to cool the high-temperature, high-pressure circulating gas compressed in the compressor 24. The expander 28 is configured to expand the circulating gas cooled in the heat exchanger 26. The low-temperature circulating gas expanded in the expander 28 is guided to the outlet 16 by the circulation line 22 and blown out from the circulation line 22 through the outlet 16 into the inside of the container body 1.
 循環ライン22は、吸込口20から吸引された循環気体を圧縮機24に導くための吸引気体ライン22Aと、圧縮機24において圧縮された循環気体を膨張機28に導くための圧縮気体ライン22Bと、膨張機28において膨張された循環気体を吹出口16に導くための膨張気体ライン22Cと、を含む。 The circulation line 22 includes a suction gas line 22A for guiding the circulating gas sucked in from the suction port 20 to the compressor 24, a compressed gas line 22B for guiding the circulating gas compressed in the compressor 24 to the expander 28, and an expanded gas line 22C for guiding the circulating gas expanded in the expander 28 to the outlet 16.
(熱交換器)
 熱交換器26は、吸引気体ライン22Aを流れる循環気体と圧縮気体ライン22Bを流れる循環気体との間で熱交換を行うように構成される。圧縮気体ライン22Bを流れる循環気体は、圧縮機24において圧縮されることで、吸引気体ライン22Aを流れる循環気体よりも高温となっている。熱交換器26における熱交換により、圧縮気体ライン22Bを流れる循環気体が、吸引気体ライン22Aを流れる循環気体により冷却されるとともに、吸引気体ライン22Aを流れる循環気体が、圧縮気体ライン22Bを流れる循環気体により加熱される。換言すると、熱交換器26は、吸引気体ライン22Aに設けられる循環気体が流れる低温側熱交換部261と、圧縮気体ライン22Bに設けられる循環気体が流れる高温側熱交換部262と、を含み、高温側熱交換部262を流れる循環気体から低温側熱交換部261を流れる循環気体に熱の移動が行われるようになっている。
(Heat exchanger)
The heat exchanger 26 is configured to perform heat exchange between the circulating gas flowing through the suction gas line 22A and the circulating gas flowing through the compressed gas line 22B. The circulating gas flowing through the compressed gas line 22B is compressed in the compressor 24, and is therefore at a higher temperature than the circulating gas flowing through the suction gas line 22A. By the heat exchange in the heat exchanger 26, the circulating gas flowing through the compressed gas line 22B is cooled by the circulating gas flowing through the suction gas line 22A, and the circulating gas flowing through the suction gas line 22A is heated by the circulating gas flowing through the compressed gas line 22B. In other words, the heat exchanger 26 includes a low-temperature side heat exchange section 261 provided in the suction gas line 22A through which the circulating gas flows, and a high-temperature side heat exchange section 262 provided in the compressed gas line 22B through which the circulating gas flows, and heat is transferred from the circulating gas flowing through the high-temperature side heat exchange section 262 to the circulating gas flowing through the low-temperature side heat exchange section 261.
(冷却器)
 冷凍コンテナ100は、図3及び図4に示されるように、循環ライン22の圧縮機24と熱交換器26(高温側熱交換部262)の間に設けられた冷却器32をさらに備えていてもよい。冷却器32は、圧縮気体ライン22Bの熱交換器26よりも上流側に設けられ、圧縮気体ライン22B(循環ライン22)を流れる循環気体と、該循環気体よりも低温の冷却液(例えば、水)との間で熱交換を行うように構成される。冷却器32における熱交換により、圧縮気体ライン22Bを熱交換器26に向かって流れる循環気体が、冷却液により冷却される。熱交換器26(高温側熱交換部262)には、冷却器32において冷却された循環気体が圧縮気体ライン22Bを通じて導入される。
(Cooler)
As shown in Figs. 3 and 4, the refrigerated container 100 may further include a cooler 32 provided between the compressor 24 and the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22. The cooler 32 is provided upstream of the heat exchanger 26 of the compressed gas line 22B and is configured to perform heat exchange between the circulation gas flowing through the compressed gas line 22B (circulation line 22) and a cooling liquid (e.g., water) that is lower in temperature than the circulation gas. The circulation gas flowing through the compressed gas line 22B toward the heat exchanger 26 is cooled by the cooling liquid through the heat exchange in the cooler 32. The circulation gas cooled in the cooler 32 is introduced into the heat exchanger 26 (high-temperature side heat exchange section 262) through the compressed gas line 22B.
 図3及び図4に示される実施形態では、冷凍コンテナ100は、冷却液を循環させるための冷却液循環ライン34をさらに備える。冷却器32には、冷却液循環ライン34を介して冷却液が供給されるようになっている。具体的には、冷却液循環ライン34には、冷却液を冷却するための冷却装置36を構成するラジエータ38と、冷却液循環ライン34において冷却液を送るためのポンプ42と、が設けられている。冷却装置36は、ラジエータ38と、ラジエータ38を空冷するためのファン40と、を含む。冷却器32において圧縮気体ライン22Bを流れる循環気体との熱交換により温度が上昇した冷却液は、ポンプ42により冷却液循環ライン34に送られて、ラジエータ38を含む冷却装置36により冷却されるようになっている。冷却装置36により冷却された冷却液は、冷却液循環ライン34を介して冷却器32に供給される。なお、冷却液循環ライン34を循環する冷媒は、液状に限定されずにガス状であってもよい。冷却液循環ライン34を循環する冷媒は、例えば、R-1234ZEなどのフッ素系冷媒(冷媒ガス)であってもよいし、例えば、グリコール水などの不凍液であってもよい。冷却液循環ライン34を循環する冷媒は、水よりも凝固点が低い方が好ましい。 3 and 4, the refrigerated container 100 further includes a cooling liquid circulation line 34 for circulating the cooling liquid. The cooler 32 is supplied with the cooling liquid via the cooling liquid circulation line 34. Specifically, the cooling liquid circulation line 34 is provided with a radiator 38 constituting a cooling device 36 for cooling the cooling liquid, and a pump 42 for sending the cooling liquid in the cooling liquid circulation line 34. The cooling device 36 includes a radiator 38 and a fan 40 for air-cooling the radiator 38. The cooling liquid whose temperature has increased due to heat exchange with the circulating gas flowing through the compressed gas line 22B in the cooler 32 is sent to the cooling liquid circulation line 34 by the pump 42 and is cooled by the cooling device 36 including the radiator 38. The cooling liquid cooled by the cooling device 36 is supplied to the cooler 32 via the cooling liquid circulation line 34. The refrigerant circulating through the cooling liquid circulation line 34 is not limited to a liquid state, and may be a gas state. The refrigerant circulating through the coolant circulation line 34 may be, for example, a fluorine-based refrigerant (refrigerant gas) such as R-1234ZE, or may be, for example, an antifreeze such as glycol water. It is preferable that the refrigerant circulating through the coolant circulation line 34 has a lower freezing point than water.
(圧縮機、膨張機)
 幾つかの実施形態では、膨張機28は、回転シャフト44を介して圧縮機24に連結されていてもよい。図3及び図4に示される実施形態では、冷凍コンテナ100は、圧縮機24を駆動させる駆動力を発生させるように構成された電動モータ46をさらに備える。圧縮機24は、電動モータ46により駆動されて循環気体を圧縮するように構成された電動圧縮機を含む。圧縮機24及び膨張機28は、圧縮機24を駆動させるための電動モータ46の出力シャフトである回転シャフト44を介して互いに同軸上に配置され、回転シャフト44にそれぞれ接続されている。電動モータ46は、図示しない電源(発電機等)から電流が供給されるようになっており、電源から供給された電流により駆動して回転シャフト44、圧縮機24及び膨張機28を駆動させるようになっている。膨張機28では、気体が膨張する際に発生する膨張エネルギーの一部が回収され、回収された膨張エネルギーによって圧縮機24の駆動が補助されるようになっている。
(Compressor, expander)
In some embodiments, the expander 28 may be coupled to the compressor 24 via a rotating shaft 44. In the embodiment shown in Figures 3 and 4, the refrigerated container 100 further includes an electric motor 46 configured to generate a driving force for driving the compressor 24. The compressor 24 includes an electric compressor configured to be driven by the electric motor 46 to compress the circulating gas. The compressor 24 and the expander 28 are coaxially arranged with each other via a rotating shaft 44, which is an output shaft of the electric motor 46 for driving the compressor 24, and are connected to the rotating shaft 44, respectively. The electric motor 46 is supplied with current from a power source (such as a generator) (not shown), and is driven by the current supplied from the power source to drive the rotating shaft 44, the compressor 24, and the expander 28. In the expander 28, a part of the expansion energy generated when the gas expands is recovered, and the drive of the compressor 24 is assisted by the recovered expansion energy.
 図4に示されるように、吸引気体ライン22A、圧縮気体ライン22B及び膨張気体ライン22Cの各々は、配管によって形成される。なお、循環ライン22を形成する各配管は、複数の配管部分がフランジ等を介して接続されたものであってもよい。 As shown in FIG. 4, each of the suction gas line 22A, the compressed gas line 22B, and the expanded gas line 22C is formed by piping. Note that each of the piping that forms the circulation line 22 may be formed by multiple piping sections connected via flanges or the like.
 図4に示される実施形態では、吸引気体ライン22Aを形成する配管は、吸込口20と熱交換器26の入口との間に設けられる配管23Aと、熱交換器26の出口と圧縮機24との間に設けられる配管23Bと、を含む。圧縮気体ライン22Bを形成する配管は、圧縮機24の出口と冷却器32の入口との間に設けられる配管23Cと、冷却器32の出口と熱交換器26の入口との間に設けられる配管23Dと、熱交換器26の出口と膨張機28の入口との間に設けられる配管23Eと、を含む。膨張気体ライン22Cを形成する配管は、膨張機28の出口と吹出口16との間に設けられる配管23Fと、を含む。 In the embodiment shown in FIG. 4, the piping forming the suction gas line 22A includes a piping 23A provided between the suction port 20 and the inlet of the heat exchanger 26, and a piping 23B provided between the outlet of the heat exchanger 26 and the compressor 24. The piping forming the compressed gas line 22B includes a piping 23C provided between the outlet of the compressor 24 and the inlet of the cooler 32, a piping 23D provided between the outlet of the cooler 32 and the inlet of the heat exchanger 26, and a piping 23E provided between the outlet of the heat exchanger 26 and the inlet of the expander 28. The piping forming the expanded gas line 22C includes a piping 23F provided between the outlet of the expander 28 and the blow-out port 16.
(暖気導入ライン)
 図6~図10及び図12の各々は、本開示の一実施形態に係る冷凍コンテナ100の冷凍機30の回路を模式的に示す図である。図11は、本開示の一実施形態に係る冷凍コンテナ100(図12に示される冷凍コンテナ100)を図2中の矢印Aで示す方向から視た図である。
 幾つかの実施形態に係る冷凍コンテナ100は、図3、図4、図6~図12に示されるように、上述したコンテナ本体1と、上述した循環ライン22と、上述した圧縮機24と、上述した熱交換器26と、上述した膨張機28と、暖気導入ライン50と、を備える。
(Warm air introduction line)
Each of Figures 6 to 10 and Figure 12 is a diagram showing a schematic diagram of a circuit of a refrigerator 30 of a refrigerated container 100 according to one embodiment of the present disclosure. Figure 11 is a diagram showing a refrigerated container 100 according to one embodiment of the present disclosure (the refrigerated container 100 shown in Figure 12) as viewed from the direction indicated by arrow A in Figure 2.
As shown in Figures 3, 4, and 6 to 12, a refrigerated container 100 according to some embodiments includes the above-mentioned container body 1, the above-mentioned circulation line 22, the above-mentioned compressor 24, the above-mentioned heat exchanger 26, the above-mentioned expander 28, and a warm air introduction line 50.
 暖気導入ライン50は、循環ライン22の圧縮機24と熱交換器26(高温側熱交換部262)の間から庫内気体よりも高温の循環気体を抜き出してコンテナ本体1に導くための流路の少なくとも一部を形成する。図4、図9に示されるように、暖気導入ライン50の各々は、配管によって形成される。なお、暖気導入ライン50を形成する各配管は、複数の配管部分がフランジ等を介して接続されたものであってもよい。 The warm air introduction line 50 forms at least a part of a flow path for extracting circulating gas that is hotter than the gas inside the container from between the compressor 24 and the heat exchanger 26 (high temperature side heat exchange section 262) of the circulation line 22 and guiding it to the container body 1. As shown in Figures 4 and 9, each of the warm air introduction lines 50 is formed by piping. Note that each of the piping that forms the warm air introduction line 50 may be formed by multiple piping sections connected via flanges or the like.
 循環ライン22の圧縮機24と熱交換器26(高温側熱交換部262)の間を流れる循環気体は、圧縮機24において圧縮されることで温度及び圧力が上昇しているため、庫内気体よりも高温高圧になる。この庫内気体よりも高温高圧になった循環気体を、暖気導入ライン50を介してコンテナ本体1の内部に導くことにより、庫内温度を昇温できる。 The circulating gas flowing between the compressor 24 and the heat exchanger 26 (high temperature side heat exchange section 262) in the circulation line 22 has its temperature and pressure increased by being compressed in the compressor 24, and therefore becomes hotter and more pressurized than the gas inside the container. The temperature inside the container can be raised by introducing this circulating gas, which is now hotter and more pressurized than the gas inside the container, into the container body 1 via the warm air introduction line 50.
 上記の構成によれば、循環ライン22にそれぞれ設けられる圧縮機24、熱交換器26及び膨張機28を含み、コンテナ本体1の内部の気体(庫内気体)を熱媒体として使用する冷凍機30が構築される。コンテナ本体1の内部の気体は、吹出口16での圧力と、吸込口20での圧力との差によって、吹出口16から吸込口20に至るまで自然循環するため、庫内空気を循環させるためのファンが不要である。このため、コンテナ本体1の内部にファン及びファンモータを設けることによる庫内温度の上昇が生じない。よって、庫内温度を所期の温度に維持しやすい。また、コンテナ本体1の内部にファン及びファンモータが設けられないため、コンテナ本体1の内部の荷貨スペースを広く確保することができる。したがって、上記の構成によれば、コンテナの庫内の荷貨スペースの縮小を抑制可能であるとともに、庫内温度を安定的に維持することが可能な冷凍コンテナ100が得られる。 According to the above configuration, a refrigeration unit 30 is constructed that includes a compressor 24, a heat exchanger 26, and an expander 28, each of which is provided in the circulation line 22, and uses the gas inside the container body 1 (internal gas) as a heat medium. The gas inside the container body 1 naturally circulates from the outlet 16 to the inlet 20 due to the difference in pressure between the outlet 16 and the inlet 20, so no fan is required to circulate the air inside the container. Therefore, the internal temperature does not rise due to the provision of a fan and a fan motor inside the container body 1. Therefore, the internal temperature is easily maintained at a desired temperature. In addition, since a fan and a fan motor are not provided inside the container body 1, a large cargo space inside the container body 1 can be secured. Therefore, according to the above configuration, a refrigeration container 100 can be obtained that can suppress the reduction of the cargo space inside the container and can stably maintain the internal temperature.
 上記の構成によれば、暖気導入ライン50により、圧縮機24により庫内気体よりも高温になった循環気体をコンテナ本体1の内部に戻すことで、庫内温度を上げることができる。冷凍コンテナ100は、コンテナ本体1の外部に暖気導入ライン50を備えることで、コンテナの庫内の荷貨スペースの縮小を抑制しつつ、庫内温度の調整可能な範囲を高温側に拡大できる。 With the above configuration, the warm air introduction line 50 allows the circulating gas, which has been heated by the compressor 24 to a temperature higher than the gas inside the container, to be returned to the inside of the container body 1, thereby raising the temperature inside the container. By providing the warm air introduction line 50 on the outside of the container body 1, the refrigerated container 100 can expand the adjustable range of the inside temperature to the higher temperature side while preventing the cargo space inside the container from being reduced.
(暖気流量調整装置)
 幾つかの実施形態では、図3、図4、図6~図12に示されるように、上述した冷凍コンテナ100は、暖気導入ライン50に設けられ、暖気導入ライン50を流れる循環気体の流量を調整可能に構成された少なくとも1つの暖気流量調整装置(暖気流量調整弁)52をさらに備える。暖気流量調整装置52は、暖気導入ライン50に配置された弁体の開度を変更することで、暖気流量調整装置52よりも下流側(下流端502側)に導かれる循環気体の流量を調整可能に構成される。なお、暖気流量調整装置52は、全閉と全開に開度調整可能な開閉弁でもよいし、全閉と全開とこれらの間の少なくとも1つの中間開度に開度調整可能な開度調整弁でもよい。
(Warm air flow control device)
In some embodiments, as shown in Figures 3, 4, and 6 to 12, the above-mentioned refrigerated container 100 further includes at least one warm air flow rate adjustment device (warm air flow rate adjustment valve) 52 that is provided in the warm air introduction line 50 and configured to adjust the flow rate of the circulating gas flowing through the warm air introduction line 50. The warm air flow rate adjustment device 52 is configured to adjust the flow rate of the circulating gas guided downstream (downstream end 502 side) of the warm air flow rate adjustment device 52 by changing the opening degree of a valve body arranged in the warm air introduction line 50. Note that the warm air flow rate adjustment device 52 may be an opening/closing valve whose opening degree can be adjusted to fully closed and fully open, or may be an opening degree adjustment valve whose opening degree can be adjusted to fully closed, fully open, and at least one intermediate opening degree between them.
 図3、図4、図6~図8、図11及び図12に示される実施形態では、冷凍機30の運転中において、暖気流量調整装置52を閉じる(弁体の開度を小さくする)と、圧縮気体ライン22Bを流れる循環気体は、膨張機28に導かれ、膨張機28における膨張により降温した後に、コンテナ本体1の内部に導かれる。冷凍機30の運転中において、暖気流量調整装置52を開く(弁体の開度を大きくする)と、膨張機28の入口における圧力損失が暖気導入ライン50や暖気流量調整装置52よりも大きなものとなる。そして、圧縮気体ライン22Bを流れる循環気体は、暖気導入ライン50の上流端501での圧力と、下流端502での圧力との差によって、暖気導入ライン50を介してコンテナ本体1の内部に導かれる。このため、暖気導入ライン50を介してコンテナ本体1の内部に循環気体を導くためのファンは不要である。 In the embodiment shown in Figures 3, 4, 6 to 8, 11 and 12, when the warm air flow control device 52 is closed (the opening of the valve body is reduced) during operation of the refrigerator 30, the circulating gas flowing through the compressed gas line 22B is led to the expander 28, where it is cooled by expansion in the expander 28 and then led to the inside of the container body 1. When the warm air flow control device 52 is opened (the opening of the valve body is increased) during operation of the refrigerator 30, the pressure loss at the inlet of the expander 28 becomes greater than that of the warm air introduction line 50 and the warm air flow control device 52. The circulating gas flowing through the compressed gas line 22B is led to the inside of the container body 1 through the warm air introduction line 50 due to the difference in pressure between the upstream end 501 of the warm air introduction line 50 and the downstream end 502 of the warm air introduction line 50. For this reason, a fan for leading the circulating gas through the warm air introduction line 50 to the inside of the container body 1 is not required.
 上記の構成によれば、暖気流量調整装置52により暖気導入ライン50を流れる暖気(循環気体)の流量を調整することで、コンテナ本体1の内部の昇温制御が可能となる。この場合には、上記昇温制御を簡単なものにすることができる。なお、電動モータ46の出力(回転数)を増減させると、圧縮機24から吐き出されて圧縮気体ライン22Bを流れる循環気体の流量が増減する。このため、コンテナ本体1の内部の昇温を制御するためのパラメータとして、暖気流量調整装置52の開度だけでなく、電動モータ46の出力(回転数)を含めることが好ましい。 With the above configuration, the warm air flow rate control device 52 adjusts the flow rate of the warm air (circulating gas) flowing through the warm air introduction line 50, making it possible to control the temperature rise inside the container body 1. In this case, the temperature rise control can be simplified. Note that increasing or decreasing the output (rotation speed) of the electric motor 46 increases or decreases the flow rate of the circulating gas discharged from the compressor 24 and flowing through the compressed gas line 22B. For this reason, it is preferable to include not only the opening degree of the warm air flow rate control device 52 but also the output (rotation speed) of the electric motor 46 as parameters for controlling the temperature rise inside the container body 1.
 図9及び図10に示される実施形態では、上述した冷凍コンテナ100は、暖気導入ライン50がバイパスする循環ライン22に設けられ、該循環ライン22を流れる循環気体の流量を調整可能に構成された少なくとも1つの循環気体流量調整装置(循環気体流量調整弁)29をさらに備える。暖気導入ライン50がバイパスする循環ライン22とは、循環ライン22における、暖気導入ライン50の上流端501が接続される接続位置P1、P2と、暖気導入ライン50の下流端502が接続される接続位置P4との間の部分である。図9及び図10に示される実施形態では、循環気体流量調整装置29は、循環ライン22の熱交換器26(高温側熱交換部262)と接続位置P4との間に設けられているが、循環ライン22の接続位置P1、P2と、熱交換器26(高温側熱交換部262)との間に設けられていてもよい。 9 and 10, the above-mentioned refrigerated container 100 further includes at least one circulating gas flow rate control device (circulating gas flow rate control valve) 29 that is provided in the circulation line 22 through which the warm air introduction line 50 bypasses and is configured to adjust the flow rate of the circulating gas flowing through the circulation line 22. The circulation line 22 through which the warm air introduction line 50 bypasses is a portion of the circulation line 22 between the connection positions P1 and P2 to which the upstream end 501 of the warm air introduction line 50 is connected and the connection position P4 to which the downstream end 502 of the warm air introduction line 50 is connected. In the embodiment shown in FIG. 9 and FIG. 10, the circulating gas flow rate control device 29 is provided between the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22 and the connection position P4, but may be provided between the connection positions P1 and P2 of the circulation line 22 and the heat exchanger 26 (high-temperature side heat exchange section 262).
 循環気体流量調整装置29は、暖気導入ライン50がバイパスする循環ライン22に配置された弁体の開度を変更することで、循環気体流量調整装置29よりも下流側(膨張機28側)に導かれる循環気体の流量を調整可能に構成される。なお、循環気体流量調整装置29は、全閉と全開に開度調整可能な開閉弁でもよいし、全閉と全開とこれらの間の少なくとも1つの中間開度に開度調整可能な開度調整弁でもよい。 The circulating gas flow rate control device 29 is configured to be able to adjust the flow rate of the circulating gas that is guided downstream of the circulating gas flow rate control device 29 (towards the expander 28) by changing the opening of a valve element arranged in the circulation line 22, which the warm air introduction line 50 bypasses. The circulating gas flow rate control device 29 may be an on-off valve whose opening can be adjusted to fully closed and fully open, or an opening adjustment valve whose opening can be adjusted to fully closed, fully open, and at least one intermediate opening between these.
 図9及び図10に示される実施形態では、冷凍機30の運転中において、循環気体流量調整装置29を開き(弁体の開度を大きくする)、暖気流量調整装置52を閉じる(弁体の開度を小さくする)と、圧縮気体ライン22Bを流れる循環気体は、膨張機28に導かれ、膨張機28における膨張により降温した後に、コンテナ本体1の内部に導かれる。冷凍機30の運転中において、循環気体流量調整装置29を閉じ(弁体の開度を小さくする)、暖気流量調整装置52を開く(弁体の開度を大きくする)と、暖気導入ライン50がバイパスする循環ライン22に設けられた循環気体流量調整装置29における圧力損失が暖気導入ライン50や暖気流量調整装置52よりも大きなものとなる。そして、圧縮気体ライン22Bを流れる循環気体は、暖気導入ライン50の上流端501での圧力と、下流端502での圧力との差によって、暖気導入ライン50を介してコンテナ本体1の内部に導かれる。このため、暖気導入ライン50を介してコンテナ本体1の内部に循環気体を導くためのファンは不要である。 9 and 10, when the circulating gas flow control device 29 is opened (the valve body opening is increased) and the warm air flow control device 52 is closed (the valve body opening is decreased) during operation of the refrigerator 30, the circulating gas flowing through the compressed gas line 22B is led to the expander 28, where it is cooled by expansion in the expander 28 and then led into the inside of the container body 1. When the circulating gas flow control device 29 is closed (the valve body opening is decreased) and the warm air flow control device 52 is opened (the valve body opening is increased) during operation of the refrigerator 30, the pressure loss in the circulating gas flow control device 29 provided in the circulation line 22 bypassed by the warm air introduction line 50 becomes greater than that in the warm air introduction line 50 and the warm air flow control device 52. The circulating gas flowing through the compressed gas line 22B is led into the inside of the container body 1 via the warm air introduction line 50 due to the difference in pressure between the upstream end 501 of the warm air introduction line 50 and the downstream end 502. Therefore, a fan is not required to guide the circulating gas into the container body 1 through the warm air introduction line 50.
 上記の構成によれば、暖気流量調整装置52及び循環気体流量調整装置29により暖気導入ライン50を流れる暖気(循環気体)の流量を調整することで、コンテナ本体1の内部の昇温制御が可能となる。この場合には、上記昇温制御を簡単なものにすることができる。 With the above configuration, the warm air flow rate regulator 52 and the circulating gas flow rate regulator 29 can be used to adjust the flow rate of the warm air (circulating gas) flowing through the warm air inlet line 50, making it possible to control the temperature rise inside the container body 1. In this case, the above temperature rise control can be simplified.
(暖気導入ラインの接続位置)
 幾つかの実施形態では、上述した暖気導入ライン50の上流端501は、図3、図4、図6、図7、図9、図11及び図12に示されるように、圧縮気体ライン22B(循環ライン22)の冷却器32と熱交換器26(高温側熱交換部262)の間に位置する接続位置P1において、圧縮気体ライン22B(配管23D)に接続されている。この場合には、暖気導入ライン50には、冷却器32において冷却された循環気体が導入されるようになっている。
(Warm air intake line connection location)
In some embodiments, the upstream end 501 of the above-mentioned warm air introduction line 50 is connected to the compressed gas line 22B (piping 23D) at a connection position P1 located between the cooler 32 of the compressed gas line 22B (circulation line 22) and the heat exchanger 26 (high-temperature side heat exchange section 262), as shown in Figures 3, 4, 6, 7, 9, 11 and 12. In this case, the circulation gas cooled in the cooler 32 is introduced into the warm air introduction line 50.
 図示される実施形態では、暖気導入ライン50を形成する配管は、配管23D(圧縮気体ライン22B)の接続位置P1と暖気流量調整装置52の入口との間に設けられる配管55Aを含む。配管55Aは、上述した上流端501を有する。 In the illustrated embodiment, the piping forming the warm air introduction line 50 includes a piping 55A provided between the connection position P1 of the piping 23D (compressed gas line 22B) and the inlet of the warm air flow control device 52. The piping 55A has the upstream end 501 described above.
 或る実施形態では、圧縮機24において昇圧された循環気体は、100℃以上の高温になる。そして、冷却器32において冷却された循環気体は、0℃以上60℃以下の常温になる。この場合には、常温高圧の循環気体が、暖気導入ライン50を介してコンテナ本体1の内部に導入される。 In one embodiment, the circulating gas pressurized in the compressor 24 reaches a high temperature of 100°C or more. The circulating gas cooled in the cooler 32 reaches a room temperature of 0°C or more and 60°C or less. In this case, the room temperature, high pressure circulating gas is introduced into the container body 1 via the warm air introduction line 50.
 上記の構成によれば、圧縮機24により高温になった循環気体を、冷却器32において冷却することで、暖気導入ライン50を介してコンテナ本体1に導入される循環気体(暖気)と、庫内気体との間の温度差を低減できる。上記温度差を低減することで、上記暖気による庫内気体の温度上昇を緩やかにできるため、コンテナ本体1の内部の熱歪による損傷を抑制できる。 With the above configuration, the circulating gas heated to a high temperature by the compressor 24 is cooled in the cooler 32, thereby reducing the temperature difference between the circulating gas (warm air) introduced into the container body 1 via the warm air introduction line 50 and the gas inside the container. By reducing the temperature difference, the temperature rise of the gas inside the container caused by the warm air can be made slower, thereby suppressing damage caused by thermal distortion inside the container body 1.
 幾つかの実施形態では、上述した暖気導入ライン50の上流端501は、図8及び図10に示されるように、圧縮気体ライン22B(循環ライン22)の圧縮機24と冷却器32の間に位置する接続位置P2において、圧縮気体ライン22B(配管23C)に接続されている。 In some embodiments, the upstream end 501 of the warm air introduction line 50 described above is connected to the compressed gas line 22B (piping 23C) at a connection position P2 located between the compressor 24 and the cooler 32 of the compressed gas line 22B (circulation line 22), as shown in Figures 8 and 10.
 図示される実施形態では、暖気導入ライン50を形成する配管は、配管23C(圧縮気体ライン22B)の接続位置P2と暖気流量調整装置52の入口との間に設けられる配管55Bを含む。配管55Bは、上述した上流端501を有する。 In the illustrated embodiment, the piping forming the warm air introduction line 50 includes a piping 55B provided between the connection position P2 of the piping 23C (compressed gas line 22B) and the inlet of the warm air flow control device 52. The piping 55B has the upstream end 501 described above.
 或る実施形態では、圧縮機24において昇圧された循環気体は、100℃以上の高温になる。この場合には、冷却器32において冷却されていない高温高圧の循環気体が、暖気導入ライン50を介してコンテナ本体1の内部に導入される。 In one embodiment, the circulating gas pressurized in the compressor 24 reaches a high temperature of 100°C or more. In this case, the high-temperature, high-pressure circulating gas that has not been cooled in the cooler 32 is introduced into the inside of the container body 1 via the warm air introduction line 50.
 仮に、冷却器32を通過した循環気体を暖気として、コンテナ本体1の内部に導入する場合には、コンテナ本体1の内部の昇温制御において、冷却器32による温度変化を考慮する必要がある。上記の構成によれば、圧縮機24により高温になった循環気体を暖気として、冷却器32を通過せずに、コンテナ本体1の内部に導入する。この場合には、コンテナ本体1の内部の昇温制御において、冷却器32による温度変化を考慮しなくても良いので、上記昇温制御を簡単なものにすることができる。 If the circulating gas that has passed through the cooler 32 is introduced into the container body 1 as warm air, it is necessary to take into account the temperature change caused by the cooler 32 when controlling the temperature rise inside the container body 1. According to the above configuration, the circulating gas that has been heated by the compressor 24 is introduced into the container body 1 as warm air without passing through the cooler 32. In this case, it is not necessary to take into account the temperature change caused by the cooler 32 when controlling the temperature rise inside the container body 1, so the above-mentioned temperature rise control can be simplified.
 幾つかの実施形態では、図3に示されるように、上述した暖気導入ライン50の下流端502には、空気などの気体をコンテナ本体1の内部に吹き出すための吹出口503(開口)が形成されている。なお、上述した吸込部18は、吸込口20及び吹出口503を含んでいてもよい。暖気導入ライン50を流れる循環気体は、吹出口503に導かれ、吹出口503を介して暖気導入ライン50からコンテナ本体1の内部に吹き出されるようになっている。 In some embodiments, as shown in FIG. 3, the downstream end 502 of the above-mentioned warm air introduction line 50 is formed with an outlet 503 (opening) for blowing gas such as air into the inside of the container body 1. The above-mentioned suction section 18 may include the suction port 20 and the outlet 503. The circulating gas flowing through the warm air introduction line 50 is guided to the outlet 503 and is blown out from the warm air introduction line 50 into the inside of the container body 1 via the outlet 503.
 図示される実施形態では、暖気導入ライン50を形成する配管は、上述した配管55Aと、暖気流量調整装置52の出口と吹出口503との間に設けられる配管56Aと、を含む。配管56Aは、上述した下流端502を有する。なお、暖気導入ライン50を形成する配管は、上述した配管55Bと、上述した配管56Aと、を含んでいてもよい。 In the illustrated embodiment, the piping forming the warm air introduction line 50 includes the above-mentioned piping 55A and piping 56A provided between the outlet of the warm air flow control device 52 and the air outlet 503. The piping 56A has the above-mentioned downstream end 502. Note that the piping forming the warm air introduction line 50 may also include the above-mentioned piping 55B and the above-mentioned piping 56A.
 幾つかの実施形態では、図6~図8、図11及び図12に示されるように、上述した暖気導入ライン50の下流端502は、循環ライン22の膨張機28と吹出口16との間(膨張気体ライン22C)に位置する接続位置P3において、膨張気体ライン22C(配管23F)に接続されている。暖気導入ライン50を流れる循環気体は、膨張気体ライン22Cの接続位置P3よりも下流側を介してコンテナ本体1の内部に導入される。 In some embodiments, as shown in Figures 6 to 8, 11 and 12, the downstream end 502 of the warm air introduction line 50 described above is connected to the expansion gas line 22C (piping 23F) at a connection position P3 located between the expander 28 of the circulation line 22 and the outlet 16 (expansion gas line 22C). The circulation gas flowing through the warm air introduction line 50 is introduced into the inside of the container body 1 via the downstream side of the connection position P3 of the expansion gas line 22C.
 図示される実施形態では、暖気導入ライン50を形成する配管は、上述した配管55A又は配管55Bの何れか一方の配管と、暖気流量調整装置52の出口と配管23F(膨張気体ライン22C)の接続位置P3との間に設けられる配管56Bと、を含む。配管56Bは、上述した下流端502を有する。 In the illustrated embodiment, the piping forming the warm air introduction line 50 includes either the piping 55A or the piping 55B described above, and a piping 56B provided between the outlet of the warm air flow control device 52 and the connection position P3 of the piping 23F (expanded gas line 22C). The piping 56B has the downstream end 502 described above.
 上記の構成によれば、暖気(暖気導入ライン50を流れる循環気体)の流路として、吹出口16などの循環ライン22の一部(膨張気体ライン22Cの接続位置P3と吹出口16の間)を利用できる。この場合には、コンテナ本体1の内部に暖気を導入するための専用の吹出口503を設ける必要がなく、冷凍コンテナ100の構造のコンパクト化、軽量化が図れる。 With the above configuration, a part of the circulation line 22, such as the outlet 16 (between the connection position P3 of the expansion gas line 22C and the outlet 16) can be used as a flow path for the warm air (the circulating gas flowing through the warm air introduction line 50). In this case, there is no need to provide a dedicated outlet 503 for introducing warm air into the inside of the container body 1, and the structure of the refrigeration container 100 can be made more compact and lightweight.
 また、上記の構成によれば、暖気導入ライン50がバイパスする循環ライン22は、該循環ライン22に設けられた膨張機28により圧力損失が大きなものとなるため、暖気導入ライン50が開いているときに、暖気導入ライン50側に大量の循環気体を導くことができる。本構成では、上述した循環気体流量調整装置29を設けなくてもよい。また、暖気導入ライン50を通過する循環気体は、暖気導入ライン50がバイパスする循環ライン22を通過する循環気体よりも高温となる。よって、上記の構成によれば、暖気導入ライン50を介して、コンテナ本体1の内部に比較的高温の循環気体を大量に導くことができるため、コンテナ本体1の内部の加熱能力を大きなものとすることができる。 Furthermore, according to the above configuration, the circulation line 22, which the warm air introduction line 50 bypasses, has a large pressure loss due to the expander 28 provided in the circulation line 22, so that when the warm air introduction line 50 is open, a large amount of circulation gas can be guided to the warm air introduction line 50 side. In this configuration, the above-mentioned circulation gas flow rate control device 29 does not need to be provided. Furthermore, the circulation gas passing through the warm air introduction line 50 is hotter than the circulation gas passing through the circulation line 22, which the warm air introduction line 50 bypasses. Therefore, according to the above configuration, a large amount of relatively high-temperature circulation gas can be guided into the inside of the container body 1 via the warm air introduction line 50, so that the heating capacity inside the container body 1 can be increased.
 幾つかの実施形態では、図9及び図10に示されるように、上述した暖気導入ライン50の下流端502は、圧縮気体ライン22B(循環ライン22)の熱交換器26(高温側熱交換部262)と膨張機28との間に位置する接続位置P4において、圧縮気体ライン22Bに接続されている。暖気導入ライン50を流れる循環気体は、圧縮気体ライン22Bの接続位置P4よりも下流側、膨張機28及び膨張気体ライン22Cを介してコンテナ本体1の内部に導入される。 In some embodiments, as shown in Figures 9 and 10, the downstream end 502 of the warm air introduction line 50 described above is connected to the compressed gas line 22B at a connection position P4 located between the heat exchanger 26 (high temperature side heat exchange section 262) of the compressed gas line 22B (circulation line 22) and the expander 28. The circulation gas flowing through the warm air introduction line 50 is introduced into the inside of the container body 1 downstream of the connection position P4 of the compressed gas line 22B, via the expander 28 and the expanded gas line 22C.
 図示される実施形態では、暖気導入ライン50を形成する配管は、上述した配管55A又は配管55Bの何れか一方の配管と、暖気流量調整装置52の出口と圧縮気体ライン22Bの接続位置P4との間に設けられる配管56Cと、を含む。配管56Cは、上述した下流端502を有する。 In the illustrated embodiment, the piping forming the warm air introduction line 50 includes either the piping 55A or the piping 55B described above, and a piping 56C provided between the outlet of the warm air flow control device 52 and the connection position P4 of the compressed gas line 22B. The piping 56C has the downstream end 502 described above.
 上記の構成によれば、暖気(暖気導入ライン50を流れる循環気体)の流路として、吹出口16などの循環ライン22の一部(循環ライン22の接続位置P4と吹出口16の間)を利用できる。この場合には、コンテナ本体1の内部に暖気を導入するための専用の吹出口503を設ける必要がなく、冷凍コンテナ100の構造のコンパクト化、軽量化が図れる。 With the above configuration, a part of the circulation line 22, such as the outlet 16 (between the connection position P4 of the circulation line 22 and the outlet 16) can be used as a flow path for the warm air (the circulating gas flowing through the warm air introduction line 50). In this case, there is no need to provide a dedicated outlet 503 for introducing warm air into the inside of the container body 1, and the structure of the refrigeration container 100 can be made more compact and lightweight.
 また、上記の構成によれば、暖気導入ライン50の下流端502が、循環ライン22の膨張機28よりも上流側に接続されているため、循環ライン22の膨張機28よりも下流側に接続される場合に比べて、暖気導入ライン50から循環ライン22の膨張機28よりも下流側への入熱を抑制でき、冷凍コンテナ100の冷凍運転時における冷却性能の利得が大きくなる。 Furthermore, according to the above configuration, since the downstream end 502 of the warm air introduction line 50 is connected upstream of the expander 28 of the circulation line 22, the heat input from the warm air introduction line 50 to the downstream side of the expander 28 of the circulation line 22 can be suppressed compared to when it is connected downstream of the expander 28 of the circulation line 22, and the gain in cooling performance during refrigeration operation of the refrigerated container 100 is large.
(冷凍機を構成する機器の配置)
 幾つかの実施形態では、図1、図4及び図11に示されるように、循環ライン22にそれぞれ設けられる、圧縮機24、冷却器32、熱交換器26及び膨張機28の各々は、コンテナ本体1の外側空間3において、コンテナ本体1の内側空間2と外側空間3とを仕切る隔壁10に沿って配置されている。
(Layout of equipment constituting the refrigeration unit)
In some embodiments, as shown in Figures 1, 4 and 11, each of the compressor 24, the cooler 32, the heat exchanger 26 and the expander 28, which are respectively provided in the circulation line 22, is arranged in the outer space 3 of the container body 1 along the partition 10 that separates the inner space 2 and the outer space 3 of the container body 1.
 図示される実施形態では、循環ライン22に設けられる上述の機器は、隔壁10としての短側壁7に沿って配置されている。なお、図1においては、循環ライン22に設けられる上述の機器のうち幾つかが、二点鎖線で模式的に示されている。 In the illustrated embodiment, the above-mentioned devices provided in the circulation line 22 are arranged along the short side wall 7 serving as the partition wall 10. In FIG. 1, some of the above-mentioned devices provided in the circulation line 22 are shown diagrammatically by two-dot chain lines.
 図1、図4及び図11に示されるように、上述した冷凍コンテナ100は、コンテナ本体1の外側空間3に設けられる上述の機器を上方、下方及び側方から囲うように設けられるカバー12を備えていてもよい。 As shown in Figures 1, 4 and 11, the above-mentioned refrigerated container 100 may be provided with a cover 12 that is arranged to surround the above-mentioned equipment provided in the outer space 3 of the container body 1 from above, below and the sides.
 なお、図4及び図5に示されるように、吸込口20と熱交換器26との間の配管23Aは、短側壁7(隔壁10)に設けられた貫通孔25を挿通するように設けられてもよい。また、膨張機28と吹出口16との間の配管23Fは、短側壁7(隔壁10)に設けられた貫通孔27を挿通するように設けられてもよい。 As shown in Figs. 4 and 5, the piping 23A between the suction port 20 and the heat exchanger 26 may be arranged to pass through a through hole 25 provided in the short side wall 7 (partition wall 10). Also, the piping 23F between the expander 28 and the outlet port 16 may be arranged to pass through a through hole 27 provided in the short side wall 7 (partition wall 10).
 上記の構成によれば、圧縮機24、冷却器32、熱交換器26、及び膨張機28の各々が、コンテナ本体1の外側空間3に設置される。すなわち、これらの機器がコンテナ本体1の内側空間2に設けられないため、コンテナ内部の荷貨スペースを広く確保することができる。また、上記の構成では、コンテナ本体1の内側空間2に蒸発器等の熱交換器を設ける必要がないため、このような熱交換器の除霜をするためのデフロスト運転をする必要がない。よって、庫内温度を所期の温度に維持しやすい。また、上記の構成では、コンテナ本体1の外側空間3にて隔壁10に沿った比較的狭いスペースに冷凍機30を構成する機器が配置される。このように、コンテナ本体1に付加する冷凍機30の設置領域が小さいため、冷凍機30を含む冷凍コンテナ100を輸送用等のコンテナとして好適に使用可能である。 According to the above configuration, the compressor 24, the cooler 32, the heat exchanger 26, and the expander 28 are each installed in the outer space 3 of the container body 1. In other words, since these devices are not installed in the inner space 2 of the container body 1, a large cargo space can be secured inside the container. In addition, since the above configuration does not require the installation of a heat exchanger such as an evaporator in the inner space 2 of the container body 1, there is no need to perform a defrost operation to defrost such a heat exchanger. Therefore, it is easy to maintain the temperature inside the container at a desired temperature. In addition, in the above configuration, the devices that make up the refrigerator 30 are arranged in a relatively narrow space along the bulkhead 10 in the outer space 3 of the container body 1. In this way, since the installation area of the refrigerator 30 added to the container body 1 is small, the refrigerated container 100 including the refrigerator 30 can be suitably used as a container for transportation, etc.
(暖気導入ラインの配置)
 幾つかの実施形態では、図1、図4及び図11に示されるように、循環ライン22にそれぞれ設けられる、圧縮機24、冷却器32、熱交換器26及び膨張機28の各々は、コンテナ本体1の外側空間3において、コンテナ本体1の内側空間2と外側空間3とを仕切る隔壁10に沿って配置されている。そして、循環ライン22及び暖気導入ライン50も、外側空間3において隔壁10に沿って配置されている。
(Layout of warm air introduction lines)
1, 4 and 11, each of the compressor 24, the cooler 32, the heat exchanger 26 and the expander 28 provided in the circulation line 22 is disposed in the outer space 3 of the container body 1 along the partition wall 10 that separates the inner space 2 and the outer space 3 of the container body 1. The circulation line 22 and the warm air introduction line 50 are also disposed in the outer space 3 along the partition wall 10.
 上述した暖気導入ライン50は、図4及び図11に示されるような、隔壁10の外側空間3に面する外側面101に対する垂直方向視において、循環ライン22の熱交換器26と膨張機28とを繋ぐ冷却気体ライン22Dに対して交差しないように配置されている。 The above-mentioned warm air introduction line 50 is arranged so as not to intersect with the cooling gas line 22D connecting the heat exchanger 26 and the expander 28 of the circulation line 22 when viewed vertically with respect to the outer surface 101 of the partition 10 facing the outer space 3 as shown in Figures 4 and 11.
 図示される実施形態では、圧縮機24及び膨張機28は、水平方向に沿って並んで配置されている。熱交換器26及び冷却気体ライン22Dは、圧縮機24及び膨張機28よりも鉛直方向における上側(一方側)に配置され、冷却器32及び暖気導入ライン50は、圧縮機24及び膨張機28よりも鉛直方向における下側(他方側)に配置されている。換言すると、冷却器32及び暖気導入ライン50は、鉛直方向において、圧縮機24及び膨張機28を挟んで熱交換器26及び冷却気体ライン22Dとは反対側に配置されている。 In the illustrated embodiment, the compressor 24 and the expander 28 are arranged side by side in the horizontal direction. The heat exchanger 26 and the cooling gas line 22D are arranged vertically above (on one side) the compressor 24 and the expander 28, and the cooler 32 and the warm air introduction line 50 are arranged vertically below (on the other side) the compressor 24 and the expander 28. In other words, the cooler 32 and the warm air introduction line 50 are arranged vertically on the opposite side of the compressor 24 and the expander 28 from the heat exchanger 26 and the cooling gas line 22D.
 上記の構成によれば、暖気導入ライン50を流れる循環気体(暖気)から冷却気体ライン22Dを流れる循環気体(冷気)への入熱を削減でき、これにより、冷凍コンテナ100の冷凍運転時の性能向上が図れる。 The above configuration reduces the heat input from the circulating gas (warm air) flowing through the warm air inlet line 50 to the circulating gas (cold air) flowing through the cooling gas line 22D, thereby improving the performance of the refrigeration container 100 during refrigeration operation.
 幾つかの実施形態では、図7に示されるように、上述した冷凍コンテナ100は、循環ライン22の冷却器32と熱交換器26(高温側熱交換部262)の間に上流端501が接続された上述した暖気導入ライン50と、上述した電動モータ46と、冷熱媒体供給ライン60と、冷熱媒体戻しライン62と、を備える。冷熱媒体供給ライン60は、暖気導入ライン50に一端が接続され、暖気導入ライン50から循環気体を抜き出して、抜き出した循環気体を、電動モータ46を冷却するための冷熱媒体として電動モータ46に供給するための流路の少なくとも一部を形成する。冷熱媒体戻しライン62は、冷熱媒体供給ライン60を介して電動モータ46に供給された循環気体を循環ライン22の圧縮機24よりも上流側に戻すための流路の少なくとも一部を形成する。 In some embodiments, as shown in FIG. 7, the above-mentioned refrigerated container 100 includes the above-mentioned warm air introduction line 50, the upstream end 501 of which is connected between the cooler 32 and the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22, the above-mentioned electric motor 46, the cold medium supply line 60, and the cold medium return line 62. The cold medium supply line 60 has one end connected to the warm air introduction line 50 and forms at least a part of a flow path for extracting circulating gas from the warm air introduction line 50 and supplying the extracted circulating gas to the electric motor 46 as a cold medium for cooling the electric motor 46. The cold medium return line 62 forms at least a part of a flow path for returning the circulating gas supplied to the electric motor 46 via the cold medium supply line 60 to the circulation line 22 upstream of the compressor 24.
 図示される実施形態では、冷熱媒体供給ライン60の上流端(一端)は、暖気導入ライン50の暖気流量調整装置52よりも上流側(上流端501側)に接続されている。冷熱媒体戻しライン62の下流端(一端)は、循環ライン22の低温側熱交換部261(熱交換器26)と圧縮機24の間に接続されている。なお、冷熱媒体供給ライン60の上流端(一端)は、循環ライン22の冷却器32と熱交換器26(高温側熱交換部262)の間に接続されていてもよい。 In the illustrated embodiment, the upstream end (one end) of the cold medium supply line 60 is connected upstream of the warm air flow control device 52 of the warm air introduction line 50 (upstream end 501 side). The downstream end (one end) of the cold medium return line 62 is connected between the low-temperature side heat exchange section 261 (heat exchanger 26) of the circulation line 22 and the compressor 24. The upstream end (one end) of the cold medium supply line 60 may be connected between the cooler 32 and the heat exchanger 26 (high-temperature side heat exchange section 262) of the circulation line 22.
 冷凍コンテナ100は、モータ冷却器64を備えていてもよい。モータ冷却器64には、冷却器32において冷却された循環気体が冷熱媒体供給ライン60を介して導かれる。モータ冷却器64では、電動モータ46とモータ冷却器64に導かれた、電動モータ46よりも低温の循環気体との間で熱交換を行うように構成される。モータ冷却器64における熱交換により、電動モータ46が、モータ冷却器64に導かれた循環気体により冷却される。モータ冷却器64において電動モータ46を冷却した循環気体は、冷熱媒体戻しライン62を介して循環ライン22の圧縮機24よりも上流側に戻される。 The refrigerated container 100 may be equipped with a motor cooler 64. The circulating gas cooled in the cooler 32 is guided to the motor cooler 64 via the cooling medium supply line 60. The motor cooler 64 is configured to perform heat exchange between the electric motor 46 and the circulating gas that is guided to the motor cooler 64 and has a lower temperature than the electric motor 46. The electric motor 46 is cooled by the circulating gas guided to the motor cooler 64 through the heat exchange in the motor cooler 64. The circulating gas that has cooled the electric motor 46 in the motor cooler 64 is returned to the circulation line 22 upstream of the compressor 24 via the cooling medium return line 62.
 上記の構成によれば、冷凍コンテナ100は、冷熱媒体供給ライン60及び冷熱媒体戻しライン62を備えるため、暖気導入ライン50から抜き出した循環気体により電動モータ46を冷却でき、電動モータ46を冷却した循環気体を循環ライン22に戻すことができる。この場合には、電動モータ46を冷却する冷熱媒体(循環気体)の流路として、循環ライン22や暖気導入ライン50などの一部を利用できるため、冷凍コンテナ100の構造のコンパクト化、軽量化が図れる。 With the above configuration, the refrigerated container 100 is equipped with a cold medium supply line 60 and a cold medium return line 62, so that the electric motor 46 can be cooled by the circulating gas extracted from the warm air introduction line 50, and the circulating gas that has cooled the electric motor 46 can be returned to the circulation line 22. In this case, parts of the circulation line 22 and the warm air introduction line 50 can be used as a flow path for the cold medium (circulating gas) that cools the electric motor 46, so the structure of the refrigerated container 100 can be made more compact and lightweight.
(第1暖気流量調整装置、第2暖気流量調整装置)
 図13は、本開示の一実施形態に係る冷凍コンテナの暖気流量調整装置52(53,54)の概略断面図である。
 幾つかの実施形態では、図11~図13に示されるように、上述した少なくとも1つの暖気流量調整装置(暖気流量調整弁)52は、暖気導入ライン50に設けられる第1の暖気流量調整装置(暖気流量調整弁)53と、暖気導入ライン50の第1の暖気流量調整装置53よりも下流側(下流端502側)に設けられる第2の暖気流量調整装置(暖気流量調整弁)54と、を含む。なお、第1の暖気流量調整装置53及び第2の暖気流量調整装置54は、上述した図1~図10に示される実施形態にも適用可能である。
(First warm air flow control device, second warm air flow control device)
FIG. 13 is a schematic cross-sectional view of a warm air flow regulation device 52 (53, 54) of a refrigerated container according to one embodiment of the present disclosure.
11 to 13, the at least one warm air flow control device (warm air flow control valve) 52 described above includes a first warm air flow control device (warm air flow control valve) 53 provided in the warm air introduction line 50, and a second warm air flow control device (warm air flow control valve) 54 provided downstream (downstream end 502 side) of the first warm air flow control device 53 in the warm air introduction line 50. Note that the first warm air flow control device 53 and the second warm air flow control device 54 are also applicable to the embodiments shown in the above-mentioned FIGS. 1 to 10.
 第1の暖気流量調整装置53及び第2の暖気流量調整装置54の各々は、暖気導入ライン50に配置された弁体531、541の開度を変更することで、暖気流量調整装置52(53、54)よりも下流側(下流端502側)に導かれる循環気体の流量を調整可能に構成される。なお、第1の暖気流量調整装置53及び第2の暖気流量調整装置54の各々は、全閉と全開に開度調整可能な開閉弁でもよいし、全閉と全開とこれらの間の少なくとも1つの中間開度に開度調整可能な開度調整弁でもよい。 Each of the first warm air flow control device 53 and the second warm air flow control device 54 is configured to be able to adjust the flow rate of the circulating gas guided downstream (downstream end 502 side) of the warm air flow control device 52 (53, 54) by changing the opening degree of the valve bodies 531, 541 arranged in the warm air introduction line 50. Each of the first warm air flow control device 53 and the second warm air flow control device 54 may be an opening/closing valve whose opening degree can be adjusted to fully closed and fully open, or an opening degree adjustment valve whose opening degree can be adjusted to fully closed, fully open, and at least one intermediate opening degree between them.
 上記の構成によれば、暖気導入ライン50に2つの暖気流量調整装置53、54を設けることで、暖気導入ライン50における遮熱性を向上できる。これにより、2つの暖気流量調整装置53、54の閉止時における、暖気導入ライン50の第2の暖気流量調整装置54よりも下流側への入熱を抑制できる。 According to the above configuration, by providing two warm air flow rate control devices 53, 54 in the warm air introduction line 50, the heat insulation properties of the warm air introduction line 50 can be improved. This makes it possible to suppress heat input downstream of the second warm air flow rate control device 54 in the warm air introduction line 50 when the two warm air flow rate control devices 53, 54 are closed.
 図13に示される実施形態では、第1の暖気流量調整装置53及び第2の暖気流量調整装置54の夫々は、フランジ部532、542を有する。フランジ部542は、フランジ部532との間に断熱材であるパッキン521を挟み込んだ状態で、締結部材(図示例では、ボルト及びナット)522を介してフランジ部532に締結される。2つの暖気流量調整装置53、54の間にパッキン521を配置することで、暖気導入ライン50における遮熱性を向上できる。これにより、2つの暖気流量調整装置53、54の閉止時における、暖気導入ライン50の第2の暖気流量調整装置54よりも下流側への入熱を抑制できる。 In the embodiment shown in FIG. 13, the first warm air flow control device 53 and the second warm air flow control device 54 each have a flange portion 532, 542. The flange portion 542 is fastened to the flange portion 532 via fastening members (bolts and nuts in the illustrated example) 522, with a packing 521, which is a heat insulating material, sandwiched between the flange portion 532 and the packing 521. By disposing the packing 521 between the two warm air flow control devices 53, 54, the heat insulation properties of the warm air introduction line 50 can be improved. This makes it possible to suppress heat input downstream of the second warm air flow control device 54 in the warm air introduction line 50 when the two warm air flow control devices 53, 54 are closed.
 図14及び図15の各々は、本開示の一実施形態に係る冷凍コンテナ100の冷凍機30の回路を模式的に示す図である。図16は、本開示の一実施形態に係る冷凍コンテナ100の脱臭装置70の概略図である。
 幾つかの実施形態では、図14及び図15に示されるように、上述した冷凍コンテナ100は、循環気体に対して脱臭作用を有する物質を放出するように構成された脱臭装置70をさらに備える。上述した図1~図13に示される実施形態にも適用可能である。
Each of Figures 14 and 15 is a diagram showing a schematic circuit of the refrigerator 30 of the refrigerated container 100 according to one embodiment of the present disclosure. Figure 16 is a schematic diagram of the deodorization device 70 of the refrigerated container 100 according to one embodiment of the present disclosure.
In some embodiments, as shown in Figures 14 and 15, the refrigerated container 100 described above further comprises a deodorizing device 70 configured to emit a substance having a deodorizing effect on the circulating gas, which is also applicable to the embodiments shown in Figures 1 to 13 described above.
 脱臭装置70は、脱臭作用を有する物質を循環気体から発生させるように構成されることが好ましい。図16に示される実施形態では、庫内気体及び循環気体は、空気を含み、脱臭装置70は、循環気体に含まれる空気からオゾンを発生させるように構成されたオゾン発生装置70Aを含む。オゾン発生装置70Aは、互いに対向して配置された一対の電極71、72と、一対の電極71、72間の配置された誘導体73と、を含む。一対の電極71、72間に循環気体に含まれる空気を導き、不図示の印加装置により一対の電極71、72間に交流高電圧を印加した際に放電現象が生じ、この放電現象により発生する電子により空気中の酸素がオゾンに変換されるようになっている。なお、オゾン発生装置70Aは、循環気体に含まれる空気に放射線を照射することで、オゾンを生成するように構成されていてもよい。 The deodorizing device 70 is preferably configured to generate a substance having a deodorizing effect from the circulating gas. In the embodiment shown in FIG. 16, the internal gas and the circulating gas include air, and the deodorizing device 70 includes an ozone generator 70A configured to generate ozone from the air contained in the circulating gas. The ozone generator 70A includes a pair of electrodes 71, 72 arranged opposite each other, and an inductor 73 arranged between the pair of electrodes 71, 72. When the air contained in the circulating gas is guided between the pair of electrodes 71, 72 and a high AC voltage is applied between the pair of electrodes 71, 72 by an application device (not shown), a discharge phenomenon occurs, and oxygen in the air is converted into ozone by electrons generated by this discharge phenomenon. The ozone generator 70A may be configured to generate ozone by irradiating the air contained in the circulating gas with radiation.
 脱臭装置70は、循環気体に含まれる水分、又は、脱臭装置70に貯留される水の少なくとも一方に、高電圧を印可したり、超音波を照射すること等により、水分由来の脱臭作用を有する物質を生成するように構成されていてもよい。水分由来の脱臭作用を有する物質は、帯電微粒子であってもよい。 The deodorizing device 70 may be configured to generate a substance with moisture-derived deodorizing properties by applying a high voltage or irradiating ultrasonic waves to at least one of the moisture contained in the circulating gas and the water stored in the deodorizing device 70. The substance with moisture-derived deodorizing properties may be electrically charged fine particles.
 脱臭装置70は、オゾンや水分由来の脱臭作用を有する物質を循環気体に対して放出することで、循環気体の除菌、脱臭を行うようになっている。上述した循環ライン22や暖気導入ライン50を流れる循環気体(空気)は、乾燥しているため、脱臭作用を有する物質を生成し易く、脱臭作用を有する物質による脱臭効果が高い。 The deodorizing device 70 sterilizes and deodorizes the circulating gas by releasing substances with deodorizing properties derived from ozone and moisture into the circulating gas. The circulating gas (air) flowing through the above-mentioned circulation line 22 and warm air introduction line 50 is dry, so it is easy to generate substances with deodorizing properties, and the deodorizing effect of the substances with deodorizing properties is high.
 上記の構成によれば、脱臭装置70により、循環気体に対して脱臭作用を有する物質を放出することで、循環気体を脱臭できる。そして、脱臭装置70により脱臭した循環気体をコンテナ本体1の内部に戻すことで、庫内気体を脱臭できる。この場合には、脱臭装置70により庫内気体を直接脱臭する場合とは異なり、脱臭装置70をコンテナ本体1の外部に設けることができるため、コンテナ本体1の内部の荷貨スペースを広く確保することができる。脱臭装置70をコンテナ本体1の外部に設ける際には、循環ライン22や暖気導入ライン50などのコンテナ本体1の内部から取り出された気体(循環気体)が流れるラインに設けることが好ましい。この場合には、コンテナ本体1と脱臭装置70との間における流体の流路として、循環ライン22や暖気導入ライン50などを利用できるため、冷凍コンテナ100の構造のコンパクト化、軽量化が図れる。 According to the above configuration, the deodorizing device 70 can deodorize the circulating gas by releasing a substance having a deodorizing effect on the circulating gas. The circulating gas deodorized by the deodorizing device 70 can then be returned to the inside of the container body 1 to deodorize the inside gas. In this case, unlike the case where the inside gas is directly deodorized by the deodorizing device 70, the deodorizing device 70 can be installed outside the container body 1, so that a large cargo space can be secured inside the container body 1. When installing the deodorizing device 70 outside the container body 1, it is preferable to install the deodorizing device 70 on a line through which the gas (circulating gas) taken out from inside the container body 1 flows, such as the circulation line 22 or the warm air introduction line 50. In this case, the circulation line 22 or the warm air introduction line 50 can be used as a fluid flow path between the container body 1 and the deodorizing device 70, so that the structure of the refrigerated container 100 can be made compact and lightweight.
 幾つかの実施形態では、図14に示されるように、上述した脱臭装置70は、暖気導入ライン50に設けられている。図14に示される実施形態では、脱臭装置70は、暖気導入ライン50の暖気流量調整装置52よりも上流側(上流端501側)に設置されている。 In some embodiments, as shown in FIG. 14, the deodorizing device 70 described above is provided in the warm air introduction line 50. In the embodiment shown in FIG. 14, the deodorizing device 70 is installed upstream (upstream end 501 side) of the warm air flow rate adjustment device 52 in the warm air introduction line 50.
 上記の構成によれば、脱臭装置70を暖気導入ライン50に設けることで、脱臭作用を有する物質が低温環境である膨張機28に導かれるのを抑制できる。これにより、脱臭作用を有する物質の膨張機28における効果低下や凍結を抑制できるため、脱臭装置70から放出される脱臭作用を有する物質の量を少なくしても、有効に脱臭効果が得られる。また、脱臭装置70を暖気導入ライン50に設けることで、脱臭作用を有する物質がコンテナ本体1の内部に導かれるため、脱臭作用を有する物質により庫内気体を直接除菌、脱臭できる。 According to the above configuration, by providing the deodorizing device 70 in the warm air introduction line 50, it is possible to prevent the deodorizing substance from being introduced into the expander 28, which is a low-temperature environment. This prevents the deodorizing substance from losing its effectiveness or freezing in the expander 28, so that an effective deodorizing effect can be obtained even if the amount of the deodorizing substance released from the deodorizing device 70 is reduced. Furthermore, by providing the deodorizing device 70 in the warm air introduction line 50, the deodorizing substance is introduced into the inside of the container body 1, so that the gas inside the container can be directly sterilized and deodorized by the deodorizing substance.
 幾つかの実施形態では、図15に示されるように、上述した脱臭装置70は、循環ライン22における常温(0℃以上60℃以下)の循環気体が流れる常温環境部に設置される。図15に示される実施形態では、上述した脱臭装置70は、上記常温環境部の一つである、循環ライン22の冷却器32と熱交換器26(高温側熱交換部262)の間に設置されてもよい。また、上述した脱臭装置70は、上記常温環境部の一つである、循環ライン22の低温側熱交換部261(熱交換器26)と圧縮機24の間に設置されてもよい。 In some embodiments, as shown in FIG. 15, the deodorizing device 70 described above is installed in the normal temperature environment section in the circulation line 22 where the circulating gas at normal temperature (0°C or higher and 60°C or lower) flows. In the embodiment shown in FIG. 15, the deodorizing device 70 described above may be installed between the cooler 32 and the heat exchanger 26 (high temperature side heat exchange section 262) of the circulation line 22, which is one of the normal temperature environment sections. The deodorizing device 70 described above may also be installed between the low temperature side heat exchange section 261 (heat exchanger 26) of the circulation line 22, which is one of the normal temperature environment sections, and the compressor 24.
 上記の構成によれば、脱臭装置70を循環ライン22における上記常温環境部に設けることで、脱臭作用を有する物質が低温環境である膨張機28に導かれるのを抑制できる。これにより、脱臭作用を有する物質の膨張機28における効果低下や凍結を抑制できるため、脱臭装置70から放出される脱臭作用を有する物質の量を少なくしても、有効に脱臭効果が得られる。特に、循環ライン22の低温側熱交換部261(熱交換器26)と圧縮機24の間は、圧力が比較的低いため、循環気体に対して脱臭作用を有する物質を放出し易い。また、循環ライン22の低温側熱交換部261(熱交換器26)と圧縮機24の間を流れる循環気体は、庫内気体を-40℃以下の超低温に冷却するような冷凍コンテナ100においても、常温の乾燥空気になるため、脱臭作用を有する物質を生成し易く、脱臭作用を有する物質による脱臭効果が高い。 According to the above-mentioned configuration, by providing the deodorizing device 70 in the above-mentioned normal temperature environment part of the circulation line 22, it is possible to prevent the deodorizing substance from being led to the expander 28, which is in a low temperature environment. This prevents the deodorizing substance from being reduced in effectiveness or freezing in the expander 28, so that the deodorizing effect can be effectively obtained even if the amount of the deodorizing substance released from the deodorizing device 70 is reduced. In particular, since the pressure is relatively low between the low-temperature side heat exchanger 261 (heat exchanger 26) of the circulation line 22 and the compressor 24, it is easy to release the deodorizing substance to the circulation gas. In addition, the circulation gas flowing between the low-temperature side heat exchanger 261 (heat exchanger 26) of the circulation line 22 and the compressor 24 becomes dry air at normal temperature even in a refrigerated container 100 that cools the gas inside the container to an ultra-low temperature of -40°C or less, so that it is easy to generate the deodorizing substance, and the deodorizing effect of the deodorizing substance is high.
 幾つかの実施形態では、上述した熱交換器26又は冷却器32の少なくとも一方は、プレート式熱交換器又はマイクロチャネル熱交換器を含んでもよい。プレート式熱交換器又はマイクロチャネル熱交換器は、アルミニウム又はチタンを含む材料から形成されたものであってもよい。 In some embodiments, at least one of the heat exchanger 26 or the cooler 32 may include a plate heat exchanger or a microchannel heat exchanger. The plate heat exchanger or the microchannel heat exchanger may be formed from a material including aluminum or titanium.
 幾つかの実施形態では、吸込口20には、図5に示されるような、異物を除去するためのフィルタ部21が設けられる。フィルタ部21は、複数の孔又はメッシュを有する部材等を含み、これらの孔やメッシュ等により形成される複数の開口を有する。 In some embodiments, the suction port 20 is provided with a filter portion 21 for removing foreign matter, as shown in FIG. 5. The filter portion 21 includes a member having a plurality of holes or a mesh, and has a plurality of openings formed by the holes, mesh, etc.
 幾つかの実施形態では、図1に示されるように、コンテナ本体1の外側にて圧縮機24、冷却器32、熱交換器26、及び膨張機28が設置される領域と、コンテナ本体1の内側空間2とを仕切る隔壁10(図1に示す例ではコンテナ本体1の短側壁7)は、コンテナ本体1の長手方向に直交する平面に沿って延在する。 In some embodiments, as shown in FIG. 1, the partition wall 10 (short side wall 7 of the container body 1 in the example shown in FIG. 1) that separates the area where the compressor 24, cooler 32, heat exchanger 26, and expander 28 are installed outside the container body 1 from the inner space 2 of the container body 1 extends along a plane perpendicular to the longitudinal direction of the container body 1.
 上述の実施形態では、コンテナ本体1の長手方向に直交する平面に沿って延在する比較的小さい壁である隔壁10(短側壁7)に沿った比較的狭いスペースに冷凍機30を構成する機器(圧縮機24、熱交換器26、膨張機28)が配置される。このため、コンテナ本体1に付加する冷凍機30の設置領域を小さくすることができ、該冷凍機30を含む冷凍コンテナ100を輸送用等のコンテナとして好適に使用可能である。 In the above-described embodiment, the equipment constituting the refrigeration unit 30 (compressor 24, heat exchanger 26, expander 28) is arranged in a relatively narrow space along the bulkhead 10 (short side wall 7), which is a relatively small wall extending along a plane perpendicular to the longitudinal direction of the container body 1. This makes it possible to reduce the installation area of the refrigeration unit 30 added to the container body 1, and the refrigerated container 100 including the refrigeration unit 30 can be suitably used as a container for transportation, etc.
 一実施形態では、圧縮機24、冷却器32、熱交換器26、及び膨張機28は、外側空間3にて、コンテナ本体1の長手方向における隔壁10からの長さL1が、コンテナ本体1の長さL0の1/10以下の範囲内に配置されてもよい(図1参照)。 In one embodiment, the compressor 24, cooler 32, heat exchanger 26, and expander 28 may be arranged in the outer space 3 such that the length L1 from the partition wall 10 in the longitudinal direction of the container body 1 is within a range of 1/10 or less of the length L0 of the container body 1 (see Figure 1).
 この場合、冷凍機30を構成する機器の設置領域が、コンテナ本体1の長さL0の1/10以下の範囲内である。よって、コンテナ本体1に付加する冷凍機30の設置領域が小さいため、該冷凍機30を含む冷凍コンテナ100を輸送用等のコンテナとして好適に使用可能である。 In this case, the installation area for the equipment that constitutes the refrigeration unit 30 is within a range of 1/10 or less of the length L0 of the container body 1. Therefore, since the installation area for the refrigeration unit 30 added to the container body 1 is small, the refrigeration container 100 including the refrigeration unit 30 can be suitably used as a container for transportation, etc.
 例えばコンテナ本体1が20ftコンテナ(長さL0:約6.1m、幅W0:約2.4m、高さH0:約2.6m)の場合、上述の設置領域の長さ(L1)が、610mm以下であってもよい。 For example, if the container body 1 is a 20 ft container (length L0: approximately 6.1 m, width W0: approximately 2.4 m, height H0: approximately 2.6 m), the length (L1) of the above-mentioned installation area may be 610 mm or less.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, expressions expressing relative or absolute configuration, such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""center,""concentric," or "coaxial," do not only strictly express such a configuration, but also express a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
For example, expressions indicating that things are in an equal state, such as "identical,""equal," and "homogeneous," not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
Furthermore, in this specification, expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
In addition, in this specification, the expressions "comprise,""include," or "have" a certain element are not exclusive expressions that exclude the presence of other elements.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 This disclosure is not limited to the above-described embodiments, but also includes modifications to the above-described embodiments and appropriate combinations of these embodiments.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in the above-mentioned embodiments can be understood, for example, as follows:
1)本開示の少なくとも一実施形態に係る冷凍コンテナ(100)は、
 コンテナ本体(1)の内部の気体である庫内気体を冷却可能に構成された冷凍コンテナ(100)であって、
 前記コンテナ本体(1)と、
 前記コンテナ本体(1)の内部にそれぞれ設けられた吸込口(20)及び吹出口(16)を有する循環ライン(22)と、
 前記循環ライン(22)に設けられ、前記コンテナ本体(1)の内部から前記吸込口(20)を介して前記循環ライン(22)に吸引された前記気体である循環気体を圧縮するように構成された圧縮機(24)と、
 前記循環ライン(22)に設けられ、前記圧縮機(24)において圧縮された前記循環気体を冷却するように構成された熱交換器(26)と、
 前記循環ライン(22)に設けられ、前記熱交換器(26)で冷却された前記循環気体を膨張させるように構成された膨張機(28)と、
 前記循環ライン(22)の前記圧縮機(24)と前記熱交換器(26)の間から前記庫内気体よりも高温の前記循環気体を抜き出して前記コンテナ本体(1)に導くための暖気導入ライン(50)と、を備える。
1) A refrigeration container (100) according to at least one embodiment of the present disclosure comprises:
A refrigeration container (100) configured to be capable of cooling an internal gas, which is a gas inside a container body (1),
The container body (1),
a circulation line (22) having an inlet (20) and an outlet (16) respectively provided inside the container body (1);
a compressor (24) provided in the circulation line (22) and configured to compress the circulation gas, which is the gas sucked into the circulation line (22) from inside the container body (1) through the suction port (20);
a heat exchanger (26) provided in the circulation line (22) and configured to cool the circulation gas compressed in the compressor (24);
an expander (28) provided in the circulation line (22) and configured to expand the circulation gas cooled by the heat exchanger (26);
and a warm air introduction line (50) for extracting the circulating gas having a higher temperature than the internal gas from between the compressor (24) and the heat exchanger (26) of the circulating line (22) and guiding the gas to the container body (1).
 上記1)の構成によれば、循環ライン(22)にそれぞれ設けられる圧縮機(24)、熱交換器(26)及び膨張機(28)を含み、コンテナ本体(1)の内部の気体(庫内気体)を熱媒体として使用する冷凍機(30)が構築される。コンテナ本体(1)の内部の気体は、吹出口(16)での圧力と、吸込口(20)での圧力との差によって、吹出口(16)から吸込口(20)に至るまで自然循環するため、循環気体を循環させるためのファンが不要である。このため、コンテナ本体(1)の内部にファン及びファンモータを設けることによる庫内温度の上昇が生じない。よって、庫内温度を所期の温度に維持しやすい。また、コンテナ本体(1)の内部にファン及びファンモータが設けられないため、コンテナ本体(1)の内部の荷貨スペースを広く確保することができる。したがって、上記1)の構成によれば、コンテナの庫内の荷貨スペースの縮小を抑制可能であるとともに、庫内温度を安定的に維持することが可能な冷凍コンテナ(100)が得られる。 According to the above configuration 1), a refrigeration machine (30) is constructed that includes a compressor (24), a heat exchanger (26), and an expander (28) that are respectively provided in the circulation line (22), and uses the gas (internal gas) inside the container body (1) as a heat medium. The gas inside the container body (1) naturally circulates from the outlet (16) to the inlet (20) due to the difference in pressure between the outlet (16) and the inlet (20), so no fan is required to circulate the circulating gas. Therefore, the internal temperature does not increase due to the provision of a fan and a fan motor inside the container body (1). Therefore, the internal temperature is easily maintained at a desired temperature. In addition, since a fan and a fan motor are not provided inside the container body (1), a large cargo space inside the container body (1) can be secured. Therefore, according to the above configuration 1), a refrigeration container (100) is obtained that can suppress the reduction of the cargo space inside the container and can stably maintain the internal temperature.
 上記1)の構成によれば、暖気導入ライン(50)により、圧縮機(24)により庫内気体よりも高温になった循環気体をコンテナ本体(1)の内部に戻すことで、庫内温度を上げることができる。冷凍コンテナ(100)は、コンテナ本体(1)の外部に暖気導入ライン(50)を備えることで、コンテナの庫内の荷貨スペースの縮小を抑制しつつ、庫内温度の調整可能な範囲を高温側に拡大できる。 According to the configuration of 1) above, the warm air introduction line (50) allows the circulating gas, which has been heated by the compressor (24) to a temperature higher than the internal gas, to be returned to the inside of the container body (1), thereby raising the internal temperature. By providing the warm air introduction line (50) on the outside of the container body (1), the refrigerated container (100) can expand the adjustable range of the internal temperature to the higher temperature side while preventing the reduction of the cargo space inside the container.
2)幾つかの実施形態では、上記1)に記載の冷凍コンテナ(100)であって、
 前記冷凍コンテナ(100)は、
 前記循環ライン(22)の前記圧縮機(24)よりも下流側、且つ前記熱交換器(24)よりも上流側に設けられた冷却器(32)であって、前記循環気体と冷却液との間で熱交換を行うように構成された冷却器(32)をさらに備え、
 前記暖気導入ライン(50)の上流端(501)は、前記循環ライン(22)の前記冷却器(32)と前記熱交換器(26)の間に接続された。
2) In some embodiments, the refrigeration container (100) according to 1) above,
The refrigerated container (100) comprises:
a cooler (32) provided in the circulation line (22) downstream of the compressor (24) and upstream of the heat exchanger (24), the cooler (32) being configured to perform heat exchange between the circulation gas and a cooling liquid;
The upstream end (501) of the warm air introduction line (50) was connected to the circulation line (22) between the cooler (32) and the heat exchanger (26).
 上記2)の構成によれば、圧縮機(24)により高温になった循環気体を、冷却器(32)において冷却することで、暖気導入ライン(50)を介してコンテナ本体(1)に導入される循環気体(暖気)と、庫内気体との間の温度差を低減できる。上記温度差を低減することで、上記暖気による庫内気体の温度上昇を緩やかにできるため、コンテナ本体(1)の内部の熱歪による損傷を抑制できる。 According to the configuration of 2) above, the circulating gas heated by the compressor (24) is cooled in the cooler (32), thereby reducing the temperature difference between the circulating gas (warm air) introduced into the container body (1) via the warm air introduction line (50) and the gas inside the container. By reducing the temperature difference, the temperature rise of the gas inside the container due to the warm air can be made gentler, thereby suppressing damage caused by thermal distortion inside the container body (1).
3)幾つかの実施形態では、上記1)に記載の冷凍コンテナ(100)であって、
 前記冷凍コンテナ(100)は、
 前記循環ライン(22)の前記圧縮機(24)よりも下流側、且つ前記熱交換器(24)よりも上流側に設けられた冷却器(32)であって、前記循環気体と冷却液との間で熱交換を行うように構成された冷却器(32)をさらに備え、
 前記暖気導入ライン(50)の上流端(501)は、前記循環ライン(22)の前記冷却器(32)と前記圧縮機(24)の間に接続された。
3) In some embodiments, the refrigeration container (100) according to 1) above,
The refrigerated container (100) comprises:
a cooler (32) provided in the circulation line (22) downstream of the compressor (24) and upstream of the heat exchanger (24), the cooler (32) being configured to perform heat exchange between the circulation gas and a cooling liquid;
The upstream end (501) of the warm air introduction line (50) was connected to the circulation line (22) between the cooler (32) and the compressor (24).
 仮に、冷却器(32)を通過した循環気体を暖気として、コンテナ本体(1)の内部に導入する場合には、コンテナ本体(1)の内部の昇温制御において、冷却器(32)による温度変化を考慮する必要がある。上記3)の構成によれば、圧縮機(24)により高温になった循環気体を暖気として、冷却器(32)を通過せずに、コンテナ本体(1)の内部に導入する。この場合には、コンテナ本体(1)の内部の昇温制御において、冷却器(32)による温度変化を考慮しなくても良いので、上記昇温制御を簡単なものにすることができる。 If the circulating gas that has passed through the cooler (32) is introduced into the container body (1) as warm air, it is necessary to take into account the temperature change caused by the cooler (32) when controlling the temperature rise inside the container body (1). According to the configuration 3) above, the circulating gas that has been heated by the compressor (24) is introduced into the container body (1) as warm air without passing through the cooler (32). In this case, it is not necessary to take into account the temperature change caused by the cooler (32) when controlling the temperature rise inside the container body (1), so the temperature rise control can be simplified.
4)幾つかの実施形態では、上記1)から上記3)までの何れかに記載の冷凍コンテナ(100)であって、
 前記暖気導入ライン(50)に設けられ、前記暖気導入ライン(50)を流れる前記気体の流量を調整可能に構成された少なくとも1つの暖気流量調整装置(52)をさらに備える。
4) In some embodiments, the refrigeration container (100) according to any one of 1) to 3) above,
The system further includes at least one warm air flow rate adjustment device (52) provided in the warm air introduction line (50) and configured to be able to adjust the flow rate of the gas flowing through the warm air introduction line (50).
 上記4)の構成によれば、暖気流量調整装置(52)により暖気導入ライン(50)を流れる暖気(循環気体)の流量を調整することで、コンテナ本体(1)の内部の昇温制御が可能となる。この場合には、上記昇温制御を簡単なものにすることができる。 According to the configuration of 4) above, the warm air flow rate regulator (52) adjusts the flow rate of the warm air (circulating gas) flowing through the warm air inlet line (50), making it possible to control the temperature rise inside the container body (1). In this case, the temperature rise control can be simplified.
5)幾つかの実施形態では、上記4)に記載の冷凍コンテナ(100)であって、
 前記少なくとも1つの暖気流量調整装置(52)は、
 前記暖気導入ライン(50)に設けられる第1の暖気流量調整装置(53)と、
 前記暖気導入ライン(50)の前記第1の暖気流量調整装置(53)よりも下流側に設けられる第2の暖気流量調整装置(54)と、を含む。
5) In some embodiments, the refrigeration container (100) according to 4) above,
The at least one warm air flow regulator (52) comprises:
A first warm air flow rate control device (53) provided in the warm air introduction line (50);
and a second warm air flow control device (54) provided on the warm air introduction line (50) downstream of the first warm air flow control device (53).
 上記5)の構成によれば、暖気導入ライン(50)に2つの暖気流量調整装置(53、54)を設けることで、暖気導入ライン(50)における遮熱性を向上できる。これにより、2つの暖気流量調整装置(53、54)の閉止時における、暖気導入ライン(50)の第2の暖気流量調整装置(54)よりも下流側への入熱を抑制できる。 According to the configuration of 5) above, by providing two warm air flow rate control devices (53, 54) in the warm air introduction line (50), the heat insulation of the warm air introduction line (50) can be improved. This makes it possible to suppress heat input downstream of the second warm air flow rate control device (54) of the warm air introduction line (50) when the two warm air flow rate control devices (53, 54) are closed.
6)幾つかの実施形態では、上記1)から上記5)までの何れかに記載の冷凍コンテナ(100)であって、
 前記暖気導入ライン(50)の下流端(502)は、前記循環ライン(22)の前記膨張機(28)と前記吹出口(16)との間に接続された。
6) In some embodiments, the refrigeration container (100) according to any one of 1) to 5) above,
The downstream end (502) of the warm air introduction line (50) was connected to the circulation line (22) between the expander (28) and the air outlet (16).
 上記6)の構成によれば、暖気(暖気導入ライン50を流れる循環気体)の流路として、吹出口(16)などの循環ライン(22)の一部を利用できる。この場合には、コンテナ本体(1)の内部に暖気を導入するための専用の吹出口を設ける必要がなく、冷凍コンテナ(100)の構造のコンパクト化、軽量化が図れる。 According to the configuration of 6) above, a part of the circulation line (22), such as the air outlet (16), can be used as a flow path for the warm air (the circulating gas flowing through the warm air inlet line 50). In this case, there is no need to provide a dedicated air outlet for introducing warm air into the container body (1), and the structure of the refrigeration container (100) can be made more compact and lightweight.
 また、上記6)の構成によれば、暖気導入ライン(50)がバイパスする循環ライン(22)は、該循環ライン(22)に設けられた膨張機(28)により圧力損失が大きなものとなるため、暖気導入ライン(50)が開いているときに、暖気導入ライン(50)側に大量の循環気体を導くことができる。また、暖気導入ライン(50)を通過する循環気体は、暖気導入ライン(50)がバイパスする循環ライン(22)を通過する循環気体よりも高温となる。よって、上記6)の構成によれば、暖気導入ライン(50)を介して、コンテナ本体(1)の内部に比較的高温の循環気体を大量に導くことができるため、コンテナ本体(1)の内部の加熱能力を大きなものとすることができる。 Furthermore, according to the configuration of 6) above, the circulation line (22) bypassed by the warm air introduction line (50) has a large pressure loss due to the expander (28) provided in the circulation line (22), so that when the warm air introduction line (50) is open, a large amount of circulating gas can be guided to the warm air introduction line (50). Also, the circulating gas passing through the warm air introduction line (50) is at a higher temperature than the circulating gas passing through the circulation line (22) bypassed by the warm air introduction line (50). Therefore, according to the configuration of 6) above, a large amount of relatively high-temperature circulating gas can be guided into the inside of the container body (1) via the warm air introduction line (50), so that the heating capacity inside the container body (1) can be increased.
7)幾つかの実施形態では、上記1)から上記5)までの何れかに記載の冷凍コンテナ(100)であって、
 前記暖気導入ライン(50)の下流端(502)は、前記循環ライン(22)の前記熱交換器(24)と前記膨張機(28)との間に接続された。
7) In some embodiments, the refrigeration container (100) according to any one of 1) to 5) above,
The downstream end (502) of the warm air introduction line (50) was connected to the circulation line (22) between the heat exchanger (24) and the expander (28).
 上記7)の構成によれば、暖気(暖気導入ライン50を流れる循環気体)の流路として、吹出口(16)などの循環ライン(22)の一部を利用できる。この場合には、コンテナ本体(1)の内部に暖気を導入するための専用の吹出口を設ける必要がなく、冷凍コンテナ(100)の構造のコンパクト化、軽量化が図れる。 According to the configuration of 7) above, a part of the circulation line (22), such as the air outlet (16), can be used as a flow path for the warm air (the circulating gas flowing through the warm air inlet line 50). In this case, there is no need to provide a dedicated air outlet for introducing warm air into the container body (1), and the structure of the refrigeration container (100) can be made more compact and lightweight.
 また、上記7)の構成によれば、暖気導入ライン(50)の下流端が、循環ライン(22)の膨張機(28)よりも上流側に接続されているため、循環ライン(22)の膨張機(28)よりも下流側に接続される場合に比べて、暖気導入ライン(50)から循環ライン(22)の膨張機(28)よりも下流側への入熱を抑制でき、冷凍コンテナ(100)の冷凍運転時における冷却性能の利得が大きくなる。 Furthermore, according to the configuration of 7) above, since the downstream end of the warm air introduction line (50) is connected upstream of the expander (28) of the circulation line (22), the heat input from the warm air introduction line (50) to the downstream side of the expander (28) of the circulation line (22) can be suppressed compared to the case where the warm air introduction line (50) is connected downstream of the expander (28) of the circulation line (22), and the gain in cooling performance during refrigeration operation of the refrigerated container (100) is large.
8)幾つかの実施形態では、上記1)から上記7)までの何れかに記載の冷凍コンテナ(100)であって、
 前記循環ライン(22)及び前記暖気導入ライン(50)は、前記コンテナ本体(1)の外側空間(3)において、前記コンテナ本体(1)の内側空間(2)と前記外側空間(3)とを仕切る隔壁(10)に沿って配置され、
 前記暖気導入ライン(50)は、
 前記隔壁(10)の前記外側空間(3)に面する外側面(101)に対する垂直方向視において、
 前記循環ライン(22)の前記熱交換器(26)と前記膨張機(28)とを繋ぐ冷却気体ライン(22D)に対して交差しないように配置された。
8) In some embodiments, the refrigeration container (100) according to any one of 1) to 7) above,
the circulation line (22) and the warm air introduction line (50) are arranged in the outer space (3) of the container body (1) along a partition wall (10) that separates the inner space (2) of the container body (1) from the outer space (3);
The warm air introduction line (50)
When viewed in a vertical direction with respect to an outer surface (101) of the partition wall (10) facing the outer space (3),
The circulation line (22) is arranged so as not to cross the cooling gas line (22D) connecting the heat exchanger (26) and the expander (28).
 上記7)の構成によれば、暖気導入ライン(50)を流れる循環気体(暖気)から冷却気体ライン(22D)を流れる循環気体(冷気)への入熱を削減でき、これにより、冷凍コンテナ(100)の冷凍運転時の性能向上が図れる。 The configuration of 7) above can reduce the heat input from the circulating gas (warm air) flowing through the warm air inlet line (50) to the circulating gas (cold air) flowing through the cooling gas line (22D), thereby improving the performance of the refrigeration container (100) during refrigeration operation.
9)幾つかの実施形態では、上記2)に記載の冷凍コンテナ(100)であって、
 前記圧縮機(24)を駆動させる駆動力を発生させるように構成された電動モータ(46)と、
 前記暖気導入ライン(50)に一端が接続され、前記暖気導入ライン(50)から前記循環気体を抜き出して、前記電動モータ(46)を冷却するための冷熱媒体として前記電動モータ(46)に供給するための冷熱媒体供給ライン(60)と、
 前記冷熱媒体供給ライン(60)を介して前記電動モータ(46)に供給された前記循環気体を前記循環ライン(22)の前記圧縮機(24)よりも上流側に戻すための冷熱媒体戻しライン(62)と、をさらに備える。
9) In some embodiments, the refrigeration container (100) according to 2) above,
an electric motor (46) configured to generate a driving force for driving the compressor (24);
a cold medium supply line (60) connected at one end to the warm air introduction line (50) for extracting the circulating gas from the warm air introduction line (50) and supplying the gas to the electric motor (46) as a cold medium for cooling the electric motor (46);
The cooling medium supply system further includes a cooling medium return line (62) for returning the circulating gas supplied to the electric motor (46) via the cooling medium supply line (60) to the upstream side of the compressor (24) of the circulation line (22).
 上記9)の構成によれば、冷凍コンテナ(100)は、冷熱媒体供給ライン(60)及び冷熱媒体戻しライン(62)を備えるため、暖気導入ラインから抜き出した循環気体により電動モータを冷却でき、電動モータを冷却した循環気体を循環ラインに戻すことができる。この場合には、電動モータを冷却する冷熱媒体(循環気体)の流路として、循環ライン(22)や暖気導入ライン(50)などの一部を利用できるため、冷凍コンテナ(100)の構造のコンパクト化、軽量化が図れる。 According to the configuration of 9) above, the refrigerated container (100) is equipped with a cold medium supply line (60) and a cold medium return line (62), so that the electric motor can be cooled by the circulating gas extracted from the warm air introduction line, and the circulating gas that has cooled the electric motor can be returned to the circulation line. In this case, parts of the circulation line (22) and the warm air introduction line (50), etc. can be used as the flow path for the cold medium (circulating gas) that cools the electric motor, so that the structure of the refrigerated container (100) can be made more compact and lightweight.
10)幾つかの実施形態では、上記1)から上記9)までの何れかに記載の冷凍コンテナ(100)であって、
 前記循環気体に対して脱臭作用を有する物質を放出するように構成された脱臭装置(70)をさらに備える。
10) In some embodiments, the refrigeration container (100) according to any one of 1) to 9) above,
The system further comprises a deodorizing device (70) configured to emit a substance having a deodorizing effect on the circulating gas.
 上記10)の構成によれば、脱臭装置(70)により、循環気体に対して脱臭作用を有する物質を放出することで、循環気体を脱臭できる。そして、脱臭装置(70)により脱臭した循環気体をコンテナ本体(1)の内部に戻すことで、庫内気体を脱臭できる。この場合には、脱臭装置(70)により庫内気体を直接脱臭する場合とは異なり、脱臭装置(70)をコンテナ本体(1)の外部に設けることができるため、コンテナ本体(1)の内部の荷貨スペースを広く確保することができる。脱臭装置(70)をコンテナ本体(1)の外部に設ける際には、循環ライン(22)や暖気導入ライン(50)などのコンテナ本体(1)の内部から取り出された気体(循環気体)が流れるラインに設けることが好ましい。この場合には、コンテナ本体(1)と脱臭装置(70)との間における気体の流路として、循環ライン(22)や暖気導入ライン(50)などを利用できるため、冷凍コンテナ(100)の構造のコンパクト化、軽量化が図れる。 According to the configuration of 10) above, the deodorizing device (70) can deodorize the circulating gas by emitting a substance having a deodorizing effect on the circulating gas. The circulating gas deodorized by the deodorizing device (70) can then be returned to the inside of the container body (1) to deodorize the inside gas. In this case, unlike the case where the inside gas is directly deodorized by the deodorizing device (70), the deodorizing device (70) can be provided outside the container body (1), so that a large cargo space can be secured inside the container body (1). When providing the deodorizing device (70) outside the container body (1), it is preferable to provide the deodorizing device (70) on a line through which the gas (circulating gas) taken out from inside the container body (1) flows, such as the circulation line (22) or the warm air introduction line (50). In this case, the circulation line (22) and the warm air introduction line (50) can be used as the gas flow path between the container body (1) and the deodorizing device (70), making the structure of the refrigeration container (100) more compact and lightweight.
11)幾つかの実施形態では、上記10)に記載の冷凍コンテナ(100)であって、
 前記脱臭装置(70)は、前記暖気導入ライン(50)に設けられた。
11) In some embodiments, the refrigeration container (100) according to 10) above,
The deodorizing device (70) is provided in the warm air introduction line (50).
 上記11)の構成によれば、脱臭装置(70)を暖気導入ライン(50)に設けることで、脱臭作用を有する物質が低温環境である膨張機(28)に導かれるのを抑制できる。これにより、脱臭作用を有する物質の膨張機(28)における効果低下や凍結を抑制できるため、脱臭装置(70)から放出される脱臭作用を有する物質の量を低減しても、有効な脱臭効果が得られる。また、脱臭装置(70)を暖気導入ライン(50)に設けることで、脱臭作用を有する物質がコンテナ本体(1)の内部に導かれるため、脱臭作用を有する物質により庫内気体を直接除菌、脱臭できる。 According to the configuration of 11) above, by providing the deodorizing device (70) in the warm air introduction line (50), it is possible to prevent the deodorizing substance from being introduced into the expander (28), which is a low-temperature environment. This prevents the deodorizing substance from losing its effectiveness or freezing in the expander (28), so that an effective deodorizing effect can be obtained even if the amount of the deodorizing substance released from the deodorizing device (70) is reduced. Furthermore, by providing the deodorizing device (70) in the warm air introduction line (50), the deodorizing substance is introduced into the inside of the container body (1), so that the gas inside the container can be directly disinfected and deodorized by the deodorizing substance.
1     コンテナ本体
2     内側空間
3     外側空間
4     天井壁
5     底壁
6,7   短側壁
8,9   長側壁
10    隔壁
12    カバー
14    吹出部
16    吹出口
18    吸込部
20    吸込口
21    フィルタ部
22    循環ライン
22A   吸引気体ライン
22B   圧縮気体ライン
22C   膨張気体ライン
23A~23H 配管
24    圧縮機
25,27 貫通孔
26    熱交換器
28    膨張機
29    循環気体流量調整装置
30    冷凍機
32    冷却器
34    冷却液循環ライン
36    冷却装置
38    ラジエータ
40    ファン
42    ポンプ
44    回転シャフト
46    電動モータ
50    暖気導入ライン
52    暖気流量調整装置
53    第1の暖気流量調整装置
54    第2の暖気流量調整装置
60    冷熱媒体供給ライン
62    冷熱媒体戻しライン
70    脱臭装置
100   冷凍コンテナ
Reference Signs List 1 Container body 2 Inner space 3 Outer space 4 Ceiling wall 5 Bottom wall 6, 7 Short side wall 8, 9 Long side wall 10 Partition wall 12 Cover 14 Blow-out section 16 Blow-out port 18 Suction section 20 Suction port 21 Filter section 22 Circulation line 22A Suction gas line 22B Compressed gas line 22C Expanded gas line 23A to 23H Pipe 24 Compressor 25, 27 Through hole 26 Heat exchanger 28 Expander 29 Circulation gas flow rate control device 30 Refrigerator 32 Cooler 34 Cooling liquid circulation line 36 Cooling device 38 Radiator 40 Fan 42 Pump 44 Rotating shaft 46 Electric motor 50 Warm air introduction line 52 Warm air flow rate control device 53 First warm air flow rate control device 54 Second warm air flow rate control device 60 Cold medium supply line 62 Cold medium return line 70 Deodorizing device 100 Refrigerated container

Claims (11)

  1.  コンテナ本体の内部の気体である庫内気体を冷却可能に構成された冷凍コンテナであって、
     前記コンテナ本体と、
     前記コンテナ本体の内部にそれぞれ設けられた吸込口及び吹出口を有する循環ラインと、
     前記循環ラインに設けられ、前記コンテナ本体の内部から前記吸込口を介して前記循環ラインに吸引された前記気体である循環気体を圧縮するように構成された圧縮機と、
     前記循環ラインに設けられ、前記圧縮機において圧縮された前記循環気体を冷却するように構成された熱交換器と、
     前記循環ラインに設けられ、前記熱交換器で冷却された前記循環気体を膨張させるように構成された膨張機と、
     前記循環ラインの前記圧縮機と前記熱交換器の間から前記庫内気体よりも高温の前記循環気体を抜き出して前記コンテナ本体に導くための暖気導入ラインと、を備える、
    冷凍コンテナ。
    A refrigeration container configured to be able to cool an internal gas, which is a gas inside a container body,
    The container body;
    a circulation line having an inlet and an outlet, each of which is provided inside the container body;
    a compressor provided in the circulation line and configured to compress a circulation gas that is the gas sucked into the circulation line from inside the container body through the suction port;
    a heat exchanger provided in the circulation line and configured to cool the circulation gas compressed in the compressor;
    an expander provided in the circulation line and configured to expand the circulation gas cooled by the heat exchanger;
    A warm air introduction line for extracting the circulating gas having a higher temperature than the internal gas from between the compressor and the heat exchanger of the circulating line and guiding the gas to the container body.
    Refrigerated container.
  2.  前記冷凍コンテナは、
     前記循環ラインの前記圧縮機よりも下流側、且つ前記熱交換器よりも上流側に設けられた冷却器であって、前記循環気体と冷却液との間で熱交換を行うように構成された冷却器をさらに備え、
     前記暖気導入ラインの上流端は、前記循環ラインの前記冷却器と前記熱交換器の間に接続された、
    請求項1に記載の冷凍コンテナ。
    The refrigerated container comprises:
    The cooling system further includes a cooler that is provided in the circulation line downstream of the compressor and upstream of the heat exchanger, and is configured to perform heat exchange between the circulation gas and a cooling liquid,
    The upstream end of the warm air introduction line is connected to the circulation line between the cooler and the heat exchanger.
    2. The refrigerated container of claim 1.
  3.  前記冷凍コンテナは、
     前記循環ラインの前記圧縮機よりも下流側、且つ前記熱交換器よりも上流側に設けられた冷却器であって、前記循環気体と冷却液との間で熱交換を行うように構成された冷却器をさらに備え、
     前記暖気導入ラインの上流端は、前記循環ラインの前記冷却器と前記圧縮機の間に接続された、
    請求項1に記載の冷凍コンテナ。
    The refrigerated container comprises:
    The cooling system further includes a cooler that is provided in the circulation line downstream of the compressor and upstream of the heat exchanger, and is configured to perform heat exchange between the circulation gas and a cooling liquid,
    The upstream end of the warm air introduction line is connected to the circulation line between the cooler and the compressor.
    2. The refrigerated container of claim 1.
  4.  前記暖気導入ラインに設けられ、前記暖気導入ラインを流れる前記気体の流量を調整可能に構成された少なくとも1つの暖気流量調整装置をさらに備える、
    請求項1乃至3の何れか1項に記載の冷凍コンテナ。
    At least one hot air flow rate adjusting device is provided in the hot air introduction line and configured to adjust the flow rate of the gas flowing through the hot air introduction line.
    A refrigerated container according to any one of claims 1 to 3.
  5.  前記少なくとも1つの暖気流量調整装置は、
     前記暖気導入ラインに設けられる第1の暖気流量調整装置と、
     前記暖気導入ラインの前記第1の暖気流量調整装置よりも下流側に設けられる第2の暖気流量調整装置と、を含む、
    請求項4に記載の冷凍コンテナ。
    The at least one hot air flow regulator
    a first warm air flow rate adjustment device provided in the warm air introduction line;
    A second warm air flow control device is provided downstream of the first warm air flow control device in the warm air introduction line.
    5. A refrigerated container as claimed in claim 4.
  6.  前記暖気導入ラインの下流端は、前記循環ラインの前記膨張機と前記吹出口との間に接続された、
    請求項1乃至3の何れか1項に記載の冷凍コンテナ。
    The downstream end of the warm air introduction line is connected between the expander and the air outlet of the circulation line.
    A refrigerated container according to any one of claims 1 to 3.
  7.  前記暖気導入ラインの下流端は、前記循環ラインの前記熱交換器と前記膨張機との間に接続された、
    請求項1乃至3の何れか1項に記載の冷凍コンテナ。
    The downstream end of the warm air introduction line is connected between the heat exchanger and the expander of the circulation line.
    A refrigerated container according to any one of claims 1 to 3.
  8.  前記循環ライン及び前記暖気導入ラインは、前記コンテナ本体の外側空間において、前記コンテナ本体の内側空間と前記外側空間とを仕切る隔壁に沿って配置され、
     前記暖気導入ラインは、
     前記隔壁の前記外側空間に面する外側面に対する垂直方向視において、
     前記循環ラインの前記熱交換器と前記膨張機とを繋ぐ冷却気体ラインに対して交差しないように配置された、
    請求項1乃至3の何れか1項に記載の冷凍コンテナ。
    the circulation line and the warm air introduction line are arranged in the outer space of the container body along a partition wall that separates the inner space of the container body from the outer space,
    The warm air introduction line is
    When viewed in a vertical direction with respect to an outer surface of the partition wall facing the outer space,
    The circulation line is arranged so as not to cross a cooling gas line connecting the heat exchanger and the expander.
    A refrigerated container according to any one of claims 1 to 3.
  9.  前記圧縮機を駆動させる駆動力を発生させるように構成された電動モータと、
     前記暖気導入ラインに一端が接続され、前記暖気導入ラインから前記循環気体を抜き出して、前記電動モータを冷却するための冷熱媒体として前記電動モータに供給するための冷熱媒体供給ラインと、
     前記冷熱媒体供給ラインを介して前記電動モータに供給された前記循環気体を前記循環ラインの前記圧縮機よりも上流側に戻すための冷熱媒体戻しラインと、をさらに備える、
    請求項2に記載の冷凍コンテナ。
    an electric motor configured to generate a driving force for driving the compressor;
    a cooling medium supply line having one end connected to the hot air introduction line, for extracting the circulating gas from the hot air introduction line and supplying the gas to the electric motor as a cooling medium for cooling the electric motor;
    and a cooling medium return line for returning the circulating gas supplied to the electric motor through the cooling medium supply line to a side upstream of the compressor of the circulation line.
    3. A refrigerated container as claimed in claim 2.
  10.  前記循環気体に対して脱臭作用を有する物質を放出するように構成された脱臭装置をさらに備える、
    請求項1乃至3の何れか1項に記載の冷凍コンテナ。
    Further comprising a deodorizing device configured to emit a substance having a deodorizing effect on the circulating gas.
    A refrigerated container according to any one of claims 1 to 3.
  11.  前記脱臭装置は、前記暖気導入ラインに設けられた、
    請求項10に記載の冷凍コンテナ。
    The deodorizing device is provided in the warm air introduction line,
    11. A refrigerated container as claimed in claim 10.
PCT/JP2023/031474 2022-10-07 2023-08-30 Refrigerated container WO2024075440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-162030 2022-10-07
JP2022162030A JP2024055255A (en) 2022-10-07 2022-10-07 Refrigerated container

Publications (1)

Publication Number Publication Date
WO2024075440A1 true WO2024075440A1 (en) 2024-04-11

Family

ID=90607783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031474 WO2024075440A1 (en) 2022-10-07 2023-08-30 Refrigerated container

Country Status (2)

Country Link
JP (1) JP2024055255A (en)
WO (1) WO2024075440A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152260A (en) * 1995-11-29 1997-06-10 Mitsubishi Heavy Ind Ltd Cooling device for refrigerator
JPH11132582A (en) * 1997-10-24 1999-05-21 Kajima Corp Air refrigerant type refrigerator
WO2006011297A1 (en) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. Air refrigerant type cooling apparatus
JP2009162464A (en) * 2008-01-10 2009-07-23 Ntn Corp Air cycle refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152260A (en) * 1995-11-29 1997-06-10 Mitsubishi Heavy Ind Ltd Cooling device for refrigerator
JPH11132582A (en) * 1997-10-24 1999-05-21 Kajima Corp Air refrigerant type refrigerator
WO2006011297A1 (en) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. Air refrigerant type cooling apparatus
JP2009162464A (en) * 2008-01-10 2009-07-23 Ntn Corp Air cycle refrigeration system

Also Published As

Publication number Publication date
JP2024055255A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US10816001B2 (en) Compressor system with internal air-water cooling
WO2011061981A1 (en) Air conditioning system for vehicle
EP2710868B1 (en) Variable frequency drive heat sink assembly
US8544292B2 (en) Vehicle air conditioner
WO2010137258A1 (en) Refrigeration device for trailer
JP2016211788A (en) Refrigerating machine for transportation and trailer
JP2010509117A (en) Airplane cooling system
KR102207199B1 (en) Vehicle air-conditioning device using semiconductor as cooling core
CN111800983B (en) Cooling system for an electronics cabinet and electronics cabinet with a cooling system
WO2024075440A1 (en) Refrigerated container
US11472266B2 (en) Engine exhaust gas cooling system for transport refrigeration system
JP2024055257A (en) Refrigerated container
US20200333058A1 (en) Refrigeration device
KR102576259B1 (en) Air-conditioning system for electric vehicles
US11465463B2 (en) Transport refrigeration unit
US20120273165A1 (en) Cross-flow spiral heat transfer apparatus with solid belt
JP2014144668A (en) Air conditioner for vehicle
JP2009184494A (en) Air conditioning system for vehicle
WO2023120053A1 (en) Refrigeration container
WO2023203863A1 (en) Refrigerated container
CN118159794A (en) Freezing container
WO2023203864A1 (en) Refrigerated container
US20190078839A1 (en) Transport refrigeration unit and method of operating
JP7097345B2 (en) Vehicle air conditioner
JP2013185775A (en) Distributor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874570

Country of ref document: EP

Kind code of ref document: A1